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Titre : Homomorphisms of (j,k)-mixed Graphs 
Résumé  : Un graphe mixte est un graphe simple tel que un 
sous-ensemble des arêtes a une orientation. Pour entiers non 
négatifs j et k, un graphe mixte-(j,k) est un graphe mixte avec j 
types des arcs and k types des arêtes. La famille de graphes 
mixte-(j,k) contient graphes simple, (graphes mixte−(0,1)), 
graphes orienté (graphes mixte−(1,0)) and graphe coloré arête
−k (graphes mixte−(0,k)).  
Un homomorphisme est un application sommet entre graphes 
mixte−(j,k) que tel les types des arêtes sont conservés et les 
types des arcs et leurs directions sont conservés. Le nombre 
chromatique−(j,k) d’un graphe mixte−(j,k)  est le moins entier 
m tel qu’il existe un homomorphisme à une cible avec m 
sommets. Quand on observe le cas de (j,k) = (0,1), on peut 
déterminer ces définitions correspondent à les définitions usuel 
pour les graphes. 
Dans ce mémoire on etude le nombre chromatique−(j,k) et des 
paramètres similaires pour diverses familles des graphes. Aussi 
on etude les coloration incidence pour graphes and digraphs. On 
utilise systèmes de représentants distincts et donne une nouvelle 
caractérisation du nombre chromatique incidence. On define le 
nombre chromatique incidence orienté et trouves un connexion 
entre le  nombre chromatique incidence orienté et le nombre 
chromatic du graphe sous-jacent.  
Mots clés:  
 graphe 
 graphe orienté 
 graphe orientée coloration 
 homomorphism 



Title : Homomorphisms of (j,k)-mixed Graphs 
Abstract : A mixed graph is a simple graph in which a subset 
of the edges have been assigned directions to form arcs. For 
non-negative integers j and k, a (j,k)−mixed graph is a mixed 
graph with j types of arcs and k types of edges. The collection 
of (j,k)−mixed graphs contains simple graphs ((0,1)−mixed 
graphs), oriented graphs ((1,0)−mixed graphs) and k−edge-
coloured graphs ((0,k)−mixed graphs).  
A homomorphism is a vertex mapping from one (j,k)−mixed 
graph to another in which edge type is preserved, and arc type 
and direction are preserved. The (j,k)−chromatic number of a 
(j,k)−mixed graph is the least m such that an m−colouring 
exists. When (j,k)=(0,1), we see that these definitions are 
consistent with the usual definitions of graph homomorphism 
and graph colouring. 

In this thesis we study the (j,k)−chromatic number and related 
parameters for different families of graphs, focussing particularly 
on the (1,0)−chromatic number, more commonly called the 
oriented chromatic number, and the (0,k)−chromatic number.  

In addition to considering vertex colourings, we also consider 
incidence colourings of both graphs and digraphs. Using systems 
of distinct representatives, we provide a new characterisation of 
the incidence chromatic number. We define the oriented 
incidence chromatic number and find, by way of digraph 
homomorphism, a connection between the oriented incidence 
chromatic number and the chromatic number of the underlying 
graph. This connection motivates our study of the oriented 
incidence chromatic number of symmetric complete digraphs.  
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to André Raspaud and Pascal Ochem for their insights included in Chapter 6.

Thank you to my family, friends and colleagues, far and near. You have provided me

endless reassurance, support and entertainment.



Chapter 0
Résumé

L’histoire des sommets colorés des graphes mixtes commence, indépendamment, avec
Gallai, Roy, Hasse et Vitaver ([19], [45], [26], [56]).

Theorem 0.1. Le nombre chromatique de G est le moins m qu’une orientation acyclique
de G existe où la durée la plus longue a m sommets.

Même si ce résultat célèbre ne construit pas des colorations de graphes orientées qui
considère l’orientation des arcs, il utilise néanmoins des graphes orientées dans les plies
des graphes colorés. Pour trouver une définition de coloration propres de sommets des
graphes orientés qui examine l’orientation des arcs, nous devons revenir au graphe homo-
morphisme. En traduisant la connexité entre la coloration du graphe et le graphe homo-
morphisme dans la langue des graphes orientés, nous arrivons à une définition raisonnable
des colorants de sommets pour ces graphes. En utilisant cette même idée, nous arrivons
à une définition de colorants de sommets qui tient des sortes d’agencements di↵érentes
dans le même graphe, et qui inclus des types d’arcs et d’arêtes di↵érents.

Un graphe mixte, G = (V,E,A), est un triplé tel que V est un ensemble des sommets,
E est un ensemble des arêtes et A est un ensemble de arcs, et tel que pour tout uv 2 E(G),
uv, vu /2 A(G) et pour tout uv 2 A(G), uv /2 E(G). Un graphe mixte est un graphe simple
oú un sous-ensemble de les arêtes a une orientation.

Un graphe coloré arête�k est un graphe simple avec un application, ⌃ : V (G) !
{1, 2, 3, . . . k}. On se réfère au graphe colorés arêtes�k en utilisant la notation suivante
(G,⌃). Quand le contexte est clair, on peut référer au (G,⌃) avec la notation G.

Pour G est un graphe simple, on peut obtenir une orientation de G en assignant à
chaque de ces arêtes une direction pour obtenir un digraphe. Si un digraphe D est obtenu
dans cette manière on peut dire que D est un graphe orienté.

Un graphe coloré arcs�j est un graphe orienté avec un application, ↵ : V (G) !
{1, 2, 3, . . . k}. On se réfère au graphe colorés arcs�j en utilisant la notation suivante
(G,↵). Quand le contexte est clair, on peut référer au (G,↵) avec la notation G.

Si (j, k) 6= (0, 0), une graphe mixte�(j, k) est

• un graphe coloré arête�k, (G,⌃), quand j = 0 et k 6= 0;

• un graphe coloré arcs�j, (G,↵), quand j 6= 0 et k = 0; et

• un triplé (G,↵,⌃), tel que G = (V,E,A) est un graphe mixte, ((V (G), A(G)),↵) est
un graphe coloré arcs�j, et ((V (G), E(G)),⌃) est un graphe coloré arête�k, sinon.

Quand le contexte est clair, on peut référer au (G,↵,⌃) avec la notation G et on démontre
le graphe simple sous G avec la notation U(G).

En utilisant graphes mixtes�(j, k) on peut définir une notion d’homomorphisme qui
est commun au graphes simples, graphes orientés, graphe coloré arc�j , et graphes coloré
arêtes�k.
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Regardons (G,↵G,⌃G) et (H,↵H ,⌃H) comme graphes mixtes�(j, k). On peut poser
comme principe que G accepte un homomorphisme à H, dénoté par G ! H , si � :
V (G) ! V (H) existe tel que

• si k > 0, pour tout uv 2 ⌃G
i , �(u)�(v) 2 ⌃H

i (1  i  k), et

• si j > 0, pour tout uv 2 ↵G
i , �(u)�(v) 2 ↵H

i (1  i  j).

Si � est un application comme tel, on peut dire que � est un homomorphisme, ou que
� a un colorant�H de G et on écrit � : G ! H. Si |V (H)| = m, on peut dire que �
est un colorant�m de G. Pour une classe, F , de graphes mixtes�(j, k), H est une cible
universel pour F si pour tout F 2 F , on a F ! H.

Le nombre chromatique�(j, k) d’un graphe mixte�(j, k) G, dénoté �j,k(G), est le
moins m tel qu’il existe un graphe mixte�(j, k), H, avec m sommets tel que G ! H .

Quand on observe le cas de (j, k) = (0, 1), on peut déterminer les définitions données
ci-dessus pour l’homomorphisme et la coloration correspondent à les définitions usuel pour
les graphes. En e↵et, la définition pour la coloration des graphes mixtes�(j, k) est motivé
par la relation entre la coloration du graphe et homomorphisme du graphe. Une étude
compréhensive des caractères divers de graphes homomorphisme est donnée par [27].

Malgré le fait que la coloration�(j, k) généralise la coloration convenable des graphes, il
n’existe pas ordinairement une relation entre le nombre chromatique�(j, k) d’un graphe et
le nombre chromatique du graphe sous-jacent. C’est donc facile de construire des graphes
mixtes�(j, k) où la di↵érence entre ces deux paramètres est arbitrairement grande [50].

Rappelons-nous qu’une coloration acyclique d’un graphe est une coloration de som-
met propre où le graphe induit par n’importe paire de classes de couleurs est acyclique.
Étonnamment, il y a une connexité entre le nombre chromatique acyclique et le nombre
chromatique mixte�(j, k).

Theorem 0.2. [42] Si G est un graphe mixte�(j, k) pour qui le nombre chromatique
acyclique de U(G) est au plus m, alors

�j,k(G)  m(2j + k)m�1.

Ce résultat unifie des résultats précédents pour les graphes orientés ([44]) et les graphes
colorés arête�k ([2]). Ici, les auteurs construisent un cible universel pour la famille de
graphes mixtes�(j, k) pour qui le graphe sous-jacent a un nombre chromatique acyclique
maximum de m. Ce n’est toutefois pas le cas que la famille F de graphes mixtes�(j, k) a
une cible universel avec �j,k(F) sommets. Considérons, par exemple, la classe de tournois
avec n sommets. Chacun de ces graphes orientés a un nombre chromatique�(1, 0) n,
mais une cible universelle pour cette famille a au moins 2n/2 sommets [38]. Des classes de
graphes mixtes�(j, k) pour qui une cible universelle existe sur sommets peut être retrouvé
parmi les classes complète de graphe mixte�(j, k) ([50]).

Proposition 0.3. [50] Si F est une classe complète de graphes mixte�(j, k) tel que le
nombre chromatique-(j, k) de F est borne, il existe une cible universelle pour F , H, tel
que |V (H)| = �j,k(F).

Pour le cas ou (j, k) = (1, 0), nos définitions pour l’homomorphisme et la coloration
correspondent exactement à les définitions de homomorphisme orienté et coloration ori-
entée. Donc, au lieu d’utiliser �1,0 et attribuer au nombre chromatique�(1, 0), on utilises
la notation plus conventionnelle, �o, et la phrase coloration orientée.

La définition de coloration avec une homomorphisme a une définition comparable pour
les marquages de sommets. Si G est un graphe orienté, une coloration orientée de G qui
utilise m couleurs est une application, c : V (G) ! {1, 2, 3, . . . ,m} tel que
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1. si uv 2 E(G), c(u) 6= c(v), et

2. si uv, xy 2 E(G) et c(u) = c(y), c(v) 6= c(x).

Des colorations orientées (auparavant appelés good colorings) ont été utiliser par Cour-
celle comme un exemple dans la deuxième-ordre de logique des graphes monadiques [13]. Il
a étudié les colorations orientées injectif de les graphe planaires et k�arbres. Il démontre
que chaque graphe planaire G avec d�(x)  3 pour tout x 2 V (G) a une coloration bonne
qui utilise au plus 43 ·363, qui est injectif sur son voisinage. Cette borne a été amélioré par
Raspaud et Sopena qui utilisent la connexité entre la coloration acyclique et coloration
orientée.

Theorem 0.4. [44] Si un graphe connexité G a un nombre chromatique acyclique maxi-
mum de m, alors le nombre chromatique orienté de n’importe le quelle orientation de G
est au plus m · 2m�1.

Observons que ceci est exactement Théorème 0.2 pour j = 1 et k = 0. Donc, au lieu
d’utiliser �1,0, nous employons la notation �o. Kostochka, Sopena et Zhu démontrent,
plus tard, que l’inverse, où chaque classe de graphe avec des nombres bornes chromatique
orientés ont un nombre borne acyclique chromatique [32].

Les colorations orientées ont été étudié pour des classes de graphes assorti ([53], [32],
[14]).

De plus de la coloration orientée, plusieurs a↵aiblissements des conditions des col-
orations orientées ont établi d’autres paramètres de colorations pour des graphes orientés:
colorations 2�dipaths [34] , colorations simple [49], et colorations push [30]. Sopena a
donné une étude sur les colorations orientées en 2001 [51] et a réactualisé cette étude en
2015 [52].

Quoi que le borne donné pour Théorème 0.4 est précis, lorsqu’on l’applique aux
classes de graphes définies par des propriétés autre que leur nombre acyclique chroma-
tique, nous découvrons une borne faible. Particulièrement, nous pouvons s’attendre a une
amélioration d’une borne de classes de graphes orientés avec un degré de borne et la classe
d’orientations de graphes planaires.

Nous considérons les colorations de graphes orientés qui tiennent des graphes sous-
jacents avec un degré maximum de 3 et 4 dans le deuxième chapitre de cette thèse.
Nous considérons une proximité utile des propriétés pour les cibles d’homomorphisme de
ces graphes orientés. En utilisant ces cibles, nous trouvons de nouveaux bornes pour le
nombre chromatique orienté de la classe de graphes orientés qui ont des graphes sous-
jacents avec un degré maximum de 3 et la classe de graphes orienté avec des graphes
simples sous-jacent qui tiennent un degré maximum de 4.

Theorem 0.5. Si F est la famille des graphes orientés qu’ont �(U(G))  3 pour tout
G 2 F , alors

7  �o(F)  9.

Theorem 0.6. Si F est la famille des graphes orientés qu’ont �(U(G))  4 pour tout
G 2 F , alors

�o(F)  69.

Ces résultats améliorent les précédents meilleures bornes connues.
Les colorations simples de graphes orientés apparaissent lorsque l’on considère les ho-

momorphismes des graphes orientés pour viser ver les graphes où les boucles se retrouvent
à chaque sommet. D’autres travaux précédents dans cette domaine ont montré que pour
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quelques classes de graphes, y compris les graphes planaires, le nombre simple chroma-
tique est égale au nombre chromatique orienté [49]. Dans le quatrième chapitre, nous
examinons les implications de ce fait en relation au graphes planaires. De plus, nous
considérons un assouplissement de certaines des exigences pour une coloration simple ori-
entée afin d’arriver à une définition raisonnable pour une coloration 2�dipathe simple
de graphes orientés. Nous proposons des résultats préliminaires pour ce paramètre de
coloration nouveau et nous considérons la di�culté avec laquelle on peut déterminer si
un graphe donné peut avoir une coloration 2�dipathe simple avec 2 couleurs.

Theorem 0.7. SIMPLE 2�DIPATH 2�COLOURING est NP-complete .

Dans le cinquième chapitre, nous introduisons des colorations simples de graphe coloré
arête�k.

Dans la deuxième condition d’une coloration orientée nous découvrons une situation
intéressante lorsque v = x. Dans ce cas, cette condition indique que les sommets qui
sont au bouts d’un 2�dipathe reçoivent des couleurs di↵érentes. Plusieurs auteurs ont
été motive par ce lien et ont étudié les colorations de graphes orientes ou les sommets
a chaque bout d’un 2�dipath, aussi que les sommets adjacents, doivent recevoir des
couleurs di↵érentes ([12], [34]). En utilisant la notation introduite par Griggs et Yeh
pour les graphes [22], et adapte au digraphes par Chang et Liaw [11] et les graphes
orientés par Gonç alves et al. [21], nous pouvons appeler ces graphes orientes L(1, 1).
Dans le troisième chapitre, nous examinons une généralisation d’une coloration de graphes
orientes 2�dipathe. En utilisant des idées semblables à [34], nous construisons un modèle
homomorphisme de colorations qui exige des sommets au bout d’un chemin au moins
k long, pour un k fixé, qui reçoit des couleurs di↵érentes. De plus, nous considérons
la complexité de déterminer si un graphe orienté donne a une coloration k�dipathe qui
utilise pas plus que m couleurs, pour des valeurs fixes de m et de k.

Theorem 0.8. Regardons m et k � 3 comme entiers positifs fixes. La problème k�DIPATH
m�COLOURING est NP-complete pour m > k. La problème est Polynomial pour tout
m  k.

Pour le cas (j, k) = (0, k) nos définitions pour l’homomorphisme s’accordent exacte-
ment a ceux pour l’homomorphisme et la coloration de graphe coloré arête�k. Donc, au
lieu d’utiliser �0,k, nous employons la notation �k. De plus, pour le cas des graphes ori-
entes, la définition pour la coloration homomorphe peut signaler également une définition
de sommet-marques.

Si G est une graphe coloré arête�k et c : V (G) ! {1, 2, 3, . . . , k}, alors c es une
coloration�m de G pourvu que les conditions ci-dessous sont satisfait:

1. si uv 2 E(G), c(u) 6= c(v), et

2. pour tout 1  i  k, tel que uv 2 ⌃i et xy 2 E(G), si c(u) = c(x) et c(v) = c(y),
xy 2 ⌃i.

Comme pour les graphes orientés, une connexité existe entre le nombre chromatique
acyclique du U(G) et le nombre chromatique une graphe coloré arête�k.

Theorem 0.9 (Alon et Marshall [2]). . Si G est un graphe coloré arête�k pour qui le
nombre chromatique acyclique du U(G) est au plus m, alors

�k(G)  m · km�1.
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Observons que ceci est exactement Théorème 0.2 quand j = 0. Donc, au lieu d’utiliser
�0,k, nous employons la notation �k. Chronologiquement, ce résultat apparat entre celui
de Raspaud et Sopena (Théorème 0.4) et celui de Nesetril et Raspaud (Théorème 0.2).
Dans [2] les auteurs notent la similarité entre la saveur de leur résultat et la méthode
de Raspaud et Sopena. Mais, nous devons aussi prendre note qu’ils n’observe pas une
solution pour dériver un ensemble de résultats.

Harary ([25] et [26]) a mentionné, en 1953, les graphes graphe coloré arête�2 (aussi
appelé des graphes signed, ou graphes signified). Il a étudié la structure des cycles de
graphes colorés arêtes�2 germé d’un problème dans les sciences humaines. Une notion de
coloration pour ces graphes qui est di↵èrent de ceux présenté dans ce texte, est donné par
Zaslavsky [59]. Récemment, les graphes colorés arêtes�2 se sont présenté dans les thèses
de Brewster [8] et Sen [48] et de plusieurs autres auteurs ([33], [37], [40]).

Dans le cinquième chapitre, nous examinons les colorations des graphes coloré arête�2.
Nous trouvons une borne inférieure pour le nombre chromatique de la classe de graphe
coloré arête�2 avec un degré maximum 3 en considérant un paramètre nouveau pour la
coloration de ces graphes, qui exige que les sommets adjacents et les sommets au bout
du chemin de la durée 2 où chacun de ces arêtes on des couleurs di↵érentes reçoivent des
couleurs di↵érentes. Nous trouvons une borne supérieure pour le nombre de classe de
graphe coloré arête�2 avec un degré maximum 3 en construisant une paire de cibles pour
les graphes de cette classe.

Theorem 0.10. Si G est un graphe coloré arête�2 avec un degré maximum 3, alors G
accepte un homomorphisme à une cible qui a 11 sommets.

Les incidents colorés apparu en 1993 quand Brualdi et Massey ont initialement défini
l’incident d’un nombre chromatique d’un graphe simple [9]. Dans ce mémoire, ils ont
donné les bornes supérieures et inférieures pour le nombre chromatique incident à partir
d’un degré maximum. Ces auteurs ont utilisé leurs résultats en tant que méthode pour
améliorer une borne pour l’index chromatique fort des graphes bipartis. Depuis, les bornes
pour le nombre chromatique incident ont été étudié pour déterminer un assortisse ment de
classes de graphes, y compris des graphes planaires, les arbres�k, les graphes réguliers�k,
des grilles torodales et les graphes dégénérés�k ([15], [54], [47], [57]).

Dans le sixième chapitre, nous trouvons une nouvelle caractérisation d’un incident
chromatique d’un nombre en utilisant des structures de représentations précis et nous
introduisons une version orienté de ce paramètre. En utilisant un digraphe homomor-
phisme nous trouvons que l’incident orienté du nombre chromatique d’un graphe orienté
est liée au nombre chromatique du graphe simple sous-jacent. Ceci motive notre étude
des incidences orientées du nombre chromatique de graphes complets symétriques.



Chapter 1
Introduction and Preliminaries

The story of vertex colourings of mixed graphs begins, independently, with Gallai, Roy,
Hasse, and Vitaver.

Theorem 1.1 ([19] Gallai, [45] Roy, [26] Hasse, [56] Vitaver). The chromatic number of
G is the least m such that there exists an acyclic orientation of G in which the longest
path has m vertices.

Though this celebrated result does not construct colourings of oriented graphs that
take into account the orientation of the arcs, it does welcome oriented graphs into the fold
of graph colourings. To find a definition of proper vertex colouring of oriented graphs that
takes into account the orientation of the arcs, we must turn to graph homomorphism. By
translating the link between graph colouring and graph homomorphism into the language
of oriented graphs, we arrive at a reasonable definition of vertex colouring for these graphs.
Using this same idea we arrive at a definition of vertex colouring for graphs that have
di↵erent sorts of adjacency within the same graph, including di↵erent arc types and edge
types.

In this thesis, we study colourings of such graphs, called (j, k)�mixed graphs. We
examine the (j, k)�chromatic number and related colouring parameters, focussing mainly
on (1, 0)�mixed graphs (oriented graphs) and (0, k)�mixed graphs (k�edge-coloured
graphs).

In Chapter 2, we consider colourings of oriented graphs whose underlying graphs have
maximum degree 3 and 4. We consider a useful adjacency property for targets of homo-
morphisms from these oriented graphs. Using these targets, we find new upper bounds for
the oriented chromatic number of the family of oriented graphs whose underlying graphs
have maximum degree 3 and the family of oriented graphs whose underlying simple graphs
have maximum degree 4.

Simple colourings of oriented graphs arise from considering homomorphisms from ori-
ented graphs to target graphs in which loops are present at each vertex. Previous work
in this area has shown for some families of oriented graphs that the simple chromatic
number is equal to the oriented chromatic number. In Chapter 4 we examine the impli-
cations of this fact for planar graphs. Additionally, we consider an easing of some of the
requirements for a simple oriented colouring to arrive at a reasonable definition of simple
2�dipath colouring for oriented graphs. We give some preliminary results for this new
colouring parameter, as well as consider the complexity of determining if a given graph
has a simple 2�dipath colouring using two colours.

In the second condition of an oriented colouring (see Definition 1.17) an interesting
situation arises when v = x. In this case, this condition implies vertices at the ends of
a directed path of length two receive di↵erent colours. Motivated by this connection,
many authors have studied colourings of oriented graphs in which vertices at the ends of
a 2�dipath, as well as adjacent vertices, must receive di↵erent colours ([12], [34]). Using
the notation first introduced by Griggs and Yeh for graphs [22], and then adapted to
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digraphs by Chang and Liaw [11], and to oriented graphs by Gonçalves et al. [21], we
may consider these to be L(1, 1) labellings of oriented graphs. In Chapter 3 we examine
a generalisation of 2�dipath colourings of oriented graphs. Using ideas similar to [34],
we construct a homomorphism model for colourings that require vertices at the end of a
directed path of length at most k, for fixed k, receive di↵erent colours. Additionally, we
consider the complexity of determining if a given oriented graph has a k�dipath colouring
using no more than m colours, for fixed values of m and k.

In Chapter 5 we examine colourings of k�edge-coloured graphs. We find a lower
bound for the chromatic number of the family 2�edge-coloured graphs with maximum
degree 3 by considering a new colouring parameter for these graphs, which requires that
adjacent vertices and vertices at the end of a path of length 2 where each of the edges
have di↵erent colours receive di↵erent colours. We find an upper bound for the chromatic
number of the family 2�edge-coloured graphs with maximum degree 3 by constructing a
pair of targets for graphs in this family.

In the final chapter, we consider colourings of graphs and digraphs that assign colours
to incidences, rather than vertices. In Chapter 6, we find a new characterisation of the
incidence chromatic number using systems of distinct representatives, as well as introduce
a directed version of this parameter. Using digraph homomorphism, we find the oriented
incidence chromatic number of a directed graph is closely related to the chromatic num-
ber of its underlying simple graph. This motivates our study of the oriented incidence
chromatic number of symmetric complete graphs.

We now present definitions and notation regarding various types of graphs, as well as
relevant results and commentary that give context to the work presented in later chapters.
Special definitions and notation defined and used exclusively in the context of a single
chapter are defined in that chapter. A glossary of the colouring parameters used in this
thesis appears as an appendix. For all other commonly-used terms and notation we refer
to [7].

Definition 1.1. A k�edge-coloured graph is a simple graph, G, together with a function
⌃ : E(G) ! {1, 2, 3, . . . , k}. For 1  i  k, we let

⌃i = {e 2 E(G)|⌃(e) = i}.

We refer to a k�edge-coloured graph using the notation (G,⌃). When the context is clear,
we may refer to (G,⌃) simply as G.

Definition 1.2. If G is a simple graph, then we obtain an orientation of G by assigning
to each of the edges a direction to obtain a digraph. If a digraph D is obtained in this
manner we say that D is an oriented graph.

For simplicity, when referring to arcs and the arc set of a oriented graph, G, we use
uv to refer to an arc from u to v and E(G) to refer to the set of arcs of G.

Definition 1.3. A j�arc-coloured graph is a oriented graph, G, together with a function
↵ : E(G) ! {1, 2, 3, . . . , j}. For 1  i  j, we let

↵i = {uv 2 E(G)|↵(uv) = i}.

We refer to a j�arc-coloured graph using the notation (G,↵). When the context is clear,
we may refer to (G,↵) simply as G.

Definition 1.4. If G is an oriented graph, the converse of G is the oriented graph formed
by reversing the direction of each arc.
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Definition 1.5. An oriented graph, G, is self-converse if G admits an isomorphism to
the converse of G.

Let G = (V,E) be a directed graph.

Definition 1.6. If u, v 2 V (G) and uv 2 E(G), then we call v an out-neighbour of u
and u an in-neighbour of v. The out-neighbourhood of v 2 V (G), denoted N+(v), is
the set of all out-neighbours of v. The in-neighbourhood of v 2 V (G), denoted N�(v), is
the set of all in-neighbours of v. The cardinality of N+(v), denoted d+(v), is called the
out-degree of v. The cardinality of N�(v), denoted d�(v), is called the in-degree of v. A
vertex, s, is called a source if d�(s) = 0 and d+(s) 6= 0. A vertex, t, is called a sink if
d+(t) = 0 and d�(t) 6= 0. A source or sink is called universal if it adjacent to every vertex
in G, other than itself.

Definition 1.7. For u, v 2 V (G) let
�!
dG(u, v) be the number of arcs in a shortest directed

path from u to v, or 1 if no such path exists. When context allows, we write d(u, v). The
distance between u and v is the least k such that there exists a directed path of length k

from u to v, or from v to u. If no such directed path exists we write
�!
dG(u, v) = 1.

For brevity we refer to a directed path of length k as a k�dipath.

Definition 1.8. If for all u, v 2 V (G) at least one of
�!
dG(u, v) and

�!
dG(v, u) 6= 1, then the

weak diameter of G is the least integer k such that for all pairs, u, v 2 V (G), the distance
between u and v is no more than k. Otherwise, the weak diameter of G is defined to be
1.

Definition 1.9. If G has no directed cycle, we say that G is acyclic.

Definition 1.10. The directed girth of G is the length of the shortest directed cycle in
G. If G is acyclic then the directed girth of G is defined to be 1.

Definition 1.11. A mixed graph, G = (V,E,A), is a triple, where V is a set of vertices,
E a set of edges and A a set of arcs, so that for all uv 2 E(G), uv, vu /2 A(G) and for all
uv 2 A(G), uv /2 E(G). We may view a mixed graph as a simple graph in which a subset
of the edges have been oriented.

Mixed graphs capture both graphs and oriented graphs. We extend this definition to
capture k�edge-coloured graphs, and j�arc-coloured graphs.

Definition 1.12. For a pair of non-negative integers (j, k) 6= (0, 0), a (j, k)�mixed graph,
is

• a k�edge-coloured graph, (G,⌃), when j = 0 and k 6= 0;

• a j�arc-coloured graph (G,↵), when j 6= 0 and k = 0; and

• a triple (G,↵,⌃), where G = (V,E,A) is a mixed graph, ((V (G), A(G)),↵) is a
j�arc-coloured graph, and ((V (G), E(G)),⌃) is a k�edge coloured graph, otherwise.

When the context is clear, we refer to (G,↵,⌃) as G, and the simple graph underlying
(G,↵,⌃) as U(G).

Definition 1.13. A family of mixed-graphs, F , is complete if for all F1, F2 2 F there
exists G 2 F containing both F1 and F2 as subgraphs.

Using (j, k)�mixed graphs we define a notion of homomorphism that is common to
simple graphs, mixed graphs, oriented graphs and k�edge-coloured graphs.
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Definition 1.14. Let (G,↵G,⌃G) and (H,↵H ,⌃H) be (j, k)�mixed graphs. We say that
(G,↵G,⌃G) admits a homomorphism to (H,↵H ,⌃H), denoted (G,↵G,⌃G) ! (H,↵H ,⌃H)
or, when the context is clear, G ! H, if there exists � : V (G) ! V (H) such that

• if k > 0, then for all uv 2 ⌃G
i , �(u)�(v) 2 ⌃H

i (1  i  k), and

• if j > 0, then for all uv 2 ↵G
i , �(u)�(v) 2 ↵H

i (1  i  j).

If � is such a mapping, we say that � is a homomorphism, or that � is an H�colouring
of G, and we write � : G ! H. If H has order m, we say that � is an m�colouring of
G. For a family, F , of (j, k) �mixed graphs we say that a (j, k)�mixed graph, H, is a
universal target for F if for all F 2 F , we have F ! H.

Definition 1.15. The (j, k)�chromatic number of a (j, k)�mixed graph, denoted �j,k(G),
is the least m such that there exists a (j, k)�mixed graph, H, with m vertices so that
G ! H. If F is a family of (j, k)�mixed graphs with bounded (j, k)�chromatic number
then we define �j,k(F) to be the least m such that for all F 2 F , �j,k(F )  m.

1.1 Graph Colouring

When considering the case (j, k) = (0, 1), we see that the definitions given above for
homomorphism and colouring match the usual definitions for graphs. In fact, the defini-
tion for colouring of (j, k)�mixed graphs is motivated by the relationship between graph
colouring and graph homomorphism. A comprehensive study of various aspects of graph
homomorphisms is given by [28].

1.1.1 (j, k)�colouring

Though (j, k)�colouring generalises proper colouring of graphs, in general there is no
relationship between the (j, k)�chromatic number of a graph and the chromatic number of
the underlying graph. It is easy to construct (j, k)�mixed graphs for which the di↵erence
between these two parameters is arbitrarily large [50].

Recall that an acyclic colouring of a graph is a proper vertex colouring where the sub-
graph induced by any pair of colour classes is acyclic. Surprisingly, there is a connection
between the acyclic chromatic number and the (j, k)�mixed chromatic number.

Theorem 1.2 (Nešetřil and Raspaud [42]). If G is a (j, k)�mixed graph for which the
acyclic chromatic number of the underlying undirected graph is at most m, then

�j,k(G)  m(2j + k)m�1.

This result unifies previous results for oriented graphs [44] and k�edge-coloured graphs
[2]. Here the authors construct a universal target for the family of (j, k)�mixed graphs
for which the underlying graph has acyclic chromatic number at most m. In general,
however, it is not the case that a family, F , of (j, k)�mixed graphs has a universal target
with �j,k(F) vertices. For example, consider the family of tournaments with n vertices.
Each of these oriented graphs has (1, 0)�chromatic number n, however a universal target
for this family has at least 2

n
2 vertices [38]. Families of (j, k)�mixed graphs for which

a universal target exists on �j,k(F) vertices may be found amongst complete families of
(j, k)�mixed graphs.

Proposition 1.3 (Sopena [50]). If F is a complete family of (j, k)�mixed graphs with
bounded (j, k)�chromatic number, then there exists a universal target for F , H, such that
|V (H)| = �j,k(F).
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Those (j, k)�mixed graphs, G, for which �j,k(G) = |V (G)| are of particular interest.
For (j, k) = (0, 1), these are just the complete graphs. Motivated by this, we consider the
concept of a (j, k)�clique.

Definition 1.16. A (j, k)�mixed graph, G, is a (j, k)�clique if �j,k(G) = |V (G)|.

Such cliques have been studied for both (1, 0)�mixed graphs (called oriented cliques,
or ocliques) ([48], [30], [18] [31]) and (0, 2)�mixed graphs (called signified cliques, or
scliques) ([33], [29]).

1.1.2 (1, 0)�mixed graphs

For the case (j, k) = (1, 0) our definitions for homomorphism and colouring match exactly
those for homomorphism of oriented graphs and oriented colouring. And so rather than
using �1,0 and referring to the (1, 0)�chromatic number, we use the more conventional
notion of �o as well as the phrase oriented chromatic number.

When considering oriented graphs, the homomorphism definition of colouring has an
equivalent vertex-labelling definition.

Definition 1.17. Let G be an oriented graph. An oriented colouring of G using m colours
is a mapping c : V (G) ! {1, 2, . . . ,m} such that:

• c(u) 6= c(v) for all uv 2 E(G),

• for all uv, xy 2 E(G) if c(u) = c(y), then c(v) 6= c(x).

That this definition of oriented colouring is equivalent to the homomorphism of ori-
ented colouring follows by observing that if the head and tail of an arc are coloured with
a and b, then there is an arc ab in the target. Since the target is an oriented graph, if
ab is an arc of the target, then ba is not an arc of the target. This implies that no arc
will have its tail coloured with b and its head coloured with a. To see the other half of
the equivalence, observe that from an oriented colouring that satisfies the vertex labelling
definition the target for a homomorphism can be constructed by taking the vertex set to
be the set of colours, and for an arc ij to exist in the target there must be an arc in the
coloured oriented graph with its tail coloured i and its head coloured j.

Oriented colourings (then called good colourings) were used by Courcelle as an example
in the monadic second-order logic of graphs [13]. He studied locally-injective oriented
colourings of planar graphs and k�trees. He showed that every oriented planar graph
G with d�(x)  3 for every x 2 V (G) has a good colouring that uses at most 43 · 363
colours, which is injective on in-neighbourhoods. This bound was improved by Raspaud
and Sopena using the connection between acyclic colouring and oriented colouring later
utilised by Nešetřil and Raspaud.

Theorem 1.4 (Raspaud and Sopena [44]). If a connected graph G has acyclic chromatic
number at most m, then the oriented chromatic number of any orientation of G is at most
m · 2m�1.

Observe that this is exactly Theorem 1.2 for j = 1 and k = 0. The converse, that every
family of graphs with bounded oriented chromatic number has bounded acyclic chromatic
number, was shown later by Kostochka, Sopena and Zhu [32].

Oriented colourings have been studied for a wide variety of families of graphs ([53],
[32], [14]). In addition to oriented colouring, various weakenings of the requirements of
oriented colourings have led to other colouring parameters for oriented graphs, including
2�dipath colouring [34], simple colouring [49], and push colouring [31]. A survey on the
study of oriented colourings was given by Sopena in 2001 [51] and updated in 2015 [52].
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Though the bound given in Theorem 1.4 is known to be tight, when applied to families
of graphs defined by properties other than their acyclic chromatic number this bound is
weak. In particular, this bound may be improved for families of oriented graphs with
bounded degree [32] and it is expected that it may be improved for the family of orienta-
tions of planar graphs.

1.1.3 (0, k)�mixed graphs

For the case (j, k) = (0, k) our definitions for homomorphism and colouring match exactly
those for homomorphism and colouring of k�edge-coloured graphs. And so rather than
using �0,k, we use the notation �k. Similar to the case for oriented graphs, the homo-
morphism colouring definition can be equivalently stated as a vertex-labelling definition.

Definition 1.18. If (G,⌃) is a k�edge-coloured graph and c : V (G) ! {1, 2, 3, . . . ,m},
then c is an m�colouring of G provided that the following conditions are met:

• for all uv 2 E(G), c(u) 6= c(v), and

• for all 1  i  k where uv 2 ⌃i, and xy 2 E(G), if c(u) = c(x) and c(v) = c(y),
then xy 2 ⌃i.

As with oriented graphs, a connection exists between the acyclic chromatic number of
the underlying graph and the chromatic number of the k�edge-coloured graph.

Theorem 1.5 (Alon and Marshall [2]). If G is a k�edge-coloured graph for which the
acyclic chromatic number of the underlying graph is at most m, then

�k(G)  m · km�1.

Observe that this is exactly Theorem 1.2 when j = 0. Chronologically this result comes
between that of Raspaud and Sopena (Theorem 1.4) and that of Nešetřil and Raspaud
(Theorem 1.2). In [2] the authors note the similarity in the flavour of their result and
method to that of Raspaud and Sopena. But also note that they see no way to derive one
set of results from the other.

An early mention of 2�edge-coloured graphs (also called signed graphs, or signified
graphs) was in 1953 by Harary ([25] and [10]). Here he studied the structure of cycles
of 2�edge-coloured graphs arising from a problem in the social sciences. A notion of
colouring of these graphs, di↵erent to the one presented herein, is given by Zaslavsky [59].
More recently, 2�edge-coloured graphs appear in the theses of Brewster [8] and Sen [48],
as well as in work by many others ([37], [40], [41]).

1.2 Incidence Colourings

Incidence colouring arose in 1993 when Brualdi and Massey first defined the incidence
chromatic number of a simple graph (then called the incidence colouring number) [9]. In
this paper they gave upper and lower bounds for the incidence chromatic number based
on maximum degree. These authors used their results as a method to improve a bound
for the strong chromatic index of bipartite graphs. Since then, bounds for the incidence
chromatic number have been investigated for a variety of families of graphs, including
planar graphs, k�trees, k�regular graphs, toroidal grids and k�degenerate graphs ([15],
[55], [54], [57]). This topic is discussed in further detail in Chapter 6.
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Chapter 2
Oriented Colourings of Bounded De-
gree Graphs

In this chapter we consider oriented colourings of oriented graphs whose underlying graphs
have maximum degree 3 or 4. For the case �  3, we improve the upper bound given by
Sopena and Vignal [53] by constructing 9�vertex targets for such oriented graphs. For
the case �  4 we improve the upper bound implied by Theorem 1.4. In this latter case
we note that room for improvement certainly exists.

2.1 Background and Preliminaries

When restricted to (j, k) = (1, 0), the definition for homomorphism and colouring given
in Chapter 1 give the following.

Definition 2.1. Let G and H be oriented graphs. We say that G admits a homomorphism
to H, denoted G ! H, if there exists � : V (G) ! V (H) such that if uv 2 E(G), then
�(u)�(v) 2 E(H). We call � a homomorphism and we write � : G ! H.

Definition 2.2. Let G be an oriented graph. The oriented chromatic number of G,
denoted �o(G), is the least integer m such that there exists an oriented graph H with
|V (H)| = m and a homomorphism � : G ! H. We call � an oriented m�colouring of
G, or an oriented colouring of G using m colours. If F is a family of oriented graphs
with bounded oriented chromatic number, then we define �k(F) to be the least m such that
�k(G)  m for all F 2 F .

Recall the vertex labelling definition for colouring of oriented coloured graphs.

Definition 2.3. Let G be an oriented graph. An oriented colouring of G using m colours
is a mapping c : V (G) ! {1, 2, . . . ,m} such that:

• c(u) 6= c(v) for all uv 2 E(G),

• for all uv, xy 2 E(G) if c(u) = c(y), then c(v) 6= c(x).

For proper colourings of graphs a simple argument based on graph degeneracy gives
an upper bound of � + 1 for the chromatic number of a graph with maximum degree
�. Brooks’ Theorem refines this idea and tightens the upper bound to exactly � for all
graphs other than odd cycles and complete graphs. In the proofs of these results, vertices
are being added one at a time to the graph so that at each step there is an available colour
for the newly-added vertex. In trying to replicate this procedure with oriented graphs, a
di↵erence arises between the oriented and unoriented case.

Consider the partially coloured oriented graph in Figure 2.1. The uncoloured vertex
cannot be coloured with colours 0 or 1. Trying to colour this vertex with another colour,
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10 0

Figure 2.1: A colouring that cannot be extended.

10 2

0 2

4 3

1

Figure 2.2: Another colouring that cannot be extended.

say 2, will also fail, as there would be an arc with its tail labelled 0 and its head labelled
2, as well as an arc with its tail labelled 2 and its head labelled 0. Consider trying to
extend the homomorphism given in Figure 2.2, where the oriented graph on the right is
the target and the oriented graph on the left is partially coloured. We wish to extend
the homomorphism to include the uncoloured vertex. In the target we are looking for a
vertex that is an in-neighbour of 0 and an out-neighbour of both 1 and 2. By inspection
we see that no such vertex in the target fits this description. The colouring given by this
homomorphism cannot be extended without adding a new vertex to the target graph.
Though the uncoloured vertex has degree strictly smaller than the order of the target,
this homomorphism cannot be extended. These small examples imply, regardless of the
size of the palette of available colours, it is not guaranteed a colouring of a partially
coloured oriented graph can be extended.

This second situation leads us to desire the following property in the target of a
homomorphism from an oriented graph with bounded degree.

Property Pi,j. A tournament, G, has property Pi,j if for every subset X ⇢ V (G) of size i
and for every sequence (z1, z2, . . . , zi), where zk 2 {0, 1} (1  k  i), there exist j distinct
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0
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Figure 2.3: The non-zero quadratic residue tournament on 7 vertices.

vertices in V (G) \X, {y1, y2, . . . , yj}, such that for all 1  `  j, xiy` 2 E(G) if and only
if zi = 1.

Property Pi,j relates closely to the subject of n�existentially closed tournaments (see
[4], [5] and [6]). We discuss a version of this property for 2�edge coloured graphs in
Chapter 5.

A well-studied family of oriented graphs with property Pi,j is the non-zero quadratic
residue tournaments, or Paley tournaments (see [4]). Let q be a prime power such that q ⌘
3 mod 4, and let F⇥

q be the field of order q. The non-zero quadratic residue tournament
on q vertices, QRq, is the oriented graph with:

• V (QRq) = {0, 1, . . . , q � 1}, and

• E(QRq) = {uv|v � u is a non-zero quadratic residue in F⇥
q }.

The oriented graph in Figure 2.3 is QR7.
We call an oriented graph, G, subcubic if �(G)  3 and there exists v 2 V (G)

such that d(v) < 3. To see how this property Pi,j is useful, consider trying to extend a
colouring of a subcubic graph to a target, P , with property P2,2. Let H be an orientation
of subcubic graph with at least two non-adjacent vertices of degree 2 and let � : H ! P
be a homomorphism. Let u and v be non-adjacent vertices of degree 2 in H and let H⇤

be the oriented graph formed from H by adding a new vertex z together with the arcs uz
and zv. Let ↵ be the restriction of � to H \ {u, v}. Since P has property P2,2, ↵ can be
extended such that �(u) 6= �(v). Since P has property P2,2, � can be extended to include
z. Strictly speaking, we may not have extended � to be a homomorphism from H? to P ,
as it may be that �(u) 6= �(u). However, starting from � we have successfully constructed
a homomorphism � : H? ! P .

The first upper bound on the oriented chromatic number of oriented graphs with
bounded degree was given by Sopena.

Theorem 2.1 (Sopena [50]). An orientation of a graph with maximum degree � has
oriented chromatic number at most (2�� 1)22��2.
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Using the probabilistic method, this result was later improved by Kostochka, Sopena
and Zhu.

Theorem 2.2 (Kostochka, Sopena and Zhu [32]). An orientation of a graph with maxi-
mum degree � has oriented chromatic number at most 2�22�.

2.2 Oriented Cliques with Bounded Degree

Definition 2.4. An oriented graph, G, is an oriented clique or oclique if �o = |V (G)|.

As discussed in Chapter 1, oriented cliques have been studied by a variety of authors.
Here we find oriented cliques with bounded maximum degree.

Theorem 2.3. The order of a largest oriented clique in the family of orientations of
graphs with maximum degree 3 is 7.

Proof. Suppose G is an oriented clique whose underlying graph has maximum degree 3.
If U(G) has a vertex of degree 2, then G has at most 7 vertices. As such, we may assume
that U(G) is 3�regular. Every vertex of G is the centre vertex of at most two 2�dipaths.
Since G is an oriented clique, each vertex has a 2�dipath to each of its non-neighbours
in one direction or the other. Therefore the number of 2�dipaths in G is at least n(n�4)

2 .
This implies

2n � n(n� 4)

2
.

In turn, this implies n  8.
The two cubic graphs on eight vertices are given in Figure 2.5. Consider orienting

each of them to be an oclique. Without loss of generality we may assume that we have
the arcs 23 and 34, as there must be a 2�dipath from 2 to 4. We note that generality is
not lost here, as if an oriented graph is an oclique, then its converse is also an oclique.
This implies we have the arc 34, as there must be a 2�dipath from 3 to 5. Continuing
with this line of reasoning we see that the outer cycle must be a directed cycle. However,
if this is the case we cannot successfully orient the edge 26 so that there is a 2�dipath
between 2 and 5 and one between 2 and 7.

Figure 2.4 gives an oriented clique on 7 vertices. A similar technique for orientations of
graphs with maximum degree 4 yields the following result, which we state without proof.

Theorem 2.4. The order of a largest oriented clique in the family of orientations of
graphs with maximum degree 4 is no more than 13.
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Figure 2.4: An oriented clique on 7 vertices
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Figure 2.5: Cubic graphs with diameter 2.
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2.3 Oriented Colourings of Graphs with Maximum
Degree Three

For the family, F3, of orientations of connected graphs with maximum degree 3, Theorem
2.2 gives �o(F3)  144. However, for F3 we can get a better bound by considering the
acyclic chromatic number of the underlying graphs. Cubic graphs have acyclic chromatic
number at most 4 [23], and so, by Theorem 1.4 in Chapter 1,

�o(F3)  4 · 24�1 = 32.

A series of incremental improvements ([50], [53]) has led to the following upper bound
for �o(F3).

Theorem 2.5 (Sopena and Vignal [53]). An orientation of a graph with �  3 has
oriented chromatic number at most 11.

Since the oriented graph given in Figure 2.4 is a member of F3, we have directly that
�o(F3) � 7.

In their proof of Theorem 2.5 the authors show that QR11 is a universal target for F3.
To improve this bound we show that every oriented subcubic graph that does not contain
a subgraph with a particular structure admits a homomorphism to QR7. We begin by
observing some useful properties of QR7.

Property 2.6. QR7 is arc-transitive and vertex-transitive.

Paley tournaments are a type of Cayley tournament. Since Cayley tournaments are
known to be vertex-transitive, it follows that QR7 is vertex transitive. To see that QR7 is
arc transitive, observe that for any pair of arcs uv, wx 2 E(QR7), the mapping �, defined
by

�(z) =
x� w

v � u
z + w � u

x� w

v � u
(mod 7),

is an automorphism that maps uv to wx.

Property 2.7. QR7 is self-converse.

To prove Property 2.7 observe that the arc set of the converse of QR7, QRc
7 is given

by
E(QRc

7) = {uv|v � u /2 {0, 1, 2, 4}}.

The mapping that sends x 2 V (QR7) to y 2 V (QRc
7) such that

x+ y ⌘ 0 (mod 7)

is an isomorphism, as if i� j 2 {1, 2, 4}, then j � i 2 {3, 5, 6}.

Property 2.8 ([5]). QR7 has property P2,1.

Property 2.9. For every x 2 V (QR7) and every sequence (zu, zv) 2 {0, 1}2 there exists
a pair of arcs u1v1, u2v2 2 E(QR7) such that the edge between x and yi, y 2 {u, v},
i 2 {1, 2}, is oriented as xyi if and only if zy = 1.

Property 2.10. For a given arc ij, there exist vertices k1 6= k2 such that ijk1 and ijk2
are directed 3�cycles.

Property 2.11. For a given arc ij, there are exactly three pairwise distinct vertices,
k1, k2, k3 2 V (G) such that
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Figure 2.6: Oriented graphs that do not admit a homomorphism to QR7.

• ik1, jk1 2 E(G),

• k2i, k2j 2 E(G), and

• ik3, k3j 2 E(G).

By Property 2.6, these last three properties can be verified by considering the neigh-
bourhood of 0 and the arc 01.

Property 2.12. Let G be an oriented graph with a cut arc uv. The oriented graph G
admits a homomorphism to QR7 if and only if each component of G \ {uv} admits a
homomorphism to QR7.

This follows directly from the vertex transitivity of QR7.
In [50] the author conjecture that 7 colours su�ce for an oriented colouring of any

member of F3. However it is not the case that QR7 is a universal target for this family
of oriented graphs. Let Z be the set of oriented graphs given in Figure 2.6 together with
the oriented graphs formed by reversing all of the arcs in any pictured graph.

Proposition 2.13. No oriented graph in Z admits a homomorphism to QR7.

Proof. Let G be an oriented graph in Z such that there exists � : G ! QR7. For each
Z 2 Z it must be that �(z1) 6= �(z2). By Property 2.11, �(z3) = �(z4). But then z3 and
z4 are the ends of a 2�dipath, a contradiction.

Corollary 2.14. Any oriented subcubic graph that contains a subgraph from Z does not
admit a homomorphism to QR7.

Consider the family, R, of oriented graphs formed from graphs Z by

• adding a pair of vertices r1 and r2,

• adding in the arcs r1z3 and z4r2, and

• deleting z5.

For any R 2 R, observe that identifying r1 and r2 into a single vertex gives the oriented
graph from Z that was used to generate R.

Since no subcubic oriented graph in Z admits a homomorphism to QR7, in any sub-
cubic oriented graph that contains a copy of an oriented graph from R that admits a
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homomorphism to QR7 it must be that r1 and r2 are assigned di↵erent colours. Consider
the following reduction to those subcubic graphs in F3 that contain a copy of an oriented
graph from R.

Reduction. Let G be a subcubic oriented graph such that G contains a subgraph R 2 R.
The subcubic graph GR is obtained from G by

• deleting the vertices corresponding to z1, z2, z3, z4 and, if it exists, z6;

• adding a vertex r together with the arcs rr1 and r2r.

We call an oriented subcubic graph reducible if it may be reduced and an oriented
subcubic graph reduced if it cannot be reduced. Since each oriented graph in R contains
either a source or a sink of degree 3, if an oriented subcubic graph has no source and no
sink of degree 3, then it is reduced.

Lemma 2.15 (The Reduction Lemma). Let G be a reducible oriented subcubic graph.
Then G admits a homomorphism to QR7 if and only if GR admits a homomorphism to
QR7.

Proof. Let G be a reducible oriented subcubic graph that admits a homomorphism, �, to
QR7. Let xi be the vertex corresponding to zi in the copy of Z 2 Z formed by identifying
r1 and r2 in G. Since � is a homomorphism to QR7 it must be that �(x1) 6= �(x2). By
Property 2.11 of QR7, we have directly that that �(x3) = �(x4), which in turn implies
that �(r1) 6= �(r2). Restricting this homomorphism to the vertices that are common to
GR and G, and colouring r using property P2,1 yields a homomorphism from GR to QR7.

Assume now that GR admits a homomorphism, �, to QR7. By Property 2.6 of QR7,
we may assume that �(r) = 0. If the vertex x6 does not exist in G, we see that � can be
used to colour G by colouring each of x3 and x4 with 0 and then colouring the remaining
vertices using Property 2.8. Consider now the case that x6 does exist. Since G is subcubic
and x6 is adjacent with both x1 and x2 we must consider the colour of a potential third
neighbour, s, of x6 in G. Since s 2 GR, let �(s) = k. We wish to extend � to all vertices
of G in such a way that the arc between �(s) and �(x6) in QR7 is oriented the same way
as the arc between s and x6 in G. As in the case where x6 did not exist, we can extend �
to colour the vertices x3 and x4 each with colour 0. By Property 2.7 we may, without loss
of generality, assume that the arcs between x1 and x3, and x1 and x4 are oriented such
that x3x1 is an arc. Observe that the colours in the set {1, 2, 4} may be assigned to the
vertices x1 and x2. Therefore colours in the set {2, 3, 5, 6} may appear on the vertex x6.
Every vertex in QR7 appears as an out-neighbour (respectively in-neighbour) of a vertex
in the set {2, 3, 5, 6}. And so the colouring may be extended to be consistent with the
colour of s.

Consider those oriented graphs, G, with the property that a single reduction produces
an oriented graph from Z. In GR the vertex r corresponds to, without loss of generality,
z5. Therefore there exist vertices of G that are configured as in the subgraph shown in
Figure 2.7, or the graphs formed by replacing one or both of the 2�dipaths x4x5x3 and
y4y5y3 with a single arc from the start of the 2�dipath to the end of the 2�dipath. In this
figure, the direction of the undirected edges can take orientations as the oriented graphs
in Z.

Our goal in the remainder of this section is to prove that every connected oriented
cubic graph has an oriented colouring that uses no more than 9 colours. First we show
that any reduced oriented subcubic graph that does not have a subgraph from Z admits
a homomorphism to QR7.
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Figure 2.7: A graph that reduces to a graph containing a member of Z with a single
reduction.

Lemma 2.16. Every reduced connected oriented subcubic graph that does not contain a
subgraph isomorphic to an oriented graph in Z admits a homomorphism to QR7.

Proof. Let G be a minimum counter-example with respect to number of vertices and
subject to that with respect to the number of arcs. Since G is minimum there exists a
vertex of degree 2, z, with neighbours u and v such that uzv is a 2�dipath. Further in
every homomorphism from G \ {z} to QR7, u and v receive the same colour, as otherwise
z may be coloured using Property 2.8 of QR7. Notice that if either u or v have degree 1 in
G\{z}, then u and v need not receive the same colour as G\{z} has a cut arc and QR7 is
vertex transitive. Let u1, u2 (respectively v1 and v2) be the neighbours of u (respectively
v) in G \ {z}. We proceed by proving various properties about G that eventually allow
us to conclude that G does not exist.

Claim 1. G does not contain a cut arc.

This follows directly from Property 2.12 of QR7 and the minimality of G.

Claim 2. If {e1, e2} is an edge cut in G \ {z}, then e1 and e2 have a common endpoint
of degree 2.

Assume the contrary.
Case I: e1 and e2 have a common endpoint of degree 3. Let a be a common endpoint

of e1 and e2 such that a has degree 3 in G. Let b be the neighbour of a that is not incident
with e1 or e2. It follows directly that ab is a cut arc of G \ {z}. This violates Claim 1.

Case II: e1 and e2 do not have a common endpoint. Since neither e1 nor e2 is a cut
edge, G \ {z, e1, e2} has exactly two components. Let a1 and b1 be the endpoints of e1
and a2, and let b2 be the endpoints of e2 such that a1 and a2 are in the same component,
A, of G \ {z, e1, e2}. Let B = G \ A.
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Case II.i: u and v are in di↵erent components of G \ {z, e1, e2}. Let u be in the same
component as a1 and a2 in G \ {z, e1, e2}. We proceed by examining homomorphisms
�A : A ! QR7 and �B: B ! QR7 and the direction of the arcs between A and B. By
the minimality of G, such homomorphisms must exist.

If there exist homomorphisms �A : A ! QR7 and �B: B ! QR7 such that �A(a1) 6=
�A(a2) and �B(b1) 6= �A(b2), then we construct a homomorphism G ! QR7 as follows.
Since G is arc transitive, we may assume that �A(a1) = 0 and �A(a2) = 1. Further, since
�B(b1) 6= �B(b2) we may assume the existence of an arc, in some direction, between b1
and b2. If such an arc does not exist we may add it such that it is oriented the same as
the arc between �B(b1) and �B(b2) in QR7. The graphs in Table 2.1 give the possibilities
for the arcs between A and B. Since QR7 is arc transitive, we may construct a pair
homomorphisms �,�0 : G \ {z} ! QR7 as follows.

• For all a 2 V (A), �(a) = �0(a) = �A(a).

• For all b 2 V (B), �(b) = ↵B(b) and �0(b) = ↵0
B(b), where each of ↵B and ↵0

B are
homomorphisms from B to QR7 (See Table 2.1). Since QR7 is arc transitive, there
is an automorphism of QR7 that induces a map from ↵b to ↵0

b.

Observe that in each of these cases, the automorphism of QR7 that maps the arc
↵B(b1)↵B(b2) to the arc ↵0

B(b1)↵
0
B(b2) (or ↵B(b2)↵B(b1) to the arc ↵0

B(b2)↵
0
B(b1) ) does

not fix any vertex of QR7. Therefore, if �(u) = �(v), then �0(u) 6= �0(v) And so, one of �
and �0 may be extended to include z.

Assume for all homomorphisms �A : A ! QR7 and �B: B ! QR7 that �A(a1) =
�A(a2) and �B(b1) = �A(b2). If the arcs between A and B are both oriented to have their
head in A (respectively B), then, since QR7 is vertex transitive, a homomorphism may be
constructed from G \ {z} to QR7 such that u and v are assigned di↵erent colours, as the
oriented graph produced by identifying a1 and a2, and b1 and b2 admits a homomorphism
to QR7 and contains a cut arc.

Therefore we may assume, without loss of generality, that a1 is the head of e1 and b2
is the head of e2. Consider constructing A? from A by adding a vertex, a, together with
the arcs a2a and aa1. It cannot be that A? admits a homomorphism to QR7, as otherwise
such a homomorphism would be one in which a1 and a2 are assigned di↵erent colours.
By minimality, A? contains a copy of a graph from Z or a copy of a graph from R. It
must be that a is in this copy. Since a has degree 2, we can assume that it corresponds
to either z5 or z6 in either case. By symmetry we may assume that it corresponds to
z6. If A contains a copy of a graph from Z, observe that the vertex corresponding to z5
is a cut vertex. This contradicts that G \ {z} has no cut arc. Therefore A? contains a
copy of a graph from R and, when reduced, contains a copy of a graph from Z. We note
that by the minimality of G, a single reduction in A? yields a copy of a graph from Z.
Therefore A? contains a copy of the graph given in Figure 2.7, where a corresponds to a
vertex of degree 2. However if this is the case we notice that G \ {z} is reducible. This is
a contradiction.

Finally, assume for all homomorphisms �A : A ! QR7 that �A(a1) = �A(a2) and for
all homomorphisms �B: B ! QR7 that �B(b1) 6= �A(b2). Since �B(b1) 6= �B(b2), we may
assume the existence of an arc, in some direction, between b1 and b2. If such an arc does
not exist we may add it such that it is oriented the same as the arc between �B(b1) and
�B(b2) in QR7. By identifying a1 and a2 into a single vertex and by applying Property 2.9
of QR7 we obtain a homomorphism from G \ {z} to QR7 in which u and v are assigned
di↵erent colours.

Case II.ii: u and v are in the same component of G \ {z, e1, e2}.
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6.5.4.

1. ↵B ↵0
B

b1 4 1
b2 2 6

2. ↵B ↵0
B

b1 1 2
b2 2 3

3. ↵B ↵0
B

b1 3 6
b2 2 5

4. ↵B ↵0
B

b1 5 6
b2 2 3

5. ↵B ↵0
B

b1 2 4
b2 4 6

6. ↵B ↵0
B

b1 2 1
b2 0 6

Table 2.1: Colourings for Claim 2
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�(u0
) = 1

�(v0) = 0 �(z4) = 4

�(z1) = 6

�(v) = 2

�(u) = 0

�(z0) = 5

�(z) = 1

�(z1) = 4

�(z2) = 4

�(z4) = 1�(u) = �(v0) = 6

�(v) = 0

�(z3) = 6

�(z) = 5

�(z0) = 0

Figure 2.8: A configuration of vertices for Claim 3.

Let u and v be in A. By the minimality of G, observe that B admits a homomorphism
to QR7. Construct Az by adding the vertex z together with the arcs uz and zv to A. By
the minimality of G, Az admits a homomorphism to QR7. Regardless of the orientations
of the arcs between A and B, these homomorphisms may be combined to be one from
G to QR7 as above, as long as it is not the case that for all �Az : Az ! QR7 and �B:
B ! QR7 it is the case that �A(a1) = �A(a2) and �B(b1) = �A(b2), and that a1 is the
head of e1 and a2 is the tail of e2. However in this case we proceed as in Case II.i by
constructing A?

z and following the argument above.
Therefore if {e1, e2} is an edge cut in G\{z}, then e1 and e2 have a common neighbour

of degree 2.

Claim 3. G contains a single vertex of degree 2.

Assume there exists z0 6= z with neighbours u0 and v0 such that u0z0v0 form a 2�dipath.
Consider the oriented graph Gz0 formed by removing z0 and adding in the arc u0v0. If this
graph admits a homomorphism to QR7, then this homomorphism may be extended to
include z0. This is a contradiction. Therefore Gz0contains either an oriented graph from
Z or R. It must be that both u0 and v0 appear in this copy. If Gz0 contains a copy of
R 2 R, then by the minimality of G it must contain a graph as in Figure 2.7. Since G
does not contain this graph, it must be that the newly added arc corresponds to the arc
between x2 and y2 or the arc between y1 and x1. However here we see that G is reducible.

If Gz0 contains a copy of Z 2 Z and this copy does not contain z6, then the arc incident
with z5 is a cut arc in G. Therefore Z must contain z6. In this case we see that the arcs
not in Z that are incident with z6 and z5 form an edge cut. By Claim 2 these two arcs
must have a common endpoint of degree 2. If so, this common endpoint must be z, as all
other vertices have degree 3. The oriented graphs given in Figure 2.8 give two of the four
possibilities for the configuration of the vertices in G. The other two can be obtained by
reversing the orientations of all the arcs. We see that both of these oriented graphs admit
a homomorphism to QR7. This is a contradiction.

Claim 4. u1 and u2 do not have three common neighbours in G setminus{z}.
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If u1 and u2 have three common neighbours in G\{z}, then G\{z} contains a 2�edge
cut. This is a violation of Claim 2.

Claim 5. u1 and u2 are not adjacent in G setminus{z}.
If u1 and u2 are adjacent in G \ {z}, then G \ {z} contains a 2�edge cut. This is a

violation of Claim 2.

Claim 6. Each of u and v is either a source or sink vertex in G \ {z}
Assume that u1uu2 forms a 2�dipath in G\{z}. Consider the graph, Hu, formed from

G \ {z} by removing u and adding the arc u2u1. If Hu admits a homomorphism to QR7,
then by Property 2.10 there exists a homomorphism from G \ {z} to QR7 in which u and
v receive di↵erent colours. Therefore we may assume that Hu contains either a subgraph
from Z or a subgraph from R.

Assume that Hu contains a subgraph from Z. It must be that the arc u2u1 is in this
subgraph. And so since G\{z} has no cut arc or 2�edge cut, it must be that z6 exists. Up
to symmetry, the arc u2u1 corresponds to the one between z1 and z3 or the one between
z5 and z3. However observe that in either case G \ {z} has either a cut arc or a 2�edge
cut.

Assume that Hu contains a subgraph from R. By the minimality of G it must contain
a graph as in Figure 2.7. Since G \ {z} is not reducible it must that u2u1 corresponds
to, without loss of generality, the arc between x2 and y2. However in this case observe
the arcs incident with x5 and y5 that do not have their other ends at either x3, x4, y3 or
y4 form a 2�edge cut. If these arcs have a common endpoint, it must be an endpoint of
degree 2, as otherwise G \ {z} has a cut arc. Since G has only one vertex of degree 2, this
common endpoint must be v. We conclude that the vertices are configured as in Figure
2.9. Since this graph must reduce to one that contains a copy of a graph from Z, we may
assume that neither u1 nor u2 are the centre of a 2�dipath in G \ {z, u}. This leads to
the four possible partial orientations given in Figure 2.10. However in each of these cases,
regardless of the orientation of the arcs incident with v, a homomorphism to QR7 exists
in which u and v receive di↵erent colours, as shown in Figure 2.11.

Therefore Hu does not reduce to have an oriented graph from Z. Therefore Hu admits
a homomorphism to QR7.

Claim 7. |{u1, u2, v1, v2}| 6= 2.

If this is true, then either G is reducible or violates Claim 2.

Claim 8. |{u1, u2, v1, v2}| 6= 3.

Suppose |{u1, u2, v1, v2}| = 3. Assume, without loss of generality, that u1 = v1. Since
u and v receive the same colour in any QR7�colouring of G \ {z}, it must be that the
arc between u1 and u, and the arc between u1 and v are oriented in the same direction
with respect to u1. Consider the subcubic graph, Au, formed by removing z and v and
adding an arc between u and v2 that is oriented oppositely to the arc between v and v2,
with respect to v2. If Au admits a homomorphism to QR7, then observe that it may be
extended to include v by applying Property 2.8 of QR7. We see that in this case u and v
are assigned di↵erent colours as uv2v form a 2�dipath in the graph formed by adding v.
The existence of such a homomorphism is a violation of the assumption that G does not
admit a homomorphism to QR7. Therefore it must be that Au either contains a copy of
a graph from Z or is reducible. Observe that in Au, d(u1) = 2.

Assume that Au contains a copy of a graph from Z. Since adding the arc between v2
and u created this copy, it must be that this arc appears in the copy of the graph from
Z. Up to symmetry there are two possibilities for this arc: the arc between z2 and z3 or
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Figure 2.9: A configuration of vertices for Claim 6.

u1

x3

x1

x4

v1

u2

y4

y1

v2

y3

u

v

u1

x3

x1

x4

v1

u2

y4

y1

v2

y3

u

v

u1

x3

x1

x4

v1

u2

y4

y1

v2

y3

u

v

u1

x3

x1

x4

v1

u2

y4

y1

v2

y3

u

v

Figure 2.10: A configuration of vertices for Claim 6.



27

0

6

0

3

4

6

0

6

2

3

2

v

0

1

0

2

6

6

0

6

2

3

2

v

0

1

0

2

6

6

5

6

2

4

2

v

0

6

0

3

4

6

5

6

2

4

2

v

Figure 2.11: Colourings of four orientations for Claim 6.

the arc between z3 and z5. We note that although z5 has degree 2 in this copy, it may
have degree 2 or degree 3 in Au.

Case I: u corresponds to z3. Since u1 has degree 2 in Au, it must be that u1 corresponds
to z5. This implies that u2 corresponds to z1. If z6 does not exist, then G \ {z} is
the oriented graph given in Figure 2.12, or the one formed by reversing each arc. This
oriented graph admits a homomorphism to QR7 in which u and v receive di↵erent colours,
a contradiction. If z6 exists, then observe that the vertex corresponding to z6 is a cut
vertex in G \ {z}, or has degree two. This is a contradiction of Claim 1 or Claim 3.

Case II: u corresponds to z2 and v2 corresponds to z3. Since u1 has degree 2 in Au,
it must be that u1 corresponds to z6. This implies that the vertex corresponding to z5 is
a cut vertex in G \ {z} or is a vertex of degree 2. This is a contradiction of Claim 1 or
Claim 3.

Case III: u corresponds to z5 and v2 corresponds to z3. Since u1 has degree 2 in Au, it
must be that u2 corresponds to z4. If z6 exists, then vertices are configured as in Figure
2.13. However, here we see that G has a 2�edge cut. If the arcs in the cut have a common
endpoint, then either this endpoint is v, or G\{z} has a cut vertex. However, we observe
that this endpoint is not v. Therefore G \ {z} has a cut vertex, this is a contradiction. If
z6 does not exist we see that the arc incident with u1 that does not have its endpoint at
either u or v is a cut arc, a contradiction.

Therefore Au does not contain a copy of a graph from Z, and so must contain a copy
of an oriented graph in R.

Assume that Au contains a copy of a graph R 2 R. Since G is reduced, Au must reduce
to a graph containing a graph from Z with a single reduction. Therefore Au contains a
copy of the graph in Figure 2.7. Since G is reduced it must be that u corresponds to
either x1 or x2, as otherwise G would be reducible. However, if this is the case we see
that u1 and u2 have three common neighbours. This contradicts Claim 4. Therefore
|{u1, u2, v1, v2}| 6= 3.
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Figure 2.12: A configuration of vertices for Claim 8.
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Figure 2.13: A configuration of vertices for Claim 8.
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Claim 9. |{u1, u2, v1, v2}| 6= 4.

Suppose |{u1, u2, v1, v2}| = 4. Let Av1 be the oriented graph formed from G by remov-
ing z, v and adding the edge between v1 and u, orienting it oppositely to the arc between
v and v1, with respect to v1.

If this oriented graph admits a homomorphism to QR7, then, by Property 2.8, and
Claim 6 we can extend this homomorphism to include v. However in this case it cannot
be that u and v receive the same colour; there is a 2�dipath between them. Therefore
Av1 does not admit a homomorphism to QR7. As such it either contains a copy of an
oriented graph in Z or is reducible. Similarly we construct Av2 and assert that it contains
a copy of an oriented graph in Z or is reducible.

We claim that neither of Av2 and Av1 contain a graph from R. Assume that Av1

contains a graph R 2 R. By the minimality of G, Av1 must reduce to an oriented graph
that contains a graph from Z. Further it must be that a single reduction leads to a copy of
a graph from Z, as otherwise G would be reducible. Therefore Av1 contains a copy of the
graph in Figure 2.7. Since G is not reducible it must be that, without loss of generality, u
corresponds to x2 and v1 corresponds to y2. However, if this is true, u1 and u2 have three
common neighbours in G \ {z}. This contradicts Claim 4.

Therefore each of Av2 and Av1 contain a graph from Z. Assume that Av1 contains a
copy of Z 2 Z. We first show that each of u1 and u2 has at least two common neighbours
with one of v1 and v2 in G. We do this by considering the degree of the vertex to which
u corresponds in Z. From this fact we then derive a contradiction.

If u corresponds to a vertex of degree 2 in Z it must be that v1 corresponds to a
vertex of degree 3. So we may assume that if u corresponds to z5, then one of u1 and u2

corresponds to z4. Without loss of generality, we may assume that u1 corresponds to z4.
We see that u1 has two common neighbours with v1 in G.

If u corresponds to a vertex of degree 3 in Z, then it cannot be that v1 corresponds
to a vertex of degree 2, as otherwise u1 and u2 would have three common neighbours.
Therefore, if u corresponds to z1, then we may assume that u1 corresponds to z3, u2

corresponds to z6 and v1 corresponds to z4. Notice that u1 and u2 each have two common
neighbours with v1 in G.

By considering Av2 and observing that u1 cannot have two common neighbours with
both v1 and v2 we conclude that u2 has two common neighbours with v2. Thus the vertices
are configured as in Figure 2.14. Here we see a 2�edge cut. This is a contradiction of
Claim 2. Therefore one of Av2 or Av1 admits a homomorphism to QR7.

Claim 10. G does not exist.

By the previous claims |{u1, u2, v1, v2}| > 4.

Theorem 2.17. An orientation of a connected graph with �  3 has oriented chromatic
number at most 9.

Proof. Let G be a connected oriented cubic graph. We proceed based on the existence of
source and sink vertices of degree 3.

Case I: G has a source or a sink vertex of degree 3. Let G? be the oriented graph
formed by removing all the source and sink vertices of degree 3. Since G? contains no
source or sink vertices of degree 3, G? is reduced and contains no subgraph from Z. By
Lemma 2.16, there exists �? : G? ! QR7. Let QR0

7 be the oriented graph formed from
QR7 by adding a universal source vertex, s, and a universal sink vertex, t. We construct
a homomorphism � : G ! QR0

7 given by

• �(u) = �0(u), for all u 2 V (G) such that u has positive in- and out-degree.

• �(u) = s, for all u 2 V (G) such that d+(u) = 3.
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Figure 2.14: A configuration of vertices for Claim 9.

• �(u) = t, for all u 2 V (G) such that d�(u) = 3.

Case II: G has neither a source or a sink vertex of degree 3. Let uv 2 E(G). Since G
has no source or a sink vertex of degree 3, G \ {uv} is reduced and contains no subgraph
from Z. By Lemma 2.16, there exists � : G\{uv} ! QR7. We extend � to be an oriented
9�colouring of G by letting �(u) = 7 and �(v) = 8.

Note that in this theorem the assumption of connectedness is important. We achieve
an oriented 9�colouring by either removing an arc, or removing sources and sinks. This
technique will fail to produce an oriented 9�colouring in the case whereG is not connected,
each reduced component is cubic, and not all of these components contain a copy of a
graph from Z.

Corollary 2.18. For the family, F3, of orientations of connected graphs with maximum
degree at most three, 7  �o(F3)  9.

2.4 Oriented Colourings of Graphs with Maximum
Degree Four

For the family, F4, of orientations of connected graphs with maximum degree 4, Theorem
2.2 gives an upper bound of 512. However, for F4 we can get a better bound by considering
the acyclic chromatic number of graphs with �  4. Graphs with maximum degree 4
have acyclic chromatic number at most 5 [23], and so by Theorem 1.4 in Chapter 1 ,

�o(F4)  5 · 25�1 = 80.
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As with our improved bound for orientations of cubic graphs, we use a non-zero quadratic
residue tournament as a means to construct a target.

Proposition 2.19 (Bonato [5]). The Paley tournament on 67 vertices, QR67, has property
P4,1 and property P3,2.

Proposition 2.20. The Paley tournament on 67 vertices, QR67 is vertex transitive and
arc transitive.

This follows similarly to Property 2.6.

Lemma 2.21. Every orientation of a 3�degenerate graph with maximum degree at most
4 admits a homomorphism to QR67

Proof. Let G be a minimum counter-example with respect to number of vertices and
subject to that with respect to the number of arcs. We consider cases based on the
minimum degree of a vertex in G. Let z be a vertex of minimum degree in G. Since G is
3�degenerate, it must be that z has degree 1, 2 or 3.

Case I: z has degree 1: Since QR67 has property P1,1 any homomorphism � : G\{z} !
QR67 can be extended.

Case II: z has degree 2: Let u and v be the neighbours of z in G. By the minimality
of G, G \ {z} admits a homomorphism to QR67. If both u and v have z as an out-
neighbour (respectively in-neighbour), then any homomorphism from G \ {z} to QR67

can be extended, since QR67 has property P2,1. Thus, without loss of generality, we may
assume that uz, zv 2 E(G). We may further assume that in every homomorphism from
G \ {z} to QR67, u and v receive the same colour, as otherwise any homomorphism from
G \ {z} to QR67 can be extended, since QR67 has property P2,1.

Consider a homomorphism � : G \ {z} ! QR67. Let �0 be the restriction of this
homomorphism to G \ {u, v, z}. Since QR67 has property P4,1 it also has property P3,2.
This implies that �0 may be extended in such a way that u and v receive di↵erent colours.
This is a contradiction.

Case III: z has degree 3: Let u, v, w be the neighbours of z in G. Following Case
II we may assume, without loss of generality, that uz, zv, zw 2 E(G) and that in every
homomorphism from G \ {z} to QR67 that u receives the same colour of at least one of
v and w. This implies we may assume that u is adjacent to at most one of v and w. We
proceed based on the existence of arcs between u, v and w.

Case III.i: u, v, w form an independent set : Consider a homomorphism � : G \ {z} !
QR67. Let �0 be the restriction of this homomorphism to G \ {u, v, w, z}. Consider
extending �0. Since QR67 has property P3,2, there are two choices for each of u, v, w, and
each of these choices may be made independently. By hypothesis, no matter how these
choices are made, it must be that u receives the same colour as at least one of v or w.
Consider a graph with vertex set {u0, v0, w0} and edge set {u0v0, u0w0}. If we assign to u0

(respectively v0 and w0) the same list of colours that are available for u (respectively v and
w) when extending �0, then a list colouring of this constructed graph corresponds exactly
to an extension of �0 to include u, v and w where u does not receive the same colour as v
or w. Since QR67 has property P3,2 each of these lists has cardinality at least two. Since
K2,1 is 2�chooseable, such an extension must exist. This is a contradiction.

Case III.ii: There is an arc, in some direction, between u and v. Consider a homomor-
phism ↵ : G \ {z} ! QR67. Let ↵0 be the restriction of this homomorphism to G \ {w, z}.
Since QR67 has property P3,2, ↵0 can be extended in such a way that w does not receive
the same colour as u. Therefore there is a homomorphism from G \ {z} to QR67 in which
u does not receive the same colour as v or w. This is a contradiction.
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Theorem 2.22. An orientation of a connected graph with �  4 has oriented chromatic
number at most 69.

Proof. Let G be an oriented graph such that �(U(G))  4 and let uv 2 E(G). By Lemma
2.22, G \ {uv} admits a homomorphism to QR67. An oriented colouring of G using 69
colours can be constructed from this homomorphism by adding the arc uv and recolouring
u and v respectively with two new colours.

2.5 Future Directions and Conclusions

The proof in Case II of Theorem 2.17 presents an interesting case. If it is indeed the case
that 9 colours are required, then oriented colourings constructed in this manner have a
pair of vertices that are the only elements of their respective colour class; these oriented
graphs are critical with respect to oriented chromatic number. Further, for every arc
uv 2 V (G) it is possible to construct an oriented 9�colouring so that u and v are the
only vertices of their respective colour. In fact, by considering all choices of uv, if an
oriented cubic graph does need 9 colours, then the oriented graph formed by reversing
any arc of G leads to an oriented cubic graph that requires only 7 colours. It is also worth
pointing out that if the QR7�colouring maps the ends of uv to a correctly oriented arc
in QR7, then u and v need not be recoloured. In such a case an oriented 7�colouring of
G exists.

In [50] the author conjectures that 7 colours su�ce for an oriented colouring of an
orientation of a connected graph with maximum degree 3. Our result, that 9 colour
su�ce, improves the previous upper-bound of 11. Though not specifically invoked in the
proof, the assumption of connectedness is important. Consider an oriented cubic graph
that is formed from the disjoint union of a pair of oriented 3�regular graphs, where
one is oriented to have sources and sinks, and one without. By our main result each
of these oriented graphs admits a homomorphism to a target with at most 9 vertices.
However, by our construction, these two oriented graphs do not admit a homomorphism
to the same target. Similar remarks can be made for the results concerning the family of
orientations of graphs with maximum degree 4. When the ends of the arc are coloured
with the two new colours, this implicitly defines a 69-vertex target. However, since the
target constructed depends on the colours of the neighbours of the ends of the arc that
had its ends recoloured, this target is not a universal target for the family of orientations
of connected graphs with maximum degree 4.
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Chapter 3
k�dipath Colourings of Oriented Graphs

In Chapter 3 we examine a generalisation of 2�dipath colourings of oriented graphs.
Using ideas similar to [34] we construct a homomorphism model for colourings that re-
quire vertices at the end of a directed path of length at most k receive di↵erent colours.
Additionally, we consider the complexity of determining if a given oriented graph has a
k�dipath colouring using no more than m colours, for fixed values of m and k.

3.1 Background and Preliminaries

Recall the vertex labelling definition for oriented colouring:
Let G be an oriented graph. A mapping c : V (G) ! {1, 2, 3, . . . ,m} is an oriented

colouring of G provided that:

• for all uv 2 E(G), c(u) 6= c(v), and

• for all uv, xy 2 E(G) such that c(u) = c(y), c(v) 6= c(x).

In the second condition of the labelling definition of oriented colouring an interesting
case arises when v = x. In this case we observe that it must be that u and y are assigned
di↵erent colours. In general we see that in any oriented colouring that vertices at the
ends of a 2�dipath are assigned di↵erent colours. And so by considering proper vertex
colourings of an oriented graph that also assign vertices at distance 2 di↵erent colours,
we find a lower bound for the oriented chromatic number.

Definition 3.1. Let G be an oriented graph. A 2�dipath colouring of G using m colours
is a mapping c : V (G) ! {1, 2, 3, . . . ,m} such that:

• for all uv 2 E(G), c(u) 6= c(v), and

• for all uv, vw 2 E(G), c(u) 6= c(w).

The 2�dipath chromatic number of G is the least integer m such that there is a 2�dipath
colouring of G using m colours. We use �2d(G) to denote this parameter.

Since every oriented colouring is necessarily a 2�dipath colouring we observe that if
G is an oriented graph, then �2d(G)  �o(G).

Definition 3.2. If G a digraph, then define Gk to be the simple graph formed from G as
follows:

• V (Gk) = V (G), and

• E(Gk) = {uv|there is a directed path of length at most k from u to v in G}
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Figure 3.1: A 3�dipath colouring using 4 colours.

When considering 2�dipath colourings of an oriented graph G we are led naturally
to the equivalence between a 2�dipath colouring and a proper vertex colouring of the
simple graph, G2 [34]. For 2�dipath colourings we consider oriented graphs, rather than
general digraphs, as the inclusion of 2�cycles allows for a vertex to be on both ends of a
directed path of length 2. And so when generalising to k�dipath colourings we consider
only those graphs with no directed cycles of length at most k.

Definition 3.3. Let G be an oriented graph with directed girth at least k+1. A k�dipath
colouring of G using m colours is a mapping c : V (G) ! {1, 2, 3, . . . ,m} such that for
all pairs of distinct vertices u, v 2 V (G) if there is a directed path of length at most k
from u to v, then c(u) 6= c(v). The k�dipath chromatic number of G is the least m such
that there is a k�dipath colouring of G using m colours. We use �kd(G) to denote this
parameter.

Figure 3.1 gives an example of a 3�dipath colouring using 4 colours. Here this colour-
ing is optimal as the directed path on 4 vertices requires 4 colours.

As an analogy to the notion of clique in a simple graph, we consider the notion of a
k�dipath clique.

Definition 3.4. Let G be an oriented graph with directed girth at least k + 1. We say G
is a k�dipath clique if �kd(G) = |V (G)|.

Proposition 3.1. An oriented graph G is a k�dipath clique if and only if it has weak
diameter at most k.

Proof. Let G be an oriented graph with directed girth at least k + 1. We observe that
Gk is a complete graph if and only if for each pair of non-adjacent vertices, say u and v,
there is a directed path of length at most k, in some direction, between u and v. This
condition is equivalent to G having weak diameter at most k.

The first appearance of k�dipath colouring is in a paper giving an upper bound for
the 2�dipath chromatic number of Halin graphs [12]. Chen and Wang use directed dis-
tance when defining k�dipath colouring, and avoid the directed girth condition mentioned
above. And so we note that our definition of k�dipath colouring di↵ers slightly to theirs.
Though the k�dipath chromatic number is largely unstudied, the 2�dipath chromatic
number has received attention as it gives a lower bound for the oriented chromatic num-
ber. In her master’s thesis [58] (more recently published as [34]), Sherk (née Young) gives
a homomorphism model for 2�dipath colouring, which implies an upper bound for the
oriented chromatic number as a function of the 2�dipath chromatic number. This model
is discussed further in Section 3.3.
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Our goal in this chapter is to construct a homomorphism model similar to that given
for 2�dipath colourings in [34]. Additionally, we discuss the complexity of the problem
of k�dipath colouring with m colours. To achieve these two goals we first require some
preliminary results for k�dipath colourings.

3.2 A Theory of k�dipath Colouring

As discussed above, there is a direct connection between k�dipath colourings of a par-
ticular oriented graph, and proper colourings of the kth power of the oriented graph, Gk.
And so k�dipath colouring is equivalent to proper colouring of Gk for oriented graphs G
with directed girth at least k + 1.

Proposition 3.2. If G is an oriented graph with directed girth at least k + 1, then there
is a one-to-one correspondence between k�dipath colourings of G and proper colourings
of Gk.

In [34] the authors observe this correspondence for 2�dipath colourings and also obtain
the following result.

Theorem 3.3 (MacGillivray and Sherk [34]). If G is an oriented graph, then �o(G) 
2�2d(G) � 1.

This upper bound follows from the construction of a universal target for the family
of oriented graphs with 2�dipath chromatic number at most m. This universal target
has an oriented colouring using 2m � 1 colours. We further explore the topic of universal
targets for k�dipath colourings in Section 3.3. Theorem 3.3 implies the following result
for the k�dipath chromatic number.

Corollary 3.4. If G is an oriented graph with directed girth at least k+1, then �o(G) 
2�kd(G) � 1.

Proof. Let G be an oriented graph with directed girth at least k+1 such that �kd(G)  m.
Let c be a k�dipath colouring of G using at most m colours. Observe that c is a 2�dipath
colouring of G. By Theorem 3.3, �o(G)  2m � 1.

Notice that the lower bound for �o(G) given in Theorem 3.3 does not hold for the
k�dipath chromatic number. The oriented chromatic number of P3, the directed path on
four vertices, is 3, however; four colours are required for a 4�dipath colouring.

The proof given in Corollary 3.4 uses the fact that any k�dipath colouring is also a
2�dipath colouring. It is easy to see that any k�dipath colouring is also a k0�dipath
colouring for all k0 < k. The example given in Figure 3.1 is a k0�dipath colouring for
k0 = 2, 3.

Consider the case where G is acyclic and the longest directed path has at most k
arcs. Since acyclic oriented graphs have infinite directed girth, the k0-dipath chromatic
number is defined for all k0. Here the k0-dipath chromatic number is exactly the k�dipath
chromatic number for any k0 > k. To consider k�dipath colourings of acyclic oriented
graphs we require the following result about path length in an acyclic oriented graph.

Theorem 3.5 (Maurer, Sudborough, and Welzl [36]). If G is a acyclic oriented graph,
and Tk is the transitive tournament on k vertices, then G ! Tk if and only if G has no
directed path with k + 1 vertices.

Theorem 3.6. If G is an acyclic oriented graph and the longest directed path in G has
m vertices, then �kd(G) = m for all k � m.
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Proof. Let G be an oriented acyclic graph graph where the longest directed path in G has
m vertices. In any k�dipath colouring of G (m  k), each of the vertices in this longest
path must receive a distinct colour, and so �kd(G) � m. By Theorem 3.5, G admits a
homomorphism � : G ! Tm, where Tm is the transitive tournament on m vertices. We
claim � is a k�dipath colouring of G. If not, then there exist a pair of vertices u, v 2 V (G)
such that �(u) = �(v) and a directed path u = x1, x2, x3, . . . , x` = v (2  `  m  k).
Since � is a homomorphism it must be �(x1),�(x2) . . . ,�(x`) is a closed directed walk in
Tm. This is a contradiction, as Tm is acyclic.

Corollary 3.7. An acyclic oriented graph, G, has �kd(G)  m if and only if G has no
directed path on at least m+ 1 vertices.

Corollary 3.8. An acyclic oriented graph, G, has �kd(G)  m if and only if G admits a
homomorphism to Tm.

Though not a direct analogue, Theorem 3.6 has a similar flavour to the early results
on graph colourings of Gallai, Roy, Hasse, Vitaver ([19], [45], [26], [56]) (see Theorem
1.1). In our version the length of the longest directed path in an acyclic oriented graph
gives the value of the k�dipath chromatic number for all k such that k is larger than the
length of the path. The proof of this theorem relies on Tk being acyclic, so there is no
closed directed walk in Tk. This technique may be generalized for when the target has
su�ciently large directed girth.

Theorem 3.9. Let G be an oriented graph and let H be an oriented graph with directed
girth at least k + 1. If G ! H, then �kd(G)  �kd(H) .

Proof. Let G and H be oriented graphs such that � : G ! H. If H has directed girth
at least k + 1, then so must G. Let c be a k�dipath colouring of H that uses m colours.
Construct the mapping c0 : V (G) ! {1, 2, 3, . . . ,m} such that for all v 2 V (G), c0(v) =
c(�(v)). Consider u, v 2 V (G) such that there is an `�dipath from u to v (1  `  k). If
c(u) = c(v), then there is a closed directed walk �(v) = y1, y2, . . . , yi = �(u) (1  i  k)
in H. However since `  k the existence of such a walk violates that H has directed girth
at least k + 1. Therefore c0 is a k�dipath colouring of G.

3.3 A Homomorphism Model for k�dipath Colouring

In [34] the authors give a homomorphism model for 2�dipath colouring. That is, for
each m � 1 they describe an oriented graph G2,m with the property that an oriented
graph G has 2�dipath chromatic number m if and only if G admits a homomorphism
to G2,m. We begin by reviewing this model and o↵ering an improvement to the upper
bound in Theorem 3.3 for the cases m = 3 and m = 4. We then move on to consider a
homomorphism model for k�dipath colourings.

3.3.1 The 2�dipath Chromatic Number

The homomorphism model given in [34] is based upon the idea that in any 2�dipath
colouring with m colours and for any particular colour, i, three possibilities arise when
considering the colours of vertices in the closed neighbourhood of v:

1. v is coloured with i,

2. there are out-neighbours of v coloured with i, or
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3. either there are in-neighbours of v coloured with i or there is no vertex coloured
with i in the closed neighbourhood of v.

For a particular vertex and a particular colour, exactly one of these possibilities arises.
As such, for any particular 2�dipath colouring, c, with each vertex, x 2 V (G) we can
associate a vector of length m, with entries x1, x2, . . . , xm given by

xi =

8
<

:

· , if c(x) = i;
1 , if 9y 2 N(x)+ such that c(y) = i;
0 , otherwise.

Let A2,m be the set of all such vectors that arise from a 2�dipath colouring using m
colours over all oriented graphs that have a 2�dipath colouring using m colours. Each
element of A2,m is a vector of length m where exactly one entry is · and all other entries
are either 1 or 0.

Using A2,m, construct the oriented graph G2,m.

• V (G2,m) = A2,m, and

• for X = (x1, x2, . . . , xm) and Y = (y1, y2, . . . , ym) in V (G2,m), where xi = · and
yj = ·, XY 2 E(G2,m) when xj = 1 and yi = 0.

Proposition 3.10 (MacGillivray and Sherk [34]). The oriented graph G2,m is a universal
target for the family of oriented graphs with 2�dipath chromatic number at most m.

Proposition 3.11 (MacGillivray and Sherk [34]). �o(G2,m)  2m � 1.

Corollary 3.12 (MacGillivray and Sherk [34]). If G is an oriented graph such that
�2d(G)  m, then �o(G)  2m � 1.

For the cases m = 3, 4 we o↵er the following improvements to Corollary 3.12.

Proposition 3.13. If G is an oriented graph with �2d  m, then

• if m = 3, then �o(G)  5, and

• if m = 4, then �o(G)  12.

Proof. Figure 3.2 gives G2,3, leaving out arcs between the source vertices on the left and
the sink vertices on the right. By inspection this oriented graph admits a homomorphism
to the tournament formed from a copy of a directed 3�cycle together with a universal
source vertex and universal sink vertex. Therefore if �2d(G)  3, then �o(G)  5.

Figure 3.3 gives a mapping of all vertices of G2,4, excluding sources and sinks, to the
ten-vertex target given. This target, together with a universal source and universal sink
vertex is a homomorphic image of G2,4. Therefore if �2d(G)  4, then �o(G)  12.

For the cases m = 3 and m = 4 the number of vertices of G2,m is small enough
to be examined by hand. Though here improved bounds are established by separately
combining sources and sinks, no general pattern seems to emerge in which such vertices
are mapped to the same vertex in the target. Because of this, it does not seem feasible
to utilise this method to establish new bounds for larger values of m.



38

(·, 1, 0)

(·, 0, 1)

(0, ·, 1)

(1, ·, 0)

(0, 1, ·)

(1, 0, ·)

(·, 1, 1) (·, 0, 0)

(1, ·, 1)

(1, 1, ·)

(0, ·, 0)

(0, 0, ·)

Figure 3.2: The universal target for the family of oriented graphs with �2d  3.

(·, 0, 1, 1)

(1, 0, 1, ·)

(·, 1, 0, 1)
(1, 1, 0, ·)

(·, 1, 1, 0)
(0, 1, 1, ·)

(·, 0, 0, 1)
(1, 0, 0, ·)

(·, 0, 1, 0)

(0, 0, 1, ·)

(·, 1, 0, 0)
(0, 1, 0, ·)

(0, ·, 1, 1)
(1, ·, 1, 0)

(0, ·, 1, 0)
(1, ·, 0, 0)

(0, ·, 0, 1)

(1, ·, 0, 1)
(1, 0, ·, 1)

(0, 1, ·, 1)
(1, 1, ·, 0)
(0, 1, ·, 0)

(0, 0, ·, 1)
(1, 0, ·, 0)

Figure 3.3: A homomorphic image of the universal target for the family of oriented graphs
with �2d  4.
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3.3.2 The k�dipath Chromatic Number

To construct a universal target for the family of oriented graphs with k�dipath chromatic
number at most m, we begin by constructing an object similar to the vector constructed
for the construction of the universal target for the family of oriented graphs with 2�dipath
chromatic number at most m. However rather than constructing a vector, we construct
a matrix for each vertex.

Let G be an oriented graph with directed girth at least k + 1. For a vertex v 2 V (G)
and a k�dipath colouring, c, of G using m colours, we define the k�dipath colouring
matrix of v, Av, to be the (2k � 1)⇥m {0, 1}�matrix, with rows indexed by the set

{(k � 1)�, (k � 2)� . . . , 1�, 0, 1+, . . . , (k � 2)+, (k � 1)+},

and columns indexed by {1, 2, 3, . . . ,m}, that has a 1 in the ith row and jth column if
there is a vertex u 2 V (G) such that c(u) = j, and

• if i 2 {(k�1)�, (k�2)�, . . . , 1�}, then there is a directed path from u to v of length
i;

• if i 2 {1+, . . . , (k�2)+, (k�1)+}, then there is a directed path from v to u of length
i; and

• if i = 0, then v = u.

Consider the colouring, c, given in Figure 3.1, and the unique vertex v such that
c(v) = 3. The 3�dipath colouring matrix of v is given by:

1 2 3 4
2� 1 0 0 0
1� 0 1 0 0
0 0 0 1 0
1+ 0 0 0 1
2+ 1 0 0 0

For example, the value, 1, in entry (2�, 1) comes by observing that there is a vertex
w such that c(w) = 1 and there is a path of length 2 from w to v.

Let Ak,m denote the set of all possible k�dipath colouring matrices across all k�dipath
colourings using m colours over all oriented graphs with directed girth at least k + 1 and
k�dipath chromatic number at most m. Each element of Ak,m is a matrix that satisfies
the following conditions.

Observation 3.14. For all A 2 Ak,m, and all columns aj of A (1  j  m),

• if there is a 1 in the i� row of this column, then the entries in the `+ row are all 0
(0  `  k � i);

• if there is a 1 in the i+ row of this column, then the entries in the `� row are all 0
(0  `  k � i); and

• if there is a 1 in the 0 row of this column, then all other entries of this column are
0.

Using Ak,m we construct an oriented graph Gk,m, which is a universal target for the
family of oriented graphs with k�dipath chromatic number at most m.

• V (Gk,m) = Ak,m.
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• If A 2 Ak,m has a 1 in entry (0,m1), and B 2 Ak,m has a 1 in entry (0,m2), then
AB 2 E(Gk,m) provided each of the following conditions hold.

1. A has a 1 in entry (1+,m2);

2. B has a 1 in entry (1�,m1);

3. if A has a 1 in entry (i�,m3), then B has 0 in entry (`+,m3) (0  `  k � i,
1  i  k � 1) and a 1 in entry ((i� 1)�,m3); and

4. if B has a 1 in entry (i+,m3), then A has 0 in entry (`�,m3) (0  `  k � i,
1  i  k � 1) and a 1 in entry ((i+ 1)+,m3).

This completes the construction of Gk,m.

Lemma 3.15. The oriented graph Gk,m has directed girth at least k + 1.

Proof. Let A1, A2, . . . , A`, A1 (1  `  k) be a directed cycle in Gk,m such that A1 has a 1
in entry (0,m1). This implies A2 has a 1 in entry (1�,m1) and a 1 in entry ((`�1)+,m1).
This is contrary to Observation 3.14.

Lemma 3.16. The k�dipath chromatic number of Gk,m is at most m.

Proof. Consider the colouring, c, given by c(A) = m1, where m1 the is lone column of
the matrix of A for which the entry (0,m1) of A is a 1. We claim that c is a k�dipath
colouring of Gk,m. Consider a path of length k in Gk,m: A1A2, . . . , Ak. Assume there
exists a pair of indices, 1  i < j  k such that c(Ai) = c(Aj). This implies Ai+1 has a
1 in entry (1�, c(Ai)) and a 1 in entry ((j � (i + 1))+, c(Ai)). This violates Observation
3.14.

Using these two lemmata we prove our main result in this section.

Theorem 3.17. Suppose G is an oriented graph with directed girth at least k + 1, then
�kd(G)  m if and only if G ! Gk,m.

Proof. Let G be an oriented graph with directed girth at least k + 1. If G ! Gk,m, then
by Lemmas 3.15 and 3.16, and Theorem 3.9, �kd(G)  m.

Assume �kd(G)  m. Let c be a k�dipath colouring of G using m colours. Consider
the mapping � : V (G) ! V (Gk,m), where for all v 2 V (G), �(v) = Av, the k�dipath
colouring matrix of v (with respect to c). Let uv be an arc of G. We claim AuAv is an
arc of Gk,m. Assume Au has a 1 in entry (0,m1), and Av has a 1 in entry (0,m2). We
must show Au and Av satisfy the four conditions for an arc to exist in Gk,m.

1. Since c(v) = m2, Au has a 1 in entry (1+,m2).

2. Since c(u) = m1, Av has a 1 in entry (1�,m1).

3. Assume there exists i such that Au has a 1 in entry (i�,m3). Since c is a k�dipath
colouring, Au has a 0 in entry (`+,m3) (i+ `  k, ` > 0), as otherwise there would
be a pair of vertices coloured m3 at the ends of a dipath of length at most k in G.

4. Assume there exists i such that Av has a 1 in entry (i+,m3). Since c is a k�dipath
colouring, Av has a 0 in entry (`�,m3) (i+ `  k, ` > 0), as otherwise there would
be a pair of vertices coloured m3 at the ends of a dipath of length at most k in G.

Therefore � : G ! Gk,m is a homomorphism.



41

3.4 Complexity of k�dipath Colourings

In [34] the authors use their homomorphism model for 2�dipath colouring to discuss the
complexity of the following colouring problem.

2�DIPATH m�COLOURING
Input: an oriented graph, G.
Question: does G have a 2�dipath colouring using m colours?

Theorem 3.18 (MacGillivray and Sherk [34]). Let m � 1 be a fixed integer. If m 
2, then 2-DIPATH m-COLOURING is Polynomial. If m � 3, then 2-DIPATH m-
COLOURING is NP-complete.

Here the authors use the indicator construction and make an argument based on the
complexity of graph homomorphism. Our goal in Section 3.4 is to find similar results for
the following decision problems.

3�DIPATH m�COLOURING
Input: an oriented graph, G.
Question: does G have a 3�dipath colouring using m colours?

k�DIPATH m�COLOURING
Input: an oriented graph, G.
Question: does G have a k�dipath colouring using m colours?

We construct a gadget that allows us to transform proper m�colouring of simple undi-
rected graphs to 3�dipath colouring (respectively k�dipath colouring) using m colours.
Formally, the decision problem of m�colouring of simple undirected graphs is stated as
follows.

m�COLOURING
Input: a graph, G.
Question: does G have proper colouring using m colours?

Theorem 3.19 (Garey, Johnson and Stockmeyer [20]). For any fixed integer m > 2,
m�COLOURING is NP-complete.

Let G be a simple graph, and let G̃ be an arbitrary orientation of G. We construct
Hm (m > 3) from G̃.

• For all v 2 V (G) add

– vertices vi, vo and xv;

– a transitive tournament on m�2 vertices with source vertex sv and sink vertex
tv;

– a 2�dipath (tvxvvi), and

– an arc vosv.

• For all uv 2 E(G̃) add

– vertices uv1 , uv2 ;
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Figure 3.4: Constructing H4 for the proof of Theorem 3.23 for the case m = 4.

– the 3�dipath (uouv1uv2vi); and

– an arc vosv.

This completes the construction of Hm. See Figure 3.4 for an example of this con-
struction with m = 4. Observe Hm is an acyclic oriented graph.

Observation 3.20. �3d(Hm) � m.

For any vertex v 2 V (G) observe that the m� 2 vertices of the transitive tournament
constructed for v, together with xv and vo form a 3�dipath clique in Hm with m vertices.

Observation 3.21. If �3d(Hm) = m, then for every v 2 V (G) and every 3�dipath
colouring, c, of Hm using m colours, c(vo) = c(vi).

For any vertex v 2 V (G) observe that the m� 2 vertices of the transitive tournament
constructed for v, together with xv and vo form a 3�dipath clique on m vertices in Hm.
Also observe that replacing vo with vi also yields a 3�dipath clique on m vertices in Hm.
As such, in any 3�dipath colouring of Hm using m colours, vo and vi must receive the
same colour, as the other m� 1 colours are used for the transitive tournament and xv.

Observation 3.21 provides a natural way to construct a proper m�colouring of G given
a 3�dipath colouring of Hm using m colours. Given a 3�dipath colouring of Hm we can
unambiguously lift back the colour of the vertices vi, vo 2 H to the vertex v 2 G. This
next proposition shows this lifting can be done in either direction.

Proposition 3.22. If G is a simple graph and Hm is constructed from G as above, then
for all m � 4, �(G)  m if and only if �3d(Hm)  m.

Proof. Let c be a 3�dipath colouring of Hm using m colours. By Observation 3.21,
for every vertex v 2 V (G) we have c(vo) = c(vi). Consider the function � : V (G) !
{1, 2, 3, . . . ,m} given by �(v) = c(vi). If � is not a proper colouring of G, then there
exists uv 2 E(G̃) such that �(u) = �(v). By construction of �, this implies c(uo) = c(vi).
However this contradicts our hypothesis that c is a 3�dipath colouring of Hm using m
colours. Therefore no such arc of G̃ can exist. Therefore � is a proper colouring of G
using no more than m colours.

Let � be a proper colouring of G using m colours. Construct a partial colouring of
Hm, c : V (Hm) ! {1, 2, 3, . . . ,m}, given by c(vo) = c(vi) = �(v), for all v 2 V (G). To
see that c can be completed to a 3�dipath colouring of Hm using m colours observe that
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• for every v 2 V (G), if �(vo) = i (1  i  m), then vertices of the transi-
tive tournament constructed for v together with xv can be coloured using the set
{1, 2, 3 . . . ,m} \ {i}; and

• for every uv 2 E(G̃), if �(uo) = i and �(vi) = j (1  i, j  m), then vertices
uv1 , uv2 2 V (Hm) can be coloured using the set {1, 2, 3 . . . ,m} \ {i, j}.

Theorem 3.23. For all fixed integers m > 3, 3�DIPATH m�COLOURING is NP-
complete. The problem is Polynomial for all m  3.

Proof. For fixed m > 3 our transformation is from m�COLOURING. Consider an in-
stance of m�COLOURING, with input graph G. Construct the acyclic oriented graph
Hm, as described above. We note this construction can be obtained in polynomial time.
By Proposition 3.22, �(G)  m if and only if �3d(H)  m. Since m�COLOURING is
NP-complete it follows that 3�DIPATH m�COLOURING is NP-complete.

Consider now an instance of 3�DIPATH m�COLOURING for fixedm  3 with input
graph G. If G has a directed path with at least four vertices, then at least 4 colours are
required. Therefore we may assume the longest directed path in G has no more than
m vertices. Since G has directed girth at least 4, we have directly that G is acyclic.
By Theorem 3.8, G has a 3�dipath colouring using m colours if and only if G admits a
homomorphism to Tm, the transitive tournament onm vertices. Homomorphism to Tm can
be checked in polynomial time [3] and so 3�DIPATH m�COLOURING is Polynomial
for all fixed m  3.

Comparing our results to the results for 2�DIPATH m�COLOURING given in [34],
the dividing line above is expected. In fact, with only slight modifications to the construc-
tion of Hm this same method may be used for 2�DIPATH m�COLOURING. Further-
more, with this same construction we can attack the problem of k�DIPATHm�COLOURING
for any fixed m and k.

As before, given a simple graphG we construct an oriented graph, Hm,k (m > k � 3),
such that �kd(H)  m if and only if �(G)  m. Let G be a simple graph, and let G̃ be
an arbitrary acyclic orientation of G.

• For all v 2 V (G), add

– vertices vi and vo,

– a transitive tournament on m � k + 1 vertices with source vertex sv and sink
vertex tv,

– the vertices and arcs required for a (k�1)�dipath: tv, xv1 , xv2 , xv3 , . . . , xvk�2
, vi,

and

– an arc vosv.

• For all uv 2 E(G̃), add

– the vertices and arcs required for a k�dipath uo, uv1 , uv2 , uv3 , . . . , uvk�1
, vi; and

– an arc vosv.

This completes the construction of Hm,k.

Observation 3.24. �kd(Hm,k) � m.
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For any vertex v 2 V (G), observe that the m � k + 1 vertices of the transitive
tournament constructed for v, together with the vertices xv1 , xv2 , xv3 , . . . , xvk�2

, vi form
a k�dipath clique on m vertices.

Observation 3.25. If �kd(Hm,k) = m, then for every v 2 V (G) and every k�dipath
colouring, c, of Hm,k using m colours, c(vo) = c(vi).

For any v 2 V (G) replacing vi with vo in the clique formed from the m � k +
1 vertices of the transitive tournament constructed for v, together with the vertices
xv1 , xv2 , xv3 , . . . , xvk�2

, vi also forms a k�dipath clique on m vertices.

Proposition 3.26. If G is a simple graph and Hm,k is constructed from G as above, then
for all m > k � 3, �(G)  m if and only if �kd(Hm,k)  m.

Proof. Let c be a k�dipath colouring of Hm,k using m colours. By Observation 3.25
for every vertex v 2 V (G) we have c(vo) = c(vi). Consider the function � : V (G) !
{1, 2, 3, . . . ,m} given by �(v) = c(vi). If � is not a proper colouring of G, then there
exists uv 2 E(G̃) such that �(u) = �(v). By construction of � this implies c(uo) = c(vi).
However this contradicts our hypothesis that c is a k�dipath colouring of Hm,k using m
colours. Therefore no such arc of G̃ can exist. Therefore � is a proper colouring of G
using no more than m colours.

Let � be a proper colouring of G using m colours. Construct a partial colouring of
Hm,k, c : V (Hm,k) ! {1, 2, 3, . . . ,m}, given by c(vo) = c(vi) = �(v), for all v 2 V (G). To
see c can be completed to a k�dipath colouring of Hm,k using m colours observe that

• for every v 2 V (G), if �(vo) = i (1  i  m), then vertices of the transitive
tournament constructed for v together with the vertices xv1 , xv2 , xv3 , . . . , xvk�2

can
be coloured using the set {1, 2, 3 . . . ,m} \ {i}; and

• for every uv 2 E(G̃), if �(uo) = i and �(vi) = j (1  i, j  m), then vertices
uv1 , uv2 , uv3 , . . . , uvk�1

2 V (Hm,k) can be coloured using the set {1, 2, 3 . . . ,m}\{i, j}.

Theorem 3.27. Let m and k � 3 be fixed positive integers. The problem k�DIPATH
m�COLOURING is NP-complete for m > k. The problem is Polynomial for all m  k.

Proof. For fixed m > k � 3 our transformation is from m�COLOURING. Consider an
instance of m�COLOURING, with input graph G. Construct the acyclic oriented graph
Hm,k, as described above. We note this construction can be obtained in polynomial time.
By Proposition 3.26, �(G)  m if and only if �kd(H)  m. Since m�COLOURING is
NP-complete for all m � 3 it follows that 3�DIPATH m�COLOURING is NP-complete.

Consider now an instance of k�DIPATH m�COLOURING for fixedm  k with input
graph G. If G has a directed path with at least k+ 1 vertices, then at least k+ 1 colours
are required. Therefore we may assume the longest directed path in G has no more than
m vertices. Since G has directed girth at least k + 1, we have directly that G is acyclic.
By Theorem 3.8, G has a k�dipath colouring using m colours if and only if G admits a
homomorphism to Tm, the transitive tournament on m vertices. Homomorphism to Tm

can be checked in polynomial time [3] and so k�DIPATH m�COLOURING is Polynomial
for all fixed m and k such that m  k.
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3.5 Future Directions and Conclusions

For the cases m = 3 and m = 4 we have given an improvement for the upper bound for
the oriented chromatic number of oriented graphs with 2�dipath chromatic number m.
The number of vertices in Gm,k in these cases is small enough to be able to analyse these
graphs by hand. For larger values of m, however, such an approach is not likely to yield
results. It remains to be seen if the bound of 2m�1 given by [34] is best possible for large
values of m.

The homomorphism model presented in Section 3.3, based on the vector model pre-
sented in [34], seems as if it may be adaptable to more general situations. Here we are
enforcing that no two vertices of the same colour can appear on a path of length at
most k. However we can imagine adapting this model to be used in a situation where
the distance constraint is di↵erent for each colour. Further it may be possible to encode
more complicated constraints into this model. For example it may be possible to use this
model to construct colourings where vertices of the same colour are permitted to be at
some distances from each other, but prohibited at some other distances from each other.

Recall the definition of a graph multi-colouring: If G is a graph, c : V (G) ! 2m

is a multi-colouring using m colours if for all uv 2 E(G), we have c(u) \ c(v) 6= 0 and
c(v) \ c(u) 6= 0. Using multi-colouring rather than enforcing a directed girth condition is
a method of avoiding the problem of short cycles in k�dipath colourings. Rather than
ensuring that a vertex does not lie on a prohibitively short cycle, we can allow for a
vertex to be coloured di↵erently from itself by assigning to it a set of colours. This could
led to a definition of k�dipath colouring that is equivalent not to a proper colouring of
the kth power of the graph, but to a multi-colouring of the kth power of the graph. In
this formulation, a possible universal target may have all subsets of a k�set as the set
of vertices. This would be consistent with an exponential upper bound for the oriented
chromatic number.
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Chapter 4
Simple Colourings of Oriented Graphs

The best upper bound for the oriented chromatic number of the family planar graphs
has rested at 80 since 1994, when Raspaud and Sopena provided a connection between
the acyclic chromatic number and the oriented chromatic number. Given that the best
lower bound is 18 [35], it is likely that there is room for improvement. In this chapter we
consider a pair of methods that may be employed in an attempt to improve this bound:
simple colouring and simple 2�dipath colouring.

4.1 Background and Preliminaries

Consider relaxing the requirement of oriented colouring that adjacent vertices must receive
di↵erent colours. With this constraint relaxed colouring becomes trivial, each vertex can
receive the same colour. To avoid trivial colouring let us require that at least two colours
be used. Formally, we define simple m�colouring as follows.

Definition 4.1. Let G be an oriented graph. A simple m�colouring of G is a mapping
c : V (G) ! {1, 2, 3, . . . ,m} such that

• there exists u, v 2 V (G) so that c(u) 6= c(v), and

• if there exist uv and xy so that c(u) = c(y), then either c(v) 6= c(x) or c(u) = c(v) =
c(x) = c(y).

For an oriented graph, G, we define the simple chromatic number of G, denoted �s(G),
to be the least m such that G has a simple m�colouring. For a family of oriented graphs,
F , we define the simple chromatic number of F , denoted �s(F), to be the least m such
that for all F 2 F , �s(F )  m.

As with other colouring parameters, we may use graph homomorphism to define the
simple chromatic number.

Definition 4.2. Let G be an oriented graph and let H be a reflexive anti-symmetric
digraph. We say G admits a simple homomorphism to H if there exists � : G ! H,
and there exists x, y 2 V (G) such that �(x) 6= �(y). The simple chromatic number of
G, denoted �s(G), is the least m such that there exists H so that G admits a simple
homomorphism to H and |V (H)| = m.

As a first example, consider an oriented graph G that contains, as a proper subgraph,
a directed 3�cycle uvw. If u and v receive the same colour in a simple colouring of G, then
we observe that w must also receive this same colour, as otherwise the second condition
of a simple colouring is violated. If u and v receive di↵erent colours in a simple colouring
of G, then we observe that w must be assigned a colour that is distinct from both the
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Figure 4.1: Examples of oriented graphs with �s(G) = 2 and �s(G) = 3.

colour of u and the colour of v, as otherwise the second condition of a simple colouring
would be violated.

The oriented graphs given in Figure 4.1 have simple chromatic number 2 and 3, re-
spectively. To see that 3 is optimal for the second example, observe that in any simple
2�colouring of this oriented graph, there would necessarily be a directed 3�cycle con-
taining only two colours.

Proposition 4.1 (Smoĺıková [49]). An oriented graph, G, has simple chromatic number
at most two if and only if there exists a set of vertices X ⇢ V (G) such that every edge of
U(G) with an end in X and an end in X is oriented in G so that its tail is in X and its
head is in X.

This characterisation follows by observing the only two-vertex target for such a simple
homomorphism is a single arc with a loop at each end.

Corollary 4.2. Every graph has an orientation with simple chromatic number 2.

This follows by observing that any oriented graphs with either a source or a sink vertex
has simple chromatic number 2 and any graph may be oriented to have either a source or
sink vertex.

Simple colourings of oriented graphs were introduced by Smoĺıková [49]. In her Ph.D.
thesis, amongst other things, she considered families of oriented graphs such that �o(F) =
�s(F). For a family of graphs, F , we say F is optimally simply colourable if �o(F) =
�s(F).

Theorem 4.3 (Smoĺıková [49]). The families of oriented planar graphs and oriented
p�trees (p � 3) are optimally simply colourable.

In general, the di↵erence between the oriented chromatic number and the simple chro-
matic number may be arbitrarily large; the transitive tournament on m vertices has
oriented chromatic number m but simple chromatic number 2. In addition to studying
families of optimally simply colourable graphs, Smoĺıková considered oriented graphs for
which �s(G) = |V (G)|.
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Definition 4.3. An oriented graph, G, is a simple clique if �s(G) = |V (G)|. We call a
tournament simple if it is a simple clique.

Theorem 4.4 (Smoĺıková [49]). Let s(n) be the number of simple cliques on n vertices.
There is a constant c > 1 and n0 2 N such that for any n � n0

s(n) � (1� c�n) · 3(
n
2).

Simple tournaments arise in an algebraic context by viewing a tournament as a binary
algebra. In this context, simple homomorphisms correspond to non-trivial homomor-
phisms between quasi-trivial algebras [39]. Such an algebra is called simple if it has no
proper non-trivial sub algebra. The family of simple quasi-trivial algebras corresponds
exactly to the family of simple tournaments. And so by applying a result on quasi-trivial
algebras, we get the following result.

Theorem 4.5 (Erdős et al. [17]). Almost all tournaments are simple.

To examine simple cliques more closely, we require the following terminology.

Definition 4.4. Let G be an oriented graph and let u, v, w 2 V (G) such that uv, vw 2
E(G). We say v is between u and w if uvw is 2�dipath. We say C ✓ V (G) is convex if
for any pair u, w 2 C there is no v 2 V (G) \ C such that v is between u and w.

Definition 4.5. The convex hull of C ✓ V (G) is the smallest convex set of vertices of G
that has C as a subset. We denote this set as conv(C).

From this definition it follows directly that if C is a convex set, then conv(C) = C.

Definition 4.6. We call G complete-convex if for every connected subgraph on at least
two vertices, H, conv(V (H)) = V (G).

Observation 4.6. If G is an oriented graph, c a simple colouring of G and u and v a
pair of vertices such c(u) = c(v), then for all w between u and v, c(u) = c(w)

Proposition 4.7 (Smoĺıková [49]). Let G be an oriented graph and c a simple colouring of
G. If there exists an arc uv 2 E(G) such that c(u) = c(v), then for every x 2 conv({u, v}),
c(x) = c(u).

Proof. Consider a vertex x 2 conv({u, v}) and let N be the subset of conv({u, v}) such
that x /2 N and for all y, z 2 N such that if there is a vertex w 6= x between y and
z, then w 2 N . We proceed by induction on the cardinality of N . If |N | = 2, then
N = {u, v}. Since N is largest it must be x is between u and v. If c is a simple colouring
of G such that c(u) = c(v), then any vertex between u and v must also be assigned this
same colour, as otherwise the second condition of a simple oriented colouring would be
violated. Therefore c(x) = c(u).

Assume now |N | = k > 2. Since N is largest there exists a pair of vertices y, z 2 N
such that x is between y and z. If c is a simple colouring of G such that c(u) = c(v),
then by induction c(u) = c(y) = c(z). Since x is between y and z, it must also be
c(x) = c(u).

Corollary 4.8 (Smoĺıková [49]). If G is a complete-convex graph, then every simple
colouring of G is also an oriented colouring of G.

Following Sen’s characterisation of oriented cliques [48], we arrive at the following
characterisation of simple cliques.
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Proposition 4.9. An oriented graph on at least three vertices is a simple clique if and
only if it has weak diameter at most two and is complete-convex.

Let Tm be the transitive tournament onm vertices with source vertex s and sink vertex
t. The tournament formed from Tk by reversing the direction of the arc between s and t
is a simple clique; this graph has weak diameter 1 and is complete-convex. As mentioned
above �s(Tm) = 2 and so we see that changing the direction of even a single arc can have
a drastic e↵ect on the simple chromatic number.

4.2 Simple Colourings of Planar Graphs

Given the on-going interest in the oriented chromatic number of the family of planar
graphs, we examine the implications of Smoĺıková’s result that the family of oriented
planar graphs is optimally simply colourable.

Let P be the family of oriented planar graphs and let m = �o(P). Since P is optimally
simply colourable, m = �s(P). Let P 2 P be the smallest oriented graph in P so that
�s(P ) = m. By finding the simple chromatic number of P we can improve the upper
bound for the oriented chromatic number of planar graphs. Here we give some properties
of P that could aid in the search for an oriented graph on fewer than 80 vertices that is
a homomorphic image of P .

Property 4.10. No vertex of P is a source or a sink.

Any oriented graph with a source or a sink vertex has simple chromatic number 2.
There exist oriented planar graphs with oriented chromatic number at least 3, and so it
must be that m > 2. Therefore P has no source or sink vertex.

Property 4.11. The planar graph P is complete-convex.

Proof. LetH be a connected subgraph of P with at least two vertices. Assume conv(V (H)) ⇢
V (P ). Consider the result of identifying the vertices of conv(V (H)) into a single vertex,
h. Remove all loops and copies of identical arcs, and call this new digraph PH . Since H is
connected this identification can be considered as a sequence of edge contractions. There-
fore since P is planar, PH is also planar. However it may be that PH contains 2�cycles.
If PH is an oriented graph, then, by choice of P , �o(PH) < �o(P ). However, an oriented
colouring, c, of PH using m0 < m colours can be extended to be a simple m0�colouring
of P by colouring each vertex in H with c(h). Therefore PH is not an oriented graph and
so must contain 2�cycles. This implies there exists a vertex not in conv(V (H)) that is
between a pair of vertices in conv(V (H)). This contradicts that conv(V (H)) is a convex
set. Therefore conv(V (H)) = V (P ).

When taking H to be a single arc, we arrive at the following property of P .

Property 4.12. For every xy 2 E(P ) there is an ordering of the vertices of P , x, y, u1, u2, . . . , un�2,
so that for every vertex ui, 1  i  n � 2, there exists a pair of vertices s and t so that
both of s and t appear earlier in the ordering than ui and suit is 2�dipath.

Knowing P is complete-convex allows us to restrict our considerations when seeking
to improve the upper bound on the oriented chromatic number of planar graphs. The
existing upper bound of 80 comes by way of constructing a universal target for the family
of planar graphs. Such a graph necessarily exists because the family of planar graphs is
complete (see Proposition 1.3). The same is true for the family of complete-convex planar
graphs.
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Theorem 4.13. The family of complete-convex planar graphs is complete.

Proof. Let G1 and G2 be complete-convex planar graphs with at least two vertices. Let
uv be an arc on the outer face of a planar embedding G1 and let xy be an arc on the
outer face of a planar embedding G2. Consider the oriented planar graph G formed from
G1 and G2 in the following manner:

• V (G) = V (G1) [ V (G2), and

• E(G) = E(G1) [ E(G2) [ {vy, yu, ux}.

To show G is complete-convex it su�ces to show x, y 2 conv({u, v}), u, v 2 conv({x, y}),
and that the convex hull of each of the newly added arcs is the entirety of the vertex set
of G.

• x, y 2 conv({u, v}). Observe y is between v and u and x is between u and y.

• u, v 2 conv({x, y}). Observe u is between y and x and v is between u and y.

• conv({v, y}) = V (G). Observe u is between y and v. Since u and v are elements
of conv{v, y}, and G1 is complete-convex, then each vertex of G1 is contained in
conv({v, y}). Further, x is between u and y and so since x and y are both elements
of conv({v, y}) and since G2 is complete-convex, each vertex of G2 is contained in
conv({v, y}).

• conv({u, x}) = V (G). This claim follows similarly to the previous claim.

• conv({u, y}) = V (G). Since both v and x are between u and y, each of u, v, x, and
y are in conv({u, y}). Our claim now follows similarly to the previous claim.

Corollary 4.14. The family of complete-convex planar graphs has a universal target with
�o(P) vertices.

The oriented graph constructed by Raspaud and Sopena [44] is a universal target for
the family of complete-convex planar graphs by virtue of it being a universal target for
the family of oriented planar graphs. Complete-convex graphs are highly structured and
so it is possible this structure can be used to construct a universal target for the family
of complete-convex planar graphs on fewer than 80 vertices.

Consider now the smallest non-trivial connected subgraphs of P : single arcs. If uv is
an arc of P , then since P is complete-convex it must be conv({u, v}) = V (P ). Since there
must be a vertex between u and v, we get the following property of arcs of P .

Property 4.15. The ends of every arc in P are also the ends of some 2�dipath of P .

Property 4.16. Every edge of U(P ) is contained in a 3�cycle.

Property 4.15 is a necessary condition of all complete-convex oriented graphs.

Definition 4.7. We call G, an oriented graph, 2�convex if for every arc uv, |conv({u, v})| >
2.

From this definition it follows directly that every complete-convex oriented graph is
also 2�convex. Though every complete-convex graph is also 2�convex, the opposite is
not true.

Proposition 4.17. There exist planar graphs that are 2�convex but not complete-convex.
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Figure 4.2: A 2�convex graph that is not complete-convex.
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Proof. Let G be the oriented graph given in Figure 4.2. The convex hull of {u, v} contains
w and no other vertex, but the ends of every arc of G are also the ends of a 2�dipath.
Therefore this oriented graph is 2�convex but not complete-convex.

Amongst the family of orientations of planar graphs, it is easy to find examples of
2�convex graphs. Consider a plane triangulated graph G. We show that we can orient
the edges so that each arc is a member of a facial directed 3�cycle. We do this by
3�colouring the planar dual of G and then orienting the arcs in a face according to
the colour assigned to the corresponding vertex in the planar dual. Oriented faces can
be classified into one of three categories: transitive triples, clockwise directed 3�cycles,
and anti-clockwise directed 3�cycles. We begin by observing in which ways the directed
3�cycles can share an edge.

Observation 4.18. If f1 and f2 are faces of a planar embedding of G with a common
arc such that f1 and f2 are both directed 3�cycles, then at most one of f1 and f2 are
clockwise.

To show that every triangulated planar graph has a 2�convex orientation we require
the following lemma.

Lemma 4.19. Let G be an embedding of a maximally-planar graph, and let F be the set
of faces of G. If C = {f1, f2, . . . , fk} ✓ F and A = {h1, h2, . . . , h`} ✓ F such that

• C \ A = ;,

• for all 1  i < j  k, fi and fj do not share an edge, and

• for all 1  p < m  `, hp and hm do not share an edge,

then there exists an orientation of G such that each fi 2 C is a clockwise 3�cycle and
each hp 2 A is an anti-clockwise 3�cycle.

Proof. Since for all 1  i < j  k fi and fj do not share an edge, it is possible to orient
the edges that are part of some fi so that each fi is a clockwise directed 3�cycle. Let
1  p  ` be the least integer such that each of the edges of the preceding p�1 faces in A
may be successfully oriented to be a directed 3�cycle, but the edges of hp may not be. If
hp shares no edge with some fi 2 C, then its edges may be oriented to be an anti-clockwise
directed 3�cycle. If hp shares a single edge with some fi, then by our observation above,
this shared edge is oriented correctly to be able to orient hp as an anti-clockwise directed
3�cycle. The same holds if hp shares two edges or three edges with faces in C. (See
Figure 4.3)

Theorem 4.20. Every simple triangulated plane graph other than K4 has a 2�convex
orientation.

Proof. Let G 6= K4 be a triangulated planar graph. Since G is not K4, by Brooks’
Theorem the planar dual of G, GP , admits a 3�colouring. Let c be a 3�colouring of
GP . and A be the set of vertices of GP that are assigned colours 1 and 2, respectively. It
follows that every edge of GP has an end in C or an end in A. By viewing C and A as
sets of faces of G and applying Lemma 4.19 we obtain our result.

Our exploratory work on convexity in oriented planar graphs brings us no closer to
improving the upper bound for the oriented chromatic number of planar graphs. How-
ever it does provide us with a possible roadmap for improving this bound; rather than
considering the family of all oriented planar graphs, we may instead consider the family
of complete-convex planar graphs.
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Figure 4.3: An anti-clockwise triangle bordered by clockwise triangles.

4.3 Simple 2�dipath Colourings of Oriented Graphs

The 2�dipath chromatic number, �2, stands as a lower bound for the oriented chromatic
number, as every oriented colouring is also a 2�dipath colouring. This topic is covered
more in depth in Chapter 3. Sherk and MacGillivray show a function of the 2�dipath
chromatic number also stands as an upper bound for the oriented chromatic number [34].
Here we consider a similar idea for simple colourings of oriented graphs and introduce the
notion of simple 2�dipath colouring of an oriented graph.

Definition 4.8. Let G be an oriented graph. A simple 2�dipath colouring of G with m >
1 colours is a surjective function c : V (G) ! {1, 2, 3, . . . ,m} such that if uv, vw 2 E(G)
and c(u) = c(w), then c(u) = c(v) = c(w). The simple 2�dipath chromatic number of
G, denoted �2s(G), is the least m such that G has a simple 2�dipath colouring with m
colours.

From this definition we have directly that for any oriented graph, G, �2s(G)  �s(G)
and �2s(G)  �2d(G).

Figure 4.4 gives examples of oriented graphs that require two and three colours, re-
spectively, in a simple 2�dipath colouring. As with simple colouring, observe that in any
oriented graph that contains, as a proper subgraph, a directed 3�cycle, the vertices of
this 3�cycle either all receive the same colour, or all receive pairwise distinct colours.

We begin our investigation of this parameter by characterising completely those ori-
ented graphs, G, with �2s(G) = 2.

Theorem 4.21. An oriented graph, G, has �2s(G) = 2 if and only if U(G) contains an
edge cut, C, so that the oriented graph induced by C contains no 2�dipath.

Proof. Let G be an oriented graph so that �2s(G) = 2, and let c be a simple 2�dipath
colouring of G using two colours. Let X = {x 2 V (G)|c(x) = 1}. Let C ⇢ E(U(G))
be the set of edges with exactly one end in X. By definition C is an edge cut of U(G).
Consider now a pair of edges uv, vw 2 C so that u, w 2 X. If these arcs are oriented in G
as uv and vw, respectively, then since c(u) = c(w) = 1, it must also be c(v) = 1. This is
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Figure 4.4: Examples of oriented graphs with �2s(G) = 2 and �2s(G) = 3.

a contradiction, as v /2 X. Therefore the oriented graph induced by C does not contain
a 2�dipath.

Let G be an oriented graph, and let C be a minimal edge cut of U(G) so that the
oriented graph induced by C contains no 2�dipath. Since C is a minimal edge cut, there
exists a non-empty set of vertices X ⇢ V (G) such that the subgraph induced by X is a
component of V (G) \ C. A colouring that assigns colour 1 to vertices in X and colour 2
to all other vertices is a simple 2�dipath colouring.

The upper bound for the oriented chromatic number in terms of the 2�dipath chro-
matic number given in [34] comes by exhibiting a universal target for the family of oriented
graphs with 2�dipath chromatic number at most m. However, we show no such upper
bound for the simple chromatic number in terms of the simple 2�dipath chromatic num-
ber can exist, as there exists a family of oriented graphs with simple 2�dipath chromatic
number 2 and arbitrarily large simple chromatic number.

Theorem 4.22. For each m > 2 there exists an oriented graph, H, with �2s(H) = 2 and
�s(H) � m.

Proof. Let G1 and G2 be simple cliques (see Definition 4.3) on m > 2 vertices, where

• V (G1) = {u1, u2, . . . , um}, and

• V (G2) = {v1, v2, . . . , vm}.

Construct an oriented graph, H, as follows.

• V (H) = V (G1) [ V (G2), and

• E(H) = E(G1) [ E(G2) [ {v1u1} [ {uivj|2  i, j  m}.
By Theorem 4.21 �2s(H) = 2, as the set of an arc {v1u1} [ {uivj|2  i, j  m} is an

edge cut that does not induce any 2�dipath.
To show �s(H) � m, we assume the contrary. Assume �s(H) < m and let d be a

simple colouring of H using no more than m� 1 colours. Since G1 (respectively G2) has
m vertices, we may assume a pair of vertices of G1 (respectively G2) is assigned the same
colour by d. Since G1 (respectively G2) is a simple clique it must be that all of the vertices
of G1 (respectively G2) are assigned this same colour. This implies �s(H) = 2. This is a
contradiction whenever m > 2.
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Corollary 4.23. For all k > 2 there exists no oriented graph Gk such that G admits a
simple homomorphism to Gk if and only if �2s(G)  k.

Though there is no result to be obtained bounding the simple chromatic number
from above with a function of the simple 2�dipath chromatic number, we can relate the
simple 2�dipath chromatic number to the 2�dipath chromatic number for the family
of complete-convex graphs. To do so we require the following result relating convexity
and simple 2�dipath colourings. The proof of which follows similarly to the proof of
Proposition 4.7.

Proposition 4.24. Let G be an oriented graph and c a simple 2�dipath colouring of G.
If there exists an arc uv 2 E(G) such that c(u) = c(v), then for every x 2 conv({u, v}),
c(x) = c(u).

Corollary 4.25. If G is a complete-convex graph, then every simple 2�dipath colouring
of G is also a 2�dipath colouring of G.

Corollary 4.26. If G is a complete-convex graph, then �2d(G) = �2s(G).

Corollary 4.27. If F is a family of complete-convex graphs, then �2s(F) = �2d(F).

Corollary 4.28. If Pc is the family of complete-convex planar graphs, then �2s(Pc) =
�2d(Pc).

Little is known about the 2�dipath chromatic number of the family of planar graphs.
It is possible that the ideas utilised by Smoĺıková, and also utilised here in Chapter 5,
may be re-purposed to define a similar notion to optimally simply colourable for 2�dipath
colouring and simple 2�dipath colouring. If similar results hold true, then the family of
complete-convex planar graphs may be used to find bounds for the 2�dipath chromatic
number of the family of planar graphs. In turn, this may provide new insight into the
oriented chromatic number for the family of planar graphs.

4.3.1 Complexity of Simple 2�dipath Colouring with Two Colours

In [34] MacGillivray and Sherk show that deciding if an input oriented graph has 2�dipath
chromatic number at most k (for fixed k) is NP-complete whenever k > 2. The problem is
Polynomial when k = 2. In Chapter 3 we extend this complexity result for the problem of
k�dipath colouring. Here we examine the decision problem for simple 2�dipath colouring
and show that deciding if an oriented graph has a simple 2�dipath colouring using two
colours is NP-complete.

SIMPLE 2�DIPATH 2�COLOURING
Input: an oriented graph G.
Question: does G have a simple 2�dipath colouring using two colours?

MONOTONE NOT-ALL-EQUAL 3�SATISFIABILITY (MONOTONE-NAE3SAT)
Input: a 3CNF formula, F , with variables x1, x2, . . . , xk and clauses e1, e2, . . . , e` without
negated variables.
Question: is F not-all-equal satisfiable?

Theorem 4.29 (Schaefer [46]). MONOTONE-NAE3SAT is NP-complete.
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Figure 4.5: The construction for each variable of F in the proof of Theorem 4.37.
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Figure 4.6: The construction for each clause, ej = (xa _ xb _ xc), of F in the proof of
Theorem 4.37.

Given an instance F of MONOTONE-NAE3SAT with k variables and ` clauses, we
construct an oriented graph H such that F is not-all-equal satisfiable if and only if H has
a simple 2-dipath colouring using two colours.

Beginning with a pair of vertices, t and f , construct H as follows.

• For each variable xi of F (1  i  k)

– add the vertices xi, x
0
i, and x00

i , and

– add the arcs necessary to form the 2�dipath (txif) and the directed 3�cycle
(xix

0
ix

00
i ).

• For each clause ej = (xa _ xb _ xc) of F (1  j  `)

– construct the oriented graph given in Figure 4.6, and

– add the arcs necessary to form the directed cycles (x
ej
a x0

ax
00
a), (x

ej
b x

0
bx

00
b ), (x

ej
c x0

cx
00
c ), (tt

ej
a t

ej
c ),

and (ff
ej
a f

ej
c ).

This completes the construction of H. See Figures 4.5 and 4.6. Note that this con-
struction can be obtained in polynomial time. If H has a simple 2�dipath colouring of
H, g, using two colours, we make the following observations:
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Observation 4.30. For all clauses ej = (xa _ xb _ xc), g(t) = g(t
ej
a ) = g(t

ej
c ) and

g(f) = g(f
ej
a ) = g(f

ej
c ).

Notice that in each of these cases the vertices form a directed 3�cycle. Since only two
colours are being used in the simple 2�dipath colouring, each vertex in a directed 3�cycle
must receive the same colour.

Observation 4.31. g(t) 6= g(f).

If g(t) = g(f), then all other vertices of H must receive this same colour. This violates
that at least two colours are used in simple 2�dipath colouring.

Observation 4.32. For all variables xi and all clauses ej such that xi is contained in ej,
g(xi) = g(x

ej
i ) = g(x0

i) = g(x00
i ).

Notice that in each of these cases the vertices form a directed 3�cycle. Since only 2 colours
are being used in the simple 2�dipath colouring, each vertex in a directed 3�cycle must
receive the same colour.

Observation 4.33. For all variables xi and all clauses ej such that xi is contained in ej,
g(xi) 6= g(x

ej
i ) = g(yi) = g(zi) (when x

ej
i , yi, and zi exist).

Since g(xi) = g(x
ej
i ) (see Observation 4.32) , if g(xi) = g(x

ej
i ), then g(t) = g(f). Since

x
ej
i yizi is a directed 3�cycle, each of these vertices must be assigned the same colour.

Observation 4.34. For all clauses, ej = (xa _ xb _ xc), g(xa), g(xb) and g(xc) are not
all equal.

If g(xa), g(xb) and g(xc) are all equal, then the colours appearing on the 2�dipath zaxbzc
violate the second condition of a simple 2�dipath colouring.

We use these observations to prove the following results relating the 2�colourability
of H and the satisfiability of F .

Proposition 4.35. If H has a simple 2�dipath colouring, then F is not-all-equal satis-
fiable.

Proof. If there exists a simple 2�dipath colouring, g, using two colours, then we may use
g to make the following truth assignments to the variables of F .

• If g(xi) = g(t), then assign xi to be TRUE, otherwise assign xi to be FALSE
(1  i  k).

By Observation 4.34 each clause contains at least one TRUE variable, but does not
contain three TRUE variables. Therefore if H has a simple 2�dipath colouring using two
colours, then F has the required type of satisfying truth assignment.

Proposition 4.36. If F is not-all-equal satisfiable, then H has a simple 2�dipath colour-
ing using two colours.

Proof. Consider a not-all-equal satisfying assignment of the variables of F . We construct
a simple 2�dipath colouring of H, g, using two colours.

• For all clauses ej, let g(t) = g(t
ej
a ) = g(t

ej
c ) = 1 and g(f) = g(f

ej
a ) = g(f

ej
c ) = 2.

• For all xi such that xi is FALSE, let g(xi) = g(x0
i) = g(x00

i ) = g(x
ej
i ) = 2 and

g(x
ej
i ) = g(y

ej
i ) = g(z

ej
i ) = 1, where ej is a clause containing xi (1  i  k and

1  j  `).
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• For all xi such that xi is TRUE, let g(xi) = g(x0
i) = g(x00

i ) = g(x
ej
i ) = 1 and

g(x
ej
i ) = g(y

ej
i ) = g(z

ej
i ) = 2, where ej is a clause containing xi (1  i  k and

1  j  `).

To show that g is a simple 2�dipath colouring, we show at there is no 2�dipath in
H, uvw, such that g(u) = g(w) 6= g(v).

Consider first the set of vertices T ⇢ V (H) such that g(v) = 1 for all v 2 T . For
a contradiction assume there exists u, v, w 2 V (G) such that uvw is a 2�dipath, where
u, w 2 T and v /2 T . It su�ces to consider 2�dipaths in H where a pair of adjacent
vertices in a 2�dipath is not contained in the same directed 3�cycle. Further, we may
also discount those 2�dipaths that have an end contained in the set

{f} [ {f ej
a , f ej

c |ej = (xa _ xb _ xc), 1  j  `},

as elements of this set are not elements of T .

• uvw 6= x
ej
a f

ej
a xa

ej : if x
ej
a 2 T , then xa

ej /2 T .

• uvw 6= x
ej
c f

ej
c xc

ej : if x
ej
c 2 T , then xc

ej /2 T .

• uvw 6= xa
ejzax

ej
b : if xa

ej 2 T , then za 2 T .

• uvw 6= x
ej
b zcxc

ej : if xc
ej 2 T , then zc 2 T .

• uvw 6= z
ej
a x

ej
b z

ej
c : since F is not-all-equal satisfied, it cannot be that both z

ej
a and

z
ej
c are in T when x

ej
b 2 F .

Therefore no such 2�dipath uvw exists where x, w 2 T but v /2 F .
Consider now the set of vertices F ⇢ V (H) such that g(v) = 2. For a contradiction

assume there exists u, v, w 2 V (G) such that uvw is a 2�dipath where u, w 2 F and
v /2 F . It su�ces to consider 2�dipaths in H where a pair of adjacent vertices in a
2�dipath is not contained in the same directed 3�cycle. Further, we may also discount
those 2�dipaths that have an end contained in the set

{t} [ {teja , tejc |ej = (xa _ xb _ xc), 1  j  `},

as elements of this set are not elements of F .

• uvw 6= xa
ej t

ej
a x

ej
a : if x

ej
a 2 F , then xa

ej /2 F .

• uvw 6= xc
ej t

ej
c x

ej
c : if x

ej
c 2 F , then xc

ej /2 F .

• uvw 6= xa
ejzax

ej
b : if xa

ej 2 F , then za 2 F .

• uvw 6= x
ej
b zcxc

ej : if xc
ej 2 F , then zc 2 F .

• uvw 6= z
ej
a x

ej
b z

ej
c : since F is not-all-equal satisfied, it cannot be that both x

ej
b and

z
ej
c are in F when x

ej
b 2 T .

Therefore there is no 2�dipath uvw such that x, w 2 F and v /2 T , and so g is a
2�dipath colouring of H.

Theorem 4.37. SIMPLE 2�DIPATH 2�COLOURING is NP-complete

Proof. Our reduction is fromMONOTONE-NAE3SAT. Given an instance, F of MONOTONE-
NAE3SAT we construct H, as described above (see Figures 4.5 and 4.6). We note H can
be constructed in polynomial time. Since MONOTONE-NAE3SAT is NP-complete and
since F is not-all-equal satisfiable if and only if H has a simple 2�dipath colouring we
have directly that SIMPLE 2�DIPATH 2�COLOURING is NP-complete.
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4.4 Conclusions and Future Directions

Our work here on simple colourings of planar graphs provides a possible avenue of attack
for improving the upper bound on the oriented chromatic number for the family of planar
graphs; rather than considering the entire family of planar graphs, we may restrict our
attention to those which are complete-convex. Many questions still remain on the subject
of complete-convex planar graphs. There is no known method of constructing such graphs,
and it is unknown when a planar graph may be oriented to be complete-convex. Work on
these two questions may provide further structure inherent to these graphs, which may
in turn aid in finding a new universal target for this family of graphs.

That the problem of simple 2�dipath colouring using just two colours is NP-complete
suggests further structural results concerning simple 2�dipath colouring may be di�cult.
It may be possible that for some particular families of graphs, the problem of simple
2�dipath colouring may be easier to study. A good candidate for a family of such graphs
would be oriented 2�trees. Additionally, given the interest in the oriented chromatic
number of planar graphs and the relationship between the simple chromatic number and
chromatic number of such graphs, this family would be a priority in the study of the
simple 2�dipath chromatic number.

It is possible that simple 2�dipath colourings may be generalised to simple k�dipath
colourings using the same methods as in Chapter 3. However, given that there is no
universal target for oriented graphs with simple 2�dipath chromatic number m, the ho-
momorphism model used in Chapter 3 will not be able to provide a universal target for
simple k�dipath colourings.
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Chapter 5
Vertex Colourings of k�edge-coloured
Graphs

In Chapter 5 we examine colourings of (0, k)�mixed graphs. More often called k�edge-
coloured graphs, these graphs arise from ordinary graphs by assigning an edge type
(colour) to each of the edges. Here we consider vertex colourings of these graphs. We
find a lower bound for the chromatic number of the family 2�edge-coloured graphs with
maximum degree 3 by considering a new colouring parameter for these graphs. We find
an upper bound for these graphs by constructing targets for graphs in this family. Fi-
nally, we consider vertex colourings of k�edge-coloured graphs that allow, in some cases,
adjacent vertices to receive the same colour. We find that these colourings, called simple
colourings, provide an avenue of attack to improve the upper bound on the chromatic
number of families of k�edge-coloured graphs.

5.1 Background and Preliminaries

When restricted to (j, k) = (0, k), the definitions for homomorphism and colouring given
in Chapter 1 give the following.

Definition 5.1. Let (G,⌃) and (H,⇧) be k�edge-coloured graphs. We say (G,⌃) admits
a homomorphism to (H,⇧), denoted (G,⌃) ! (H,⇧), if there exists � : V (G) ! V (H)
such that, for all 1  i  k, if uv 2 ⌃i, then �(u)�(v) 2 ⇧i. We call � a homomorphism
and we write � : (G,⌃) ! (H,⇧).

Definition 5.2. Let G be a k�edge-coloured graph. The chromatic number of G, denoted
�k(G), is the least integer m such that there exists a k�edge-coloured graph H such that
|V (H)| = m and a homomorphism � : G ! H. We call � an m�colouring of G, or a
colouring of G using m colours. If F is a family of k-edge-coloured graphs, then we define
�k(F) to be the least m such that for all F 2 F , �k(F )  m.

Recall the vertex labelling definition for colouring of k�edge-coloured graphs.

Definition 5.3. If (G,⌃) is a k�edge-coloured graph and c : V (G) ! {1, 2, 3, . . . ,m},
then c is an m�colouring of G provided the following conditions are met:

• for all uv 2 E(G), c(u) 6= c(v), and

• for all 1  i  k, uv 2 ⌃i, and xy 2 E(G), if c(u) = c(x) and c(v) = c(y), then
xy 2 ⌃i.

When restricted to the case k = 1, our definitions for homomorphism and colouring
match exactly the usual definitions for graphs. When restricted to the case k = 2, we
arrive at the following definitions.
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1

2 3 4 1

5

6

Figure 5.1: A 2�edge-coloured graph coloured with 6 colours.

Definition 5.4. A 2�edge-coloured graph is a simple graph, G, together with a function
⌃ : E(G) ! {1, 2}. For all e 2 E(G), if e 2 ⌃1, then we say e is a red edge, otherwise it
is a blue edge.

In our diagrams we denote red edges by solid lines and blue edges by dashed lines.

Definition 5.5. Let (G,⌃) be a 2�edge-coloured graph. A colouring of (G,⌃) using m
colours or, alternatively an m�colouring of G, is a function c : V (G) ! {1, 2, 3, . . . ,m}
such that

• if uv 2 E(G), then c(u) 6= c(v), and

• if uv, xy 2 E(G) such that c(u) = c(x) and c(v) = c(y), then either uv, xy 2 ⌃1 or
uv, xy 2 ⌃2.

Consider the 2-edge-coloured graph G in Figure 5.1. The simple graph underlying G
has chromatic number 3; however 6 colours are needed for a colouring of the 2�edge-
coloured graph. Though colour 1 may be used again on the 3�cycle formed from blue
edges, the colour 2 may not be used on this 3�cycle, as there is already a red edge between
a vertex coloured 1 and a vertex coloured 2. The 2�edge-coloured graph in Figure 5.2,
H, is a target in a homomorphism that is equivalent to this colouring; that is, G ! H.

As with oriented colouring, the second requirement of a colouring of a 2�edge-coloured
graph gives rise to a local requirement in any colouring of a 2�edge-coloured graph. We
see if G contains a path uvw where uv 2 ⌃1 and vw 2 ⌃2, then it must be u and w
receive di↵erent colours. This condition, that vertices at the end of such a path receive
di↵erent colours, is necessary but not su�cient for a colouring of a 2�edge-coloured graph.
Therefore we can use colourings that satisfy this condition to find a lower bound for the
chromatic number. With this in mind we define the term alternating 2�path.

Definition 5.6. If G is a 2�edge-coloured graph, and u, v, w 2 V (G) such that uv 2
⌃(uv) 6= ⌃(vw), then the path uvw is an alternating 2�path.

Colourings of oriented graphs that assign to each vertex a colour such that pairs of
vertices at directed distance at most 2 receive di↵erent colours (2�dipath colourings) are
useful when constructing lower bounds for the oriented chromatic number.(See Chapter
3). We consider an analogous colouring parameter for 2�edge-coloured graphs.
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45
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1

Figure 5.2: A homomorphic image of the 2�edge-coloured graph in Figure 5.1.

Definition 5.7. For a 2�edge-coloured graph, (G,⌃), we define an alternating 2�path
colouring using m colours, or an alternating 2�path m�colouring, to be a function c :
V (G) ! {1, 2, 3, . . . ,m} such that

• if uv 2 E(G), then c(u) 6= c(v), and

• if uv, vw 2 E(G) is an alternating 2�path, then c(u) 6= c(w).

Definition 5.8. The alternating 2�path chromatic number of (G,⌃), denoted by �a
2(G,⌃)

is the least m such that (G,⌃) has an alternating 2�path colouring using m colours. For
a family of graphs, F , define �a

2(F) to be the least m such that for all (G,⌃) 2 F ,
�a
2((G,⌃))  m.

Since every m�colouring is also an alternating 2�path colouring, we get immediately
that for all (G,⌃), �a

2(G,⌃)  �s(G,⌃).

5.2 Vertex Colourings of 2�edge-coloured Graphs with
�  3

We begin by showing each 2�edge-coloured cubic graph has an alternating 2�path
8�colouring. To do so, we first define a graph akin to the square of an oriented graph.
Let (G,⌃) be a 2�edge-coloured graph. Define G?, a simple graph, with

• V (G?) = V (G) and

• E(G?) = E(G) [ {uv|u and v are the ends of an alternating 2�path in G}.

In this graph a pair of vertices are adjacent if and only if they are adjacent in G or
they are at the ends of an alternating 2�path in G. As such, a proper colouring of G? is
also an alternating 2�path colouring of G and so �(G?) = �a

2(G).

Lemma 5.1. If (G,⌃) is a 2�edge-coloured graph with �  3, then either G? contains a
vertex with degree at most 6, or G? has a proper 8-colouring.
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Proof. Let (G,⌃) be a 2�edge-coloured graph, and let G? be defined as above. To prove
our lemma, we show the average degree in G? is no more than 7. Each edge of G con-
tributes exactly one edge to G?. Since each vertex of G is the centre vertex of at most two
alternating 2�paths, each vertex of G contributes at most two edges to G?. Therefore

|E(G?)|  |E(G)|+ 2|V (G)| = 3|(V (G))|
2

+ 2|V (G)| = 7|V (G)|
2

Since G? has at most 7|(V (G))|
2 edges it is either 7�regular and so, by Brooks’ Theorem

is 8�colourable, or G? has a vertex of degree at most 6.

Consider the 2�edge-coloured graph G given in Figure 5.3. In this case G? is K8, and
so G is an example of a 2�edge-coloured subcubic graph that requires 8 colours in an
alternating 2�path colouring. Recall that a graph is subcubic if it has maximum degree
3, but is not 3�regular. To show 8 colours su�ce for 2�edge-coloured cubic graphs, we
first show 8 colours su�ce for a 2�edge-coloured subcubic graphs.

Lemma 5.2. If (G,⌃) is a connected 2�edge-coloured subcubic graph, then �a
2(G,⌃)  8.

Proof. We proceed by induction on n, the number of vertices of G. Note our statement
is trivially true for all n  8. Let u be a vertex of degree 2 in G, with neighbours x and
y. Consider an alternating 2�path colouring, c, of G \ {u}. Since x and y are of degree
at most 2 in G \ {u}, c can be constructed such that c(x) 6= c(y), as each of x and y only
need to disagree in colour from at most 6 other vertices in a colouring of G \ {u} and 8
colours are available. This colouring can be extended to one of G since there are only 6
vertices from which u needs to disagree in colour and 8 available colours.

Using Lemmas 5.1 and 5.2, we give a proof of the main result regarding alternating
2�path colourings of cubic graphs.

Theorem 5.3. Every 2�edge-coloured cubic graph has an alternating 2�path colouring
using no more than 8 colours.

Proof. Figure 5.3 gives an example of a 2�edge-coloured cubic graph that requires 8
colours. This shows �a

2(F) � 8 for, F , the family of 2�edge-coloured cubic graphs.
Let G be a 2�edge-coloured cubic graph. We may assume G? is not 7�regular, as

otherwise we have directly that G has an alternating 2�path colouring using no more
than 8 colours. By Lemma 5.1, there exists a vertex v such that v has degree less than
7 in G?. We may assume dG(v) = 3, as otherwise we have directly that dG?(v)  6. Let
a, b, d be the neighbours of v in G. We proceed by cases.

Case I: All of va, vb, vd are red. By Lemma 5.2, G \ {v} has an alternating 2�path
colouring, c, using 8 colours. Since v must disagree in colour with no more than 6
vertices, and we have a palette of 8 colours, c can be extended, as adding v creates no
new alternating 2�paths between the neighbours of v.

Case II: Exactly one of va, vb, vd is red. Without loss of generality, assume va 2 ⌃1

and vb, vd 2 ⌃2. By Lemma 5.2, G \ {v} can be coloured using 8 colours. Further, in
this colouring there are at least two choices for each of a, b, d. Therefore a colouring, c,
of G \ {v} exists where c(a) 6= c(b) and c(a) 6= c(d). This colouring can be extended to
one of G, since v must disagree in colour with no more than 6 vertices, as v has degree at
most 6 in G?.

The example given in Figure 5.3 is the only 2�edge-cubic graph known, at the time
of writing to require 8 colours in an alternating 2�path colouring.

We turn now to the task of bounding the chromatic number of the family of 2�edge-
coloured graphs with maximum degree 3. We begin by observing that since each vertex
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Figure 5.3: A 2�edge-coloured cubic graph that requires 8 colours in an alternating
2�path colouring.

in the graph in Figure 5.3 requires its own colour in an alternating 2�path colouring,
then this 2�edge-coloured graph also requires 8 colours in a proper colouring. This gives
directly that �2 � 8 for this family. To give an upper bound for this parameter, we will
make use of the following property.

Property 5.4. A 2�edge-coloured complete graph (G,⌃) has property Pi,j if for every
subset X ⇢ V (G) of size i and for every sequence (z1, z2, . . . , zi), zk 2 {1, 2} (1  k  i),
there exist j distinct vertices in V (G) \ X, y1, y2, . . . , yj, such that for all 1  `  j,
xiy` 2 E(G) and ⌃(xiy`) = zi.

Variants of this property have appeared in previous work on 2�edge-coloured graphs
and also in work on oriented graphs. A nice survey on graphs with property P1,n is given
by Bonato (here called n�existentially closed) [5]. Here, it is shown that such graphs can
be found among the Payley graphs. Sopena and Vignal use the existence of an oriented
version of this property to give an upper bound on the oriented chromatic number of
cubic graphs [53].

To show no more than 11 colours are required for a colouring of a 2�edge-coloured
cubic graph, we exhibit a 2�edge-coloured graph on 9 vertices with property P2,1 and
then show, with a few exceptions, every subcubic 2�edge-coloured graph admits a homo-
morphism to this graph. Using this fact, we can then, for any 2�edge-coloured subcubic
graph, find a 2�edge-coloured target with 11 vertices.

Let (H,⌃) be the 2�edge coloured graph formed from the complete graph on 9 vertices
where the red edges are those shown in Figure 5.4. Observe thatH[⌃1] = H[⌃2] = C3⇤C3.
And so the subgraph induced by the red edges is isomorphic to the one induced by the
blue edges, each of these subgraphs is edge transitive, and H is vertex transitive.

The 2�edge-coloured graph H exhibits the following properties.

Property 5.5. For every edge xy of H there exists:

1. a single vertex z such that ⌃(xz) = ⌃(yz) = ⌃(xy),
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0 1 2

u

v

w

Figure 5.4: The red edges of H, a 2�edge-coloured graph with property P2,1. The vertices
are labelled by their row and column index.

2. a pair of vertices z1 and z2 such that ⌃(xz1) = ⌃(xz2) = 1 and ⌃(z1y) = ⌃(z2y) = 2,
and

3. a pair of vertices z1 and z2 such that ⌃(xz1) = ⌃(xz2) = ⌃(z1y) = ⌃(z2y) 6= ⌃(xy).

We observe these properties by considering the neighbourhood of the vertex set {u0, v0}.
In [37] the authors use these properties of H to show H is a universal target for the family
of 2�edge-coloured outerplanar graphs and in fact all 2�edge-coloured 2�trees.

Corollary 5.6 (Montejano et al. [37]). The 2�edge-coloured graph H has property P2,1.

That H has property P2,1 is not enough to show that each 2�edge-coloured cubic
graph admits a homomorphism to H. Consider the pair of 2�edge-coloured graphs, A1

and A2, in Figure 5.5. Call this set of graphs A. Neither of these graphs admits a
homomorphism to H. To see this, observe that in any colouring of A1 or A2, a1 and a2
must receive di↵erent colours. By Property 5.5.3 this means a3 and a4 receive the same
colour. However this is a contradiction, as they are at the ends of an alternating 2�path.

It turns out, however, that these subcubic graphs are the lone obstructions to subcubic
homomorphism to H. In order to show subcubic graphs that contain neither A1 nor A2

admit a homomorphism to H we require the following property of A1 and A2.

Property 5.7. Let A0 be a graph produced from a graph in A by changing the colour of any
edge and then subdividing this edge. Let x be the new vertex created by this process. There
exists a pair of homomorphisms c1, c2 : A0 ! H such that c1(d) = c2(d) but c1(x) 6= c2(x).

Figure 5.6 gives all possible graphs formed by subdividing an edge of A2, as above.
Table 5.1 gives explicit colourings that verify the property. Similar colourings may also
be obtained for the possible graphs obtained by subdividing an edge of A1, as above.

Theorem 5.8. Every connected 2-edge-coloured subcubic graph with no subgraph isomor-
phic to a graph in A admits a homomorphism to H.

Proof. Let (G,⌃) be a minimum counter-example with respect to number of vertices and,
subject to that, with respect to the number of edges. Since G is the smallest counter-
example and is subcubic, there exists a vertex z with neighbours x and y such that G\{z}
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a2 a2

a3 a4 a3 a4

a1 a1

d d

Figure 5.5: A1 and A2.

B1 c1 c2
a1 v0 v0
a2 u2 u2

a3 v0 v0
a4 w1 w1

d u0 u0

x v1 v2

B2 c1 c2
a1 u2 u2

a2 v0 v0
a3 v0 v0
a4 w1 w1

d u0 u0

x v1 v2

B3 c1 c2
a1 u2 u2

a2 w1 w1

a3 v0 v0
a4 w1 w1

d u0 u0

x w0 w2

B4 c1 c2
a1 w1 w1

a2 u2 u2

a3 v0 v0
a4 w1 w1

d u0 u0

x w0 w2

B5 c1 c2
a1 u2 u2

a2 u2 u2

a3 v0 v0
a4 w1 w1

d u0 u0

x u0 u1

B6 c1 c2
a1 w2 u2

a2 u1 u1

a3 v0 w0

a4 v0 w0

d u0 u0

x w0 v0

B7 c1 c2
a1 u0 u0

a2 u2 w2

a3 w1 v1
a4 w1 v1
d u0 u0

x v2 w2

Table 5.1: Homomorphisms to H of the graphs in Figure 5.6.
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Figure 5.6: Possibilities for subdividing an edge in A2, as described in Property 5.7.
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admits a homomorphism to H. Further, it must be, by Property 5.5, that xz 2 ⌃1,
yz 2 ⌃2 and in every homomorphism � : G \ {z} ! H we have �(x) = �(y). Since H
is vertex transitive, we may also assume G has no cut-edge. Further, since �(G)  3, G
has no cut-vertex, as the existence of a cut-vertex implies the existence of a cut-edge.

Let x1 and x2 (respectively y1 and y2) be the neighbours of x (respectively y) in G\{z}.
It must be x1x and x2x (respectively y1y and y2y) have the same colour, as otherwise, by
Property 5.5 there would exist a homomorphism � : G \ {z} ! H such that �(x) 6= �(y).

We proceed by considering the existence and colour of an edge x1x2. By Properties
5.5.2 and 5.5.3, we may assume xx1 is a red edge and xx2 is a red edge.

Case I: There is a blue edge between x1 and x2: If there is a blue edge between x1 and
x2, then by Property 5.5.2 any colouring G \ {z, x} can be extended to one of G \ {z} in
two ways. This is a contradiction.

Case II: There is no edge between x1 and x2: If there is no edge between x1 and x2

we can obtain a homomorphism � : G \ {z} ! H such that �(x) 6= �(y) by

• removing x from G \ {z}, and

• adding a blue edge x1x2.

If this new graph has no subgraph isomorphic to a graph in A, then since this new
graph has fewer vertices than G it admits a homomorphism, �, to H. By Property 5.5.3,
� can be extended to be a homomorphism from G \ {z} to H in two ways. This implies
that there exists a homomorphism � : G \ {z} ! H such that �(x) 6= �(y). This is a
contradiction.

If this new graph does contain a subgraph isomorphic to a graph in A, then it must
be replacing the red edges xx1 and xx2 with the blue edge x1x2 yields a block isomorphic
to a graph in A. However, by Property 5.7, any colouring of G \ {z, x} can be extended
to one of G \ {z} such that x and y receive di↵erent colours. This is a contradiction.

Case III: There is a red edge between x1 and x2: Assume there is a red edge between
x1 and x2. Let s1 and s2 be neighbours of x1 and x2, respectively, in G \ {z, x}.

If s1 = s2, then s1 is a cut vertex in G \ {z}. As such, any colouring of G \
{z, x, x1, x2, s1} can be extended to one of G \ {z} such that x and y receive di↵erent
colours. To see this, note there are three possible colours for s1 in such an extension.

Otherwise, we require the following claim.

Claim 11. There exists a colouring of G\{z, x, x1, x2} with H such that s1 and s2 receive
di↵erent colours.

Consider the graph G0 formed from G by removing z, x, x1, x2, adding new vertex t,
a red edge s1t and a blue edge s2t. If this graph contains no subgraph from A, then it
admits a homomorphism to H such that s1 and s2 receive di↵erent colours. If this graph
does contain a subgraph from A, then it must be that the path from s1 to s2 through t
corresponds to the path between a3 and a4 through d in a copy of either A1 or A2. We
show that this implies there is only a single vertex of degree at most 2 in G \ {z}. This
is a contradiction as both x and y have degree at most 2.

Consider the graph induced by the vertices corresponding to a1, a2, a3 and a4 when the
vertex t is added. This graph isK4\{a1a2}. However, s1 and s2 (the vertices corresponding
to a1 and a2) are adjacent to x1 and x2, respectively. Further, by assumption, x1 and x2

are adjacent and are also adjacent to x. As G has maximum degree 3, there can be no
other vertices in G \ {x, z}, as z is not a cut vertex. Therefore G \ {z} has only a single
vertex of degree 2, a contradiction as each of x and y are of degree 2.

Consider a colouring of G \ {z, x, x1, x2} with H in which s1 and s2 receive di↵er-
ent colours. Figure 5.7 shows all possibilities for the edges in the subgraph induced by
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�1 c1 c2
x w1 w2

x1 v1 v2
x2 u1 u2

s1 v0 v0
s2 u0 u0

�2 c1 c2
x w2 u0

x1 v2 v0
x2 u2 w0

s1 v1 v1
s2 u0 u0

�3 c1 c2
x w0 u1

x1 w2 v1
x2 w1 w1

s1 v0 w0

s2 u0 u0

�4 c1 c2
x w0 u2

x1 w2 w2

x2 w1 v2
s1 v1 v1
s2 u0 u0

�5 c1 c2
x u0 v2
x1 u2 w2

x2 u1 v2
s1 v1 v1
s2 u0 w2

�6 c1 c2
x u0 w1

x1 u2 w2

x2 u1 w0

s1 v0 v0
s2 u0 u0

Table 5.2: Homomorphisms to H of the graphs in Figure 5.7.

x, x1, x2, s1 and s2, up to symmetry. For each graph in Figure 5.7, Table 5.2 gives a pair
of colourings that each give the same colour to s1 and s2 but the two colourings give a
di↵erent colour for x. This contradicts that every homomorphism from G \ {z} gives the
same colours to both x and y.

Therefore, every 2�edge-coloured connected subcubic graph that does not contain a
subgraph from A admits a homomorphism to H.

Theorem 5.9. Every connected 2�edge-coloured graph with maximum degree 3 admits a
homomorphism to a 2�edge-coloured graph on 11 vertices.

Proof. Let G be a connected 2�edge-coloured graph with maximum degree 3.
Case I: G contains no subgraph isomorphic to a graph in A: Let uv be an edge of G.

Form G0 by deleting uv . By Theorem 5.8, G0 admits a homomorphism, �, to H. By
colouring each vertex other than u and v as prescribed by � and giving u colour 0 and v
colour 00 we have an 11-colouring of G.

Case II: G contains a subgraph isomorphic to a graph in A: From each of these
subgraphs remove the vertex a2. What remains admits a homomorphism to H. By
colouring all removed vertices from copies of A1 with colour 0+ and those from copies of
A2 with colour 0�, we obtain an 11-colouring of G.

Both the result and method of proof of this result are similar in flavour to the result
on oriented cubic graphs presented in Chapter 2. In both results we consider a target
graph with convenient adjacency properties, consider a family of subgraphs that do not
admit a homomorphism to this target, and then construct a homomorphism to a modified
target depending on the existence, or lack thereof, of these subgraphs in the input graph.
In Chapter 2 this method is also used to construct colourings of oriented graphs with
maximum degree 4. It is likely that this technique can be useful in constructing colourings
of (j, k)�mixed graphs with bounded degree, provided target graphs with appropriate
adjacency properties exist. For example, the graph formed from H using the Tromp
construction has property P3,1 [37].
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Figure 5.7: Possibilities in Case III if s1 6= s2
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5.3 Simple Colourings of k�edge-coloured Graphs

Definition 5.9. Let (G,⌃) and (H,⇧) be k�edge-coloured graphs. We say G admits a
simple homomorphism to H, denoted G !s H, if there exists a mapping � : V (G) !
V (H), such that the following conditions are satisfied:

1. there exist u, v 2 V (G) such that �(u) 6= �(v), and

2. for all 1  i  k if uv 2 ⌃i, then �(u)�(v) 2 ⇧i or �(u) = �(v).

If |V (H)| = m, we call � a simple colouring of G usingm colours or a simplem�colouring
of G.

Alternatively we may view simple homomorphisms of k�edge-coloured graphs as ho-
momorphisms where the target graph has a loop of each edge colour and the range of the
vertex mapping consists of at least two vertices.

Definition 5.10. If G is a k�edge-coloured graph and c is a simple colouring of G, then
a proper subgraph, H, of G is called monochromatic if for all u, v 2 V (G), c(u) = c(v).

Definition 5.11. For a k�edge-coloured graph G the simple chromatic number of G is
the least m such that there exists a simple m�colouring of G. We denote this value as
�s
k(G). If F is a family of k�edge-coloured graphs we define �s

k(F) as the smallest m
such that for all F 2 F , �s

k(F )  m. In the event no such m exists we say �s
k(F) = 1.

Simple colourings were first introduced by Smoĺıková [49] in her Ph.D thesis. She
studied simple colourings of oriented graphs. Here we show her results and methods can
be adapted for 2�edge-coloured graphs.

5.3.1 Simple Colourings of 2�edge-coloured Graphs

Those k�edge-coloured graphs with simple chromatic number equal to two are easily
characterised.

Proposition 5.10. A k�edge-coloured graph G has �s
k(G) = 2 if and only if G has a

monochromatic edge cut.

This follows by observing that, up to the colour of the edges, there is a single target
for simple 2�colouring. This target is a single edge with loops of both colours at either
end.

Proposition 5.11. There exist no 2�edge-coloured graph with simple chromatic number
equal to 3.

This follows by observing that, up to the the colour of the edges, there are exactly
two 2�edge-coloured complete graphs on 3 vertices, one in which all of the edges have
the same colour, and one in which exactly two of the edges agree in colour. Each of these
graphs has simple chromatic number 2. And so any 2�edge-coloured graph that admits
surjective simple homomorphism to either of these graphs must satisfy the hypothesis of
Proposition 5.10.

Definition 5.12. Let (G,⌃) be a 2�edge-coloured graph and let u, v, w 2 V (G) such that
uv, vw 2 E(G). We say v is between u and w if uvw is an alternating 2�path. We say
C ⇢ V (G) is convex if for any pair u, w 2 C there is no v 2 V (G) \ C such that v is
between u and w. Let N ✓ V (G). The convex hull of N is the minimum convex set of
vertices of G that has N as a subset. We denote this set conv(N).



72

Note that if N is a convex set, then conv(N) = N .

Proposition 5.12. Let c be a simple colouring of a 2�edge-coloured graph G and consider
N ✓ V (G) such that for all u 2 N , c(u) = i. For all x 2 conv(N), it must be c(x) = i.

Proof. Consider a vertex x 2 conv(N) and let N 0 be the largest subset of conv(N) such
that x /2 N 0 and for all y, z 2 N 0 such that if there is a vertex w 6= x between y and z,
then w 2 N 0. We proceed by induction on the cardinality of N 0. If |N 0| = 2, then, since
N 0 is largest, x is between the two vertices in N 0 and so c(x) = i.

Assume now that |N 0| = k > 2. Since N 0 is largest, there exists a pair of vertices
y, z 2 N 0 such that x is between y and z. If c is a simple colouring of G, then by
induction c(y) = c(z) = c(v) for all v 2 N 0. Since x is between y and z, it must also be
c(x) = c(u).

In the remainder of this chapter we explore families of graphs, F , for which �2(F) =
�s
2(F).

Definition 5.13. A family of 2�edge-coloured graphs, F is optimally simply colourable
if �2(F) = �s

2(F).

We begin our study of such families by considering the family of 2�edge-coloured
planar graphs, P , as the long-standing upper bound of �2(P)  80 [2] is of particular
interest.

Theorem 5.13. The family P of planar 2�edge-coloured graphs is optimally simply
colourable.

Proof. As every m�colouring is also a simple m�colouring, we have directly that

�s
2(P)  �2(P).

Let m = �s
2(P) and let (P,⌃) 2 P have at least 3 vertices. We show there is an

m�colouring of P . Since P was chosen arbitrarily, this implies �2(P)  m = �s
2(P).

Let (P ?,⌃?) be a triangulation of (P,⌃) such that ⌃1 ✓ ⌃?
1 and ⌃2 ✓ ⌃?

2. Denote by
C(P ?) the set of all simple m-colourings of (P ?,⌃?) that contain a monochromatic edge.
For every c 2 C(P ?), P ? has a triangular face Fc that is not monochromatic under c, but
contains a monochromatic edge, as otherwise we have directly that P has anm�colouring.
Denote the vertices of such a face by xc, yc, zc. We note that, with respect to the colours
of the edges, there are four possibilities for the edges in this face (up to relabelling of
xc, yc, zc). We will refer to these four possibilities as follows:

1. Type A: xcyc, yczc, zcxc 2 ⌃1

2. Type B: xcyc, zcxc 2 ⌃1 and yczc 2 ⌃2

3. Type C: zcyc 2 ⌃1 and xcyc, xczc 2 ⌃2

4. Type D: xcyc, yczc, zcxc 2 ⌃2

Notice that by reversing the roles of red and blue edges in Types A and B we obtain
types D and C, respectively.

We define a new 2�edge-coloured graph (R,⇧) that has (P ?,⌃?) as a subgraph and
show any simple m�colouring of R when restricted to the edges in P ? is an m�colouring.
As such, it must be P has an m�colouring. We do this by showing no colouring in C(P ?)
can be extended to one of R.

Construct R from P ? as follows: (See Figure 5.8)
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yc zc
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dc

ec

dc

fc

Figure 5.8: Construction for Types D and C

• For each Fc of Type A add vertices dc, ec, fc together with blue edges xcfc, xcdc,
ycdc, dcec,zcec and red edges ycfc, ycec,zcdc,dcfc.

• For each Fc of Type B add vertex dc together with blue edges xcdc, zcdc and red
edge ycdc.

• For each Fc of Type C add vertex dc together with red edges xcdc, zcdc and blue
edge ycdc.

• For each Fc of Type D add vertices dc, ec, fc together with red edges xcfc, xcdc, ycdc,
dcec,zcec and blue edges ycfc, ycec,zcdc,dcfc.

Notice R is a planar 2�edge-coloured graph (See Figure 5.8), and so has a simple
m-colouring. Let cr be such a colouring. By construction, for a given triangular face Fc,
and for any chosen pair from the set {xc, yc, zc}, the unchosen vertex is part of the convex
hull formed of the chosen pair. As such, in any simple m�colouring all 3 vertices either
receive the same colour or receive distinct colours. Therefore cr does not extend c for any
c 2 C(P ?). Therefore when restricted to P ?, cr is an m�colouring. As P 2 P was chosen
arbitrarily, this gives �2(P)  m = �s

2(P).

For a fixed integer m > 1, let us consider the smallest 2�edge-coloured planar graph
with simple chromatic number m. Call this 2�edge-coloured graph H and let c be a
simple m-colouring of H. Let uv be an edge of H and consider the result of contracting
this edge. If the convex hull of u and v contains only u and v, then contracting this edge
yields no parallel edges with di↵erent colours. This smaller 2�edge-coloured graph must
have a simple (m�1)�colouring. Such a colouring can be extended to one of H by giving
both u and v the same colour. As such, it must be that the convex hull of u and v contains
at least one other vertex. This idea can be extended to any connected subgraph of H.
That is to say, if H is a smallest 2�edge-coloured graph with simple chromatic number
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xc yc zc

uc vc

Figure 5.9: The edges added to form T 0 in Theorem 5.14.

m, it must be that the convex hull of any connected set of vertices is the entire vertex set
of H. If it were not, then we could identify the convex hull into a single vertex, and either
obtain a smaller graph with simple chromatic number m, or colour H with fewer colours.
This reasoning suggests a family of graphs to examine for trying to improve �2(P)  80.
We need only consider the graphs so that the convex hull of any connected subgraph is
the entire graph.

We turn now to another family of optimally simply colourable graphs, partial p�trees.

Theorem 5.14. For any p � 3, the family, Tp, of 2�edge-coloured partial p�trees is
optimally simply colourable.

Proof. Let p � 3. We have directly that �s
2(Tp)  �2(Tp), as any homomorphism is also

a simple homomorphism. To prove our claim it su�ces to show �2(Tp)  �s
2(Tp).

Since �s(Tp) is bounded [1], it must also be �s
2(Tp) is bounded. Let �s

2(Tp) = m and
consider T 2 Tp such that �s

2(T ) = m. We may assume T is a p�tree. Let C be the set
of simple m�colourings of T such that T has a monochromatic edge.

As T is a p�tree it is constructed with a sequence of cliques of order p+1 V1, V2, . . . , V`.
For every colouring c 2 C there must exist some clique Vi such that Vi has a monochromatic
edge, but contains vertices of two di↵erent colours. Let xc 2 Vi and yc 2 Vi be the ends of
this monochromatic edge, and let zc 2 Vi be coloured di↵erently than xc and yc under c.

Consider the following partial p�tree, T 0, constructed from T . (See Figure 5.9)

V (T 0) = V (T ) [
[

c2C

{vc, wc},

E(T 0) = E(T ) [ {xcvc, xcwc, ycvc, ycwc, zcvc, zcwc},

⌃T 0

2 = ⌃T
2 [ {xcvc, xcwc, zcwc}.

Consider an m�colouring of T 0, c0. Since for all c 2 C, zc, vc, wc 2 conv({xc, yc}),
if xc and yc receive the same colour under c0, then zc, vc and wc must also receive this
same colour. Therefore c0 does not extend any colouring in C. This implies that when
restricted to the vertices of T c0 is an m�colouring of T . Therefore �2(Tp)  �s

2(Tp) and
so �2(Tp) = �s

2(Tp) .

The families of 2�edge-coloured planar graphs and 2�edge-coloured p�trees each
have bounded chromatic number and so have bounded simple chromatic number. Here
we examine a family in which both of these parameters are unbounded.
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Figure 5.10: Construction of Gm for m = 3

Let B be the family of 2�edge-coloured bipartite graphs. We show, by way of con-
struction, �s

k(B) = 1.
Consider the complete bipartite graph, Gm (m � 3), with vertex set

V (Gm) = {a1, a2, . . . , am} [ {b1, b2, . . . , bm} [ {c1, c2, . . . , cm},m � 3

and edge set

E(Gm) = {aibj|1  i, j  m} [ {cibj|1  i, j  m}.

We form a 2�edge-coloured graph (Gm,⌃) by partitioning E(Gm) as follows:

• aibj 2 ⌃1 for all i > j and for all i < j where i and j have the same parity,

• cibj 2 ⌃1 for all i > j and for all i < j where i and j have the di↵erent parity, and

• all other edges are placed in ⌃2.

Proposition 5.15. �s
2(Gm) � m

Proof. We proceed by induction on m, noting by inspection (see Figure 5.10) that for
m = 3 in any simple colouring of G each of the vertices in B = {b1, b2, b3} must all receive
distinct colours. We show for all m > 3 that the convex hull of any pair of vertices in B
consists all of the vertices of G.

Case I: conv({bi, bj}) = V (G), where 1 < i < j < m. By induction we have

{a1, a2, . . . , am�1} [ {b1, b2, . . . , bm�1} [ {c1, c2, . . . , cm�1} ✓ conv({bi, bj}).

Since exactly one of a1bm and a2bm is red, bm 2 conv({a1, a2}) ✓ conv({bi, bj}). Therefore
bm 2 conv({bi, bj}). Further, since ambm and cmbm are blue and ambm�2 and cmbm�1 are
red, we have {am, cm} ✓ conv({bm�1, bm}) ✓ conv({bi, bj}). Therefore conv({bi, bj}) =
V (Gm).

Case II: conv({bi, bm}) = V (G), where i ⌘ m (mod 2). Since ambm is blue and
ambi is red, am 2 conv({bi, bj}). Since am�1bm is blue and am�1bi is red we notice that
since i ⌘ m (mod 2), it must be that for i < m � 1, am�1 2 conv({bi, bj}). Finally,
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since ambm�2 is red and am�1bm�1 is blue, bm�1 2 conv({bi, bm}). By Case I, it must be
V (G) = conv({bi, bm}).

Case III conv({bi, bn}) = V (G), where i 6⌘ m (mod 2). Proceed as in Case II swapping
vertices in C for vertices in A and red for blue, where required.

Therefore, for every pair {bi, bj} (1  i 6= j  m) the convex hull of {bi, bj} is all
vertices in G. As such, in any simple 2�edge-coloured colouring of G the vertices in B
must receive pairwise distinct colours. This gives directly that �s

2(G) � m.

Corollary 5.16. �s
2(B) = 1.

Corollary 5.17. �2(B) = 1.

Finally, we consider a family of 2�edge-coloured graphs that is not optimally simply
colourable, connected cubic graphs.

Theorem 5.18. Every connected 2�edge-coloured cubic graph requires at most 4 colours
in any simple colouring.

Proof. Let (G,⌃) be a 2�edge-coloured cubic graph that has simple chromatic number
at least 5. We may also assume G has at least 5 vertices. Since G does not have a
simple 2�colouring, for any subset of the vertices N ⇢ V (G), the edge cut formed from
those edges with exactly one end in N contains both red and blue edges. Consider now
the subgraph induced by the set of red (respectively blue) edges. Call this graph G1

(respectively G2). Each of these graphs must be connected, as otherwise there is an edge
cut consisting solely of either red or blue edges, implying G has a simple 2�colouring.

If G1 contains a cycle it must be a Hamilton cycle in G, as otherwise G would contain
a vertex that has all of its incident edges red since G is cubic. However, if this is the case,
then G2 is a matching and so is not connected. Therefore each of G1 and G2 is connected,
acyclic, spanning, and has maximum degree 2; they are Hamilton paths. Since G is cubic,
a vertex of degree 2 in G1 is a vertex of degree 1 in G2, and vice versa. Since G2 has 2
vertices of degree 1, G1 has two vertices of degree 2. However, since G1 has no vertex of
degree 3, and has at least 5 vertices, it cannot have exactly two vertices of degree 2 and
two vertices of degree 1. This contradicts that G has at least 5 vertices.

Corollary 5.19. The family of 2�edge-coloured cubic graphs is not optimally simply
colourable.

The proof of the previous theorem allows us to classify the simple chromatic number
of 2�edge-coloured connected cubic graphs.

Theorem 5.20. If (G,⌃) is a connected 2�edge-coloured graph, then �s
2(G) = 2 unless

(G,⌃) is the complete graph on 4 vertices in which G[⌃1] and G[⌃2] each are a path on 4
vertices. In this case �s

2(G) = 4.

Proof. Let (G,⌃) be a connected 2�edge-coloured graph. As observed in Theorem 5.18,
if either of G1 = G[⌃1] or G2 = G[⌃2] is not connected, then �s

2(G) = 2. Assume now G1

and G2 are connected. Following the proof of Theorem 5.18, we see each of G1 and G2 are
Hamilton paths and a vertex of degree 2 in G1 is a vertex of degree at most 1 in G2, and
vice versa. Therefore G has at most 4 vertices. Since G is cubic it must be the complete
graph on 4 vertices. Therefore (G,⌃) is the complete graph on 4 vertices in which G[⌃1]
and G[⌃2] each are a path on 4 vertices.
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5.4 Conclusions and Future Directions

Throughout our work on the chromatic number of 2�edge-coloured graphs with maximum
degree 3, we have been careful to note that all of the graphs we are considering are
connected. Unlike proper colourings of graphs, we cannot just consider the component
which requires the most colours. For an easy example, consider the disjoint union of two
copies of K3, one with all red edges and the other with all blue edges. We see no obvious
way to adapt the method of proof of Theorem 5.9 to work with non-connected graphs,
as the proof may construct di↵erent targets for each of the components. As such, the
question of the chromatic number of the entire family of 2�edge-coloured cubic graphs
remains open. Obviously, this number is at least 8, but it is unknown if it is equal to
the chromatic number for the family of connected 2�edge-coloured cubic graphs. It is
also an open question whether the bound of 11 for the family of connected cubic graphs
can be improved. If this number can be improved, it may be there exists a 2�edge-
coloured graph on fewer than 11 vertices to which each 2�edge-coloured cubic graph
admits a homomorphism. As mentioned previously, when considering families of 2�edge-
coloured graphs with bounded maximum degree, the technique applied in Theorem 5.9
can be useful in constructing colourings. For example for the family of connected 2�edge-
coloured graphs with maximum degree at most 4, a target graph with Property P3,1 may
be of use. The Tromp construction (see [37]) applied the target graph used in Theorem
5.2 yields a 2�edge-coloured graph with Property P3,1. It is possible this graph may be a
universal target for the family of connected 2�edge-coloured graphs that have maximum
degree 4, but are not 4�regular.

In our study of simple colourings of 2�edge-coloured graphs, the families we considered
are the same families considered by Smoĺıková [49] in her Ph.D. thesis. In [2] Alon and
Marshall note, when referring to the similarity of their results on k�edge-coloured graphs
to those of Raspaud and Sopena on oriented graphs, though similar methods were utilised
they see no way to deduce their set of results for k�edge-coloured graphs from the results
on oriented graphs and vice versa. Here we make the same observation for the results of
Smoĺıková [49]. In [42], Nešetřil and Raspaud unify the results of Alon and Marshall, and
Raspaud and Sopena, by finding a similar result for (j, k)�mixed graphs. It is possible a
similar generalisation exists when considering simple colourings of (j, k)�mixed graphs.
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Chapter 6
Incidence Colourings and Oriented In-
cidence Colourings

Incidence colouring arose in 1993 when Brualdi and Massey first defined the incidence
chromatic number of a graph (then called the incidence colouring number) [9]. In this
paper they gave upper and lower bounds for the incidence chromatic number based on
maximum degree. These authors used their results as a method to improve a bound
for the strong chromatic index of bipartite graphs. Since then, bounds for the incidence
chromatic number have been investigated for a variety of families of graphs, including
planar graphs, k�trees, k�regular graphs, toroidal grids and k�degenerate graphs ([15],
[55], [54], [57]). In this chapter we find a new characterisation of the incidence chromatic
number using systems of distinct representatives and also introduce a directed version of
this parameter.

6.1 Introduction and Preliminaries

Definition 6.1. Let G be a simple undirected graph. For every u 2 V (G) and e = uv 2
E(G) we call the pair (u, e) = (u, uv) an incidence. Let IG denote the set of incidences of
G. A pair of distinct incidences (v, e) and (w, f) are adjacent if v = w, e = f , vw = e,
or vw = f . (See Figure 6.1).

Definition 6.2. An incidence colouring of G using k colours is a mapping, c : IG !
{1, 2, 3, . . . , k} such that for adjacent incidences (v, e), (w, f) 2 IG, c((v, e)) 6= c((w, f)).
The incidence chromatic number of G, denoted �i(G), is the least integer k such that
G has an incidence colouring using k colours. For a family of graphs, F , the incidence
chromatic number of F , denoted �i(F) is the least k such that for all F 2 F , �i(F )  k.

In describing explicit incidence colourings we will drop the extra pair of parentheses.
That is, we denote c((v, e)) as c(v, e).

In their introduction to incidence colouring, Brualdi and Massey make the following
contributions.

Proposition 6.1 (Brualdi and Massey [9]). Let G be a simple graph.

• �i(G)  |V (G)|.

• If G is a complete graph, then �i(G) = |V (G)|.

• If G is a tree, then �i(G)  �(G) + 1.

• If G is a path, then �i(G)  3.

• If G is a cycle, then �i(G)  4.



79

� �

�

�

�

�

Figure 6.1: Incidences defined to be adjacent.

Based on their initial observations, Brualdi and Massey conjectured that for any graph,
G, �i(G)  �(G) + 2. This was shown to be false by Guiduli [24] by considering the
family of Paley graphs. Guiduli gives the following upper bound.

Proposition 6.2 (Guiduli [24]). If G is graph, then �i(G)  �(G) + 20 log�(G) + 84.

As with other colouring parameters, homomorphism is useful in establishing upper
bounds. For incidence colourings, however, we require injective homomorphisms.

Definition 6.3. Let G and H be graphs. We say G admits an injective homomorphism
to H if there exists a homomorphism � : G ! H such that for all u 2 V (G) and every
pair of edges ux, uy 2 E(G), �(x) 6= �(y).

Theorem 6.3. If G and H are simple graphs such that G admits an injective homomor-
phism to H, then �i(G)  �i(H).

Proof. Let G and H be simple graphs such that � : G ! H is an injective homomorphism.
Let c be an incidence colouring of H using k colours. Consider the mapping c0 : IG !
{1, 2, 3, . . . , k} given by c0(u, uv) = c(�(u),�(u)�(v)). Consider a pair of edges uv, vw 2
E(G). Since � is injective, we note �(u) 6= �(w). If c0 is not an incidence colouring, then
one of the following must be true.

• c0(u, uv) = c0(v, uv): If this is true, then c(�(u),�(u)�(v)) = c(�(v),�(u)�(v)).
However this would contradict that c is an incidence colouring of H.

• c0(u, uv) = c0(v, vw): If this is true, then c(�(u),�(u)�(v)) = c(�(v),�(v)�(w)).
However this would contradict that c is an incidence colouring of H, as since �(u) 6=
�(w) the incidences (�(u),�(u)�(v)) and (�(v),�(v)�(w)) are adjacent in H.

• c0(v, uv) = c0(w, vw): If this is true, then c(�(v),�(u)�(v)) = c(�(w),�(v)�(w)).
However this would contradict that c is an incidence colouring of H, as since �(u) 6=
�(w) the incidences (�(v),�(u)�(v)) and (�(w),�(v)�(w)) are adjacent in H.

Therefore c0 is an incidence colouring of G using no more than �i(H) colours.

6.2 Incidence Chromatic Number as a System of Sets

Let G be simple graph and c be an incidence colouring of G using k colours. For each
vertex u, let

Au = {c(u, e)|(u, e) 2 IG}.
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If c is a surjection, then we observe

[

u2V (G)

Au = {1, 2, 3, . . . , k}.

Observe the following properties of these sets.

Property 6.4. For all e = uv, Au \ Av 6= ;.

Consider the incidence (u, uv). The colour appearing at this incidence must be an
element of Au, and since c is an incidence colouring, this colour cannot appear as an
element of Av.

Property 6.5. For all u 2 V (G) the collection of sets {Au \Av|v 2 N(u)} has a system
of distinct representatives.

For each Au \ Av we select c(u, uv) as the representative element.
Though these sets and their properties arise from a particular incidence colouring of

G, we can use such a system of sets to define incidence colouring.

Theorem 6.6. If A = {Au| u 2 V (G)} is a collection of sets such that

• |Au| = d(u), and

• for all u 2 V (G) the collection of sets Bu = {Au \ Av| v 2 N(u)} has a system of
distinct representatives,

then G has an incidence colouring using exactly
���
S

u2V (G) Au

��� colours.

Proof. Let G be a graph and let A = {Au| u 2 V (G)} be a collection of sets that satisfy
the hypotheses. For every collection of sets Bu = {Au \ Av| v 2 N(u)}, let buv be the
representative of the set Au \Av in the system of distinct representatives of Bu. We claim
a colouring, c, that assigns the colour buv to the incidence (u, uv) is an incidence colouring
of G.

Consider the pair of edges uv, vw 2 E(G). If c is not an incidence colouring then one
of the following must be true.

• buv = bvu: Since buv 2 Au \ Av and bvu 2 Av, it must be buv 6= bvu;

• buv = bvw: Since buv 2 Au \ Av and bvw 2 Av, it must be buv 6= bvw;

• bvu = bvw: Since bvu and bvw are each representatives in a system of distinct repre-
sentatives of the collection of sets Bv it must be bvw 6= bvu.

Therefore c is an incidence colouring of G. Further since for every vertex u, |Au| =
d(u), it must be every element of Au appears as a colour on some incidence (u, e). There-

fore c uses exactly
���
S

u2V (G) Au

��� colours.

Using this theorem we find an alternate characterisation for the incidence chromatic
number of a graph G.

Definition 6.4. Let G be a graph. The incidence chromatic number of G, denoted �i(G),
is the cardinality of the smallest set U such that there exist subsets Au ⇢ U for all
u 2 V (G) so the following properties hold.

• For all u 2 V (G), |Au| = d(u), and

• for all u 2 V (G), the collection of sets {Au \Av} has a system of distinct represen-
tatives.
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Figure 6.2: Oriented incidences defined to be adjacent.

6.3 Oriented Incidence Colouring

We now consider adapting the spirit of incidence colouring to directed graphs.

Definition 6.5. For a digraph, G, we define incidences of two types:

• an ordered pair (u, uv), where uv 2 E(G); and

• an ordered pair (xy, y), where xy 2 E(G).

Let IG denote the set of incidences of G, a digraph. Consider the incidences (u, uv), (uv, v), (x, xy), (xy, y) 2
IG. We define adjacency as follows (see Figure 6.2).

• If v = x, then

– (uv, v) is adjacent to (x, xy),

– (u, uv) is adjacent to (x, xy), and

– (uv, v) is adjacent to (xy, y).

• If uv = xy, then (u, uv) is adjacent to (xy, y).

Definition 6.6. An oriented incidence colouring of G assigns to each incidence of G
a colour such that adjacent incidences receive di↵erent colours. That is, an oriented
incidence colouring of G with k colours is a function c: IG ! {1, 2, . . . , k} such that if
↵, � 2 IG are adjacent incidences, then c(↵) 6= c(�).

As with incidence colouring, in describing explicit oriented incidence colourings we
will drop the extra pair of parentheses. That is, we denote c((x, xy)) as c(x, xy).

Definition 6.7. For a digraph G we define the oriented incidence chromatic number to
be the least k such that G has an oriented incidence colouring using k colours. We denote
this value as �!�i(G). If F is a family of digraphs we define �!�i(F) to be the least k such
that for all F 2 F , �!�i(F )  k.

Figures 6.3, 6.4, 6.5, and6.6 give examples of oriented incidence colourings of some
digraphs with few vertices. Notice that in Figure 6.3, we see a pair of incidences at the
same vertex receiving the same colour.

In this section our main goal is to study the relationship between oriented incidence
colouring and digraph homomorphism. Using this relationship we find a connection be-
tween the oriented incidence chromatic number of a digraph and the chromatic number
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Figure 6.3: An oriented incidence 3�colouring of the transitive triple.

3 1 2 3

1

2

Figure 6.4: An oriented incidence 3�colouring of the directed cycle on 3 vertices

of its underlying simple graph. Subsequently, we find upper and lower bounds for the
oriented chromatic number of complete symmetric digraphs.

The study of 2�dipath colourings of oriented graphs in the thesis of Sherk [58] contains
a result that provides an upper bound on the oriented chromatic number as a function of
the 2�dipath chromatic number (see Chapter 3). We consider the possibility of a result
relating the oriented chromatic number and the oriented incidence chromatic number.
This idea is explored in Section 6.3.5.

We begin by finding the oriented incidence chromatic number of the family of orienta-
tions of stars. By Figure 6.5 we see at least 3 colours are required to colour every oriented
star. We show that 3 colours always su�ce.

Proposition 6.7. If G is an orientation of a star, then �!�i(G)  3.

Proof. Let Sk be an oriented star on k + 1 vertices. Let u be the centre vertex of Sk,
A be the set of out-neighbours of u and B be the set of in-neighbours of u. Consider a
function, c : ISk

! {1, 2, 3} defined as follows. For all a 2 A and all b 2 B let

• c(u, ua) = 3,

• c(ua, a) = 1,

1 2 3 1

Figure 6.5: An oriented incidence 3�colouring of the directed path on 3 vertices
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Figure 6.6: An oriented incidence 4�colouring of the 2�cycle

• c(bu, u) = 2, and

• c(b, bu) = 1.

It is easy to observe that c is an oriented incidence colouring of Sk.

We begin our study of the oriented incidence chromatic number by relating the oriented
incidence chromatic number of an oriented graph to the incidence chromatic number of the
underlying simple graph. To do so, we observe that the set of incidences of an oriented
graph is exactly equal to the set of incidences of the underlying graph, as defined in
Definition 6.5, and that any incidences adjacent in the oriented sense are also adjacent in
the undirected sense. From this it follows directly that:

Proposition 6.8. If G is an oriented graph, then �i(U(G)) � �!�i(G).

By Theorem 6.1, we see that if T is a tournament on k vertices, then �!�i(T )  k. We
improve this bound in Section 6.3.4 by observing tournaments are subgraphs of symmetric
complete graphs.

6.3.1 A Homomorphism Model for Oriented Incidence Colour-
ing

Consider a homomorphism that maps an orientation of a star to P2. We can obtain
the oriented incidence colouring of Sk exhibited in Proposition 6.7 by lifting back the
oriented incidence colouring of P2 given in Figure 6.5 to the incidences of Sk. This idea
leads us to the following general result relating oriented incidence colouring and digraph
homomorphism.

Theorem 6.9. If G and H are digraphs such that G ! H, then �!�i(G)  �!�i(H).

Proof. Let G and H be digraphs, let f be an oriented incidence colouring of H using
�!�i(H) colours, and let � be a homomorphism from G to H. Construct c, an oriented
incidence colouring of G, as follows. For all uv 2 E(G):

• let c(u, uv) = f (�(u),�(u)�(v)) and,

• let c(uv, v) = f (�(u)�(v),�(v)).

If c is not an oriented incidence colouring of G, then one of the following must occur:
Case I : There exist x, y 2 V (G) and xy 2 E(G) such that c(x, xy) = c(xy, y). However

this would imply f(�(x),�(x)�(y)) = f(�(x)�(y),�(y)), a contradiction as f is an oriented
incidence colouring of H.
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Figure 6.7: An oriented incidence 4�colouring of the directed cycle on 5 vertices

Case II : There exist x, y, z 2 V (G) and xy, yz 2 E(G) such that c(y, yz) = c(xy, y).
However this would imply f(�(y),�(y)�(z)) = f(�(x)�(y),�(y)), a contradiction.

Case III : There exist x, y, z 2 V (G) and xy, yz 2 E(G) such that c(x, xy) = c(y, yz).
However this would imply f(�(x),�(x)�(y)) = f(�(y),�(y)�(z)), a contradiction.

Case IV : There exist w, x, y 2 V (G) and xy, wx 2 E(G) such that c(xy, y) = c(wx, x).
However this would imply f(�(x)�(y),�(y)) = f((�(w)�(x),�(x)), a contradiction.

Therefore c is an oriented incidence colouring of G using at most �!�i(H) colours.

Corollary 6.10. If G is an oriented graph, then �!�i(G)  �o(G).

Proof. If G is an oriented graph such that �o(G) = m, then there exists T , a tournament
on m vertices such that G ! T . By Proposition 6.8 and Theorem 6.1 �!�i(T )  m. And
so by Theorem 6.9, �!�i(G)  m.

Corollary 6.11. Let G be an oriented graph.

• If U(G) is a path, then �!�i(G)  3.

• If U(G) is a tree, then �!�i(G)  3.

• If U(G) is a cycle, then �!�i(G)  4.

• If U(G) is a complete graph, then �!�i(G)  |V (G)|.

All of these results follow directly from bounds for the oriented chromatic number for
these families of oriented graphs. The only case that requires further comment is the case
where G is a directed 5�cycle. By inspection we can see only 4 colours are required for
an oriented incidence colouring (see Figure 6.7), even though 5 colours are required for
an oriented colouring.

Corollary 6.12. If F is a family of oriented graphs with bounded oriented chromatic
number, then F also has bounded oriented incidence chromatic number.

Theorem 6.9 provides a direct link between the oriented incidence chromatic number
of an oriented graph and the oriented chromatic number of the same oriented graph.
However, by considering the family of bipartite graphs, we are led to a relationship between
the oriented incidence chromatic number of an oriented graph and the chromatic number
of its underlying simple graph.
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n 1 2 3 4 5 6 7
�!�i(

�!
Kn) 0 4 4 5 5 6 6

Table 6.1: The oriented incidence chromatic numbers of
�!
Kn for 1  n  7.

Proposition 6.13. If B is an oriented bipartite graph, then �!�i(B)  4.

Proof. Let B = [X, Y ] be an oriented bipartite graph. Partition the arcs into two sets,
those that have their head in X and those that have their head in Y . Denote by xy an
arc that has its head in Y and by y0x0 (x, y, x0, y0 2 V (B)) an arc that has its head in X.
Consider a function c : IB ! {1, 2, 3, 4} such that

• c(x, xy) = 1,

• c(xy, y) = 2,

• c(y0x0, x0) = 3, and

• c(y0, y0x0) = 4.

It is easily observed that c is an oriented incidence colouring of B.

The technique applied here suggests a method for constructing oriented incidence
colouring using a proper vertex colouring of the underlying graph. Observe that if
�(U(G))  k, then G admits a homomorphism to the digraph formed from Kk by replac-
ing each edge with a pair of oppositely oriented arcs. We call this graph the symmetric
tournament on k vertices and denote it by

�!
K k. In Proposition 6.13 we are noticing every

orientation of a bipartite graph admits a homomorphism to
�!
K 2

Theorem 6.14. If G is digraph, then �!�i(G)  �!�i(
�!
K�(U(G))).

Proof. Let G be a digraph and assume �(U(G))  k. Since G admits a homomorphism

to
�!
K k, by Theorem 6.9 it must be that �!�i(G)  �!�i(

�!
Kk).

Given that homomorphism to the symmetric complete graph is useful in finding an
upper bound for the oriented incidence chromatic number, we consider the problem of
finding the oriented incidence chromatic number of a symmetric complete graph.

Table 6.1 gives the oriented incidence chromatic number of
�!
Kk, for 0  k  7. These

values were found by computer search. Figures 6.8 and 6.9 give oriented incidence colour-
ings of

�!
K3 and

�!
K6, respectively, using the fewest possible number of colours. Though this

table tempts us into making a conjecture about the oriented incidence chromatic number
of a symmetric complete digraphs, we resist this temptation, as later we show this con-
jecture would be false. After developing some further tools in Section 6.3.2 and Section
6.3.3, we return to the question of the oriented incidence chromatic number of symmetric
complete digraphs.

6.3.2 Constructions and Decompositions

Here we examine oriented incidence colourings of digraph decompositions and products.
We begin with an upper bound for digraphs that can be realised as the union of digraphs.

Proposition 6.15. If G is a digraph such that G = G1 [G2 where V (G1) \ V (G2) = ;,
then

�!�i(G) = max{�!�i(G1),
�!�i(G2)}.
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Figure 6.8: An oriented incidence 4�colouring of the symmetric complete graph on 3
vertices,

�!
K3.
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Figure 6.9: An oriented incidence 6�colouring of the symmetric complete graph on 6
vertices,

�!
K6.
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Proposition 6.16. If G is a digraph such that G = G1 [G2 where V (G1) ✓ V (G2) and
E(G1) \ E(G2) = ;, then

�!�i(G)  �!�i(G1) +
�!�i(G2).

Proof. Let
�1 : V (G1) ! {1, 2, 3, . . . ,�!�i(G1)}

and let
�2 : V (G2) ! {�1,�2,�3, . . . ,��!�i(G2)}

be oriented incidence colourings of G1 and G2, respectively. Define � as follows.

• �(u, uv) = �`(u, uv), and �(uv, v) = �`(uv, v) for all uv 2 E(G`) (` 2 {1, 2}).

We show by contradiction that � is an oriented incidence colouring of G. If � is not
an oriented incidence colouring of G, then one of the following must be true.

Case I : There exist x, y 2 V (G) and xy 2 E`(G) (` 2 {1, 2}) such that c(x, xy) =
c(xy, y). However this would imply �`(x, xy) = �`(xy, y). This contradicts that �` is an
oriented incidence colouring of G`.

The remainder of the cases follow similarly to the proof of Theorem 6.9.

Recall the arboricity of a graph, G, is the smallest number of forests needed to cover
E(G). The in-star arboricity (respectively, out-star) of a digraph, G, is the smallest
number of in-stars (respectively, out-stars) needed to cover E(G).

Corollary 6.17. If G is a directed graph, then �!�i(G)  3 · arb(U(G)), where arb(U(G))
denotes the arboricity of U(G).

Proof. Consider a decomposition of U(G) into forests. When oriented, each of these
forests requires at most 3 colours, regardless of the orientation of G. Colouring each
forest with a unique set of 3 colours yields an oriented incidence colouring using at most
3 · arb(U(G)) colours.

Corollary 6.18. If G is a digraph, then �!�i(G)  2 · min{arbin(G), arbout(G)}, where
arbin(H) and arbout(H) denote the in-star and out-star arboricity of G, respectively.

We consider now a graph operation that arises in the study of oriented colourings and
oriented cliques (for an example see [47]). Let G and H be digraphs on disjoint vertex
sets. We define the digraph G ?H as follows.

• V (G ?H) = V (G) [ V (H) [ {z}, and

• E(G ?H) = E(G) [ E(H) [ {uz|u 2 V (G)} [ {zv|v 2 V (H)}.

Theorem 6.19. Let G and H be digraphs and let k = max{�!�i(G),�!�i(H)}. Then k 
�!�i(G ?H)  k + 2.

Proof. Let cG be an oriented incidence colouring of G using the colours {1, 2, 3, . . . , k}
and let cH be an oriented incidence colouring of H using the colours

{3, 4, . . . , k + 1, k + 2}.

Construct an oriented incidence colouring, c, of G ?H, using the colours {1, 2, . . . , k+
2}, as follows.

• c(u, uv) = cG(u, uv) and c(uv, v) = cG(uv, v), for all uv 2 E(G),
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• c(u, uv) = cH(u, uv) and c(uv, v) = cH(uv, v), for all uv 2 E(H),

• c(u, uz) = k + 1 and c(uz, z) = k + 2, for all u 2 V (G), and

• c(z, zv) = 1 and c(zv, v) = 2, for all v 2 V (H).

The upper bound in Theorem 6.19 is not always achieved with equality. The oriented
graph in Figure 6.11 is P2 ? P2. The directed path on 3 vertices can be coloured using
3 colours, but P2 ? P2 requires only 4 colours, not the 5 given by the upper bound in
Theorem 6.19.

Finally we consider the oriented incidence chromatic number of the join of digraphs.
Let G and H be digraphs. The join of G and H, denoted G+H, is the digraph with

• V (G+H) = V (G) [ V (H), and

• E(G + H) = E(G) [ E(H) [ {uGvH |uG 2 V (G), vH 2 V (H)} [ {uHvG|uH 2
V (H), vG 2 V (G)}.

Informally, the join of digraphs is the disjoint union of the digraphs together with
all possible arcs between vertices of di↵erent digraphs. We give a pair of bounds for the
oriented incidence chromatic number of the join of a pair of digraphs.

Theorem 6.20. If G and H are digraphs, then

�!�i(G+H)  max {�!�i(G),�!�i(H)}+ 4.

This follows directly from Theorem 6.14, and Propositions 6.13, 6.15 and 6.16.

6.3.3 Oriented Incidence Colourings as a System of Sets

Let c be an oriented incidence colouring of a digraph G. For a vertex u, let

Au =
[

uv2E(G)

c(u, uv)

and let
Bu =

[

vu2E(G)

c(vu, u).

Informally Au is the set of colours assigned to incidences of the type (u, uv) and Bu is the
set of colours assigned to incidences of the type (vu, u).

Property 6.21. For all vertices v, Av \Bv = ;.

No colour can appear on an incidence of the form (uv, v) and one of the form (v, vw).

Property 6.22. For all vertices v that have an out-neighbour, Av is non-empty.

Property 6.23. For all vertices v that have an in-neighbour, Bv is non-empty.

Property 6.24. For all arcs uv, Au \ Av 6= ; and Bv \Bu 6= ;.

For every arc uv it must be c(u, uv) 2 Au \ Av.

Property 6.25. For all arcs uv, if Au \ Av = Bv \Bu, then |Au \ Av| 6= 1.
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If Au \ Av = Bv \Bu and |Au \ Av| = 1, then it would imply c(u, uv) = c(uv, v).
As with our new characterisation for incidence colouring using systems of distinct

representatives, existence of sets satisfying these properties is enough to construct an
oriented incidence colouring.

Theorem 6.26. Let G be a digraph with n vertices. The oriented incidence chromatic
number of G is the least k such that there exist sets

Au1 , Au2 , . . . , Aun ✓ {1, 2, 3, . . . , k}

and sets
Bu1 , Bu2 , . . . , Bun ✓ {1, 2, 3, . . . , k}

such that the following hold.

1. For all vertices v, Av \ Bv = ;.

2. For all vertices v that have an out-neighbour, Av is non-empty.

3. For all vertices v that have an in-neighbour, Bv is non-empty.

4. For all arcs uv, Au \ Av 6= ; and Bv \Bu 6= ;.

5. For all arcs uv, if Au \ Av = Bv \Bu, then |Au \ Av| 6= 1.

Proof. Assume there exist sets

Au1 , Au2 , . . . , Aun ✓ {1, 2, 3, . . . , k}

and sets
Bu1 , Bu2 , . . . , Bun ✓ {1, 2, 3, . . . , k}

that satisfy the hypotheses. Construct an oriented incidence colouring c by assigning to
each incidence (u, uv) a colour from the set Au \Av and to each incidence (uv, v) a colour
from the set Bv \Bu such that c(u, uv) 6= c(uv, v).

Corollary 6.27. If c is an oriented incidence colouring of
�!
Kn, then the collection of sets

Au1 , Au2 , . . . , Aun form an antichain in the Boolean lattice of subsets of {1, 2, 3, . . . ,�!�i(
�!
Kn)}.

Corollary 6.28. If c is an oriented incidence colouring of
�!
Kn, then the collection of sets

Bu1 , Bu2 , . . . , Bun form an antichain in the Boolean lattice of subsets of {1, 2, 3, . . . ,�!�i(
�!
Kn)}.

We use these results in Section 6.3.4 to find both upper and lower bounds for the
oriented incidence chromatic number of a symmetric complete digraph.

6.3.4 Symmetric Complete Digraphs

To find a lower bound for �!�i(
�!
Kn) we first observe that for every pair of sets Au, Av (as

defined in Section 6.3.3), it must be Au 6= Av.

Theorem 6.29. The complete symmetric digraph on n vertices has oriented incidence
chromatic number at least dlog2(n)e.

Proof. Let c be an oriented incidence colouring using k colours and let Avi (1  i  n)
be the set of colours appearing on an incidence of the form (vi, vivj). By Theorem 6.26,
for every 1  i < j  n it must be Avi 6= Avj . Since each Avj ✓ {1, 2, 3, . . . k}, it must be
k � log2(n).
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To find an upper bound on the oriented incidence chromatic number of a symmetric
complete digraph we first recall the classic result of Sperner.

Theorem 6.30 (Sperner’s Theorem). The size of a largest antichain in the lattice of
subsets of {1, 2, 3, . . . , k} is ✓

k

bk/2c

◆
.

Theorem 6.31. If k is the smallest integer such that
�

k
bk/2c

�
� n, then

k  �!�i(
�!
Kn)  2k.

Proof. Let c be an oriented incidence colouring of
�!
Kn using �!�i(

�!
Kn) colours. Consider

the collection of sets Au1 , Au2 , . . . , Aun , where Aui is the set of colours that appear on inci-
dences of the type (ui, uiuj). By Corollary 6.27, this collection of sets forms an antichain

of length n. This implies directly that �!�i(
�!
Kn) � k.

Let k be the smallest integer such that
�

k
bk/2c

�
� n. Let

Au1 , Au2 , . . . , Aun ⇢ {1, 2, 3, . . . k}

be pairwise distinct sets of size
�

k
bk/2c

�
and let

Bu1 , Bu2 , . . . , Bun ⇢ {10, 20, 30, . . . , k0}

be pairwise distinct sets of size
�

k
bk/2c

�
. By Sperner’s Theorem, these sets satisfy the

hypothesis of Theorem 6.26 and so there exists an oriented incidence colouring of
�!
Kn

using 2k colours.

Using Theorem 6.31 we find an upper bound for �!�i(
�!
Kn) as a function of log2(n). To

do so we require the following observations.

Observation 6.32. For all n � 9,
✓

dc · log2(n)e
d(c/2) · log2(n))e

◆
� n,

where c = 1 + logn(log2(n)).

Observation 6.33.
lim
n!1

logn(log2(n)) = 0.

Combining these observations with the statement of Theorem 6.31 gives the following.

Lemma 6.34. For all n � 2,

log2(n)  �!�i(
�!
Kn)  (2 + o(1)) log2(n).

We use this result to find the following upper bound for �!�i(
�!
Kn), where n is a central

binomial coe�cient.

Theorem 6.35. For all n =
�
2k
k

�
,

�!�i(
�!
Kn)  (1 + o(1)) log2(n).
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Proof. Let n =
�
2k
k

�
. We show the existence of an oriented incidence colouring of

�!
Kn,

with vertex set {v1, v2, . . . , vn}, using no more than (1 + o(1)) log2(n) colours.
Let A1, A2, . . . , An be a collection of subsets of {1, 2, 3, . . . , 2k} that satisfy the follow-

ing properties.

• For all i 6= j (1  i  j  n), Ai 6⇢ Aj and Ai 6⇢ Aj, and

• for all i (1  i  n), |Ai| = k.

For all i (1  i  n) let Bi = Ai. Construct a colouring, c, as follows. For all
i, j 2 {1, 2, 3, . . . , n} such that |Ai \Aj| > 1, assign to incidence (ui, uiuj) any element of
Ai\Aj and to incidence (uj, ujui) any element of Bj\Bi such that c(ui, uiuj) 6= c(uj, ujui).
Observe that by Theorem 6.3.3 the colouring constructed thus far does not assign identical
colours to any adjacent incidences. At this point we observe for every set Ai that there
exist k2 sets Aj such that |Ai \ Aj| = 1. And so the symmetric graph, S, induced by
those arcs xy where the incidences (x, xy), (xy, y), (y, yx) and (yx, x) remain uncoloured
is a regular symmetric digraph where each vertex has in-degree k2 and out-degree k2. The
simple graph underlying S is k2�colourable and so, by Theorem 6.9 and Lemma 6.34,

�!�i(S)  �!�i(
�!
K k2)  (2 + o(1)) log2(k

2) = (4 + o(1)) log2(k).

We can complete c to be an oriented incidence colouring of
�!
Kn using at most an

additional (4 + o(1)) log2(k) colours. The total number of colours used by c is at most
2k + (4 + o(1)) log2(k). Since log2(n)  2k and

lim
n!1

(4 + o(1)) log2(k)

log2(n)
= 0,

we observe:

2k + (4 + o(1)) log2(k)  (1 + o(1)) log2(n).

Therefore,
�!�i(

�!
Kn)  (1 + o(1)) log2(n).

To extend this result for values of n that are not central binomial coe�cients we require
the following observations.

Observation 6.36. For all k > 1,

log

✓✓
2(k + 1)

k + 1

◆◆
� log

✓✓
2k

k

◆◆
 2.

Observation 6.37. For all n � 2, where
�
2(k�1)
k�1

�
< n <

�
2k
k

�

log(n) + 2 > log

✓✓
2k

k

◆◆
.

Combining these observations with Theorem 6.29 gives the following statements.

Theorem 6.38. For all n � 2

log2(n)  �!�i(
�!
Kn)  (1 + o(1)) log2(n) + 2.
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Corollary 6.39. If G is a digraph, then �!�i(G)  (1 + o(1)) log2(�(G)) + 2.

Corollary 6.40. If T is a tournament on n vertices, then

log(n)  �!�i(T )  (1 + o(1)) log2(n) + 2.

Corollary 6.41. If T is a transitive tournament on n vertices, then

1

2
log2(n)  �!�i(T )  (1 + o(1)) log2(n) + 2.

The lower bound here comes by observing that the arcs of any symmetric complete
digraph on n vertices may be partitioned in a pair of transitive tournaments on n vertices.

We note the upper bounds given in Theorem 6.38 are not the best possible. Continued
work on this bound by Pascal Ochem in [16] gives the following bounds.

Theorem 6.42. If n � 8, then

log2(n) +
1
2 log2(log2(n)) 

�!�i(
�!
Kn)  log2(n) +

3
2 log2(log2(n)) + 2.

6.3.5 Graphs with small Oriented Incidence Chromatic Number

In her Masters thesis [58] (more recently published as [34]), Sherk explores the relationship
between oriented graph homomorphism and 2�dipath colouring. One of the main results
of this work is to define a family of oriented graphs, Gk (k > 1), with the property that
an oriented graph H has a 2�dipath colouring using k colours if and only if H admits a
homomorphism to Gk. See Chapter 3 for a more thorough discussion of this result. Here
we consider the possibility of a similarly-styled result for the oriented incidence chromatic
number. For the case �!�i(G) = 2, a fairly straightforward characterisation exists.

Theorem 6.43. Let G be a digraph with at least one arc, then �!�i(G) = 2 if and only if

G admits a homomorphism to
�!
P1.

To find a characterisation for those digraphs for which 3 colours su�ce, consider the
oriented graphs given in Figure 6.10. Observe that H1 ! H2.

Theorem 6.44. For any digraph, G, �!�i(G)  3 if and only if G admits a homomorphism
to H2.

Proof. Let G be a digraph. If G admits a homomorphism to H2, then by Theorem 6.9 we
have directly �!�i(G)  3, as H2 is a subgraph of H1 and �!�i(H1) = 3. To show �!�i(G)  3
implies homomorphism to H2, we show �!�i(G)  3 implies homomorphism to H1.

Let g be an oriented incidence colouring of G that uses at most 3 colours. Construct
the mapping f : V (G) ! V (H1) as follows.

• For all s 2 V (G) such that d�(s) = 0, let f(s) = u.

• For all t 2 V (G) such that d+(t) = 0, let f(t) = v.

• For all x 2 V (G) such that there exist wx, xy 2 E(G), let f(x) be the unique vertex
h 2 H1 \ {u, v} such that for all h1h 2 E(H1), c(h1h, h) = g(wx, x) and for all
hh2 2 E(H1); let c(h, hh2) = g(x, xy).

It can be checked f : G ! H1. Since H1 ! H2 we have G ! H2.
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Figure 6.10: The oriented graphs, H1 and H2, used in the proof of Theorem 6.44.
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x1

x2

x3

Figure 6.11: An outerplanar graph that requires 4 colours in an oriented incidence colour-
ing.

Corollary 6.45. If G is an oriented graph with �!�i(G)  3, then �o(G)  5.

We note here this bound is tight – H1 has oriented incidence chromatic number 3 and
oriented chromatic number 5.

These results allow us to find the oriented incidence chromatic number of oriented
outerplanar graphs.

Corollary 6.46. The family of oriented outerplanar graphs has oriented incidence chro-
matic number 4.

Proof. Consider the oriented graph, G, shown in Figure 6.11. It is outerplanar and so its
underlying simple graph has chromatic number at most 3. By Theorem 6.14 and Table
6.1, �!�i(G)  4.

To show �!�i(G) = 4 we show G does not admit a homomorphism to H2. Consider
the vertices labelled x1, x2, x3 in Figure 6.11. Each of these vertices has positive in- and
out-degree, and so if G admits a homomorphism to H2, then these three vertices must
map to the directed 3�cycle. However these vertices form a transitive triple. Therefore G
does not admit a homomorphism to H2. This gives that the family of oriented outerplanar
graphs has oriented incidence chromatic number at least 4.

Given there is an oriented graph that is a universal target for all digraphs that have
oriented incidence chromatic number at most 3 it is natural to wonder if there is an
oriented graph that is a universal target for all digraphs that have oriented chromatic
number at most k, for each k. This turns out not to be the case.

Theorem 6.47. For all k > 3, there is no finite oriented graph G such that every oriented
graph with oriented incidence chromatic number no more than k admits a homomorphism
to G.

Proof. Consider the family of oriented bipartite graphs. Every oriented bipartite graph
has an oriented incidence colouring using at most 4 colours, but the oriented chromatic
number of the family of oriented bipartite graphs is unbounded [50]. This implies there
is no finite oriented graph that is a universal target for the family of oriented bipartite
graphs.

Definition 6.8. Let G be a digraph. Define the directed line graph of G, denoted
�!
L (G),

to be the digraph with the following vertex and arc sets.

• V (
�!
L (G)) = {xuv|uv 2 E(G)}, and

• E(
�!
L (G)) = {xuvxvw|uv, vw 2 E(G)}.
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Informally, the directed line graph of a digraph G has as its vertex set the arc set of
G and has an arc e1e2 whenever the head of e1 is incident with the tail of e2. We note
the directed line graph has been used in the study of the oriented chromatic index [43].

Using the directed line graph we build a homomorphism model of oriented incidence
colouring. To do this we first define a digraph that will be the target for a homomorphism
from a directed line graph. We call this graph �k (k > 1), and define it as follows.

• V (�k) = {(a, b)|a, b 2 {1, 2, . . . k}, a 6= b}, and

• E(�k) = {((a, b)(c, d)) |a 6= c, b 6= c, d}.

Theorem 6.48. �!�i(G)  k if and only if
�!
L (G) ! �k.

Proof. Let G be a digraph and assume�!�i(G)  k. Let c be an oriented incidence colouring

of G using at most k colours. Using c we construct a homomorphism
�!
L (G) ! �k. We

first define a map between the vertices of
�!
L (G) and the vertices of �k and then show it

is a homomorphism. Let � : V (
�!
L (G)) ! V (�k) be defined by

• �(xuv) = (c(u, uv), c(uv, v)).

Since c uses at most k colours and is an oriented incidence colouring, we see (c(u, uv), c(uv, v)) 2
V (�k). To show � is a homomorphism consider the image of an arc xuvxvw under �.

�(xuv)�(xvw) = ((c(u, uv), c(uv, v)), (c(v, vw), c(vw,w)))

Since c is an oriented incidence colouring, it must be c(u, uv) 6= c(v, vw), c(uv, v) 6=
c(v, vw), and c(uv, v) 6= c(vw,w). Therefore

((c(u, uv), c(uv, v)), c(v, vw), c(vw,w))

is an arc of �k and so � is a homomorphism. Therefore if �!�i(G)  k, then
�!
L (G) ! �k.

To prove the opposite direction, let � :
�!
L (G) ! �k. Using this homomorphism

construct an oriented incidence colouring as follows.

• If �(xuv) = (a, b), then let c(u, uv) = a and c(uv, v) = b.

If c is not an oriented incidence colouring, then there must be a pair of adjacent
incidences of G that receive the same colour.

Case I: c(u, uv) = c(uv, v). Assume �(xuv) = (a, b). Since a 6= b, it must be c(u, uv) 6=
c(uv, v).

Case II: c(u, uv) = c(v, vw). Assume �(xuv) = (a, b) and �(xvw) = (c, d). Since � is
a homomorphism, the image of the arc xuvxvw is an arc of �k. Therefore a 6= c and so it
must be c(u, uv) 6= c(v, vw).

Case III: c(uv, v) = c(v, vw). Assume �(xuv) = (a, b) and �(xvw) = (c, d). Since � is
a homomorphism, the image of the arc xuvxvw is an arc of �k. Therefore b 6= c and so it
must be c(uv, v) 6= c(v, vw).

Case IV: c(uv, v) = c(vw,w). Assume �(xuv) = (a, b) and �(xvw) = (c, d). Since � is
a homomorphism, the image of the arc xuvxvw is an arc of �k. Therefore b 6= d and so it
must be c(uv, v) 6= c(vw,w).

Since no pair of adjacent incidences receive the same colour, c is an oriented incidence
colouring of G using at most k colours.

For the case k = 3, we observe �k is the disjoint union of two directed 3�cycles.

Proposition 6.49. If G is a digraph, then �!�i(G)  3 if and only if
�!
L (G) ! C3, where

C3 is the directed cycle on 3 vertices.
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6.4 Conclusions and Future Directions

In the study of oriented incidence colourings of digraphs, many open problems and areas
of enquiry remain. One open area is the construction of universal targets for digraphs
with given oriented incidence chromatic number. For digraphs with oriented incidence
chromatic number 3 there is a complete characterisation. Digraphs with oriented incidence
chromatic number at most 3 are necessarily oriented graphs, and the universal target for
this family is an oriented graph. For digraphs with oriented incidence chromatic number
at least 4, observe that such digraphs may contain 2�cycles. And so any universal target
for this family of digraphs necessarily contains 2�cycles.

The definition of oriented colouring enforces that if there is an arc with its tail coloured
i and its head coloured j, then there is no arc with its tail coloured j and its head
coloured i. To enforce this constraint with respect to the colours of the incidences would
not drastically change the analysis given above. Undoubtedly this extra constraint would
increase the oriented incidence chromatic number, but the methods used above may still
be utilized. The homomorphism model utilizing the chromatic number would still exist,
however the logarithmic upper bound for a colouring of a symmetric complete graph may
not hold.
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Glossary of Colouring Parameters

�j,k (j, k)�chromatic number 9
�o oriented chromatic number 12
�2 chromatic number (of a 2�edge coloured graph) 11
�k chromatic number (of a k�edge coloured graph) 11
�2d 2�dipath chromatic number 34
�kd k�dipath chromatic number 34
�s simple chromatic number (of an oriented graph) 46
�2s simple 2�dipath chromatic number 53
�a
2 alternating 2�path chromatic number (or a 2�edge coloured graph) 62

�s
2 simple chromatic number (of a 2�edge coloured graph) 71

�s
k simple chromatic number (of a k�edge coloured graph) 71

�i incidence chromatic number 78
�!�i oriented incidence chromatic number 81
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[40] R. Naserasr, E. Rollová, and E. Sopena. On Homomorphisms of Planar Signed
Graphs to Signed Projective Cubes. In The Seventh European Conference on Com-
binatorics, Graph Theory and Applications, pages 271–276. Springer, 2013.
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