Statistical physics and approximate message passing algorithms for sparse linear estimation problems in signal processing and coding theory

Abstract : This thesis is interested in the application of statistical physics methods and inference to signal processing and coding theory, more precisely, to sparse linear estimation problems. The main tools are essentially the graphical models and the approximate message-passing algorithm together with the cavity method (referred as the state evolution analysis in the signal processing context) for its theoretical analysis. We will also use the replica method of statistical physics of disordered systems which allows to associate to the studied problems a cost function referred as the potential of free entropy in physics. It allows to predict the different phases of typical complexity of the problem as a function of external parameters such as the noise level or the number of measurements one has about the signal: the inference can be typically easy, hard or impossible. We will see that the hard phase corresponds to a regime of coexistence of the actual solution together with another unwanted solution of the message passing equations. In this phase, it represents a metastable state which is not the true equilibrium solution. This phenomenon can be linked to supercooled water blocked in the liquid state below its freezing critical temperature. Thanks to this understanding of blocking phenomenon of the algorithm, we will use a method that allows to overcome the metastability mimicing the strategy adopted by nature itself for supercooled water: the nucleation and spatial coupling. In supercooled water, a weak localized perturbation is enough to create a crystal nucleus that will propagate in all the medium thanks to the physical couplings between closeby atoms. The same process will help the algorithm to find the signal, thanks to the introduction of a nucleus containing local information about the signal. It will then spread as a "reconstruction wave" similar to the crystal in the water. After an introduction to statistical inference and sparse linear estimation, we will introduce the necessary tools. Then we will move to applications of these notions. They will be divided into two parts. The signal processing part will focus essentially on the compressed sensing problem where we seek to infer a sparse signal from a small number of linear projections of it that can be noisy. We will study in details the influence of structured operators instead of purely random ones used originally in compressed sensing. These allow a substantial gain in computational complexity and necessary memory allocation, which are necessary conditions in order to work with very large signals. We will see that the combined use of such operators with spatial coupling allows the implementation of an highly optimized algorithm able to reach near to optimal performances. We will also study the algorithm behavior for reconstruction of approximately sparse signals, a fundamental question for the application of compressed sensing to real life problems. A direct application will be studied via the reconstruction of images measured by fluorescence microscopy. The reconstruction of "natural" images will be considered as well. In coding theory, we will look at the message-passing decoding performances for two distincts real noisy channel models. A first scheme where the signal to infer will be the noise itself will be presented. The second one, the sparse superposition codes for the additive white Gaussian noise channel is the first example of error correction scheme directly interpreted as a structured compressed sensing problem. Here we will apply all the tools developed in this thesis for finally obtaining a very promising decoder that allows to decode at very high transmission rates, very close of the fundamental channel limit.
Complete list of metadatas

Cited literature [154 references]  Display  Hide  Download
Contributor : Jean Barbier <>
Submitted on : Thursday, November 5, 2015 - 9:53:33 AM
Last modification on : Wednesday, May 15, 2019 - 3:41:32 AM
Long-term archiving on: Saturday, February 6, 2016 - 11:11:19 AM


Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License


  • HAL Id : tel-01224747, version 1


Jean Barbier. Statistical physics and approximate message passing algorithms for sparse linear estimation problems in signal processing and coding theory. Information Theory [math.IT]. Université Paris Diderot, 2015. English. ⟨tel-01224747⟩



Record views


Files downloads