K. Cependant, des progrès en termes de sélectivité, de stabilité à long-terme et d'immunité aux variations atmosphériques sont attendus, raison pour laquelle les capteurs d'hydrogène SAW commerciaux n'ont pas encore vu le jour. [BBR09] Stabilité à long-terme

. Grande-sensibilité, Grande étendue de mesure. Réponse instantanée. Basse consommation

. Grande-sélectivité, Grande étendue de mesure. Mesure à distance. Détection multi-gaz

. Grande-limite-de-détection, Source potentielle d'inflammabilité. Consommation d'énergie

F. Figueras, N. Pérez-murano, and . Barniol, Electromechanical model of a resonating nano-cantileverbased sensor for high-resolution and high-sensitivity mass detection, Nanotechnology, vol.12, pp.100-104, 2001.

. [. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells, International Journal of Hydrogen Energy, vol.32, issue.9, pp.1145-1158, 2007.
DOI : 10.1016/j.ijhydene.2007.01.004

I. Asahi, S. Sugimoto, H. Ninomiya, T. Fukuchi, and T. Shiina, Remote sensing of hydrogen gas concentration distribution by Raman Lidar, Proceeding of SPIE, 2012.

J. [. Azzouz, D. Vial, R. Thiébaut, K. Haudebourg, P. Danaie et al., Review of stationary phases for microelectromechanical systems in gas chromatography: feasibility and separations, Analytical and Bioanalytical Chemistry, vol.137, issue.14, pp.406-981, 2014.
DOI : 10.1007/s00216-013-7168-7

. [. Ball, Investigation of gaseous hydrogen leak detection using Raman scattering and laserinduced breakdown spectroscopy, 2005.

M. Ball and M. Weeda, The hydrogen economy???Vision or reality?, International Journal of Hydrogen Energy, vol.40, pp.7903-7919, 2015.
DOI : 10.1016/B978-1-78242-364-5.00011-7

B. [. Baselt, E. Fruhberger, S. Klaassen, C. L. Cemalovic, S. V. Britton-jr et al., Design and performance of a microcantilever-based hydrogen sensor, Sensors and Actuators B: Chemical, vol.88, issue.2, pp.88-120, 2003.
DOI : 10.1016/S0925-4005(02)00315-5

M. Batzill and U. Diebold, The surface and materials science of tin oxide, Progress in Surface Science, vol.79, issue.2-4, pp.47-154, 2005.
DOI : 10.1016/j.progsurf.2005.09.002

J. [. Boon-bretta, P. Bousek, and . Moretto, Reliability of commercially available hydrogen sensors for detection of hydrogen at critical concentrations: Part II ? selected sensor test results, pp.562-571, 2009.

J. [. Boon-brett, G. Bousek, P. Black, P. Moretto, T. Castello et al., Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications, International Journal of Hydrogen Energy, vol.35, issue.1, pp.35-373, 2010.
DOI : 10.1016/j.ijhydene.2009.10.064

. Brand, Liquid-phase chemical sensing using lateral mode resonant cantilevers, Analytical Chemistry, vol.82, pp.7542-7549, 2010.

A. [. Bevenot, C. Trouillet, H. Veillas, M. Gagnaire, and . Clement, Hydrogen leak detection using an optical fibre sensor for aerospace applications, Sensors and Actuators B: Chemical, vol.67, issue.1-2, pp.57-67, 2000.
DOI : 10.1016/S0925-4005(00)00407-X

G. [. Smith, C. F. Binnig, and . Quate, Atomic point???contact imaging, Applied Physics Letters, vol.49, issue.18, pp.49-1166, 1986.
DOI : 10.1063/1.97403

L. [. Bircher, K. Duempelmann, H. P. Renggli, C. Lang, N. Gerber et al., Real-Time Viscosity and Mass Density Sensors Requiring Microliter Sample Volume Based on Nanomechanical Resonators, Analytical Chemistry, vol.85, issue.18, pp.85-8676, 2013.
DOI : 10.1021/ac4014918

. [. Blevins, Formulas for Natural Frequency and Mode Shape, Journal of Applied Mechanics, vol.47, issue.2, 1979.
DOI : 10.1115/1.3153712

L. Boon-brett, G. Black, P. Moretto, and J. Bousek, A comparison of test methods for the measurement of hydrogen sensor response and recovery times, International Journal of Hydrogen Energy, vol.35, issue.14, pp.7652-7663, 2010.
DOI : 10.1016/j.ijhydene.2010.04.139

E. Brauns, E. Morsbach, S. Kunz, M. Bäumer, and W. Lang, A fast and sensitive catalytic gas sensors for hydrogen detection based on stabilized nanoparticles as catalytic layer, Sensors and Actuators B: Chemical, vol.193, pp.895-903, 2014.
DOI : 10.1016/j.snb.2013.11.048

L. Boon-brett, J. Bousek, G. Black, P. Moretto, P. Castello et al., Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications, International Journal of Hydrogen Energy, vol.35, issue.1, pp.35-373, 2010.
DOI : 10.1016/j.ijhydene.2009.10.064

L. Dai, L. Wang, G. Shao, and Y. , Li A novel amperometric hydrogen sensor based on nanostructured ZnO sensing electrode and electrolyte and CaZr 0.9 In 0, pp.173-85, 2012.

J. Dai, M. Yang, Z. Yang, Z. Li, Y. Wang et al., Performance of fiber Bragg grating hydrogen sensor coated with Pt-loaded WO3 coating, Sensors and Actuators B: Chemical, vol.190, pp.190-657, 2014.
DOI : 10.1016/j.snb.2013.08.083

A. [. Amico, E. Palma, and . Verona, Surface acoustic wave hydrogen sensor, Sensors and Actuators, vol.3, pp.31-39, 1982.
DOI : 10.1016/0250-6874(82)80004-8

F. [. Dong, J. F. Bai, D. Li, and . Viehland, Sound-resonance hydrogen sensor, Applied Physics Letters, vol.82, issue.25, pp.4590-4592, 2003.
DOI : 10.1063/1.1586994

F. [. Dong, L. Bai, H. Yan, J. F. Cao, D. Li et al., Vacuum response and gas leak detection in piezoelectrically driven sound-resonance cavity, Applied Physics Letters, vol.84, issue.21, pp.4144-4146, 2004.
DOI : 10.1063/1.1751217

F. [. Dufour, S. M. Lochon, F. Heinrich, D. Josse, and . Rebière, Effect of Coating Viscoelasticity on Quality Factor and Limit of Detection of Microcantilever Chemical Sensors, IEEE Sensors Journal, vol.7, issue.2, pp.230-236, 2007.
DOI : 10.1109/JSEN.2006.888600

URL : https://hal.archives-ouvertes.fr/hal-00203736

R. [. Eichelbaum, J. Borngräber, R. Schröder, P. Lucklum, and . Hauptmann, Interface circuits for quartz-crystal-microbalance sensors, Review of Scientific Instruments, vol.70, issue.5, pp.2537-2545, 1999.
DOI : 10.1063/1.1149788

W. [. Fechete, K. Wlodarski, A. S. Kalantar-zadeh, J. Holland, S. Antoszewski et al., SAW-based gas sensors with rf sputtered InOx and PECVD SiNx films: Response to H2 and O3 gases, Sensors and Actuators B: Chemical, vol.118, issue.1-2, pp.362-367, 2006.
DOI : 10.1016/j.snb.2006.04.082

L. [. Fiocco and . Smullin, Detection of scattering layers in the upper atmosphere by optical radar, Nature, pp.199-1275, 1963.

H. Fukuoka, J. Jung, M. Inoue, H. Fujita, and Y. Kato, Absolute Concentration Measurement for Hydrogen, Energy Procedia, vol.29, pp.283-290, 2012.
DOI : 10.1016/j.egypro.2012.09.034

J. [. Goeders, L. A. Colton, and . Bottomley, Microcantilevers:?? Sensing Chemical Interactions via Mechanical Motion, Chemical Reviews, vol.108, issue.2, pp.522-542, 2008.
DOI : 10.1021/cr0681041

H. Gu, Z. Wang, and Y. Hu, Hydrogen Gas Sensors Based on Semiconductor Oxide Nanostructures, Sensors, vol.12, issue.12, pp.5517-5550, 2012.
DOI : 10.3390/s120505517

T. Garcia and F. L. Degertekin, Micromachined accelerometers with optical interferometric read-out and integrated electrostatic actuation, Journal of Microelectromechanical Systems, vol.17, pp.37-44, 2008.

J. Henriksson, L. G. Villanueva, and J. Brugger, Ultra-low power hydrogen sensing based on a palladium-coated nanomechanical beam resonator, Nanoscale, vol.20, issue.16, pp.5059-5064, 2012.
DOI : 10.1039/c2nr30639e

J. Hodgkinson and R. P. Tatam, Optical gas sensing: a review, Measurement Science and Technology, vol.24, issue.1, pp.12004-59, 2013.
DOI : 10.1088/0957-0233/24/1/012004

Y. [. Huang, T. T. Chen, and . Wu, A room temperature surface acoustic wave hydrogen sensor with Pt coated ZnO nanorods, Nanotechnology, vol.20, issue.6, pp.95503-95509, 2010.
DOI : 10.1088/0957-4484/20/6/065501

T. Hüber, L. Boon-brett, G. Black, and U. Banach, Hydrogen sensors ??? A review, Sensors and Actuators B: Chemical, vol.157, issue.2, pp.329-352, 2011.
DOI : 10.1016/j.snb.2011.04.070

S. [. Ippolito, K. Kandasamy, W. Kalantar-zadeh, K. Wlodarski, G. Galatsis et al., Highly sensitive layered ZnO/LiNbO3 SAW device with InOx selective layer for NO2 and H2 gas sensing, Sensors and Actuators B: Chemical, vol.111, issue.112, pp.111-112, 2005.
DOI : 10.1016/j.snb.2005.07.046

S. [. Ippolito, K. Kandasamy, W. Kalantar-zadeh, and . Wlodarski, Layered SAW hydrogen sensor with modified tungsten trioxide selective layer, Sensors and Actuators B: Chemical, vol.108, issue.1-2, pp.553-557, 2005.
DOI : 10.1016/j.snb.2004.11.048

W. P. Jakubik, Hydrogen gas-sensing with bilayer structures of WO3 and Pd in SAW and electric systems, Thin Solid Films, vol.517, issue.22, pp.6188-6191, 2009.
DOI : 10.1016/j.tsf.2009.04.008

. [. Javahiraly, Review on hydrogen leak detection: comparison between fiber optic sensors based on different designs with palladium, Optical Engineering, vol.54, issue.3, pp.30901-30915, 2015.
DOI : 10.1117/1.OE.54.3.030901

B. [. Jewell and . Davis, Review of absorption and adsorption in the hydrogen???palladium system, Applied Catalysis A: General, vol.310, pp.310-311, 2006.
DOI : 10.1016/j.apcata.2006.05.012

N. [. Yamanaka, D. Nakaso, T. Sim, and . Fukiura, Principle and application of ball surface acoustic wave (SAW) sensor, Acoustical Science and Technology, vol.30, issue.1, pp.2-6, 2009.
DOI : 10.1250/ast.30.2

F. [. Kapdan and . Kargi, Bio-hydrogen production from waste materials, Enzyme and Microbial Technology, vol.38, issue.5, pp.569-582, 2006.
DOI : 10.1016/j.enzmictec.2005.09.015

J. L. King, The free transverse vibrations of anisotropic beams, Journal of Sound and Vibration, vol.98, issue.4, pp.575-585, 1985.
DOI : 10.1016/0022-460X(85)90262-7

G. Korotcenkov, S. Han, and J. R. Stetter, Review of Electrochemical Hydrogen Sensors, Chemical Reviews, vol.109, issue.3, pp.1402-1433, 2009.
DOI : 10.1021/cr800339k

G. Korotcenkov and B. K. Cho, Engineering approaches to improvement of conductometric gas sensor parameters. Part 2: Decrease of dissipated (consumable) power and improvement stability and reliability, Sensors and Actuators B: Chemical, vol.198, pp.316-341, 2014.
DOI : 10.1016/j.snb.2014.03.069

T. [. Kramer and . Paul, High-precision density sensor for concentration monitoring of binary gas mixtures, Sensors and Actuators A, pp.52-56, 2013.

M. Kucera, F. Hofbauer, E. Wistrela, T. Manzaneque, V. Ruiz?diez et al., Lock?in amplifier powered analogue Q?control circuitfor self?actuated self?sensing piezoelectric MEMS resonators, pp.20-615, 2014.

I. [. Lee, J. H. Hwang, H. J. Chac, W. B. Lee, J. J. Lee et al., Micromachined catalytic combustible hydrogen gas sensor, Sensors and Actuators B: Chemical, vol.153, issue.2, pp.153-392, 2011.
DOI : 10.1016/j.snb.2010.11.004

Y. [. Lee, K. S. Kim, J. B. Park, M. J. Eom, B. S. Kim et al., Interferometric Fiber Optic Sensors, Sensors, vol.12, issue.12, pp.2467-2486, 2012.
DOI : 10.3390/s120302467

J. [. Lemus and . Duart, Updated hydrogen production costs and parities for conventional and renewable technologies, International Journal of Hydrogen Energy, vol.35, issue.9, pp.3929-3936, 2010.
DOI : 10.1016/j.ijhydene.2010.02.034

B. [. Lemaire, M. Caillard, I. Youssry, and . Dufour, High-frequency viscoelastic measurements of fluids based on microcantilever sensing: New modeling and experimental issues, Sensors and Actuators A: Physical, vol.201, pp.230-240, 2013.
DOI : 10.1016/j.sna.2013.07.022

URL : https://hal.archives-ouvertes.fr/hal-00854141

F. [. Li, H. Liang, W. Bux, J. Yang, and . Caro, Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation, Journal of Membrane Science, vol.354, issue.1-2, pp.48-54, 2010.
DOI : 10.1016/j.memsci.2010.02.074

H. Li, Z. Song, X. Zhang, Y. Huang, S. Li et al., Ultrathin, Molecular-Sieving Graphene Oxide Membranes for Selective Hydrogen Separation, Science, vol.342, issue.6154, pp.95-95, 2013.
DOI : 10.1126/science.1236686

N. [. Liewhiran, A. Tamaekong, A. Tuantranont, S. Wisitsoraat, and . Phanichphant, The effect of Pt nanoparticles loading on H 2 sensing properties of flame-spray-made SnO 2 sensing films, Materials Chemistry and Physics, pp.147-661, 2014.

S. [. Liu, H. Cheng, S. Liu, D. Hu, H. Zhang et al., A Survey on Gas Sensing Technology, Sensors, vol.12, issue.12, pp.12-9635, 2012.
DOI : 10.3390/s120709635

URL : http://doi.org/10.3390/s120709635

L. [. Long, M. J. Kou, X. Sepaniak, and . Hou, Recent advances in gas phase microcantileverbased Sensing, Reviews in Analytical Chemistry, vol.32, pp.135-158, 2013.

C. [. Maali, R. Hurth, C. Boisgard, T. C. Jai, J. P. Bouhacina et al., Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids, Journal of Applied Physics, vol.97, issue.7, pp.97-074907, 2005.
DOI : 10.1063/1.1873060

. [. Maiman, Stimulated optical radiation in ruby, Nature, pp.187-493, 1960.

A. [. Malyshev and . Pislyakov, Investigation of gas-sensitivity of sensor structures to hydrogen in a wide range of temperature, concentration and humidity of gas medium, Sensors and Actuators B: Chemical, vol.134, issue.2, pp.913-921, 2008.
DOI : 10.1016/j.snb.2008.06.046

. Sánchez-rojas, Piezoelectric MEMS resonator-based oscillator for density and viscosity sensing, Sensors and Actuators A, vol.220, pp.305-315, 2014.

D. [. Marom, D. S. Neilson, C. S. Greywall, N. R. Pai, V. A. Basavanhally et al., Wavelength-selective 1/spl times/K switches using free-space optics and MEMS micromirrors: theory, design, and implementation, Journal of Lightwave Technology, vol.23, issue.4, pp.23-1620, 2005.
DOI : 10.1109/JLT.2005.844213

J. F. Mcaleer, P. T. Moseley, P. Bourke, J. O. Norris, and R. Stephan, Tin dioxide gas sensors: use of the seebeck effect, Sensors and Actuators, vol.8, issue.3, pp.251-257, 1985.
DOI : 10.1016/0250-6874(85)85008-3

H. Miya, T. Shiina, T. Kato, K. Noguchi, T. Fukuchi et al., Compact Raman lidar for hydrogen gas leak detection, 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, pp.1-2, 2009.
DOI : 10.1109/CLEOPR.2009.5292527

D. [. Mohd-yasin, C. E. Nagel, and . Korman, Noise in MEMS, Noise in MEMS, pp.12001-12023, 2010.
DOI : 10.1088/0957-0233/21/1/012001

M. Ni, D. Y. Leung, M. K. Leung, and K. Sumathy, An overview of hydrogen production from biomass, Fuel Processing Technology, vol.87, issue.5, pp.461-472, 2006.
DOI : 10.1016/j.fuproc.2005.11.003

H. Ninomiya, S. Yaeshima, and K. Ichikawa, Raman lidar system for hydrogen gas detection, 094301-pp 5.[PAL15] V. Palmisano, 2007.
DOI : 10.1117/1.2784757

F. Bonato, P. Harskamp, M. B. Moretto, R. Post, C. Burgess et al., Selectivity and resistance to poisons of commercial hydrogen sensors, International Journal of Hydrogen Energy, 2015.

J. F. Patton, S. R. Hunter, M. J. Sepaniak, P. G. Daskos, and D. B. Smith, Rapid response microsensor for hydrogen detection using nanostructured palladium films, Sensors and Actuators A: Physical, vol.163, issue.2, pp.163-464, 2010.
DOI : 10.1016/j.sna.2010.08.025

J. Pellegrino, Développement de deux instruments LIDAR multi-longueurs d'onde et multiespèces à base de sources paramétriques, 2014.

A. Meyrueis and . Reliable, sensitive and fast optical fiber hydrogen sensor based on surface plasmon resonance, pp.382-390, 2013.

G. [. Phan and . Chung, Surface acoustic wave hydrogen sensors based on ZnO nanoparticles incorporated with a Pt catalyst, Sensors and Actuators B: Chemical, vol.161, issue.1, pp.341-348, 2012.
DOI : 10.1016/j.snb.2011.10.042

. Machuron-mandard, Development of of a micro-GC/micro-mass spectrometer for chemical threat insitu detection, Proceeding CBW Protection Symposium, 2013.

J. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, Journal of Applied Physics, vol.84, issue.1, pp.64-76, 1998.
DOI : 10.1063/1.368002

W. Shin, M. Matsumiya, N. Izu, and N. Muramaya, Hydrogen-selective thermoelectric gas sensor, Sensors and Actuators B: Chemical, vol.93, issue.1-3, pp.304-308, 2003.
DOI : 10.1016/S0925-4005(03)00225-9

L. [. Silva, O. Coelho, J. L. Frazão, F. X. Santos, and . Malcata, A Review of Palladium-Based Fiber-Optic Sensors for Molecular Hydrogen Detection, IEEE Sensors Journal, vol.12, issue.1, pp.12-93, 2012.
DOI : 10.1109/JSEN.2011.2138130

M. [. Simon and . Arndt, Thermal and gas-sensing properties of micromachined thermal conductivity sensor for the detection of hydrogen in automotive applications, Sensors and Actuators A, pp.97-98, 2002.

G. [. Smullin and . Fiocco, Optical Echoes from the Moon, Nature, vol.194, issue.4835, p.1267, 1962.
DOI : 10.1038/1941267a0

M. Sonoyama and Y. Kato, Application of ultrasonic to a hydrogen sensor, 2010 IEEE Sensors, pp.2141-2144, 2010.
DOI : 10.1109/ICSENS.2010.5690522

M. Steinberg and H. C. Cheng, Modern and prospective technologies for hydrogen production from fossil fuels, International Journal of Hydrogen Energy, vol.14, issue.11, pp.797-820, 1989.
DOI : 10.1016/0360-3199(89)90018-9

S. [. Arya, H. Krishnan, S. Silva, S. Jean, and . Bhansali, Advanced in materials for room temperature hydrogen sensors, Analyst, pp.137-2743, 2012.

M. [. Sutapun, A. Tabib-azar, and . Kazemi, Pd-coated elastooptic fiber optic Bragg grating sensors for multiplexed hydrogen sensing, Sensors and Actuators B: Chemical, vol.60, issue.1, pp.27-34, 1999.
DOI : 10.1016/S0925-4005(99)00240-3

J. Tamayo, A. D. Humphris, R. J. Owen, and M. J. Miles, High-Q Dynamic Force Microscopy in Liquid and Its Application to Living Cells, Biophysical Journal, vol.81, issue.1, pp.81-526, 2001.
DOI : 10.1016/S0006-3495(01)75719-0

J. Tamayo, P. M. Kosaka, J. J. Ruz, A. S. Paulo, and M. Calleja, Biosensors based on nanomechanical systems, Chem. Soc. Rev., vol.107, issue.3, pp.42-1287, 2013.
DOI : 10.1039/C2CS35293A

M. [. Tong, W. Tong, M. Meng, and . Li, Inflammable Gas Mixture Detection with a Single Catalytic Sensor Based on the Electric Field Effect, Sensors, vol.14, issue.4, pp.14-6409, 2014.
DOI : 10.3390/s140406409

G. Tournier and C. Pilolat, Selective filter for SnO-based gas sensor: application to hydrogen trace detection, Sensors and Actuators B: Chemical, vol.106, issue.2, pp.553-562, 2005.
DOI : 10.1016/j.snb.2004.06.037

L. [. Wang, L. Yin, D. Zhang, R. Xiang, and . Gao, Metal Oxide Gas Sensors: Sensitivity and Influencing Factors, Sensors, vol.10, issue.3, pp.10-2088, 2010.
DOI : 10.3390/s100302088

E. Wapelhorst, J. P. Hauschild, and J. Müller, Complex MEMS: a fully integrated TOF micro mass spectrometer, Sensors and Actuators A, pp.22-27, 2007.

Q. [. Wasisto, S. Zhang, A. Merzsch, E. Waag, and . Peiner, A phase?locked loop frequency tracking system for portable microelectromechanical piezoresistive cantilever mass sensors, Microsystem Technologies, pp.559-569, 2014.

W. H. Waugh, A high-sensitivity resonant sensor realized through the exploitation of nonlinear dynamic behavior, 2010.

K. [. Weng and . Hung, Amperometric hydrogen sensor based on PtxPdy/Nafion electrode prepared by Takenata???Torikai method, Sensors and Actuators B: Chemical, vol.141, issue.1, pp.161-167, 2009.
DOI : 10.1016/j.snb.2009.06.035

A. [. Yahiaoui and . Bosseboeuf, Improved modeling of the dynamical behaviour of cantilever microbeams, Proceeding MME conference, pp.281-284, 2001.

A. [. Zotov, A. M. Trusov, and . Shkel, Three-Dimensional Spherical Shell Resonator Gyroscope Fabricated Using Wafer-Scale Glassblowing, Journal of Microelectromechanical Systems, vol.21, issue.3, pp.509-510, 2012.
DOI : 10.1109/JMEMS.2012.2189364

. [. Bibliographie, M. Abdallah, B. Heinisch, and . Jakoby, Measurement error estimation and quality factor improvement of an electrodynamic-acoustic resonator sensor for viscosity measurement, Sensors and Actuators A, pp.199-318, 2013.

P. [. Albrecht, D. Grütter, D. Horne, and . Rugar, cantilevers for enhanced force microscope sensitivity, Journal of Applied Physics, vol.69, issue.2, pp.69-668, 1991.
DOI : 10.1063/1.347347

L. [. Bircher, K. Duempelmann, H. P. Renggli, C. Lang, N. Gerber et al., Real- Time Viscosity and Mass Density Sensors Requiring Microliter Sample Volume Based on, Nanomechanical Resonators Analytical Chemistry, pp.85-8676, 2013.

. [. Cuisset, Utilisation de micropoutres sans couche sensible en vibration pour la detection d'espèces gazeuses-Réalisation d'un réseau de gaz pilotable, 2010.

A. [. Ferrari, D. Ghisla, A. Marioli, and . Taroni, Silicon resonant accelerometer with electronic compensation of input-output cross-talk, Sensors and Actuators A, pp.123-124, 2005.

M. Heinisch, E. K. Reichel, I. Dufour, and B. Jakoby, A resonating rheometer using two polymer membranes for measuring liquid viscosity and mass density, Sensors and Actuators A: Physical, vol.172, issue.1, pp.82-87, 2011.
DOI : 10.1016/j.sna.2011.02.031

URL : https://hal.archives-ouvertes.fr/hal-00564893

J. E. Lee and Y. Xu, Direct inference of parameters for piezoresistive micromechanical resonators embedded in feedthrough, Sensors and Actuators A: Physical, vol.186, pp.257-263, 2012.
DOI : 10.1016/j.sna.2012.03.043

B. [. Lemaire, M. Caillard, I. Youssry, and . Dufour, High-frequency viscoelastic measurements of fluids based on microcantilever sensing: New modeling and experimental issues, Sensors and Actuators A: Physical, vol.201, pp.230-240, 2013.
DOI : 10.1016/j.sna.2013.07.022

URL : https://hal.archives-ouvertes.fr/hal-00854141

J. [. Leong and . Mazierska, Precise measurement of the Q factor on dielectric resonators in the transmission mode-Accounting for noise, crosstalk, delay of uncalibrated lines, coupling losses and coupling reactance, IEE Transaction on Microwave Theory and Techniques, pp.50-2115, 2002.

Y. [. Liu and . Wang, Chapter 6-A review of the application of atomic force microscopy (AFM) in food science and technology, Advances in Food and Nutrition Research, pp.201-240, 2011.

. Sánchez-rojas, Piezoelectric MEMS resonator-based oscillator for density and viscosity sensing, Sensors and Actuators A, vol.220, pp.305-315, 2014.

T. [. Niedermayer, J. Voglhuber-brunnmaier, B. Sell, and . Jakoby, Methods for the robust measurement of the resonant frequency and quality factor of significantly damped resonating devices, Measurement Science and Technology, vol.23, issue.8, pp.85107-85118, 2012.
DOI : 10.1088/0957-0233/23/8/085107

S. [. Pertersan and . Anlage, Measurement of resonant frequency and quality factor of microwave resonators: Comparison of methods, Journal of Applied Physics, vol.84, issue.6, p.3392, 1998.
DOI : 10.1063/1.368498

J. Pettine, M. Patrascu, D. M. Karabacak, M. Vandecasteele, V. Petrescu et al., Van Hoof, Volatil detection system using piezoelectric micromechanical resonators interfaced by an oscillator redout, Sensors and Actuators A, pp.189-496, 2013.

G. Piazza and A. P. Pisano, Two-port stacked piezoelectric aluminum nitride contour-mode resonant MEMS, Sensors and Actuators A, pp.638-645

P. [. Schmid, C. Senn, and . Hierold, Electrostatically actuated nonconductive polymer microresonators in gaseous and aqueous environment, Sensors and Actuators A, pp.145-146, 2008.

R. [. Sparks, . Smith, N. Patel, and . Najafi, A MEMS-based low pressure, light gas density and binary concentration sensor, Sensors and Actuators A: Physical, vol.171, issue.2, pp.171-159, 2011.
DOI : 10.1016/j.sna.2011.08.011

B. [. Tétin, F. Caillard, H. Ménil, C. Debéda, C. Lucat et al., Modeling and performance of uncoated microcantilever-based chemical sensors, Sensors and Actuators B: Chemical, vol.143, issue.2, pp.555-560, 2010.
DOI : 10.1016/j.snb.2009.09.062

H. [. Van-mullem, A. J. Tilmans, J. H. Mouthaan, and . Fluitman, Electrical cross-talk in two-port resonators ??? the resonant silicon beam force sensor, Sensors and Actuators A: Physical, vol.31, issue.1-3, pp.31-168, 1992.
DOI : 10.1016/0924-4247(92)80099-O

R. [. Villanueva, M. H. Karabalin, D. Matheny, J. E. Chi, M. L. Sader et al., Nonlinearity in nanomechanical cantilevers, Non linearitiy in nanomechanical cantilevers, pp.24304-24312, 2013.
DOI : 10.1103/PhysRevB.87.024304

M. Manuel-du, R. Xu, and . Mutharasan, A novel method for monitoring mass-change response of piezoelectricexcited millimeter-sized cantilever (PEMC) sensors, Sensors and Actuators B, pp.143-144, 2009.

. [. Bibliographie, P. Albrecht, D. Grutter, D. Horne, and . Rugar, Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity, Journal of Applied Physics, pp.69-668, 1991.

M. Álvarez, J. Tamayo, J. A. Plaza, K. Zinoviev, C. Domínguez et al., Dimension dependence of the thermomechanical noise of microcantilevers, Journal of Applied Physics, vol.99, issue.2, p.7, 2006.
DOI : 10.1063/1.2164537

S. [. Ando, C. Baglio, N. Trigona, L. Dumas, P. Latorre et al., Nonlinear mechanism in MEMS devices for energy harvesting applications, Journal of Micromechanics and Microengineering, vol.20, issue.12, p.12, 2010.
DOI : 10.1088/0960-1317/20/12/125020

URL : https://hal.archives-ouvertes.fr/lirmm-00555283

M. Z. Ansari and C. Cho, Deflection, Frequency, and Stress Characteristics of Rectangular, Triangular, and Step Profile Microcantilevers for Biosensors, Sensors, vol.9, issue.8, pp.6046-6057, 2009.
DOI : 10.3390/s90806046

F. [. Beardslee, S. M. Josse, I. Heinrich, O. Dufour, and . Brand, Geometrical considerations for the design of liquid-phase biochemical sensors using a cantilever's fundamental in-plane mode, Sensors and Actuators B: Chemical, vol.164, issue.1, pp.164-171, 2012.
DOI : 10.1016/j.snb.2012.01.035

C. Bergaud, E. Cocheteau, L. Bary, R. Plana, and B. Belier, Formation of implanted piezoresistors under 100-nm thick for nanoelectromechanical systems, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266), pp.360-363, 2002.
DOI : 10.1109/MEMSYS.2002.984277

L. [. Bircher, K. Duempelmann, H. P. Renggli, C. Lang, N. Gerber et al., Realtime viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators, Analytical Chemistry, pp.85-8676, 2013.

. [. Bongrain, Nouvelles technologies de capteurs MEMS en diamant pour des applications de transduction, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00694530

M. [. Chivukula, H. F. Wang, A. Ji, J. Khaliq, K. Fang et al., Simulation of SiO2- based piezoresistive microcantilevers, Sensors and Actuators: A, pp.526-533, 2006.

C. [. Fadel-taris, F. Ayela, S. M. Josse, D. Heinrich, O. Saya et al., Influence of non-ideal clamping in microcantilever resonant frequency estimation, 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, pp.1-5, 2011.
DOI : 10.1109/FCS.2011.5977310

URL : https://hal.archives-ouvertes.fr/hal-00564420

W. [. Goericke and . King, Modeling Piezoresistive Microcantilever Sensor Response to Surface Stress for Biochemical Sensors, IEEE Sensors Journal, vol.8, issue.8, pp.1404-1410, 2008.
DOI : 10.1109/JSEN.2008.920706

S. [. Gysin, P. Rast, E. Ruff, and . Meyer, Temperature dependence of the force sensitivity of silicon cantilevers, Physical Review B, vol.69, issue.4, pp.45403-45409, 2004.
DOI : 10.1103/PhysRevB.69.045403

W. [. Hocheng, J. H. Weng, and . Chang, Shape effects of micromechanical cantilever sensor, Measurement, vol.45, issue.8, pp.45-2081, 2012.
DOI : 10.1016/j.measurement.2012.05.007

M. A. Hopcroft, W. D. Nix, and T. W. Kenny, What is the Young's Modulus of Silicon?, Journal of Microelectromechanical Systems, vol.19, issue.2, pp.229-238, 2010.
DOI : 10.1109/JMEMS.2009.2039697

J. Lee, T. Beechem, T. L. Wright, B. A. Nelson, S. Graham et al., Electrical, Thermal, and Mechanical Characterization of Silicon Microcantilever Heaters, Journal of Microelectromechanical Systems, vol.15, issue.6, pp.15-1644, 2006.
DOI : 10.1109/JMEMS.2006.886020

B. [. Lemaire, M. Caillard, I. Youssry, and . Dufour, High-frequency viscoelastic measurements of fluids based on microcantilever sensing: New modeling and experimental issues, Sensors and Actuators A: Physical, vol.201, pp.230-240, 2013.
DOI : 10.1016/j.sna.2013.07.022

URL : https://hal.archives-ouvertes.fr/hal-00854141

H. [. Li, X. Yu, X. Gan, P. Xia, J. Xu et al., Integrated MEMS/NEMS Resonant Cantilevers for Ultrasensitive Biological Detection, Journal of Sensors, vol.32, issue.4, p.10, 2009.
DOI : 10.1063/1.359562

I. [. Lochon, D. Dufour, and . Rebière, An alternative solution to improve sensitivity of resonant microcantilever chemical sensors: comparison between using high-order modes and reducing dimensions, Sensors and Actuators B: Chemical, vol.108, issue.1-2, pp.979-985, 2005.
DOI : 10.1016/j.snb.2004.11.086

URL : https://hal.archives-ouvertes.fr/hal-00203741

F. [. Loui, T. V. Goericke, J. Ratto, B. R. Lee, W. P. Hart et al., The effect of piezoresistive microcantilever geometry on cantilever sensitivity during surface stress chemical sensing, Sensors and Actuators A: Physical, vol.147, issue.2, pp.147-516, 2008.
DOI : 10.1016/j.sna.2008.06.016

C. [. Maali, R. Hurth, C. Boisgard, T. C. Jai, J. Bouhacina et al., Hydrodynamics of oscillating atomic force microscopy cantilevers in viscous fluids, Journal of Applied Physics, vol.97, issue.7, pp.97-074907, 2005.
DOI : 10.1063/1.1873060

B. [. Morshed and . Prorok, Enhancing the sensitivity of microcantilever-based sensors via geometry modification, Micro (MEMS) and Nanotechnologies for Space Applications, pp.62230-62231, 2006.
DOI : 10.1117/12.663682

M. S. Mutyala, D. Bandhanadham, L. Pan, V. R. Pendyala, and H. F. Ji, Mechanical and electronic approaches to improve the sensitivity of microcantilever sensors, Acta Mechanica Sinica, vol.126, issue.1, pp.25-26, 2009.
DOI : 10.1007/s10409-008-0222-6

. Cané, Sensitivity improvement of a microcantilever based mass sensor, Microelectronic Engineering, vol.86, pp.1187-1189, 2009.

J. [. Park, A. J. Doll, B. L. Rastegar, and . Pruitt, Piezoresistive Cantilever Performance—Part II: Optimization, Journal of Microelectromechanical Systems, vol.19, issue.1, pp.149-161, 2010.
DOI : 10.1109/JMEMS.2009.2036582

J. Rhoads, S. W. Shaw, and K. L. Turner, Nonlinear Dynamics and Its Applications in Micro- and Nanoresonators, Journal of Dynamic Systems, Measurement, and Control, vol.132, issue.3, pp.34001-34015, 2010.
DOI : 10.1115/1.4001333

R. [. Rosario and . Mutharasan, Piezoelectric excited millimeter sized cantilever sensors for measuring gas density changes, Sensors and Actuators B: Chemical, vol.192, pp.99-104, 2014.
DOI : 10.1016/j.snb.2013.10.017

J. E. Sader, Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope, Journal of Applied Physics, vol.84, issue.1, pp.64-76, 1998.
DOI : 10.1063/1.368002

R. [. Sparks, . Smith, N. Patel, and . Najafi, A MEMS-based low pressure, light gas density and binary concentration sensor, Sensors and Actuators A: Physical, vol.171, issue.2, pp.171-159, 2011.
DOI : 10.1016/j.sna.2011.08.011

N. [. Subramanian and . Gupta, Improved V-shaped microcantilever width profile for sensing applications, Journal of Physics D: Applied Physics, vol.42, issue.18, pp.42-185501, 2009.
DOI : 10.1088/0022-3727/42/18/185501

B. [. Tétin, F. Caillard, H. Ménil, C. Debéda, C. Lucat et al., Modeling and performance of uncoated microcantilever-based chemical sensors, Sensors and Actuators B: Chemical, vol.143, issue.2, pp.555-560, 2010.
DOI : 10.1016/j.snb.2009.09.062

. [. Timoshenko, Strength of materials. Part I: Elementary theory and problems, 1940.

L. G. Villanueva, R. B. Karabalin, M. H. Matheny, D. Chi, J. E. Sader et al., Nonlinearity in nanomechanical cantilevers, Physical Review B, vol.87, issue.2, pp.24304-24312, 2013.
DOI : 10.1103/PhysRevB.87.024304

. [. Waugh, A high-sensitivity resonant sensor realised through the exploitation of nonlinear dynamic behavior, 2010.

B. [. Waugh, J. S. Gallacher, and . Burdess, A high-sensitivity resonant sensor realized through the exploitation of nonlinear dynamic behaviour, Measurement Science and Technology, vol.22, issue.10, pp.105202-105210, 2011.
DOI : 10.1088/0957-0233/22/10/105202

M. I. Younis and F. Alsaleem, Exploration of New Concepts for Mass Detection in Electrostatically-Actuated Structures Based on Nonlinear Phenomena, Journal of Computational and Nonlinear Dynamics, vol.4, issue.2, pp.21010-21025, 2009.
DOI : 10.1115/1.3079785

J. [. Yu, O. Thaysen, A. Hansen, and . Boisen, Optimization of sensitivity and noise in piezoresistive cantilevers, Journal of Applied Physics, vol.92, issue.10, pp.92-6296, 2002.
DOI : 10.1063/1.1493660

L. [. Zhao, G. Xu, Z. Zhang, Y. Jiang, J. Zhao et al., In-Situ Measurement of Fluid Density Rapidly Using a Vibrating Piezoresistive Microcantilever Sensor Without Resonance Occurring, IEEE Sensors Journal, vol.14, issue.3, pp.14-645, 2014.
DOI : 10.1109/JSEN.2013.2288106

T. Afin-de-vérifier-les, influence de la géométrie avec les micropoutres X1_SQR une deuxième expérience est effectuée avec les micropoutres X1_REC Cette expérience permet aussi de voir l'influence de la longueur sur la sensibilité des géométries A Les résultats de cette expérience sont présentés sur la Fig

K. Ashwin, F. Samarao, and . Ayazi, Temperature compensation of silicon micromechanical resonators via degenerate doping, IEEE Transactions on Electron Devices, vol.59, pp.789-792, 2009.

W. [. Azevedo, O. M. Huang, A. P. O-'reilly, and . Pisano, Dual-mode temperature compensation for a comb-driven MEMS resonant strain gauge, Sensors and Actuators A: Physical, vol.144, issue.2, pp.144-374, 2008.
DOI : 10.1016/j.sna.2008.02.007

M. Bayat, R. Radjabi, and H. Joodaki, Temperature compensation of MEMS based resonant sensor with uniform mass sensitivity, 2013 25th Chinese Control and Decision Conference (CCDC), pp.4471-4475, 2013.
DOI : 10.1109/CCDC.2013.6561740

L. [. Bircher, K. Duempelmann, H. P. Renggli, C. Lang, N. Gerber et al., Realtime viscosity and mass density sensors requiring microliter sample volume based on nanomechanical resonators, Analytical Chemistry, pp.85-8676, 2013.

H. [. Chou, C. C. Chiang, and . Wang, Study on Pd functionalization of microcantilever for hydrogen detection promotion, Sensors and Actuators B: Chemical, vol.129, issue.1, pp.72-78, 2008.
DOI : 10.1016/j.snb.2007.07.072

G. [. Dias, R. F. De-graaf, L. A. Wolffenbuttel, and . Rocha, Gas viscosity sensing based on the electrostatic pull_in time of microactuators, Sensors and Actuators A, pp.215-376, 2014.

C. [. Fadel-taris, F. Ayela, S. M. Josse, D. Heinrich, O. Saya et al., Influence of non-ideal clamping in microcantilever resonant frequency estimation, 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) Proceedings, pp.1-5, 2011.
DOI : 10.1109/FCS.2011.5977310

URL : https://hal.archives-ouvertes.fr/hal-00564420

J. Gosse, Propriétés de transport des gaz à pression modérée, Techniques de l'ingénieur : Constantes Physicochimiques, p.425, 1991.

S. [. Gysin, P. Rast, E. Ruff, and . Meyer, Temperature dependence of the force sensitivity of silicon cantilevers, Physical Review B, vol.69, issue.4, pp.45403-45409, 2004.
DOI : 10.1103/PhysRevB.69.045403

M. Heinisch, A. Abdallah, I. Dufour, and B. Jakoby, Resonant Steel Tuning Forks for Precise Inline Viscosity and Mass Density Measurements in Harsh Environments, Procedia Engineering, vol.87, pp.1139-1142, 2014.
DOI : 10.1016/j.proeng.2014.11.366

URL : https://hal.archives-ouvertes.fr/hal-01015990

J. Henriksson, L. G. Villanueva, and J. Brugger, Ultra-low power hydrogen sensing based on a palladium-coated nanomechanical beam resonator, Nanoscale, vol.20, issue.16, pp.5059-5064, 2012.
DOI : 10.1039/c2nr30639e

W. [. Hughes and . Schubert, Thin films of Pd/Ni alloys for detection of high hydrogen concentrations, Journal of Applied Physics, vol.71, issue.1, pp.542-542, 1992.
DOI : 10.1063/1.350646

K. [. Igarashi, T. Kawashima, and . Kagawa, Development of simultaneous measurement system for instantaneous density, viscosity and flow rate of gases, Sensors and Actuators A: Physical, vol.140, issue.1, pp.140-141, 2007.
DOI : 10.1016/j.sna.2007.06.017

B. [. Jewell and . Davis, Review of absorption and adsorption in the hydrogen???palladium system, Applied Catalysis A: General, vol.310, pp.310-311, 2006.
DOI : 10.1016/j.apcata.2006.05.012

J. Lee, F. Goericke, and W. P. King, Temperature-dependent thermomechanical noise spectra of doped silicon microcantilevers, Sensors and Actuators A, pp.145-146, 2008.

J. [. Lee, J. H. Lee, W. Koo, T. Lee, and . Lee, Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas, International Journal of Hydrogen Energy, vol.35, issue.13, pp.35-6984, 2010.
DOI : 10.1016/j.ijhydene.2010.04.051

K. Ling, C. Teodoriu, E. Davani, and G. Falcone, Measurement of Gas Viscosity at High Pressures and High Temperatures, International Petroleum Technology Conference, pp.13528-13541, 2009.

H. [. Liu, H. I. Pan, K. W. Chen, S. Y. Lin, K. H. Cheng et al., Hydrogen-sensitive characteristics of a novel Pd/InP MOS schottky diode hydrogen sensor, IEEE Transductions on Electron Devices, pp.48-1938, 2001.

. Wiegerink, Integrated multi-parameter flow measurement system, IEEE MEMS, pp.975-978, 2014.

. Kenny, Temperature-compensated high-stability silicon resonators, Applied Physics letters, vol.90, pp.244107-244110, 2007.

K. Naeli and O. Brand, Cantilever Sensor with Stress-Concentrating Piezoresistor Design, IEEE Sensors, 2005., pp.592-595, 2005.
DOI : 10.1109/ICSENS.2005.1597768

K. Naeli and O. Brand, Cancellation of environmental effects in resonant mass sensors based on resonance mode and effective mass, Review of Scientific Instruments, vol.80, issue.6, pp.63903-63911, 2009.
DOI : 10.1063/1.3143567

J. Noh, J. Lee, and W. Lee, Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection, Sensors, vol.11, issue.12, pp.11-825, 2011.
DOI : 10.3390/s110100825

Y. [. Okuyama, K. Mitobe, K. Okuyama, and . Matsushita, Hydrogen gas sensing using a Pdcoated cantilever, Japan Journal of Applied Physics, pp.39-3584, 2000.

J. F. Patton, S. R. Hunter, M. J. Sepaniak, P. G. Daskos, and D. B. Smith, Rapid response microsensor for hydrogen detection using nanostructured palladium films, Sensors and Actuators A: Physical, vol.163, issue.2, pp.163-464, 2010.
DOI : 10.1016/j.sna.2010.08.025

R. [. Quevy and . Howe, Redundant MEMS resonators for precise reference oscillators, RFIC) Symposium, 2005. Digest of Papers. 2005 IEEE Radio Frequency integrated Circuits, pp.113-116, 2005.
DOI : 10.1109/RFIC.2005.1489602

J. Salvia, R. Melamud, S. Chandorkar, S. F. Lord, and T. W. Kenny, Real-Time Temperature Compensation of MEMS Oscillators Using an Integrated Micro-Oven and a Phase-Locked Loop, Journal of Microelectromechanical Systems, vol.19, issue.1, pp.192-201, 2010.
DOI : 10.1109/JMEMS.2009.2035932

[. Sandberg, W. Svendsen, K. Mølhave, and A. Boisen, Temperature and pressure dependence of resonance in multi-layer microcantilevers, Journal of Micromechanics and Microengineering, vol.15, issue.8, pp.1454-1458, 2005.
DOI : 10.1088/0960-1317/15/8/011

J. K. Sell, A. O. Niedermayer, and B. Jakoby, Simultaneous measurement of density and viscosity ins gases with a quartz tuning fork resonator by tracking of the series resonance frequencies, Procedia Engineering, pp.25-1297, 2011.

J. S. Noh, J. M. Lee, and W. Lee, Low-Dimensional Palladium Nanostructures for Fast and Reliable Hydrogen Gas Detection, Sensors, vol.11, issue.12, pp.11-825, 2011.
DOI : 10.3390/s110100825

G. [. Sundaresan, S. Ho, F. Pourkamali, and . Ayazi, Electronically Temperature Compensated Silicon Bulk Acoustic Resonator Reference Oscillators, IEEE Journal of Solid-State Circuits, vol.42, issue.6, pp.42-1427, 2007.
DOI : 10.1109/JSSC.2007.896521

[. Tabrizian, G. Casinovi, and F. Ayazi, Temperature-Stable Silicon Oxide (SilOx) Micromechanical Resonators, IEEE Transactions on Electron Devices, vol.60, issue.8, pp.60-2656, 2013.
DOI : 10.1109/TED.2013.2270434

. [. Tang, W. Fan, Z. Xing, Z. Guo, and . Zhang, An electrothermally excited dual beams silicon resonant pressure sensor with temperature compensation, Microsystem Technologies, pp.1481-1490, 2011.

J. V??í?, Temperature compensation of silicon pressure sensor, Sensors and Actuators A, pp.179-182, 1996.

. [. Viswanathan, Viscosities of natural gases at high pressure and high temperature, 2007.

W. H. Waugh, B. J. Gallacher, and J. S. Burdess, A high-sensitivity resonant sensor realized through the exploitation of nonlinear dynamic behaviour, Measurement Science and Technology, vol.22, issue.10, pp.105202-105210, 2011.
DOI : 10.1088/0957-0233/22/10/105202

M. Youssry, N. Belmiloud, B. Caillard, C. Ayela, and C. , Pellet and I. Dufour, A straightforward determination of fluid viscosity and density using microcantilevers: From experimental data to analytical expressions, Sensors and Actuators A, pp.172-212, 2011.

G. Zhang, L. Zhao, Z. Jiang, S. Yang, Y. Zhao et al., Surface stress-induced deflection of a microcantilever with various widths and overall microcantilever sensitivity enhancement via geometry modification, Journal of Physics D: Applied Physics, vol.44, issue.42, pp.44-425402, 2011.
DOI : 10.1088/0022-3727/44/42/425402

M. T. Boudjiet, J. Bertrand, C. Pellet, and I. Dufour, Preliminary results of the feasibility of hydrogen detection by the use of uncoated silicon microcantilever-based sensors, International Journal of Hydrogen Energy, vol.39, issue.35, pp.20497-20502, 2014.
DOI : 10.1016/j.ijhydene.2014.03.228

URL : https://hal.archives-ouvertes.fr/hal-00967495

. Dufour, Geometry optimization of uncoated silicon microcantilever-based gas density sensors, Sensors and Actuators B, vol.208, pp.600-607, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01082346

M. T. Boudjiet, J. Bertrand, and C. , Pellet et I. Dufour. Feasibility of hydrogen detection by the use of uncoated silicon micro-cantilever based sensors, International Conference on Hydrogen Safety, septembre 2013 à Bruxelles

Z. Brouzi, M. T. Boudjiet, J. P. Dubois, I. Dufour, and J. Bertrand, Qualification of steel vibrating wirebased sensor in hydrogen detection, International Meeting on Chemical Sensors
URL : https://hal.archives-ouvertes.fr/hal-00916546

M. T. Boudjiet, F. Mathieu, L. Nicu, J. Bertrand, C. Pellet et al., Geometry optimization of uncoated silicon microcantilever-based density sensor for hydrogen detection. Nanomechanical sensing workshop

S. M. Heinrich, M. T. Boudjiet, D. Thuau, P. Poulin, C. Ayela et al., Development of analytical models of T- and U-shaped cantilever-based MEMS devices for sensing and energy harvesting applications, IEEE SENSORS 2014 Proceedings, 2014.
DOI : 10.1109/ICSENS.2014.6985336

URL : https://hal.archives-ouvertes.fr/hal-01011598

M. T. Boudjiet, F. Mathieu, L. Nicu, J. Bertrand, C. Pellet et al., New characterization methods for monitoring small resonant frequency variation. Application: uncoated silicon microcantilever-based sensors, GDR Micro et Nano Systèmes, vol.2013
URL : https://hal.archives-ouvertes.fr/hal-00933254

M. T. Boudjiet, Optimisation de la sensibilité d'une micropoutre vis-à-vis de la masse volumique d'un gaz par l'optimisation géométrique de sa structure, Journée de l'école doctorale SPI, mars, 2014.

M. T. Boudjiet, Etude de l'influence de la géométrie des structures sur la sensibilité des capteurs de masse volumique de gaz à base de micropoutres en silicium, Journées Nationales du Réseau Doctoral en Micronanoélectronique JNRDM2014, 2014.

M. T. Boudjiet, Développement de micropoutres sans couche sensible pour la détection d'hydrogène, Journée Andra des doctorants et post-doctorants, 2014.

M. T. Boudjiet, J. Bertrand, C. Pellet, and I. Dufour, Microsystèmes durables de mesures de concentration d'hydrogène utilisant des micropoutres sans couche sensible, 2014.

M. T. Boudjiet, J. Bertrand, C. Pellet, and I. Dufour, Micropoutre résonante sans couche sensible pour la détection de l'hydrogène par la mesure de la masse volumique du gaz, Réunion de printemps du club micro-capteurs chimiques (CMC2), juin, 2015.