N
N

N

HAL

open science

Semantic service provisioning for 6LoWPAN : powering
internet of things applications on Web

Ngoc Son Han

» To cite this version:

Ngoc Son Han. Semantic service provisioning for 6LoWPAN : powering internet of things applica-
tions on Web. Other [cs.OH]. Institut National des Télécommunications, 2015. English. NNT:

2015TELE0018 . tel-01217185

HAL Id: tel-01217185
https://theses.hal.science/tel-01217185
Submitted on 19 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-01217185
https://hal.archives-ouvertes.fr

TELECOM

SudParis

A

DOCTORAT EN CO-ACCREDITATION
TELECOM SUDPARIS - INSTITUT MINES-TELECOM
ET L’UNIVERSITE PIERRE ET MARIE CURIE - PARIS 6

Spécialité : Informatique et Réseaux

Ecole doctorale : Informatique, Télécommunications et Electronique de Paris

Présentée par

HAN Ngoc Son

Semantic Service Provisioning for 6LoWPAN: Powering
Internet of Things Applications on Web

Soutenue le 08/07/2015 devant le jury composé de:

Noél Crespi Professeur HDR, Telecom SudParis Directeur de these
Roch H. Glitho Professeur, Concordia University, Canada Rapporteur
Yacine Ghamri-Doudane Professeur HDR, Université de La Rochelle Rapporteur

Guy Pujolle Professeur HDR, UPMC (Paris 6) Examinateur
Mika Ylianttila Professeur, University of Oulu, Finland Examinateur
Hélia Pouyllau Ph.D., Ingénieure de recherche, Thales R&T Examinatrice
Emmanuel Bertin Ph.D., Senior service architect, Orange Labs Examinateur

Theése numéro : 2015TELE0018

Résumé

L’'Internet des objets (IoT) implique la connexion des appareils embarqués tels que les
capteurs, les électroménagers, les compteurs intelligents, les appareils de surveillance de
la santé, et méme les lampadaires a I'Internet. Une grande variété d’appareils intelligents
et en réseau sont de plus en plus a la disposition de bénéficier de nombreux domaines
d’application. Pour faciliter cette connexion, la recherche et l'industrie ont mis un
certain nombre d’avancées dans la technologie microélectronique, de la radio de faible
puissance, et du réseautage au cours de la derniére décennie. L’objectif est de permettre
aux appareils embarqués de devenir IP activé et une partie intégrante des services sur
I'Internet. Ces appareils connectés sont considérés comme les objets intelligents qui sont
caractérisés par des capacités de détection, de traitement, et de réseautage. Les réseaux
personnels sans fil & faible consommation d’IPv6 (6LoWPANS) jouent un role important
dans I'IoT, surtout sur la consommation d’énergie (de faible puissance), la disponibilité
omniprésente (sans fil), et I'intégration d’Internet (IPv6).

La popularité des applications sur le Web, aux cotés de ses standards ouverts et de
I'accessibilité a travers d’une large gamme d’appareils tels que les ordinateurs de bureau,
les ordinateurs portables, les téléphones mobiles, les consoles de jeu, fait que le Web est
une plateforme universelle idéale pour I'loT a ’avenir. Par conséquent, quand de plus
en plus d’objets intelligents se connectent a l'Internet, I'loT est naturellement évolué
pour la provision des services des objets intelligents sur le Web, comme des millions de
services Web d’aujourd’hui. Puis vient une nouvelle opportunité pour des applications
vraiment intelligentes et omniprésentes qui peuvent intégrer des objets intelligents et
des services Web conventionnels en utilisant des standards Web ouverts. Nous appelons
ces applications les applications IoT sur le Web.

Cette these propose une solution complete pour la provision de 6LoWPAN avec une
annotation sémantique pour pousser le développement d’applications IoT sur le Web.
Nous visons a offrir des services d’objets intelligents pour le Web et les rendre accessibles
par beaucoup d’API Web qui existe en considérant des contraintes de 6LoWPAN comme
les ressources limitées (ROM, RAM et CPU), la faible puissance, et la communication
a faible débit.

Il y a quatre contributions: (i) La premieére contribution est sur I’architecture globale
de la provision sémantique de services pour les applications IoT sur le Web qui com-
prennent trois sous-systémes: le systeme de communication des services, le systeme de
provision des services, et le systéme d’intégration des services. (ii) La deuxiéme con-
tribution étudie un modele d’interconnexion entre les réseaux 6LoOWPAN et les réseaux
IPv6 réguliers par la conception, la mise en ceuvre et I’évaluation de la performance
d’un 6LoWPAN qui constitué des MTM-CM5000-MSP TelosB motes pour les objets
intelligents, et le Raspberry Pi pour un routeur de bordure. (iii) La troisiéme contri-
bution présente en détails de ’architecture, des algorithmes et des mécanismes pour la
provision des services des objets intelligents fiables, évolutifs et sécurisés en respectant
des contraintes de ressources limitées; (iv) La quatrieme contribution est composée de
deux applications innovantes IoT sur le Web pour I'intégration des services dans lesquels
nous appliquons I'architecture proposée: un systeme d’automatisation de la construction
(SamBAS) et une plateforme Social IoT (ThingsChat).

Abstract

The Internet of Things (IoT) involves connecting embedded devices such as sensors,
home appliances, smart meters, health-monitoring devices, and even street lights to the
Internet. With about 10 to 15 billion microcontrollers being shipped every year, each
of which can potentially be connected to the Internet, a huge variety of intelligent and
networked devices are becoming available to benefit many application domains. To fa-
cilitate this connection, research and industry have come up over the past decade with
a number of advances in microelectronic technology, low-power radio, and networking.
The objective is for embedded devices to become IP-enabled and an integral part of the
services on the Internet. These connected devices are referred to as smart objects char-
acterized by sensing, processing, and networking capabilities. They usually configure
an IPv6 low-power wireless personal area network (6LoWPAN), which plays an impor-
tant role in IoT, especially on account of energy consumption (low-power), ubiquitous
availability (wireless), and Internet integration (IPv6).

The popularity of applications on the Web, along with its open standards and ac-
cessibility across a broad range of devices such as desktop computers, laptops, mobile
phones, and gaming consoles make the Web an ideal universal platform for future IoT.
Hence, when more and more smart objects are getting connected to the Internet, it is
the natural evolution of the IoT to provision smart object services to the Web, similar to
today’s millions of conventional Web services. There is a new opportunity of truly intel-
ligent and ubiquitous applications that can incorporate smart objects and conventional
Web services using open Web standards, denoted by IoT applications on Web.

This dissertation proposes a complete solution to provision 6LoWPAN services with
semantic annotation that enables the development of IoT applications on Web. We
alm to bring smart object services to the Web and make them accessible by plenty of
existing Web APIs in consideration of 6LoWPAN constraints such as limited resources
(ROM, RAM, and CPU), low-power, and low-bitrate communication links. There are
four contributions: (i) The first contribution is about the overall architecture of the
semantic service provisioning for IoT application on Web consisting of three subsystems:
service communication, service provisioning, and service integration. (ii) The second
contribution studies the internetworking model between 6LoWPAN and regular IPv6
networks by a design, implementation, and performance evaluation of a 6LoWPAN
consisting of MTM-CM5000-MSP TelosB motes with TT MSP430F1611 microprocessors
and CC2420 IEEE 802.15.4 radio transceivers for smart objects, and Raspberry Pi for an
edge router; (iii) The third contribution presents the detailed architecture, algorithms,
and mechanisms for provisioning reliable, scalable, and secure smart object services
with respect to its resource-constrained requirements; (iv) The fourth contribution is in
application domain for service integration in which we apply the proposed architecture
on two innovative IoT applications on Web: a building automation system (SamBAS)
and a Social IoT platform (ThingsChat).

Acknowledgments

I first would like to thank my supervisor, Prof. Noel Crespi, who gave me the opportu-
nity to do this research and has been providing me a myriad of help, suggestions, and
encouragement. Next, thanks go to Prof. Gyu Myoung Lee who was mentoring me for
the first two (important) years of my Ph.D. and still offers me valuable advice. We have
discussed a lot and I really appreciate as well as enjoy the time working with him.

I must thank my colleagues and friends in Service Architecture Lab for the joint
cross-topic work we have done together that in its own way made a difference to this
research. Many ideas in this research have their origins in countless discussions with Dina
Adel. She inputted innovative scenarios for the proof-of-concept prototypes developed in
this research; I owe her creativity. Imran Khan shared with me many ideas in wireless
sensor network virtualization and helped to refine this work; Soochang Park fortified
the networking foundation of the research; Xiao Han gave her in-sight analysis from
a different perspective of the Internet of Things, data science. I am more grateful to
everyone in the lab for the fun atmosphere they have created, for everyday coffee breaks
that helped me to go through the endless days on campus. Thanks especially go to
the lovely Valerie Mateus for her beautiful nature of helping me (and everyone) with
administrative paperworks; she has made it easy for everything.

I had chance to work with excellent people in industry for several European projects.
I warmly thank David Excoffier from Sogeti and Helia Pouyllau from Thales who helped
me to approach practical designs presented in this research. I would like to thank
Vladimir Vukadinovic and colleagues at Disney Research Zurich with whom I had a
good time developing a very interesting prototype using IoT protocol stack. I learned a
lot about the IoT technology and the beauty of the art twisted in it.

Thank you Tim Berners-Lee for inventing the World Wide Web, volunteers at Inter-
net Engineering Task Force and many scientists that I cannot list all here for creating
this connected world. Also, I am very much inspired by the work carried out by Dis-
tributed Systems Group at the ETH Zurich which significantly influenced this research.

Thank you my beloved wife Genie. Had it not been for her enormous love and
support, I couldn’t have done this.

Thanks to all of you!

July 2015
HAN Ngoc Son

to Genie and Trang Mi

Table of contents

1 Introduction

1.1
1.2
1.3

Motivation e
Contributions
Dissertation Outline

2 Literature Review

2.1

2.2

2.3
24

IoT Protocol Stack
2.1.1 Link and Adaptation Layers.
2.1.2 Internet Layer: Routing
2.1.3 Transport Layer
2.1.4 Application Layer
Service Provisioning in IoT
221 General Models
2.2.2 SOA-based Models
2.2.3 RESTful Service Provisioning
Semantic Annotation and Provisioning
Literature Analysis

3 System Architecture

3.1

3.2
3.3

3.4

Requirements Lo
3.1.1 Open Standards and Interoperability
3.1.2 Low Energy Consumption
3.1.3 Reliability o
3.1.4 Security and Privacy
3.1.5 Scalability
IoT Applicationon Web
System Architecture
3.3.1 Reference Infrastructure
3.3.2 DataModel
3.3.3 Multilayer Architecture
3.3.4 Functional Block Diagram
3.3.5 Provisioning Workflow

SUMMATY . . . o o oo s e e e e

UU s =

© © 00 oD

10
10
12
13
14
17

4 Design and Performance Study of 6LoWPAN 30

4.1 6LoWPAN Design 32
4.1.1 Internetworking Architecture 32
4.1.2 6LoWPAN Edge Router 33

4.2 6LoWPAN Implementation 33
4.2.1 Hardware e 33
4.2.2 Software 34

4.3 Performance Evaluation 35
4.3.1 Energy Consumption 36
4.3.2 Duty Cycle 38
4.3.3 Network Performance 39
4.3.4 Service Communication 41

4.4 Discussion and Lessons Learned 42
4.4.1 Energy Consumption 42
4.4.2 Contiki OS 3.x and Network Performance 43
4.4.3 Current IPv4 Infrastructure 44
4.4.4 Web Services 44
4.45 Deployment L o 45

4.5 Summaryo 46

5 Semantic Service Provisioning 47

5.1 Provisioning Issues o 48

5.2 Service Provisioning Lo L 50
5.2.1 Service Discovery Lo 50
5.2.2 Scheduling 52
5.2.3 Semantic Annotation 54
5.2.4 Authorization with OAuth 2.0 56
5.2.5 URIMapping o Y
5.2.6 Web API Generation 59
5.2.7 Resource Management 60

5.3 In-network Implementation with DPWS 60
5.3.1 Devices Profile for Web Services 61
5.3.2 Usecase e 62
5.3.3 Global Dynamic Discovery 62
5.3.4 Publish/subscribe Eventing 63
53.5 WSDL Caching 63

5.4 Performance Evaluation 64
5.4.1 Transparencyo Lo e e 65
5.4.2 Scheduling: Simultaneous Requests Handling 67
5.4.3 Scheduling: Energy Consumption 67
5.4.4 Semantic Annotation L. 69
5.4.5 REST Proxy Message Overhead and Latency 69

5.5 Summaryo 71

6 Case Studies: IoT Applications on Web
6.1 Devices Profile for Web Services
6.2 ThingsChat: A Social Internet of Things Platform
6.2.1 System Architecture L.
6.2.2 Socialized Web API
6.2.3 ThingsChat Platform
6.2.4 Prototype and Experiment
6.3 SamBAS: A Building Automation System
6.3.1 System Architecture L
6.3.2 Building Ontology and Graph Database
6.3.3 Semantic Context-aware Service Composition
6.3.4 Prototype and Experiments L.
6.4 Implementation Remarks,

7 Conclusion and Future Work

7.1 Conclusion
7.2 Future Work

A DPWSim: A DPWS Simulator

A.1 Simulation Model . .

A2 DPWSim Components
A.3 DPWSim Core Functionalities

A.4 Usage Scenarios . . .

A.5 Graphical User Interface

A.6 DPWSim Use Cases
Bibliography

Acronym

72
73
74
75
76
78
79
81
83
84
88
90
92

93
93
94

96
96
98
98
100
100
100

103

110

viii

Chapter

Introduction

Contents
1.1 Motivation @ i v i i i e

1.2 Contributions i e e e e e e e e e e e e e e e 4

1.3 Dissertation Outline i i i i i i i it it

1.1 Motivation

The Internet of Things (IoT) is stimulating innovations in virtually all sectors of the
economy attracting not only researchers and professionals, but also entrepreneurs, end-
users, and even lawmakers. The IoT with its capacity to connect objects to the Internet,
blending physical and digital worlds, is going to mark a revolution in how we communi-
cate with other people and everything surrounding us.

Thanks to the advent of IoT technologies, several commercial smart devices improv-
ing our everyday life already existed in the market such as Koubachi plant sensor !, Alba
light bulb 2, and Luna mattress cover 3 to name just a few. Koubachi plant sensor can
measure soil moisture, sunlight, infrared light, and ambient temperature to determine
the exact needs of the plants and provide users with highly-specific care advice. Luna
mattress cover is able to warm up the bed, track one’s sleep, and even wake you up,
if necessary. The sensors on the Alba light bulb make it the world’s first responsive
bulb: its internal sensors allow it to automatically maintain the proper light level, ad-
just the color of the light according to the time of day, and adapt to the people in the
room. What’s more, everything surrounding us such as chairs, windows curtains, light

bulbs, office equipment, home appliances, and even baby dummies can be turned into

"http:/ /www.koubachi.com/products/outdoor/
http://stacklighting.com/
3http://lunasleep.com/

2 Introduction

Internet-connected smart objects to enhance many application domains (e.g., building
automation, healthcare services, smart grids, transportation, and environmental moni-
toring). A smart object is defined as an item equipped with a form of sensor or actuator,
a tiny microprocessor, memory, a communication module, and a power source [1]. They
are electronic embedded devices characterized by sensing, processing, and networking
capabilities. This can be done by extending the design of electronic appliances to these
objects, which fundamentally requires a new set of microelectronic technologies and

communication protocols.

To facilitate the smart object connectivity while considering its limited resources
(e.g., computing capacity, power, and memory), research and industry have come up
over the past decade with a number of advances in low-power microelectronic, radio com-
munication, and corresponding Internet Protocol (IP) networking. IP for decades has
effectively supported Internet applications such as email, the Web, Internet telephony,
and video streaming. Internet Protocol version 6 (IPv6) is expected to accommodate a
huge number of entities, enough for a inconceivably-large number of objects going to be
connected to the Internet. These technologies are being engineered by standardization
bodies led by Internet Engineering Task Force (IETF) to make them open and accessi-
ble to everyone. The objective is for smart objects to consume very low energy, become
IP-enabled, and to be an integral part of the services on the Internet. The configuration
of smart objects create a new type of networks collectively referred to as IPv6 low-power
wireless personal area networks of smart objects (6LoWPANSs), which can provide the
IP networking infrastructure for the future IoT applications.

6LoWPAN plays an important role in IoT for its benefits of the energy consumption,
ubiquitous availability, and the Internet integration of smart objects. First, energy con-
sumption has become an critical issue for modern sustainable development, especially in
the time when a huge number of smart objects staying connected to the Internet. The
energy used for only maintaining the connectivity of predictably 50 billion objects [2]
by current wireless technologies such as Wi-Fi and Bluetooth would account for a con-
siderable large amount the current world energy capacity. Therefore, low-power radio
hardware and software protocols are crucial for facilitating a practical IoT ecosystem.
Second, more and more wireless devices become available in today’s consumer elec-
tronics market creating an ubiquitous environment surrounding us which is gradually
changing our life style. Advantages to the wireless connectivity are manifold such as
the convenience to users, easy deployment, and even for aesthetic aspects that no wires
are required. Third, IPv6 with its huge address space is the future for smart objects
to seamlessly join the Internet. 6LoWPAN is known under several names such as Low-
power Wireless Personal Area Network (LoOWPAN, RFC 4944), Low-power and Lossy
Network (LLN, RFC 6550), Constrained Environment (RFC 6690). In this dissertation,

6LoWPAN is used to refer to a network of IPv6, low-power, and wireless smart objects

Motivation 3

using several IETF standards from working groups including Routing Over Low-power
and Lossy Networks (roll), Constrained RESTful Environments (core), and DTLS In
Constrained Environments (dice), IPv6 over Networks of Resource-constrained Nodes
(6lo), and IPv6 over Low-Power Wireless Personal Area Networks (6lowpan).

On the other hand, the popularity of applications on the Web, along with its open
standards and accessibility across a broad range of devices such as desktop computers,
laptops, mobile phones, and gaming consoles make the Web an ideal universal platform
for future IoT applications. In this future environment, smart objects will be able to
offer their functionality via RESTful APIs, enabling other components to interact with
them dynamically. The functionality offered by these devices (e.g., temperature sensor
data) is referred to as smart object service provided by embedded systems that are
related directly to the physical world. Unlike traditional Web services and applications,
which are mainly virtual entities, smart object services provide realtime data about the
physical world. IoT applications can therefore support a more efficient decision taking
process. Hence, smart objects providing their functionality as Web services can be
used by other entities such as other Web services, enterprise applications, or even other
smart objects. The process of preparing and providing smart object services to the Web
is called service provisioning aiming to deliver smart object services to the Web, similar
to today’s millions of Web services are functioning.

Then comes a new opportunity for truly-intelligent and ubiquitous applications that
can incorporate smart object services and conventional Web services using open Web
standards. We call these applications IoT applications on Web. The arrival of IoT ap-
plications on Web also exposes a new opportunity for conventional Internet applications
to shift their business model to catch up with this new ecosystem. The concept does not
only refer to IoT applications running on Web browser but also to any application re-
siding on the Internet communicating to smart objects and user agents using open Web
standards via Web Application Programming Interfaces (Web APIs). The user agent
can be a Web browser, a smart phone application, computer software, or even a game
console firmware. Web APIs are specifications that define how to interact with software
components, particularly, allow access to remote Web resources via a communication
network. The benefit for developers in adopting Web APIs is an easy way to enrich
functionality, simple and quick to integration, and leveraging brand strength of estab-
lished partners. Even in the new platform of smartphone applications, we can already
see that the use of Web APIs is prevalent. Shazam 4, for example, the application that
allows users to recognize pieces of music in real-time, integrates Web APIs from many
providers such as the Spotify, YouTube, Amazon, iTunes, and radio APIs. Additionally,
it allows social sharing, which presumably is realized by using the Web APIs of the

various social platforms.

“http://www.shazam.com/

4 Introduction

Once smart object services reach the Web through communication networks, appli-
cations over connected smart objects will go beyond homes, offices, and public spaces
to reach the truly global ubiquitous status. The Web then will also undergo the similar
evolution to extend their tentacles to the new kids in the block, smart objects, integrat-
ing the physical world for more useful and intelligent applications. These applications
should be developed in a relatively easy and intuitive way in which developers can use
different platforms, frameworks, tools, and programming languages. It is therefore es-
sential to provision services of smart objects in 6LoOWPAN to the Web and make them
accessible and workable with plenty of existing Web services or APIs. These services
also need to catch up with the new trends in the Web world wherein Semantic Web
technology (envisioned by Tim Berners-Lee) is predicted to bring more intelligence to
the Web. Tim Berners-Lee described Semantic Web as a Web of linked data that can be
processed directly by machines allowing applications to automatically infer new meaning
from all the information out there [3].

This dissertation proposes a complete solution to provision smart object services
in 6LoOWPAN with semantic annotation in order to empower the development of IoT
applications on Web. The solution complies with the constraints of smart objects:
limited ROM, RAM, CPU, low-power, and low-bitrate radio.

1.2 Contributions

This dissertation has four contributions solving fundamental problems for a secure, scal-
able, and reliable semantic service provisioning to enable the development IoT applica-

tions on Web, as follows:

e The first contribution is about the overall service provisioning architecture for
6LoWPAN to enable the development of IoT applications on Web. The architec-
ture covers the full development cycle taking into account object, network, and
application levels. We first explain about the key requirements and the concept
of IoT applications on Web, and then propose the architecture consisting of three
subsystems delineated in different views: Reference Infrastructure, Multilayer Ar-

chitecture, Functional Block Diagram, and Provisioning Workflow.

e The second contribution provides the networking foundation and studies the per-
formance of the internetworking model between 6LoWPAN; regular IPv6 networks,
and the Internet. It includes the design, implementation, and performance eval-
uation of a 6LOWPAN consisting of MTM-CM5000-MSP TelosB motes equipped
with Texas Instruments MSP430F1611 microprocessors, CC2420 IEEE 802.15.4
radio chips, and Contiki OS 3.x as smart objects, and a Raspberry Pi as the
6LoWPAN edge router.

Dissertation Outline 5

e The third contribution is about the detailed architecture, algorithms, and mecha-
nisms for realizing the proposed semantic service provisioning. It solves the prob-
lems of service discovery, scheduling, semantic annotation, authorization, Web
Uniform resource identifier (Web URI) mapping, and Web API presentation. We

also provide an in-network implementation of the proposed architecture.

e The forth contribution is in application domain in which we apply the proposed
architecture in two innovative IoT applications on Web: a Social IoT platform
(ThingsChat) enabling an online social network for humans and objects and a
building automation system (SamBAS) using semantic technology to offer intelli-
gence in smart environments. These applications illustrate how the architecture

can be applied in various application scenarios.

1.3 Dissertation Outline

The remainder of this dissertation is structured as follows. Chapter 2 reviews the liter-
ature of service provisioning in IoT. Chapter 3 proposes the novel service provisioning
architecture consisting of three subsystems (service communication, service provisioning,
and service integration) presented in the following Chapter 4, Chapter 5, and Chapter

6 respectively. Chapter 7 concludes the dissertation and discusses the future work.

Chapter

Literature Review

Contents
2.1 IoT Protocol Stack 6
2.1.1 Link and Adaptation Layers 7
2.1.2 Internet Layer: Routing 8
2.1.3 Transport Layer oL 9
2.1.4 Application Layer 9
2.2 Service Provisioning in IoT, 10
2.2.1 General Models 10
2.2.2 SOA-based Models 12
2.2.3 RESTful Service Provisioning 13
2.3 Semantic Annotation and Provisioning 14
2.4 Literature Analysis oo 17

This chapter provides a literature review on the IoT protocol stack, service provision-

ing in IoT, and semantic annotation for smart objects. The IoT protocol stack extending

TCP/IP networking model for smart object communication is playing the foundation

role supporting many innovative contributions in the IoT research and development.

2.1 10T Protocol Stack

The IoT aiming to integrate smart objects into the Internet introduces several chal-

lenges since many of the existing Internet technologies and protocols were not designed

for constrained resources in smart objects. IoT, therefore, has fostered the develop-

ment of many extensions and adaptations of Internet technologies for the new class of

networked objects. This results in a new IP protocol stack for IoT to enable the commu-

nication between Internet-connected smart objects and other machines on the Internet.

6

IoT Protocol Stack 7

The IoT protocol stack is contributed not only by research results from academia but
also from standardization bodies such as Internet Engineering Task Force (IETF), Insti-
tute of Electrical and Electronics Engineers (IEEE), and European Telecommunications
Standards Institute (ETSI).

The IoT protocol stack extends four layers of the TCP/IP model (RFC 1122: Link,
Internet, Transport, and Application) with the new Adaptation layer, which is required
for smart objects to adapt the small frame size of the low-power link layer to the much
larger size of IPv6 packets. Adaptation layer defines mechanisms and protocols for
header compression/decompression to enable the use of IPv6 on low-power links of
smart objects. Table 2.1 summaries common protocols for each of the five layers which

are elaborated more in the following sub sections.

Table 2.1: IoT Networking Protocol Stack

Layer Protocols

Application HTTP, CoAP, DPWS, XMPP, MQTT, AMQP, CoSIP
Transport TCP, UDP, SCTP, ICMP, DTLS

Internet IPv6, RPL
Adaptation 6LoWPAN, 6TiSCH, IPv6-over-foo
Link IEEE 802.15.4, BLE, PLC, DECT, Low-power Wi-Fi, ITU-T G.9959

2.1.1 Link and Adaptation Layers

IPv6 resides at the center of the IoT protocol stack for the interconnection between
smart objects and existing services on the Internet. IPv6 with its inconceivably-large
address space is foreseen to be available on a wide variety of different Link layer technolo-
gies meeting a wide variety of communication requirements such as wired or wireless,
short or long range, and high or low data throughput. Almost all types of commu-
nication links can support IP-based communication, therefore potentially operable for
smart objects where the low-power requirement is the key for designing the networking
models. There are several link layer technologies that are being developed for smart
objects such as IEEE 802.15.4, Bluetooth Low Energy (BLE), Digital Enhanced Cord-
less Telecommunications (DECT) Ultra Low Energy, and ITU-T G.9959. Each of these
link protocol has its corresponding adaptation layer technology, for example IPv6 over
Low power Wireless Personal Area Networks (RFC 4944) for IEEE 802.15.4, IPv6 over
Bluetooth Low Energy (draft-ietf-6lo-btle) for BLE, Transmission of IPv6 Packets over
DECT Ultra Low Energy (draft-ietf-6lo-dect-ule-01) for DECT, and IPv6 packets over
ITU-T G.9959 Networks (draft-ietf-6lo-lowpanz) for ITU-T G.9959.

The IPv6 protocol has a high overhead and restrictions that make it unsuitable
for low-power or constrained networks such as IEEE 802.15.4 networks. For example,

considering the limited space available for the Medium Access Control (MAC) payload

8 Literature Review

in an 802.15.4 MAC Protocol Data Unit (MPDU), the use of a 40-byte IPv6 header
would be too excessive. The IETF 6lowpan WG, therefore was formed to work on
the IPv6 protocol extensions required for such networks where hosts are interconnected
by IEEE 802.15.4 radios. Similarly, the IETF 6lo WG aims to connect smart objects
running a number of different link layer technologies to the Internet. The results of
these efforts will be a number of IPv6-over-foo adaptation layer specifications similar to
RFC 4944. Thus far, the working group has adopted four Internet drafts that define the
adaptations for IPv6 over BLE (draft-ietf-6lo-btle), DECT Ultra Low Energy (draft-ietf-
6lo-dect-ule), MS/TP (master-slave/token-passing) networks (draft-ietf-6lo-6lobac), and
G.9969 networks (draft-ietf-6lo-lowpanz). IETF 6tisch WG is another working group
aiming to bring IPv6 to a specific link layer technology, IEEE 802.15.4e in this case.
The IEEE 802.15.4e Timeslotted Channel Hopping (TSCH) is a recent amendment to
the MAC portion of the IEEE 802.15.4 standard. As a result the 802.15.4e timeslotted
channel hopping MAC differs fundamentally from the Carrier Sense Multiple Access
(CSMA) MAC found in standard 802.15.4. In short, TSCH allows for more controlled
and deterministic network access as opposed to CSMA, while also offering increased
resiliency to interference via channel hopping. TSCH MAC protocols are therefore

commonly used in industrial applications.

2.1.2 Internet Layer: Routing

Due to the distinctive characteristics of 6LOWPAN (e.g., low energy availability, through-
put, reliability, availability, and processing capabilities), it has specific routing require-
ments (RFC 5867, RFC 5826, RFC 5673, and RFC 5548) that differ from those found
in traditional IP networks. The IETF roll WG focuses on building routing solutions
for 6LoWPANS as the result of the evaluation of existing routing protocols like Open
Shortest Path First (OSPF), Intermediate System to Intermediate System (IS-IS), Ad
hoc On-Demand Distance Vector (AODV), and Optimized Link State Routing (OLSR)
indicating that they do not satisfy all of the specific routing requirements (draft-ietf-
roll-protocols-survey). The working group focuses on an IPv6 routing architectural
framework while also taking into account high reliability in presence of time varying
loss characteristics and connectivity with low-power operated smart objects with lim-
ited memory and CPU in large scale networks. The main realization of this working
group is the design of Routing Protocol for Low-Power and Lossy Networks (RPL) which
provides a mechanism to support multipoint-to-point traffic from smart objects inside
6LoWPAN towards a central control point as well as point-to-multipoint traffic from
the central control point to the smart objects inside the 6LoWPAN. Within the con-
strained parts of the network, the RPL offers a uniform and efficient method for realizing

multihop networks.

IoT Protocol Stack 9

2.1.3 Transport Layer

The Transport layer is responsible for providing end-to-end reliability over IP based
networks. Transmission Control Protocol (TCP) sustains the traffic on the Internet
and provides reliability thanks to the control overhead introduced for each transmit-
ted packet. Reliable transport protocols over LLNs are being studied but the amount
of information for traffic control and reliability are expensive in terms of number of
transmitted packets and end-to-end packet confirmation which directly maps to energy
consumption. The use of User Datagram Protocol (UDP) and retransmission control
mechanisms at application layer are demonstrating a good trade-off between energy
cost and reliability. UDP is a datagram oriented protocol that provides a procedure for
application to send messages to other applications with a minimum of protocol mech-
anism and overhead. In addition, the IETF dice WG focuses on supporting the use
of Datagram Transport Layer Security (DTLS) transport-layer security in constrained
environments. DTLS is the UDP adaptation of TLS (hence the name Datagram TLS)
that provides end-to-end security between two applications. Stream Control Transmis-
sion Protocol (SCTP) is also used in IoT with some works focusing on Constrained

Session Initiation Protocol (CoSIP) for smart objects [4].

2.1.4 Application Layer

Regardless of the specific link layer technology to deploy the IoT network, all the end-
devices should make their data available to the Internet. This can be achieved by
using several application layer technologies tailored for smart objects. On top of the
IPv6 Internet, constrained smart objects are able to reap the benefits of a lightweight
application protocols. The Constrained Application Protocol (CoAP) [5] is designed
exclusively for smart objects to replace Hypertext Transfer Protocol (HTTP) and can
be easily translated to HI'TP for a transparent integration with the Web, while meet-
ing the smart object requirements such as multicast support, very low overhead, and
publish /subscribe model. The OASIS Devices Profile for Web Services (DPWS) [6] stan-
dard is a lightweight version of W3C Web Service [7] providing a secure and effective
mechanism for describing, discovering, messaging, and eventing services for resource-
constrained smart objects. The Message Queue Telemetry Transport (MQTT) [8] is
an asynchronous publish /subscribe protocol that runs on top of the TCP. Publish/sub-
scribe protocols better meet the IoT requirements than request/response since clients
do not have to request updates resulting in the decrease in the network bandwidth the
need for using computational resources. The Extensible Messaging and Presence Pro-
tocol (XMPP, RFC 3920) was designed for chatting and message exchanging. It was
standardized by the IETF over a decade ago and is a well-proven protocol that has been

used widely all over the Internet. Recently, XMPP has gained attention as a suitable

10 Literature Review

communication protocol for the IoT. The Advanced Message Queuing Protocol (AMQP)
[9] is a protocol that arose from the financial industry. AMQP provides asynchronous
publish /subscribe communication with messaging. It can utilize different transport pro-
tocols but it assumes an underlying reliable transport protocol such as TCP. Its main
advantage is its store-and-forward feature that ensures reliability even after network dis-
ruptions. CoSIP [4] is a constrained version of the Session Initiation Protocol (SIP) to
allow smart objects to instantiate communication sessions in a lightweight and standard
fashion. Session instantiation can include a negotiation phase of some parameters which

will be used for all subsequent communication.

2.2 Service Provisioning in IoT

There have been several studies on service provisioning ranging from early-stage models
over Radio-Frequency Identification (RFID)and wireless sensor networks, mostly follow-
ing the concept of Service-Oriented Architecture (SOA) [10], to recent solutions over IP
protocol stacks. This section reviews these works on general and SOA-based models of

service provisioning in IoT.

2.2.1 General Models

Miorandi et al. [11] in their survey paper discussed that the shift from an Internet used
for interconnecting end-user devices to an Internet used for interconnecting physical
objects that communicate with each other and/or with humans in order to offer a given
service encompasses the need to rethink anew some of the conventional approaches
customarily used in networking, computing, and service provisioning/management. The
arising of IoT provides a shift in service provisioning, moving from the current vision
of always-on services, typically of the Web era, to always-responsive situated services,
built and composed at runtime to response to a specific need and able to account for
the users’ context. When a user has specific needs, she will make a request and an ad
hoc application, automatically composed and deployed at run-time and tailored to the
specific context the user is in, will satisfy them.

The work in [12] aimed to define an IoT ecosystem from the business perspective
then identified service provisioning as one of the key fields to realize the vision of the
IoT. The defined IoT business ecosystem is a community of interacting companies and
individuals along their socio-economic environment. It is where the companies are com-
peting and cooperating by utilizing a common share of core assets, which can be in
a form of hardware and software products, platforms or standards that focus on the
connected devices, on their connectivity, on application services over this connectivity,

or on supporting services. The connectivity is based on common IoT protocol stack as

Service Provisioning in loT 11

described in the previous section. In order to realize the ecosystem, service provisioning
cooperates with other modules such as Developing, Distribution, and Assurances. For
example, the end user could acquire various IoT services through a home gateway that
supports several technologies. Automated control of lightning, heating and security but
also entertainment services could be provisioned through this gateway. With the interop-
erability issues diminishing, the end user could separately create contracts with network
operators and the application service providers, such as a utility company or a content
provider. The model here resembles the contemporary Internet service provisioning.

Prasad et al. [13] presented another model called opportunistic service provisioning
to deal with the variety of situations that users encounter in everyday life. The model
came from the fact that in the real world, a perfectly matching service for a requirement
(or tuned to a situation) may not always be available. In these situations, humans try
to locate an approximate and an alternative service for the required one that is available
and can solve the immediate necessity. For example, a user wants a cup of coffee from a
vending machine (with a stack of paper cups), he can locate the coffee machine using his
cell phone. Meantime, these coffee cups can be easily used for drinking water, tea, soup
or any kind of liquid. The user may use a coffee cup as a pen stand or even as an ashtray.
Thus, the service should be able to locate the coffee cup when a pen stand is required.
The services now would be based on the non-availability of the exact solution that is
not possible to serve a requirement and availability of a close alternative. This work
deals with an opportunistic yet an approximate service paradigm in the Internet of the
future, especially, in the light of exponential growth of Internet of Things. The authors
discussed the characteristics of such a service and also provided the related structure
to realize this framework by representing objects in virtual objects and virtual sensing
techniques.

Mandler et al. [14] introduced a perspective of Internet of Services within COM-
POSE project '. The objective is to benefit from the IoT technologies by seamlessly
integrating the real and virtual worlds. The ecosystem can be achieved through the pro-
visioning of an open and scalable infrastructure, in which smart objects are associated
with services that can be combined, managed, and integrated in a standardized way to
easily build innovative applications. Specifically, this study was conducted on specifying
and providing a virtual service execution. Moreover, this defined interfaces needed for
appropriate services management throughout services lifecycle, creation, upgrade, re-
configuration, resolving security conflicts, rerouting, etc. An accompanying monitoring
component oversees security and privacy criteria and Quality of Service guarantees are
met. COMPOSE aimed to manage the lifecycle of services in the marketplace and to
provide methods for on-the-fly provisioning of service components with better charac-

teristics.

"http://www.compose-project.eu/

12 Literature Review

Lee and Chong [15] approached the problem of service provisioning in a user-centric
manner wherein services are created efficiently according to the users’ competency in
their living environments. The approach involves IoT service together with semantic
ontology that can support the composition of services suitable to the situation of users,
and by the log records it can modify the corresponding happenings. The proposed archi-
tecture aims to handle the limitation of user-centric IoT service provision. It is designed
to utilize the web based service platform structure that contains versatility and scala-
bility which multiple users or basic environment can easily apply to be a part of the
system. The environment requires interoperability, versatility, efficient communication,
mobility, intelligence and active functionality to the user-centric IoT service. It is also
to give advance management to the system service integration, service management,
location management, context management, traffic management, security and privacy
management that are all applied to control the faulty operation caused by deficient
requirements. The user-centric IoT service and the gathering of information from the
scattered object are done by service composition. The web service platform and dis-
tributed structure act as the core of the system to handle service provision from Web of
Object 2 environment. And the smart gateway manages the devices which are located

in the local area of decentralized domain.

2.2.2 SOA-based Models

Gagnon and Cakici [16] proposed a framework for provisioning and integrating early-
stage IoT services (using RFID) to IT infrastructure and business processes. The frame-
work exploits the SOA in two converging technologies, Business Services Network (BSN)
and the IoT. RFID tags can embed high value features essential to various industries
such as detecting, classifying, and tracking mobile (sensor-less) objects in a surveillance
field, monitoring the performance of electro-mechanical components, and controlling
manufacturing equipment. They discussed that the integration of SOA and RFID stan-
dards was becoming a strategic research priority to leverage mobile business model such
as provisioning Web services with pay-per-use, metered, or on demand business. The
framework addresses various issues along a typical transaction in business models in-
cluding: Supplier, Market, Adopter, and Delivery Issues.

The paper [17] presented the architecture of SOA-based IoT including the on-demand
service provisioning (along with dynamic network discovery, query, and selection of Web
services). They defined real-world device services as functionalities offered by these
devices (e.g., the provisioning of online sensor data) because these services are provided
by embedded systems that are related directly to the physical world. Unlike traditional

enterprise services and applications, which are mainly virtual entities, real-world services

Zhttp:/ /www.web-of-objects.com/

Service Provisioning in loT 13

provide real-time data about the physical world. Devices providing their functionality
as a Web service can be used by other entities such as enterprise applications or even
other devices. Authors discussed that services on embedded devices offer rather atomic
operations such as obtaining data from a temperature sensor. Thus, the services that the
sensor nodes can offer share significant similarities and could be deployed on-demand per
developer request. The core mechanism is that on-demand service provisioning first tries
to discover service instance on the network that matches the developer’s requirements.
If this fails, installation of services on suitable devices are carried out.

Li et al. [18] proposed a three-layer service provisioning framework for service-
oriented IoT deployments, which is able to represent, discover, detect, and compose
services at edge nodes. The purpose is to develop an effective architecture for service
operations in the IoT by extending existing architectures over smart things that are
connected to the Internet via heterogeneous access networks and technologies (such as
sensor networks, mobile networks, and RFID). The framework has three layers: appli-
cation layer is connected with a business process modeling component for IoT business
process; network layer contains several components to provide the functionalities re-
quired by services for processing information and for notifying application software and
services about events related to the resources and corresponding virtual entities; sens-
ing layer involves the sensing devices such as RID tags and smart sensors which can
record, monitor, and process observations and measurements. The network layer can

communicate to the sensing layer with device-level APIs.

2.2.3 RESTful Service Provisioning

Web resources identified by Universal Resource Identifiers (URIs) are considered as
the core of modern Web architecture. They are accessed by clients in a synchronous
request /response fashion using Hypertext Transfer Protocol (HTTP) methods such as
GET, PUT, POST, and DELETE. Resource state is kept only by the server, which allows
caching, proxying, and redirection of requests and responses. Web resources may contain
links to other resources creating a distributed Web between Internet endpoints, resulting
in a highly scalable and flexible architecture. These are the fundamental concepts of
the Web, i.e., Representational State Transfer (REST) [19]. REST has emerged as a
predominant Web design model with more than ten thousand RESTful APIs (services)
at the time of this article [20].

The RESTful service abstraction advocated by many researchers and professionals is
an essential step to provision services in IoT systems. Guinard et al. in several studies
[21, 22, 23, 24, 25, 26| present a continuous effort to integrate smart objects of different
forms ranging from RFID, to WSNs, to embedded systems, to the Web by representing
their data and events using RESTful APIs via device gateways. Based on that, authors

14 Literature Review

develop two approaches for mashup: Physical-Virtual and Physical-Physical in a number
of applications. Many other studies [27], [28], [29] also find their ways to explore this
trend over sensor nodes and embedded devices.

Besides, many IoT platforms have been developed to support the development of
IoT applications tend to approach RESTful service provisioning of smart objects. As
can be seen in the Table 2.2, these platforms mainly aim at integrating smart objects of
different types into the Web through RESTful APIs. These platforms provide mid-point
services to encapsulate underlying heterogeneous smart objects into Web interfaces that
can further integrate into modern Web infrastructures such as cloud and platform-as-

a-service (PaaS). These approaches expose some difficulties to scale IoT systems since

each platform has to handle routing discrepancy and protocol translation.

Table 2.2: IoT Platforms

Platform Smart Objects Service Abstraction
BUGswarm [30] IP networked devices RESTful APIs
Carriots [31] Web-enabled devices RESTful APIs

EVRYTHNG [32]

GroveStreams [33]
Nimbits [34]

Open.Sen.se [35]
Paraimpu [36]

NanoService [37]

SensorCloud [38]

ThingSpeak [39]
ThingWorx [40]

Xively (Pachube) [41]

Yaler [42]

Web-enabled devices
Web-enabled devices

Sensors
General physical objects

Web-eanbled devices
Embedded PCs,

Mobile devices
Embedded devices
MicroStrain WSNs
Android phones/tablets
i0S phones/tablets

NI CompactRIO
Web-connected devices
Sensors

General connected devices
(Not specified)

Multiple hardware
Multiple platform
Embedded systems
(Arduino, BeagleBone
Netduino, Raspberry Pi)

RESTful APIs
(EVRYTHNG Engine)
RESTful APIs
RESTful APIs
RESTful APIs

JSON, XML

RESTful APIs

Nano Service Platform
RESTful APIs

SensorCloud
OpenData APIs

RESTful APIs

RESTful APIs

Sockets, MQTT, AlwaysOn
RESTful APIs

Sockets, MQTT

RESTful APIs

SSH Service

2.3 Semantic Annotation and Provisioning

Literature in applying Semantic Web technologies to IoT is focusing on semantically
annotating data from smart objects similar to what Semantic Web envisions about the
Web of Linked Data. The predominant technique for representing semantics is using

Resource Description Framework (RDF) [43], which represents knowledge as triples

Semantic Annotation and Provisioning 15

(subject, predicate, object) (e.g., [TempSensor803, hasValue, 18] and [TempSensor803,
locatedIn, Room803]). A set of triples forms a graph where subjects and objects are
vertices and predicates are edges. The advantage of RDF and graph data model is
that one can infer new knowledge from existing graph. For example, a system can use
domain knowledge to understand that the temperature in Room 803 is 18 degree, which
is transitive property. The domain knowledge is often expressed using Web Ontology
Language (OWL) [44], one of the main languages (with RDF schema) to define ontologies
on the Web.

To carry out the annotation on smart objects, World Wide Web Consortium has
pioneered to establish a working group to gather contributions in this field and to define
the first universal ontology for semantic sensor networks (SSNs) [45]. They developed
SSN ontology ? that is an OWL 2 ontology being able to describe sensors in terms of
capabilities, measurement processes, observations and deployments. The SSN ontology
follows a central Ontology Design Pattern (ODP) [46] depicting the relationships be-
tween sensors, stimulus, and observations. The ontology can be seen from four main
perspectives: a sensor perspective, with a focus on what senses, how it senses, and
what is sensed; an observation perspective, with a focus on observation data and related
metadata; a system perspective, with a focus on systems of sensors and deployments;
and, a feature and property perspective, focusing on what senses a particular property
or observations have been made about a property.

Several studies focused on publishing semantic sensor data. Sense2Web [47], for ex-
ample is a linked-data platform to publish sensor data and link them to existing resource
on the Semantic Web. Sense2Web facilitates the publication of linked sensor data and
makes this data available to other Web applications via SPARQL [48] endpoints. Pfis-
terer et al. [49] introduced the vision of Semantic Web of Things for building semantic
applications involving Internet-connected sensors as easy as building, searching, and
reading a Web page today. This is done by a crawler periodically scanning the Semantic
Web of Things for semantic entities and sensors, downloading metadata and prediction
models using their Web APIs, converting this information into RDF triples, and storing
them in the triplestore.

The work in [50] is another approach in provisioning semantic annotation for IoT
smart objects, similar to the Semantic Web of Things vision. It is about a platform-
independent Wiselib RDF Provider to enable the Internet-connected smart objects to act
as semantic data providers. They can describe themselves, including their services, sen-
sors, and capabilities, by means of RDF documents. A smart object can auto-configure
itself, connect to the Internet, and provide Linked Data without manual intervention.
The authors proposed to use a semantic storage for storing RDF documents from smart

object data and a data provider responsible for dynamic parts of the RDF documents,

3http://purl.oclc.org/NET /ssnx/ssn

16 Literature Review

such as measurements. It converts sensing data to RDF and inserts it into the semantic
storage. Using the Wiselib’s callback sensor concept, the data provider gets notified
when the value of its associated sensor changes. Another module RDF service broker
provides an interface for clients to access and modify the RDF in the storage and to
manage subscription from clients.

[51] Bimschas et al. investigated unified concepts, methods, and software infrastruc-
tures that support the efficient development of applications across the Internet and the
embedded world based on Semantic Web technologies. From an abstract point of view,
the main task of IoT application developers is obtaining the data for a specific task.
In distributed systems, this requires (1) to identify entities holding the data and (2) to
retrieve them. In this paper, authors proposed a methodology to simplify IoT applica-
tion development. The approach combines technologies from the Internet of Things and
the Semantic Web to provide this service efficiently. The central idea is to let entities
provide self-descriptions of their type, capabilities, services, etc. in a machine-readable
manner.

The paper [52] presented an IoT semantic service model for different components
in an IoT framework over physical entities. It is also discussed how the model can
be integrated into the IoT framework by using automated association mechanisms with
physical entities and how the data can be discovered using semantic search and reasoning
mechanisms. The entity constitutes things in the Internet of Things and could be a
human, animal, car, store or logistic chain item, electronic appliance, or a closed or open
environment. The relations between services and entities are modeled as associations.
These associations could be static, e.g., in case the device is embedded into the entity
or dynamic, e.g., if a device from the environment is monitoring a mobile entity. The
semantic modeling and OWL/RDF descriptions solve the interoperability issues within
the stakeholders that have agreed and/or provided data using the models.

Klaine argued in [53] that a key indicator for sustainable application development is
the reusability of components and data provisioning. The provisioning of sensor readings
as CoAP Web services is a straightforward way to integrate the sensors (the physical
things) into the Internet and thus makes them part of the IoT. He proposed to divide the
data model into three separate parts with Data Provider stay in between Data Origin
and Data Consumer. The central component of the Data Provider is the Smart Service
Proxy (SSP) which acts as the intermediate device between the client (Data Consumer)
and the resource (Data Origin). SSP contains a semantic database as the presentation
of data collected from sensor nodes, which is the core of the provisioning process. Since
the SSP focuses on semantic service provisioning, the cache is well fitted to semantic
content, i.e., triples. This allows Data Consumers not only to retrieve cached resource
states but also use SPARQL to find resources with certain properties. The SSP provides

an endpoint to run queries on its cached resources via its Web URI.

Literature Analysis 17

2.4 Literature Analysis

We observe several problems in literature about IoT service provisioning as follows:

e Most of the studies focus on the high-level architecture and models for service
provisioning without sufficient details about networking protocols at smart ob-
ject level and about the integration with traditional services at application level.
Services from smart objects possess different characteristics then traditional ones
as they operate in constrained environments (e.g., low capacity nodes, lossy and
low-rate network). It is therefore necessary for service provisioning architecture to

consider these properties.

e Current studies have not considered a full IP IoT in service provisioning, which
results in the use of protocol gateways to translate non-IP to IP-based communica-
tion. Protocol gateways are complex to design, manage, and deploy; their network
fragmentation leads to non-efficient networks because of the inconsistent routing,
QoS, transport, and network recovery. End-to-end IP architecture is considered
suitable and efficient for scalable networks of large numbers of communicating

devices such as the IoT.

e Service provisioning in SOA-based IoT using W3C Web Service architecture is
facing many difficulties such as the heavyweight of Simple Object Access Pro-
tocol (SOAP) messages and the complex parsing XML documents. Web APIs
are providing an efficient ways of interacting between Web applications ensuring
smooth and simple operation of the Web and coping with the future participation
of millions of smart objects. This approach originally aim to IoT application in

enterprise solutions which base on business processes of Web services.

e Semantic annotation of smart objects is incorporated within the annotation of sen-
sor data. Whilst, the annotation of functionality (i.e., not data) is also important
for these services are present in a great number of smart objects such as services
to switch on/off a light bulb and to activate a watering system. The future of IoT
is driven by many types of objects that carry not only data but also functionali-
ties. Currently, there are two methods for annotating smart objects (either data
or functionality): direct annotation and third-party service. The former incurs
large data stored in smart objects and large exchange messages due to the use of
XML-based RDF standard. The latter represents a single bottle neck by which

the communication stream can be broken or interfered.

In this dissertation, we aim to overcome these problems by carrying out empirical
study of 6LoWPAN performance, requirement analysis, and then propose a new semantic

service provisioning to empower the IoT applications on Web.

Chapter

System Architecture

Contents

3.1 Requirements ittt e 19
3.1.1 Open Standards and Interoperability 19
3.1.2 Low Energy Consumption 20
3.1.3 Reliability 21
3.1.4 Security and Privacy L o o 21
3.1.5 Scalability 22

3.2 IoT Applicationon Web 22
3.3 System Architecture. 00 0o 24
3.3.1 Reference Infrastructure L Lo 24
332 DataModel 25
3.3.3 Multilayer Architecture 26
3.3.4 Functional Block Diagram 27
3.3.4.1 Service Communication 27

3.3.4.2 Service Provisioning L oL oL 28

3.3.4.3 Service Integrationo oL 28

3.3.5 Provisioning Workflow oL oL oL 29

3.4 SUMIMATY .« ¢ ¢ ¢ v v v v v v v v e e e e e et e e e e e e e e e e e e e e 29

This chapter presents the key requirements of service provisioning for 6LoWPAN

followed by the proposed system architecture. The architecture aims to provision smart

object services in 6LOWPAN using open standards to power IoT applications on Web

connecting smart objects with existing Web services in a scalable, secure, and reliable

manner. We provide the architecture in different perspectives including reference infras-

tructure, data model, multilayer architecture, functional block diagram, and provisioning

18

Requirements 19

workflow. The architecture is based on all IP protocol and networking principles realized
by service communication subsystem in the functional block diagram. On top of that,
service provisioning uses a scheduling algorithm, OAuth 2.0 authorization framework,
semantic annotation, and URI mapping schemes to generate Web APIs to be used in

IoT applications on Web by mechanisms explained in the service integration subsystem.

3.1 Requirements

Smart objects and 6LoWPANs are similar to any IP-based computer network, but they
carry many different characteristics that need to be taken into account. This section

presents the core requirements of service provisioning in 6LoWPAN.

3.1.1 Open Standards and Interoperability

The Internet as we see today is based on a plenty of open and non-proprietary standards.
They are the key for a huge number of devices, services, and applications across the
global to exchange data in a wide and dispersed network of networks. Some international
groups are behind the development of these standards such as the Internet Engineering
Task Force (IETF), the Internet Research Task Force (IRTF), and the World Wide
Web Consortium (W3C). These organizations are all open, transparent, and rely on a
consensus-based decision making process to develop standards. They are experts around
the world working together to create freely-accessible specifications that available online
at no charge, thus to foster the adoption of them.

Open standards lie at the core of the success of today’s Internet and Internet-related
technologies. While the Internet continues to grow to the next evolution with the arrival
of new actors, smart objects, to create the new ecosystem of the Internet of everything
or IoT, it is critical that new technologies continue to be developed based on open
principles and processes. When it comes to system design such as service provisioning,
using open standards does not only provide the interoperability, but also can backward
promote the development of the Internet technologies.

Interoperability is the key characteristic of the Internet where the information being
exchanged across a wide network of heterogeneous systems and devices. It is about the
ability of a system to work with or use the functions of other systems. It has been one of
the key requirements for Internet applications, which are based on the communication of
different hardware and software infrastructure. In IoT, the heterogeneity of the systems
and devices become even larger where smart objects, which are limited in resources,
cannot operate in a full-fledged manner with other networks. Therefore, for new IoT
systems to be an integral part of the Internet, they must be able to exchange data and

subsequently present that data such that it can be consumed by existing systems on the

20 System Architecture

Internet. Interoperability requires standards on several levels. It is necessary to have
uniform mechanisms in what is being exchanged (data elements), how to structure data
for exchange (record schemas and record syntaxes), and how to actually exchange it

(protocol transactions and messages and profiles).

Service provisioning therefore has to provide data format, protocol messages, and
data schema that can be used in other systems on the Web using open Web standards
Web design principles such as Representational State Transfer (REST) [19] and Semantic
Web [3] are the key to enable the interoperability for IoT applications on Web.

3.1.2 Low Energy Consumption

Energy consumption has been at the center of any discussion for the sustainable develop-
ment these days, especially when the digital revolution has happened recently. Machines
are driven by electronic parts, and electronics need power. This fact brings the energy
issue even up to a more critical level when the IoT is happening very fast with billions
of personal electronic are predicted to be available in coming years. Today, the most
common power source is a battery, but there are also several other possibilities such as
solar cells, piezoelectricity, radio-transmitted energy, and other forms of power scaveng-
ing. Power scavenging is a technique in which devices harvest power from the physical
environment. Solar cells represent the most common form of power scavenging. They
harvest their power from the ambient and direct light hitting the smart object. While
static energy sources are limited, for those powered by power scavenging, energy is not

always assured and difficult to be stored for extended periods of time.

For this reason, both the hardware and the software of the smart object must be
designed to meet stringent power requirements. To achieve this, low-power hardware
such as microprocessors and radio chips have been developed. Low-power radio hard-
ware, which is the most critical part of consuming energy in smart objects to maintain
the connectivity, however it is still not sufficient. Existing low-power radio transceivers
(though optimized) use too much power to provide long lifetime on batteries. For ex-
ample, the CC2420 radio transceiver, used in the MTM-CM5000-MSP TelosB and Z1
motes, use approximately 60 milliwatt of power when listening for radio traffic and a
similar figure for data transmission. By that power, radio operation depletes 2 AA
batteries equipped for these motes in a matter of days. Therefore in addition to hard-
ware, software design of protocols and system architecture play an important role on
improving the energy consumption of smart objects. For example, radio duty cycling
mechanisms (e.g., ContikiMAC) aim to deal with this problem by keeping the radio
turned off as much as possible while providing enough rendezvous points for two smart

objects to communicate.

Requirements 21

3.1.3 Reliability

The trade-off of low-power design for smart objects and 6LoWPAN comes with the
less reliable communication link due to the use of low-power and low bitrate protocols.
There are fundamentally two factors in 6LowPAN leading to the low reliability of the
network: constrained processing power in smart objects and lossy and low bitrate in
the communication. To fulfill the energy requirement, smart objects are equipped with
limited processing power, memory, and energy; they are also in many cases battery-
operated or energy scavenging that leads to the data processing capacity is subject to a
limit. Besides, smart objects are interconnected by lossy links, typically supporting only
low data rates that are usually unstable with relatively low packet delivery rates. This
may result in the loss of packets. There have been efforts to handle the issue such as new
routing protocol RPL considering the loss nature of the link. Even when mechanisms for
dealing with high packet loss rate are applied, long delay between service requests and
responses is anticipated due to the limited resource on the smart objects side. In many
applications, the delay may be not tolerable for practical uses. Therefore, to effectively
integrate 6LOWPAN into the Internet environment, IoT architects have to take into

account this requirement as one the core values.

3.1.4 Security and Privacy

Security in IoT is becoming a critical issue with millions of devices getting connected
to the Internet. The IoT means that everyday objects going online, being connected,
and talking to each other without human being’s involvement to, for example, carry out
many of our tedious routines. For what we are witnessing today, the first wave of the IoT
is already around with several tracking devices on the market such as activity trackers
that record your movements and geographical position, baby monitors that measure
breathing and skin temperature, and smart Wi-Fi light bulbs that can be programmed
via a smartphone. The question is how these personal data are being handled and
by whom. The autonomy of devices comes with more concern about our privacy and
when more objects expose themselves to the Internet, more security issues come to our
software systems where these objects are also connected. The critical problem is these
smart objects are getting smarter to intervene in users’ privacy. It is possible that once
you bought a television, turn it on and while it serves you with new smart services
taking into account of your preferences and use contents on the Internet, it could be
listening to your private conversations and sharing them over the Internet.

Another issue with security and privacy for smart objects is that they have the
owner-object relationship to their owners and the owners have several preferences for
setting up their devices. Smart objects, different to other resources on the Web, have

limited resources and a special degree of privacy because they belong to individuals

22 System Architecture

with their privacy to protect and have limited resources. Therefore, the consumption of
smart object services should be well-managed in a secure and stable manner. Therefore,

provisioning smart objects services has to come with appropriate authorization to use.

3.1.5 Scalability

Today’s Internet is a giant global network of networks based on IP-based protocols
thanks to its inherent scalability. No other networking technology in the history has
ever been deployed and tested at such an immense scale and with such a large number of
devices. As smart objects will connect to the Internet in even a larger number, scalability
is a primary concern and should be staying at the core of designing new system. To assure
the continuous development of the Internet, smart objects and 6LoWPANSs as new actors
are required to work in the similar scalable manner. Service provisioning must be efficient
and practical when applied to large-scale situations either in the scale of 6LoWPANSs or
of IoT applications on Web in addition to the assurance of system performance when the
network expands. Also, at network deployment level, the installation of smart objects
network in any facility (home, office, public space, etc.) is required to be fast and
integral part with the existing communication infrastructure.

This requirement leads to a direct suggestion of using IP-based protocols for IP
has proven itself a stable and highly scalable communication technology that supports
both a wide range of applications, devices, and underlying communication technologies.
End-to-end IP architecture is considered suitable and efficient for scalable networks of
large numbers of communicating devices such as the IoT. The next generation Internet
protocol, IPv6, expands the address space from 32 bits to 128 bits. Such a large address
space has been estimated enough for billions of smart objects going online in the near
future. The adoption of IP standards can be carried out at low level of smart objects
themselves to avoid using protocol translation gateways, which prevent the scalable
deployment of 6LoOWPAN and IoT systems.

3.2 IoT Application on Web

The Internet is a scalable global network of computers that interoperate across hetero-
geneous hardware and software. On top of the Internet, the Web is an outstanding
example of how a set of relatively simple and open standards can be used to build very
complex systems while preserving efficiency and scalability. The Web and its underlying
open protocols have become a part of our everyday life - something we access at home or
on the move, through our laptop computers, phones, tablet, TV, or wearable devices. It
has changed the way we communicate and has been a key factor in the way the Internet

has transformed the global economy and societies around the world.

IoT Application on Web 23

Meanwhile, the IoT will allow physical objects to transmit data about themselves
and their surroundings, bringing more information about the real world online and help
users to better interact with their surroundings. Flowers, for example, can send you
an email or a SnapChat ! photo of your flower when they need watering. Doctors can
implant sensors in your body that give you real-time updates about your health updating
frequently to a secure online database of your personal data. Even more, IoT data will
go beyond the scope of each own service provider to go online and share with other
applications and users. We coin the term loT Application on Web to refer to any Web
application interacting with smart objects through communication networks using open

Web standards. They are IoT applications and they are Web applications identified by:

Reside on the Web (on Web server/cloud)

Use open Web standards

Interact with smart objects

Be accessed via Web agents.

IoT application on Web is the natural evolution of Web application when Internet is
transforming to the Internet of everything to include smart objects in the loop. There
can be an application to get access to your Google calendar with the note of cleaning
your living room to have your mother visit in few hours. The application then asks
your robot cleaner to automatically wake up and do cleaning. Robot cleaner notifies
you (by sending an email or a SnapChat message) when it starts working or finishes
the work. Another application can let you talk to your devices in the way you talk to
your friend with the support of natural language processing engines; this is the new
experience of making friendship with your devices. Yet another application can serve
you in the airport to update the status of the flight, providing practical information
in the airport, connecting to the boarding machine to update you for any delay of
boarding time that you can spend more time doing shopping in duty free. Yet another
application can synchronize your TV programs and football schedule and also your social
network profile to remind you an upcoming match. These applications all require the
interactions of existing Web services and new services from smart objects to create new
user experience while assuring the seamless transition from developing traditional Web
applications to this new type of IoT applications on Web. This is where our work comes

in to solve the fundamental problem of such ecosystem, service provisioning.

"https://www.snapchat.com/

24 System Architecture

Smartobject @ Router 1

\
1
1
i RegularIPvE node BEdR ELoWPAN Edge Router

Figure 3.1: The reference infrastructure.

3.3 System Architecture

This section presents details on our proposed service provisioning architecture including
Reference Infrastructure, Data Model, Multilayer Architecture, and Functional Block
Diagram. We also provide a brief introduction on each component of the architecture,

which will be elaborated in the following chapters.

3.3.1 Reference Infrastructure

Figure 3.1 illustrates the reference architecture in which smart objects are items equipped
with sensors or actuators, tiny microprocessors, memory, low-power communication de-
vices, and power sources. Smart objects exist in several real-life facilities such as build-
ings, houses, and public spaces. Most of them are constrained devices with even few
hundred kilobyte memory and is battery-powered. They run low-power operating sys-
tem implemented with IP-based protocols and stacks. These smart objects configure a
6LoWPAN based on low-power physical layer protocols such as IEEE 802.15.4, BLE,
and DECT Ultra Low Energy. The 6LoWPAN connects to regular IP networks via a
6LoWPAN Edge Router (6EdR) and beyond to the Internet through a series of other
routers across the network. Smart objects are first manufactured with primitive services
inside, which can be re-programmed. These services are then provisioned to the IoT
applications on Web by the method presented in our proposed architecture. These ap-
plications are hosted on the Web servers or cloud and can be accessed via user devices
such as laptop computers, smart phones, and tablets.

This reference architecture can be realized in home networks. For example, a home
hosts several smart objects including a wireless camera, a wireless LED smart bulb, and
an alarm. These objects join the home network via Ethernet coaxial cables (alarm) or
wirelessly by Bluetooth Low Energy (camera, smart bulb). The network connecting to
a 6EdR. acts as an access point for home Internet connection, and also connects to other

devices using full IP capacity such as laptop and TV. A smart phone application can

System Architecture 25

] < > |-Ontology
* Application - Com!Josite ser\{ice
g“ __ Database __~ - Application logic 7
i
! L - Full semantic annotation
\.,________________.../
- Reference to ontology
.— a
L] Triplestore _APls
\-.,_____________,./ V
4
! . -Smart object services
\"”“‘——_———-—""/ - Protocols: CoAP, DPWS,
>~ File system XMPP, etc.
—— - Resource-constraint
4

...

Figure 3.2: Data model in the hierarchical scheme.

use the Web API provisioned from these smart objects to provide a handy tool for users
to remotely control their home with tasks such as switch on or off a light bulb. Another
application is a Home Surveillance Web application providing surveillance service for
users to remotely track their home environment such as notifying users that their kids

are at home.

3.3.2 Data Model

Every smart object in the 6LoWPAN is provisioned with data in which information
about low level resources (sensors, actuators, memory, energy, etc.) and high level
resources (semantic services and contextual services) are stored in different locations.
These data create data model for our provisioning architecture.

Data are organized according to the reference architecture to store different infor-
mation about the smart objects, 6LoWPAN, and services. There are three kinds of
data: object data, provisioning data, and application data. Object data, which store
information about primitive services directly provided from smart objects, cover the
physical resource status and contextual data such as temperature and humidity. They
can be implemented in the smart objects using resource-constrained protocols such as
CoAP, DPWS, and XMPP and accessed via protocol messages. Provisioning data store
information about services provided by 6LoWPAN nodes enriched by semantic annota-
tion with reference to the domain ontology. Application can get access to this data by
calling its Web API. Application data store high-level information about single services
and composite services provided by 6LoWPAN that meet the requirement of each ap-
plication. Besides, application logics are stored in this repository. By this data model,
IoT applications on Web collect and store semantic data, consulting to online ontology

to handle many context-aware scenario.

26 System Architecture

S/
—] 4
User Device / g @ @ El @ /
Layer | 4
g

10T hpp 4
4

/ loT App / /IoTnpp / -

Application 4
Layer

Service
Provisioning
Layer

Smart Object
Layer

Regular IPvé node BEdR 6LoWPAN Edge Router

Figure 3.3: Multiayer architecture.

The organization schema of our data model is shown in Figure 3.2. The repository
on the top of the hierarchy, in the form of application database, is located in the Web
server or cloud which combines smart objects services with conventional Web services
to create novel composite services. Ontology is separately developed by many providers
who have expertise on each domain. The provisioning data repository is a triplestore
located in a provisioning server, which can be located in local network or on the Web.
Object data repository is located in smart object with its file system or dynamically in

program logic.

3.3.3 Multilayer Architecture

Figure 3.3 shows a high-level view of the architecture in the form of multilayer ar-
chitecture. Therein, the Smart Object Layer is the lowest layer where services are
implemented on physical entities including smart objects and conventional computers.
This layer consists of 6LoWPANs and regular IP networks. Each 6LoWPAN connects
to an edge router 6EdR which carries out the routing function between the 6LoWPAN
to regular IP networks assuring the consistence in routing, Quality of Service, trans-
port, and network recovery for the entire system. Regular IP networks also reside in
this layer providing services to the Web in a similar way to 6LoWPANs. The second
layer is the Service Provisioning Layer representing the interface between smart objects
and applications on the Internet. There will be a Web API associated to each 6LoW-
PAN, which can be used in multiple applications and mashed up with other Web APIs
of smart objects and conventional Web APIs. The third layer is Application Layer of

IoT applications on Web. This layer exhibits the mechanism of how an application use

System Architecture 27

SERVICE COMMUNICATION || SERVICE PROVISIONING :
: 11| TRIPLESTORE || URIMAPPING |!!]Z
! |SEMANTIC SERVICE || IDENTITY/ |1} -
PRESENTATION ENDPOINT [} semanTIC wes Al ! gg
11| ANNOTATION || GENERATOR | g g
' [N =
: TRANSPORT |1} REQUEST |\ |3 Z
H OPERATING RouTING | i1| SCHEPULNG 1 anpung |1z @
SYSTEM i SERVICE b
ATION AUT I N
IPV6 ADAPTATION [11] |-\ ey || AUTHORIZATION i1
:‘ HARDWARE M RESOURCE MANAGEMENT |ii

Figure 3.4: Functional block diagram.

6LoWPAN Web APIs to interact with smart objects, and how these applications can
carry out semantic reasoning by retrieving semantic annotation from smart object and

querying from available ontology in the domain.

3.3.4 Functional Block Diagram

Figure 3.4 depicts the proposed service provisioning architecture with functional blocks
divided into three subsystems: service communication, service provisioning, and service
integration. These functional blocks provide guidelines for implementing relevant IP
networking stacks in smart objects. IP networking for smart objects is the foundation
for facilitating services using application layer protocols doing semantic annotations to
these services. It relies on open and standardized protocols mainly from IETF work-
ing groups. Service provisioning method for secure, scalable, and reliable services of
6LoWPAN includes: service discovery, scheduling, URI mapping, request handling, au-
thentication, and Web API representation. A method for using provisioned services from
smart objects includes steps: retrieving Web API from service providers, requesting au-
thentication tokens, requesting a smart object service, receiving response from smart
object, querying and reasoning using an appropriate domain ontology, and mashing up

with other APIs.

3.3.4.1 Service Communication

Starting with Service Communication system, the functional blocks suggest that smart
object is implemented with low-power operating systems supporting constrained IP
stacks such as Contiki OS 2, TinyOS 3, and RIOT OS 4. Common IoT protocols, e.g.,
6LoWPAN Adaptation, IPv6, RPL, TCP, and UDP can be used to provide the net-
working functionality of smart objects. On top of that, services are implemented using

an application layer protocol such as CoAP, DPWS, and XMPP. These services can

?http:/ /www.contiki-os.org/
3http:/ /www.tinyos.net/
‘http:/ /www.riot-os.org/

28 System Architecture

communicate with applications on the Web and interact with sensor/actuator hardware
in smart objects to, for example, collect contextual information and activate a routine
task of smart objects. Smart objects are also enriched by simple semantic annotation
based on domain ontology previously published or available on the Web. Each service
is identified by an identity, which plays a role of an endpoint address for service com-
munication. Also this identity is reserved for security purposes. This domain enables
the consistent communication between smart object networks and normal IP networks

also facilitate smart object functionalities using open application standards.

3.3.4.2 Service Provisioning

The Service Provisioning subsystem, based on the IP infrastructure in 6LoWPAN, en-
capsulates constrained protocols and interfaces into useful Web APIs that can be used
in multiple IoT applications on the Web. One of the common characteristics of smart
object services is the ability of dynamic discovery, mostly using multicasting. Service
Discovery functional block is deployed to either relay the multicast messages to the ap-
plications or forward the messages in and out the local network. URIs discovered in
discovery process are sent to URI Mapping to apply the mapping rules. Developers also
can maintain the service cache by providing discovered data to a cache module. Provi-
sioning Interface in the form of Web API contains descriptions of smart object services
that can be consumed by IoT applications on the Web. It also provides the ability for
applications to mashup smart object services with other Web services.

Each API request consisting of a HT'TP verb (GET, POST, PUT, and DELETE)
on an URI (retrieved from URI Mapping) and an authentication token comes to the
Request Handling for preprocessing. Request Handling parses the token to get the
permission of using the services and first looks into the cache for available resource to
bypass the discovery step. If the resource is not found in the cache, Request Handling
with send a discovery request to the target smart object to check for its availability and
updated information. Thereafter, the request is put into the Scheduling queue waiting
for interacting with the target smart object. This Scheduling block is to ensure that
the constrained environment can reply to a maximum number of requests. When the
request is process, data go through a dispatcher for communicating with the target

smart object.

3.3.4.3 Service Integration

In Service Integration subsystem, each IoT application on Web can use smart object
Web APIs in the same way as other Web APIs and carry out inference from semantic
data. Provisioning Interface provided by the Service Provisioning subsystem to be used

by IoT applications on Web in the same way that conventional Web applications use

Summary 29

Developers request API, authorization, and
domain ontology

Service provider implements SO
with IP stacks l,

!

Service provider implements SO services,
authentication, and semantics

Service provider provisions SO services via
Web API

Figure 3.5: Provisioning workflow.

Applications authenticate and communicate
with 50 services using HTTP methods and
semantic languages

Web APIs such as Google API, Twitter API, and Yahoo API. Semantic data received
from smart object services can be associated with the domain ontology to carry out
inference or intelligence for the application. All of these functional blocks can be used in

standard programming language and tools provided by several development platforms.

3.3.5 Provisioning Workflow

Figure 3.5 illustrates an overall workflow of provisioning smart object services including
three subsystem of the architecture. At the first step, service providers such as building
owners and third-party service companies provide smart objects with pre-manufactured
operating systems supporting IP stacks for developers or third-party IoT technology
firms to implement IP stacks. Next, service providers describe and implement smart
object functionality in the form of services, authentication schemes, and semantic anno-
tations. The final step involves service provider to provision smart object services to the
applications on the Web. Developers can start to use a set of smart object by acquiring
their API, authentication tokens to get access to the API, and domain ontology to use
reasoning with semantic data retrieved from smart object, depicted in the next step.
Thereafter, applications can communicate with smart objects via HT'TP methods over

Web API, mashup with other Web APIs and doing reasoning based on semantic tools.

3.4 Summary

This chapter has given the overall architecture for semantic service provisioning of 6LoW-
PAN. In the next chapters, we will introduce the details of each subsystem to realize
this architecture. Starting with Chapter 4, we present the design, implementation, and
evaluation of 6LoWPAN with which, the results act as the foundation to build up the
provisioning architecture described in the next Chapter 5. Chapter 6 describes two

innovative applications applying the proposed architecture.

Chapter

Design and Performance Study of

6LoWPAN

Contents

4.1 6LOWPAN Design ot v it ittt i e e 32
4.1.1 Internetworking Architecture 32
4.1.2 6LoWPAN Edge Router 33

4.2 6LoWPAN Implementation 33
4.2.1 Hardware e e 33
4.2.2 Software 34

4.3 Performance Evaluation 35
4.3.1 Energy Consumption oo 36
4.3.2 Duty Cycle 38
4.3.3 Network Performance 39
4.3.3.1 Radio Signal Strength 39

4.3.3.2 Packet Delivery Ratio 39

4.3.3.3 End-to-End Delay 40

4.3.3.4 Data Transfer Rate 40

4.3.4 Service Communication 0L 41

4.4 Discussion and Lessons Learned 42
4.4.1 Energy Consumptiono 42
4.4.2 Contiki OS 3.x and Network Performance 43
4.4.3 Current IPv4 Infrastructureo oo 44
444 Web Services 44
445 Deployment 45

4.5 SUMMATY + . ¢ v v v v v v v e e o o e e e e e e e e e e e e e e e e 46

30

31

IP Protocol Stack 6LoWPAN Protocol Stack

HTTP, SOAP, XMPP | Application CoAP, DPWS, XMPP

TCP, UDP [ICMP [Transport uUDP ICMPVv6
Ip Internet IPV6

6LoWPAN Adaptation

Link
Ethernet " |EEE 802.15.4/BLE/PLC*

*BLE = Bluetooth Low Energy
PLC = Power-line communication

Figure 4.1: IP and 6LoWPAN protocol stack in reference to layers of the TCP/IP
networking model.

Since IPv6-enabled low-power wireless personal area networks of smart objects (6LoW-
PANSs) play an important part in the IoT, especially on account of the Internet inte-
gration (IPv6), energy consumption (low-power), and ubiquitous availability (wireless),
this chapter presents the design and a study on 6LoWPANs providing the network-
ing foundation for the proposed provisioning architecture. The design realizes Smart
Object layer in the multilayer architecture and Service Communication subsystem in
the block diagram presented in Chapter 3. The performance study contains a com-
prehensive analysis on several internetworking characteristics between 6LoWPANs and
regular IPv6 networks including energy consumption on nodes, network performance,
and service communication.

Figure 4.1 shows a comparison between typical networking stacks of regular IP net-
works and 6LoWPAN following 4-layer TCP/IP model (RFC 1122): Link, Internet,
Transport, and Applications. The key difference lies at 6LoWPAN adaptation layer,
which adds a specific layer and IPv6 header compression before forwarding to regular
IPv6 destination. This technology gives the efficient extension of IPv6 into the 6LoW-
PAN domain, thus enabling end-to-end IP networking features for a wide range of IoT
applications.

While these technologies are gaining stable status, how they affect the design of many
potential intelligent and ubiquitous IoT applications is still rather an island for new
discoveries. In this chapter, we present our design, implementation, and performance
evaluation of 6LoWPAN based on open IoT standards provided by IETF in CoRE,
ROLL, and 6LoWPAN working groups. We implement the design on a set MTM-
CM5000-MSP TelosB motes (CM5000) ! for smart objects and a Raspberry Pi (RPi)

2 for an edge router, some laptop computers for hosts in regular IPv6 network. All

Thttp://www.advantiesys.com/shop/mtmem5000msp-p- 14.html
2https: //www.raspberrypi.org/

32 Design and Performance Study of 6Lo WPAN

J— _//-__--HH‘ —
ﬂn/ternet r— o
Ag2 !

Router @ e
—

: f
1 1
! @ Smart object 6EdR BLOWPAN Edge Router g Wehb server/cloud !
H |
H

H 1PV device @ Router @ Provisioning server |

Figure 4.2: 6LoWPAN Internetworking Architecture.

are connected to the backbone network of the building. The performance evaluation
exhibits how these new networking technologies operate in real-life deployments and

where to adapt them to different scenarios.

4.1 6LoWPAN Design

4.1.1 Internetworking Architecture

The 6LoWPAN internetworking architecture is made up of 6LoWPANSs, regular IP net-
works (IPv4, IPv6), and routers. The overall architecture is presented in Figure 4.2 in
which 6LoWPAN is an IPv6 subnet of smart objects sharing a common IPv6 address pre-
fix (the first 64 bits of an [Pv6 address). These smart objects can play the role of a host
or a router to create a mesh network. 6LoWPAN is connected to regular IP networks
through an edge router. The edge router forwards data packets between the 6LoWPAN
and backbone IPv6, while handling IPv6 compression and neighbor discovery.
Communication between 6LoWPAN smart objects and IP hosts in other networks
happens in an end-to-end manner, just like between any regular IP nodes. Each 6LoW-
PAN smart object is identified by a unique IPv6 address, and is capable of sending and
receiving IPv6 packets. In Figure 4.2, the 6LoWPAN smart objects can communicate
with either of the regular IPv6 hosts, servers on the Internet, or personal users’ devices.
Smart objects support ICMPv6 traffic (ping), and use the UDP as a transport. Since
the payload and processing capabilities of smart objects are extremely limited to save

energy, application protocols are designed to use a simple binary format over UDP such

as DPWS and CoAP.

6LoWPAN Implementation 33

4.1.2 6LoWPAN Edge Router

In order to connect 6LoWPAN networks to other IP networks, we use 6LoWPAN Edge
Routers (6EdRs). These edge routers are located at the border of the 6LoOWPAN per-
forming two essential tasks: adaptation between 6LoWPAN and regular IPv6 networks
and routing the IP traffic in and out of the 6LoWPAN. This transformation is trans-

parent, efficient and stateless in both directions.

Figure 4.3 presents our 6EEdR architecture consisting of several layers: Network In-
terfaces (regular IPv6, e.g., Ethernet and low-power, e.g., IEEE 802.15.4), 6LoWPAN
Adaptation, Neighbor Discovery, IPv6, IPv6 Routing, Network Management, and Proxy.
6LoWPAN Adaptation Layer is for decompressing frames received from the low-power
link (RFC 4944) using known information about the network and compressing regular
IPv6 frames from the regular network interface. This step could be performed in the
wireless interface or the edge router driver. Neighbor Discovery is responsible for several
configuration tasks such as auto-configuration of nodes, discovery of other nodes on the
link, and maintaining reachability information about the paths to other active neigh-
bor nodes. It includes both IPv6 Neighbor Discovery Protocol (NDP, RFC 4861) and
6LoWPAN Neighbor Discovery (6LoWPAN-ND, RFC 6775). The interface or driver
should take care of configuring the stack or adapting relevant neighbor discovery mes-
sages between 6LoOWPAN-ND and NDP. [Pv6 Routing maintains route entries between
its interfaces belonging to two different routing domains where most traffic flows are
coming from the Internet towards one or more 6LOWPAN nodes, or from LoWPAN
nodes towards the Internet. Network Management is one of the core features of any
network deployment for managing smart objects on 6LoWPAN. It may use Simple Net-
work Management Protocol (SNMP, RFC 6353). Proxy further adds application layer

translation models for transferring request in and out 6LoWPAN.

4.2 6LoWPAN Implementation

4.2.1 Hardware

We use CM5000 motes equipped with three LEDs, a temperature sensor, a humidity
sensor, two light sensors, and button sensor as generic smart objects to set up a 6LoW-
PAN. With several sensors and LEDs, CM5000 can represent many home and building
appliances such as a light sensor, a light bulb, a thermostat, a switch, and even a mo-
tion sensor. We use a RPi for the edge router with the built-in Ethernet as an IPv6
interface and a CM5000 mote connecting to RPi USB port as a 6LoWPAN interface
(IEEE 802.15.4). Some laptop computers are used to deploy a regular IPv6 networks

with Ethernet interfaces connecting to the same router with the edge router.

34 Design and Performance Study of 6Lo WPAN

Network Management Proxy

ICMP, TCP, UDP

IPvb Routing
IPv6
Neighbor 6LoWPAN
Discovery Adaptation
Regular IPv6 Interface 6LoWPAN Interface

1 |

Figure 4.3: 6EdR. Design.

4.2.2 Software

We use the latest update of Contiki OS 3.x 3 (by the time of writing this manuscript)
with uIP protocol stack to implement IPv6 networking functionalities for the 6LoWPAN
nodes. TT MSP430 toolchain on Ubuntu is used to compile the programs for CM5000
motes. These programs all configure the smart objects to use radio channel 26, Contiki-
MAC [54] for duty cycling mechanism, router mode to create a mesh network, and MAC
addresses to auto generate their IPv6 addresses (e.g., MAC 00:12:74:00:13: cb:2d:a6 for
[Pv6 aaaa::212:7400:13cb:2da6 address). On top of that, several modules are developed
to provide different functionalities to the smart objects such as energy profiling (using
Energest power profile [55]), UDP server, CoAP server (Erbium library [56]), and DPWS
server (uDPWS library 4). Figure 4.4 shows the real hardware configuration of the edge
router with two interfaces: IEEE 802.15.4 and Ethernet.

Raspbian OS, a Debian-based OS is provided as the platform for the edge router. Its
IEEE 802.15.4 interface communicates with the edge router via USB port using Serial
Line Internet Protocol (SLIP). We create a network TUNnel (TUN) virtual interface
to simulate a network device operating on Internet layer. This TUN interface works
with SIP to apply 6LoWPAN adaptation. We also configure the Raspbian OS as an
IPv6 router between two network interfaces Ethernet and TUN. By that, traffic from
6LoWPAN comes to the edge router with IEEE 802.15.4 frames adding compression
and 6LoWPAN adaptation in the software, passed to TUN interface and then routed
to Ethernet interface to reach regular IPv6 network. For example, when a 6LoWPAN

Shttp:/ /www.contiki-os.org/, version 2015/02/16
‘http:/ /www.wsdd.org/

Performance Evaluation 35

Figure 4.4: 6EdR hardware: Raspberry Pi with an Ethernet interface and a CM5000
mote as an IEEE 802.15.4 interface.

packet is forwarded to the IPv6 network, edge router removes its 6LoWPAN adaptation
layer, uncompresses its header, and ensures that global IPv6 source address is used
for the outgoing packets. For incoming packets to the 6LoWPAN, edge router adds
6LoWPAN specific adaptation layer and possibly 6LoWPAN IPv6 header compression
mechanism and then forwards them to the 6LoWPAN.

4.3 Performance Evaluation

We carry out the experiments on the communication between a 6LoWPAN and a regular
IPv6 network to observe the quality of the link in several aspects under a real-life
deployment. The deployment takes place in an L-shape office building floor. We deploy
the 6LOWPAN with a 6EdR and a number of nodes and a simple IPv6 network with one
host. The 6EdR is deployed in one office along with a laptop computer (as a regular IPv6
host), both connected to the same local network via a home and building router. Three
nodes are put in 1-hop, 2-hop, 3-hop positions to the edge router as shown in Figure
4.5. There estimates about 10 Wi-Fi devices operating at the time of the experiment. A
screen capture from a Wi-Fi analyzer indicates which channels wireless networks are on
and how strong they are. We notice that only eduroam and eduspot are busy on channel
1, other in mild status which would not affect much on the experiment nodes operating
on IEEE 802.15.4 radio channel 26. Network configuration is as follows:

Building Router Linksys E1200, IPv6-enabled
6LoWPAN aaaa::/64

6EdR (Raspberry Pi and CM5000)
- Ethernet: fde5:d6db:6ff6::1 (connected to E1200)
- IEEE 802.15.4: aaaa::212:7400:13cb:44
- Virtual TUN: aaaa::1

36 Design and Performance Study of 6Lo WPAN

——
22221:212:7400:13cb:1eal = @
3-hop
gl L |
™~
— I
P 1-hop ®< ®
- 12m -
aaaa::212:7400:13cb:44bb 2-hop
e @aaa::212:7400:13ch:101a
((s]
= ls
e g fde5:d6db:6f16::100
@ = I || €]
Ethernet: fdeS:d6db:6ff6::1

IEEE 802.15.4: aaaa::212:7400:13ch:44 ‘

Figure 4.5: 6LoWPAN home network setting.

Smart objects
- 1-hop node: aaaa::212:7400:13cb:44bb
- 2-hop node: aaaa::212:7400:13cb:101a
- 3-hop node: aaaa::212:7400:13cb:1e41

IPv6 host
- Ethernet: fde5:d6db:6ff6::100 (connected to E1200)

4.3.1 Energy Consumption

The first experiment is about energy consumption. We examine how each node in the
network consumes energy in two modes (host and router) with five different data rates
(1 to 5 packet/s). A smart object is considered to be in router mode if it forwards the
traffic between other nodes. The host mode is when the smart object only communicates
with other objects or the edge router without doing any traffic forwarding. We use the
power profile Energest [55] in Contiki OS to record the energy consumption in a target
object. Energest uses power state tracking to estimate system power consumption and a
structure called energy capsules to attribute energy consumption to activities including
CPU in active mode (CPU), CPU in standby mode low-power mode (LPM), packet
transmissions (TX), and receptions (RX). The power for each activity is calculated by

following Formula 4.1:

Energest_Value x Current x Voltage

RTIMER SECOND x Runtime (4.1)

Performance Evaluation 37

1 10 ——— —— 10— ——
CPU —+— CPU —+—
L LM —o-- | L IPM —o-- |
038 8 N ox 8 AV
= < RX - % - < RX - x -
E 06 E 6 Total —=— | E 6 Total —m— |
§ 0.4 a;_’ 4 g 4
g - & &
02 1
0 e el e el il 0 X Bk FARees | %
10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 8 90 100
Time (s) Time (s) Time (s)
(a) Idle. (b) 1 packet/s. (c) 2 packet/s.
10 ——— — 10— w—r———T—T————
CPU —+— CPU —+— CPU —+—
sk M - | sk LM — o | sk IPM —o-- |
T % ™ x TX %
E °f Total ——1 E 6 Totl —#—1 E 6 Total —m— |
z . ? ?
& & X 1 & Lo— oxe e e m KT TR L - X
ZE;;__)(_—><~“)(_”(,_x.»x»-x._j 2% T X--x T ‘*x»—""x“A oL]
x x * x LRk -
I U OIS SO S P SORRRALS S R A SRURS SAR- O B SIS S
10 2 30 40 50 60 70 80 90 100 10 2 30 40 50 60 70 80 90 100 10 2 30 40 50 60 70 8 90 100
Time (s) Time (s) Time (s)
(d) 3 packet/s. (e) 4 packet/s. (f) 5 packet/s.

Figure 4.6: Energy consumption in host mode.

20 T T 20 T T
CPU —+— CPU —+—
LPM — o+ LPM — -
15 TX % o 15 TX % o
E E Total —#— B Total —m—
= = 10 b = 10 b
P 3 g
5k 4 sk
e BEE G mn TELS oo St I Sk GG G T SN
10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90 100
Time (s) Time (s) Time (s)
(a) Idle. (b) 1 packet/s. (c) 2 packet/s.
20 T T T T 20 T T T 20 T T T
CPU —+— CPU —+— CPU —+—
LPM — & LPM — o+ LPM — -
15 - TX % o 15 TX % o 15 TX % o
RX - x - RX - x - RX - x-
Total —=— Total —=— Total —=—

Power (mW)

5]
T
L
Power (mW)
S
X
x
* g
L
Power (mW)
=
5

R

T = X = %= - - ~ “X= o -7 = 3

5r 4 5% ¥y - % -
R S T S Bt e R R St *

* * T * *
e o oo Y N
10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90 100
Time (s) Time (s) Time (s)
(d) 3 packet/s. (e) 4 packet/s. (f) 5 packet/s.

Figure 4.7: Energy consumption in router mode

where Energest_value is the value of Energest profile tracked in each activity. Current is
the current consumption, which, according to the datasheets of TI CC2420 transceiver
and TI MSP430F1611 microcontroller, is 330 pA, 1.1 pA, 18.8 mA, and 17.4 mA for
CPU, LPM, TX, and RX respectively. Voltage is the supply voltage, in this case, 3
V for two AA batteries. RTIMER_SECOND is the number of ticks per second for the
RTIMER, in Contiki OS, which is 32768. Runtime is the runtime between two Energest
track points. The results are shown in Figure 4.6 for smart objects in host mode and in
Figure 4.7 for objects in router mode. As can be seen from the graph, the power remains
low at 0.4 mW when smart objects are idle, and increases proportionally to the data

rate in both host and router mode.

38 Design and Performance Study of 6LoWPAN

TX —+— X —+— X —+—

08k RX - x- | 10+ RX - x - o 10+ RX - x - o
— Total —=— —_ Total —=— — Total —m—
g g sl 1 g st i
g 06F @ ry
S S 6 B S 6 B
o 04 | O [e)
e £ B S
02 21‘“"M»x——*mx-—-x—»x»—x“
0 — R T T SR S S SN S S Py S e b lendl bl bk sk b
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Time (s) Time (s) Time (s)
(a) Idle. (b) 1 packet/s. (c) 2 packet/s.
12 T T T T T T T T 12 T T T T T T T T 12 T T T T T T T T
X —+— TX —+— TX —+—
10F RX - x - o 10+ RX - x - o 0+ RX - x - o
= Total —m— = Total —#— _ Total —m—
g sl 1 g st 1 g st i
s S by ./'\././'\-/'/.\-\‘
g 6 g et -— . § ok Tkl eex]
. ~ _x- " R
g 4 g 4% o x g s
2 2+ 2kl RN]
e T S —— Lo R =
o N N N o M N S o oy
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Time (s) Time (s) Time (s)
(d) 3 packet/s. (e) 4 packet/s. (f) 5 packet/s.

Figure 4.8: Duty cycle in host mode

4.3.2 Duty Cycle

The second experiment is to explore radio duty cycle in each 6LoWPAN node. Similar to
recording energy consumption, we also use Energest power profile to estimate the duty
cycle of each smart object. ContikiMAC radio duty cycling mechanism is enabled in
smart objects. It aims to keep their radio transceivers off as much as possible to reach a
low power consumption, but wake up often enough to be able to receive communication
from their neighbors. Duty cycles are estimated as the percentage of Energest ticks in
radio transmission (Energest_TX) and reception (Energest_RX) over the total ticks of
the microcontroller in CPU and LPM modes (Energest CPU, Energest_ LPM) over a
period of time (10 seconds) by following Formular 4.2:

Energest T X 4+ Energest_ RX
Energest CPU + Energest_ LPM

(4.2)

Figure 4.8 and Figure 4.9 depict duty cycles of a smart object in host mode and router
mode with 5 different data rates of 1, 2, 3, 4, and 5 packet/s. In general, duty cycle of
a smart object in host mode is lower and more stable than in router mode. Forwarding
data packets apparently requires radio to be more waken-up then only receiving data.
When smart objects are idle (or in sleep mode, but still wake up frequently enough to
maintain the connectivity), the duty cycle remains fairly low about 0.3 percent in the
host mode and 0.6 percent in the router mode. Duty cycle increases constantly over the

change of data rate from 1 to 5 packet/s.

Performance Evaluation 39

1 25 : 25
X —+— TX —+— TX —+—
[RX - % [RX - x [RX - x
—_ 08 Total —=— —_ 2 Total —=— —_ 2 Total —=—
2 S S
P 0.6 |- 1 E 15+ E 15+
gt - s 3 3
o O [e)
g 04 1 § 10 - g 10 -
02 5
Lo- 2% 0 Tx = e - x T F e -
- S e
P S S o ol S it
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 6 70 8 90 100 10 20 30 40 50 60 70 8 90 100
Time (s) Time (s) Time (s)
(a) Idle. (b) 1 packet/s. (c) 2 packet/s.
25 : 25 25 ——————
X —+— TX —+— TX —+—
20 RX- x 20 RXC- x 0L RXC- %

Duty Cycle (%)
5 &
T T
g
g
Duty Cycle (%)
5 &
T
7
,
i
|
!
i
F X 4
\ S |
h 38
' + |
\ |
Ao h L
Duty Cycle (%)
5 &
7T
g
154

x x
K= =% o T x- =%
k= s - E < 1 = P ~ 4 = —+
SER <y o D I c 5 ~E o 5 S
il

0 PR P . 0 P . P . 0 PR PR T .
10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 8 90 100 10 20 30 40 50 60 70 80 90 100
Time (s) Time (s) Time (s)

(d) 3 packet/s. (e) 4 packet/s. (f) 5 packet/s.
Figure 4.9: Duty cycle in router mode

4.3.3 Network Performance

In the third experiment, we send 100 Internet Control Message Protocol version 6
(ICMPv6, RFC4443) packets from a regular IPv6 host to different smart objects in
the 6LoWPAN and wait for the echo responses to record some network parameters such
as packet loss, round-trip time, and time-to-live to calculate packet delivery ratio (PDR),
end-to-end delay, and data transfer rate. The experiment is to send three sets of packets
to three types of 6LoWPAN nodes: 1-hop, 2-hop, and 3-hop. Each set is carried out in
5 different data rates from 1 to 5 packet/s.

4.3.3.1 Radio Signal Strength

We first carry out a supplementary experiment between two CM5000 motes to measure
Received Signal Strength (RSSI) and Link Quality Indication (LQI) between two nodes
to access the IEEE 802.15.4 signal strength in CC2420 transceivers. The CM5000 devices
are programmed to transmit and receive 802.15.4 wireless beacons. We maintain the
connection between two nodes and record RSSI and LQI over distances ranging from 3
and 21 m with steps of 3 m. Figure 4.10 shows the experiment results indicating RSSI

in a good condition within the range of 21 m and LQI remains stable at 108.

4.3.3.2 Packet Delivery Ratio

As illustrated in Figure 4.11, PDR gets very high rate of 98 percent for 1-hop nodes and
slightly drops to 86 percent when data rate reaches the highest rate among the tests
of 5 packet/s. For 2-hop and 3-hop nodes, PDR is lower through out the experiment
fluctuating from 45 to 80 percent.

40 Design and Performance Study of 6LoWPAN

160
140
120
!% 100 .
— 80 9
)
3 60
40
L 20
0
0 3 6 9 12 15 18 21
Distance (m)
Figure 4.10: Radio RSSI and LQI.
) -
S 80f . .
e P
-+ - ~
g 60._ ’,”X\“‘s /_/’.—"*'_\\ —
a . - _ *-—— = ~¥* - \\ \\x
S ¥
g 4f -
g 1-h
- O _+_
5 2f 2-hop—><—_
a P
3-hop —*--
0 1 1 1
1 2 3 4 5

Data Rate (packet/s)

Figure 4.11: Packet Delivery Ratio.

4.3.3.3 End-to-End Delay

Figure 4.12 shows the end-to-end delay slightly increases when more packets come back
and forth between nodes, it however remains very low and not much diverse between
different types of nodes (1-hop, 2-hop, and 3-hop), ranging from 30 to 60 ms. These

figures are considered transparent to the communication.

4.3.3.4 Data Transfer Rate

Similarly, data transfer rate shows a similar pattern with 25 kbit/s, 15 kbit/s, and 10
kbit /s for 1-hop, 2-hop, and 3-hop nodes respectively (see Figure 4.13).

Performance Evaluation 41

100 T T T
1-hop ——
—~ 2-hop - % -
[7)) -
E % 3-hop —*
> s
< 60 P T~ - —¥
8 _______ . *__—
N P e T
¢ 40 ;—_/_\—1\7%
S ;
=
S 20 1
0 | | |
1 2 3 4 5
Data Rate (packet/s)
Figure 4.12: End-to-end Delay.
40 T T T
- _—
35 L 1-hop i

30 - 3-hop —*- -

20

10 - .

Transfer Rate (kbit/s)
N
(6]
m{
| |

1 2 3 4 5
Data Rate (packet/s)

Figure 4.13: Transfer rate.

4.3.4 Service Communication

When it comes to the development of IoT applications, apart from the IP network-
ing infrastructure, provisioning smart object services is an essential issue. Developers
expect APIs that they can integrate new features and create new functionalities to
their applications. Notably, CoAP is designed exclusively for smart objects to replace
HTTP and can be easily translated to HI'TP for a transparent integration with the
Web while meeting the smart object requirements such as multicast support, very low
overhead, and publish/subscribe model. Since CoAP is not native to the Web protocols,
a CoAP/HTTP proxy is a common approach to provide HTTP-based APIs for CoAP

services.

42 Design and Performance Study of 6LoWPAN

DPWS is another application protocol for smart objects. It brings W3C Web services
technology into the IoT by defining specifications that provide a secure and effective
mechanism for describing, discovering, messaging, and eventing services for resource-
constrained devices. DPWS uses WSDL to describe a device, Web Services Metadata
Exchange ® to define metadata about the device, and WS-Transfer 6 to retrieve the ser-
vice description and metadata information. The messaging exchange occurs via SOAP,
WS-Addressing 7, and the Message Transmission Optimization Mechanism/XML-Binary
Optimized Packaging ® with SOAP-over-HTTP and SOAP-over-UDP bindings. It uses
WS-Discovery ? for discovering a device (hosting service) and its services (hosted ser-
vices) and the Web Services Policy ! to define a policy assertion and indicate the device
compliance with DPWS. Secure Web services, dynamic discovery, and eventing features
are the main advantages of DPWS for event-driven IoT applications.

We carry out the fourth experiment on message overhead and latency of service
communication between a Web application and smart objects using CoAP, DPWS, and
HTTP protocols (via CoAP/HTTP proxy). We use Java, CoAP Californium library
[57], and WS4D-JMEDS [58] to implement the Web application. Figure 4.14 presents
the request/response message sizes and latency of CoAP, DPWS, and HTTP transac-
tions. CoAP messages apparently smaller than HTTP messages due to the the use of
simplified headers compared to HTTP headers though the difference is at hundred kb.
DPWS, meanwhile, shows a significant overhead compared to the other two protocols.
The round-trip time of CoAP and HTTP communications are not much different and
considered to be transparent to user’s experience. DPWS round-trip time is still low

but much greater than CoAP and around twice more than of HT'TP.

4.4 Discussion and Lessons Learned

4.4.1 Energy Consumption

Based on the average capacity of an AA battery is 2500 mAh and nominal voltage is
1.5 V, we can estimate the battery life for smart objects to maintain the connectivity

(using duty cycling) as following Formula 4.3

2500mAh x 1.5V x 2
0.37TmW x 24h x 365days

= 2.304years (4.3)

where 0.37TmW is the average power of smart objects in host mode when idle.

www.w3.org/TR/ws-metadata-exchange/
www.w3.org/Submission/WS-Transfer/
www.w3.org/Submission/ws-addressing/
www.w3.org/TR/soapl2-mtom/
“http://schemas.xmlsoap.org/ws,/2005/04/discovery /
Wwww.w3.org/Submission/WS-Policy/

5
6
7
8

Discussion and Lessons Learned 43

700 . . . 500
Request C—
600 - Response
< RTT mmmm | 400
£ 500 (-
2 —
m ~—
& 300 1200 E
[))
3 200
=
~4 100
100 -
0 0

CoAP DPWS HTTP

Figure 4.14: CoAP, DPWS, and HTTP message overhead and latency

2.3 years can be considered to be the very long for just only two AA batteries to
maintain the connectivity. Similarly, Table 4.1 illustrates the estimated battery life of
smart objects in some cases: idle (duty cycling) and continuously sending packets with
the data rate from 1 to 5 packet/s in two modes (host and router). With the average
duty cycle remains lower than 0.5 percent when objects are idle, the connectivity of
6LoWPANSs is still maintained meanwhile energy consumption is kept minimal. Even
in case of continuously sending data with very high data rate of 5 packet/s, two AA

batteries can provide enough power for about 2.5 months.

Table 4.1: Battery powered smart object lifetime for IP connectivity.

Data rate Lifetime (year)
(packet/s) Host Router
Idle 2.303757013 2.64475527
1 0.7060081564 0.442350067
2 0.4414037119 0.271677592
3 0.3000770222 0.146784071
4 0.2581720706 0.107174921
5 0.209452065 0.107788434

4.4.2 Contiki OS 3.x and Network Performance

In 1-hop communication, the PDR show very high value of 98 percent, almost at theo-
retical PDR of IEEE 802.15.4 radio. With more than 1-hop communication, there’s an
obvious trend of much lower PDR. This is identified as the result of the RPL routing
protocol. More investigation is expected to figure out the cause of the packet loss. The

data transfer rate at around 25 kbit/s is considered low-rate due to the sacrifice of hard-

44 Design and Performance Study of 6LoWPAN

ware for the sake of energy consumption. Many IoT devices such as home appliances
and sensor nodes only transfer control data with few bytes then this rate is adequate
for most IoT applications containing relatively simple service communication. When
considering new application ideas, system designers are expected to take into account
the transfer rate to make a right choice for the network deployment.

The operation of ulP networking stacks in Contiki OS 3.x appears reliable in our
intensive experiment with packets sending for a period of 24 hours. Compared to pre-
vious releases, our experience with Contiki OS 3.x indicates that IP performance has
been improved considerably. Besides, there are several useful libraries with Contiki OS
such as Erbium CoAP, Web server, file system, and Shell. Contiki OS programming
experience is very effective with protothreads for multi-threading and event-driven ap-
plications. Our experience suggests Contiki OS is very robust and can be the universal

operating system for smart objects.

4.4.3 Current IPv4 Infrastructure

Even though IPv6 is an ideal addressing space for future Internet but the shift to IPv6
is still happening at a slow pace accounting for only 5 percent of the worldwide Internet
traffic, according to Cisco 6lab . Smart objects have just arrived but already bear a full
support of IPv6 rather than IPv4 (there is apparently no IPv4 adaptation layer for IEEE
802.15.4 alike 6LoOWPAN). A backward integration appears to be a temporary problem
during the transition time from IPv4 to IPv6. Some basic transition mechanisms between
IPv4 and IPv6 systems have been proposed and applied throughout the Internet (RFC
4213). However, the use of such techniques for smart objects and 6LoWPAN may costly
and double the effort to use IP technologies for smart objects. Furthermore, in contrast
to conventional computer networks on the Internet providing several services such as
e-mail, telephony, and Web, smart object services tend to use in ubiquitous applications
that require application level interface rather than raw IP services. Therefore, proxy can
be a fair solution on current Internet infrastructure that doesn’t change the backbone

of the network and provides a seamless interface for IoT applications.

4.4.4 Web Services

There are several candidate protocol for application layer in [oT including HTTP, CoAP,
DPWS, XMPP, MQTT, and AMQP. Among which, DPWS and CoAP are mostly close
to common Web architecture aiming to bring functionalities of smart objects (data and
events) to the Web in the form of services. By following Web design principles (REST,
SOA), these services can acquire open Web standards to enable them to understand the

Web languages and protocols, denoted as smart object services.

"http://6lab.cisco.com/

Discussion and Lessons Learned 45

CoAP follows REST architectural style, compromising a minimal subset of REST
along with mechanisms of resource discovery, subscription/notification, and security
measures for smart objects. It is similar to HTTP and can be easily translated to
HTTP for a transparent integration with the Web, while having very low overhead.
It also supports multicast and publish/subscribe model. The CoAP protocol provides
a technique for discovering and advertising resource descriptions via CoAP endpoints
using CoRE Link Format (RFC 6690) of discoverable resources. As standardized by
IETF, CoAP is showing suitable for smart objects as well as getting attention from
the community. There are many CoAP implementations available not only for smart
objects (e.g., Erbium 2 for Contiki OS, libcoap for TinyOS, and SMCP 3 for embedded
systems) but also for powerful servers (e.g., Java Californium '4), Web browser (e.g.,
Copper 1°), and mobile platform (e.g., nCoAP). The Erbium implementation, according
to our experiments, exposes very low overhead and supports well multicast as well as
publish/subscribe model. This protocol is showing an excellent choice to meet event-
driven requirements from IoT application. A secure mechanism for CoAP transaction
is expected to explored more to make it widely usable in real-life applications.

DPWS, on the other hand, is the lightweight version of W3C Web Service [7] in
addition to new features such dynamic discovery and event notification. Even though
DPWS use XML-based SOAP envelopes (something considered bulky), our experiment
shows that it can be implemented on top of IP protocol stack to (even) highly resource-
constrained smart object such as sensor nodes (thanks to uDPWS 16 and Contiki OS).
The request and response messages are relatively large compared to HT'TP or CoAP but
still well operate on very limited node. Besides, in smart objects with higher computing
power and memory such as home appliances and office equipments, DPWS can perform

in its best to enable secure translations between smart objects and applications.

4.4.5 Deployment

From the experiment results, we look into some deployment issues such as how large
6LoWPAN coverage can be in typical premises and how difficult the deployment can be

when it comes to mass production.

IEEE 802.15.4 Radio Range

Since the radio signal is considerably strong at 15 m in reality, the range of the network

is considered sufficient to several homes and buildings. 1-hop 6LoWPANs which only

2http://people.inf.ethz.ch/mkovatsc/erbium.php
Y3https://github.com/darconeous/smep/
Y“http://people.inf.ethz.ch/mkovatsc/californium.php
Yhttp://people.inf.ethz.ch /mkovatsc/copper.php
Yhttp://wsdd.org/udpws/

46 Design and Performance Study of 6LoWPAN

consist of smart objects in the radio range of the edge router can cover the area of 707
m2 in good radio signal. That area can comfortably cover typical 2-storey houses. Table
4.2 shows more details about the estimated ranges in different facilities that 6LoWPAN
can give healthy radio coverages. In most cases of average houses and offices, IEEE

802.15.4 can comfortably maintain a stable connectivity.

Table 4.2: IEEE 802.15.4 Radio Range.

Node Type Range Area Typical facilities

(m) (m2)
1-hop 15 707 large, two-storey houses
2-hop 30 2827 medium building floors
3-hop 45 6362 large building floors

Installation

IoT application thus far is frequently considered high cost and difficulty to deployment.
However, with the presented design, the deployment of 6LoWPAN such as for home and
building networks appears to be easy and intuitive, in the same way to conventional IP
networks. The edge router hardware and software can be developed very fast and at
low-cost using current advances in micro-electronics and radios (equivalent to a single
computer board plus a 802.15.4 radio module). Besides, services of smart objects can
seamlessly reside on the Web by implementing application protocols such as CoAP,
DPWS, and protocol proxy for HT'TP. By that, the development model from developers’
point of view virtually remains the same, which will stimulate more the adoption of
IoT applications. Furthermore, the installation of smart objects in 6LoWPAN is zero-
configuration, which doesn’t require any additional commissioning device (e.g., a laptop
computer). In other words, a smart object can obtain an address and join the 6LoWPAN

on its own, without human intervention.

4.5 Summary

We have presented our design of 6LoWPANs using open standards with a real-life im-
plementation for home and building networks. The present study on networking per-
formance of 6LoWPANSs exhibits several positive results on the deployment and on the
perspective of using IP protocols for smart objects for end-to-end communication with
services/applications on the Internet. This study is the fundamental for us to develop
service provisioning mechanisms presented in the next chapter to power the IoT appli-
cations on Web. They also provide essential data to set up simulation environments in

Contiki OS Cooja and our own DPWSim simulators.

Chapter

Semantic Service Provisioning

Contents
5.1 Provisioning Issues 0 o oo 48
5.2 Service Provisioning 0000000 o oL 50
5.2.1 Service Discovery 50
5.2.2 Scheduling 52
5.2.3 Semantic Annotation o oL 54
5.2.4 Authorization with OAuth 2.0 56
5.2.5 URIMapping o 0 e 57
5.2.6 Web API Generation 59
5.2.7 Resource Management oL 60
5.3 In-network Implementation with DPWS 60
5.3.1 Devices Profile for Web Services 61
532 Usecase e 62
5.3.3 Global Dynamic Discovery 62
5.3.4 Publish/subscribe Eventing o L. 63
5.3.5 WSDL Caching 63
5.4 Performance Evaluation, 64
5.4.1 Transparencyl 65
5.4.2 Scheduling: Simultaneous Requests Handling 67
5.4.3 Scheduling: Energy Consumption 67
5.4.4 Semantic Annotation oL oL 69
5.4.5 REST Proxy Message Overhead and Latency 69
5.5 SUummary oo h e 71

47

48 Semantic Service Provisioning

We in the previous Chapter 4 have successfully designed and implemented 6LoW-
PANs for smart objects. Experiment results show that even highly-constrained objects
can communicate effectively (energy, round-trip time, messages, etc). with IP proto-
cols. 6EdR routers provide a transparent traffic between smart objects and regular
IPv6 nodes, and to the Internet. The 6LoWPAN eliminates the protocol translation
that is complex to design, manage, and deploy and its network fragmentation leads to
non-efficient networks because of the inconsistent routing, QoS, transport, and network
recovery. End-to-end IP architecture is considered suitable and efficient for scalable
networks of large numbers of communicating devices such as the IoT. The deployment
of 6LoWPANS is relatively intuitive and easy to carry out and virtually in the same way
as installing regular IP networks. Besides, application protocols such as DPWS and
CoAP enable the use of smart objects services in IoT applications. However, for IoT
applications on Web to use these services in practical and scalable scenarios, there still

exist several problems that need to be addressed, as presented in following Section 5.1.

5.1 Provisioning Issues

Service Discovery

An important issue for developing robust IoT applications is that the applications should
be resilient to changes that might occur over time in smart objects (e.g., availability,
mobility, and service description) without or with limited need for any external human
intervention. Suitable mechanisms for service/resource discovery have been defined.
CoAP defines a procedure used by a client to learn about the endpoints exposed by
a CoAP server. A service is discovered by a client by learning the well-known Uni-
form Resource Identifier (URI) /.well-known/core (RFC 5785) that contains URIs or
links of available services in CoRE Link Format (RFC 6690). CoAP, however, does not
specify how a node joining the network for the first time, which can be extended by us-
ing multicast communications (RFC 7390). DPWS uses WS-Discovery mechanism with
multicasting that does not require any central service registry such as Universal Descrip-
tion, Discovery and Integration (UDDI) for Web services. In both cases (DPWS and
CoAP), multicast service/resource discovery is applicable when a client needs to locate
a service within a local network scope supporting IP multicast. This multicast discovery
mechanism operates only within an [P multicast domain and does not scale to larger
networks that do not support end-to-end multicast such as the Internet. Centralized
approaches could be a solution for service discovery. However, for instance, the resource
discovery of the CoAP protocol, suffers from scalability and availability limitations and

is prone to attacks such as denial of service (DoS) [59].

Provisioning Issues 49

40 T T T

35 y
30 /
25
20
15

10 ! .
- XX XX

[
skl

[
1

[
1

T

Service Delay (s)
|
X
k
X
X
|

T

X —x X XX
0 Nl | | |

0 5 10 15 20
of Simultaneous Requests

Figure 5.1: Comparison of service delay when multiple simultaneous requests are sent
to one smart object.

Simultaneous Requests

The 6LoWPAN design enables smart objects to be accessed directly from Internet us-
ing native IP protocols without any protocol translation support. However, smart ob-
jects only support a very small number of simultaneous requests due to their resource-
constrained nature (memory, processing power, and communication bandwidth) and this
issue is also related to the implementation of the networking stacks. Although the use
of constrained operating systems with a full IoT protocol stack (e.g., Contiki OS) can
manage these requests, it can cause the long delay in service response. The delay in-
creases significantly when more requests come to smart objects as can be seen in Figure
5.1. A single service request delays at very short time of 50 ms; two or more requests
take the smart object several seconds to response; 5 requests create 5 seconds delay and

the figure soars to 35 seconds in case of 20 simultaneous requests.

Service Authorization

When making smart objects available for services on the Internet, beside assuring an
interoperable deployment model (i.e., using IP protocols and Web APIs), security mea-
sures have to be taken into account that smart objects cannot be hijacked or hacked,
making sure access to the smart object is still under controlled by the physical owners.
The challenge with service provisioning of smart objects for IoT applications on Web
is that the owner of smart objects must give out the access to the applications mean-
while maintaining the secure control of smart objects. If a service provisioning server
provides a smart object API to the public or just only to a set of registered third-party

developers, it might be possible for developers to misuse the smart objects.

50 Semantic Service Provisioning

SERVICE PROVISIONING 1

H l o,
H TRIPLESTORE URI = S
O MAPPING =
h =3 laT APP

H SEMANTIC =
5 iz

@ : 3 REQUEST sz
' SERVICE HANDLING ® Z

. DISCOVERY = WEB APP

H I =

WEB API

SCHEDULING T

AUTHORIZATION

M wes
i apis | onrovoay
RESOURCE MANAGEMENT }'— i

Figure 5.2: Semantic service provisioning architecture.

This chapter presents the Service Provisioning subsystem of the proposed architec-
ture (see Figure 3.4) to address aforementioned problems while meeting requirements
of service provisioning for 6LoWPAN (open standards, interoperability, low energy con-
sumption, and reliability). In addition, we propose new schemes on other issues related
to provisioning including Semantic Annotation, URI Mapping, and API Representation.
The following section elaborate functional blocks and related algorithms and mechanisms

for a secure, scalable, and reliable service provisioning to power IoT applications on Web.

5.2 Service Provisioning

Figure 5.2 shows nine functional blocks in our proposed service provisioning system to
handle five main issues: service discovery, semantic annotation, simultaneous requests,
authorization, and Web API generation. In which, Resource Management provides a
user interface for resources (6LoWPAN and smart objects) management in provisioning
network as well as granting authorization for IoT applications on Web via Authorization
block. Scheduling cooperates with Request Handling to coordinate multiple simultane-
ous requests to ensure the quality of service. Service Discovery handles native discovery
protocols in 6LoWPAN and feed them to Semantic Annotation and to the Web API Gen-
eration, which in turn call URI Mapping process to generate API endpoints. Triplestore

provides the semantic storage for provisioning services.

5.2.1 Service Discovery

This function block resides at the lowest level of provisioning functionality on local
network side to directly interact with devices. It is required to discover available services
to carry out the provisioning. Web services are usually discovered by querying registries
using interfaces such as Universal Description Discovery and Integration (UDDI). While

it can be a convenient way to discover services, its centralized nature can lead to many

N

w

Service Provisioning 51

issues such as fault tolerance, performance, and scalability. In DPWS, multicasting-
based WS-Discovery does not require any central service registry. When an application
tries to locate a device in a network, it sends a UDP multicast message (using the
SOAP-over-UDP binding) carrying a SOAP envelope containing a WS-Discovery Probe
message with the search criteria, e.g., the name of the device. All the devices in the
network (local subnet) that match the search criteria will respond with a unicast WS-
Discovery Probe Match message (also using the SOAP-over-UDP binding). To achieve
resource discovery, CoAP servers provide a resource description available via a well-
known URI /.well-known/core (RFC 5785). This description is then accessed with a
GET request on the URI.

2.05 Content
</.well —known/core >;ct =40,
</control/led>
title="LED Red, PUT mode=on| off”;rt="control”
</status/temp>

title="Temperature” ;rt="status”

Listing 5.1: CoRE Link Format.

<?xml version="1.0" encoding="UTF-8"7>
<sl12:Envelope
xmlns:s12="http://www.w3.0rg/2003/05/soap—envelope” xmlns:wsa="http://www
.w3.0rg/2005/08/addressing”
xmlns: wsd="http://docs. oasis—open.org/ws—dd/ns/discovery /2009/01” >
<s12:Header>
<wsa:Action>http://docs. oasis—open.org/ws—dd/ns/discovery /2009/01/Probe
</wsa: Action>
<wsa: MessagelD>urn: uuid:3 ac5f820—-d47d—11e3 —80c0—358d7a9bbe90
</wsa: MessagelD>
<wsa:To>urn: docs—oasis —open—org:ws—dd:ns: discovery:2009:01 < /wsa: To>
</s12:Header>
<s12:Body>
<wsd: Probe />
</s12:Body>

5 </s12:Envelope>

Listing 5.2: WS-Discovery Probe message.

The Service Discovery provides the same interface to query services regardless of
the protocol (e.g., CoAP, DPWS, or XMPP) used in the 6LoWPAN. It is in the form
of plugin, when we need to incorporate new protocol we can add in to. This func-
tion also plays a role as handling several service discovery functionalities happening at
multicasting support provisioning network and making some functionalities possible in
global scenario such as dynamic service discovery with DPWS. The approach is to ap-

ply URI mapping and API representation directly on underlying discovery mechanism

52 Semantic Service Provisioning

of each protocol. In addition, we use a repository to maintain the list of active devices
by carrying out the discovery process periodically or when the traffic is detected low
in the 6LoOWPAN. For example, a smart object has a temperature sensor and an LED
indicator to display the status of room temperature. A client can discover these services
by sending a request GET /.well-known/core to the smart object, which responses with
the content shown in Listing 5.1. This task can be done with the service provisioning
service by using the Web API presented in Table 5.1. Similarly, instead of using complex
WS-Discovery Probe message in Listing 5.2 for DPWS services, we can discover services
of the smart object by the same provisioning APIs. From the content of the response

message, two services are discovered and provisioned in two Web APIs (see Table 5.2).

Table 5.1: Discovery API

GET /[uri]/discovery
Search for a smart object with criteria

Arguments N/A

Example GET http://157.159.103.50/[aaaa::212:7400:13cc:3693] /discovery
157.159.103.50 is the provisioning server IP address, 8080 is the port number.
aaaa::212:7400:13cc:3693 is smart object IP address

Table 5.2: Discovered services: Web APIs

PUT /[uri]/control/led
Switch on/off LED indicator in the smart object
Arguments mode=on/off
Example PUT http://157.159.103.50/[aaaa::212:7400:13cc:3693] /control /led?mode=on
GET /[uri]/status/light
Get the current temperature

Arguments N/A

Example GET http://157.159.103.50/[aaaa::212:7400:13cc:3693] /temp
157.159.103.50 is the provisioning server IP address, 8080 is the port number.
aaaa::212:7400:13cc:3693 is smart object IP address

5.2.2 Scheduling

Limited resources in smart objects result in a problem of supporting simultaneous re-
quests from multiple IoT applications on Web. Multiple requests can happen frequently
for it is a typical case in the interaction between applications and smart objects when
they get connected and become an integral part of the Internet. Many smart objects such
as sensor nodes only support a very small number of simultaneous connections result-
ing in an ineffective operation of several real-time applications. We solve this problem
by using a scheduling algorithm shown in Listing5.3). The algorithm consists of four
processes: RequestHandler, Scheduler, QuantumAssertion, and ResponseObserver. Two
requests are considered to be simultaneous if they come one after another in very short

time (less than a threshold denoted by quantum time).

V]

ot

Service Provisioning

53

PROCESS RequestHandler
BEGIN
Initiate requestQueue
Keep track of lastReqestTime
If (requestTime is within lastRequestTime bound)
Begin
Add new request to requestQueue
Activate the Scheduling process if it is not active
End
END

PROCESS Scheduler

; BEGIN

Every quantumTime

5 Begin

If requestQueue is empty
Stop
Else
Remove request from requestQueue
Add request to sentQueue
Send request
End

3 END

PROCESS QuantumAssertion
BEGIN

If sentQueue is not empty and top of queue is overtime

Adjust quantumTime
Else
Reset quantumTime
END

3 PROCESS ResponseObserver

BEGIN
If there is a response
Remove from sentQueue
Get client id

Forward to client
END

Listing 5.3: Scheduling algorithm.

The RequestHandling process receives coming HTTP requests via the provisioned

Web API and check if each request arrives in a reasonable interval. If a request arrives

too fast (less than a quantum time after the nearest recored request), it will be added to a

request queue (based on a queue data structure [60]). The Scheduling process keeps track

of the request queue and it is activated when there are waiting requests in the queue.

54 Semantic Service Provisioning

When the Scheduling process starts, it checks the request queue again, removes the
head request (first in the queue), adds this request to another queue called sent queue,
and sends the request accordingly to the target smart object. The QuantumAssertion
keeps track of the sent queue to see if a request has waited for too long to adjust the
quantum time. The ResponseObserver process forwards the received response messages

from smart objects to clients and updates the sent queue.

5.2.3 Semantic Annotation

<rdf :RDF
xmlns: rdf="http://www.w3.0rg/1999/02/22 —rdf —syntax—ns#”’

N

3 xmlns="http://www.it —sudparis.eu/sensor#’
| xmlns: ns0="http://www.w3.0rg/2000/01/rdf—schema#’ >

5 xmlns:nsl="http://purl.oclc.org/NET/ssnx/ssn#”’

i <rdf:Description rdf:about="http://www.it—sudparis.eu/sensor#Temp5’ >
7 <ns0:type rdf:resource="http://purl.oclc.org/NET/ssnx/ssn#Sensor”/>
8 <nsl:observedProperty >Temperature</nsl:observedProperty>
9 <nsl:hasValue>19.2</nsl:hasValue>

10 </rdf:Description>

</rdf :RDF>

Listing 5.4: Temperature sensor smart object RDF /XML format.

Tim Berners-Lee coined the term Semantic Web as an extension of the current Web

[3] in which data are consumable and understandable to machines. It brings a new
concept of representing data in the meaningful graph database model to improve the
communication between human and machine. That means Semantic Web can achieve
a certain level of automation on Web [61]. When the IoT paradigm arrives and it is
now changing the Web, the Semantic Web concept even fits more to its architecture
since smart objects need intelligence and automation in different level to fulfill their
tasks. However, similar to other extensions of Internet and Web protocols originally
designed for computers to smart objects such as CoAP to HTTP or DPWS to SOAP,
straightforward adoption of semantic annotation to smart objects is impractical. It is
because of the complexity of the Semantic Web model with the involvement of ontology,
triple, and data presentation following specific requirements.

1 @prefix : <http://www.it—sudparis.eu/sensor#> .

2 @prefix rdf: <http://www.w3.0rg/1999/02/22—rdf—syntax—ns#> .

; @prefix ns0: <http://www.w3.org/2000/01/rdf—schema#> .

1 @prefix nsl: <http://purl.oclc.org/NET/ssnx/ssn#> .

5 <http://www.it —sudparis.eu/sensor#Temp5>

6 nsO:type nsl:Sensor ;

7 nsl:hasValue 719.2” ;
8 nsl:observedProperty ”Temperature”

Listing 5.5: Temperature sensor smart object N3 format.

Service Provisioning 55

Listing 5.4, for example, shows an example of RDF representation of temperature
data from a sensor of a smart object. It uses 506 bytes to semantically represent the
data from the smart object with temperature sensing value is 19.2 degree. Even with
Notation3 (N3) format [62], a textual syntax alternative to RDF, the size of data is
still rather large (see Listing 5.5). The reason is that the semantic annotation for smart
object involves a great deal of linking information such as namespace and RDF schema.
The size of the semantic data in more complex situation may increase and surpass the
maximum buffer size that is provided for resource responses, which must be respected
due to the limited IP buffer such as the maximum buffer size for CoAP blocks is typically
1024 bytes.

Literature approaches use third-party semantic services/servers to capture and re-
publish these data. This can solve the problem of limited size for semantic annotation
but results in many tradeoffs that prevent the adoption of this method. For example,
third-party server means the communication stream is broken and can be interfered or
the communication is slowed down and semantic server becomes a bottleneck in the
communication between applications and smart objects. The ideal way is to have smart
objects express semantically expressive based on IP protocols. Our approach is very
close to this ideal method in which we unburden most of semantic annotation informa-
tion from smart objects to the provisioning layer, keeping only core data for transmitting
while provisioned services still can be fully annotated. We use following scheme:

1. Service providers provide a domain ontology for each set of smart objects. On-

tology for each domain is developed independently by a reliable and consensus

decision making process, e.g., Semantic Sensor Network Ontology !.

2. Each service in smart object is represented in N3 format without default names-

paces, ontolgy, and application URIs.

3. Ontology and application URI are added accordingly in service provisioning layer
based on the information from the service provider for ontology and provisioning

server for application URI.

The above temperature sensing data can then be provided by smart object by the
format provided in Listing 5.6 while the actual semantic annotation data can be reached
from applications are still the same as shown in Listing 5.5. The Internet media type
passing to Web API calls is denoted as text/ns3.

1 :Tempb
2 a ns:Sensor ;

ns: hasValue 719.27 ;

ns:observedProperty ”Temperature”

Listing 5.6: Temperature sensor smart object N3 format.

"http://purl.oclc.org/NET /ssnx/ssn

V)

56 Semantic Service Provisioning

These semantic data queried from smart objects are store in a Triplestore. A triple-
store is the storage for semantic data, in this case, referring to the annotation of smart
object data and functionalities. A triple is a data entity composed of [subject, predicate,
object], there are three triples in the above data and one more triple about the time
stamp is added as shown in following Listing 5.7.

[<http://www. it —sudparis.eu/sensor\#Temp5>
<http://purl.oclc.org/NET/ssnx/ssn\#type>
<http://purl.oclc.org/NET/ssnx/ssn\#Sensor >|
[<http://www.it —sudparis.eu/sensor\#Temp5>
<http://purl.oclc.org/NET/ssnx/ssn\#hasValue> 719.27]
[<http://www. it —sudparis.eu/sensor\#Temp5>
<http://purl.oclc.org/NET/ssnx/ssn\#observedProperty> ”Temperature” |

[<http://www. it —sudparis.eu/sensor\#Temp5>
<http://purl.oclc.org/NET/ssnx/ssn\#startTime> 72014:04:24 14:207]

Listing 5.7: Four triples from temperature sensor.

Triplestore can be realized by serialization (i.e., using file system) or by third-party
solutions such as OpenLink Virtuoso 2, 3Store 3, and Apache Jena 4. All the data in
triplestore are associated with a domain ontology indicated by the service provider of
the smart objects. The ontology is either available on the Web or newly developed by

the service provider depending on the field of the applications.

5.2.4 Authorization with OAuth 2.0

OAuth 2.0 (RFC 6749) is an authorization framework that enables applications to obtain
limited access to resources on the Web on behalf of the resource owner. It has been widely
used in many services such as Google, Facebook, and GitHub. It works by delegating
user authentication to the service that hosts the user account, and authorizing third-
party applications to access the user account. OAuth 2.0 provides authorization flows
for Web and desktop applications and mobile devices.

OAuth 2.0 fits the security model of the IoT applications on Web where the resource
(smart object) owner can authorize an application to access their smart object functions
without having full access on handling the smart object such as terminating its operation.
The applications have limited accesses to the smart objects according to the scope of
the authorization granted (e.g. read only or update) whilst they still can communicate
to the smart objects once having been authorized. We therefore adopt OAuth 2.0 as
the core of authentication and authorization framework for our proposed provisioning

architecture.

https://github.com/openlink/virtuoso-opensource
3http://threestore.sourceforge.net
“http://openjena.org

Service Provisioning 57

Authorization functional block in our proposed service provisioning architecture
refers to an OAuth 2.0 authorization provider functionality, which authenticates the
identity of the user, in this case locally within the provisioning network to strengthen
the security. It issues access tokens to the interested applications following the confirma-
tion from the user. Any IoT application that wants to access the smart object services
must be authorized by the user, and the authorization must be validated by the appro-
priate Web API endpoints. There are three authorization endpoints in the our proposed
service provisioning architecture for this process: Authorization URI (/authorize) is the
URI on which users grant the authorization to the interested application; Token URI
(/token) is the URI called by client applications when they want to exchange a code for
an access token, or a refresh token for a new access token. API URI (/api) is the base
URI on which provisioned Web API endpoints are mounted. These Web API endpoints
enable a secure communication between IoT applications on Web and 6LoWPAN smart

objects. This is done in the three-step mechanism illustrated in the Figure 5.3.

1. Step 1: User or the owner of the smart objects gets access to the Resource Man-
agement and then goes to the Applications section and looks for the appropriate
application to authorize. The user selects the application and click the authorize
button to grant the application with Client ID and Redirect URI provided by
the application. The Authorization then redirects to the Redirect URI with the

authorization code in the URI fragment to transfer it to the application.

2. Step 2: The application requests an access token from the API, by passing the
authorization code along with authentication details, including the client secret, to
the API token endpoint. If the authorization is valid, the API will send a response

containing the access token (and optionally, a refresh token) to the application.

3. Step 3: Now the application is authorized! It may use the token to carry out
transactions with real services from provisioning server via the service API, limited

to the scope of the access, until the token is expired or revoked.

5.2.5 URI Mapping

We propose two schemes for mapping service URIs to provisioning URIs, which are in-
tegral parts of the Web API endpoints. The first scheme is based on the resolved host-
names of smart objects in the network and the second scheme uses IP addresses of smart
objects. A thermostat, for example, configured at IP address aaaa::212:7400:13cc:5693,
has a CoAP service to get the current room temperature binding to its IP address, ser-
vice port, and service extension: coap://[aaaa::212:7400:13cc:3693]:5683/status/temp.
The service provisioning service is at address 157.159.103.50. Then the service URI is
mapped to either one of the following provisioning URIs in Table 5.3:

58 Semantic Service Provisioning

& APPLICATION
Stepl Step 2 Step3
Authorization Grant § | Access Token Exchange Transaction
- \ . T I
e [“ b= 1 1 !
2 0 5! = 21,
. K > P (=}
S < K o o= gl | E
. S N 3 P8 o, 15
@, I gr [- (=X
[« RN v - ! o o o
% * ‘3 kY 6-1 [1] = W
o = | - o | =
/9) [=3 3, - = |
____________________ GO ~ S W~ SO S S U S
‘o W% hoal ' ! :
I T w v % H ¥ |
< m | | i
o = ! | |
1o = | i AUTHORIZATION «---» SERVICES !
[Q | i |
= et J i
o) |

Figure 5.3: 3-step authorization process for IoT applications on Web.

The first method is straightforward since it doesn’t require any check for address
duplication for the IP address is already unique in the network so it is a good candidate
for smart object identity. The second method requires the provisioning server to check
the hostname duplication. It can be suitable for small homes or offices.

DPWS uses WS-Addressing to assign a unique identification for each smart object
(endpoint address), independent from transport specific address. This unique identifi-
cation is used with a series of message exchanges Probe/ProbeMatch, Resolve/Resolve-
Match to get a transport address and then another series of messages are sent back and
forth to invoke an operation. We define a mapping between a pair of DPWS endpoint /-
transport addresses and a single URI, and then we use the corresponding operation
name for each service as the extension of the URI. For example, the aforementioned
thermostat has a getTemp() operation implemented in DPWS with the pair of end-
point and transport addresses of urn:uuid:{6932240-d504-11e3-bf6a-6eabe38b6788 and

[aaaa::212:7400:13cc:3693]:4567/thermostat. Table 5.4 shows the mapping of these two
addresses along with the operation name (temp) to a single URIL The mapping is unique
for each smart object service, and data are stored in the smart object repository of the
proxy. The repository is also updated when there is a change in smart object status

and /or periodically when the proxy runs its routine to check all the active smart objects.

Table 5.3: URI mapping with CoAP

Service URI coap://[aaaa::212:7400:13cc:3693]:5683 /temp
Provisioning server 157.159.103.50
Scheme 1 URI http://157.159.103.50/thermostat/temp

Scheme 2 URI http://157.159.103.50 /[aaaa::212:7400:13cc:3693] /temp

Service Provisioning 59

Table 5.4: Base URI mapping with DPWS

Endpoint address urn:uuid:46932240-d504-11e3-bf6a-6eabe38b6788
Transport address http://[aaaa::212:7400:13cc:3693]:4567 /thermostat

Service getTemp()

Provisioning server 157.159.103.50

Scheme 1 URI http://157.159.103.50/thermostat /temp

Scheme 2 URI http://157.159.103.50/[aaaa::212:7400:13cc:3693] /temp

5.2.6 Web API Generation

Web API Generator is in charge of generating a set of Web API associated to each smart
object service. The process is based on above URI mapping scheme. The API consists of
endpoints for discovery, subscription, and service calls in Representational State Transfer
(REST) architectural style [19]. To generate these RESTful Web APIs, we can extract
directly from CoAP URI as CoAP and HTTP basically use the same REST concept.
With DPWS, we propose a design constraint on the DPWS implementation for smart
objects. It is based on the fact that most smart object services provide relatively simple
operations compared to normal Web services with complex input/output data structure.
Our proposed constraint follows a simplified CRUD model (“create”, “read”, “update”,
“delete”) to map between these services and HTTP methods: DPWS Operation Prefix
- CRUD Action - HTTP Method. Specifically, four CRUD actions are applied to map
DPWS operations to HT'TP methods as in Table 5.5

Table 5.5: CRUD operation mapping scheme

Prefix CRUD Action HTTP Verb

Get- READ GET

Set- UPDATE PUT
Add- CREATE POST
Remove- DELETE DELETE

Web APIs are the core of the development of applications on Web these days pro-
viding interfaces for developers to develop applications on Web. Web APIs are specifi-
cations that define how to interact with software components, particularly, allow access
to remote Web resources via a communication network. The benefits for developers
in adopting Web APIs are: easy to enrich functionality, simple and quick to integra-
tion, and leverage brand strength of established partners. Even in the new platform of
smartphone applications, we can already see that the use of Web APIs is prevalent. Our
provisioning Web API consists of API endpoints represented in the following format (see

Table 5.6), which is used consistently in this dissertation:

60 Semantic Service Provisioning

Table 5.6: API endpoints format

[HTTP-VERB]| [URI EXTENSION]
[DESCRIPTION]

Arguments [ARGUMENTS]

Example [EXAMPLE]

Applications List Discover Devices Devices List

ermaceLightDevice

Figure 5.4: Resource Management Web UI in ThingsGate. Manage Device function/-
menu shows a list of discovered devices in the 6LoWPAN of home network. User can
query detailed information or add social data to each device by Info or Socialize hy-
perlinks associated to each smart object. Applications function/menu help users to
authorize IoT applications on Web to use resources in the 6LoWPAN.

5.2.7 Resource Management

Resource Management functional block is in charge of monitoring and managing the
6LoWPAN and its smart objects. It provides information about the network status such
as the number of nodes, network topology, and routing information. It also provides
an interface for granting authorization to IoT applications on Web to get access to
the provisioned Web API. Resource Management authenticates users by credentials
(username/password) via a Web User Interface (Web UI). Figure 5.4 shows the Web UI
of the Resource Management implemented within ThingsGate provisioning server for

the Social IoT application presented in Chapter 6.

5.3 In-network Implementation with DPWS

This section introduces an in-network implementation of the proposed architecture for
DPWS protocol. The implementation is in the form of a REST proxy to extend the
DPWS standard to better integrate it into the IoT applications on Web while maintain-

ing its advantages of dynamic discovery and eventing mechanisms.

In-network Implementation with DPWS 61

5.3.1 Devices Profile for Web Services

DPWS is based on Web Service Description Language (WSDL) and SOAP to describe
and communicate device services, but it does not require any central service registry
such as Universal Description, Discovery and Integration (UDDI) for service discovery.
Instead, it relies on SOAP-over-UDP binding and UDP multicast to dynamically discover
device services. DPWS offers a publish/subscribe eventing mechanism, WS-Eventing ,
for clients to subscribe for device events, e.g., a device switch is on/off or sensing when
temperature reaches a predefined threshold. When an event occurs, notifications are

delivered to subscribers via separate TCP connections.

These features, secure Web services, dynamic discovery, and eventing, are the main
advantages of DPWS for event-driven IoT applications. Nevertheless, in fact, developers
would face several problems when applying DPWS for IoT applications on Web. The
main concern is about the dynamic discovery in which the network range of UDP mul-
ticast messages is limited to the local subnet. Therefore, it is impossible to carry out
this mechanism in a large network such as the Internet. With WS-Eventing, the estab-
lishment of separate TCP connections in case of delivering the same event notification
to many different subscribers will generate a global mesh-like connectivity between all
devices and subscribers (see Figure 5.5). This requires high memory, processing power,
and network traffic and thus consumes a considerable amount of energy in devices. An-
other issue is the overhead due to the data representation in XML format and multiple
bidirectional message exchanges. It is not a problem when most DPWS devices cur-
rently communicate locally, but in a mass deployment of devices, these messages would
generate heavy Internet traffic and increase the latency in device/application communi-
cation. Furthermore, W3C Web services use WSDL for service description and SOAP
for service communication; the former, despite the fact that it is a W3C standard, re-
quires much effort from developers to process poorly-structured XML data; the latter is
mostly common in stateful enterprise applications, whereas recent Web applications are
moving toward the core Web concepts expressed in REST architectural style by offering
stateless and unified interfaces of RESTful Web APIs.

To solve these problems, we design a service provisioning mechanism for DPWS
using a REST proxy by providing the following features: (1) global dynamic discovery
using WS-Discovery in local networks; (2) proxy-based topology for publish/subscribe
eventing mechanism; (3) dynamic addressing for DPWS smart objects; (4) RESTful
Web APIs; and (5) WSDL caching. The proxy unburdens Internet traffic by processing
the main load in local networks. Also, the proxy can extend the dynamic discovery
from locally to globally through RESTful Web APIs. Developers do not have to parse
complex WSDL documents to get access to service descriptions; they can use RESTful
Web APIs to control smart objects.

62 Semantic Service Provisioning

We will follow an IoT engineer Rosalie’s development process to understand what
challenges she could encounter when developing, deploying, and interacting the smart
object from her IoT application and how the proxy helps her to solve these problems.
The following use case illustrates a common situation in several IoT applications when

a new smart object joins the network.

5.3.2 Use case

Rosalie would like to make a module for controlling a newly-purchased DPWS heater.
The heater is equipped with a temperature sensor, a switch, memory, a processor, and
networking media, and is implemented with a hosted Heater service. Heater service
consists of eight operations: (1) check the heater status (GetStatus), (2) switch the
heater on/off (SetStatus), (3) get room temperature (GetTemperature), (4) adjust the
heater temperature (SetTemperature), (5) add (AddRule), (6) remove (RemoveRule),
and (7) get (GetRules) available policy rules for defining automatic operation of the
heater, and (8) over-heating event eventOverHeat(). She connects the heater to the

network and tries to control it from her IoT application.

5.3.3 Global Dynamic Discovery

When an application tries to locate a smart object in a network, it sends a UDP multicast
message (using the SOAP-over-UDP binding) carrying a SOAP envelope that contains
a WS-Discovery Probe message with search criteria, e.g., the name of the smart object.
All the smart objects in the network (local subnet) that match the search criteria will
respond with a unicast WS-Discovery Probe Match message (also using the SOAP-
over-UDP binding). In our use case, the heater sends Probe Match message containing
network information. At this point, Rosalie realizes that it is impossible for her IoT
application to dynamically discover the heater because of the network range limit to
local subnet of multicast messages. If a proxy is applied, it allows the application to
suppress multicast discovery messages and instead send a unicast request to the proxy.
Then, the proxy can representatively send Probe and receive Probe Match messages to
and from the network while the behavior of smart objects remains unmodified; they
still answer to Probe message arriving via multicast. In networks with many Probe
messages, the proxy can significantly unburden the Internet traffic. The proxy provides
two RESTful Web APIs to handle the discovery as shown in Table 5.7

We also propose a repository in the proxy to maintain the list of active smart objects.
The repository is updated when smart objects join and leave the network. In addition,
the proxy performs a routine to periodically check the consistency of the repository, says
every 30 minutes. For a proxy with 100 smart objects, the size of the repository is about

600 kb, so it is feasible for unconstrained machines used to host a proxy.

In-network Implementation with DPWS 63

Table 5.7: Discovery API

GET /discovery
Search for a smart object with criteria
Arguments search: search criteria
Example PUT http://157.159.103.50/discovery ?search=Heater
GET /discovery
Get the list of connected smart objects
Arguments N/A
Example GET http://157.159.103.50/discovery
157.159.103.50 is the proxy’s IP address, and 8080 is the port number.

5.3.4 Publish/subscribe Eventing

To receive event notifications, Rosalie can subscribe her application directly to the
heater by sending a SOAP envelope containing a WS-Eventing Subscribe message (us-
ing the SOAP-over-HTTP binding). The heater responds by sending a WS-FEventing
SubscribeResponse message via the HT'TP response channel. When an event occurs, the
heater establishes a new TCP connection and sends an event notification to the sub-
scriber. Therefore, in scenarios with many subscribers, it generates high level of traffic,
requiring high resources, and causing smart objects to consume more energy. However,
this publish /subscribe mechanism can be done through REST proxy to reduce the over-
head of SOAP message exchanges and resource consumption, replacing global mesh-like
connectivity by proxy-based topology (see Figure 5.5). One RESTful Web API is dedi-
cated for event subscription; instead of sending a WS-Eventing Subscribe message, the

application sends an HTTP POST request to the subscription resource (See Table 5.8).

Table 5.8: Event subscription API

POST /[smart object ID]/[event]
Subscribe to a smart object event
Arguments agent: address to send notification messages
Example POST http://157.159.103.50 /heater /overheat?agent=157.159.103.63 /heating
157.159.103.50 is the proxy’s IP address, 8080 is the port number,
157.159.103.63 /heating is the callback endpoint of the application

Figure 5.5 shows the network topology in two cases of our proposed design and the
the original direct DPWS communication. Table 5.9 shows a list of RESTful Web APIs
provided by the proxy for the heater smart object mapping with DPWS operations.

5.3.5 WSDL Caching

When an application knows a smart object hosted service (representing smart object
functionalities) endpoint address, it can ask that service for its interface description by
sending a GetMetadata Service message. The service may respond with a GetMetadata

Service Response message including a WSDL document. The WSDL document describes

64 Semantic Service Provisioning

Table 5.9: RESTful Web API for the heater

RESTful Web API DPWS operations Argument Discription
GET /discovery

List smart objects

PUT /discovery Discovery search Search for smart objects
POST /heater/overheat eventOverHeat() Subscribe to an event
GET /heater GetStatus() Get heater status

PUT /heater SetStatus(String) status Set heater status

GET /heater/temp GetTemp() Get room temperature
PUT /heater/temp SetTemp() temp Adjust heater temperature
POST /heater/rules AddRule rule Add new rule

GET /heater.rules GetRules() List of rules

DELETE RemoveRule() ruleID Delete a rule

/heater/rules/[ruleID]

the supported operations and the data structures used in the smart object service. Some
DPWS implementations (such as WS4D JMEDS) provide a cache repository to store
the WSDL document at runtime. After the application retrieves the WSDL file for the
first time, the file can be cached for local usage in the subsequent occurrences within the
life cycle of the DPWS framework (start/stop). This kind of caching mechanism would
significantly reduce both the latency and the message overhead. Our DPWS proxy can
provide WSDL caching not only at runtime but also permanently in a local database.
The cache is updated along with the routine to maintain the smart object repository in
proxy described in the dynamic discovery section.

Figure 5.5 shows the network topology in two cases of our proposed design and the
the original direct DPWS communication. Figure 5.5 shows the network topology in

two cases of our proposed design and the the original direct DPWS communication.

5.4 Performance Evaluation

We carry out the experiments with 6LoWPAN set up on Cooja simulator [63]. Experi-
ment results from Chapter 4 allow us to set up 6LoWPAN network on network simulator
with respect to real-life performance. This approach doesn’t lose important properties
of smart objects and especially effective to focus on the service integration issues. Cooja
can accurately simulate all the constraints in smart objects and 6LoWPAN such as
ROM/RAM size, microprocessor instruction set, and IEEE 802.15.4 radio environment.
Figure 5.6 shows the 6LoWPAN with 10 random nodes. The longest distance to the
6EdR (node 1) is 3-hop (nodes 1-2-3-4). TX/RX success ratio is set at 98 percent
as suggested in Packet Delivery Ratio test in Chapter 4. Each node is implemented

with a CoAP service enriched with the proposed semantic annotation. We aim to test

Performance Evaluation 65

Internet

((loT App) (_Proxy)

@r@. Internet

e

| HTTP i

E —— Gethietadata service —s

request GetMetadata service — !|
i i
Gethetadata service — ili i|+— GetMetadata service

Service usage request -t {|— Service usage request —w,

HTTP Service Usage response —, E H i|4— Service usage response —{;

|

|

i

!

| i

il Internet response i i response
i

i |

| i
i i
! |

response Eli

(a) REST proxy (b) Direct

Figure 5.5: Network topology in two cases: (a) Our proposed design configures a proxy-
based topology with local HTTP/SOAP binding, (b) The original smart objects Profile
for Web Services (DPWS) communication configures global mesh-like connectivity for

HTTP /SOAP binding. Consequently, the original DPWS introduces higher latency and

overhead.

the performance of service provisioning server to see how the proposed algorithms and
mechanisms perform in term of transparency and efficiency. The provisioning service
is deployed in the simulator host machine, which creates a local network with 6EdR in
its Ethernet interface. A Web application is developed in a Web service of the same
local network with the provisioning server (the deployment of the same application on a
server on Web doesn’t change the nature of the IP communication with the involvement

of a number of routers).

5.4.1 Transparency

First of all, the consistent use of IP stacks in smart objects as well as in provisioning is
aligned with common network infrastructure, which ensures a transparency of communi-
cation in the network. 6EdR is an important node in the IP networking model to assure
the smooth communication. This can first verified by ping6 command from a regular
IP node to a 6LoOWPAN node (see Listing 5.8). We further examine the transparency
of the service provisioning against the implementation of our proposed algorithms, es-
pecially for the scheduling. We carry out a single request to a service of node 2 from

our IoT application with and without scheduling module. Figure 5.7 shows that the

66 Semantic Service Provisioning

Figure 5.6: A 6LoWPAN in Cooja with 10 nodes and 3-hop distance from the edge router
(node 1). All nodes are implemented with Contiki and ulP stacks. The screenshot shows
the network if self-configuring with traffic exchanged between nodes.

service request delay remains stably equal in both cases, meaning that our algorithm
doesn’t affect non-simultaneous requests while improving the performance when multiple

simultaneous requests come to a service.

2 64 bytes from aaaa::212:7403:3:303: icmp_seq=24 ttl=62 time=352 ms
2 64 bytes from aaaa::212:7403:3:303: icmp_seq=25 ttl=62 time=355 ms
4 64 bytes from aaaa::212:7403:3:303: icmp_seq=26 ttl=62 time=369 ms
5 64 bytes from aaaa::212:7403:3:303: icmp_seq=27 ttl=62 time=347 ms
¢ 64 bytes from aaaa::212:7403:3:303: icmp_seq=28 ttl=62 time=334 ms
7 64 bytes from aaaa::212:7403:3:303: icmp_seq=29 ttl=62 time=336 ms
& 64 bytes from aaaa::212:7403:3:303: icmp_seq=30 ttl=62 time=353 ms
0 64 bytes from aaaa::212:7403:3:303: icmp_seq=31 ttl=62 time=372 ms
10 64 bytes from aaaa::212:7403:3:303: icmp_seq=32 ttl=62 time=343 ms
11 64 bytes from aaaa::212:7403:3:303: icmp_seq=33 ttl=62 time=354 ms
12 "C

12 —— a8aa::212:7403:3:303 ping statistics —

14

15
16

33 packets transmitted , 26 received, 21% packet loss, time 32060ms

rtt min/avg/max/mdev = 308.008/350.727/411.389/21.042 ms
user@instant—contiki:"$

Listing 5.8: Ping command from a regular IP node to 2-hop node 3 in 6LoWPAPN
(aaaa::212:7403:3:303).

Performance Evaluation 67

200 T T T T T T T T
Direct —x—
Scheduling ——
150 -
100 -

Service Delay (ms)

(O
o

2 4 6 8 10 12 14 16 18 20
Test #

Figure 5.7: Scheduling algorithm is transparent as it does not affect a single request. Its
purpose is to improve the delay when there are multiple simultaneous requests coming
to one smart object.

5.4.2 Scheduling: Simultaneous Requests Handling

We carry out an experiment to test the situation when multiple requests come to the
same smart object service. To recap, two requests are considered simultaneous if they
happen within a small interval of time, for example as we observe with CM5000 motes,
the value is about 100 ms. As seen from Figure 5.8, the scheduling algorithm significantly
improves the delay of service request in all cases with the number of requests ascending
from 1 to 20. Especially when more simultaneous requests sent to the same service,
scheduling can be considered to virtually eliminate the bottleneck in the network. Delay
with scheduling algorithm also shows the stability with respect to the capacity of smart

objects, that would not adversely affect user experience on application side.

5.4.3 Scheduling: Energy Consumption

We observe the duty cycle and energy consumption of the smart object hosting the
requested service over the period of 100 seconds when the smart object handling 20
simultaneous requests in the previous experiment. Figure 5.9 shows the duty cycling
pattern in two cases. As we notice, by applying scheduling, the smart sensor keeps
radio on during a shorter time about 20 seconds compare to 45 seconds when there is
no scheduling. Although, radio duty cycle peaks at nearly 6 percent in case of using
scheduling but overall energy consumption of the smart object with support of scheduling

is slightly lower than without scheduling (see Figure 5.10).

68 Semantic Service Provisioning

40 T T T
35 | Direct —X— i
Scheduling —=— f'e
O 30 /_- .
& 25 -
§o; /
8 20 - X=X XX T
8 X
s 15 .. —
e /
v 10 + ;]
- XX XX
0 | |

0 5 10 15 20
of Simultaneous Requests

Figure 5.8: Comparison of service delay when multiple simultaneous requests are sent
to one smart object service.

8 T T T T 8 T T T T
TX —+— X —+—
7F RX - x -] 7r RX - x -]
. 6 Total —#— 4 _ 6 Total —m— -
9 >
~ 5 ~ 5 |
P P
[®] o - -
s 4 s ¢
Z 3 Z 3F 4
a a
2 2k \ .
1 1 3
0 0 S NP — |
0 20 40 60 80 100 0 20 40 60 80 100
Time (s) Time (s)
(a) Using scheduling algorithm. (b) Direct request.

Figure 5.9: Comparison of radio duty cycle when multiple simultaneous requests are
sent to one smart object.

14
121 1pM - =
,\ T
E E g} Total —=—
& &
5 g 6
& &
4 -
36 H F KKK K KR
2 *X b oAb
0 i
0 20 40 60 80 100
Time (s) Time (s)
(a) Using scheduling algorithm. (b) Direct request.

Figure 5.10: Comparison of energy consumption when multiple simultaneous requests
are sent to one smart object.

Performance Evaluation 69

600 . . . |
500 |-
o)
& 400 |-
[¢]
N
300
(]
(@)
©
2 200 F
(D]
=
100 -
L ||

No Semantic RDF N3 Proposed

Figure 5.11: Scheduling algorithm is transparent as it does not delay a single request. Its
purpose is to improve the delay when there are multiple simultaneous requests coming
to one smart object.

5.4.4 Semantic Annotation

Our approach in annotating semantics to smart object service is to break down the
RDF data into two parts, the core data are stored in smart object service and the
additional linking data are added in service provisioning phrase. The annotation in smart
object is represented in N3 format, delivered in media type request of text/n3. With
the richness of semantic annotation for smart service data, our proposed mechanism
significantly reduces the size of the messages compared to straightforward annotation
and eliminate of using a third-party service for re-describing the services. We consider a
typical data representation from a smart object service with the annotated information
of type, source, and value. Figure 5.11 shows the data sizes in difference cases: no
semantic annotation, annotation in RDF format, annotation in N3 format, and the
proposed method. Our proposed method ensures that the semantic annotation remains

at reasonable bytes that can fit in constrained IP stacks such as ulP and CoAP.

5.4.5 REST Proxy Message Overhead and Latency

We set up an experiment to evaluate latency and overhead in two different scenarios: the
first one uses our proposed proxy (Figure 5.5a), and the second one uses the direct DPWS
communication (Figure 5.5b). In both cases, an IoT application communicates with a
DPWS smart object (a heater) to invoke its hosted service (heater functionalities). To
replicate a realistic deployment of the IoT application, we deployed it on a server running

Tomcat ° that used a public Internet connection and was located about 30 km away

Shttp://tomcat.apache.org

70 Semantic Service Provisioning

800 . . 800
Request C—3

700 |- Response mmmm 7| 700
g e00f RTT o | ¢
< 500 | B 4 500 =
I £
» 400 400 =
g 300 |- 300 «
(%)
2 200 F 200

100 |- 100

0 0

DPWS HTTP

Figure 5.12: CoAP, DPWS, and HTTP message overhead and latency.

from the smart objects. We implemented the heater with a hosted service SmartHeater
providing eight operations, as in Table 5.9. We implemented a REST proxy in Java using
the Jersey library on Tomcat © to generate heater Web API. The IoT application either
uses the API provided by the REST proxy or directly communicates with the heater
(using the WS4D JMEDS library) to carry out the DPWS heater’s four functionalities:
checking heater status, setting heater status, adding a new rule, and deleting a rule.

GET /proxy/heater HITP/1.1
User—Agent: Java/1.7.0

3 Host: 157.159.103.50

Accept: text/html
Connection: keep—alive

HTTP/1.1 200 OK

Server: Apache—Coyote /1.1
Content—Type: text/html
Transfer—Encoding: chunked

Date: Fri, 26 Jul 2013 21:46:48 GMT

3 [1374820483967] ON

Listing 5.9: Request and response messages for obtaining the status of the heater using

the proxy Web API expose relatively simple in HTTP format.

Figure 5.12 shows the message sizes of the request and response messages and the
mean round-trip time (RTT) in the communication between the application and the
SmartHeater. We use two methods: the RESTful Web API from the proxy and the
original DPWS operations. The latency when using proxy is 25 percent lower than when

using DPWS. In many pervasive IoT scenarios requiring high responsiveness, reasonable

Shttp://jersey.java.net

2

3

5

6

21

Summary 71

delay would improve system performance and the user experience. Message overhead
improves significantly when we apply the proxy. For real deployments of applications and
smart objects in original DPWS communication, nearly full-mesh connectivity (Figure
5.5b) is unavoidable compared to the linear increments of HTTP traffic in the proxy
scenario (Figure 5.5a). Listings 5.9 and 5.10 show the details of request and response

messages for an operation using the proxy and DPWS.

<?xml version="1.0" encoding="UTF-8"7>
<sl12:Envelope xmlns:dpws="http://docs. oasis—open.org/ws—dd/ns/dpws/2009/01”
xmlns:s12="http://www.w3.o0rg/2003/05/soap—envelope” xmlns:wsa="http://www
.w3.0rg/2005/08/addressing”>
<s12:Header>
<wsa:Action>http://telecom—sudparis.eu/operations/getstatus </wsa: Action>
<wsa: MessagelD>urn:uuid:46932240 —d504 —11e3—bf6a —6eabe38b6788
</wsa: MessagelD> <wsa:To>http://[aaaa::212:7400:13cc:3693]:4567/
Heater </wsa:To>
</s12:Header>
<s12:Body/>
</s12:Envelope>

<?xml version="1.0" encoding="UTF-8"7>

3 <s12:Envelope xmlns:s12="http://www.w3.0rg/2003/05/soap—envelope” xmlns:wsa

="http://www.w3.org/2005/08/addressing”>

<s12:Header>
<wsa:Action>http://telecom—sudparis.eu/operations/getstatusResponse </
wsa: Action>
<wsa: RelatesTo>urn: uuid:46932240 —d504—11e3—bf6a —6eabe38b6788 </wsa:
RelatesTo>

</s12:Header>

<s12:Body>
<i53:reply xmlns:i53="http://telecom—sudparis.eu”’>0ON</i53 :reply>

</s12:Body>

</s12:Envelope>

Listing 5.10: Request and response messages for obtaining the status of the heater using
DPWS expose the complex XML-based messages in SOAP format.

5.5 Summary

This chapter has presented the functional blocks along with several algorithms and mech-
anisms for realizing the proposed service provisioning architecture for loT applications
on Web. The main goal is to solve several problems associated with provisioning smart
object services to the Web such as service discovery, multiple simultaneous requests, and
service authorization in order to generate a friendly interface for developers to effectively

and smoothly integrate smart objects into IoT applications on Web.

Chapter

Case Studies: [oT Applications on Web

Contents

6.1 Devices Profile for Web Services 73
6.2 ThingsChat: A Social Internet of Things Platform 74
6.2.1 System Architecture o 75
6.2.2 Socialized Web APT 76
6.2.3 ThingsChat Platform 78
6.2.4 Prototype and Experiment 79

6.3 SamBAS: A Building Automation System 81
6.3.1 System Architecture 83
6.3.2 Building Ontology and Graph Database 84
6.3.2.1 Context-Awareness 85

6.3.2.2 Policy 87

6.3.2.3 Reasoningo Lo 87

6.3.3 Semantic Context-aware Service Composition 88
6.3.3.1 Composition Plan Description Language (CPDL) 89

6.3.3.2 Service Composition L. 89

6.3.4 Prototype and Experiments00 90

6.4 Implementation Remarks. 92

This chapter presents the Service Integration process in our proposed architecture

with two case studies of developing IoT applications using service provisioning and open

Web standards. These are innovative IoT applications in the domains of Social Inter-
net of Things (SIoT) and Building Automation System (BAS). The first application

is ThingsChat, a SIoT platform facilitating the social relationship between human and

smart objects in the similar way with between human and human in traditional social

72

Devwices Profile for Web Services 73

networks. To do that, we extend our proposed semantic service provisioning by adding a
Device Socializing module, creating a Socialized Web API to automate the communica-
tion between human and devices over the Social IoT platform. The second application,
SamBAS, focuses on exploiting the potential of semantic data model for developing a
novel building automation system with the adoption of IoT technologies for the device
communication. Both the applications use DPWSim [64] (see Appendix A), a DPWS
simulator developed within this research, to simulate home and office environments host-
ing several smart objects using IoT protocol stack. We call smart objects as devices in
these contexts to align with end-user’s point of view since a device or appliance is more

popular than a smart object.

6.1 Devices Profile for Web Services

DPWS defines a set of implementation constraints to provide secure and effective mecha-
nisms for service describing, discovering, messaging, and eventing for resource-constrained
devices. Since its debut in 2004 by a consortium led by Microsoft, DPWS has become
part of Microsoft’s Windows Vista and Windows Rally (a set of technologies from Mi-
crosoft intended to simplify the setup and maintenance of wired and wireless networked
devices), and has been developed in several research and development projects under the
European Information Technology for European Advancement (ITEA) and Framework
Programme (FP): SIRENA (02014 ITEA2), SODA (05022 ITEA2), SOCRATES (FP6),
and on-going IMC-AESOP (FP7) and WOO (10028 ITEA2). Many technology giants
such as ABB, SAP, Schneider Electric, Siemens, and Thales have been participating in
these projects. As they have large market shares in electronics, power, automation tech-
nologies as well as enterprise solutions, their promotion of the DPWS technology promise
a wide range of the future DPWS/IoT products. Schneider Electric and Odonata pi-
oneered the implementation of DPWS leading to the early and open-source release of
software stacks implementing DPWS in C and Java available at Service-Oriented Ar-
chitecture for Device Website !. Web Services for Devices initiative ? reinforces the
implementation by providing and maintaining a repository to host several open-source
stacks and toolkits for DPWS. In addition, many studies have been recently carried
out to complete the technology. Experiment results show that DPWS is able to be
implemented into (even) highly resource-constrained devices such as sensor nodes with
reasonable ROM footprints [65]. Other technical issues of DPWS have also been ex-
plored such as encoding and compression [66], the integration with IPv6 infrastructure
and 6LoWPAN [67, 68], the scalability of service deployment [69], and the security in
the latest release of WS4D DPWS stacks.

"http://soadd.org/
http://wsdd.org/

74 Case Studies: IoT Applications on Web

DPWS thus far has been widely used in automation industry, home entertainment,
and automotive systems [70] and also applicable for enterprise integrations [71]. It
satisfies many requirements for IoT applications such as resource-constrained, event-
driven, and dynamic discovery; In the meantime, it can maintain the integration with
the Internet and enterprises infrastructures. In addition, the strong support from the
community is another reason to make it a promising technology for the future IoT. WS4D
has been developing several DPWS standard implementations in different languages and
platforms as summarized in the Table 6.1. DPWS-gSOAP provides C/C++ toolkits for
deploying Web services consumers and providers. It is multi-platform implementation
supporting Windows-native, Windows-cygwin, Linux, and Embedded Linux. DPWS-
uDPWS is DPWS implementation in C language designed for Embedded Linux, Contiki
and especially for highly resource-constrained devices such as sensor nodes. DPWS-
JMEDS is Java framework for DPWS supporting different Java editions. The latest
release of DPWS-JMEDS hosts the feature of Android OS which paves the way for

implementing services on Android devices.

Table 6.1: DPWS Implementation.

Version Language Operating System

DPWS-gSOAP C Linux, Windows, Embedded Linux
DPWS-uDPWS C Embedded Linux, Contiki
DPWS-JMEDS Java Java Virtual Machine
DPWS-Android Java Android

6.2 ThingsChat: A Social Internet of Things Platform

Online Social Network (OSN) has emerged as an inter-connectivity forum encouraging
people to establish and expand their network of friends/acquaintances for social inter-
acting and sharing ideas as well as various resources in textual and other multimedia
formats. The OSNs aggregates users’ interests, preferences, groups of friends, and activ-
ities to form rich user profiles. The concept of content mashup has emerged to encourage
and support users’ customization of their own OSN by adding services to expand the
functionalities already provided or adding feeds from other OSN. These values of OSN
has been changing social interaction over the Internet, from enhancing the way we reach
information to enhancing the way we reach for each other. In the meantime, the IoT is
gradually penetrating into our daily life with dozens of appealing products are filling up
the shelves. These devices, thanks to the efforts from research activities, can now be fa-
cilitated with inexpensive sensors, low-power wireless communication protocols to sense
and transmit the status of physical world to Internet. A new generation of applications
on this connected ecosystem is being developed excitingly, not only to interact with sin-

gle device or service but also to use the concept of mashup and composition with other

ThingsChat: A Social Internet of Things Platform 75

Web services to create new experiences. However, the best story has yet to come when
the idea keeps flying higher and further by offering these smart and connected devices
a new attribute of being social to benefit OSNs over Internet-connected and socialized
devices. This new paradigm is called Social Internet of Things (SIoT). Industry and
academia since then have been following up this trend and come up with some models
and prototypes of SIoT [72] but mainly in the conceptual level and preliminary data
models for the device-to-device social relationship.

Our vision is to further enhance the social interaction by bringing connected devices
to a new level of being able to have social relationship with other devices and with people.
To achieve that objective, we extend our proposed service provisioning architecture to
facilitate the devices with social ability in the form of Web APIs that can be used by
OSNs to interact with devices. Furthermore, we add to the core OSN functionalities new
capabilities of profiles, intelligence, recommendation, and Natural Language Processing
(NLP) to inherit all the features of OSN and IoT. This design results in a universal OSN
of everything, people and devices, called ThingsChat.

6.2.1 System Architecture

ThingsChat system architecture aims to minimize the discrepancy between device and
human profiles in the social network structure. In other words, ThingsChat treats
devices alike human in a way that devices can make decision and communicate with
human users. The architecture covers a network of people and devices with a Service
Provisioning subsystem magnified by a Device Socialization module to connect devices
to the social networking platform in a similar way that human users connect to it.
There are two main subsystems communicating via the Socialized Web API: Service
Provisioning and Social Network. The former extends our proposed service provisioning
architecture not only to bring device services to the Web but also socialize these services
by adding abilities (API) such as talking and making friend to human users. The latter
is based on the social networking core (e.g., Elgg 3, phpBB Social Network 4, and Oxwall
%) which features a full-fledged OSN with a Web-based User Interface (WUI). A Device
Profiles database is added to store the device profiles inheriting all the properties of
user profiles but containing some additional information to interact with the socialized
devices such as endpoint address referring to the base URI of Web API related to the
corresponding device. In addition, Device Adapter module acts as the interface for the
communication between the social network platform and socialized devices. The other
modules Recommender, Semantic Reasoner, and NLP Interface are in charge of realizing

the human-like intelligence and recommendation functionalities for devices.

3http://elgg.org/
“http://phpbbsocialnetwork.com/
Shttp://www.oxwall.org/

76 Case Studies: IoT Applications on Web

| ONLINE SOCIAL NETWOK '
- i
\ NLP I
! SEMANTIC NLP |
1 1
: RECOMMEMNDER ENGINE INTERFACE SERVICE !
1 _-___'_'_,.'-""'_-_ 1
1 L 1
| |
1 F i
| SOCIAL DEVICE ADAPTER] DEVICE i
. PROFILES USER !
| PROFILES :
! fe— e !
] I
i WEB-BASED DATABASE "
i USER INTERFACE SOCIAL NETWORKING CORE :
1 1
1 1
L 1

[DEVICE SOCIALIZATION] | g

SERVICE PROVISIONING &

*MLP = MNatural Language Processing
Figure 6.1: ThingsChat architecture.

6.2.2 Socialized Web API

We extend our proposed service provisioning to include the social characteristics (e.g.,
communication and decision-making) by adding the Device Socialization module to ex-
isting service provisioning framework. This creates a new Socialized Web API to fa-
cilitate not only the communication between devices and the SIoT platform but also
between devices and human users. The service provisioning server is implemented in
the form of a home gateway ThingsGate, which extends the in-network implementation
of our proposed architecture presented in Section 5.3 to discover, store, and transmit
device services to ThingsChat. It provides an interactive ThingsGate WUI in Resource
Management (a service provisioning functional block, details at 5.2.7) for users to grant
authorization to ThingsChat and initialize devices with socialized functionalities, turn-
ing them into social entities. Table 6.2 shows the main endpoints of the Socialized Web

API from ThingsGate.

In this application, ThingsGate also plays another role as the mediator for an im-
portant step called socializing device. It involves user or device owner in the loop to
authorize and customize the device to fit in the SIoT platform. Figure 6.2 illustrates the
step of socializing a robot cleaner via Resource Management WUI. ThingsGate discovers
a DPWS device with an ID RobotCleanerDevice (a robot cleaner with details shown in

Figure 6.3) in the network and automatically generates Web API endpoints for provi-

ThingsChat: A Social Internet of Things Platform 77

Table 6.2: ThingsGate Socialized Web API.

‘Web API Endpoint Arguments Description

GET /social/device-list N/A List socialized devices

POST /social /register device-name Register a social device profile
device-username
password

POST /social/chat-to-device device-id Send new post to a user
post-id
content

POST /social/friend-request device-id Send new post to a user
user-id

GET /social/nlp content Get device code translated

to natural language

RobotCleanerDevice

Username
Robot Cleaner

Password

Avatar
Nthingsgate/images/RobotClear

© 2014 Telecom SudParis | All right reserved

Registration successful! Return
to Manage Devices.

@ Robot Cleaner

© 2014 Telecom SudParis | All right reserved

Figure 6.2: ThingsGate Resource Management: Socializing a device.

sioning its service. In this step, the device is already available for communicating to

IoT applications on Web but not yet ready for interacting with users on SIoT platform.

An user logs in to the system via ThingsGate WUI to see the list of discovered/provi-

sioned devices and select RobotCleanerDevice to socialize it. ThingsGate than redirects

the user to a registration interface that she can customize the device with some social

characteristics such as user name and avatar. The user clicks Register button to finish

the registration, and if ThingsGate successfully registers the device in the SIoT platform
User Profiles, it will generate device’s Socialized Web API endpoints and add the device

into the socialized list, which can be seen later by user (see Figure 6.3)

78 Case Studies: IoT Applications on Web

List of Socialized Devices RobotCleanerDevice

Bedroom Lamp
/ Bedroomi ampDevice

E Coffee Maker
@ Robot Cleaner

Figure 6.3: ThingsGate Resource Management: List of socialized devices.

hitp://157.159.103.68:4567/RobotCleanerDevic

© 2014 Telecom SudParis | All right reserved

6.2.3 ThingsChat Platform

In addition to the core functionalities of an OSN, ThingsChat has the Device Adapter
module to interact with the Socialized Web APIs. This module has its own set of API
endpoints (see Table 6.3) that can cooperate with the Socialized Web API to fulfill the
duplex communication between users and devices. For example, a device service can
call an API endpoint in the request shown in Listing 6.1 to talk to user Nadia in a
previously-established conversation with post-id = 375. Device Adapter is supported by
Device Profiles database that stores device profiles, and extension of User Profiles in the
core social networking database. The extension includes API endpoints and ownership
of the devices by which ThingsChat can notify devices in the same way that it notifies
human users (via notification messages). NLP Interface pre-process natural language
messages from human users into a list of machine readable commands (tokens) and vice
versa. Semantic Engine is in charge of processing semantic data received from devices in
N3 format. It creates a data model out of the triples received from devices and carries
out reasoning to extract more information that can be used in the Recommender module

to make recommendation to human users or other devices.

1 POST /socialnet /chat—to—user.php HITP/1.1

(%]

Host: thingschat .com
Accept: text/n3

5 device—id=Robot Cleaner

: post—id=375

Listing 6.1: API call from device side to talk to user Nadia.

ThingsChat: A Social Internet of Things Platform 79

Table 6.3: ThingsChat Device Adapter Web API

Web API Endpoint Arguments Description

POST /socialnet/chat-to-user.php device-id Send message to a user
post-id

POST /socialnet/confirm-friend.php device-id Confirm making-friend request
user-id

GET /socialnet/nlp.php content Get natural language translated

to device code

6.2.4 Prototype and Experiment

ThingsChat application consists of four components: Virtual Home (powered by DP-
WSim), provisioning server ThignsGate, SIoT platform ThingsChat, and an external
NLP Service. Virtual Home is created by DPWSim to precisely generate DPWS proto-
col messages for each devices. DPWSim also helps creating rich graphical user interfaces
for the simulation environments (see Figure 6.4 for an example of such interface with the
help of an 3D artist). DPWS devices can be discovered and communicated by DPWS
clients following DPWS standards. ThingsGate is a Java Web application running on
an Apache Tomcat server . ThingsChat is based on phpBB Social Network Engine
providing all basic features of an OSN such as profiles, friends, and sharing. It also has
a WUI to allow people and devices to talk. An NLP Service uses Apache OpenNLP 7
to provide a tokenization function for natural language text. All the machines/servers
DPWSim, ThingsGate, ThingsChat, and NLP Service are deployed in the same local
network for testing purpose.

To illustrate the application, we explain two use cases of Coffee Maker in office and
Robot Cleaner at home (see Figure 6.4). Nadia is living in an apartment (Virtual Home)
with several DPWS appliances such as a TV, lamps, coffee makers, and heater. She can
easily install these devices in the home network from her mobile phone by using the
Resource Management module. ThingsGate allows Nadia to detect available devices
and then socialize them by simple touches on the WUI. She can do the same procedure
in her office to install new devices, probably with the help of a network administrator.
When she finishes setting up things, she can talk with her devices anywhere through
ThingsChat in a natural way. In the morning, when Nadia is on the way to office, Coffee
Maker based on her profile offers a coffee at 09:00, but Nadia has an early meeting at
that time so she asks the Coffee Maker to make it few minutes earlier at the same time
she is talking with her friend on ThingsChat. Coffee Maker receives her request and
update to status that her favorite coffee has set to be ready at 08:55, it also knows

how to reply when Nadia say thanks. In another use case, it has been three days that

Shttp://tomcat.apache.org/
"http://opennlp.apache.org/

80 Case Studies: IoT Applications on Web

B

Madia « CEATN Info | Statistics

o
W Robot Cleaner
Hey! 1 haven' worked for 3 days. The house is in need of cleaning.
Colffan Maker i Spd + Coxint
Merring] Your favorite coffee will be ready as usoal at 09:00. e
. » Comment =‘ !

n Madia Can you make it 5 minutes earker?

. Robet Cleaner Ok, | am on ...
Cotfon Haker Bien surl 1t will be ready at 03:55.
5 . Robat Cleaner [am done.
Nadia Thanks
x 3 n Madia Thasks

Cotfes Maker You're welcome!
7 . Robot Cleanar You'rs welcomal

Figure 6.4: Coffee Maker in office and Robot Cleaner at Virtual Home recommend to
Nadia according to her profile and can understand her requests.

1400 | | | |
1200
1000

800 -
600 -

Running Time (ms)

400

ol [[T I
0

ThingsChat Service Server ThingsGate
Execution Processing

Figure 6.5: Performance of the Socialized Web API of ThingsGate and Device Adapter
Web API of ThingsChat.

Robot Cleaner hasn't cleaned the house. Robot Cleaner, based on Nadia’s profile for
here preference of cleaning frequency, reminds her to have the house cleaned and she is
glad to know that and asks the Robot Cleaner to do it.

We aim to evaluate the performance of the Socialized Web API in provisioning server
(ThingsGate) and Device Apdapter Web API in SIoT server (ThingsChat). The experi-
ment exhibits a typical interaction flow between users and devices: user asks device to do

some jobs, device carries out the requested jobs and replies back to user. This conversa-

SamBAS: A Building Automation System 81

tion involves two API endpoints, one from ThingsGate (POST [thingsgate]/social/chat-
to-device) ® and the other from ThingsChat (POST [thingschat]/socialnet/chat-to-user.php)
9. There are also other modules used in the conversation such as natural language pro-
cessing, machine tokens conversion, semantic data processing, and recommendation,
however we focus on evaluating APIs and these modules in minimal workload. We
break down the job on ThingsGate into two parts: Service Execution for invoking the
requested device service and API Processing for server to process the API request. Fig-
ure 6.5 shows the running time for each task in the above conversation: request to
[thingschat] /socialnet /chat-to-user.php,

ThingsGate request takes average of 404 ms to complete consisting 199 ms for service
execution and 205 ms for API processing, that is reasonably low for a service provisioning
server in a local network deployment. ThingsChat request, however, takes just over 1
second for processing and transmitting data back and forth between ThingsGate and
ThingsChat. It is because that ThingsChat API mainly deals with querying the database

system for handling user and device profiles.

6.3 SamBAS: A Building Automation System

The idea of smart house or smart building has been around for many years receiv-
ing much expectation. A building automation system, residing at the heart of such
smart environments, interacts with its components including hardware, software, and
the communication among them. It involves in several disciplines such as electronics, in-
formatics, automation, or control engineering. BAS, since its debut, has been developed
and promoted by a community of developers, technologists, and scientists with plenty of
impressive prototypes and products. These products bring in comforts and conveniences
to daily life, freeing people from tedious house-works or office-works. Use cases vary from
very simple ones, e.g., automatically turn on/off the lights to complex and critical situ-
ations, e.g., security surveillance. Furthermore, BAS also provides value-added services
by offering intelligent services such as customer tracking in shopping malls or elderly
people healthcare services. All of those make it a very promising business attracting at-
tention of the community to target not only organization customers but also individual
end-users.

Industry and academia have been developing many new technologies for building
automation such as communication protocols, data management, data bus systems,
software components, and/or new hardware devices which can be integrated in the new
systems. Thanks to all those efforts, building automation has advanced over the last

decades with several communication protocols and a variety of BAS products from many

[
°l

thingsgate]: ThingsGate server address
thingschat]: ThingsChat server address

82 Case Studies: IoT Applications on Web

different vendors. A comprehensive overview of communication protocols in building au-
tomation can be found in [73] with different BAS products. Traditionally, equipments
in BASs are interconnected by proprietary communication protocols such as LonWorks
[74], Building Automation and Control Network (BACnet) [75], or KNX [76]. These
protocols have been used to cover all the features of building automation, including
Heating, Ventilating and Air Conditioning (HVAC), lighting, and alarming. There are
also many other standards for BAS. HomeConnex (Peracom Networks), for example,
is a home entertainment network which unites PCs, TVs, audio/video components and
set-top devices into an integrated system. X-10 (X10 Inc.) is another industry standard
using power line and radio for communication among electronic devices used for home
automation. Other proprietary standards include Easy-Radio (Low Power Radio Solu-
tion Inc.), No New Wires (Intellon Corp.), Sharewave (Sharewave Inc.), SoapBox (VTT
Electronics), and Z-wave (Zensys).

Even though, the BAS market is very active with plenty of appealing BAS solutions
but consumers are well aware of the value of such smart systems. However, it is not
difficult to recognize the reluctance among customers in adopting available BAS products
on the market. The main reasons are identified as the cost and the scalability of these
proprietary systems. This normally leads to the suspension or partially deployment of
several on-the-table building renovation projects.

The arrival of the IoT paradigm has opened up new approaches in the building
automation domain with the availability of new devices and communication protocols
which are open, light-weight, low-cost, and interoperable. IoT open standards, both in
software and hardware have brought building automation in a new perspective that is
never more realistic and affordable. This case study, therefore, aims to provide a new
solution for BASs using open Web standards and IoT communication technologies such
as 6LoWPAN and DPWS. We focus to solve the two fundamental problems of BASs:
the first one is to enable the system to quickly adapt to the dynamic changes in user and
environment context; the second one is to coordinate devices in order to serve the diverse
and complex user’s needs involving not only one but several services at the same time.
To solve these problems, first, we semantically model the user and environment context
using RDF and from DPWS communication. Then, we apply service composition over
semantic data from device services and predefined semantic policy rules to select, bind,
and execute appropriate services. The proposed solution, SamBAS is to use composite
service plans to describe users’ requirements using the proposed Composition Plan De-
scription Language (CPDL). We design a Building Ontology containing the description
of concepts and relationships in building environment for the reference schema of storing
graph data in the triplestore database. Context information is modeled, processed and
passed to service composition engine to coordinate appropriate devices/services based

on predefined policy rules and five-step composition process.

SamBAS: A Building Automation System 83

Building
Application | £
Building Bus Server

, - Pinter !

RFID P Eﬂ"ff‘e | i

: NFC b axer :
! . Blinds '
1 | | !

Devices

Figure 6.6: System configuration.

6.3.1 System Architecture

System configuration shown in Figure 6.6 depicts a typical setup of devices inside a room
of a building. There are DPWS devices consisting of a wide range of building equip-
ment (e.g., TV, printer, and light bulbs) and context collectors (e.g., sensors, RFID,
NFC readers). These devices are connected to the building network via wireless or
wired connections with IP stack and low power wireless protocols. Sensors are imple-
mented by uDPWS over the Contiki OS. Equipment with larger memory and processing
power run on Embedded Linux or Andoid OS, their functionalities are developed using
DPWS-gSOAP, some can be connected directly to the regular IP network, some join
the network via home access point or 6EdR. Sensors with their sensing capacity can
monitor the environment RFID readers, NFC readers, or camera can identify users. All
hardware components get connected to the Building Application Server that hosts the
core functionalities of the system.

System architecture shown in Figure 6.7 consists of a Service Provisioning module
based on our proposed service provisioning and several other functional blocks to use
DPWS services in building automation. In which, COMPOSITION subsystem resides
at the center of the architecture with its five-step composition process helps to realize
and deliver appropriate composite services to user based on the user and environment
context. The subsystem can be functionally divided into selecting services, binding
services and executing services which are reflected in three components: Service Selec-
tor, Service Binder, and Service Executor respectively. In addition, Composition Plan
Creator has access to Composition Plan database and provides functionalities for users
to create, modify, and delete composition plans. Composition Broker decides whether
to call the COMPOSITION or not via a decision-making process based on the received

context information. Context Processor receives and process semantic context data from

84 Case Studies: IoT Applications on Web

4 ! /‘-_-_—_-“\

COMPOSITION [composITiON | ——]
BROKER BUILDING
' A g ONTOLOGY
SERVICE SELECTOR COMPOSITION PLAN
> < CREATOR ~——
p ~ COMPOSITION
SERVICE BINDER PLANS
. J || SEMANTIC REASONER
f SERVICE EXECUTOR 117 \ [=
§) {| CONTEXT PROCESSOR TRIPLESTORE
_ AN SN

SERVICE PROVISIONING

Figure 6.7: System architecture consists of four main subsystems DATABASE, COM-
MUNICATION, DISCOVERY and COMPOSITION and four other modules Composi-

tion Plan Creator, Semantic Reasoner, Composition Broker and Context Processor.

context collectors, and then sends them to the Composition Broker.

6.3.2 Building Ontology and Graph Database

Building Ontology defines concepts and relationships between entities within the build-
ing environment. It provides a schema to build up semantic database in the form of
graph data. This is a new concept of database for Semantic Web which consumes RDF
to present the domain knowledge. RDF' is a common acronym within the semantic web
community as it creates one of the basic building blocks for forming the Web of semantic
data. A graph consists of resources related to other resources, with no single resource
having any particular intrinsic importance over another. RDF database includes of RDF
statements, or sometimes called an RDF triples. The term triple is used to describe the
components of a statement with three constituent parts: subject, predicate, and object
of the statement.

The primary purpose of this ontology is to classify things in terms of semantics, or
meaning and especially for describing policies used in composition process. A class in
OWL [44] is a classification of individuals into groups which share common character-
istics. If an individual is a member of a class, it tells a machine that it falls under the
semantic classification given by the OWL class. This provides the meaning of the data
that helps reasoning engine to draw inferred information from the database. Listing 6.2
shows a part of Building Ontology document in OWL by Protégé-OWL editor 1°. It con-
sists of document header and the declaration of the class Policy with two properties of

applyFor and hasCondition. These properties also reflex the relationship of class Policy

Ohttp:/ /protege.stanford.edu/

1

[

S NGO

~

NN NN NN NN NN
0 3] w 0

0

ot

SamBAS: A Building Automation System 85

<rdf:RDF xmlns=‘‘http://www. it —sudparis.eu/bas_ont#"’
xml: base=‘‘http://www.it —sudparis.eu/bas_ont ’’
xmlns: rdfs=‘‘http://www.w3.0rg/2000/01/rdf —schema#"’
xmlns:owl=*‘‘http://www.w3.0rg/2002/07/owl#"’
xmlns:xsd="*‘‘http://www.w3.org /2001 /XMLSchema# "’
xmlns: rdf=*‘‘http://www.w3.0rg/1999/02/22 —rdf—syntax—ns#"’
xmlns:xml=*‘‘http://www.w3. org/XML/1998 /namespace’’ >

<owl:Ontology rdf:about=‘‘http://www.it—sudparis.eu/bas’’/>

<!—— http://www.it —sudparis.eu/bas_ont#Policy —>
<owl:Class rdf:about=‘‘ http://www.it—sudparis.eu/bas Policy’’ >
<rdfs:subClassOf>
<owl:Restriction >
<owl:onProperty rdf:resource=*‘‘applyFor’’/>
<owl:someValuesFrom rdf:resource=*‘‘Building’’/>
</owl: Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction>
<owl:onProperty rdf:resource=*‘‘applyFor’’/>
<owl:someValuesFrom rdf:resource=‘‘User’’/>
</owl: Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>
<owl:Restriction >
<owl:onProperty rdf:resource=‘‘hasCondition’’/>
<owl:someValuesFrom rdf:resource=‘‘Condition’’/>
</owl: Restriction >
</rdfs:subClassOf>
</owl: Class>

Listing 6.2: Building Ontology Document.

with other classes including Building, User and Condition. Figure 6.8 shows the classes
of Building Ontology and their hierarchical relationship. An example of the hierarchy
between classes of User and Director can be seen in the figure with the arrow starting
from User pointing to Director which means Director is a subclass of User and inherits

all the properties of User.

6.3.2.1 Context-Awareness

Context-awareness plays an important role in the pervasive computing architectures
to enable the automatic modification of the system behavior according to the current
situation with minimal human intervention. Since appeared in [77], context has become
a powerful and longstanding concept in human-machine interaction. As human beings,
we can more efficiently interact with each other by fully understanding the context in
which the interactions take place. It is difficult to enable a machine to understand and
use the context of human beings. Therefore the concept of context-awareness becomes

critical and is generally defined by those working in ubiquitous/pervasive computing,

86 Case Studies: IoT Applications on Web

0 CoffeeMaker

% Thing :

Tt
) Personal Policy =

© UniversalPolicy p

|
T
¥ x

0 User
[® OcerationPdlicy] I—,

oM
—

Figure 6.8: Building Ontology graph. The highlighted blocks in the graph show the
hierarchy among class Service and its subclasses. The dotted line with a label presents
a property called locatedIn which takes class Room as object meaning a service is located
in a room.

where it is a key to the effort of bringing computation into daily lives. One major task
in context-aware computing is to acquire and utilize information about the context of
participating entities of a system in order to provide the most adequate services. The
service should be appropriate to the particular person, place, time, event, etc. where
it is required. In the scope of this building automation, user, device, and environment
context are considered in order to bring more efficient service composition. These context
data are sent to the system by using DPWS events implemented in context collectors

and devices.

@prefix : <http://www.it —sudparis.eu/bas_data#> .
@prefix bdg: <http://www.it—sudparis.eu/bas_ont#> .

:Context1430042727831
a bdg:UserContext ;
bdg: happenln :Room803 ;
bdg: hasActor :Jennifer ;
bdg:time 72015:04:26 12:05”

:Context1430043339256
a bdg:EnvironmentContext ;
bdg: happenln :Room803 ;
bdg:hasActor :TempSensor803 ;
bdg:time 72015:04:26 12:15”

: Context1430056199063

2

3

!

SamBAS: A Building Automation System 87

a bdg:DeviceContext ;

bdg: happenln :Room803 ;
bdg:hasActor :CoffeeMaker803 ;
bdg:time 72015:04:26 15:49”

Listing 6.3: Context Data.

Listing 6.3 illustrates three pieces of context data for each type of context: User
Context, Device Context, and Environment Context. The context data then are sent to
Composition Broker which plays the role as a composition decision maker. It decides
whether to call the COMPOSITION or not based on data defined in policy. For example,
if the context information of room temperature is over 10 degree Celsius, no composition
will be carried out otherwise Composition Broker checks the temperature with current
status of the system to launch the COMPOSITION in case the situation is labeled as

context change.

6.3.2.2 Policy

A policy is represented by Policy class in Building Ontology, which applies to a user,
device, or location and contains a condition (Condition class) for representing the policy.
There are three types of policies: Operation Policy, Universal Policy, and Personal Policy.
Listing 6.4 illustrates a piece of data containing a policy called UniversalHeatingPolicy
which is an instance of OperationPolicy (Building Ontology class). It applies for all
users, instances of User (Building Ontology class) and has condition HeatingCondition
(data). HeatingCondition is later on described as an instance of Condition (Building
Ontology class) with “Heating” type and taking the value 10. Previously, two name
spaces were defined at the header, one for the data and the other for the ontology.

@prefix : <http://www.it —sudparis.eu/bas_data#> .
@prefix bdg: <http://www.it—sudparis.eu/bas_ont#> .

:UniversalHeatingPolicy
a bdg: OperationPolicy ;
bdg:applyFor bdg:User ;
bdg:hasCondition :HeatingCondition
:HeatingCondition
a bdg: Condition ;
bdg: conditionType ¢‘Heating’’ ;
bdg:conditionValue 10 .

Listing 6.4: HeatingCondition Rule Data.

6.3.2.3 Reasoning

Graph database built around the Building Ontology enables Semantic Reasoner to infer

additional information from existed data and relationship. We exlain a simple example of

88 Case Studies: IoT Applications on Web

DATA MODEL ONTOLOGY
Jennifer
a bdg:Manager; / . i
\ ® Di
bdg:hasOffice :Room803 . /
URI: hittgr o o/t
Superclasses:
:UniversalHeatingPolicy | MCap -
a bdg:OperationPolicy ;
bdg:applyFor bdg:User ; £} =
Jor - - 3 Z
bdg:applyln :FloorS8; m
bdg:hasCondition :HeatingCondition . REASONER B
- m
=
(]
:Room803 @ m
abdg:Room ;
bdg:locatedin :Foor8 ;
bdg:roomNumber 803 . | UniversalHeatingPolicy applyFor Jennifer

Figure 6.9: Reasoning example.

the reasoning from the data shown in the Listing 6.4 to infer that UniversalHeatingPolicy
applies for user Jennifer. The reasoning process is depecited in Figure 6.9 in which a
fact is stated as the UniversalHeatingPolicy rule applying for instances of User class. A
reasoner with basic capacity can be used to demonstrate the use case, e.g., Apache Jena
11 natively-supported reasoner. An inference model is created which takes the reasoner,
Building Ontology and the Graph Database as input parameters. Data in the form of
resources and properties are then created from database. A simple code line can be
used to generate an entailed relationship. Specifically, user Jennifer who is an instance
of Director (Building Ontology class, subclass of class User) would be imposed by the
UniversalHeatingPolicy rule as well. This reasoning model helps to reduce the database
size and quickly collect all related data of an event or user which are all necessary for

the service composition process.

6.3.3 Semantic Context-aware Service Composition

Residing at the heart of the proposed BAS, the COMPOSITION subsystem is in charge
of answering composition requests from Composition Broker with regard to collected
context information. It then gets access to all related resources to coordinate appro-
priate devices/services to serve the request. Previously, Building Ontology and Graph
Database have been discussed to provide the semantic database. Also, context infor-
mation processed by the Context Processor is passed to the composition process as the
input data. In addition, a description language is designed to describe the composition
plans and a five-step composition process is proposed to efficiently and accurately carry

out service composition.

Uhttp:/ /jena.apache.org/

SamBAS: A Building Automation System 89

6.3.3.1 Composition Plan Description Language (CPDL)

A language called Composition Plan Description Language (CPDL) has been designed
to describe composition plans associating with each context. An example of a CPDL
document is shown in the Listing 6.5. This document describes a composition plan
related to user Jennifer with the context of when she comes in her office (room 803)
in the morning. It defines the composite service in that context consisting of four
component services Window, Light, CoffeeMaker, and Heater. The actual execution of
this plan depends on the context, user, localtion, and policies.
<?xml version=°‘1.0’" encoding=‘‘UTF-8’’" 7>
<CSDL xmlns: xsi=‘‘http://it—sudparis.eu/bas’’ >
<plan user="Jennifer” location="Room803” context="MorningCheckin”>
<service status="on”>Window</service>
<service status="on”>Light</service>
<service status="on”>CoffeMaker</service>
<service status="on”>Heater</service>
</plan>

</CSDL>
<xml>

Listing 6.5: Composition Plan Description Language (CPDL).

6.3.3.2 Service Composition

five-step service composition process is shown in Figure 6.10 which visually depicts six

phases of the composition as follows:
e Step 1: Collect and process context information
e Step 2: Query related policies, make decision to call COMPOSITION
e Step 3: Query related services, select services
e Step 4: Bind services to their operations
e Step 5: Execute operations of services

The process starts with an event notified from context collectors when they detect
changes in context and send that information in to the Context Processor. This informa-
tion can be one of the three types of context: User, Device, and Environment. Context
Processor processes and represents this information in semantic data which are sent to
the Composition Broker to decide whether to move on by calling the COMPOSITION
or not. In case no action needs to be carried out, the system switch to the sleep mode,
otherwise the COMPOSITION is called. Then, resources are collected in the database

to support the composition process. Service Selector uses provided context information,

90 Case Studies: IoT Applications on Web

TRIPLESTORE

COMPOSITION
PLANS

[Composition Broker]
Call COMPOSITION?

[Context Processor] NO I
Receive Context Data

S0 . [Service Selector]
: ' Select appropriate service

50 AY
[Service Binder]
S0 Bind to specific operation
<r I
S0
[Service Executor]
| Execute service

=

Figure 6.10: Five-step composition process.

CPDL data of the user at that context and inferred policies from the Semantic Reasoner
to select appropriate services and create a concrete description of the required composite
service. Service Binder follows up by binding with operations of selected services and

Service Executor gets access to Service Cache to execute that operations.

6.3.4 Prototype and Experiments

We develop SamBAS prototype to illustrate the operation of the proposed system and
to test the feasibility and scalability of the system. The prototype uses DPWSim for
simulating DPWS devices in an office building. A Graphical User Interface on top of
the devices representing an office plan along with its actors: office equipment and a
user who can move around the office space to change her context as shown in Figure
6.11. Context changes in environment and devices are activated by user by firing device
events provided in DPWSim. The SamBAS consists all the system components discussed
previously. Building Ontology is developed using Protégé-OWL editor, graph database
is represented in N3 format, and the COMPOSITION modules are developed in Java
programming language on an Building Application Server with Intel processor 2.6 GHz,
6 GB RAM. It uses Jena library for semantic data manipulation and Jena integrated
reasoner for inference functionalities.

Figure 6.11 illustrates a use case when a user Jennifer comes to her office located in
the room 803 in the morning. When she enters her office, she uses her RFID keycard to
check on the RFID reader located on her office door. This RFID reader, functioning as a
context collector, sends a context-change notification to the Composition Broker to check
with associated policies whether to call up the COMPOSITION or not. In this scenario,
it is YES. The system uses the reasoner to collect all the policies constrained to the user

to create a concrete appropriate composite service based on the user’s composition plan,

SamBAS: A Building Automation System 91

& DPWSm - Space = =
File Device Help

&1 I =

o ol cooo\
- e aaana

Q@
| O
ogg

File Device Help

O © T’ QQQQ

)
Ei\ el .

EONORC

— [—

I 803 T T

Figure 6.11: DPWSim office simulation demonstrates the service of user by the context.
The composite service consists of two component services Light and CoffeeMaker is
executed when the user is present in her office.

which, in this case, consists of two component services CoffeeMaker and Light. Then
the two concrete context-based services CoffeeMaker803 and Light803 are selected and

bound to their operations and finally executed by Service Executor to serve the user.

We carry out the experiment to measure the running time of the COMPOSITION
process against the size of the services in the building varying from 50 to 500. The
composition plan used in this experiment has 10 component services (size = 10). Results
from Figure 6.12 show that the semantic model performs efficiently with the composition
time remains very low even with the data size of 500 services, which is estimated for

medium building with about 50 rooms.

92 Case Studies: IoT Applications on Web

1000 T T T T T T T T
Ontology Loading — +—
Composition —=&—
—~ 800 P .
£
GE) 600 = . —t— e — TP~
=
2 400 | 7
C
C
-
~ 200 7
0 1 1 1 1 1 1 1 1

50 100 150 200 250 300 350 400 450 500
of Services

Figure 6.12: Service selection. Composition time of service selection process as the
number of devices increases from 500 to 5000.

6.4 Implementation Remarks

The success of these applications shows that the proposed architecture is highly flexible
and applicable in different application scenarios proving again that end-to-end IP ar-
chitecture is an ideal choice for IoT. According to the developers of these applications,
the software development experience is very positive and the integration of smart ob-
ject services into traditional Web applications is easy and transparent. For example,
ThingsChat is based on an existing online social network (phpBB Social Network) using
PHP programming language, which is one of the most common server-side languages for
Web applications. In order to build a new social network (SIoT'), developers are required
to master PHP language. In the meantime, they are not expected to have knowledge on
IoT protocol stack. However, software developers encounter no problem with working
on these interface even without any knowledge on the underlying IoT protocols and the

architecture only provides the interface (Web API) using open standards.

Chapter

Conclusion and Future Work

Contents
7.1 Conclusion ¢ i i i i i i it e e e e e e e e e e e e e e e 93
7.2 Future Work @ i i i i e e e e e e e e e e e e e e 94

7.1 Conclusion

This dissertation has proposed a new architecture of semantic service provisioning for
6LoWPAN including a design of 6LoWPAN internetworking model with regular IPv6
network, a study on networking performance of 6LoWPAN, algorithms and mechanisms
for service provisioning, and two innovative proof-of-concept IoT applications on Web il-
lustrating the integration of the proposed architecture in different application domains.
The design and study on networking performance of the 6LoWPAN has shown that
end-to-end IP communication is possible for real-life deployment of smart objects. The
results suggest that the IP-based IoT protocol stack can be used for even with highly
resource-constrained such as sensor nodes with a few Kb of memory. Operating sys-
tems such as Contiki OS are providing effective platforms to enable the communication
of smart objects. The proposed service provisioning architecture presents a secure,
scalable, and reliable method to power IoT applications on Web. The architecture was
verified by two IoT applications of ThingsChat and SamBAS on Social IoT and Building
Automation domains. For each domain, we evaluated the implementation empirically
by means of several prototypes and applications and on different environments: the
IoT testbed consisting of MTM-CM5000-MSP TelosB sensor nodes, the Contiki Cooja
simulator, and DPthWSim — the open-source DPWS simulator developed within this
research. Overall, the results demonstrate that the proposed semantic service provision-
ing architecture can cope with several challenges and enhance the experience for the

development of IoT applications on Web.

93

94 Conclusion and Future Work

The work has profound impact on two large-scale European projects: ITEA2 Web
of Objects (WoO) ! and ITEA2 Social Internet of Things - Applications by and for the
Crowd (SiTAC) 2. The WoO project addressed specific issues relating to the increasing
integration of Internet-connected devices in existing business applications, proposing a
modular solution kit to enable the development of industrial and consumer applications
with smart objects as actors, across multiple layers from objects to Web-based user
applications. The SiTAC project exploits the social networking paradigm in order to
facilitate and unify interactions both between people and devices and between devices.
It provides a distributed framework for enabling the Web-based service representation

of smart spaces and the objects they include.

7.2 Future Work

The proposed architecture with its profound impact on both academia and industry is
a starting point for several future directions for IoT research. In this section, we look

at some of the future work directly extending the results from this dissertation.

Service Composition

The question in IoT is not only how to make smart objects be able to communicate over
the Internet through provisioning, but also how smart objects services can be used in
multiple application in serendipitous ways to create new and creative applications. To
answer this, we can be use service composition, one of the core principles of the Service-
Oriented Architecture. Advanced functionalities can then be created by combining a
set of atomic services in the form of composite services. These composite services can
be used in different scenarios to meet various user requirements. The true value of the
IoT and new opportunities to create a smarter world will become apparent when data
and events from an increasing number of smart objects can be easily and dynamically
composed to create novel applications. Service composition has been extensively studied
in the context of Web services and business processes [78]. A number of standards have
been developed and are being used in real-world deployments to support the service
composition. However, the characteristics of IoT systems, such as resource-constraints
and data/event-driven devices render some of the techniques devised for traditional Web
service composition inadequate. Therefore, new composition models with respect to new
requirements of IoT systems are expected. We continue with the the future full-IP IoT
to apply the service composition to further expand the proposed service provisioning

architecture to give more innovation on the IoT domain.

"http:/ /www.web-of-objects.com/, 2012 - 2015
Zhttp://sitac.wp.tem-tsp.eu/, 2012 - 2015

Future Work 95

IoT Protocol Stack

The IEEE 802.15.4 has been proven to be an excellent standard for low-power smart
objects to carry out end-to-end IP communication. It goes with a set of supported
standards such as 6LoWPAN adaptation and ulPv6 implementation. direction that
we plan to investigate in coming time is for other link layer technologies rather than
IEEE 802.15.4 such as BLE and PLC. IETF 6lo WG is working on several standards
related to these links and can provide adaptation protocols for these technology such as
four Internet drafts that define the adaptations for IPv6 over BLE (draft-ietf-6lo-btle),
DECT Ultra Low Energy (draft-ietf-6lo-dect-ule), MS/TP (master-slave /token-passing)
networks (draft-ietf-6lo-6lobac), and G.9969 networks (draft-ietf-6lo-lowpanz). Espe-
cially, we focus on the recent update of IEEE to the MAC portion of the IEEE 802.15.4
standard, 802.15.4e TSCH for the communication link. Besides, there are several room
to improve the performance of the entire networking protocol stack including routing
protocols for 6LoOWPANSs and other efficient messaging protocol for applications layers
such as XMPP and AMQP.

Smart Grid

The proposed architecture also one of the core communication technology of the new
European project in the domain of smart energy management: Future Unified System
for Energy and Information Technology # (FUSE-IT). The project has just started by
the time of this manuscript. We are planing to to extend the proposed architecture to
the smart grid applications with a large-scale testbed in Barcelona city. The aim of
the project is to develop a smart secured building system, incorporating secure shared
sensors, actuators and devices strongly interconnected through not only information
networks but trusted energy networks, including a core building data processing &

analysis module, a smart unified building management interface, and a full security
dashboard.

3http:/ /www.itea2-fuse-it.com/, 2014 - 2017

Appendix

DPWSim: A DPWS Simulator

Contents
A.1 Simulation Model 000000 96
A.2 DPWSim Componentst i vt 98
A.3 DPWSim Core Functionalities., 98
A.4 Usage Scenarios vt i ittt i it 100
A.5 Graphical User Interface 100
A6 DPWSIMmUse Cases v v v v v v vt v ittt e e it e e oo 100

DPWSim is a cross-platform simulator of the DPWS standard. It supports the de-
velopment of IoT applications using DPWS; DPWSim is based on WS4D-JMEDS !,
the Java implementation of DPWS. The core function of DPWSim is to simulate the
DPWS protocols by generating DPWS messages and its communication messaging pat-
terns. It simulates DPWS devices, called DPWSim devices, which can be discovered on
the network and can communicate with other devices or clients via DPWS protocols.
Besides, it also simulates environments where DPWSim devices reside in. DPWSim
provides many simulation tools for users to create, manage, store, and load simulations
with high flexibility. DPWSim GUI that is based on Java Swing [79] is quite intuitive
and easy to use. DPWSim helps developers to prototype, develop, and test DPWS func-
tionalities. The following sub-sections describe the simulation model, core components,

functionalities, usage scenarios, and GUI of the simulator.

A.1 Simulation Model

DPWSim simulates the DPWS devices by modeling them as services that operate ac-

cording to the input of sensing data (e.g., environmental temperature provided by users)

'ws4d.org/jmeds/

96

Simulation Model 97

T opwsio - Temacelight

Figure A.1: A home space contains three devices: a generic DPWSim device (blue
button), a light bulb, and a coffee maker. A stand-alone device (space with only one
device) is a light bulb.

and communication data (e.g., service invocation commands sent from clients). We use
a number of hardware including IBM PCs, Raspberry Pi, and Telos B sensor nodes
to build real-life devices such as thermostats, motion detectors, and TVs to record how
these devices work in several scenarios in order to mimic their behaviors in the simulator.
DPWSim builds simulated devices regarding all layers of the TCP/IP networking model
[80]. At the network interface layer, the reliable Ethernet link of the host machine
is considered to focus on the DPWS protocol messages and mechanisms rather than
physical issues (e.g., radio interference). At application layer, each DPWSim device is
modeled as a list of services (events and operations) binding to an IP address (internet
layer) over UDP (transport layer). Events happen periodically after an interval of time
or manually via user interaction; operations are software components receiving input,
processing it, and producing output (with its status updated and sent to the invoker).
On top of that, device status and outputs of events/operations are modeled as graph-
ical representations. When it comes to modeling and simulating real DPWS systems,
DPWSim can support steps involving modeling, designing experiment, and performing

analysis of the discrete-event simulation [81].

DPWSim has four basic components namely Spaces, Devices, Operations, and Events.

A space contains several devices; each device has a list of operations and events.

Spaces

A space is a virtual environment representing a real-life setting in which DPWSim
devices reside in. It can be a home, an office, a train station, a public space, or simply
a stand-alone device. Figure A.1 illustrates a home space containing three devices and

a stand-alone device.

98 DPWSim: A DPWS Simulator

Devices

A device refers to both DPWS hosting service and hosted service. Since these two kinds
of services, in reality, share similar characteristics, they are used interchangeably in
DPWSim for simulation purpose. It contains two different endpoint addresses used for
each type of services. For example, when taking part in the discovery, it uses the device

endpoint address; when invoking an operation, it uses the service endpoint address.

Operations

Each device contains a list of operations carrying out device functionalities such as
switching on and off based on commands received from clients. These operations are
described in WSDL descriptions and can be retrieved via service endpoint addresses.
Each output of an operation is represented by a graphical status, for example, the light
bulb in Figure A.1 will be changed to off status when the corresponding operation is

successfully invoked by a client.

Events

An event, similar to an operation, is used for a device functionality related to changes in
device state. When the device state changes (or an event happens), it notifies subscribed
clients by sending notification messages. An event can happen periodically (i.e., it
happens frequently after an interval of time such as sensing CO2 level every 15 minutes)
or manually (i.e., it is invoked by users). This property can be set in the Device Control

Panel as shown in Figure A.2.

A.2 DPWSim Components

A.3 DPWSim Core Functionalities

DPWSim provides simulation tools to help researchers and developers to build IoT
applications consuming DPWS services. DPWSim can support users to create virtual
environments from a simple to a complex one, even a graphically-rich interface like in
the Figure A.5 with the aid of external computer graphics software and design skills.
DPWSim acts as a dynamic mediator to generate different types of simulation meanwhile

maintaining the DPWS functionalities.

New Space/Stand-alone Device

There are two options for creating a virtual environment: stand-alone device and space.

These functions can be accessed through File menu or keyboard shortcuts. A space is a

DPWSim Core Functionalities 99

@ Device Control Panel

e | Terracelight

http:/frelecom-sudparis.eu

otionDetection Obi + £
® Start | | Close
Linux OS
80n t i S
IGIY evice e LA e
_l New » Mac 0S o Control Panel
ws Open "0 Menu Bar Hl save
Fsave ~s 5 & Move
Windows 0S
© auit Context Menu W Delete

Figure A.2: DPWSim GUI components: a dialog window (Linux OS), a menu bar (Mac
0S), and a context menu (Windows OS).

composite environment to host several devices. It is created by using a plan image such
as office, home, and airport. A stand-alone device is simply a DPWSim device with a
hosted service containing operations and events. This kind of virtual environment can

be stored in file and re-used in other virtual environments.

New Device

Devices can be created by several ways, each is associated with a submenu of the Device
menu in DPWSim: Add New (new user-customized devices), Add Predefined (pre-
configured devices by DPWSim), Add From File (importing device from saved device
description), and Genereate from Physical Device (creating new device by mapping
functionalities from a real device to a simulated one). Users can further customize
physical device properties to fit a new device. This capability is especially useful when
developers want to focus on designing the business logic of an IoT application rather

than the physical performance of devices.

Device Management

Once a device has been created within a virtual environment or as a stand-alone device,
it can be queried for DPWS information, re-located, deleted, or saved for future uses.
Similarly, a virtual environment including its devices can be saved in the file system for
being shared among co-workers. Device services can be changed once created through
the Device Control Panel associated to each device as shown in the Figure A.2. It
provides an important approach for developers to change device functionalities during

the development process without re-creating the device.

100 DPWSim: A DPWS Simulator

A.4 Usage Scenarios

DPWSim can be used in different phases in the development process of DPWS products

and systems. In general, it can be used in three scenarios

Scenario one - Product Integrating

Device manufacturers can pre-provide the DPWSim-compatible *.dpws file that de-
scribes functionalities of upcoming devices to developers. It enables them to test these

devices in their real IoT applications before the official release of these products.

Scenario two - Product Protyping

Developers can prototype new devices and new functionalities based on their application
requirements without going through the complex manufacturing process. The final

design then can be transferred to the manufacturer to work on it.

Scenario three - Resources Sharing

This scenario describes the situation when several teams, at the same time, develop
different modules over the same devices. To solve the problem and speed up the de-
velopment process, a new set of simulated devices is generated by DPWSim to share
among developers. The simulation can also be used for demonstration purpose without

the loss of the accuracy.

A.5 Graphical User Interface

DPWSim GUI is built on lightweight Java Swing with a high level of flexibility and the
inherent ability to override native host operating system (OS) UI controls. Swing com-
ponents do not have corresponding native OS GUI components, and every component is
free to render itself in any way possible within the underlying graphics GUIs. DPWSim
GUI is intuitive to users with the dialog/menu/context menu system. Figure A.2 shows
some snapshots of DPWSim GUI in different platforms: Windows OS, Linux OS, and
Mac OS.

A.6 DPWSim Use Cases

DPWSim has been used in several environments such as DPWS Explorer 2, a Web
application, a testbed, and in a number of DPWS studies. The following parts explain

each of these experiments on DPWSim and information about the development process.

2http://wsdd.org/dpws-explorer/

DPWSim Use Cases 101

c
Expand o Collapse sfl Clear Remove Quick Info Pasameter Tree.
Devices Event Management
@ Teracelight - GenericDevice Gt Status Unsubscribe | 600
a GenericSenace
Name Manage Value
W o 3 o
Uy MotionDetection [€] param Object detected!{l)
& operstions
L swen

Figure A.3: DPWS Explorer discovers a DPWSim device TerraceLight containing an
event MotionDetection and an operation Switch. The green icon next to the MotionDe-
tection event indicates that DPWS Explorer is subscribing to the event; once the event
occurs, DPWS Explorer will receive the notification, e.g., Object detected.

Devices List
E[L\ KitchenLight
Kitches ht

B 19216812

Figure A.4: A user can turn on the light bulb KitchenLight by invoking its SwitchOn
operation via the smartphone Web interface of DPWSim Web.

DPWS Explorer

DPWS Explorer is an analyzing tool for DPWS compliant services. It visualizes var-
ious aspects of both hosting and hosted services like metadata or message exchange
and provides capabilities to call or subscribe to device services and events. It is used
to preview DPWS services during the development process. DPWSim devices can be
discovered, their operations can be invoked, and their events can be subscribed from
DPWS Explorer. Figure A.3 shows how DPWS Explorer retrieves data and interacts
with a DPWSim device.

DPWSim Web

DPWSim Web is a small Web application included in the release of DPWSim to illustrate
an use case when a Web application interacts with DPWSim devices. It is a Java Web
application running on Apache Tomcat application. It can discover available DPWS
devices on the network and retrieve their metadata. Following these data, users can

invoke device operations to carry out their tasks. Figure A.4 shows DPWSim Web via

102 DPWSim: A DPWS Simulator

Figure A.5: A virtual home hosting several DPWS devices is designed using DPWSim
with the help of a 3D artist (Sa Hoang from Ecole Nationale Supérieure d’Architecture
de Paris La Villette - ENSAPLV).

its smartphone interface to invoke an operation of a light bulb device KitchenLight.
Users can switch the light bulb on or off from the Web interface by clicking on the

buttons.

Research Projects

DPWSim has been used within ITEA2 Web of Objects (WoO) project to support the
development of an incident management scenario for testing the contextual object collab-
oration. DPWSim has been used throughout the development to describe the common
interface for the cooperation between devices upon the assigned rights and specific rules
imposed in the whole system. An example of the home environment created for the
project is shown in Figure A.5. The home consists of several DPWS devices such as a
TV, lamps, and a coffee maker. With the help of a 3D artist, it provides an elegant
simulation using DPWS protocols.

Besides, DPWSim has been thus far used in several IoT studies such as the semantic
building automation system [82], social device networking [83], and REST proxy for
DPWS [84]. DPWSim is hosted by WoO project and its source code is maintained on
a GitHub repository (http://github.com/sonhan/dpwsim.)

Bibliography

1]

J.-P. Vasseur and A. Dunkels, Interconnecting Smart Objects with IP: The Next
Internet. Morgan Kaufmann, 2010.

D. Evans, “The internet of things how the next evolution of the internet is changing
everything,” Cisco, White Paper, 2011.

T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific Ameri-
can, pp. 29-37, May 2001.

S. Cirani, M. Picone, and L. Veltri, “Cosip: a constrained session initiation protocol
for the internet of things,” in Advances in Service-Oriented and Cloud Computing.
Springer, 2013, pp. 13-24.

Z. Shelby, K. Hartke, and C. Bormann, “Constrained Application Protocol
(CoAP),” IETF, IETF Internet Draft — work in progress 18, Jun. 2013.

“Devices Profile for Web Services Version 1.1,” OASIS, Tech. Rep., Jul. 2009.
“Web Services Architecture,” W3C, W3C Working Group Note, Feb. 2004.

A. Stanford-Clark and H. L. Truong, “Mqtt for sensor networks (mqtt-sn) protocol
specification,” IBM, Tech. Rep., Nov. 2013.

S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Computing,
vol. 10, no. 6, pp. 87-89, Nov 2006.

M. N. Huhns and M. P. Singh, “Service-oriented computing: Key concepts and
principles,” IEEE Internet Computing, vol. 9, no. 1, pp. 75-81, 2005.

D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of things: Vision,
applications and research challenges,” Ad Hoc Networks, vol. 10, no. 7, pp. 1497—
1516, 2012.

103

104

Bibliography

[12]

[13]

[14]

[17]

O. Mazhelis, E. Luoma, and H. Warma, “Defining an internet-of-things ecosystem,”
in Internet of Things, Smart Spaces, and Next Generation Networking, ser. Lecture
Notes in Computer Science, S. Andreev, S. Balandin, and Y. Koucheryavy, Eds.
Springer Berlin Heidelberg, 2012, vol. 7469, pp. 1-14.

R. V. Prasad, C. Sarkar, V. S. Rao, A. R. Biswas, and I. Niemegeers, “Opportunistic
service provisioning in the future internet using cognitive service approximation,”

in 28th WWRF Meeting, Athens, Greece, 2012.

B. Mandler, F. Antonelli, R. Kleinfeld, C. Pedrinaci, D. Carrera, A. Gugliotta,
D. Schreckling, I. Carreras, D. Raggett, M. Pous, C. Villares, and V. Trifa, “Com-
pose — a journey from the internet of things to the internet of services,” in 2013
27th International Conference on Advanced Information Networking and Applica-
tions Workshops (WAINA), Mar. 2013, pp. 1217-1222.

S. Lee and I. Chong, “User-centric intelligence provisioning in web-of-objects based
iot service,” in 2013 International Conference on ICT Convergence (ICTC), Oct.
2013, pp. 44-49.

S. Gagnon and K. Cakici, “Integrating business services networks and the internet
of things: A new framework for mobile software as a service,” in V conference of
the Italian chapter of AIS (itAIS 2008), Paris, France, 2008.

D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting with the
soa-based internet of things: Discovery, query, selection, and on-demand provision-
ing of web services.” IEEFE Transactions on Services Computing, vol. 3, no. 3, pp.
223-235, Jul. 2010.

S. Li, G. Oikonomou, T. Tryfonas, T. Chen, and L. D. Xu, “A distributed con-
sensus algorithm for decision making in service-oriented internet of things,” IFEE
Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1461-1468, May 2014.

R. T. Fielding and R. N. Taylor, “Principled design of the modern web architec-
ture,” ACM Trans. Internet Technol., vol. 2, no. 2, pp. 115-150, May 2002.

“Programmableweb,” ProgrammableWeb. [Online]. Available: http://www.

programmableweb.com/

D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical mashups in the
web of things,” in Proceedings of INSS 2009 (IEEE Sixth International Conference
on Networked Sensing Systems), Pittsburgh, USA, Jun. 2009.

http://www.programmableweb.com/
http://www.programmableweb.com/

Bibliography 105

22]

[24]

[25]

[26]

[27]

[28]

D. Guinard and V. Trifa, “Towards the web of things: Web mashups for embedded
devices,” in Workshop on Mashups, Enterprise Mashups and Lightweight Compo-
sition on the Web (MEM 2009), in proceedings of WWW (Intl. World Wide Web
Conferences), Madrid, Spain, 2009.

D. Guinard, “Mashing up your web-enabled home,” in Current Trends in Web

Engineering. Springer, 2010, pp. 442-446.

D. Guinard, M. Mueller, and J. Pasquier-Rocha, “Giving rfid a rest: building a
web-enabled epcis,” in Internet of Things (IOT), 2010. IEEE, 2010, pp. 1-8.

D. Guinard, C. Floerkemeier, and S. Sarma, “Cloud computing, rest and mashups
to simplify rfid application development and deployment,” in Proceedings of the
Second International Workshop on Web of Things. ACM, 2011, p. 9.

D. Guinard, M. Mueller, and V. Trifa, “Restifying real-world systems: A practical
case study in rfid,” in REST: From Research to Practice. Springer, 2011, pp.
359-379.

D. Zhiquan, Y. Nan, C. Bo, and C. Junliang, “Data mashup in the internet of

)

things,” in 2011 International Conference on Computer Science and Network Tech-

nology (ICCSNT), vol. 2. 1EEE, 2011, pp. 948-952.

E. Avilés-Lépez and J. A. Garcia-Macias, “Mashing up the internet of things: a
framework for smart environments,” FURASIP Journal on Wireless Communica-
tions and Networking, vol. 2012, no. 1, pp. 1-11, 2012.

K. Kenda, C. Fortuna, A. Moraru, D. Mladeni¢, B. Fortuna, and M. Grobelnik,
“Mashups for the web of things,” in Semantic Mashups. Springer, 2013, pp. 145—
169.

“BUGswarm,” BUGswarm. [Online]. Available: http://developer.bugswarm.net/
“Carriots,” Carriots. [Online]. Available: https://www.carriots.com/
“Evrythng,” EVRYTHNG. [Online|. Available: http://www.evrythng.com/
“Grovestreams,” GroveStreams. [Online]. Available: https://grovestreams.com/
“Nimbits,” Nimbits. [Online]. Available: http://www.nimbits.com/
“Open.Sen.se,” Open.Sen.se. [Online]. Available: http://open.sen.se/
“Paraimpu,” Paraimpu. [Online|. Available: http://paraimpu.crs4.it/

“Sensinode,” NanoService. [Online|. Available: http://www.sensinode.com/

http://developer.bugswarm.net/
https://www.carriots.com/
http://www.evrythng.com/
https://grovestreams.com/
http://www.nimbits.com/
http://open.sen.se/
http://paraimpu.crs4.it/
http://www.sensinode.com/

106

Bibliography

[38]

[39]

[40]
[41]
[42]
[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

“SensorCloud,” SensorCloud. [Online|. Available: http://www.sensorcloud.com/

“Thinkspeak,” ThingSpeak Community. [Online]. Available: https://www.
thingspeak.com/

“Thingworx,” ThingWorx. [Online|. Available: http://www.thingworx.com/
“Xively,” Xively (Pachube). [Online]. Available: https://xively.com/
“Yaler,” Yaler. [Online|. Available: https://yaler.net/

“RDF Primer,” W3C, W3C Recommendation, Feb. 2004.

“OWL 2 web ontology language document overview,” W3C, W3C Recommenda-
tion, Oct. 2009.

M. Compton, P. Barnaghi, L. Bermudez, R. GarciA-Castro, O. Corcho, S. Cox,
J. Graybeal, M. Hauswirth, C. Henson, A. Herzog et al., “The ssn ontology of the

w3c semantic sensor network incubator group,” Web Semantics: Science, Services
and Agents on the World Wide Web, vol. 17, pp. 256-32, 2012.

A. Gangemi, “Ontology design patterns for semantic web content,” in The Semantic
Web - ISWC 2005, ser. Lecture Notes in Computer Science, Y. Gil, E. Motta,
V. Benjamins, and M. Musen, Eds. Springer Berlin Heidelberg, 2005, vol. 3729,
pp. 262-276.

P. Barnaghi, M. Presser, and K. Moessner, “Publishing linked sensor data,” in
CEUR Workshop Proceedings: Proceedings of the 3rd International Workshop on
Semantic Sensor Networks (SSN), vol. 668, 2010.

“Sparql 1.1 query language,” W3C, W3C Recommendation, Mar. 2013.

D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hasemann,
A. Kroller, M. Pagel, M. Hauswirth, M. Karnstedt, M. Leggieri, A. Passant, and
R. Richardson, “Spitfire: toward a semantic web of things,” IEEE Communications
Magazine, vol. 49, no. 11, pp. 4048, 2011.

H. Hasemann, A. Kroller, and M. Pagel, “Rdf provisioning for the internet of
things,” in 2012 3rd International Conference on the Internet of Things (IOT).
IEEE, 2012, pp. 143-150.

D. Bimschas, H. Hasemann, M. Hauswirth, M. Karnstedt, O. Kleine, A. Kroller,
M. Leggieri, R. Mietz, A. Passant, D. Pfisterer, K. Roémer, and C. Truong,

7

“Semantic-service provisioning for the internet of things,” FElectronic Communi-

cations of the FASST, vol. 37, 2011.

http://www.sensorcloud.com/
https://www.thingspeak.com/
https://www.thingspeak.com/
http://www.thingworx.com/
https://xively.com/
https://yaler.net/

Bibliography 107

[52]

[53]

S. De, P. Barnaghi, M. Bauer, and S. Meissner, “Service modelling for the internet
of things,” in 2011 Federated Conference on Computer Science and Information
Systems (FedCSIS), Sep. 2011, pp. 949-955.

0. Kleine, “Integrating the physical world with the internet — a concept evaluation,”
in 2013 IEEE 6th International Conference on Service-Oriented Computing and
Applications (SOCA), Dec. 2013, pp. 323-327.

A. Dunkels, “The contikimac radio duty cycling protocol,” 2011.

A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-line energy
estimation for sensor nodes,” in Proceedings of the 4th workshop on Embedded net-
worked sensors. ACM, 2007, pp. 28-32.

M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power coap for contiki,” in
Proceedings of the 8th IEEE International Conference on Mobile Ad-hoc and Sensor
Systems (MASS 2011), Valencia, Spain, Oct. 2011.

M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud services for
the internet of things with coap,” in Proceedings of the 4th International Conference
on the Internet of Things (IoT 2014), 2014.

“Web Service for Devices Initiative,” Web Service for Devices Initiative. [Online].
Available: http://www.wsdd.org/

S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone, and L. Veltri,
“A scalable and self-configuring architecture for service discovery in the internet of
things,” IEEFE Internet of Things Journal, vol. 1, no. 5, pp. 508-521, 2014.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-
rithms, 2nd ed. The MIT Press, 2001.

H. Chen, Z. Wu, and P. Cudré-Mauroux, “Semantic web meets computational
intelligence: State of the art and perspectives [review article],” IEEE Computational

Intelligence Magazine, vol. 7, no. 2, pp. 67-74, 2012.

T. Berners-Lee and D. Connolly, “Notation3 (N3): A readable rdf syntax,” W3C,
W3C Team Submission, Mar. 2011.

F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level sensor
network simulation with cooja,” in Proceedings 2006 31st IEEE Conference on Local
Computer Networks, Nov 2006, pp. 641-648.

http://www.ws4d.org/

108

Bibliography

[64]

[65]

[68]

[71]

73]

S. N. Han, G. Lee, N. Crespi, N. Luong, K. Heo, M. Brut, and P. Gatellier, “Dp-
wsim: A devices profile for web services (dpws) simulator,” IEEE Internet of Things
Journal, vol. 2, no. 3, pp. 221-229, Jun. 2015.

C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, and D. Timmermann,
“Implementing powerful web services for highly resource-constrained devices,” in

2011 IEEFE International Conference on Pervasive Computing and Communications
Workshops, 2011, pp. 332-335.

G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski, “Encoding and com-
pression for the devices profile for web services,” in 2010 IEEE 2jth Interna-
tional Conference on Advanced Information Networking and Applications Work-

shops (WAINA), 2010, pp. 514-519.

G. Moritz, F. Golatowski, C. Lerche, and D. Timmermann, “Beyond 6lowpan: Web
services in wireless sensor networks,” IEEE Transactions on Industrial Informatics,
vol. 9, no. 4, pp. 1795-1805, Nov. 2013.

I. Samaras, G. Hassapis, and J. Gialelis, “A modified DPWS protocol stack for
6lowpan-based wireless sensor networks,” IEEE Transactions on Industrial Infor-
matics, vol. 9, no. 1, pp. 209-217, Feb. 2013.

X. Yang and X. Zhi, “Dynamic deployment of embedded services for DPWS-enabled

)

in 2012 Int. Conf. on Computing, Measurement, Control and Sensor Net-
work (CMCSN), 2012, pp. 302-306.

devices,’

T. Cucinotta, A. Mancina, G. Anastasi, G. Lipari, L. Mangeruca, R. Checcozzo, and
F. Rusina, “A real-time service-oriented architecture for industrial automation,”
IEEE Transactions on Industrial Informatics, vol. 5, no. 3, pp. 267-277, 2009.

P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza, and V. Trifa,
“SOA-based integration of the internet of things in enterprise services,” in IEFEE
International Conference on Web Services (ICWS 2009), 2009, pp. 968-975.

L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social internet of things (SIoT)
- when social networks meet the internet of things: Concept, architecture and
network characterization,” Computer Networks, vol. 56, no. 16, pp. 3594-3608,
2012.

D. Dietrich, D. Bruckner, G. Zucker, and P. Palensky, “Communication and com-
putation in buildings: A short introduction and overview,” IEEE Transactions on
Industrial Electronics, vol. 57, no. 11, pp. 3577-3584, Nov. 2010.

Bibliography 109

[74]

[75]

[76]

[77]

[83]

[84]

EN 14908-x (1-6), Open Data Communication in Building Automation, Controls
and Building Management - Control Network Protocol. European Committee for
Standardization, Brussels, Belgium, 2005-2010.

ISO 16484-5, Building automation and control systems — Part 5: Data communica-
tion protocol. International Organization for Standardization, Geneva, Switzerland,
Jul. 2012.

ISO/IEC 14543-4-1, Information technology — Home electronic system (HES) archi-
tecture — Part 4-1: Communication layers — Application layer for network enhanced
control devices of HES Class 1. International Organization for Standardization,
Geneva, Switzerland, Jun. 2008.

B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in
Proceedings of the 1994 First Workshop on Mobile Computing Systems and Appli-
cations, ser. WMCSA ’94, Washington, DC, USA, 1994, pp. 85-90.

S. Dustdar and W. Schreiner, “A survey on web services composition,” Intl. Journal
of Web and Grid Services, vol. 1, no. 1, pp. 1-30, 2005.

J. Elliott, R. Eckstein, M. Loy, D. Wood, and B. Cole, Java Swing. O’Reilly, 2002.

D. E. Comer, Internetworking with TCP/IP: Principles, Protocol, and Architec-
tures. Prentice Hall, 2000.

B. L. Nelson, J. S. Carson, and J. Banks, Discrete-FEvent System Simulation. Pren-
tice hall, 2001.

S. N. Han, G. Lee, and N. Crespi, “Semantic context-aware service composition

9

for building automation system,” IEEE Transactions on Industrial Informatics,

vol. 10, no. 1, pp. 752-761, Feb. 2014.

D. Hussein, S. N. Han, X. Han, G. M. Lee, and N. Crespi, “A framework for
social device networking,” in 2013 IEEE International Conference on Distributed
Computing in Sensor Systems (DCOSS), May 2013, pp. 356-360.

S. N. Han, S. Park, G. M. Lee, and N. Crespi, “Extending the device profile for web
services (dpws) standard using a rest proxy,” IEEE Internet Computing, vol. 19,
no. 1, pp. 10-17, Jan. 2015.

Acronym

6EdR
6LoWPAN
AMQP
API
BAS
BLE
CoAP
CPDL
CSMA
DECT
DPWS
DTLS
ETSI
FP
HTTP
ICMP
IEEE
IETF
IoT

1P
IPv6
IRTF
ITEA
LLN
LoWPAN
LPM
LQI
MQTT
N3
NDP
NLP

6LoWPAN Edge Router

IPv6 Low-power Wireless Personal Area Network
Advanced Message Queuing Protocol
Application Programming Interface

Building Automation System

Bluetooth Low Energy

Constrained Application Protocol

Composition Plan Description Language
Carrier Sense Multiple Access

Digital Enhanced Cordless Telecommunications
Devices Profile for Web Services

Datagram Transport Layer Security

European Telecommunications Standards Institute
European Framework Programme

Hypertext Transfer Protocol

Internet Control Message Protocol

Institute of Electrical and Electronics Engineers
Internet Engineering Task Force

Internet of Things

Internet Protocol

Internet Protocol version 6

Internet Research Task Force

Information Technology for European Advancement
Low-power and Lossy Network

Low-power Wireless Personal Area Network
Low-power Mode

Link Quality Indication

Message Queue Telemetry Transport

Notation3

Neighbor Discovery Protocol

Natural Language Processing

110

111

ODP
OSN
OWL
RDF
REST
RFID
RPL
RSSI
RTT
RX
SloT
SLIP
SNMP
SOA
SSN
TCP
TSCH
TUN
TX
UDDI
UDP
W3C
WSDL
WUI
XMPP

Ontology Design Pattern

Online Social Network

Web Ontology Language

Resource Description Framework
Representational State Transfer
Radio-Frequency Identification
Low-Power and Lossy Networks
Received Signal Strength
Round-trip Time

Reception

Social Internet of Things

Serial Line Internet Protocol
Simple Network Management Protocol
Service-Oriented Architecture
Semantic Sensor Network
Transmission Control Protocol
Timeslotted Channel Hopping
Network TUNnel

Transmission

Universal Description, Discovery and Integration
User Datagram Protocol

Word Wide Web Consortium

Web Service Description Language
Web-based User Interface

Extensible Messaging and Presence Protocol

Publications

1. S. N. Han, G. M. Lee and N. Crespi, “Towards Automated Service Composition
Using Policy Ontology in Building Automation System,” 2012 IEEE 9th Interna-
tional Conference on Services Computing (SCC), pp. 685-686, June 2012.

2. S. N. Han, G. M. Lee and N. Crespi, “Context-aware Service Composition Frame-
work in Web-enabled Building Automation System,” 2012 16th Intl. Conf. on
Intelligence in Next Generation Networks (ICIN), pp. 128-133, October 2012.

3. D. Hussein, S. N. Han, X. Han, G. M. Lee and N. Crespi, “A Framework for
Social Device Networking,” 2013 IEEFE International Conference on Distributed
Computing in Sensor Systems (DCOSS), pp. 356-360, May 2013.

4. S. N. Han, G. Lee and N. Crespi, “Semantic Context-Aware Service Composition
for Building Automation System,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 1, pp. 752-761, February 2014.

5. S. N. Han, G. M. Lee, N. Crespi, V. L. Nguyen, H. Kyoungwoo, M. Brut and
P. Gatellier, “DPWSim: A Simulation Toolkit for IoT Applications Using Devices
Profile for Web Services,” 2014 IEEE World Forum on Internet of Things (WF-
IoT), pp. 544-547, March 2014.

6. A. Ortiz, D. Hussein, S. Park, S. N. Han and N. Crespi, “The Cluster Between
Internet of Things and Social Networks: Review and Research Challenges,” IFEE
Internet of Things Journal, vol. 1, no. 3, pp. 206-215, June 2014.

7. S. N. Han, S. Park, G. M. Lee and N. Crespi, “Extending the Device Profile for
Web Services (DPWS) Standard using a REST Proxy,” IEEFE Internet Computing,
vol. 19, no. 1, pp. 10-17, January 2015.

8. D. Hussein, S. Park, S. N. Han and N. Crespi, “Dynamic Social Structure of
Things: A Contextual Approach in CPSS,” IEEFE Internet Computing, vol. 19,
no. 3, pp. 12-20, May 2015.

9. S. N. Han, G. Lee, N. Crespi, N. Luong, K. Heo, M. Brut and P. Gatellier, “DP-
WSim: A Devices Profile for Web Services (DPWS) Simulator,” IEEE Internet of
Things Journal, vol. 2, no. 3, pp. 221-229, June 2015.

	Introduction
	Motivation
	Contributions
	Dissertation Outline

	Literature Review
	IoT Protocol Stack
	Link and Adaptation Layers
	Internet Layer: Routing
	Transport Layer
	Application Layer

	Service Provisioning in IoT
	General Models
	SOA-based Models
	RESTful Service Provisioning

	Semantic Annotation and Provisioning
	Literature Analysis

	System Architecture
	Requirements
	Open Standards and Interoperability
	Low Energy Consumption
	Reliability
	Security and Privacy
	Scalability

	IoT Application on Web
	System Architecture
	Reference Infrastructure
	Data Model
	Multilayer Architecture
	Functional Block Diagram
	Provisioning Workflow

	Summary

	Design and Performance Study of 6LoWPAN
	6LoWPAN Design
	Internetworking Architecture
	6LoWPAN Edge Router

	6LoWPAN Implementation
	Hardware
	Software

	Performance Evaluation
	Energy Consumption
	Duty Cycle
	Network Performance
	Service Communication

	Discussion and Lessons Learned
	Energy Consumption
	Contiki OS 3.x and Network Performance
	Current IPv4 Infrastructure
	Web Services
	Deployment

	Summary

	Semantic Service Provisioning
	Provisioning Issues
	Service Provisioning
	Service Discovery
	Scheduling
	Semantic Annotation
	Authorization with OAuth 2.0
	URI Mapping
	Web API Generation
	Resource Management

	In-network Implementation with DPWS
	Devices Profile for Web Services
	Use case
	Global Dynamic Discovery
	Publish/subscribe Eventing
	WSDL Caching

	Performance Evaluation
	Transparency
	Scheduling: Simultaneous Requests Handling
	Scheduling: Energy Consumption
	Semantic Annotation
	REST Proxy Message Overhead and Latency

	Summary

	Case Studies: IoT Applications on Web
	Devices Profile for Web Services
	ThingsChat: A Social Internet of Things Platform
	System Architecture
	Socialized Web API
	ThingsChat Platform
	Prototype and Experiment

	SamBAS: A Building Automation System
	System Architecture
	Building Ontology and Graph Database
	Semantic Context-aware Service Composition
	Prototype and Experiments

	Implementation Remarks

	Conclusion and Future Work
	Conclusion
	Future Work

	DPWSim: A DPWS Simulator
	Simulation Model
	DPWSim Components
	DPWSim Core Functionalities
	Usage Scenarios
	Graphical User Interface
	DPWSim Use Cases

	Bibliography
	Acronym

