
HAL Id: tel-01217185
https://theses.hal.science/tel-01217185

Submitted on 19 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Semantic service provisioning for 6LoWPAN : powering
internet of things applications on Web

Ngoc Son Han

To cite this version:
Ngoc Son Han. Semantic service provisioning for 6LoWPAN : powering internet of things applica-
tions on Web. Other [cs.OH]. Institut National des Télécommunications, 2015. English. �NNT :
2015TELE0018�. �tel-01217185�

https://theses.hal.science/tel-01217185
https://hal.archives-ouvertes.fr

DOCTORAT EN CO-ACCREDITATION
TÉLÉCOM SUDPARIS - INSTITUT MINES-TÉLÉCOM

ET L’UNIVERSITÉ PIERRE ET MARIE CURIE - PARIS 6

Spécialité : Informatique et Réseaux

École doctorale : Informatique, Télécommunications et Electronique de Paris

Présentée par

HAN Ngoc Son

Semantic Service Provisioning for 6LoWPAN: Powering
Internet of Things Applications on Web

Soutenue le 08/07/2015 devant le jury composé de:

Noël Crespi Professeur HDR, Telecom SudParis Directeur de thèse
Roch H. Glitho Professeur, Concordia University, Canada Rapporteur
Yacine Ghamri-Doudane Professeur HDR, Université de La Rochelle Rapporteur
Guy Pujolle Professeur HDR, UPMC (Paris 6) Examinateur
Mika Ylianttila Professeur, University of Oulu, Finland Examinateur
Hélia Pouyllau Ph.D., Ingénieure de recherche, Thales R&T Examinatrice
Emmanuel Bertin Ph.D., Senior service architect, Orange Labs Examinateur

Thèse numéro : 2015TELE0018

Résumé

L’Internet des objets (IoT) implique la connexion des appareils embarqués tels que les
capteurs, les électroménagers, les compteurs intelligents, les appareils de surveillance de
la santé, et même les lampadaires à l’Internet. Une grande variété d’appareils intelligents
et en réseau sont de plus en plus à la disposition de bénéficier de nombreux domaines
d’application. Pour faciliter cette connexion, la recherche et l’industrie ont mis un
certain nombre d’avancées dans la technologie microélectronique, de la radio de faible
puissance, et du réseautage au cours de la dernière décennie. L’objectif est de permettre
aux appareils embarqués de devenir IP activé et une partie intégrante des services sur
l’Internet. Ces appareils connectés sont considérés comme les objets intelligents qui sont
caractérisés par des capacités de détection, de traitement, et de réseautage. Les réseaux
personnels sans fil à faible consommation d’IPv6 (6LoWPANs) jouent un rôle important
dans l’IoT, surtout sur la consommation d’énergie (de faible puissance), la disponibilité
omniprésente (sans fil), et l’intégration d’Internet (IPv6).

La popularité des applications sur le Web, aux côtés de ses standards ouverts et de
l’accessibilité à travers d’une large gamme d’appareils tels que les ordinateurs de bureau,
les ordinateurs portables, les téléphones mobiles, les consoles de jeu, fait que le Web est
une plateforme universelle idéale pour l’IoT à l’avenir. Par conséquent, quand de plus
en plus d’objets intelligents se connectent à l’Internet, l’IoT est naturellement évolué
pour la provision des services des objets intelligents sur le Web, comme des millions de
services Web d’aujourd’hui. Puis vient une nouvelle opportunité pour des applications
vraiment intelligentes et omniprésentes qui peuvent intégrer des objets intelligents et
des services Web conventionnels en utilisant des standards Web ouverts. Nous appelons
ces applications les applications IoT sur le Web.

Cette thèse propose une solution complète pour la provision de 6LoWPAN avec une
annotation sémantique pour pousser le développement d’applications IoT sur le Web.
Nous visons à offrir des services d’objets intelligents pour le Web et les rendre accessibles
par beaucoup d’API Web qui existe en considérant des contraintes de 6LoWPAN comme
les ressources limitées (ROM, RAM et CPU), la faible puissance, et la communication
à faible débit.

Il y a quatre contributions: (i) La première contribution est sur l’architecture globale
de la provision sémantique de services pour les applications IoT sur le Web qui com-
prennent trois sous-systèmes: le système de communication des services, le système de
provision des services, et le système d’intégration des services. (ii) La deuxième con-
tribution étudie un modèle d’interconnexion entre les réseaux 6LoWPAN et les réseaux
IPv6 réguliers par la conception, la mise en œuvre et l’évaluation de la performance
d’un 6LoWPAN qui constitué des MTM-CM5000-MSP TelosB motes pour les objets
intelligents, et le Raspberry Pi pour un routeur de bordure. (iii) La troisième contri-
bution présente en détails de l’architecture, des algorithmes et des mécanismes pour la
provision des services des objets intelligents fiables, évolutifs et sécurisés en respectant
des contraintes de ressources limitées; (iv) La quatrième contribution est composée de
deux applications innovantes IoT sur le Web pour l’intégration des services dans lesquels
nous appliquons l’architecture proposée: un système d’automatisation de la construction
(SamBAS) et une plateforme Social IoT (ThingsChat).

Abstract

The Internet of Things (IoT) involves connecting embedded devices such as sensors,
home appliances, smart meters, health-monitoring devices, and even street lights to the
Internet. With about 10 to 15 billion microcontrollers being shipped every year, each
of which can potentially be connected to the Internet, a huge variety of intelligent and
networked devices are becoming available to benefit many application domains. To fa-
cilitate this connection, research and industry have come up over the past decade with
a number of advances in microelectronic technology, low-power radio, and networking.
The objective is for embedded devices to become IP-enabled and an integral part of the
services on the Internet. These connected devices are referred to as smart objects char-
acterized by sensing, processing, and networking capabilities. They usually configure
an IPv6 low-power wireless personal area network (6LoWPAN), which plays an impor-
tant role in IoT, especially on account of energy consumption (low-power), ubiquitous
availability (wireless), and Internet integration (IPv6).

The popularity of applications on the Web, along with its open standards and ac-
cessibility across a broad range of devices such as desktop computers, laptops, mobile
phones, and gaming consoles make the Web an ideal universal platform for future IoT.
Hence, when more and more smart objects are getting connected to the Internet, it is
the natural evolution of the IoT to provision smart object services to the Web, similar to
today’s millions of conventional Web services. There is a new opportunity of truly intel-
ligent and ubiquitous applications that can incorporate smart objects and conventional
Web services using open Web standards, denoted by IoT applications on Web.

This dissertation proposes a complete solution to provision 6LoWPAN services with
semantic annotation that enables the development of IoT applications on Web. We
aim to bring smart object services to the Web and make them accessible by plenty of
existing Web APIs in consideration of 6LoWPAN constraints such as limited resources
(ROM, RAM, and CPU), low-power, and low-bitrate communication links. There are
four contributions: (i) The first contribution is about the overall architecture of the
semantic service provisioning for IoT application on Web consisting of three subsystems:
service communication, service provisioning, and service integration. (ii) The second
contribution studies the internetworking model between 6LoWPAN and regular IPv6
networks by a design, implementation, and performance evaluation of a 6LoWPAN
consisting of MTM-CM5000-MSP TelosB motes with TI MSP430F1611 microprocessors
and CC2420 IEEE 802.15.4 radio transceivers for smart objects, and Raspberry Pi for an
edge router; (iii) The third contribution presents the detailed architecture, algorithms,
and mechanisms for provisioning reliable, scalable, and secure smart object services
with respect to its resource-constrained requirements; (iv) The fourth contribution is in
application domain for service integration in which we apply the proposed architecture
on two innovative IoT applications on Web: a building automation system (SamBAS)
and a Social IoT platform (ThingsChat).

Acknowledgments

I first would like to thank my supervisor, Prof. Noel Crespi, who gave me the opportu-
nity to do this research and has been providing me a myriad of help, suggestions, and
encouragement. Next, thanks go to Prof. Gyu Myoung Lee who was mentoring me for
the first two (important) years of my Ph.D. and still offers me valuable advice. We have
discussed a lot and I really appreciate as well as enjoy the time working with him.

I must thank my colleagues and friends in Service Architecture Lab for the joint
cross-topic work we have done together that in its own way made a difference to this
research. Many ideas in this research have their origins in countless discussions with Dina
Adel. She inputted innovative scenarios for the proof-of-concept prototypes developed in
this research; I owe her creativity. Imran Khan shared with me many ideas in wireless
sensor network virtualization and helped to refine this work; Soochang Park fortified
the networking foundation of the research; Xiao Han gave her in-sight analysis from
a different perspective of the Internet of Things, data science. I am more grateful to
everyone in the lab for the fun atmosphere they have created, for everyday coffee breaks
that helped me to go through the endless days on campus. Thanks especially go to
the lovely Valerie Mateus for her beautiful nature of helping me (and everyone) with
administrative paperworks; she has made it easy for everything.

I had chance to work with excellent people in industry for several European projects.
I warmly thank David Excoffier from Sogeti and Helia Pouyllau from Thales who helped
me to approach practical designs presented in this research. I would like to thank
Vladimir Vukadinovic and colleagues at Disney Research Zurich with whom I had a
good time developing a very interesting prototype using IoT protocol stack. I learned a
lot about the IoT technology and the beauty of the art twisted in it.

Thank you Tim Berners-Lee for inventing the World Wide Web, volunteers at Inter-
net Engineering Task Force and many scientists that I cannot list all here for creating
this connected world. Also, I am very much inspired by the work carried out by Dis-
tributed Systems Group at the ETH Zurich which significantly influenced this research.

Thank you my beloved wife Genie. Had it not been for her enormous love and
support, I couldn’t have done this.

Thanks to all of you!

July 2015
HAN Ngoc Son

to Genie and Trang Mi

Table of contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 4
1.3 Dissertation Outline . 5

2 Literature Review 6
2.1 IoT Protocol Stack . 6

2.1.1 Link and Adaptation Layers . 7
2.1.2 Internet Layer: Routing . 8
2.1.3 Transport Layer . 9
2.1.4 Application Layer . 9

2.2 Service Provisioning in IoT . 10
2.2.1 General Models . 10
2.2.2 SOA-based Models . 12
2.2.3 RESTful Service Provisioning . 13

2.3 Semantic Annotation and Provisioning 14
2.4 Literature Analysis . 17

3 System Architecture 18
3.1 Requirements . 19

3.1.1 Open Standards and Interoperability 19
3.1.2 Low Energy Consumption . 20
3.1.3 Reliability . 21
3.1.4 Security and Privacy . 21
3.1.5 Scalability . 22

3.2 IoT Application on Web . 22
3.3 System Architecture . 24

3.3.1 Reference Infrastructure . 24
3.3.2 Data Model . 25
3.3.3 Multilayer Architecture . 26
3.3.4 Functional Block Diagram . 27
3.3.5 Provisioning Workflow . 29

3.4 Summary . 29

4 Design and Performance Study of 6LoWPAN 30
4.1 6LoWPAN Design . 32

4.1.1 Internetworking Architecture . 32
4.1.2 6LoWPAN Edge Router . 33

4.2 6LoWPAN Implementation . 33
4.2.1 Hardware . 33
4.2.2 Software . 34

4.3 Performance Evaluation . 35
4.3.1 Energy Consumption . 36
4.3.2 Duty Cycle . 38
4.3.3 Network Performance . 39
4.3.4 Service Communication . 41

4.4 Discussion and Lessons Learned . 42
4.4.1 Energy Consumption . 42
4.4.2 Contiki OS 3.x and Network Performance 43
4.4.3 Current IPv4 Infrastructure . 44
4.4.4 Web Services . 44
4.4.5 Deployment . 45

4.5 Summary . 46

5 Semantic Service Provisioning 47
5.1 Provisioning Issues . 48
5.2 Service Provisioning . 50

5.2.1 Service Discovery . 50
5.2.2 Scheduling . 52
5.2.3 Semantic Annotation . 54
5.2.4 Authorization with OAuth 2.0 56
5.2.5 URI Mapping . 57
5.2.6 Web API Generation . 59
5.2.7 Resource Management . 60

5.3 In-network Implementation with DPWS 60
5.3.1 Devices Profile for Web Services 61
5.3.2 Use case . 62
5.3.3 Global Dynamic Discovery . 62
5.3.4 Publish/subscribe Eventing . 63
5.3.5 WSDL Caching . 63

5.4 Performance Evaluation . 64
5.4.1 Transparency . 65
5.4.2 Scheduling: Simultaneous Requests Handling 67
5.4.3 Scheduling: Energy Consumption 67
5.4.4 Semantic Annotation . 69
5.4.5 REST Proxy Message Overhead and Latency 69

5.5 Summary . 71

6 Case Studies: IoT Applications on Web 72
6.1 Devices Profile for Web Services . 73
6.2 ThingsChat: A Social Internet of Things Platform 74

6.2.1 System Architecture . 75
6.2.2 Socialized Web API . 76
6.2.3 ThingsChat Platform . 78
6.2.4 Prototype and Experiment . 79

6.3 SamBAS: A Building Automation System 81
6.3.1 System Architecture . 83
6.3.2 Building Ontology and Graph Database 84
6.3.3 Semantic Context-aware Service Composition 88
6.3.4 Prototype and Experiments . 90

6.4 Implementation Remarks . 92

7 Conclusion and Future Work 93
7.1 Conclusion . 93
7.2 Future Work . 94

A DPWSim: A DPWS Simulator 96
A.1 Simulation Model . 96
A.2 DPWSim Components . 98
A.3 DPWSim Core Functionalities . 98
A.4 Usage Scenarios . 100
A.5 Graphical User Interface . 100
A.6 DPWSim Use Cases . 100

Bibliography 103

Acronym 110

viii

Chapter 1
Introduction

Contents

1.1 Motivation . 1

1.2 Contributions . 4

1.3 Dissertation Outline . 5

1.1 Motivation

The Internet of Things (IoT) is stimulating innovations in virtually all sectors of the

economy attracting not only researchers and professionals, but also entrepreneurs, end-

users, and even lawmakers. The IoT with its capacity to connect objects to the Internet,

blending physical and digital worlds, is going to mark a revolution in how we communi-

cate with other people and everything surrounding us.

Thanks to the advent of IoT technologies, several commercial smart devices improv-

ing our everyday life already existed in the market such as Koubachi plant sensor 1, Alba

light bulb 2, and Luna mattress cover 3 to name just a few. Koubachi plant sensor can

measure soil moisture, sunlight, infrared light, and ambient temperature to determine

the exact needs of the plants and provide users with highly-specific care advice. Luna

mattress cover is able to warm up the bed, track one’s sleep, and even wake you up,

if necessary. The sensors on the Alba light bulb make it the world’s first responsive

bulb: its internal sensors allow it to automatically maintain the proper light level, ad-

just the color of the light according to the time of day, and adapt to the people in the

room. What’s more, everything surrounding us such as chairs, windows curtains, light

bulbs, office equipment, home appliances, and even baby dummies can be turned into

1http://www.koubachi.com/products/outdoor/
2http://stacklighting.com/
3http://lunasleep.com/

1

2 Introduction

Internet-connected smart objects to enhance many application domains (e.g., building

automation, healthcare services, smart grids, transportation, and environmental moni-

toring). A smart object is defined as an item equipped with a form of sensor or actuator,

a tiny microprocessor, memory, a communication module, and a power source [1]. They

are electronic embedded devices characterized by sensing, processing, and networking

capabilities. This can be done by extending the design of electronic appliances to these

objects, which fundamentally requires a new set of microelectronic technologies and

communication protocols.

To facilitate the smart object connectivity while considering its limited resources

(e.g., computing capacity, power, and memory), research and industry have come up

over the past decade with a number of advances in low-power microelectronic, radio com-

munication, and corresponding Internet Protocol (IP) networking. IP for decades has

effectively supported Internet applications such as email, the Web, Internet telephony,

and video streaming. Internet Protocol version 6 (IPv6) is expected to accommodate a

huge number of entities, enough for a inconceivably-large number of objects going to be

connected to the Internet. These technologies are being engineered by standardization

bodies led by Internet Engineering Task Force (IETF) to make them open and accessi-

ble to everyone. The objective is for smart objects to consume very low energy, become

IP-enabled, and to be an integral part of the services on the Internet. The configuration

of smart objects create a new type of networks collectively referred to as IPv6 low-power

wireless personal area networks of smart objects (6LoWPANs), which can provide the

IP networking infrastructure for the future IoT applications.

6LoWPAN plays an important role in IoT for its benefits of the energy consumption,

ubiquitous availability, and the Internet integration of smart objects. First, energy con-

sumption has become an critical issue for modern sustainable development, especially in

the time when a huge number of smart objects staying connected to the Internet. The

energy used for only maintaining the connectivity of predictably 50 billion objects [2]

by current wireless technologies such as Wi-Fi and Bluetooth would account for a con-

siderable large amount the current world energy capacity. Therefore, low-power radio

hardware and software protocols are crucial for facilitating a practical IoT ecosystem.

Second, more and more wireless devices become available in today’s consumer elec-

tronics market creating an ubiquitous environment surrounding us which is gradually

changing our life style. Advantages to the wireless connectivity are manifold such as

the convenience to users, easy deployment, and even for aesthetic aspects that no wires

are required. Third, IPv6 with its huge address space is the future for smart objects

to seamlessly join the Internet. 6LoWPAN is known under several names such as Low-

power Wireless Personal Area Network (LoWPAN, RFC 4944), Low-power and Lossy

Network (LLN, RFC 6550), Constrained Environment (RFC 6690). In this dissertation,

6LoWPAN is used to refer to a network of IPv6, low-power, and wireless smart objects

Motivation 3

using several IETF standards from working groups including Routing Over Low-power

and Lossy Networks (roll), Constrained RESTful Environments (core), and DTLS In

Constrained Environments (dice), IPv6 over Networks of Resource-constrained Nodes

(6lo), and IPv6 over Low-Power Wireless Personal Area Networks (6lowpan).

On the other hand, the popularity of applications on the Web, along with its open

standards and accessibility across a broad range of devices such as desktop computers,

laptops, mobile phones, and gaming consoles make the Web an ideal universal platform

for future IoT applications. In this future environment, smart objects will be able to

offer their functionality via RESTful APIs, enabling other components to interact with

them dynamically. The functionality offered by these devices (e.g., temperature sensor

data) is referred to as smart object service provided by embedded systems that are

related directly to the physical world. Unlike traditional Web services and applications,

which are mainly virtual entities, smart object services provide realtime data about the

physical world. IoT applications can therefore support a more efficient decision taking

process. Hence, smart objects providing their functionality as Web services can be

used by other entities such as other Web services, enterprise applications, or even other

smart objects. The process of preparing and providing smart object services to the Web

is called service provisioning aiming to deliver smart object services to the Web, similar

to today’s millions of Web services are functioning.

Then comes a new opportunity for truly-intelligent and ubiquitous applications that

can incorporate smart object services and conventional Web services using open Web

standards. We call these applications IoT applications on Web. The arrival of IoT ap-

plications on Web also exposes a new opportunity for conventional Internet applications

to shift their business model to catch up with this new ecosystem. The concept does not

only refer to IoT applications running on Web browser but also to any application re-

siding on the Internet communicating to smart objects and user agents using open Web

standards via Web Application Programming Interfaces (Web APIs). The user agent

can be a Web browser, a smart phone application, computer software, or even a game

console firmware. Web APIs are specifications that define how to interact with software

components, particularly, allow access to remote Web resources via a communication

network. The benefit for developers in adopting Web APIs is an easy way to enrich

functionality, simple and quick to integration, and leveraging brand strength of estab-

lished partners. Even in the new platform of smartphone applications, we can already

see that the use of Web APIs is prevalent. Shazam 4, for example, the application that

allows users to recognize pieces of music in real-time, integrates Web APIs from many

providers such as the Spotify, YouTube, Amazon, iTunes, and radio APIs. Additionally,

it allows social sharing, which presumably is realized by using the Web APIs of the

various social platforms.

4http://www.shazam.com/

4 Introduction

Once smart object services reach the Web through communication networks, appli-

cations over connected smart objects will go beyond homes, offices, and public spaces

to reach the truly global ubiquitous status. The Web then will also undergo the similar

evolution to extend their tentacles to the new kids in the block, smart objects, integrat-

ing the physical world for more useful and intelligent applications. These applications

should be developed in a relatively easy and intuitive way in which developers can use

different platforms, frameworks, tools, and programming languages. It is therefore es-

sential to provision services of smart objects in 6LoWPAN to the Web and make them

accessible and workable with plenty of existing Web services or APIs. These services

also need to catch up with the new trends in the Web world wherein Semantic Web

technology (envisioned by Tim Berners-Lee) is predicted to bring more intelligence to

the Web. Tim Berners-Lee described Semantic Web as a Web of linked data that can be

processed directly by machines allowing applications to automatically infer new meaning

from all the information out there [3].

This dissertation proposes a complete solution to provision smart object services

in 6LoWPAN with semantic annotation in order to empower the development of IoT

applications on Web. The solution complies with the constraints of smart objects:

limited ROM, RAM, CPU, low-power, and low-bitrate radio.

1.2 Contributions

This dissertation has four contributions solving fundamental problems for a secure, scal-

able, and reliable semantic service provisioning to enable the development IoT applica-

tions on Web, as follows:

• The first contribution is about the overall service provisioning architecture for

6LoWPAN to enable the development of IoT applications on Web. The architec-

ture covers the full development cycle taking into account object, network, and

application levels. We first explain about the key requirements and the concept

of IoT applications on Web, and then propose the architecture consisting of three

subsystems delineated in different views: Reference Infrastructure, Multilayer Ar-

chitecture, Functional Block Diagram, and Provisioning Workflow.

• The second contribution provides the networking foundation and studies the per-

formance of the internetworking model between 6LoWPAN, regular IPv6 networks,

and the Internet. It includes the design, implementation, and performance eval-

uation of a 6LoWPAN consisting of MTM-CM5000-MSP TelosB motes equipped

with Texas Instruments MSP430F1611 microprocessors, CC2420 IEEE 802.15.4

radio chips, and Contiki OS 3.x as smart objects, and a Raspberry Pi as the

6LoWPAN edge router.

Dissertation Outline 5

• The third contribution is about the detailed architecture, algorithms, and mecha-

nisms for realizing the proposed semantic service provisioning. It solves the prob-

lems of service discovery, scheduling, semantic annotation, authorization, Web

Uniform resource identifier (Web URI) mapping, and Web API presentation. We

also provide an in-network implementation of the proposed architecture.

• The forth contribution is in application domain in which we apply the proposed

architecture in two innovative IoT applications on Web: a Social IoT platform

(ThingsChat) enabling an online social network for humans and objects and a

building automation system (SamBAS) using semantic technology to offer intelli-

gence in smart environments. These applications illustrate how the architecture

can be applied in various application scenarios.

1.3 Dissertation Outline

The remainder of this dissertation is structured as follows. Chapter 2 reviews the liter-

ature of service provisioning in IoT. Chapter 3 proposes the novel service provisioning

architecture consisting of three subsystems (service communication, service provisioning,

and service integration) presented in the following Chapter 4, Chapter 5, and Chapter

6 respectively. Chapter 7 concludes the dissertation and discusses the future work.

Chapter 2
Literature Review

Contents

2.1 IoT Protocol Stack . 6

2.1.1 Link and Adaptation Layers . 7

2.1.2 Internet Layer: Routing . 8

2.1.3 Transport Layer . 9

2.1.4 Application Layer . 9

2.2 Service Provisioning in IoT . 10

2.2.1 General Models . 10

2.2.2 SOA-based Models . 12

2.2.3 RESTful Service Provisioning . 13

2.3 Semantic Annotation and Provisioning 14

2.4 Literature Analysis . 17

This chapter provides a literature review on the IoT protocol stack, service provision-

ing in IoT, and semantic annotation for smart objects. The IoT protocol stack extending

TCP/IP networking model for smart object communication is playing the foundation

role supporting many innovative contributions in the IoT research and development.

2.1 IoT Protocol Stack

The IoT aiming to integrate smart objects into the Internet introduces several chal-

lenges since many of the existing Internet technologies and protocols were not designed

for constrained resources in smart objects. IoT, therefore, has fostered the develop-

ment of many extensions and adaptations of Internet technologies for the new class of

networked objects. This results in a new IP protocol stack for IoT to enable the commu-

nication between Internet-connected smart objects and other machines on the Internet.

6

IoT Protocol Stack 7

The IoT protocol stack is contributed not only by research results from academia but

also from standardization bodies such as Internet Engineering Task Force (IETF), Insti-

tute of Electrical and Electronics Engineers (IEEE), and European Telecommunications

Standards Institute (ETSI).

The IoT protocol stack extends four layers of the TCP/IP model (RFC 1122: Link,

Internet, Transport, and Application) with the new Adaptation layer, which is required

for smart objects to adapt the small frame size of the low-power link layer to the much

larger size of IPv6 packets. Adaptation layer defines mechanisms and protocols for

header compression/decompression to enable the use of IPv6 on low-power links of

smart objects. Table 2.1 summaries common protocols for each of the five layers which

are elaborated more in the following sub sections.

Table 2.1: IoT Networking Protocol Stack

Layer Protocols

Application HTTP, CoAP, DPWS, XMPP, MQTT, AMQP, CoSIP
Transport TCP, UDP, SCTP, ICMP, DTLS
Internet IPv6, RPL
Adaptation 6LoWPAN, 6TiSCH, IPv6-over-foo
Link IEEE 802.15.4, BLE, PLC, DECT, Low-power Wi-Fi, ITU-T G.9959

2.1.1 Link and Adaptation Layers

IPv6 resides at the center of the IoT protocol stack for the interconnection between

smart objects and existing services on the Internet. IPv6 with its inconceivably-large

address space is foreseen to be available on a wide variety of different Link layer technolo-

gies meeting a wide variety of communication requirements such as wired or wireless,

short or long range, and high or low data throughput. Almost all types of commu-

nication links can support IP-based communication, therefore potentially operable for

smart objects where the low-power requirement is the key for designing the networking

models. There are several link layer technologies that are being developed for smart

objects such as IEEE 802.15.4, Bluetooth Low Energy (BLE), Digital Enhanced Cord-

less Telecommunications (DECT) Ultra Low Energy, and ITU-T G.9959. Each of these

link protocol has its corresponding adaptation layer technology, for example IPv6 over

Low power Wireless Personal Area Networks (RFC 4944) for IEEE 802.15.4, IPv6 over

Bluetooth Low Energy (draft-ietf-6lo-btle) for BLE, Transmission of IPv6 Packets over

DECT Ultra Low Energy (draft-ietf-6lo-dect-ule-01) for DECT, and IPv6 packets over

ITU-T G.9959 Networks (draft-ietf-6lo-lowpanz) for ITU-T G.9959.

The IPv6 protocol has a high overhead and restrictions that make it unsuitable

for low-power or constrained networks such as IEEE 802.15.4 networks. For example,

considering the limited space available for the Medium Access Control (MAC) payload

8 Literature Review

in an 802.15.4 MAC Protocol Data Unit (MPDU), the use of a 40-byte IPv6 header

would be too excessive. The IETF 6lowpan WG, therefore was formed to work on

the IPv6 protocol extensions required for such networks where hosts are interconnected

by IEEE 802.15.4 radios. Similarly, the IETF 6lo WG aims to connect smart objects

running a number of different link layer technologies to the Internet. The results of

these efforts will be a number of IPv6-over-foo adaptation layer specifications similar to

RFC 4944. Thus far, the working group has adopted four Internet drafts that define the

adaptations for IPv6 over BLE (draft-ietf-6lo-btle), DECT Ultra Low Energy (draft-ietf-

6lo-dect-ule), MS/TP (master-slave/token-passing) networks (draft-ietf-6lo-6lobac), and

G.9969 networks (draft-ietf-6lo-lowpanz). IETF 6tisch WG is another working group

aiming to bring IPv6 to a specific link layer technology, IEEE 802.15.4e in this case.

The IEEE 802.15.4e Timeslotted Channel Hopping (TSCH) is a recent amendment to

the MAC portion of the IEEE 802.15.4 standard. As a result the 802.15.4e timeslotted

channel hopping MAC differs fundamentally from the Carrier Sense Multiple Access

(CSMA) MAC found in standard 802.15.4. In short, TSCH allows for more controlled

and deterministic network access as opposed to CSMA, while also offering increased

resiliency to interference via channel hopping. TSCH MAC protocols are therefore

commonly used in industrial applications.

2.1.2 Internet Layer: Routing

Due to the distinctive characteristics of 6LoWPAN (e.g., low energy availability, through-

put, reliability, availability, and processing capabilities), it has specific routing require-

ments (RFC 5867, RFC 5826, RFC 5673, and RFC 5548) that differ from those found

in traditional IP networks. The IETF roll WG focuses on building routing solutions

for 6LoWPANs as the result of the evaluation of existing routing protocols like Open

Shortest Path First (OSPF), Intermediate System to Intermediate System (IS-IS), Ad

hoc On-Demand Distance Vector (AODV), and Optimized Link State Routing (OLSR)

indicating that they do not satisfy all of the specific routing requirements (draft-ietf-

roll-protocols-survey). The working group focuses on an IPv6 routing architectural

framework while also taking into account high reliability in presence of time varying

loss characteristics and connectivity with low-power operated smart objects with lim-

ited memory and CPU in large scale networks. The main realization of this working

group is the design of Routing Protocol for Low-Power and Lossy Networks (RPL) which

provides a mechanism to support multipoint-to-point traffic from smart objects inside

6LoWPAN towards a central control point as well as point-to-multipoint traffic from

the central control point to the smart objects inside the 6LoWPAN. Within the con-

strained parts of the network, the RPL offers a uniform and efficient method for realizing

multihop networks.

IoT Protocol Stack 9

2.1.3 Transport Layer

The Transport layer is responsible for providing end-to-end reliability over IP based

networks. Transmission Control Protocol (TCP) sustains the traffic on the Internet

and provides reliability thanks to the control overhead introduced for each transmit-

ted packet. Reliable transport protocols over LLNs are being studied but the amount

of information for traffic control and reliability are expensive in terms of number of

transmitted packets and end-to-end packet confirmation which directly maps to energy

consumption. The use of User Datagram Protocol (UDP) and retransmission control

mechanisms at application layer are demonstrating a good trade-off between energy

cost and reliability. UDP is a datagram oriented protocol that provides a procedure for

application to send messages to other applications with a minimum of protocol mech-

anism and overhead. In addition, the IETF dice WG focuses on supporting the use

of Datagram Transport Layer Security (DTLS) transport-layer security in constrained

environments. DTLS is the UDP adaptation of TLS (hence the name Datagram TLS)

that provides end-to-end security between two applications. Stream Control Transmis-

sion Protocol (SCTP) is also used in IoT with some works focusing on Constrained

Session Initiation Protocol (CoSIP) for smart objects [4].

2.1.4 Application Layer

Regardless of the specific link layer technology to deploy the IoT network, all the end-

devices should make their data available to the Internet. This can be achieved by

using several application layer technologies tailored for smart objects. On top of the

IPv6 Internet, constrained smart objects are able to reap the benefits of a lightweight

application protocols. The Constrained Application Protocol (CoAP) [5] is designed

exclusively for smart objects to replace Hypertext Transfer Protocol (HTTP) and can

be easily translated to HTTP for a transparent integration with the Web, while meet-

ing the smart object requirements such as multicast support, very low overhead, and

publish/subscribe model. The OASIS Devices Profile for Web Services (DPWS) [6] stan-

dard is a lightweight version of W3C Web Service [7] providing a secure and effective

mechanism for describing, discovering, messaging, and eventing services for resource-

constrained smart objects. The Message Queue Telemetry Transport (MQTT) [8] is

an asynchronous publish/subscribe protocol that runs on top of the TCP. Publish/sub-

scribe protocols better meet the IoT requirements than request/response since clients

do not have to request updates resulting in the decrease in the network bandwidth the

need for using computational resources. The Extensible Messaging and Presence Pro-

tocol (XMPP, RFC 3920) was designed for chatting and message exchanging. It was

standardized by the IETF over a decade ago and is a well-proven protocol that has been

used widely all over the Internet. Recently, XMPP has gained attention as a suitable

10 Literature Review

communication protocol for the IoT. The Advanced Message Queuing Protocol (AMQP)

[9] is a protocol that arose from the financial industry. AMQP provides asynchronous

publish/subscribe communication with messaging. It can utilize different transport pro-

tocols but it assumes an underlying reliable transport protocol such as TCP. Its main

advantage is its store-and-forward feature that ensures reliability even after network dis-

ruptions. CoSIP [4] is a constrained version of the Session Initiation Protocol (SIP) to

allow smart objects to instantiate communication sessions in a lightweight and standard

fashion. Session instantiation can include a negotiation phase of some parameters which

will be used for all subsequent communication.

2.2 Service Provisioning in IoT

There have been several studies on service provisioning ranging from early-stage models

over Radio-Frequency Identification (RFID)and wireless sensor networks, mostly follow-

ing the concept of Service-Oriented Architecture (SOA) [10], to recent solutions over IP

protocol stacks. This section reviews these works on general and SOA-based models of

service provisioning in IoT.

2.2.1 General Models

Miorandi et al. [11] in their survey paper discussed that the shift from an Internet used

for interconnecting end-user devices to an Internet used for interconnecting physical

objects that communicate with each other and/or with humans in order to offer a given

service encompasses the need to rethink anew some of the conventional approaches

customarily used in networking, computing, and service provisioning/management. The

arising of IoT provides a shift in service provisioning, moving from the current vision

of always-on services, typically of the Web era, to always-responsive situated services,

built and composed at runtime to response to a specific need and able to account for

the users’ context. When a user has specific needs, she will make a request and an ad

hoc application, automatically composed and deployed at run-time and tailored to the

specific context the user is in, will satisfy them.

The work in [12] aimed to define an IoT ecosystem from the business perspective

then identified service provisioning as one of the key fields to realize the vision of the

IoT. The defined IoT business ecosystem is a community of interacting companies and

individuals along their socio-economic environment. It is where the companies are com-

peting and cooperating by utilizing a common share of core assets, which can be in

a form of hardware and software products, platforms or standards that focus on the

connected devices, on their connectivity, on application services over this connectivity,

or on supporting services. The connectivity is based on common IoT protocol stack as

Service Provisioning in IoT 11

described in the previous section. In order to realize the ecosystem, service provisioning

cooperates with other modules such as Developing, Distribution, and Assurances. For

example, the end user could acquire various IoT services through a home gateway that

supports several technologies. Automated control of lightning, heating and security but

also entertainment services could be provisioned through this gateway. With the interop-

erability issues diminishing, the end user could separately create contracts with network

operators and the application service providers, such as a utility company or a content

provider. The model here resembles the contemporary Internet service provisioning.

Prasad et al. [13] presented another model called opportunistic service provisioning

to deal with the variety of situations that users encounter in everyday life. The model

came from the fact that in the real world, a perfectly matching service for a requirement

(or tuned to a situation) may not always be available. In these situations, humans try

to locate an approximate and an alternative service for the required one that is available

and can solve the immediate necessity. For example, a user wants a cup of coffee from a

vending machine (with a stack of paper cups), he can locate the coffee machine using his

cell phone. Meantime, these coffee cups can be easily used for drinking water, tea, soup

or any kind of liquid. The user may use a coffee cup as a pen stand or even as an ashtray.

Thus, the service should be able to locate the coffee cup when a pen stand is required.

The services now would be based on the non-availability of the exact solution that is

not possible to serve a requirement and availability of a close alternative. This work

deals with an opportunistic yet an approximate service paradigm in the Internet of the

future, especially, in the light of exponential growth of Internet of Things. The authors

discussed the characteristics of such a service and also provided the related structure

to realize this framework by representing objects in virtual objects and virtual sensing

techniques.

Mandler et al. [14] introduced a perspective of Internet of Services within COM-

POSE project 1. The objective is to benefit from the IoT technologies by seamlessly

integrating the real and virtual worlds. The ecosystem can be achieved through the pro-

visioning of an open and scalable infrastructure, in which smart objects are associated

with services that can be combined, managed, and integrated in a standardized way to

easily build innovative applications. Specifically, this study was conducted on specifying

and providing a virtual service execution. Moreover, this defined interfaces needed for

appropriate services management throughout services lifecycle, creation, upgrade, re-

configuration, resolving security conflicts, rerouting, etc. An accompanying monitoring

component oversees security and privacy criteria and Quality of Service guarantees are

met. COMPOSE aimed to manage the lifecycle of services in the marketplace and to

provide methods for on-the-fly provisioning of service components with better charac-

teristics.

1http://www.compose-project.eu/

12 Literature Review

Lee and Chong [15] approached the problem of service provisioning in a user-centric

manner wherein services are created efficiently according to the users’ competency in

their living environments. The approach involves IoT service together with semantic

ontology that can support the composition of services suitable to the situation of users,

and by the log records it can modify the corresponding happenings. The proposed archi-

tecture aims to handle the limitation of user-centric IoT service provision. It is designed

to utilize the web based service platform structure that contains versatility and scala-

bility which multiple users or basic environment can easily apply to be a part of the

system. The environment requires interoperability, versatility, efficient communication,

mobility, intelligence and active functionality to the user-centric IoT service. It is also

to give advance management to the system service integration, service management,

location management, context management, traffic management, security and privacy

management that are all applied to control the faulty operation caused by deficient

requirements. The user-centric IoT service and the gathering of information from the

scattered object are done by service composition. The web service platform and dis-

tributed structure act as the core of the system to handle service provision from Web of

Object 2 environment. And the smart gateway manages the devices which are located

in the local area of decentralized domain.

2.2.2 SOA-based Models

Gagnon and Cakici [16] proposed a framework for provisioning and integrating early-

stage IoT services (using RFID) to IT infrastructure and business processes. The frame-

work exploits the SOA in two converging technologies, Business Services Network (BSN)

and the IoT. RFID tags can embed high value features essential to various industries

such as detecting, classifying, and tracking mobile (sensor-less) objects in a surveillance

field, monitoring the performance of electro-mechanical components, and controlling

manufacturing equipment. They discussed that the integration of SOA and RFID stan-

dards was becoming a strategic research priority to leverage mobile business model such

as provisioning Web services with pay-per-use, metered, or on demand business. The

framework addresses various issues along a typical transaction in business models in-

cluding: Supplier, Market, Adopter, and Delivery Issues.

The paper [17] presented the architecture of SOA-based IoT including the on-demand

service provisioning (along with dynamic network discovery, query, and selection of Web

services). They defined real-world device services as functionalities offered by these

devices (e.g., the provisioning of online sensor data) because these services are provided

by embedded systems that are related directly to the physical world. Unlike traditional

enterprise services and applications, which are mainly virtual entities, real-world services

2http://www.web-of-objects.com/

Service Provisioning in IoT 13

provide real-time data about the physical world. Devices providing their functionality

as a Web service can be used by other entities such as enterprise applications or even

other devices. Authors discussed that services on embedded devices offer rather atomic

operations such as obtaining data from a temperature sensor. Thus, the services that the

sensor nodes can offer share significant similarities and could be deployed on-demand per

developer request. The core mechanism is that on-demand service provisioning first tries

to discover service instance on the network that matches the developer’s requirements.

If this fails, installation of services on suitable devices are carried out.

Li et al. [18] proposed a three-layer service provisioning framework for service-

oriented IoT deployments, which is able to represent, discover, detect, and compose

services at edge nodes. The purpose is to develop an effective architecture for service

operations in the IoT by extending existing architectures over smart things that are

connected to the Internet via heterogeneous access networks and technologies (such as

sensor networks, mobile networks, and RFID). The framework has three layers: appli-

cation layer is connected with a business process modeling component for IoT business

process; network layer contains several components to provide the functionalities re-

quired by services for processing information and for notifying application software and

services about events related to the resources and corresponding virtual entities; sens-

ing layer involves the sensing devices such as RID tags and smart sensors which can

record, monitor, and process observations and measurements. The network layer can

communicate to the sensing layer with device-level APIs.

2.2.3 RESTful Service Provisioning

Web resources identified by Universal Resource Identifiers (URIs) are considered as

the core of modern Web architecture. They are accessed by clients in a synchronous

request/response fashion using Hypertext Transfer Protocol (HTTP) methods such as

GET, PUT, POST, and DELETE. Resource state is kept only by the server, which allows

caching, proxying, and redirection of requests and responses. Web resources may contain

links to other resources creating a distributed Web between Internet endpoints, resulting

in a highly scalable and flexible architecture. These are the fundamental concepts of

the Web, i.e., Representational State Transfer (REST) [19]. REST has emerged as a

predominant Web design model with more than ten thousand RESTful APIs (services)

at the time of this article [20].

The RESTful service abstraction advocated by many researchers and professionals is

an essential step to provision services in IoT systems. Guinard et al. in several studies

[21, 22, 23, 24, 25, 26] present a continuous effort to integrate smart objects of different

forms ranging from RFID, to WSNs, to embedded systems, to the Web by representing

their data and events using RESTful APIs via device gateways. Based on that, authors

14 Literature Review

develop two approaches for mashup: Physical-Virtual and Physical-Physical in a number

of applications. Many other studies [27], [28], [29] also find their ways to explore this

trend over sensor nodes and embedded devices.

Besides, many IoT platforms have been developed to support the development of

IoT applications tend to approach RESTful service provisioning of smart objects. As

can be seen in the Table 2.2, these platforms mainly aim at integrating smart objects of

different types into the Web through RESTful APIs. These platforms provide mid-point

services to encapsulate underlying heterogeneous smart objects into Web interfaces that

can further integrate into modern Web infrastructures such as cloud and platform-as-

a-service (PaaS). These approaches expose some difficulties to scale IoT systems since

each platform has to handle routing discrepancy and protocol translation.

Table 2.2: IoT Platforms

Platform Smart Objects Service Abstraction

BUGswarm [30] IP networked devices RESTful APIs
Carriots [31] Web-enabled devices RESTful APIs

EVRYTHNG [32] Web-enabled devices
RESTful APIs
(EVRYTHNG Engine)

GroveStreams [33] Web-enabled devices RESTful APIs
Nimbits [34] Sensors RESTful APIs

Open.Sen.se [35] General physical objects
RESTful APIs
JSON, XML

Paraimpu [36] Web-eanbled devices RESTful APIs

NanoService [37]
Embedded PCs, Nano Service Platform
Mobile devices RESTful APIs
Embedded devices

SensorCloud [38]

MicroStrain WSNs SensorCloud
Android phones/tablets OpenData APIs
iOS phones/tablets
NI CompactRIO
Web-connected devices

ThingSpeak [39] Sensors RESTful APIs

ThingWorx [40]
General connected devices RESTful APIs
(Not specified) Sockets, MQTT, AlwaysOn

Xively (Pachube) [41]
Multiple hardware RESTful APIs
Multiple platform Sockets, MQTT

Yaler [42]
Embedded systems RESTful APIs
(Arduino, BeagleBone SSH Service
Netduino, Raspberry Pi)

2.3 Semantic Annotation and Provisioning

Literature in applying Semantic Web technologies to IoT is focusing on semantically

annotating data from smart objects similar to what Semantic Web envisions about the

Web of Linked Data. The predominant technique for representing semantics is using

Resource Description Framework (RDF) [43], which represents knowledge as triples

Semantic Annotation and Provisioning 15

(subject, predicate, object) (e.g., [TempSensor803, hasValue, 18] and [TempSensor803,

locatedIn, Room803]). A set of triples forms a graph where subjects and objects are

vertices and predicates are edges. The advantage of RDF and graph data model is

that one can infer new knowledge from existing graph. For example, a system can use

domain knowledge to understand that the temperature in Room 803 is 18 degree, which

is transitive property. The domain knowledge is often expressed using Web Ontology

Language (OWL) [44], one of the main languages (with RDF schema) to define ontologies

on the Web.

To carry out the annotation on smart objects, World Wide Web Consortium has

pioneered to establish a working group to gather contributions in this field and to define

the first universal ontology for semantic sensor networks (SSNs) [45]. They developed

SSN ontology 3 that is an OWL 2 ontology being able to describe sensors in terms of

capabilities, measurement processes, observations and deployments. The SSN ontology

follows a central Ontology Design Pattern (ODP) [46] depicting the relationships be-

tween sensors, stimulus, and observations. The ontology can be seen from four main

perspectives: a sensor perspective, with a focus on what senses, how it senses, and

what is sensed; an observation perspective, with a focus on observation data and related

metadata; a system perspective, with a focus on systems of sensors and deployments;

and, a feature and property perspective, focusing on what senses a particular property

or observations have been made about a property.

Several studies focused on publishing semantic sensor data. Sense2Web [47], for ex-

ample is a linked-data platform to publish sensor data and link them to existing resource

on the Semantic Web. Sense2Web facilitates the publication of linked sensor data and

makes this data available to other Web applications via SPARQL [48] endpoints. Pfis-

terer et al. [49] introduced the vision of Semantic Web of Things for building semantic

applications involving Internet-connected sensors as easy as building, searching, and

reading a Web page today. This is done by a crawler periodically scanning the Semantic

Web of Things for semantic entities and sensors, downloading metadata and prediction

models using their Web APIs, converting this information into RDF triples, and storing

them in the triplestore.

The work in [50] is another approach in provisioning semantic annotation for IoT

smart objects, similar to the Semantic Web of Things vision. It is about a platform-

independent Wiselib RDF Provider to enable the Internet-connected smart objects to act

as semantic data providers. They can describe themselves, including their services, sen-

sors, and capabilities, by means of RDF documents. A smart object can auto-configure

itself, connect to the Internet, and provide Linked Data without manual intervention.

The authors proposed to use a semantic storage for storing RDF documents from smart

object data and a data provider responsible for dynamic parts of the RDF documents,

3http://purl.oclc.org/NET/ssnx/ssn

16 Literature Review

such as measurements. It converts sensing data to RDF and inserts it into the semantic

storage. Using the Wiselib’s callback sensor concept, the data provider gets notified

when the value of its associated sensor changes. Another module RDF service broker

provides an interface for clients to access and modify the RDF in the storage and to

manage subscription from clients.

[51] Bimschas et al. investigated unified concepts, methods, and software infrastruc-

tures that support the efficient development of applications across the Internet and the

embedded world based on Semantic Web technologies. From an abstract point of view,

the main task of IoT application developers is obtaining the data for a specific task.

In distributed systems, this requires (1) to identify entities holding the data and (2) to

retrieve them. In this paper, authors proposed a methodology to simplify IoT applica-

tion development. The approach combines technologies from the Internet of Things and

the Semantic Web to provide this service efficiently. The central idea is to let entities

provide self-descriptions of their type, capabilities, services, etc. in a machine-readable

manner.

The paper [52] presented an IoT semantic service model for different components

in an IoT framework over physical entities. It is also discussed how the model can

be integrated into the IoT framework by using automated association mechanisms with

physical entities and how the data can be discovered using semantic search and reasoning

mechanisms. The entity constitutes things in the Internet of Things and could be a

human, animal, car, store or logistic chain item, electronic appliance, or a closed or open

environment. The relations between services and entities are modeled as associations.

These associations could be static, e.g., in case the device is embedded into the entity

or dynamic, e.g., if a device from the environment is monitoring a mobile entity. The

semantic modeling and OWL/RDF descriptions solve the interoperability issues within

the stakeholders that have agreed and/or provided data using the models.

Klaine argued in [53] that a key indicator for sustainable application development is

the reusability of components and data provisioning. The provisioning of sensor readings

as CoAP Web services is a straightforward way to integrate the sensors (the physical

things) into the Internet and thus makes them part of the IoT. He proposed to divide the

data model into three separate parts with Data Provider stay in between Data Origin

and Data Consumer. The central component of the Data Provider is the Smart Service

Proxy (SSP) which acts as the intermediate device between the client (Data Consumer)

and the resource (Data Origin). SSP contains a semantic database as the presentation

of data collected from sensor nodes, which is the core of the provisioning process. Since

the SSP focuses on semantic service provisioning, the cache is well fitted to semantic

content, i.e., triples. This allows Data Consumers not only to retrieve cached resource

states but also use SPARQL to find resources with certain properties. The SSP provides

an endpoint to run queries on its cached resources via its Web URI.

Literature Analysis 17

2.4 Literature Analysis

We observe several problems in literature about IoT service provisioning as follows:

• Most of the studies focus on the high-level architecture and models for service

provisioning without sufficient details about networking protocols at smart ob-

ject level and about the integration with traditional services at application level.

Services from smart objects possess different characteristics then traditional ones

as they operate in constrained environments (e.g., low capacity nodes, lossy and

low-rate network). It is therefore necessary for service provisioning architecture to

consider these properties.

• Current studies have not considered a full IP IoT in service provisioning, which

results in the use of protocol gateways to translate non-IP to IP-based communica-

tion. Protocol gateways are complex to design, manage, and deploy; their network

fragmentation leads to non-efficient networks because of the inconsistent routing,

QoS, transport, and network recovery. End-to-end IP architecture is considered

suitable and efficient for scalable networks of large numbers of communicating

devices such as the IoT.

• Service provisioning in SOA-based IoT using W3C Web Service architecture is

facing many difficulties such as the heavyweight of Simple Object Access Pro-

tocol (SOAP) messages and the complex parsing XML documents. Web APIs

are providing an efficient ways of interacting between Web applications ensuring

smooth and simple operation of the Web and coping with the future participation

of millions of smart objects. This approach originally aim to IoT application in

enterprise solutions which base on business processes of Web services.

• Semantic annotation of smart objects is incorporated within the annotation of sen-

sor data. Whilst, the annotation of functionality (i.e., not data) is also important

for these services are present in a great number of smart objects such as services

to switch on/off a light bulb and to activate a watering system. The future of IoT

is driven by many types of objects that carry not only data but also functionali-

ties. Currently, there are two methods for annotating smart objects (either data

or functionality): direct annotation and third-party service. The former incurs

large data stored in smart objects and large exchange messages due to the use of

XML-based RDF standard. The latter represents a single bottle neck by which

the communication stream can be broken or interfered.

In this dissertation, we aim to overcome these problems by carrying out empirical

study of 6LoWPAN performance, requirement analysis, and then propose a new semantic

service provisioning to empower the IoT applications on Web.

Chapter 3
System Architecture

Contents

3.1 Requirements . 19

3.1.1 Open Standards and Interoperability 19

3.1.2 Low Energy Consumption . 20

3.1.3 Reliability . 21

3.1.4 Security and Privacy . 21

3.1.5 Scalability . 22

3.2 IoT Application on Web . 22

3.3 System Architecture . 24

3.3.1 Reference Infrastructure . 24

3.3.2 Data Model . 25

3.3.3 Multilayer Architecture . 26

3.3.4 Functional Block Diagram . 27

3.3.4.1 Service Communication . 27

3.3.4.2 Service Provisioning . 28

3.3.4.3 Service Integration . 28

3.3.5 Provisioning Workflow . 29

3.4 Summary . 29

This chapter presents the key requirements of service provisioning for 6LoWPAN

followed by the proposed system architecture. The architecture aims to provision smart

object services in 6LoWPAN using open standards to power IoT applications on Web

connecting smart objects with existing Web services in a scalable, secure, and reliable

manner. We provide the architecture in different perspectives including reference infras-

tructure, data model, multilayer architecture, functional block diagram, and provisioning

18

Requirements 19

workflow. The architecture is based on all IP protocol and networking principles realized

by service communication subsystem in the functional block diagram. On top of that,

service provisioning uses a scheduling algorithm, OAuth 2.0 authorization framework,

semantic annotation, and URI mapping schemes to generate Web APIs to be used in

IoT applications on Web by mechanisms explained in the service integration subsystem.

3.1 Requirements

Smart objects and 6LoWPANs are similar to any IP-based computer network, but they

carry many different characteristics that need to be taken into account. This section

presents the core requirements of service provisioning in 6LoWPAN.

3.1.1 Open Standards and Interoperability

The Internet as we see today is based on a plenty of open and non-proprietary standards.

They are the key for a huge number of devices, services, and applications across the

global to exchange data in a wide and dispersed network of networks. Some international

groups are behind the development of these standards such as the Internet Engineering

Task Force (IETF), the Internet Research Task Force (IRTF), and the World Wide

Web Consortium (W3C). These organizations are all open, transparent, and rely on a

consensus-based decision making process to develop standards. They are experts around

the world working together to create freely-accessible specifications that available online

at no charge, thus to foster the adoption of them.

Open standards lie at the core of the success of today’s Internet and Internet-related

technologies. While the Internet continues to grow to the next evolution with the arrival

of new actors, smart objects, to create the new ecosystem of the Internet of everything

or IoT, it is critical that new technologies continue to be developed based on open

principles and processes. When it comes to system design such as service provisioning,

using open standards does not only provide the interoperability, but also can backward

promote the development of the Internet technologies.

Interoperability is the key characteristic of the Internet where the information being

exchanged across a wide network of heterogeneous systems and devices. It is about the

ability of a system to work with or use the functions of other systems. It has been one of

the key requirements for Internet applications, which are based on the communication of

different hardware and software infrastructure. In IoT, the heterogeneity of the systems

and devices become even larger where smart objects, which are limited in resources,

cannot operate in a full-fledged manner with other networks. Therefore, for new IoT

systems to be an integral part of the Internet, they must be able to exchange data and

subsequently present that data such that it can be consumed by existing systems on the

20 System Architecture

Internet. Interoperability requires standards on several levels. It is necessary to have

uniform mechanisms in what is being exchanged (data elements), how to structure data

for exchange (record schemas and record syntaxes), and how to actually exchange it

(protocol transactions and messages and profiles).

Service provisioning therefore has to provide data format, protocol messages, and

data schema that can be used in other systems on the Web using open Web standards

Web design principles such as Representational State Transfer (REST) [19] and Semantic

Web [3] are the key to enable the interoperability for IoT applications on Web.

3.1.2 Low Energy Consumption

Energy consumption has been at the center of any discussion for the sustainable develop-

ment these days, especially when the digital revolution has happened recently. Machines

are driven by electronic parts, and electronics need power. This fact brings the energy

issue even up to a more critical level when the IoT is happening very fast with billions

of personal electronic are predicted to be available in coming years. Today, the most

common power source is a battery, but there are also several other possibilities such as

solar cells, piezoelectricity, radio-transmitted energy, and other forms of power scaveng-

ing. Power scavenging is a technique in which devices harvest power from the physical

environment. Solar cells represent the most common form of power scavenging. They

harvest their power from the ambient and direct light hitting the smart object. While

static energy sources are limited, for those powered by power scavenging, energy is not

always assured and difficult to be stored for extended periods of time.

For this reason, both the hardware and the software of the smart object must be

designed to meet stringent power requirements. To achieve this, low-power hardware

such as microprocessors and radio chips have been developed. Low-power radio hard-

ware, which is the most critical part of consuming energy in smart objects to maintain

the connectivity, however it is still not sufficient. Existing low-power radio transceivers

(though optimized) use too much power to provide long lifetime on batteries. For ex-

ample, the CC2420 radio transceiver, used in the MTM-CM5000-MSP TelosB and Z1

motes, use approximately 60 milliwatt of power when listening for radio traffic and a

similar figure for data transmission. By that power, radio operation depletes 2 AA

batteries equipped for these motes in a matter of days. Therefore in addition to hard-

ware, software design of protocols and system architecture play an important role on

improving the energy consumption of smart objects. For example, radio duty cycling

mechanisms (e.g., ContikiMAC) aim to deal with this problem by keeping the radio

turned off as much as possible while providing enough rendezvous points for two smart

objects to communicate.

Requirements 21

3.1.3 Reliability

The trade-off of low-power design for smart objects and 6LoWPAN comes with the

less reliable communication link due to the use of low-power and low bitrate protocols.

There are fundamentally two factors in 6LowPAN leading to the low reliability of the

network: constrained processing power in smart objects and lossy and low bitrate in

the communication. To fulfill the energy requirement, smart objects are equipped with

limited processing power, memory, and energy; they are also in many cases battery-

operated or energy scavenging that leads to the data processing capacity is subject to a

limit. Besides, smart objects are interconnected by lossy links, typically supporting only

low data rates that are usually unstable with relatively low packet delivery rates. This

may result in the loss of packets. There have been efforts to handle the issue such as new

routing protocol RPL considering the loss nature of the link. Even when mechanisms for

dealing with high packet loss rate are applied, long delay between service requests and

responses is anticipated due to the limited resource on the smart objects side. In many

applications, the delay may be not tolerable for practical uses. Therefore, to effectively

integrate 6LoWPAN into the Internet environment, IoT architects have to take into

account this requirement as one the core values.

3.1.4 Security and Privacy

Security in IoT is becoming a critical issue with millions of devices getting connected

to the Internet. The IoT means that everyday objects going online, being connected,

and talking to each other without human being’s involvement to, for example, carry out

many of our tedious routines. For what we are witnessing today, the first wave of the IoT

is already around with several tracking devices on the market such as activity trackers

that record your movements and geographical position, baby monitors that measure

breathing and skin temperature, and smart Wi-Fi light bulbs that can be programmed

via a smartphone. The question is how these personal data are being handled and

by whom. The autonomy of devices comes with more concern about our privacy and

when more objects expose themselves to the Internet, more security issues come to our

software systems where these objects are also connected. The critical problem is these

smart objects are getting smarter to intervene in users’ privacy. It is possible that once

you bought a television, turn it on and while it serves you with new smart services

taking into account of your preferences and use contents on the Internet, it could be

listening to your private conversations and sharing them over the Internet.

Another issue with security and privacy for smart objects is that they have the

owner-object relationship to their owners and the owners have several preferences for

setting up their devices. Smart objects, different to other resources on the Web, have

limited resources and a special degree of privacy because they belong to individuals

22 System Architecture

with their privacy to protect and have limited resources. Therefore, the consumption of

smart object services should be well-managed in a secure and stable manner. Therefore,

provisioning smart objects services has to come with appropriate authorization to use.

3.1.5 Scalability

Today’s Internet is a giant global network of networks based on IP-based protocols

thanks to its inherent scalability. No other networking technology in the history has

ever been deployed and tested at such an immense scale and with such a large number of

devices. As smart objects will connect to the Internet in even a larger number, scalability

is a primary concern and should be staying at the core of designing new system. To assure

the continuous development of the Internet, smart objects and 6LoWPANs as new actors

are required to work in the similar scalable manner. Service provisioning must be efficient

and practical when applied to large-scale situations either in the scale of 6LoWPANs or

of IoT applications on Web in addition to the assurance of system performance when the

network expands. Also, at network deployment level, the installation of smart objects

network in any facility (home, office, public space, etc.) is required to be fast and

integral part with the existing communication infrastructure.

This requirement leads to a direct suggestion of using IP-based protocols for IP

has proven itself a stable and highly scalable communication technology that supports

both a wide range of applications, devices, and underlying communication technologies.

End-to-end IP architecture is considered suitable and efficient for scalable networks of

large numbers of communicating devices such as the IoT. The next generation Internet

protocol, IPv6, expands the address space from 32 bits to 128 bits. Such a large address

space has been estimated enough for billions of smart objects going online in the near

future. The adoption of IP standards can be carried out at low level of smart objects

themselves to avoid using protocol translation gateways, which prevent the scalable

deployment of 6LoWPAN and IoT systems.

3.2 IoT Application on Web

The Internet is a scalable global network of computers that interoperate across hetero-

geneous hardware and software. On top of the Internet, the Web is an outstanding

example of how a set of relatively simple and open standards can be used to build very

complex systems while preserving efficiency and scalability. The Web and its underlying

open protocols have become a part of our everyday life - something we access at home or

on the move, through our laptop computers, phones, tablet, TV, or wearable devices. It

has changed the way we communicate and has been a key factor in the way the Internet

has transformed the global economy and societies around the world.

IoT Application on Web 23

Meanwhile, the IoT will allow physical objects to transmit data about themselves

and their surroundings, bringing more information about the real world online and help

users to better interact with their surroundings. Flowers, for example, can send you

an email or a SnapChat 1 photo of your flower when they need watering. Doctors can

implant sensors in your body that give you real-time updates about your health updating

frequently to a secure online database of your personal data. Even more, IoT data will

go beyond the scope of each own service provider to go online and share with other

applications and users. We coin the term IoT Application on Web to refer to any Web

application interacting with smart objects through communication networks using open

Web standards. They are IoT applications and they are Web applications identified by:

• Reside on the Web (on Web server/cloud)

• Use open Web standards

• Interact with smart objects

• Be accessed via Web agents.

IoT application on Web is the natural evolution of Web application when Internet is

transforming to the Internet of everything to include smart objects in the loop. There

can be an application to get access to your Google calendar with the note of cleaning

your living room to have your mother visit in few hours. The application then asks

your robot cleaner to automatically wake up and do cleaning. Robot cleaner notifies

you (by sending an email or a SnapChat message) when it starts working or finishes

the work. Another application can let you talk to your devices in the way you talk to

your friend with the support of natural language processing engines; this is the new

experience of making friendship with your devices. Yet another application can serve

you in the airport to update the status of the flight, providing practical information

in the airport, connecting to the boarding machine to update you for any delay of

boarding time that you can spend more time doing shopping in duty free. Yet another

application can synchronize your TV programs and football schedule and also your social

network profile to remind you an upcoming match. These applications all require the

interactions of existing Web services and new services from smart objects to create new

user experience while assuring the seamless transition from developing traditional Web

applications to this new type of IoT applications on Web. This is where our work comes

in to solve the fundamental problem of such ecosystem, service provisioning.

1https://www.snapchat.com/

24 SystemArchitecture

Figure3.1:Thereferenceinfrastructure.

3.3 SystemArchitecture

Thissectionpresentsdetailsonourproposedserviceprovisioningarchitectureincluding

ReferenceInfrastructure,Data Model, MultilayerArchitecture,andFunctionalBlock

Diagram. Wealsoprovideabriefintroductiononeachcomponentofthearchitecture,

whichwillbeelaboratedinthefollowingchapters.

3.3.1 ReferenceInfrastructure

Figure3.1illustratesthereferencearchitectureinwhichsmartobjectsareitemsequipped

withsensorsoractuators,tinymicroprocessors,memory,low-powercommunicationde-

vices,andpowersources.Smartobjectsexistinseveralreal-lifefacilitiessuchasbuild-

ings,houses,andpublicspaces. Mostofthemareconstraineddeviceswithevenfew

hundredkilobytememoryandisbattery-powered.Theyrunlow-poweroperatingsys-

temimplementedwithIP-basedprotocolsandstacks.Thesesmartobjectsconfigurea

6LoWPANbasedonlow-powerphysicallayerprotocolssuchasIEEE802.15.4,BLE,

andDECTUltraLowEnergy. The6LoWPANconnectstoregularIPnetworksviaa

6LoWPANEdgeRouter(6EdR)andbeyondtotheInternetthroughaseriesofother

routersacrossthenetwork.Smartobjectsarefirstmanufacturedwithprimitiveservices

inside,whichcanbere-programmed. TheseservicesarethenprovisionedtotheIoT

applicationson Webbythemethodpresentedinourproposedarchitecture.Theseap-

plicationsarehostedonthe Webserversorcloudandcanbeaccessedviauserdevices

suchaslaptopcomputers,smartphones,andtablets.

Thisreferencearchitecturecanberealizedinhomenetworks.Forexample,ahome

hostsseveralsmartobjectsincludingawirelesscamera,awirelessLEDsmartbulb,and

analarm.TheseobjectsjointhehomenetworkviaEthernetcoaxialcables(alarm)or

wirelesslybyBluetoothLowEnergy(camera,smartbulb).Thenetworkconnectingto

a6EdRactsasanaccesspointforhomeInternetconnection,andalsoconnectstoother

devicesusingfullIPcapacitysuchaslaptopandTV.Asmartphoneapplicationcan

SystemArchitecture 25

Figure3.2:Datamodelinthehierarchicalscheme.

usethe WebAPIprovisionedfromthesesmartobjectstoprovideahandytoolforusers

toremotelycontroltheirhomewithtaskssuchasswitchonoroffalightbulb.Another

applicationisaHomeSurveillance Webapplicationprovidingsurveillanceservicefor

userstoremotelytracktheirhomeenvironmentsuchasnotifyingusersthattheirkids

areathome.

3.3.2 Data Model

Everysmartobjectinthe6LoWPANisprovisionedwithdatainwhichinformation

aboutlowlevelresources(sensors,actuators, memory,energy,etc.) andhighlevel

resources(semanticservicesandcontextualservices)arestoredindifferentlocations.

Thesedatacreatedatamodelforourprovisioningarchitecture.

Dataareorganizedaccordingtothereferencearchitecturetostoredifferentinfor-

mationaboutthesmartobjects,6LoWPAN,andservices. Therearethreekindsof

data:objectdata,provisioningdata,andapplicationdata. Objectdata,whichstore

informationaboutprimitiveservicesdirectlyprovidedfromsmartobjects,coverthe

physicalresourcestatusandcontextualdatasuchastemperatureandhumidity.They

canbeimplementedinthesmartobjectsusingresource-constrainedprotocolssuchas

CoAP,DPWS,andXMPPandaccessedviaprotocolmessages.Provisioningdatastore

informationaboutservicesprovidedby6LoWPANnodesenrichedbysemanticannota-

tionwithreferencetothedomainontology.Applicationcangetaccesstothisdataby

callingits WebAPI.Applicationdatastorehigh-levelinformationaboutsingleservices

andcompositeservicesprovidedby6LoWPANthatmeettherequirementofeachap-

plication.Besides,applicationlogicsarestoredinthisrepository.Bythisdatamodel,

IoTapplicationson Webcollectandstoresemanticdata,consultingtoonlineontology

tohandlemanycontext-awarescenario.

26 SystemArchitecture

Figure3.3: Multiayerarchitecture.

TheorganizationschemaofourdatamodelisshowninFigure3.2.Therepository

onthetopofthehierarchy,intheformofapplicationdatabase,islocatedinthe Web

serverorcloudwhichcombinessmartobjectsserviceswithconventional Webservices

tocreatenovelcompositeservices.Ontologyisseparatelydevelopedbymanyproviders

whohaveexpertiseoneachdomain. Theprovisioningdatarepositoryisatriplestore

locatedinaprovisioningserver,whichcanbelocatedinlocalnetworkoronthe Web.

Objectdatarepositoryislocatedinsmartobjectwithitsfilesystemordynamicallyin

programlogic.

3.3.3 MultilayerArchitecture

Figure3.3showsahigh-levelviewofthearchitectureintheformof multilayerar-

chitecture. Therein,theSmartObjectLayeristhelowestlayerwhereservicesare

implementedonphysicalentitiesincludingsmartobjectsandconventionalcomputers.

Thislayerconsistsof6LoWPANsandregularIPnetworks.Each6LoWPANconnects

toanedgerouter6EdRwhichcarriesouttheroutingfunctionbetweenthe6LoWPAN

toregularIPnetworksassuringtheconsistenceinrouting,QualityofService,trans-

port,andnetworkrecoveryfortheentiresystem. RegularIPnetworksalsoresidein

thislayerprovidingservicestothe Webinasimilarwayto6LoWPANs. Thesecond

layeristheServiceProvisioningLayerrepresentingtheinterfacebetweensmartobjects

andapplicationsontheInternet.Therewillbea WebAPIassociatedtoeach6LoW-

PAN,whichcanbeusedinmultipleapplicationsandmashedupwithother WebAPIs

ofsmartobjectsandconventional WebAPIs. ThethirdlayerisApplicationLayerof

IoTapplicationson Web.Thislayerexhibitsthemechanismofhowanapplicationuse

SystemArchitecture 27

Figure3.4:Functionalblockdiagram.

6LoWPAN WebAPIstointeractwithsmartobjects,andhowtheseapplicationscan

carryoutsemanticreasoningbyretrievingsemanticannotationfromsmartobjectand

queryingfromavailableontologyinthedomain.

3.3.4 FunctionalBlockDiagram

Figure3.4depictstheproposedserviceprovisioningarchitecturewithfunctionalblocks

dividedintothreesubsystems:servicecommunication,serviceprovisioning,andservice

integration. ThesefunctionalblocksprovideguidelinesforimplementingrelevantIP

networkingstacksinsmartobjects.IPnetworkingforsmartobjectsisthefoundation

forfacilitatingservicesusingapplicationlayerprotocolsdoingsemanticannotationsto

theseservices.ItreliesonopenandstandardizedprotocolsmainlyfromIETFwork-

inggroups. Serviceprovisioningmethodforsecure,scalable,andreliableservicesof

6LoWPANincludes:servicediscovery,scheduling,URImapping,requesthandling,au-

thentication,andWebAPIrepresentation.Amethodforusingprovisionedservicesfrom

smartobjectsincludessteps:retrieving WebAPIfromserviceproviders,requestingau-

thenticationtokens,requestingasmartobjectservice,receivingresponsefromsmart

object,queryingandreasoningusinganappropriatedomainontology,andmashingup

withotherAPIs.

3.3.4.1 ServiceCommunication

StartingwithServiceCommunicationsystem,thefunctionalblockssuggestthatsmart

objectisimplementedwithlow-poweroperatingsystemssupportingconstrainedIP

stackssuchasContikiOS2,TinyOS3,andRIOTOS4.CommonIoTprotocols,e.g.,

6LoWPANAdaptation,IPv6,RPL,TCP,andUDPcanbeusedtoprovidethenet-

workingfunctionalityofsmartobjects.Ontopofthat,servicesareimplementedusing

anapplicationlayerprotocolsuchasCoAP,DPWS,andXMPP.Theseservicescan

2http://www.contiki-os.org/
3http://www.tinyos.net/
4http://www.riot-os.org/

28 System Architecture

communicate with applications on the Web and interact with sensor/actuator hardware

in smart objects to, for example, collect contextual information and activate a routine

task of smart objects. Smart objects are also enriched by simple semantic annotation

based on domain ontology previously published or available on the Web. Each service

is identified by an identity, which plays a role of an endpoint address for service com-

munication. Also this identity is reserved for security purposes. This domain enables

the consistent communication between smart object networks and normal IP networks

also facilitate smart object functionalities using open application standards.

3.3.4.2 Service Provisioning

The Service Provisioning subsystem, based on the IP infrastructure in 6LoWPAN, en-

capsulates constrained protocols and interfaces into useful Web APIs that can be used

in multiple IoT applications on the Web. One of the common characteristics of smart

object services is the ability of dynamic discovery, mostly using multicasting. Service

Discovery functional block is deployed to either relay the multicast messages to the ap-

plications or forward the messages in and out the local network. URIs discovered in

discovery process are sent to URI Mapping to apply the mapping rules. Developers also

can maintain the service cache by providing discovered data to a cache module. Provi-

sioning Interface in the form of Web API contains descriptions of smart object services

that can be consumed by IoT applications on the Web. It also provides the ability for

applications to mashup smart object services with other Web services.

Each API request consisting of a HTTP verb (GET, POST, PUT, and DELETE)

on an URI (retrieved from URI Mapping) and an authentication token comes to the

Request Handling for preprocessing. Request Handling parses the token to get the

permission of using the services and first looks into the cache for available resource to

bypass the discovery step. If the resource is not found in the cache, Request Handling

with send a discovery request to the target smart object to check for its availability and

updated information. Thereafter, the request is put into the Scheduling queue waiting

for interacting with the target smart object. This Scheduling block is to ensure that

the constrained environment can reply to a maximum number of requests. When the

request is process, data go through a dispatcher for communicating with the target

smart object.

3.3.4.3 Service Integration

In Service Integration subsystem, each IoT application on Web can use smart object

Web APIs in the same way as other Web APIs and carry out inference from semantic

data. Provisioning Interface provided by the Service Provisioning subsystem to be used

by IoT applications on Web in the same way that conventional Web applications use

Summary 29

Figure3.5:Provisioningworkflow.

WebAPIssuchasGoogleAPI,TwitterAPI,andYahooAPI.Semanticdatareceived

fromsmartobjectservicescanbeassociatedwiththedomainontologytocarryout

inferenceorintelligencefortheapplication.Allofthesefunctionalblockscanbeusedin

standardprogramminglanguageandtoolsprovidedbyseveraldevelopmentplatforms.

3.3.5 Provisioning Workflow

Figure3.5illustratesanoverallworkflowofprovisioningsmartobjectservicesincluding

threesubsystemofthearchitecture.Atthefirststep,serviceproviderssuchasbuilding

ownersandthird-partyservicecompaniesprovidesmartobjectswithpre-manufactured

operatingsystemssupportingIPstacksfordevelopersorthird-partyIoTtechnology

firmstoimplementIPstacks. Next,serviceprovidersdescribeandimplementsmart

objectfunctionalityintheformofservices,authenticationschemes,andsemanticanno-

tations.Thefinalstepinvolvesserviceprovidertoprovisionsmartobjectservicestothe

applicationsonthe Web.Developerscanstarttouseasetofsmartobjectbyacquiring

theirAPI,authenticationtokenstogetaccesstotheAPI,anddomainontologytouse

reasoningwithsemanticdataretrievedfromsmartobject,depictedinthenextstep.

Thereafter,applicationscancommunicatewithsmartobjectsviaHTTPmethodsover

WebAPI,mashupwithother WebAPIsanddoingreasoningbasedonsemantictools.

3.4 Summary

Thischapterhasgiventheoverallarchitectureforsemanticserviceprovisioningof6LoW-

PAN.Inthenextchapters,wewillintroducethedetailsofeachsubsystemtorealize

thisarchitecture.StartingwithChapter4,wepresentthedesign,implementation,and

evaluationof6LoWPANwithwhich,theresultsactasthefoundationtobuildupthe

provisioningarchitecturedescribedinthenextChapter5. Chapter6describestwo

innovativeapplicationsapplyingtheproposedarchitecture.

Chapter 4
Design and Performance Study of

6LoWPAN

Contents

4.1 6LoWPAN Design . 32

4.1.1 Internetworking Architecture . 32

4.1.2 6LoWPAN Edge Router . 33

4.2 6LoWPAN Implementation . 33

4.2.1 Hardware . 33

4.2.2 Software . 34

4.3 Performance Evaluation . 35

4.3.1 Energy Consumption . 36

4.3.2 Duty Cycle . 38

4.3.3 Network Performance . 39

4.3.3.1 Radio Signal Strength . 39

4.3.3.2 Packet Delivery Ratio . 39

4.3.3.3 End-to-End Delay . 40

4.3.3.4 Data Transfer Rate . 40

4.3.4 Service Communication . 41

4.4 Discussion and Lessons Learned . 42

4.4.1 Energy Consumption . 42

4.4.2 Contiki OS 3.x and Network Performance 43

4.4.3 Current IPv4 Infrastructure . 44

4.4.4 Web Services . 44

4.4.5 Deployment . 45

4.5 Summary . 46

30

31

Figure4.1:IPand6LoWPANprotocolstackinreferencetolayersoftheTCP/IP
networkingmodel.

SinceIPv6-enabledlow-powerwirelesspersonalareanetworksofsmartobjects(6LoW-

PANs)playanimportantpartintheIoT,especiallyonaccountoftheInternetinte-

gration(IPv6),energyconsumption(low-power),andubiquitousavailability(wireless),

thischapterpresentsthedesignandastudyon6LoWPANsprovidingthenetwork-

ingfoundationfortheproposedprovisioningarchitecture. ThedesignrealizesSmart

ObjectlayerinthemultilayerarchitectureandServiceCommunicationsubsystemin

theblockdiagrampresentedinChapter3. Theperformancestudycontainsacom-

prehensiveanalysisonseveralinternetworkingcharacteristicsbetween6LoWPANsand

regularIPv6networksincludingenergyconsumptiononnodes,networkperformance,

andservicecommunication.

Figure4.1showsacomparisonbetweentypicalnetworkingstacksofregularIPnet-

worksand6LoWPANfollowing4-layerTCP/IPmodel(RFC1122): Link,Internet,

Transport,andApplications. Thekeydifferenceliesat6LoWPANadaptationlayer,

whichaddsaspecificlayerandIPv6headercompressionbeforeforwardingtoregular

IPv6destination.ThistechnologygivestheefficientextensionofIPv6intothe6LoW-

PANdomain,thusenablingend-to-endIPnetworkingfeaturesforawiderangeofIoT

applications.

Whilethesetechnologiesaregainingstablestatus,howtheyaffectthedesignofmany

potentialintelligentandubiquitousIoTapplicationsisstillratheranislandfornew

discoveries.Inthischapter,wepresentourdesign,implementation,andperformance

evaluationof6LoWPANbasedonopenIoTstandardsprovidedbyIETFinCoRE,

ROLL,and6LoWPANworkinggroups. Weimplementthedesignonaset MTM-

CM5000-MSPTelosBmotes(CM5000)1forsmartobjectsandaRaspberryPi(RPi)
2foranedgerouter,somelaptopcomputersforhostsinregularIPv6network. All

1http://www.advanticsys.com/shop/mtmcm5000msp-p-14.html
2https://www.raspberrypi.org/

32 DesignandPerformanceStudyof6LoWPAN

Figure4.2:6LoWPANInternetworkingArchitecture.

areconnectedtothebackbonenetworkofthebuilding. Theperformanceevaluation

exhibitshowthesenewnetworkingtechnologiesoperateinreal-lifedeploymentsand

wheretoadaptthemtodifferentscenarios.

4.1 6LoWPANDesign

4.1.1 InternetworkingArchitecture

The6LoWPANinternetworkingarchitectureismadeupof6LoWPANs,regularIPnet-

works(IPv4,IPv6),androuters.TheoverallarchitectureispresentedinFigure4.2in

which6LoWPANisanIPv6subnetofsmartobjectssharingacommonIPv6addresspre-

fix(thefirst64bitsofanIPv6address).Thesesmartobjectscanplaytheroleofahost

oraroutertocreateameshnetwork.6LoWPANisconnectedtoregularIPnetworks

throughanedgerouter.Theedgerouterforwardsdatapacketsbetweenthe6LoWPAN

andbackboneIPv6,whilehandlingIPv6compressionandneighbordiscovery.

Communicationbetween6LoWPANsmartobjectsandIPhostsinothernetworks

happensinanend-to-endmanner,justlikebetweenanyregularIPnodes.Each6LoW-

PANsmartobjectisidentifiedbyauniqueIPv6address,andiscapableofsendingand

receivingIPv6packets.InFigure4.2,the6LoWPANsmartobjectscancommunicate

witheitheroftheregularIPv6hosts,serversontheInternet,orpersonalusers’devices.

SmartobjectssupportICMPv6traffic(ping),andusetheUDPasatransport.Since

thepayloadandprocessingcapabilitiesofsmartobjectsareextremelylimitedtosave

energy,applicationprotocolsaredesignedtouseasimplebinaryformatoverUDPsuch

asDPWSandCoAP.

6LoWPAN Implementation 33

4.1.2 6LoWPAN Edge Router

In order to connect 6LoWPAN networks to other IP networks, we use 6LoWPAN Edge

Routers (6EdRs). These edge routers are located at the border of the 6LoWPAN per-

forming two essential tasks: adaptation between 6LoWPAN and regular IPv6 networks

and routing the IP traffic in and out of the 6LoWPAN. This transformation is trans-

parent, efficient and stateless in both directions.

Figure 4.3 presents our 6EdR architecture consisting of several layers: Network In-

terfaces (regular IPv6, e.g., Ethernet and low-power, e.g., IEEE 802.15.4), 6LoWPAN

Adaptation, Neighbor Discovery, IPv6, IPv6 Routing, Network Management, and Proxy.

6LoWPAN Adaptation Layer is for decompressing frames received from the low-power

link (RFC 4944) using known information about the network and compressing regular

IPv6 frames from the regular network interface. This step could be performed in the

wireless interface or the edge router driver. Neighbor Discovery is responsible for several

configuration tasks such as auto-configuration of nodes, discovery of other nodes on the

link, and maintaining reachability information about the paths to other active neigh-

bor nodes. It includes both IPv6 Neighbor Discovery Protocol (NDP, RFC 4861) and

6LoWPAN Neighbor Discovery (6LoWPAN-ND, RFC 6775). The interface or driver

should take care of configuring the stack or adapting relevant neighbor discovery mes-

sages between 6LoWPAN-ND and NDP. IPv6 Routing maintains route entries between

its interfaces belonging to two different routing domains where most traffic flows are

coming from the Internet towards one or more 6LoWPAN nodes, or from LoWPAN

nodes towards the Internet. Network Management is one of the core features of any

network deployment for managing smart objects on 6LoWPAN. It may use Simple Net-

work Management Protocol (SNMP, RFC 6353). Proxy further adds application layer

translation models for transferring request in and out 6LoWPAN.

4.2 6LoWPAN Implementation

4.2.1 Hardware

We use CM5000 motes equipped with three LEDs, a temperature sensor, a humidity

sensor, two light sensors, and button sensor as generic smart objects to set up a 6LoW-

PAN. With several sensors and LEDs, CM5000 can represent many home and building

appliances such as a light sensor, a light bulb, a thermostat, a switch, and even a mo-

tion sensor. We use a RPi for the edge router with the built-in Ethernet as an IPv6

interface and a CM5000 mote connecting to RPi USB port as a 6LoWPAN interface

(IEEE 802.15.4). Some laptop computers are used to deploy a regular IPv6 networks

with Ethernet interfaces connecting to the same router with the edge router.

34 DesignandPerformanceStudyof6LoWPAN

Figure4.3:6EdRDesign.

4.2.2 Software

WeusethelatestupdateofContikiOS3.x 3(bythetimeofwritingthismanuscript)

withµIPprotocolstacktoimplementIPv6networkingfunctionalitiesforthe6LoWPAN

nodes.TIMSP430toolchainonUbuntuisusedtocompiletheprogramsforCM5000

motes.Theseprogramsallconfigurethesmartobjectstouseradiochannel26,Contiki-

MAC[54]fordutycyclingmechanism,routermodetocreateameshnetwork,andMAC

addressestoautogeneratetheirIPv6addresses(e.g.,MAC00:12:74:00:13:cb:2d:a6for

IPv6aaaa::212:7400:13cb:2da6address).Ontopofthat,severalmodulesaredeveloped

toprovidedifferentfunctionalitiestothesmartobjectssuchasenergyprofiling(using

Energestpowerprofile[55]),UDPserver,CoAPserver(Erbiumlibrary[56]),andDPWS

server(uDPWSlibrary4).Figure4.4showstherealhardwareconfigurationoftheedge

routerwithtwointerfaces:IEEE802.15.4andEthernet.

RaspbianOS,aDebian-basedOSisprovidedastheplatformfortheedgerouter.Its

IEEE802.15.4interfacecommunicateswiththeedgerouterviaUSBportusingSerial

LineInternetProtocol(SLIP). WecreateanetworkTUNnel(TUN)virtualinterface

tosimulateanetworkdeviceoperatingonInternetlayer. ThisTUNinterfaceworks

withSIPtoapply6LoWPANadaptation. WealsoconfiguretheRaspbianOSasan

IPv6routerbetweentwonetworkinterfacesEthernetandTUN.Bythat,trafficfrom

6LoWPANcomestotheedgerouterwithIEEE802.15.4framesaddingcompression

and6LoWPANadaptationinthesoftware,passedtoTUNinterfaceandthenrouted

toEthernetinterfacetoreachregularIPv6network.Forexample,whena6LoWPAN

3http://www.contiki-os.org/,version2015/02/16
4http://www.ws4d.org/

Performance Evaluation 35

Figure 4.4: 6EdR hardware: Raspberry Pi with an Ethernet interface and a CM5000
mote as an IEEE 802.15.4 interface.

packet is forwarded to the IPv6 network, edge router removes its 6LoWPAN adaptation

layer, uncompresses its header, and ensures that global IPv6 source address is used

for the outgoing packets. For incoming packets to the 6LoWPAN, edge router adds

6LoWPAN specific adaptation layer and possibly 6LoWPAN IPv6 header compression

mechanism and then forwards them to the 6LoWPAN.

4.3 Performance Evaluation

We carry out the experiments on the communication between a 6LoWPAN and a regular

IPv6 network to observe the quality of the link in several aspects under a real-life

deployment. The deployment takes place in an L-shape office building floor. We deploy

the 6LoWPAN with a 6EdR and a number of nodes and a simple IPv6 network with one

host. The 6EdR is deployed in one office along with a laptop computer (as a regular IPv6

host), both connected to the same local network via a home and building router. Three

nodes are put in 1-hop, 2-hop, 3-hop positions to the edge router as shown in Figure

4.5. There estimates about 10 Wi-Fi devices operating at the time of the experiment. A

screen capture from a Wi-Fi analyzer indicates which channels wireless networks are on

and how strong they are. We notice that only eduroam and eduspot are busy on channel

1, other in mild status which would not affect much on the experiment nodes operating

on IEEE 802.15.4 radio channel 26. Network configuration is as follows:

Building Router Linksys E1200, IPv6-enabled

6LoWPAN aaaa::/64

6EdR (Raspberry Pi and CM5000)

- Ethernet: fde5:d6db:6ff6::1 (connected to E1200)

- IEEE 802.15.4: aaaa::212:7400:13cb:44

- Virtual TUN: aaaa::1

36 DesignandPerformanceStudyof6LoWPAN

Figure4.5:6LoWPANhomenetworksetting.

Smartobjects

-1-hopnode:aaaa::212:7400:13cb:44bb

-2-hopnode:aaaa::212:7400:13cb:101a

-3-hopnode:aaaa::212:7400:13cb:1e41

IPv6host

-Ethernet:fde5:d6db:6ff6::100(connectedtoE1200)

4.3.1 EnergyConsumption

Thefirstexperimentisaboutenergyconsumption. Weexaminehoweachnodeinthe

networkconsumesenergyintwomodes(hostandrouter)withfivedifferentdatarates

(1to5packet/s).Asmartobjectisconsideredtobeinroutermodeifitforwardsthe

trafficbetweenothernodes.Thehostmodeiswhenthesmartobjectonlycommunicates

withotherobjectsortheedgerouterwithoutdoinganytrafficforwarding. Weusethe

powerprofileEnergest[55]inContikiOStorecordtheenergyconsumptioninatarget

object.Energestusespowerstatetrackingtoestimatesystempowerconsumptionanda

structurecalledenergycapsulestoattributeenergyconsumptiontoactivitiesincluding

CPUinactivemode(CPU),CPUinstandbymodelow-powermode(LPM),packet

transmissions(TX),andreceptions(RX).Thepowerforeachactivityiscalculatedby

followingFormula4.1:

EnergestValue×Current×Voltage

RTIMERSECOND×Runtime
(4.1)

Performance Evaluation 37

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(a) Idle.

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(b) 1 packet/s.

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(c) 2 packet/s.

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(d) 3 packet/s.

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(e) 4 packet/s.

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(f) 5 packet/s.

Figure 4.6: Energy consumption in host mode.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(a) Idle.

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(b) 1 packet/s.

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(c) 2 packet/s.

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(d) 3 packet/s.

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(e) 4 packet/s.

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90 100

Po
w

er
 (

m
W

)

Time (s)

CPU
LPM
TX
RX

Total

(f) 5 packet/s.

Figure 4.7: Energy consumption in router mode

where Energest value is the value of Energest profile tracked in each activity. Current is

the current consumption, which, according to the datasheets of TI CC2420 transceiver

and TI MSP430F1611 microcontroller, is 330 µA, 1.1 µA, 18.8 mA, and 17.4 mA for

CPU, LPM, TX, and RX respectively. Voltage is the supply voltage, in this case, 3

V for two AA batteries. RTIMER SECOND is the number of ticks per second for the

RTIMER in Contiki OS, which is 32768. Runtime is the runtime between two Energest

track points. The results are shown in Figure 4.6 for smart objects in host mode and in

Figure 4.7 for objects in router mode. As can be seen from the graph, the power remains

low at 0.4 mW when smart objects are idle, and increases proportionally to the data

rate in both host and router mode.

38 Design and Performance Study of 6LoWPAN

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(a) Idle.

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(b) 1 packet/s.

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(c) 2 packet/s.

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(d) 3 packet/s.

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(e) 4 packet/s.

 0

 2

 4

 6

 8

 10

 12

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(f) 5 packet/s.

Figure 4.8: Duty cycle in host mode

4.3.2 Duty Cycle

The second experiment is to explore radio duty cycle in each 6LoWPAN node. Similar to

recording energy consumption, we also use Energest power profile to estimate the duty

cycle of each smart object. ContikiMAC radio duty cycling mechanism is enabled in

smart objects. It aims to keep their radio transceivers off as much as possible to reach a

low power consumption, but wake up often enough to be able to receive communication

from their neighbors. Duty cycles are estimated as the percentage of Energest ticks in

radio transmission (Energest TX) and reception (Energest RX) over the total ticks of

the microcontroller in CPU and LPM modes (Energest CPU, Energest LPM) over a

period of time (10 seconds) by following Formular 4.2:

Energest TX + Energest RX

Energest CPU + Energest LPM
(4.2)

Figure 4.8 and Figure 4.9 depict duty cycles of a smart object in host mode and router

mode with 5 different data rates of 1, 2, 3, 4, and 5 packet/s. In general, duty cycle of

a smart object in host mode is lower and more stable than in router mode. Forwarding

data packets apparently requires radio to be more waken-up then only receiving data.

When smart objects are idle (or in sleep mode, but still wake up frequently enough to

maintain the connectivity), the duty cycle remains fairly low about 0.3 percent in the

host mode and 0.6 percent in the router mode. Duty cycle increases constantly over the

change of data rate from 1 to 5 packet/s.

Performance Evaluation 39

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(a) Idle.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(b) 1 packet/s.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(c) 2 packet/s.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(d) 3 packet/s.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(e) 4 packet/s.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80 90 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(f) 5 packet/s.

Figure 4.9: Duty cycle in router mode

4.3.3 Network Performance

In the third experiment, we send 100 Internet Control Message Protocol version 6

(ICMPv6, RFC4443) packets from a regular IPv6 host to different smart objects in

the 6LoWPAN and wait for the echo responses to record some network parameters such

as packet loss, round-trip time, and time-to-live to calculate packet delivery ratio (PDR),

end-to-end delay, and data transfer rate. The experiment is to send three sets of packets

to three types of 6LoWPAN nodes: 1-hop, 2-hop, and 3-hop. Each set is carried out in

5 different data rates from 1 to 5 packet/s.

4.3.3.1 Radio Signal Strength

We first carry out a supplementary experiment between two CM5000 motes to measure

Received Signal Strength (RSSI) and Link Quality Indication (LQI) between two nodes

to access the IEEE 802.15.4 signal strength in CC2420 transceivers. The CM5000 devices

are programmed to transmit and receive 802.15.4 wireless beacons. We maintain the

connection between two nodes and record RSSI and LQI over distances ranging from 3

and 21 m with steps of 3 m. Figure 4.10 shows the experiment results indicating RSSI

in a good condition within the range of 21 m and LQI remains stable at 108.

4.3.3.2 Packet Delivery Ratio

As illustrated in Figure 4.11, PDR gets very high rate of 98 percent for 1-hop nodes and

slightly drops to 86 percent when data rate reaches the highest rate among the tests

of 5 packet/s. For 2-hop and 3-hop nodes, PDR is lower through out the experiment

fluctuating from 45 to 80 percent.

40 Design and Performance Study of 6LoWPAN

-100

-80

-60

-40

-20

 0

 0 3 6 9 12 15 18 21
 0

 20

 40

 60

 80

 100

 120

 140

 160

RS
SI

 (
dB

m
)

LQ
I

Distance (m)

RSSI
LQI

Figure 4.10: Radio RSSI and LQI.

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

Pa
ck

et
 D

el
iv

er
y

Ra
tio

 (
%

)

Data Rate (packet/s)

1-hop
2-hop
3-hop

Figure 4.11: Packet Delivery Ratio.

4.3.3.3 End-to-End Delay

Figure 4.12 shows the end-to-end delay slightly increases when more packets come back

and forth between nodes, it however remains very low and not much diverse between

different types of nodes (1-hop, 2-hop, and 3-hop), ranging from 30 to 60 ms. These

figures are considered transparent to the communication.

4.3.3.4 Data Transfer Rate

Similarly, data transfer rate shows a similar pattern with 25 kbit/s, 15 kbit/s, and 10

kbit/s for 1-hop, 2-hop, and 3-hop nodes respectively (see Figure 4.13).

Performance Evaluation 41

 0

 20

 40

 60

 80

 100

 1 2 3 4 5

En
d-

to
-e

nd
 D

el
ay

 (
m

s)

Data Rate (packet/s)

1-hop
2-hop
3-hop

Figure 4.12: End-to-end Delay.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5

Tr
an

sf
er

 R
at

e
(k

bi
t/

s)

Data Rate (packet/s)

1-hop
2-hop
3-hop

Figure 4.13: Transfer rate.

4.3.4 Service Communication

When it comes to the development of IoT applications, apart from the IP network-

ing infrastructure, provisioning smart object services is an essential issue. Developers

expect APIs that they can integrate new features and create new functionalities to

their applications. Notably, CoAP is designed exclusively for smart objects to replace

HTTP and can be easily translated to HTTP for a transparent integration with the

Web while meeting the smart object requirements such as multicast support, very low

overhead, and publish/subscribe model. Since CoAP is not native to the Web protocols,

a CoAP/HTTP proxy is a common approach to provide HTTP-based APIs for CoAP

services.

42 Design and Performance Study of 6LoWPAN

DPWS is another application protocol for smart objects. It brings W3C Web services

technology into the IoT by defining specifications that provide a secure and effective

mechanism for describing, discovering, messaging, and eventing services for resource-

constrained devices. DPWS uses WSDL to describe a device, Web Services Metadata

Exchange 5 to define metadata about the device, and WS-Transfer 6 to retrieve the ser-

vice description and metadata information. The messaging exchange occurs via SOAP,

WS-Addressing 7, and the Message Transmission Optimization Mechanism/XML-Binary

Optimized Packaging 8 with SOAP-over-HTTP and SOAP-over-UDP bindings. It uses

WS-Discovery 9 for discovering a device (hosting service) and its services (hosted ser-

vices) and the Web Services Policy 10 to define a policy assertion and indicate the device

compliance with DPWS. Secure Web services, dynamic discovery, and eventing features

are the main advantages of DPWS for event-driven IoT applications.

We carry out the fourth experiment on message overhead and latency of service

communication between a Web application and smart objects using CoAP, DPWS, and

HTTP protocols (via CoAP/HTTP proxy). We use Java, CoAP Californium library

[57], and WS4D-JMEDS [58] to implement the Web application. Figure 4.14 presents

the request/response message sizes and latency of CoAP, DPWS, and HTTP transac-

tions. CoAP messages apparently smaller than HTTP messages due to the the use of

simplified headers compared to HTTP headers though the difference is at hundred kb.

DPWS, meanwhile, shows a significant overhead compared to the other two protocols.

The round-trip time of CoAP and HTTP communications are not much different and

considered to be transparent to user’s experience. DPWS round-trip time is still low

but much greater than CoAP and around twice more than of HTTP.

4.4 Discussion and Lessons Learned

4.4.1 Energy Consumption

Based on the average capacity of an AA battery is 2500 mAh and nominal voltage is

1.5 V, we can estimate the battery life for smart objects to maintain the connectivity

(using duty cycling) as following Formula 4.3

2500mAh× 1.5V × 2

0.37mW × 24h× 365days
= 2.304years (4.3)

where 0.37mW is the average power of smart objects in host mode when idle.

5www.w3.org/TR/ws-metadata-exchange/
6www.w3.org/Submission/WS-Transfer/
7www.w3.org/Submission/ws-addressing/
8www.w3.org/TR/soap12-mtom/
9http://schemas.xmlsoap.org/ws/2005/04/discovery/

10www.w3.org/Submission/WS-Policy/

Discussion and Lessons Learned 43

 0

 100

 200

 300

 400

 500

 600

 700

CoAP DPWS HTTP
 0

 100

 200

 300

 400

 500

M
es

sa
ge

 S
iz

e
(b

yt
e)

RT
T

(m
s)

Request
Response

RTT

Figure 4.14: CoAP, DPWS, and HTTP message overhead and latency
.

2.3 years can be considered to be the very long for just only two AA batteries to

maintain the connectivity. Similarly, Table 4.1 illustrates the estimated battery life of

smart objects in some cases: idle (duty cycling) and continuously sending packets with

the data rate from 1 to 5 packet/s in two modes (host and router). With the average

duty cycle remains lower than 0.5 percent when objects are idle, the connectivity of

6LoWPANs is still maintained meanwhile energy consumption is kept minimal. Even

in case of continuously sending data with very high data rate of 5 packet/s, two AA

batteries can provide enough power for about 2.5 months.

Table 4.1: Battery powered smart object lifetime for IP connectivity.

Data rate Lifetime (year)

(packet/s) Host Router

Idle 2.303757013 2.64475527

1 0.7060081564 0.442350067

2 0.4414037119 0.271677592

3 0.3000770222 0.146784071

4 0.2581720706 0.107174921

5 0.209452065 0.107788434

4.4.2 Contiki OS 3.x and Network Performance

In 1-hop communication, the PDR show very high value of 98 percent, almost at theo-

retical PDR of IEEE 802.15.4 radio. With more than 1-hop communication, there’s an

obvious trend of much lower PDR. This is identified as the result of the RPL routing

protocol. More investigation is expected to figure out the cause of the packet loss. The

data transfer rate at around 25 kbit/s is considered low-rate due to the sacrifice of hard-

44 Design and Performance Study of 6LoWPAN

ware for the sake of energy consumption. Many IoT devices such as home appliances

and sensor nodes only transfer control data with few bytes then this rate is adequate

for most IoT applications containing relatively simple service communication. When

considering new application ideas, system designers are expected to take into account

the transfer rate to make a right choice for the network deployment.

The operation of uIP networking stacks in Contiki OS 3.x appears reliable in our

intensive experiment with packets sending for a period of 24 hours. Compared to pre-

vious releases, our experience with Contiki OS 3.x indicates that IP performance has

been improved considerably. Besides, there are several useful libraries with Contiki OS

such as Erbium CoAP, Web server, file system, and Shell. Contiki OS programming

experience is very effective with protothreads for multi-threading and event-driven ap-

plications. Our experience suggests Contiki OS is very robust and can be the universal

operating system for smart objects.

4.4.3 Current IPv4 Infrastructure

Even though IPv6 is an ideal addressing space for future Internet but the shift to IPv6

is still happening at a slow pace accounting for only 5 percent of the worldwide Internet

traffic, according to Cisco 6lab 11. Smart objects have just arrived but already bear a full

support of IPv6 rather than IPv4 (there is apparently no IPv4 adaptation layer for IEEE

802.15.4 alike 6LoWPAN). A backward integration appears to be a temporary problem

during the transition time from IPv4 to IPv6. Some basic transition mechanisms between

IPv4 and IPv6 systems have been proposed and applied throughout the Internet (RFC

4213). However, the use of such techniques for smart objects and 6LoWPAN may costly

and double the effort to use IP technologies for smart objects. Furthermore, in contrast

to conventional computer networks on the Internet providing several services such as

e-mail, telephony, and Web, smart object services tend to use in ubiquitous applications

that require application level interface rather than raw IP services. Therefore, proxy can

be a fair solution on current Internet infrastructure that doesn’t change the backbone

of the network and provides a seamless interface for IoT applications.

4.4.4 Web Services

There are several candidate protocol for application layer in IoT including HTTP, CoAP,

DPWS, XMPP, MQTT, and AMQP. Among which, DPWS and CoAP are mostly close

to common Web architecture aiming to bring functionalities of smart objects (data and

events) to the Web in the form of services. By following Web design principles (REST,

SOA), these services can acquire open Web standards to enable them to understand the

Web languages and protocols, denoted as smart object services.

11http://6lab.cisco.com/

Discussion and Lessons Learned 45

CoAP follows REST architectural style, compromising a minimal subset of REST

along with mechanisms of resource discovery, subscription/notification, and security

measures for smart objects. It is similar to HTTP and can be easily translated to

HTTP for a transparent integration with the Web, while having very low overhead.

It also supports multicast and publish/subscribe model. The CoAP protocol provides

a technique for discovering and advertising resource descriptions via CoAP endpoints

using CoRE Link Format (RFC 6690) of discoverable resources. As standardized by

IETF, CoAP is showing suitable for smart objects as well as getting attention from

the community. There are many CoAP implementations available not only for smart

objects (e.g., Erbium 12 for Contiki OS, libcoap for TinyOS, and SMCP 13 for embedded

systems) but also for powerful servers (e.g., Java Californium 14), Web browser (e.g.,

Copper 15), and mobile platform (e.g., nCoAP). The Erbium implementation, according

to our experiments, exposes very low overhead and supports well multicast as well as

publish/subscribe model. This protocol is showing an excellent choice to meet event-

driven requirements from IoT application. A secure mechanism for CoAP transaction

is expected to explored more to make it widely usable in real-life applications.

DPWS, on the other hand, is the lightweight version of W3C Web Service [7] in

addition to new features such dynamic discovery and event notification. Even though

DPWS use XML-based SOAP envelopes (something considered bulky), our experiment

shows that it can be implemented on top of IP protocol stack to (even) highly resource-

constrained smart object such as sensor nodes (thanks to uDPWS 16 and Contiki OS).

The request and response messages are relatively large compared to HTTP or CoAP but

still well operate on very limited node. Besides, in smart objects with higher computing

power and memory such as home appliances and office equipments, DPWS can perform

in its best to enable secure translations between smart objects and applications.

4.4.5 Deployment

From the experiment results, we look into some deployment issues such as how large

6LoWPAN coverage can be in typical premises and how difficult the deployment can be

when it comes to mass production.

IEEE 802.15.4 Radio Range

Since the radio signal is considerably strong at 15 m in reality, the range of the network

is considered sufficient to several homes and buildings. 1-hop 6LoWPANs which only

12http://people.inf.ethz.ch/mkovatsc/erbium.php
13https://github.com/darconeous/smcp/
14http://people.inf.ethz.ch/mkovatsc/californium.php
15http://people.inf.ethz.ch/mkovatsc/copper.php
16http://ws4d.org/udpws/

46 Design and Performance Study of 6LoWPAN

consist of smart objects in the radio range of the edge router can cover the area of 707

m2 in good radio signal. That area can comfortably cover typical 2-storey houses. Table

4.2 shows more details about the estimated ranges in different facilities that 6LoWPAN

can give healthy radio coverages. In most cases of average houses and offices, IEEE

802.15.4 can comfortably maintain a stable connectivity.

Table 4.2: IEEE 802.15.4 Radio Range.

Node Type Range Area Typical facilities
(m) (m2)

1-hop 15 707 large, two-storey houses

2-hop 30 2827 medium building floors

3-hop 45 6362 large building floors

Installation

IoT application thus far is frequently considered high cost and difficulty to deployment.

However, with the presented design, the deployment of 6LoWPAN such as for home and

building networks appears to be easy and intuitive, in the same way to conventional IP

networks. The edge router hardware and software can be developed very fast and at

low-cost using current advances in micro-electronics and radios (equivalent to a single

computer board plus a 802.15.4 radio module). Besides, services of smart objects can

seamlessly reside on the Web by implementing application protocols such as CoAP,

DPWS, and protocol proxy for HTTP. By that, the development model from developers’

point of view virtually remains the same, which will stimulate more the adoption of

IoT applications. Furthermore, the installation of smart objects in 6LoWPAN is zero-

configuration, which doesn’t require any additional commissioning device (e.g., a laptop

computer). In other words, a smart object can obtain an address and join the 6LoWPAN

on its own, without human intervention.

4.5 Summary

We have presented our design of 6LoWPANs using open standards with a real-life im-

plementation for home and building networks. The present study on networking per-

formance of 6LoWPANs exhibits several positive results on the deployment and on the

perspective of using IP protocols for smart objects for end-to-end communication with

services/applications on the Internet. This study is the fundamental for us to develop

service provisioning mechanisms presented in the next chapter to power the IoT appli-

cations on Web. They also provide essential data to set up simulation environments in

Contiki OS Cooja and our own DPWSim simulators.

Chapter 5
Semantic Service Provisioning

Contents

5.1 Provisioning Issues . 48

5.2 Service Provisioning . 50

5.2.1 Service Discovery . 50

5.2.2 Scheduling . 52

5.2.3 Semantic Annotation . 54

5.2.4 Authorization with OAuth 2.0 . 56

5.2.5 URI Mapping . 57

5.2.6 Web API Generation . 59

5.2.7 Resource Management . 60

5.3 In-network Implementation with DPWS 60

5.3.1 Devices Profile for Web Services . 61

5.3.2 Use case . 62

5.3.3 Global Dynamic Discovery . 62

5.3.4 Publish/subscribe Eventing . 63

5.3.5 WSDL Caching . 63

5.4 Performance Evaluation . 64

5.4.1 Transparency . 65

5.4.2 Scheduling: Simultaneous Requests Handling 67

5.4.3 Scheduling: Energy Consumption . 67

5.4.4 Semantic Annotation . 69

5.4.5 REST Proxy Message Overhead and Latency 69

5.5 Summary . 71

47

48 Semantic Service Provisioning

We in the previous Chapter 4 have successfully designed and implemented 6LoW-

PANs for smart objects. Experiment results show that even highly-constrained objects

can communicate effectively (energy, round-trip time, messages, etc). with IP proto-

cols. 6EdR routers provide a transparent traffic between smart objects and regular

IPv6 nodes, and to the Internet. The 6LoWPAN eliminates the protocol translation

that is complex to design, manage, and deploy and its network fragmentation leads to

non-efficient networks because of the inconsistent routing, QoS, transport, and network

recovery. End-to-end IP architecture is considered suitable and efficient for scalable

networks of large numbers of communicating devices such as the IoT. The deployment

of 6LoWPANs is relatively intuitive and easy to carry out and virtually in the same way

as installing regular IP networks. Besides, application protocols such as DPWS and

CoAP enable the use of smart objects services in IoT applications. However, for IoT

applications on Web to use these services in practical and scalable scenarios, there still

exist several problems that need to be addressed, as presented in following Section 5.1.

5.1 Provisioning Issues

Service Discovery

An important issue for developing robust IoT applications is that the applications should

be resilient to changes that might occur over time in smart objects (e.g., availability,

mobility, and service description) without or with limited need for any external human

intervention. Suitable mechanisms for service/resource discovery have been defined.

CoAP defines a procedure used by a client to learn about the endpoints exposed by

a CoAP server. A service is discovered by a client by learning the well-known Uni-

form Resource Identifier (URI) /.well-known/core (RFC 5785) that contains URIs or

links of available services in CoRE Link Format (RFC 6690). CoAP, however, does not

specify how a node joining the network for the first time, which can be extended by us-

ing multicast communications (RFC 7390). DPWS uses WS-Discovery mechanism with

multicasting that does not require any central service registry such as Universal Descrip-

tion, Discovery and Integration (UDDI) for Web services. In both cases (DPWS and

CoAP), multicast service/resource discovery is applicable when a client needs to locate

a service within a local network scope supporting IP multicast. This multicast discovery

mechanism operates only within an IP multicast domain and does not scale to larger

networks that do not support end-to-end multicast such as the Internet. Centralized

approaches could be a solution for service discovery. However, for instance, the resource

discovery of the CoAP protocol, suffers from scalability and availability limitations and

is prone to attacks such as denial of service (DoS) [59].

Provisioning Issues 49

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

Se
rv

ic
e

De
la

y
(s

)

of Simultaneous Requests

Figure 5.1: Comparison of service delay when multiple simultaneous requests are sent
to one smart object.

Simultaneous Requests

The 6LoWPAN design enables smart objects to be accessed directly from Internet us-

ing native IP protocols without any protocol translation support. However, smart ob-

jects only support a very small number of simultaneous requests due to their resource-

constrained nature (memory, processing power, and communication bandwidth) and this

issue is also related to the implementation of the networking stacks. Although the use

of constrained operating systems with a full IoT protocol stack (e.g., Contiki OS) can

manage these requests, it can cause the long delay in service response. The delay in-

creases significantly when more requests come to smart objects as can be seen in Figure

5.1. A single service request delays at very short time of 50 ms; two or more requests

take the smart object several seconds to response; 5 requests create 5 seconds delay and

the figure soars to 35 seconds in case of 20 simultaneous requests.

Service Authorization

When making smart objects available for services on the Internet, beside assuring an

interoperable deployment model (i.e., using IP protocols and Web APIs), security mea-

sures have to be taken into account that smart objects cannot be hijacked or hacked,

making sure access to the smart object is still under controlled by the physical owners.

The challenge with service provisioning of smart objects for IoT applications on Web

is that the owner of smart objects must give out the access to the applications mean-

while maintaining the secure control of smart objects. If a service provisioning server

provides a smart object API to the public or just only to a set of registered third-party

developers, it might be possible for developers to misuse the smart objects.

50 SemanticServiceProvisioning

Figure5.2:Semanticserviceprovisioningarchitecture.

ThischapterpresentstheServiceProvisioningsubsystemoftheproposedarchitec-

ture(seeFigure3.4)toaddressaforementionedproblemswhilemeetingrequirements

ofserviceprovisioningfor6LoWPAN(openstandards,interoperability,lowenergycon-

sumption,andreliability).Inaddition,weproposenewschemesonotherissuesrelated

toprovisioningincludingSemanticAnnotation,URIMapping,andAPIRepresentation.

Thefollowingsectionelaboratefunctionalblocksandrelatedalgorithmsandmechanisms

forasecure,scalable,andreliableserviceprovisioningtopowerIoTapplicationsonWeb.

5.2 ServiceProvisioning

Figure5.2showsninefunctionalblocksinourproposedserviceprovisioningsystemto

handlefivemainissues:servicediscovery,semanticannotation,simultaneousrequests,

authorization,and WebAPIgeneration.Inwhich,Resource Managementprovidesa

userinterfaceforresources(6LoWPANandsmartobjects)managementinprovisioning

networkaswellasgrantingauthorizationforIoTapplicationsonWebviaAuthorization

block.SchedulingcooperateswithRequestHandlingtocoordinatemultiplesimultane-

ousrequeststoensurethequalityofservice.ServiceDiscoveryhandlesnativediscovery

protocolsin6LoWPANandfeedthemtoSemanticAnnotationandtotheWebAPIGen-

eration,whichinturncallURIMappingprocesstogenerateAPIendpoints.Triplestore

providesthesemanticstorageforprovisioningservices.

5.2.1 ServiceDiscovery

Thisfunctionblockresidesatthelowestlevelofprovisioningfunctionalityonlocal

networksidetodirectlyinteractwithdevices.Itisrequiredtodiscoveravailableservices

tocarryouttheprovisioning. Webservicesareusuallydiscoveredbyqueryingregistries

usinginterfacessuchasUniversalDescriptionDiscoveryandIntegration(UDDI). While

itcanbeaconvenientwaytodiscoverservices,itscentralizednaturecanleadtomany

Service Provisioning 51

issues such as fault tolerance, performance, and scalability. In DPWS, multicasting-

based WS-Discovery does not require any central service registry. When an application

tries to locate a device in a network, it sends a UDP multicast message (using the

SOAP-over-UDP binding) carrying a SOAP envelope containing a WS-Discovery Probe

message with the search criteria, e.g., the name of the device. All the devices in the

network (local subnet) that match the search criteria will respond with a unicast WS-

Discovery Probe Match message (also using the SOAP-over-UDP binding). To achieve

resource discovery, CoAP servers provide a resource description available via a well-

known URI /.well-known/core (RFC 5785). This description is then accessed with a

GET request on the URI.

1 2 .05 Content

2 </. wel l−known/ core >; c t =40,

3 </c o n t r o l / led>

4 t i t l e =”LED Red , PUT mode=on | o f f ” ; r t=”c o n t r o l ”

5 </s t a t u s /temp>

6 t i t l e =”Temperature ” ; r t=”s t a t u s ”

Listing 5.1: CoRE Link Format.

1 <?xml ve r s i on =”1.0” encoding=”UTF−8”?>

2 <s12 : Envelope

3 xmlns : s12=”http ://www. w3 . org /2003/05/ soap−enve lope ” xmlns : wsa=”http ://www

. w3 . org /2005/08/ addre s s ing ”

4 xmlns : wsd=”http :// docs . oa s i s−open . org /ws−dd/ns/ d i s cove ry /2009/01”>

5 <s12 : Header>

6 <wsa : Action>http :// docs . oa s i s−open . org /ws−dd/ns/ d i s cove ry /2009/01/ Probe

7 </wsa : Action>

8 <wsa : MessageID>urn : uuid : 3 ac5f820−d47d−11e3−80c0−358d7a9bbe90

9 </wsa : MessageID>

10 <wsa : To>urn : docs−oas i s−open−org : ws−dd : ns : d i s cove ry :2009:01 </ wsa : To>

11 </s12 : Header>

12 <s12 : Body>

13 <wsd : Probe />

14 </s12 : Body>

15 </s12 : Envelope>

Listing 5.2: WS-Discovery Probe message.

The Service Discovery provides the same interface to query services regardless of

the protocol (e.g., CoAP, DPWS, or XMPP) used in the 6LoWPAN. It is in the form

of plugin, when we need to incorporate new protocol we can add in to. This func-

tion also plays a role as handling several service discovery functionalities happening at

multicasting support provisioning network and making some functionalities possible in

global scenario such as dynamic service discovery with DPWS. The approach is to ap-

ply URI mapping and API representation directly on underlying discovery mechanism

52 Semantic Service Provisioning

of each protocol. In addition, we use a repository to maintain the list of active devices

by carrying out the discovery process periodically or when the traffic is detected low

in the 6LoWPAN. For example, a smart object has a temperature sensor and an LED

indicator to display the status of room temperature. A client can discover these services

by sending a request GET /.well-known/core to the smart object, which responses with

the content shown in Listing 5.1. This task can be done with the service provisioning

service by using the Web API presented in Table 5.1. Similarly, instead of using complex

WS-Discovery Probe message in Listing 5.2 for DPWS services, we can discover services

of the smart object by the same provisioning APIs. From the content of the response

message, two services are discovered and provisioned in two Web APIs (see Table 5.2).

Table 5.1: Discovery API

GET /[uri]/discovery
Search for a smart object with criteria

Arguments N/A
Example GET http://157.159.103.50/[aaaa::212:7400:13cc:3693]/discovery

157.159.103.50 is the provisioning server IP address, 8080 is the port number.
aaaa::212:7400:13cc:3693 is smart object IP address

Table 5.2: Discovered services: Web APIs

PUT /[uri]/control/led
Switch on/off LED indicator in the smart object

Arguments mode=on/off
Example PUT http://157.159.103.50/[aaaa::212:7400:13cc:3693]/control/led?mode=on

GET /[uri]/status/light
Get the current temperature

Arguments N/A
Example GET http://157.159.103.50/[aaaa::212:7400:13cc:3693]/temp

157.159.103.50 is the provisioning server IP address, 8080 is the port number.
aaaa::212:7400:13cc:3693 is smart object IP address

5.2.2 Scheduling

Limited resources in smart objects result in a problem of supporting simultaneous re-

quests from multiple IoT applications on Web. Multiple requests can happen frequently

for it is a typical case in the interaction between applications and smart objects when

they get connected and become an integral part of the Internet. Many smart objects such

as sensor nodes only support a very small number of simultaneous connections result-

ing in an ineffective operation of several real-time applications. We solve this problem

by using a scheduling algorithm shown in Listing5.3). The algorithm consists of four

processes: RequestHandler, Scheduler, QuantumAssertion, and ResponseObserver. Two

requests are considered to be simultaneous if they come one after another in very short

time (less than a threshold denoted by quantum time).

Service Provisioning 53

1 PROCESS RequestHandler

2 BEGIN

3 I n i t i a t e requestQueue

4 Keep track o f lastReqestTime

5 I f (requestTime i s with in lastRequestTime bound)

6 Begin

7 Add new reques t to requestQueue

8 Act ivate the Schedul ing proce s s i f i t i s not a c t i v e

9 End

10 END

11

12 PROCESS Scheduler

13 BEGIN

14 Every quantumTime

15 Begin

16 I f requestQueue i s empty

17 Stop

18 Else

19 Remove reque s t from requestQueue

20 Add reques t to sentQueue

21 Send reques t

22 End

23 END

24

25 PROCESS QuantumAssertion

26 BEGIN

27 I f sentQueue i s not empty and top o f queue i s overt ime

28 Adjust quantumTime

29 Else

30 Reset quantumTime

31 END

32

33 PROCESS ResponseObserver

34 BEGIN

35 I f the re i s a re sponse

36 Remove from sentQueue

37 Get c l i e n t id

38 Forward to c l i e n t

39 END

Listing 5.3: Scheduling algorithm.

The RequestHandling process receives coming HTTP requests via the provisioned

Web API and check if each request arrives in a reasonable interval. If a request arrives

too fast (less than a quantum time after the nearest recored request), it will be added to a

request queue (based on a queue data structure [60]). The Scheduling process keeps track

of the request queue and it is activated when there are waiting requests in the queue.

54 Semantic Service Provisioning

When the Scheduling process starts, it checks the request queue again, removes the

head request (first in the queue), adds this request to another queue called sent queue,

and sends the request accordingly to the target smart object. The QuantumAssertion

keeps track of the sent queue to see if a request has waited for too long to adjust the

quantum time. The ResponseObserver process forwards the received response messages

from smart objects to clients and updates the sent queue.

5.2.3 Semantic Annotation

1 <rd f :RDF

2 xmlns : rd f=”http ://www. w3 . org /1999/02/22− rdf−syntax−ns#”

3 xmlns=”http ://www. i t−sudpar i s . eu/ senso r#”

4 xmlns : ns0=”http ://www. w3 . org /2000/01/ rdf−schema#” >

5 xmlns : ns1=”http :// pur1 . oc1c . org /NET/ ssnx / ssn#”

6 <rd f : Des c r ip t i on rd f : about=”http ://www. i t−sudpar i s . eu/ senso r#Temp5”>

7 <ns0 : type rd f : r e s ou r c e=”http :// pur1 . oc1c . org /NET/ ssnx / ssn#Sensor”/>

8 <ns1 : observedProperty>Temperature</ns1 : observedProperty>

9 <ns1 : hasValue >19.2</ns1 : hasValue>

10 </rd f : Descr ipt ion>

11 </rd f :RDF>

Listing 5.4: Temperature sensor smart object RDF/XML format.

Tim Berners-Lee coined the term Semantic Web as an extension of the current Web

[3] in which data are consumable and understandable to machines. It brings a new

concept of representing data in the meaningful graph database model to improve the

communication between human and machine. That means Semantic Web can achieve

a certain level of automation on Web [61]. When the IoT paradigm arrives and it is

now changing the Web, the Semantic Web concept even fits more to its architecture

since smart objects need intelligence and automation in different level to fulfill their

tasks. However, similar to other extensions of Internet and Web protocols originally

designed for computers to smart objects such as CoAP to HTTP or DPWS to SOAP,

straightforward adoption of semantic annotation to smart objects is impractical. It is

because of the complexity of the Semantic Web model with the involvement of ontology,

triple, and data presentation following specific requirements.

1 @pref ix : <http ://www. i t−sudpar i s . eu/ senso r#> .

2 @pref ix rd f : <http ://www. w3 . org /1999/02/22− rdf−syntax−ns#> .

3 @pref ix ns0 : <http ://www. w3 . org /2000/01/ rdf−schema#> .

4 @pref ix ns1 : <http :// pur1 . oc1c . org /NET/ ssnx / ssn#> .

5 <http ://www. i t−sudpar i s . eu/ senso r#Temp5>

6 ns0 : type ns1 : Sensor ;

7 ns1 : hasValue ”19 .2” ;

8 ns1 : observedProperty ”Temperature” .

Listing 5.5: Temperature sensor smart object N3 format.

Service Provisioning 55

Listing 5.4, for example, shows an example of RDF representation of temperature

data from a sensor of a smart object. It uses 506 bytes to semantically represent the

data from the smart object with temperature sensing value is 19.2 degree. Even with

Notation3 (N3) format [62], a textual syntax alternative to RDF, the size of data is

still rather large (see Listing 5.5). The reason is that the semantic annotation for smart

object involves a great deal of linking information such as namespace and RDF schema.

The size of the semantic data in more complex situation may increase and surpass the

maximum buffer size that is provided for resource responses, which must be respected

due to the limited IP buffer such as the maximum buffer size for CoAP blocks is typically

1024 bytes.

Literature approaches use third-party semantic services/servers to capture and re-

publish these data. This can solve the problem of limited size for semantic annotation

but results in many tradeoffs that prevent the adoption of this method. For example,

third-party server means the communication stream is broken and can be interfered or

the communication is slowed down and semantic server becomes a bottleneck in the

communication between applications and smart objects. The ideal way is to have smart

objects express semantically expressive based on IP protocols. Our approach is very

close to this ideal method in which we unburden most of semantic annotation informa-

tion from smart objects to the provisioning layer, keeping only core data for transmitting

while provisioned services still can be fully annotated. We use following scheme:

1. Service providers provide a domain ontology for each set of smart objects. On-

tology for each domain is developed independently by a reliable and consensus

decision making process, e.g., Semantic Sensor Network Ontology 1.

2. Each service in smart object is represented in N3 format without default names-

paces, ontolgy, and application URIs.

3. Ontology and application URI are added accordingly in service provisioning layer

based on the information from the service provider for ontology and provisioning

server for application URI.

The above temperature sensing data can then be provided by smart object by the

format provided in Listing 5.6 while the actual semantic annotation data can be reached

from applications are still the same as shown in Listing 5.5. The Internet media type

passing to Web API calls is denoted as text/n3.

1 : Temp5

2 a ns : Sensor ;

3 ns : hasValue ”19 .2” ;

4 ns : observedProperty ”Temperature” .

Listing 5.6: Temperature sensor smart object N3 format.

1http://purl.oclc.org/NET/ssnx/ssn

56 Semantic Service Provisioning

These semantic data queried from smart objects are store in a Triplestore. A triple-

store is the storage for semantic data, in this case, referring to the annotation of smart

object data and functionalities. A triple is a data entity composed of [subject, predicate,

object], there are three triples in the above data and one more triple about the time

stamp is added as shown in following Listing 5.7.

1 [<http ://www. i t−sudpar i s . eu/ senso r\#Temp5>

2 <http :// pur1 . oc1c . org /NET/ ssnx / ssn\#type>

3 <http :// pur1 . oc1c . org /NET/ ssnx / ssn\#Sensor >]

4 [<http ://www. i t−sudpar i s . eu/ senso r\#Temp5>

5 <http :// pur1 . oc1c . org /NET/ ssnx / ssn\#hasValue> ” 1 9 . 2 ”]

6 [<http ://www. i t−sudpar i s . eu/ senso r\#Temp5>

7 <http :// pur1 . oc1c . org /NET/ ssnx / ssn\#observedProperty> ”Temperature ”]

8 [<http ://www. i t−sudpar i s . eu/ senso r\#Temp5>

9 <http :// pur1 . oc1c . org /NET/ ssnx / ssn\#startTime> ”2014 :04 :24 1 4 : 2 0 ”]

Listing 5.7: Four triples from temperature sensor.

Triplestore can be realized by serialization (i.e., using file system) or by third-party

solutions such as OpenLink Virtuoso 2, 3Store 3, and Apache Jena 4. All the data in

triplestore are associated with a domain ontology indicated by the service provider of

the smart objects. The ontology is either available on the Web or newly developed by

the service provider depending on the field of the applications.

5.2.4 Authorization with OAuth 2.0

OAuth 2.0 (RFC 6749) is an authorization framework that enables applications to obtain

limited access to resources on the Web on behalf of the resource owner. It has been widely

used in many services such as Google, Facebook, and GitHub. It works by delegating

user authentication to the service that hosts the user account, and authorizing third-

party applications to access the user account. OAuth 2.0 provides authorization flows

for Web and desktop applications and mobile devices.

OAuth 2.0 fits the security model of the IoT applications on Web where the resource

(smart object) owner can authorize an application to access their smart object functions

without having full access on handling the smart object such as terminating its operation.

The applications have limited accesses to the smart objects according to the scope of

the authorization granted (e.g. read only or update) whilst they still can communicate

to the smart objects once having been authorized. We therefore adopt OAuth 2.0 as

the core of authentication and authorization framework for our proposed provisioning

architecture.

2https://github.com/openlink/virtuoso-opensource
3http://threestore.sourceforge.net
4http://openjena.org

Service Provisioning 57

Authorization functional block in our proposed service provisioning architecture

refers to an OAuth 2.0 authorization provider functionality, which authenticates the

identity of the user, in this case locally within the provisioning network to strengthen

the security. It issues access tokens to the interested applications following the confirma-

tion from the user. Any IoT application that wants to access the smart object services

must be authorized by the user, and the authorization must be validated by the appro-

priate Web API endpoints. There are three authorization endpoints in the our proposed

service provisioning architecture for this process: Authorization URI (/authorize) is the

URI on which users grant the authorization to the interested application; Token URI

(/token) is the URI called by client applications when they want to exchange a code for

an access token, or a refresh token for a new access token. API URI (/api) is the base

URI on which provisioned Web API endpoints are mounted. These Web API endpoints

enable a secure communication between IoT applications on Web and 6LoWPAN smart

objects. This is done in the three-step mechanism illustrated in the Figure 5.3.

1. Step 1: User or the owner of the smart objects gets access to the Resource Man-

agement and then goes to the Applications section and looks for the appropriate

application to authorize. The user selects the application and click the authorize

button to grant the application with Client ID and Redirect URI provided by

the application. The Authorization then redirects to the Redirect URI with the

authorization code in the URI fragment to transfer it to the application.

2. Step 2: The application requests an access token from the API, by passing the

authorization code along with authentication details, including the client secret, to

the API token endpoint. If the authorization is valid, the API will send a response

containing the access token (and optionally, a refresh token) to the application.

3. Step 3: Now the application is authorized! It may use the token to carry out

transactions with real services from provisioning server via the service API, limited

to the scope of the access, until the token is expired or revoked.

5.2.5 URI Mapping

We propose two schemes for mapping service URIs to provisioning URIs, which are in-

tegral parts of the Web API endpoints. The first scheme is based on the resolved host-

names of smart objects in the network and the second scheme uses IP addresses of smart

objects. A thermostat, for example, configured at IP address aaaa::212:7400:13cc:3693,

has a CoAP service to get the current room temperature binding to its IP address, ser-

vice port, and service extension: coap://[aaaa::212:7400:13cc:3693]:5683/status/temp.

The service provisioning service is at address 157.159.103.50. Then the service URI is

mapped to either one of the following provisioning URIs in Table 5.3:

58 SemanticServiceProvisioning

Figure5.3:3-stepauthorizationprocessforIoTapplicationson Web.

Thefirstmethodisstraightforwardsinceitdoesn’trequireanycheckforaddress

duplicationfortheIPaddressisalreadyuniqueinthenetworksoitisagoodcandidate

forsmartobjectidentity.Thesecondmethodrequirestheprovisioningservertocheck

thehostnameduplication.Itcanbesuitableforsmallhomesoroffices.

DPWSuses WS-Addressingtoassignauniqueidentificationforeachsmartobject

(endpointaddress),independentfromtransportspecificaddress.Thisuniqueidentifi-

cationisusedwithaseriesofmessageexchangesProbe/ProbeMatch,Resolve/Resolve-

Matchtogetatransportaddressandthenanotherseriesofmessagesaresentbackand

forthtoinvokeanoperation. WedefineamappingbetweenapairofDPWSendpoint/-

transportaddressesandasingleURI,andthenweusethecorrespondingoperation

nameforeachserviceastheextensionoftheURI.Forexample,theaforementioned

thermostathasagetTemp()operationimplementedinDPWSwiththepairofend-

pointandtransportaddressesofurn:uuid:46932240-d504-11e3-bf6a-6eabe38b6788and

[aaaa::212:7400:13cc:3693]:4567/thermostat.Table5.4showsthemappingofthesetwo

addressesalongwiththeoperationname(temp)toasingleURI.Themappingisunique

foreachsmartobjectservice,anddataarestoredinthesmartobjectrepositoryofthe

proxy. Therepositoryisalsoupdatedwhenthereisachangeinsmartobjectstatus

and/orperiodicallywhentheproxyrunsitsroutinetocheckalltheactivesmartobjects.

Table5.3:URImappingwithCoAP

ServiceURI coap://[aaaa::212:7400:13cc:3693]:5683/temp
Provisioningserver 157.159.103.50

Scheme1URI http://157.159.103.50/thermostat/temp
Scheme2URI http://157.159.103.50/[aaaa::212:7400:13cc:3693]/temp

Service Provisioning 59

Table 5.4: Base URI mapping with DPWS

Endpoint address urn:uuid:46932240-d504-11e3-bf6a-6eabe38b6788
Transport address http://[aaaa::212:7400:13cc:3693]:4567/thermostat
Service getTemp()
Provisioning server 157.159.103.50

Scheme 1 URI http://157.159.103.50/thermostat/temp
Scheme 2 URI http://157.159.103.50/[aaaa::212:7400:13cc:3693]/temp

5.2.6 Web API Generation

Web API Generator is in charge of generating a set of Web API associated to each smart

object service. The process is based on above URI mapping scheme. The API consists of

endpoints for discovery, subscription, and service calls in Representational State Transfer

(REST) architectural style [19]. To generate these RESTful Web APIs, we can extract

directly from CoAP URI as CoAP and HTTP basically use the same REST concept.

With DPWS, we propose a design constraint on the DPWS implementation for smart

objects. It is based on the fact that most smart object services provide relatively simple

operations compared to normal Web services with complex input/output data structure.

Our proposed constraint follows a simplified CRUD model (“create”, “read”, “update”,

“delete”) to map between these services and HTTP methods: DPWS Operation Prefix

- CRUD Action - HTTP Method. Specifically, four CRUD actions are applied to map

DPWS operations to HTTP methods as in Table 5.5

Table 5.5: CRUD operation mapping scheme

Prefix CRUD Action HTTP Verb

Get- READ GET
Set- UPDATE PUT
Add- CREATE POST
Remove- DELETE DELETE

Web APIs are the core of the development of applications on Web these days pro-

viding interfaces for developers to develop applications on Web. Web APIs are specifi-

cations that define how to interact with software components, particularly, allow access

to remote Web resources via a communication network. The benefits for developers

in adopting Web APIs are: easy to enrich functionality, simple and quick to integra-

tion, and leverage brand strength of established partners. Even in the new platform of

smartphone applications, we can already see that the use of Web APIs is prevalent. Our

provisioning Web API consists of API endpoints represented in the following format (see

Table 5.6), which is used consistently in this dissertation:

60 SemanticServiceProvisioning

Table5.6:APIendpointsformat

[HTTP-VERB][URIEXTENSION]
[DESCRIPTION]

Arguments [ARGUMENTS]
Example [EXAMPLE]

Figure5.4:ResourceManagement WebUIinThingsGate. ManageDevicefunction/-
menushowsalistofdiscovereddevicesinthe6LoWPANofhomenetwork. Usercan
querydetailedinformationoraddsocialdatatoeachdevicebyInfoorSocializehy-
perlinksassociatedtoeachsmartobject. Applicationsfunction/menuhelpusersto
authorizeIoTapplicationson Webtouseresourcesinthe6LoWPAN.

5.2.7 Resource Management

Resource Managementfunctionalblockisinchargeofmonitoringandmanagingthe

6LoWPANanditssmartobjects.Itprovidesinformationaboutthenetworkstatussuch

asthenumberofnodes,networktopology,androutinginformation.Italsoprovides

aninterfaceforgrantingauthorizationtoIoTapplicationson Webtogetaccessto

theprovisioned WebAPI.Resource Managementauthenticatesusersbycredentials

(username/password)viaa WebUserInterface(WebUI).Figure5.4showsthe WebUI

oftheResource ManagementimplementedwithinThingsGateprovisioningserverfor

theSocialIoTapplicationpresentedinChapter6.

5.3 In-networkImplementationwithDPWS

Thissectionintroducesanin-networkimplementationoftheproposedarchitecturefor

DPWSprotocol. TheimplementationisintheformofaRESTproxytoextendthe

DPWSstandardtobetterintegrateitintotheIoTapplicationson Webwhilemaintain-

ingitsadvantagesofdynamicdiscoveryandeventingmechanisms.

In-network Implementation with DPWS 61

5.3.1 Devices Profile for Web Services

DPWS is based on Web Service Description Language (WSDL) and SOAP to describe

and communicate device services, but it does not require any central service registry

such as Universal Description, Discovery and Integration (UDDI) for service discovery.

Instead, it relies on SOAP-over-UDP binding and UDP multicast to dynamically discover

device services. DPWS offers a publish/subscribe eventing mechanism, WS-Eventing ,

for clients to subscribe for device events, e.g., a device switch is on/off or sensing when

temperature reaches a predefined threshold. When an event occurs, notifications are

delivered to subscribers via separate TCP connections.

These features, secure Web services, dynamic discovery, and eventing, are the main

advantages of DPWS for event-driven IoT applications. Nevertheless, in fact, developers

would face several problems when applying DPWS for IoT applications on Web. The

main concern is about the dynamic discovery in which the network range of UDP mul-

ticast messages is limited to the local subnet. Therefore, it is impossible to carry out

this mechanism in a large network such as the Internet. With WS-Eventing, the estab-

lishment of separate TCP connections in case of delivering the same event notification

to many different subscribers will generate a global mesh-like connectivity between all

devices and subscribers (see Figure 5.5). This requires high memory, processing power,

and network traffic and thus consumes a considerable amount of energy in devices. An-

other issue is the overhead due to the data representation in XML format and multiple

bidirectional message exchanges. It is not a problem when most DPWS devices cur-

rently communicate locally, but in a mass deployment of devices, these messages would

generate heavy Internet traffic and increase the latency in device/application communi-

cation. Furthermore, W3C Web services use WSDL for service description and SOAP

for service communication; the former, despite the fact that it is a W3C standard, re-

quires much effort from developers to process poorly-structured XML data; the latter is

mostly common in stateful enterprise applications, whereas recent Web applications are

moving toward the core Web concepts expressed in REST architectural style by offering

stateless and unified interfaces of RESTful Web APIs.

To solve these problems, we design a service provisioning mechanism for DPWS

using a REST proxy by providing the following features: (1) global dynamic discovery

using WS-Discovery in local networks; (2) proxy-based topology for publish/subscribe

eventing mechanism; (3) dynamic addressing for DPWS smart objects; (4) RESTful

Web APIs; and (5) WSDL caching. The proxy unburdens Internet traffic by processing

the main load in local networks. Also, the proxy can extend the dynamic discovery

from locally to globally through RESTful Web APIs. Developers do not have to parse

complex WSDL documents to get access to service descriptions; they can use RESTful

Web APIs to control smart objects.

62 Semantic Service Provisioning

We will follow an IoT engineer Rosalie’s development process to understand what

challenges she could encounter when developing, deploying, and interacting the smart

object from her IoT application and how the proxy helps her to solve these problems.

The following use case illustrates a common situation in several IoT applications when

a new smart object joins the network.

5.3.2 Use case

Rosalie would like to make a module for controlling a newly-purchased DPWS heater.

The heater is equipped with a temperature sensor, a switch, memory, a processor, and

networking media, and is implemented with a hosted Heater service. Heater service

consists of eight operations: (1) check the heater status (GetStatus), (2) switch the

heater on/off (SetStatus), (3) get room temperature (GetTemperature), (4) adjust the

heater temperature (SetTemperature), (5) add (AddRule), (6) remove (RemoveRule),

and (7) get (GetRules) available policy rules for defining automatic operation of the

heater, and (8) over-heating event eventOverHeat(). She connects the heater to the

network and tries to control it from her IoT application.

5.3.3 Global Dynamic Discovery

When an application tries to locate a smart object in a network, it sends a UDP multicast

message (using the SOAP-over-UDP binding) carrying a SOAP envelope that contains

a WS-Discovery Probe message with search criteria, e.g., the name of the smart object.

All the smart objects in the network (local subnet) that match the search criteria will

respond with a unicast WS-Discovery Probe Match message (also using the SOAP-

over-UDP binding). In our use case, the heater sends Probe Match message containing

network information. At this point, Rosalie realizes that it is impossible for her IoT

application to dynamically discover the heater because of the network range limit to

local subnet of multicast messages. If a proxy is applied, it allows the application to

suppress multicast discovery messages and instead send a unicast request to the proxy.

Then, the proxy can representatively send Probe and receive Probe Match messages to

and from the network while the behavior of smart objects remains unmodified; they

still answer to Probe message arriving via multicast. In networks with many Probe

messages, the proxy can significantly unburden the Internet traffic. The proxy provides

two RESTful Web APIs to handle the discovery as shown in Table 5.7

We also propose a repository in the proxy to maintain the list of active smart objects.

The repository is updated when smart objects join and leave the network. In addition,

the proxy performs a routine to periodically check the consistency of the repository, says

every 30 minutes. For a proxy with 100 smart objects, the size of the repository is about

600 kb, so it is feasible for unconstrained machines used to host a proxy.

In-network Implementation with DPWS 63

Table 5.7: Discovery API

GET /discovery
Search for a smart object with criteria

Arguments search: search criteria
Example PUT http://157.159.103.50/discovery?search=Heater

GET /discovery
Get the list of connected smart objects

Arguments N/A
Example GET http://157.159.103.50/discovery

157.159.103.50 is the proxy’s IP address, and 8080 is the port number.

5.3.4 Publish/subscribe Eventing

To receive event notifications, Rosalie can subscribe her application directly to the

heater by sending a SOAP envelope containing a WS-Eventing Subscribe message (us-

ing the SOAP-over-HTTP binding). The heater responds by sending a WS-Eventing

SubscribeResponse message via the HTTP response channel. When an event occurs, the

heater establishes a new TCP connection and sends an event notification to the sub-

scriber. Therefore, in scenarios with many subscribers, it generates high level of traffic,

requiring high resources, and causing smart objects to consume more energy. However,

this publish/subscribe mechanism can be done through REST proxy to reduce the over-

head of SOAP message exchanges and resource consumption, replacing global mesh-like

connectivity by proxy-based topology (see Figure 5.5). One RESTful Web API is dedi-

cated for event subscription; instead of sending a WS-Eventing Subscribe message, the

application sends an HTTP POST request to the subscription resource (See Table 5.8).

Table 5.8: Event subscription API

POST /[smart object ID]/[event]
Subscribe to a smart object event

Arguments agent: address to send notification messages
Example POST http://157.159.103.50/heater/overheat?agent=157.159.103.63/heating

157.159.103.50 is the proxy’s IP address, 8080 is the port number,
157.159.103.63/heating is the callback endpoint of the application

Figure 5.5 shows the network topology in two cases of our proposed design and the

the original direct DPWS communication. Table 5.9 shows a list of RESTful Web APIs

provided by the proxy for the heater smart object mapping with DPWS operations.

5.3.5 WSDL Caching

When an application knows a smart object hosted service (representing smart object

functionalities) endpoint address, it can ask that service for its interface description by

sending a GetMetadata Service message. The service may respond with a GetMetadata

Service Response message including a WSDL document. The WSDL document describes

64 Semantic Service Provisioning

Table 5.9: RESTful Web API for the heater

RESTful Web API DPWS operations Argument Discription

GET /discovery
Discovery

List smart objects
PUT /discovery search Search for smart objects

POST /heater/overheat eventOverHeat() Subscribe to an event

GET /heater GetStatus() Get heater status

PUT /heater SetStatus(String) status Set heater status

GET /heater/temp GetTemp() Get room temperature

PUT /heater/temp SetTemp() temp Adjust heater temperature

POST /heater/rules AddRule rule Add new rule

GET /heater.rules GetRules() List of rules

DELETE RemoveRule() ruleID Delete a rule

/heater/rules/[ruleID]

the supported operations and the data structures used in the smart object service. Some

DPWS implementations (such as WS4D JMEDS) provide a cache repository to store

the WSDL document at runtime. After the application retrieves the WSDL file for the

first time, the file can be cached for local usage in the subsequent occurrences within the

life cycle of the DPWS framework (start/stop). This kind of caching mechanism would

significantly reduce both the latency and the message overhead. Our DPWS proxy can

provide WSDL caching not only at runtime but also permanently in a local database.

The cache is updated along with the routine to maintain the smart object repository in

proxy described in the dynamic discovery section.

Figure 5.5 shows the network topology in two cases of our proposed design and the

the original direct DPWS communication. Figure 5.5 shows the network topology in

two cases of our proposed design and the the original direct DPWS communication.

5.4 Performance Evaluation

We carry out the experiments with 6LoWPAN set up on Cooja simulator [63]. Experi-

ment results from Chapter 4 allow us to set up 6LoWPAN network on network simulator

with respect to real-life performance. This approach doesn’t lose important properties

of smart objects and especially effective to focus on the service integration issues. Cooja

can accurately simulate all the constraints in smart objects and 6LoWPAN such as

ROM/RAM size, microprocessor instruction set, and IEEE 802.15.4 radio environment.

Figure 5.6 shows the 6LoWPAN with 10 random nodes. The longest distance to the

6EdR (node 1) is 3-hop (nodes 1-2-3-4). TX/RX success ratio is set at 98 percent

as suggested in Packet Delivery Ratio test in Chapter 4. Each node is implemented

with a CoAP service enriched with the proposed semantic annotation. We aim to test

PerformanceEvaluation 65

Figure5.5:Networktopologyintwocases:(a)Ourproposeddesignconfiguresaproxy-
basedtopologywithlocalHTTP/SOAPbinding,(b)TheoriginalsmartobjectsProfile
for WebServices(DPWS)communicationconfiguresglobalmesh-likeconnectivityfor
HTTP/SOAPbinding.Consequently,theoriginalDPWSintroduceshigherlatencyand
overhead.

theperformanceofserviceprovisioningservertoseehowtheproposedalgorithmsand

mechanismsperformintermoftransparencyandefficiency. Theprovisioningservice

isdeployedinthesimulatorhostmachine,whichcreatesalocalnetworkwith6EdRin

itsEthernetinterface. A Webapplicationisdevelopedina Webserviceofthesame

localnetworkwiththeprovisioningserver(thedeploymentofthesameapplicationona

serveron Webdoesn’tchangethenatureoftheIPcommunicationwiththeinvolvement

ofanumberofrouters).

5.4.1 Transparency

Firstofall,theconsistentuseofIPstacksinsmartobjectsaswellasinprovisioningis

alignedwithcommonnetworkinfrastructure,whichensuresatransparencyofcommuni-

cationinthenetwork.6EdRisanimportantnodeintheIPnetworkingmodeltoassure

thesmoothcommunication. Thiscanfirstverifiedbyping6commandfromaregular

IPnodetoa6LoWPANnode(seeListing5.8). Wefurtherexaminethetransparency

oftheserviceprovisioningagainsttheimplementationofourproposedalgorithms,es-

peciallyforthescheduling. Wecarryoutasinglerequesttoaserviceofnode2from

ourIoTapplicationwithandwithoutschedulingmodule. Figure5.7showsthatthe

66 SemanticServiceProvisioning

Figure5.6:A6LoWPANinCoojawith10nodesand3-hopdistancefromtheedgerouter
(node1).AllnodesareimplementedwithContikianduIPstacks.Thescreenshotshows
thenetworkifself-configuringwithtrafficexchangedbetweennodes.

servicerequestdelayremainsstablyequalinbothcases,meaningthatouralgorithm

doesn’taffectnon-simultaneousrequestswhileimprovingtheperformancewhenmultiple

simultaneousrequestscometoaservice.

1

2 64 bytesfromaaaa::212:7403:3:303: icmpseq=24ttl=62time=352 ms

3 64 bytesfromaaaa::212:7403:3:303: icmpseq=25ttl=62time=355 ms

4 64 bytesfromaaaa::212:7403:3:303: icmpseq=26ttl=62time=369 ms

5 64 bytesfromaaaa::212:7403:3:303: icmpseq=27ttl=62time=347 ms

6 64 bytesfromaaaa::212:7403:3:303: icmpseq=28ttl=62time=334 ms

7 64 bytesfromaaaa::212:7403:3:303: icmpseq=29ttl=62time=336 ms

8 64 bytesfromaaaa::212:7403:3:303: icmpseq=30ttl=62time=353 ms

9 64 bytesfromaaaa::212:7403:3:303: icmpseq=31ttl=62time=372 ms

10 64 bytesfromaaaa::212:7403:3:303: icmpseq=32ttl=62time=343 ms

11 64 bytesfromaaaa::212:7403:3:303: icmpseq=33ttl=62time=354 ms

12 Ĉ

13−−− aaaa::212:7403:3:303 ping statistics−−−

14 33 packetstransmitted, 26received,21%packetloss,time 32060ms

15 rtt min/avg/max/mdev =308.008/350.727/411.389/21.042 ms

16 user@instant−contiki:̃ $

Listing5.8: PingcommandfromaregularIPnodeto2-hopnode3in6LoWPAPN

(aaaa::212:7403:3:303).

Performance Evaluation 67

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16 18 20

Se
rv

ic
e

De
la

y
(m

s)

Test #

Direct
Scheduling

 0

 50

 100

 150

 200

 2 4 6 8 10 12 14 16 18 20

Se
rv

ic
e

De
la

y
(m

s)

Test #

Direct
Scheduling

Figure 5.7: Scheduling algorithm is transparent as it does not affect a single request. Its
purpose is to improve the delay when there are multiple simultaneous requests coming
to one smart object.

5.4.2 Scheduling: Simultaneous Requests Handling

We carry out an experiment to test the situation when multiple requests come to the

same smart object service. To recap, two requests are considered simultaneous if they

happen within a small interval of time, for example as we observe with CM5000 motes,

the value is about 100 ms. As seen from Figure 5.8, the scheduling algorithm significantly

improves the delay of service request in all cases with the number of requests ascending

from 1 to 20. Especially when more simultaneous requests sent to the same service,

scheduling can be considered to virtually eliminate the bottleneck in the network. Delay

with scheduling algorithm also shows the stability with respect to the capacity of smart

objects, that would not adversely affect user experience on application side.

5.4.3 Scheduling: Energy Consumption

We observe the duty cycle and energy consumption of the smart object hosting the

requested service over the period of 100 seconds when the smart object handling 20

simultaneous requests in the previous experiment. Figure 5.9 shows the duty cycling

pattern in two cases. As we notice, by applying scheduling, the smart sensor keeps

radio on during a shorter time about 20 seconds compare to 45 seconds when there is

no scheduling. Although, radio duty cycle peaks at nearly 6 percent in case of using

scheduling but overall energy consumption of the smart object with support of scheduling

is slightly lower than without scheduling (see Figure 5.10).

68 Semantic Service Provisioning

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20

Se
rv

ic
e

De
la

y
(s

)

of Simultaneous Requests

Direct
Scheduling

Figure 5.8: Comparison of service delay when multiple simultaneous requests are sent
to one smart object service.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(a) Using scheduling algorithm.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 20 40 60 80 100

Du
ty

 C
yc

le
 (

%
)

Time (s)

TX
RX

Total

(b) Direct request.

Figure 5.9: Comparison of radio duty cycle when multiple simultaneous requests are
sent to one smart object.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

En
er

gy
 (

m
J)

Time (s)

CPU
LPM
TX
RX

Total

(a) Using scheduling algorithm.

 0

 2

 4

 6

 8

 10

 12

 14

 0 20 40 60 80 100

En
er

gy
 (

m
J)

Time (s)

CPU
LPM
TX
RX

Total

(b) Direct request.

Figure 5.10: Comparison of energy consumption when multiple simultaneous requests
are sent to one smart object.

Performance Evaluation 69

 0

 100

 200

 300

 400

 500

 600

No Semantic RDF N3 Proposed

M
es

sa
ge

 S
iz

e
(b

yt
e)

Figure 5.11: Scheduling algorithm is transparent as it does not delay a single request. Its
purpose is to improve the delay when there are multiple simultaneous requests coming
to one smart object.

5.4.4 Semantic Annotation

Our approach in annotating semantics to smart object service is to break down the

RDF data into two parts, the core data are stored in smart object service and the

additional linking data are added in service provisioning phrase. The annotation in smart

object is represented in N3 format, delivered in media type request of text/n3. With

the richness of semantic annotation for smart service data, our proposed mechanism

significantly reduces the size of the messages compared to straightforward annotation

and eliminate of using a third-party service for re-describing the services. We consider a

typical data representation from a smart object service with the annotated information

of type, source, and value. Figure 5.11 shows the data sizes in difference cases: no

semantic annotation, annotation in RDF format, annotation in N3 format, and the

proposed method. Our proposed method ensures that the semantic annotation remains

at reasonable bytes that can fit in constrained IP stacks such as uIP and CoAP.

5.4.5 REST Proxy Message Overhead and Latency

We set up an experiment to evaluate latency and overhead in two different scenarios: the

first one uses our proposed proxy (Figure 5.5a), and the second one uses the direct DPWS

communication (Figure 5.5b). In both cases, an IoT application communicates with a

DPWS smart object (a heater) to invoke its hosted service (heater functionalities). To

replicate a realistic deployment of the IoT application, we deployed it on a server running

Tomcat 5 that used a public Internet connection and was located about 30 km away

5http://tomcat.apache.org

70 Semantic Service Provisioning

 0

 100

 200

 300

 400

 500

 600

 700

 800

DPWS HTTP
 0

 100

 200

 300

 400

 500

 600

 700

 800

M
es

sa
ge

 S
iz

e
(b

yt
e)

RT
T

(m
s)

Request
Response

RTT

Figure 5.12: CoAP, DPWS, and HTTP message overhead and latency.

from the smart objects. We implemented the heater with a hosted service SmartHeater

providing eight operations, as in Table 5.9. We implemented a REST proxy in Java using

the Jersey library on Tomcat 6 to generate heater Web API. The IoT application either

uses the API provided by the REST proxy or directly communicates with the heater

(using the WS4D JMEDS library) to carry out the DPWS heater’s four functionalities:

checking heater status, setting heater status, adding a new rule, and deleting a rule.

1 GET /proxy/ heate r HTTP/1.1

2 User−Agent : Java / 1 . 7 . 0

3 Host : 157 . 159 . 103 . 50

4 Accept : t ex t /html

5 Connection : keep−a l i v e

6

7 HTTP/1 .1 200 OK

8 Server : Apache−Coyote /1 .1

9 Content−Type : t ex t /html

10 Transfer−Encoding : chunked

11 Date : Fri , 26 Jul 2013 21 : 4 6 : 48 GMT

12

13 [1374820483967] ON

Listing 5.9: Request and response messages for obtaining the status of the heater using

the proxy Web API expose relatively simple in HTTP format.

Figure 5.12 shows the message sizes of the request and response messages and the

mean round-trip time (RTT) in the communication between the application and the

SmartHeater. We use two methods: the RESTful Web API from the proxy and the

original DPWS operations. The latency when using proxy is 25 percent lower than when

using DPWS. In many pervasive IoT scenarios requiring high responsiveness, reasonable

6http://jersey.java.net

Summary 71

delay would improve system performance and the user experience. Message overhead

improves significantly when we apply the proxy. For real deployments of applications and

smart objects in original DPWS communication, nearly full-mesh connectivity (Figure

5.5b) is unavoidable compared to the linear increments of HTTP traffic in the proxy

scenario (Figure 5.5a). Listings 5.9 and 5.10 show the details of request and response

messages for an operation using the proxy and DPWS.

1 <?xml ve r s i on =”1.0” encoding=”UTF−8”?>

2 <s12 : Envelope xmlns : dpws=”http :// docs . oa s i s−open . org /ws−dd/ns/dpws/2009/01”

3 xmlns : s12=”http ://www. w3 . org /2003/05/ soap−enve lope ” xmlns : wsa=”http ://www

. w3 . org /2005/08/ addre s s ing”>

4 <s12 : Header>

5 <wsa : Action>http :// telecom−sudpar i s . eu/ ope ra t i on s / ge t s ta tus </wsa : Action>

6 <wsa : MessageID>urn : uuid :46932240−d504−11e3−bf6a−6eabe38b6788

7 </wsa : MessageID> <wsa : To>http : / / [aaaa : : 2 1 2 : 7 4 0 0 : 1 3 cc : 3 6 9 3] : 4 5 6 7 /

Heater</wsa : To>

8 </s12 : Header>

9 <s12 : Body/>

10 </s12 : Envelope>

11

12 <?xml ve r s i on =”1.0” encoding=”UTF−8”?>

13 <s12 : Envelope xmlns : s12=”http ://www. w3 . org /2003/05/ soap−enve lope ” xmlns : wsa

=”http ://www. w3 . org /2005/08/ addre s s ing”>

14 <s12 : Header>

15 <wsa : Action>http :// telecom−sudpar i s . eu/ ope ra t i on s / getstatusResponse </

wsa : Action>

16 <wsa : RelatesTo>urn : uuid :46932240−d504−11e3−bf6a−6eabe38b6788</wsa :

RelatesTo>

17 </s12 : Header>

18 <s12 : Body>

19 <i 53 : r ep ly xmlns : i 53=”http :// telecom−sudpar i s . eu”>ON</i53 : rep ly>

20 </s12 : Body>

21 </s12 : Envelope>

Listing 5.10: Request and response messages for obtaining the status of the heater using

DPWS expose the complex XML-based messages in SOAP format.

5.5 Summary

This chapter has presented the functional blocks along with several algorithms and mech-

anisms for realizing the proposed service provisioning architecture for IoT applications

on Web. The main goal is to solve several problems associated with provisioning smart

object services to the Web such as service discovery, multiple simultaneous requests, and

service authorization in order to generate a friendly interface for developers to effectively

and smoothly integrate smart objects into IoT applications on Web.

Chapter 6
Case Studies: IoT Applications on Web

Contents

6.1 Devices Profile for Web Services . 73

6.2 ThingsChat: A Social Internet of Things Platform 74

6.2.1 System Architecture . 75

6.2.2 Socialized Web API . 76

6.2.3 ThingsChat Platform . 78

6.2.4 Prototype and Experiment . 79

6.3 SamBAS: A Building Automation System 81

6.3.1 System Architecture . 83

6.3.2 Building Ontology and Graph Database 84

6.3.2.1 Context-Awareness . 85

6.3.2.2 Policy . 87

6.3.2.3 Reasoning . 87

6.3.3 Semantic Context-aware Service Composition 88

6.3.3.1 Composition Plan Description Language (CPDL) 89

6.3.3.2 Service Composition . 89

6.3.4 Prototype and Experiments . 90

6.4 Implementation Remarks . 92

This chapter presents the Service Integration process in our proposed architecture

with two case studies of developing IoT applications using service provisioning and open

Web standards. These are innovative IoT applications in the domains of Social Inter-

net of Things (SIoT) and Building Automation System (BAS). The first application

is ThingsChat, a SIoT platform facilitating the social relationship between human and

smart objects in the similar way with between human and human in traditional social

72

Devices Profile for Web Services 73

networks. To do that, we extend our proposed semantic service provisioning by adding a

Device Socializing module, creating a Socialized Web API to automate the communica-

tion between human and devices over the Social IoT platform. The second application,

SamBAS, focuses on exploiting the potential of semantic data model for developing a

novel building automation system with the adoption of IoT technologies for the device

communication. Both the applications use DPWSim [64] (see Appendix A), a DPWS

simulator developed within this research, to simulate home and office environments host-

ing several smart objects using IoT protocol stack. We call smart objects as devices in

these contexts to align with end-user’s point of view since a device or appliance is more

popular than a smart object.

6.1 Devices Profile for Web Services

DPWS defines a set of implementation constraints to provide secure and effective mecha-

nisms for service describing, discovering, messaging, and eventing for resource-constrained

devices. Since its debut in 2004 by a consortium led by Microsoft, DPWS has become

part of Microsoft’s Windows Vista and Windows Rally (a set of technologies from Mi-

crosoft intended to simplify the setup and maintenance of wired and wireless networked

devices), and has been developed in several research and development projects under the

European Information Technology for European Advancement (ITEA) and Framework

Programme (FP): SIRENA (02014 ITEA2), SODA (05022 ITEA2), SOCRATES (FP6),

and on-going IMC-AESOP (FP7) and WOO (10028 ITEA2). Many technology giants

such as ABB, SAP, Schneider Electric, Siemens, and Thales have been participating in

these projects. As they have large market shares in electronics, power, automation tech-

nologies as well as enterprise solutions, their promotion of the DPWS technology promise

a wide range of the future DPWS/IoT products. Schneider Electric and Odonata pi-

oneered the implementation of DPWS leading to the early and open-source release of

software stacks implementing DPWS in C and Java available at Service-Oriented Ar-

chitecture for Device Website 1. Web Services for Devices initiative 2 reinforces the

implementation by providing and maintaining a repository to host several open-source

stacks and toolkits for DPWS. In addition, many studies have been recently carried

out to complete the technology. Experiment results show that DPWS is able to be

implemented into (even) highly resource-constrained devices such as sensor nodes with

reasonable ROM footprints [65]. Other technical issues of DPWS have also been ex-

plored such as encoding and compression [66], the integration with IPv6 infrastructure

and 6LoWPAN [67, 68], the scalability of service deployment [69], and the security in

the latest release of WS4D DPWS stacks.

1http://soa4d.org/
2http://ws4d.org/

74 Case Studies: IoT Applications on Web

DPWS thus far has been widely used in automation industry, home entertainment,

and automotive systems [70] and also applicable for enterprise integrations [71]. It

satisfies many requirements for IoT applications such as resource-constrained, event-

driven, and dynamic discovery; In the meantime, it can maintain the integration with

the Internet and enterprises infrastructures. In addition, the strong support from the

community is another reason to make it a promising technology for the future IoT. WS4D

has been developing several DPWS standard implementations in different languages and

platforms as summarized in the Table 6.1. DPWS-gSOAP provides C/C++ toolkits for

deploying Web services consumers and providers. It is multi-platform implementation

supporting Windows-native, Windows-cygwin, Linux, and Embedded Linux. DPWS-

uDPWS is DPWS implementation in C language designed for Embedded Linux, Contiki

and especially for highly resource-constrained devices such as sensor nodes. DPWS-

JMEDS is Java framework for DPWS supporting different Java editions. The latest

release of DPWS-JMEDS hosts the feature of Android OS which paves the way for

implementing services on Android devices.

Table 6.1: DPWS Implementation.

Version Language Operating System

DPWS-gSOAP C Linux, Windows, Embedded Linux
DPWS-uDPWS C Embedded Linux, Contiki
DPWS-JMEDS Java Java Virtual Machine
DPWS-Android Java Android

6.2 ThingsChat: A Social Internet of Things Platform

Online Social Network (OSN) has emerged as an inter-connectivity forum encouraging

people to establish and expand their network of friends/acquaintances for social inter-

acting and sharing ideas as well as various resources in textual and other multimedia

formats. The OSNs aggregates users’ interests, preferences, groups of friends, and activ-

ities to form rich user profiles. The concept of content mashup has emerged to encourage

and support users’ customization of their own OSN by adding services to expand the

functionalities already provided or adding feeds from other OSN. These values of OSN

has been changing social interaction over the Internet, from enhancing the way we reach

information to enhancing the way we reach for each other. In the meantime, the IoT is

gradually penetrating into our daily life with dozens of appealing products are filling up

the shelves. These devices, thanks to the efforts from research activities, can now be fa-

cilitated with inexpensive sensors, low-power wireless communication protocols to sense

and transmit the status of physical world to Internet. A new generation of applications

on this connected ecosystem is being developed excitingly, not only to interact with sin-

gle device or service but also to use the concept of mashup and composition with other

ThingsChat: A Social Internet of Things Platform 75

Web services to create new experiences. However, the best story has yet to come when

the idea keeps flying higher and further by offering these smart and connected devices

a new attribute of being social to benefit OSNs over Internet-connected and socialized

devices. This new paradigm is called Social Internet of Things (SIoT). Industry and

academia since then have been following up this trend and come up with some models

and prototypes of SIoT [72] but mainly in the conceptual level and preliminary data

models for the device-to-device social relationship.

Our vision is to further enhance the social interaction by bringing connected devices

to a new level of being able to have social relationship with other devices and with people.

To achieve that objective, we extend our proposed service provisioning architecture to

facilitate the devices with social ability in the form of Web APIs that can be used by

OSNs to interact with devices. Furthermore, we add to the core OSN functionalities new

capabilities of profiles, intelligence, recommendation, and Natural Language Processing

(NLP) to inherit all the features of OSN and IoT. This design results in a universal OSN

of everything, people and devices, called ThingsChat.

6.2.1 System Architecture

ThingsChat system architecture aims to minimize the discrepancy between device and

human profiles in the social network structure. In other words, ThingsChat treats

devices alike human in a way that devices can make decision and communicate with

human users. The architecture covers a network of people and devices with a Service

Provisioning subsystem magnified by a Device Socialization module to connect devices

to the social networking platform in a similar way that human users connect to it.

There are two main subsystems communicating via the Socialized Web API: Service

Provisioning and Social Network. The former extends our proposed service provisioning

architecture not only to bring device services to the Web but also socialize these services

by adding abilities (API) such as talking and making friend to human users. The latter

is based on the social networking core (e.g., Elgg 3, phpBB Social Network 4, and Oxwall
5) which features a full-fledged OSN with a Web-based User Interface (WUI). A Device

Profiles database is added to store the device profiles inheriting all the properties of

user profiles but containing some additional information to interact with the socialized

devices such as endpoint address referring to the base URI of Web API related to the

corresponding device. In addition, Device Adapter module acts as the interface for the

communication between the social network platform and socialized devices. The other

modules Recommender, Semantic Reasoner, and NLP Interface are in charge of realizing

the human-like intelligence and recommendation functionalities for devices.

3http://elgg.org/
4http://phpbbsocialnetwork.com/
5http://www.oxwall.org/

76 CaseStudies:IoTApplicationson Web

Figure6.1:ThingsChatarchitecture.

6.2.2 Socialized WebAPI

Weextendourproposedserviceprovisioningtoincludethesocialcharacteristics(e.g.,

communicationanddecision-making)byaddingtheDeviceSocializationmoduletoex-

istingserviceprovisioningframework. ThiscreatesanewSocialized WebAPItofa-

cilitatenotonlythecommunicationbetweendevicesandtheSIoTplatformbutalso

betweendevicesandhumanusers. Theserviceprovisioningserverisimplementedin

theformofahomegatewayThingsGate,whichextendsthein-networkimplementation

ofourproposedarchitecturepresentedinSection5.3todiscover,store,andtransmit

deviceservicestoThingsChat.ItprovidesaninteractiveThingsGate WUIinResource

Management(aserviceprovisioningfunctionalblock,detailsat5.2.7)foruserstogrant

authorizationtoThingsChatandinitializedeviceswithsocializedfunctionalities,turn-

ingthemintosocialentities.Table6.2showsthemainendpointsoftheSocialized Web

APIfromThingsGate.

Inthisapplication,ThingsGatealsoplaysanotherroleasthemediatorforanim-

portantstepcalledsocializingdevice.Itinvolvesuserordeviceownerintheloopto

authorizeandcustomizethedevicetofitintheSIoTplatform.Figure6.2illustratesthe

stepofsocializingarobotcleanerviaResourceManagementWUI.ThingsGatediscovers

aDPWSdevicewithanIDRobotCleanerDevice(arobotcleanerwithdetailsshownin

Figure6.3)inthenetworkandautomaticallygenerates WebAPIendpointsforprovi-

ThingsChat:ASocialInternetofThingsPlatform 77

Table6.2:ThingsGateSocialized WebAPI.

WebAPIEndpoint Arguments Description

GET/social/device-list N/A Listsocializeddevices

POST/social/register device-name Registerasocialdeviceprofile

device-username

password

POST/social/chat-to-device device-id Sendnewposttoauser

post-id

content

POST/social/friend-request device-id Sendnewposttoauser

user-id

GET/social/nlp content Getdevicecodetranslated

tonaturallanguage

Figure6.2:ThingsGateResourceManagement:Socializingadevice.

sioningitsservice.Inthisstep,thedeviceisalreadyavailableforcommunicatingto

IoTapplicationson WebbutnotyetreadyforinteractingwithusersonSIoTplatform.

AnuserlogsintothesystemviaThingsGate WUItoseethelistofdiscovered/provi-

sioneddevicesandselectRobotCleanerDevicetosocializeit.ThingsGatethanredirects

theusertoaregistrationinterfacethatshecancustomizethedevicewithsomesocial

characteristicssuchasusernameandavatar.TheuserclicksRegisterbuttontofinish

theregistration,andifThingsGatesuccessfullyregistersthedeviceintheSIoTplatform

UserProfiles,itwillgeneratedevice’sSocialized WebAPIendpointsandaddthedevice

intothesocializedlist,whichcanbeseenlaterbyuser(seeFigure6.3)

78 CaseStudies:IoTApplicationson Web

Figure6.3:ThingsGateResourceManagement:Listofsocializeddevices.

6.2.3 ThingsChatPlatform

InadditiontothecorefunctionalitiesofanOSN,ThingsChathastheDeviceAdapter

moduletointeractwiththeSocialized WebAPIs.ThismodulehasitsownsetofAPI

endpoints(seeTable6.3)thatcancooperatewiththeSocialized WebAPItofulfillthe

duplexcommunicationbetweenusersanddevices. Forexample,adeviceservicecan

callanAPIendpointintherequestshowninListing6.1totalktouserNadiaina

previously-establishedconversationwithpost-id=375.DeviceAdapterissupportedby

DeviceProfilesdatabasethatstoresdeviceprofiles,andextensionofUserProfilesinthe

coresocialnetworkingdatabase.TheextensionincludesAPIendpointsandownership

ofthedevicesbywhichThingsChatcannotifydevicesinthesamewaythatitnotifies

humanusers(vianotificationmessages). NLPInterfacepre-processnaturallanguage

messagesfromhumanusersintoalistofmachinereadablecommands(tokens)andvice

versa.SemanticEngineisinchargeofprocessingsemanticdatareceivedfromdevicesin

N3format.Itcreatesadatamodeloutofthetriplesreceivedfromdevicesandcarries

outreasoningtoextractmoreinformationthatcanbeusedintheRecommendermodule

tomakerecommendationtohumanusersorotherdevices.

1POST/socialnet/chat−to−user.php HTTP/1.1

2 Host: thingschat.com

3 Accept: text/n3

4

5 device−id=Robot Cleaner

6 post−id=375

Listing6.1:APIcallfromdevicesidetotalktouserNadia.

ThingsChat: A Social Internet of Things Platform 79

Table 6.3: ThingsChat Device Adapter Web API

Web API Endpoint Arguments Description

POST /socialnet/chat-to-user.php device-id Send message to a user

post-id

POST /socialnet/confirm-friend.php device-id Confirm making-friend request

user-id

GET /socialnet/nlp.php content Get natural language translated

to device code

6.2.4 Prototype and Experiment

ThingsChat application consists of four components: Virtual Home (powered by DP-

WSim), provisioning server ThignsGate, SIoT platform ThingsChat, and an external

NLP Service. Virtual Home is created by DPWSim to precisely generate DPWS proto-

col messages for each devices. DPWSim also helps creating rich graphical user interfaces

for the simulation environments (see Figure 6.4 for an example of such interface with the

help of an 3D artist). DPWS devices can be discovered and communicated by DPWS

clients following DPWS standards. ThingsGate is a Java Web application running on

an Apache Tomcat server 6. ThingsChat is based on phpBB Social Network Engine

providing all basic features of an OSN such as profiles, friends, and sharing. It also has

a WUI to allow people and devices to talk. An NLP Service uses Apache OpenNLP 7

to provide a tokenization function for natural language text. All the machines/servers

DPWSim, ThingsGate, ThingsChat, and NLP Service are deployed in the same local

network for testing purpose.

To illustrate the application, we explain two use cases of Coffee Maker in office and

Robot Cleaner at home (see Figure 6.4). Nadia is living in an apartment (Virtual Home)

with several DPWS appliances such as a TV, lamps, coffee makers, and heater. She can

easily install these devices in the home network from her mobile phone by using the

Resource Management module. ThingsGate allows Nadia to detect available devices

and then socialize them by simple touches on the WUI. She can do the same procedure

in her office to install new devices, probably with the help of a network administrator.

When she finishes setting up things, she can talk with her devices anywhere through

ThingsChat in a natural way. In the morning, when Nadia is on the way to office, Coffee

Maker based on her profile offers a coffee at 09:00, but Nadia has an early meeting at

that time so she asks the Coffee Maker to make it few minutes earlier at the same time

she is talking with her friend on ThingsChat. Coffee Maker receives her request and

update to status that her favorite coffee has set to be ready at 08:55, it also knows

how to reply when Nadia say thanks. In another use case, it has been three days that

6http://tomcat.apache.org/
7http://opennlp.apache.org/

80 CaseStudies:IoTApplicationson Web

 0

 200

 400

 600

 800

 1000

 1200

 1400

ThingsChat Service
Execution

Server
Processing

ThingsGate

R
u
n
ni
n
g
Ti
m
e
(
ms
)

Figure6.4:CoffeeMakerinofficeandRobotCleaneratVirtualHomerecommendto
Nadiaaccordingtoherprofileandcanunderstandherrequests.

Figure6.5:PerformanceoftheSocialized WebAPIofThingsGateandDeviceAdapter
WebAPIofThingsChat.

RobotCleanerhasn’tcleanedthehouse. RobotCleaner,basedonNadia’sprofilefor

herepreferenceofcleaningfrequency,remindshertohavethehousecleanedandsheis

gladtoknowthatandaskstheRobotCleanertodoit.

WeaimtoevaluatetheperformanceoftheSocializedWebAPIinprovisioningserver

(ThingsGate)andDeviceApdapter WebAPIinSIoTserver(ThingsChat).Theexperi-

mentexhibitsatypicalinteractionflowbetweenusersanddevices:userasksdevicetodo

somejobs,devicecarriesouttherequestedjobsandrepliesbacktouser.Thisconversa-

SamBAS: A Building Automation System 81

tion involves two API endpoints, one from ThingsGate (POST [thingsgate]/social/chat-

to-device) 8 and the other from ThingsChat (POST [thingschat]/socialnet/chat-to-user.php)
9. There are also other modules used in the conversation such as natural language pro-

cessing, machine tokens conversion, semantic data processing, and recommendation,

however we focus on evaluating APIs and these modules in minimal workload. We

break down the job on ThingsGate into two parts: Service Execution for invoking the

requested device service and API Processing for server to process the API request. Fig-

ure 6.5 shows the running time for each task in the above conversation: request to

[thingschat]/socialnet/chat-to-user.php,

ThingsGate request takes average of 404 ms to complete consisting 199 ms for service

execution and 205 ms for API processing, that is reasonably low for a service provisioning

server in a local network deployment. ThingsChat request, however, takes just over 1

second for processing and transmitting data back and forth between ThingsGate and

ThingsChat. It is because that ThingsChat API mainly deals with querying the database

system for handling user and device profiles.

6.3 SamBAS: A Building Automation System

The idea of smart house or smart building has been around for many years receiv-

ing much expectation. A building automation system, residing at the heart of such

smart environments, interacts with its components including hardware, software, and

the communication among them. It involves in several disciplines such as electronics, in-

formatics, automation, or control engineering. BAS, since its debut, has been developed

and promoted by a community of developers, technologists, and scientists with plenty of

impressive prototypes and products. These products bring in comforts and conveniences

to daily life, freeing people from tedious house-works or office-works. Use cases vary from

very simple ones, e.g., automatically turn on/off the lights to complex and critical situ-

ations, e.g., security surveillance. Furthermore, BAS also provides value-added services

by offering intelligent services such as customer tracking in shopping malls or elderly

people healthcare services. All of those make it a very promising business attracting at-

tention of the community to target not only organization customers but also individual

end-users.

Industry and academia have been developing many new technologies for building

automation such as communication protocols, data management, data bus systems,

software components, and/or new hardware devices which can be integrated in the new

systems. Thanks to all those efforts, building automation has advanced over the last

decades with several communication protocols and a variety of BAS products from many

8[thingsgate]: ThingsGate server address
9[thingschat]: ThingsChat server address

82 Case Studies: IoT Applications on Web

different vendors. A comprehensive overview of communication protocols in building au-

tomation can be found in [73] with different BAS products. Traditionally, equipments

in BASs are interconnected by proprietary communication protocols such as LonWorks

[74], Building Automation and Control Network (BACnet) [75], or KNX [76]. These

protocols have been used to cover all the features of building automation, including

Heating, Ventilating and Air Conditioning (HVAC), lighting, and alarming. There are

also many other standards for BAS. HomeConnex (Peracom Networks), for example,

is a home entertainment network which unites PCs, TVs, audio/video components and

set-top devices into an integrated system. X-10 (X10 Inc.) is another industry standard

using power line and radio for communication among electronic devices used for home

automation. Other proprietary standards include Easy-Radio (Low Power Radio Solu-

tion Inc.), No New Wires (Intellon Corp.), Sharewave (Sharewave Inc.), SoapBox (VTT

Electronics), and Z-wave (Zensys).

Even though, the BAS market is very active with plenty of appealing BAS solutions

but consumers are well aware of the value of such smart systems. However, it is not

difficult to recognize the reluctance among customers in adopting available BAS products

on the market. The main reasons are identified as the cost and the scalability of these

proprietary systems. This normally leads to the suspension or partially deployment of

several on-the-table building renovation projects.

The arrival of the IoT paradigm has opened up new approaches in the building

automation domain with the availability of new devices and communication protocols

which are open, light-weight, low-cost, and interoperable. IoT open standards, both in

software and hardware have brought building automation in a new perspective that is

never more realistic and affordable. This case study, therefore, aims to provide a new

solution for BASs using open Web standards and IoT communication technologies such

as 6LoWPAN and DPWS. We focus to solve the two fundamental problems of BASs:

the first one is to enable the system to quickly adapt to the dynamic changes in user and

environment context; the second one is to coordinate devices in order to serve the diverse

and complex user’s needs involving not only one but several services at the same time.

To solve these problems, first, we semantically model the user and environment context

using RDF and from DPWS communication. Then, we apply service composition over

semantic data from device services and predefined semantic policy rules to select, bind,

and execute appropriate services. The proposed solution, SamBAS is to use composite

service plans to describe users’ requirements using the proposed Composition Plan De-

scription Language (CPDL). We design a Building Ontology containing the description

of concepts and relationships in building environment for the reference schema of storing

graph data in the triplestore database. Context information is modeled, processed and

passed to service composition engine to coordinate appropriate devices/services based

on predefined policy rules and five-step composition process.

SamBAS:ABuildingAutomationSystem 83

Figure6.6:Systemconfiguration.

6.3.1 SystemArchitecture

SystemconfigurationshowninFigure6.6depictsatypicalsetupofdevicesinsidearoom

ofabuilding. ThereareDPWSdevicesconsistingofawiderangeofbuildingequip-

ment(e.g.,TV,printer,andlightbulbs)andcontextcollectors(e.g.,sensors,RFID,

NFCreaders). Thesedevicesareconnectedtothebuildingnetworkviawirelessor

wiredconnectionswithIPstackandlowpowerwirelessprotocols.Sensorsareimple-

mentedbyuDPWSovertheContikiOS.Equipmentwithlargermemoryandprocessing

powerrunonEmbeddedLinuxorAndoidOS,theirfunctionalitiesaredevelopedusing

DPWS-gSOAP,somecanbeconnecteddirectlytotheregularIPnetwork,somejoin

thenetworkviahomeaccesspointor6EdR.Sensorswiththeirsensingcapacitycan

monitortheenvironmentRFIDreaders,NFCreaders,orcameracanidentifyusers.All

hardwarecomponentsgetconnectedtotheBuildingApplicationServerthathoststhe

corefunctionalitiesofthesystem.

SystemarchitectureshowninFigure6.7consistsofaServiceProvisioningmodule

basedonourproposedserviceprovisioningandseveralotherfunctionalblockstouse

DPWSservicesinbuildingautomation.Inwhich,COMPOSITIONsubsystemresides

atthecenterofthearchitecturewithitsfive-stepcompositionprocesshelpstorealize

anddeliverappropriatecompositeservicestouserbasedontheuserandenvironment

context. Thesubsystemcanbefunctionallydividedintoselectingservices,binding

servicesandexecutingserviceswhicharereflectedinthreecomponents:ServiceSelec-

tor,ServiceBinder,andServiceExecutorrespectively.Inaddition,CompositionPlan

CreatorhasaccesstoCompositionPlandatabaseandprovidesfunctionalitiesforusers

tocreate,modify,anddeletecompositionplans.CompositionBrokerdecideswhether

tocalltheCOMPOSITIONornotviaadecision-makingprocessbasedonthereceived

contextinformation.ContextProcessorreceivesandprocesssemanticcontextdatafrom

84 CaseStudies:IoTApplicationson Web

Figure6.7:SystemarchitectureconsistsoffourmainsubsystemsDATABASE,COM-
MUNICATION,DISCOVERYandCOMPOSITIONandfourothermodulesComposi-
tionPlanCreator,SemanticReasoner,CompositionBrokerandContextProcessor.

contextcollectors,andthensendsthemtotheCompositionBroker.

6.3.2 BuildingOntologyandGraphDatabase

BuildingOntologydefinesconceptsandrelationshipsbetweenentitieswithinthebuild-

ingenvironment.Itprovidesaschematobuildupsemanticdatabaseintheformof

graphdata.ThisisanewconceptofdatabaseforSemantic WebwhichconsumesRDF

topresentthedomainknowledge.RDFisacommonacronymwithinthesemanticweb

communityasitcreatesoneofthebasicbuildingblocksforformingtheWebofsemantic

data. Agraphconsistsofresourcesrelatedtootherresources,withnosingleresource

havinganyparticularintrinsicimportanceoveranother.RDFdatabaseincludesofRDF

statements,orsometimescalledanRDFtriples.Thetermtripleisusedtodescribethe

componentsofastatementwiththreeconstituentparts:subject,predicate,andobject

ofthestatement.

Theprimarypurposeofthisontologyistoclassifythingsintermsofsemantics,or

meaningandespeciallyfordescribingpoliciesusedincompositionprocess. Aclassin

OWL[44]isaclassificationofindividualsintogroupswhichsharecommoncharacter-

istics.Ifanindividualisamemberofaclass,ittellsamachinethatitfallsunderthe

semanticclassificationgivenbytheOWLclass.Thisprovidesthemeaningofthedata

thathelpsreasoningenginetodrawinferredinformationfromthedatabase.Listing6.2

showsapartofBuildingOntologydocumentinOWLbyProt́eǵe-OWLeditor10.Itcon-

sistsofdocumentheaderandthedeclarationoftheclassPolicywithtwopropertiesof

applyForandhasCondition.ThesepropertiesalsoreflextherelationshipofclassPolicy

10http://protege.stanford.edu/

SamBAS: A Building Automation System 85

1 <rd f :RDF xmlns = ‘ ‘ http ://www. i t−sudpar i s . eu/ bas ont #’ ’
2 xml : base = ‘ ‘ http ://www. i t−sudpar i s . eu/ bas ont ’ ’
3 xmlns : r d f s = ‘ ‘ http ://www. w3 . org /2000/01/ rdf−schema#’ ’
4 xmlns : owl = ‘ ‘ http ://www. w3 . org /2002/07/ owl #’ ’
5 xmlns : xsd = ‘ ‘ http ://www. w3 . org /2001/XMLSchema#’ ’
6 xmlns : rd f = ‘ ‘ http ://www. w3 . org /1999/02/22− rdf−syntax−ns #’ ’
7 xmlns : xml= ‘ ‘ http ://www. w3 . org /XML/1998/ namespace ’ ’>
8 <owl : Ontology rd f : about = ‘ ‘ http ://www. i t−sudpar i s . eu/bas ’ ’/>
9 . . .

10 <!−− http ://www. i t−sudpar i s . eu/ bas ont#Pol i cy −−>
11 <owl : Class rd f : about = ‘ ‘ http ://www. i t−sudpar i s . eu/bas Pol icy ’ ’>
12 <r d f s : subClassOf>
13 <owl : Re s t r i c t i on>
14 <owl : onProperty rd f : r e s ou r c e = ‘ ‘ applyFor ’ ’/>
15 <owl : someValuesFrom rd f : r e s ou r c e = ‘ ‘ Bui lding ’ ’/>
16 </owl : Re s t r i c t i on>
17 </r d f s : subClassOf>
18 <r d f s : subClassOf>
19 <owl : Re s t r i c t i on>
20 <owl : onProperty rd f : r e s ou r c e = ‘ ‘ applyFor ’ ’/>
21 <owl : someValuesFrom rd f : r e s ou r c e = ‘ ‘ User ’ ’/>
22 </owl : Re s t r i c t i on>
23 </r d f s : subClassOf>
24 <r d f s : subClassOf>
25 <owl : Re s t r i c t i on>
26 <owl : onProperty rd f : r e s ou r c e = ‘ ‘ hasCondition ’ ’/>
27 <owl : someValuesFrom rd f : r e s ou r c e = ‘ ‘ Condition ’ ’/>
28 </owl : Re s t r i c t i on>
29 </r d f s : subClassOf>
30 </owl : Class>
31 . . .

Listing 6.2: Building Ontology Document.

with other classes including Building, User and Condition. Figure 6.8 shows the classes

of Building Ontology and their hierarchical relationship. An example of the hierarchy

between classes of User and Director can be seen in the figure with the arrow starting

from User pointing to Director which means Director is a subclass of User and inherits

all the properties of User.

6.3.2.1 Context-Awareness

Context-awareness plays an important role in the pervasive computing architectures

to enable the automatic modification of the system behavior according to the current

situation with minimal human intervention. Since appeared in [77], context has become

a powerful and longstanding concept in human-machine interaction. As human beings,

we can more efficiently interact with each other by fully understanding the context in

which the interactions take place. It is difficult to enable a machine to understand and

use the context of human beings. Therefore the concept of context-awareness becomes

critical and is generally defined by those working in ubiquitous/pervasive computing,

86 Case Studies: IoT Applications on Web

Figure 6.8: Building Ontology graph. The highlighted blocks in the graph show the
hierarchy among class Service and its subclasses. The dotted line with a label presents
a property called locatedIn which takes class Room as object meaning a service is located
in a room.

where it is a key to the effort of bringing computation into daily lives. One major task

in context-aware computing is to acquire and utilize information about the context of

participating entities of a system in order to provide the most adequate services. The

service should be appropriate to the particular person, place, time, event, etc. where

it is required. In the scope of this building automation, user, device, and environment

context are considered in order to bring more efficient service composition. These context

data are sent to the system by using DPWS events implemented in context collectors

and devices.

1 @pref ix : <http ://www. i t−sudpar i s . eu/ bas data#> .

2 @pref ix bdg : <http ://www. i t−sudpar i s . eu/ bas ont#> .

3

4 : Context1430042727831

5 a bdg : UserContext ;

6 bdg : happenIn : Room803 ;

7 bdg : hasActor : J e n n i f e r ;

8 bdg : time ”2015 :04 :26 12 :05” .

9

10 : Context1430043339256

11 a bdg : EnvironmentContext ;

12 bdg : happenIn : Room803 ;

13 bdg : hasActor : TempSensor803 ;

14 bdg : time ”2015 :04 :26 12 :15” .

15

16 : Context1430056199063

SamBAS: A Building Automation System 87

17 a bdg : DeviceContext ;

18 bdg : happenIn : Room803 ;

19 bdg : hasActor : CoffeeMaker803 ;

20 bdg : time ”2015 :04 :26 15 :49” .

Listing 6.3: Context Data.

Listing 6.3 illustrates three pieces of context data for each type of context: User

Context, Device Context, and Environment Context. The context data then are sent to

Composition Broker which plays the role as a composition decision maker. It decides

whether to call the COMPOSITION or not based on data defined in policy. For example,

if the context information of room temperature is over 10 degree Celsius, no composition

will be carried out otherwise Composition Broker checks the temperature with current

status of the system to launch the COMPOSITION in case the situation is labeled as

context change.

6.3.2.2 Policy

A policy is represented by Policy class in Building Ontology, which applies to a user,

device, or location and contains a condition (Condition class) for representing the policy.

There are three types of policies: Operation Policy, Universal Policy, and Personal Policy.

Listing 6.4 illustrates a piece of data containing a policy called UniversalHeatingPolicy

which is an instance of OperationPolicy (Building Ontology class). It applies for all

users, instances of User (Building Ontology class) and has condition HeatingCondition

(data). HeatingCondition is later on described as an instance of Condition (Building

Ontology class) with “Heating” type and taking the value 10. Previously, two name

spaces were defined at the header, one for the data and the other for the ontology.

1 @pref ix : <http ://www. i t−sudpar i s . eu/ bas data#> .

2 @pref ix bdg : <http ://www. i t−sudpar i s . eu/ bas ont#> .

3

4 : Un ive r sa lHeat ingPo l i cy

5 a bdg : Operat ionPol i cy ;

6 bdg : applyFor bdg : User ;

7 bdg : hasCondit ion : Heat ingCondit ion .

8 : Heat ingCondit ion

9 a bdg : Condit ion ;

10 bdg : condit ionType ‘ ‘ Heating ’ ’ ;

11 bdg : condi t ionValue 10 .

Listing 6.4: HeatingCondition Rule Data.

6.3.2.3 Reasoning

Graph database built around the Building Ontology enables Semantic Reasoner to infer

additional information from existed data and relationship. We exlain a simple example of

88 CaseStudies:IoTApplicationson Web

Figure6.9:Reasoningexample.

thereasoningfromthedatashownintheListing6.4toinferthatUniversalHeatingPolicy

appliesforuserJennifer. ThereasoningprocessisdepecitedinFigure6.9inwhicha

factisstatedastheUniversalHeatingPolicyruleapplyingforinstancesofUserclass.A

reasonerwithbasiccapacitycanbeusedtodemonstratetheusecase,e.g.,ApacheJena
11natively-supportedreasoner.Aninferencemodeliscreatedwhichtakesthereasoner,

BuildingOntologyandtheGraphDatabaseasinputparameters. Dataintheformof

resourcesandpropertiesarethencreatedfromdatabase. Asimplecodelinecanbe

usedtogenerateanentailedrelationship.Specifically,userJenniferwhoisaninstance

ofDirector(BuildingOntologyclass,subclassofclassUser)wouldbeimposedbythe

UniversalHeatingPolicyruleaswell.Thisreasoningmodelhelpstoreducethedatabase

sizeandquicklycollectallrelateddataofaneventoruserwhichareallnecessaryfor

theservicecompositionprocess.

6.3.3 SemanticContext-awareServiceComposition

ResidingattheheartoftheproposedBAS,theCOMPOSITIONsubsystemisincharge

ofansweringcompositionrequestsfromCompositionBrokerwithregardtocollected

contextinformation.Itthengetsaccesstoallrelatedresourcestocoordinateappro-

priatedevices/servicestoservetherequest.Previously,BuildingOntologyandGraph

Databasehavebeendiscussedtoprovidethesemanticdatabase. Also,contextinfor-

mationprocessedbytheContextProcessorispassedtothecompositionprocessasthe

inputdata.Inaddition,adescriptionlanguageisdesignedtodescribethecomposition

plansandafive-stepcompositionprocessisproposedtoefficientlyandaccuratelycarry

outservicecomposition.

11http://jena.apache.org/

SamBAS: A Building Automation System 89

6.3.3.1 Composition Plan Description Language (CPDL)

A language called Composition Plan Description Language (CPDL) has been designed

to describe composition plans associating with each context. An example of a CPDL

document is shown in the Listing 6.5. This document describes a composition plan

related to user Jennifer with the context of when she comes in her office (room 803)

in the morning. It defines the composite service in that context consisting of four

component services Window, Light, CoffeeMaker, and Heater. The actual execution of

this plan depends on the context, user, localtion, and policies.

1 <?xml ve r s i on = ‘ ‘1 .0 ’ ’ encoding = ‘ ‘UTF−8 ’ ’ ?>

2 <CSDL xmlns : x s i = ‘ ‘ http :// i t−sudpar i s . eu/bas ’ ’>

3 <plan user=”J e n n i f e r ” l o c a t i o n=”Room803” context=”MorningCheckin”>

4 <s e r v i c e s t a t u s=”on”>Window</s e r v i c e >

5 <s e r v i c e s t a t u s=”on”>Light</s e r v i c e >

6 <s e r v i c e s t a t u s=”on”>CoffeMaker</s e r v i c e >

7 <s e r v i c e s t a t u s=”on”>Heater</s e r v i c e >

8 </plan>

9 </CSDL>

10 <xml>

Listing 6.5: Composition Plan Description Language (CPDL).

6.3.3.2 Service Composition

five-step service composition process is shown in Figure 6.10 which visually depicts six

phases of the composition as follows:

• Step 1: Collect and process context information

• Step 2: Query related policies, make decision to call COMPOSITION

• Step 3: Query related services, select services

• Step 4: Bind services to their operations

• Step 5: Execute operations of services

The process starts with an event notified from context collectors when they detect

changes in context and send that information in to the Context Processor. This informa-

tion can be one of the three types of context: User, Device, and Environment. Context

Processor processes and represents this information in semantic data which are sent to

the Composition Broker to decide whether to move on by calling the COMPOSITION

or not. In case no action needs to be carried out, the system switch to the sleep mode,

otherwise the COMPOSITION is called. Then, resources are collected in the database

to support the composition process. Service Selector uses provided context information,

90 CaseStudies:IoTApplicationson Web

Figure6.10:Five-stepcompositionprocess.

CPDLdataoftheuseratthatcontextandinferredpoliciesfromtheSemanticReasoner

toselectappropriateservicesandcreateaconcretedescriptionoftherequiredcomposite

service.ServiceBinderfollowsupbybindingwithoperationsofselectedservicesand

ServiceExecutorgetsaccesstoServiceCachetoexecutethatoperations.

6.3.4 PrototypeandExperiments

WedevelopSamBASprototypetoillustratetheoperationoftheproposedsystemand

totestthefeasibilityandscalabilityofthesystem. TheprototypeusesDPWSimfor

simulatingDPWSdevicesinanofficebuilding. AGraphicalUserInterfaceontopof

thedevicesrepresentinganofficeplanalongwithitsactors:officeequipmentanda

userwhocanmovearoundtheofficespacetochangehercontextasshowninFigure

6.11.Contextchangesinenvironmentanddevicesareactivatedbyuserbyfiringdevice

eventsprovidedinDPWSim.TheSamBASconsistsallthesystemcomponentsdiscussed

previously.BuildingOntologyisdevelopedusingProt́eǵe-OWLeditor,graphdatabase

isrepresentedinN3format,andtheCOMPOSITIONmodulesaredevelopedinJava

programminglanguageonanBuildingApplicationServerwithIntelprocessor2.6GHz,

6GBRAM.ItusesJenalibraryforsemanticdatamanipulationandJenaintegrated

reasonerforinferencefunctionalities.

Figure6.11illustratesausecasewhenauserJennifercomestoherofficelocatedin

theroom803inthemorning. Whensheentersheroffice,sheusesherRFIDkeycardto

checkontheRFIDreaderlocatedonherofficedoor.ThisRFIDreader,functioningasa

contextcollector,sendsacontext-changenotificationtotheCompositionBrokertocheck

withassociatedpolicieswhethertocalluptheCOMPOSITIONornot.Inthisscenario,

itisYES.Thesystemusesthereasonertocollectallthepoliciesconstrainedtotheuser

tocreateaconcreteappropriatecompositeservicebasedontheuser’scompositionplan,

SamBAS:ABuildingAutomationSystem 91

Figure6.11:DPWSimofficesimulationdemonstratestheserviceofuserbythecontext.
ThecompositeserviceconsistsoftwocomponentservicesLightandCoffeeMakeris
executedwhentheuserispresentinheroffice.

which,inthiscase,consistsoftwocomponentservicesCoffeeMakerandLight. Then

thetwoconcretecontext-basedservicesCoffeeMaker803andLight803areselectedand

boundtotheiroperationsandfinallyexecutedbyServiceExecutortoservetheuser.

WecarryouttheexperimenttomeasuretherunningtimeoftheCOMPOSITION

processagainstthesizeoftheservicesinthebuildingvaryingfrom50to500. The

compositionplanusedinthisexperimenthas10componentservices(size=10).Results

fromFigure6.12showthatthesemanticmodelperformsefficientlywiththecomposition

timeremainsverylowevenwiththedatasizeof500services,whichisestimatedfor

mediumbuildingwithabout50rooms.

92 Case Studies: IoT Applications on Web

 0

 200

 400

 600

 800

 1000

 50 100 150 200 250 300 350 400 450 500

Ru
nn

in
g

Ti
m

e
(m

s)

of Services

Ontology Loading
Composition

Figure 6.12: Service selection. Composition time of service selection process as the
number of devices increases from 500 to 5000.

6.4 Implementation Remarks

The success of these applications shows that the proposed architecture is highly flexible

and applicable in different application scenarios proving again that end-to-end IP ar-

chitecture is an ideal choice for IoT. According to the developers of these applications,

the software development experience is very positive and the integration of smart ob-

ject services into traditional Web applications is easy and transparent. For example,

ThingsChat is based on an existing online social network (phpBB Social Network) using

PHP programming language, which is one of the most common server-side languages for

Web applications. In order to build a new social network (SIoT), developers are required

to master PHP language. In the meantime, they are not expected to have knowledge on

IoT protocol stack. However, software developers encounter no problem with working

on these interface even without any knowledge on the underlying IoT protocols and the

architecture only provides the interface (Web API) using open standards.

Chapter 7
Conclusion and Future Work

Contents

7.1 Conclusion . 93

7.2 Future Work . 94

7.1 Conclusion

This dissertation has proposed a new architecture of semantic service provisioning for

6LoWPAN including a design of 6LoWPAN internetworking model with regular IPv6

network, a study on networking performance of 6LoWPAN, algorithms and mechanisms

for service provisioning, and two innovative proof-of-concept IoT applications on Web il-

lustrating the integration of the proposed architecture in different application domains.

The design and study on networking performance of the 6LoWPAN has shown that

end-to-end IP communication is possible for real-life deployment of smart objects. The

results suggest that the IP-based IoT protocol stack can be used for even with highly

resource-constrained such as sensor nodes with a few Kb of memory. Operating sys-

tems such as Contiki OS are providing effective platforms to enable the communication

of smart objects. The proposed service provisioning architecture presents a secure,

scalable, and reliable method to power IoT applications on Web. The architecture was

verified by two IoT applications of ThingsChat and SamBAS on Social IoT and Building

Automation domains. For each domain, we evaluated the implementation empirically

by means of several prototypes and applications and on different environments: the

IoT testbed consisting of MTM-CM5000-MSP TelosB sensor nodes, the Contiki Cooja

simulator, and DPthWSim – the open-source DPWS simulator developed within this

research. Overall, the results demonstrate that the proposed semantic service provision-

ing architecture can cope with several challenges and enhance the experience for the

development of IoT applications on Web.

93

94 Conclusion and Future Work

The work has profound impact on two large-scale European projects: ITEA2 Web

of Objects (WoO) 1 and ITEA2 Social Internet of Things - Applications by and for the

Crowd (SiTAC) 2. The WoO project addressed specific issues relating to the increasing

integration of Internet-connected devices in existing business applications, proposing a

modular solution kit to enable the development of industrial and consumer applications

with smart objects as actors, across multiple layers from objects to Web-based user

applications. The SiTAC project exploits the social networking paradigm in order to

facilitate and unify interactions both between people and devices and between devices.

It provides a distributed framework for enabling the Web-based service representation

of smart spaces and the objects they include.

7.2 Future Work

The proposed architecture with its profound impact on both academia and industry is

a starting point for several future directions for IoT research. In this section, we look

at some of the future work directly extending the results from this dissertation.

Service Composition

The question in IoT is not only how to make smart objects be able to communicate over

the Internet through provisioning, but also how smart objects services can be used in

multiple application in serendipitous ways to create new and creative applications. To

answer this, we can be use service composition, one of the core principles of the Service-

Oriented Architecture. Advanced functionalities can then be created by combining a

set of atomic services in the form of composite services. These composite services can

be used in different scenarios to meet various user requirements. The true value of the

IoT and new opportunities to create a smarter world will become apparent when data

and events from an increasing number of smart objects can be easily and dynamically

composed to create novel applications. Service composition has been extensively studied

in the context of Web services and business processes [78]. A number of standards have

been developed and are being used in real-world deployments to support the service

composition. However, the characteristics of IoT systems, such as resource-constraints

and data/event-driven devices render some of the techniques devised for traditional Web

service composition inadequate. Therefore, new composition models with respect to new

requirements of IoT systems are expected. We continue with the the future full-IP IoT

to apply the service composition to further expand the proposed service provisioning

architecture to give more innovation on the IoT domain.

1http://www.web-of-objects.com/, 2012 - 2015
2http://sitac.wp.tem-tsp.eu/, 2012 - 2015

Future Work 95

IoT Protocol Stack

The IEEE 802.15.4 has been proven to be an excellent standard for low-power smart

objects to carry out end-to-end IP communication. It goes with a set of supported

standards such as 6LoWPAN adaptation and uIPv6 implementation. direction that

we plan to investigate in coming time is for other link layer technologies rather than

IEEE 802.15.4 such as BLE and PLC. IETF 6lo WG is working on several standards

related to these links and can provide adaptation protocols for these technology such as

four Internet drafts that define the adaptations for IPv6 over BLE (draft-ietf-6lo-btle),

DECT Ultra Low Energy (draft-ietf-6lo-dect-ule), MS/TP (master-slave/token-passing)

networks (draft-ietf-6lo-6lobac), and G.9969 networks (draft-ietf-6lo-lowpanz). Espe-

cially, we focus on the recent update of IEEE to the MAC portion of the IEEE 802.15.4

standard, 802.15.4e TSCH for the communication link. Besides, there are several room

to improve the performance of the entire networking protocol stack including routing

protocols for 6LoWPANs and other efficient messaging protocol for applications layers

such as XMPP and AMQP.

Smart Grid

The proposed architecture also one of the core communication technology of the new

European project in the domain of smart energy management: Future Unified System

for Energy and Information Technology 3 (FUSE-IT). The project has just started by

the time of this manuscript. We are planing to to extend the proposed architecture to

the smart grid applications with a large-scale testbed in Barcelona city. The aim of

the project is to develop a smart secured building system, incorporating secure shared

sensors, actuators and devices strongly interconnected through not only information

networks but trusted energy networks, including a core building data processing &

analysis module, a smart unified building management interface, and a full security

dashboard.

3http://www.itea2-fuse-it.com/, 2014 - 2017

Appendix A
DPWSim: A DPWS Simulator

Contents

A.1 Simulation Model . 96

A.2 DPWSim Components . 98

A.3 DPWSim Core Functionalities . 98

A.4 Usage Scenarios . 100

A.5 Graphical User Interface . 100

A.6 DPWSim Use Cases . 100

DPWSim is a cross-platform simulator of the DPWS standard. It supports the de-

velopment of IoT applications using DPWS; DPWSim is based on WS4D-JMEDS 1,

the Java implementation of DPWS. The core function of DPWSim is to simulate the

DPWS protocols by generating DPWS messages and its communication messaging pat-

terns. It simulates DPWS devices, called DPWSim devices, which can be discovered on

the network and can communicate with other devices or clients via DPWS protocols.

Besides, it also simulates environments where DPWSim devices reside in. DPWSim

provides many simulation tools for users to create, manage, store, and load simulations

with high flexibility. DPWSim GUI that is based on Java Swing [79] is quite intuitive

and easy to use. DPWSim helps developers to prototype, develop, and test DPWS func-

tionalities. The following sub-sections describe the simulation model, core components,

functionalities, usage scenarios, and GUI of the simulator.

A.1 Simulation Model

DPWSim simulates the DPWS devices by modeling them as services that operate ac-

cording to the input of sensing data (e.g., environmental temperature provided by users)

1ws4d.org/jmeds/

96

SimulationModel 97

FigureA.1: Ahomespacecontainsthreedevices:agenericDPWSimdevice(blue
button),alightbulb,andacoffeemaker. Astand-alonedevice(spacewithonlyone
device)isalightbulb.

andcommunicationdata(e.g.,serviceinvocationcommandssentfromclients). Weuse

anumberofhardwareincludingIBMPCs,RaspberryPi,andTelosBsensornodes

tobuildreal-lifedevicessuchasthermostats,motiondetectors,andTVstorecordhow

thesedevicesworkinseveralscenariosinordertomimictheirbehaviorsinthesimulator.

DPWSimbuildssimulateddevicesregardingalllayersoftheTCP/IPnetworkingmodel

[80]. Atthenetworkinterfacelayer,thereliableEthernetlinkofthehost machine

isconsideredtofocusontheDPWSprotocolmessagesandmechanismsratherthan

physicalissues(e.g.,radiointerference).Atapplicationlayer,eachDPWSimdeviceis

modeledasalistofservices(eventsandoperations)bindingtoanIPaddress(internet

layer)overUDP(transportlayer).Eventshappenperiodicallyafteranintervaloftime

ormanuallyviauserinteraction;operationsaresoftwarecomponentsreceivinginput,

processingit,andproducingoutput(withitsstatusupdatedandsenttotheinvoker).

Ontopofthat,devicestatusandoutputsofevents/operationsaremodeledasgraph-

icalrepresentations. WhenitcomestomodelingandsimulatingrealDPWSsystems,

DPWSimcansupportstepsinvolvingmodeling,designingexperiment,andperforming

analysisofthediscrete-eventsimulation[81].

DPWSimhasfourbasiccomponentsnamelySpaces,Devices,Operations,andEvents.

Aspacecontainsseveraldevices;eachdevicehasalistofoperationsandevents.

Spaces

Aspaceisavirtualenvironmentrepresentingareal-lifesettinginwhichDPWSim

devicesresidein.Itcanbeahome,anoffice,atrainstation,apublicspace,orsimply

astand-alonedevice.FigureA.1illustratesahomespacecontainingthreedevicesand

astand-alonedevice.

98 DPWSim: A DPWS Simulator

Devices

A device refers to both DPWS hosting service and hosted service. Since these two kinds

of services, in reality, share similar characteristics, they are used interchangeably in

DPWSim for simulation purpose. It contains two different endpoint addresses used for

each type of services. For example, when taking part in the discovery, it uses the device

endpoint address; when invoking an operation, it uses the service endpoint address.

Operations

Each device contains a list of operations carrying out device functionalities such as

switching on and off based on commands received from clients. These operations are

described in WSDL descriptions and can be retrieved via service endpoint addresses.

Each output of an operation is represented by a graphical status, for example, the light

bulb in Figure A.1 will be changed to off status when the corresponding operation is

successfully invoked by a client.

Events

An event, similar to an operation, is used for a device functionality related to changes in

device state. When the device state changes (or an event happens), it notifies subscribed

clients by sending notification messages. An event can happen periodically (i.e., it

happens frequently after an interval of time such as sensing CO2 level every 15 minutes)

or manually (i.e., it is invoked by users). This property can be set in the Device Control

Panel as shown in Figure A.2.

A.2 DPWSim Components

A.3 DPWSim Core Functionalities

DPWSim provides simulation tools to help researchers and developers to build IoT

applications consuming DPWS services. DPWSim can support users to create virtual

environments from a simple to a complex one, even a graphically-rich interface like in

the Figure A.5 with the aid of external computer graphics software and design skills.

DPWSim acts as a dynamic mediator to generate different types of simulation meanwhile

maintaining the DPWS functionalities.

New Space/Stand-alone Device

There are two options for creating a virtual environment: stand-alone device and space.

These functions can be accessed through File menu or keyboard shortcuts. A space is a

DPWSimCoreFunctionalities 99

FigureA.2:DPWSimGUIcomponents:adialogwindow(LinuxOS),amenubar(Mac
OS),andacontextmenu(WindowsOS).

compositeenvironmenttohostseveraldevices.Itiscreatedbyusingaplanimagesuch

asoffice,home,andairport. Astand-alonedeviceissimplyaDPWSimdevicewitha

hostedservicecontainingoperationsandevents.Thiskindofvirtualenvironmentcan

bestoredinfileandre-usedinothervirtualenvironments.

NewDevice

Devicescanbecreatedbyseveralways,eachisassociatedwithasubmenuoftheDevice

menuinDPWSim: AddNew(newuser-customizeddevices),AddPredefined(pre-

configureddevicesbyDPWSim),AddFromFile(importingdevicefromsaveddevice

description),andGenereatefromPhysicalDevice(creatingnewdeviceby mapping

functionalitiesfromarealdevicetoasimulatedone). Userscanfurthercustomize

physicaldevicepropertiestofitanewdevice.Thiscapabilityisespeciallyusefulwhen

developerswanttofocusondesigningthebusinesslogicofanIoTapplicationrather

thanthephysicalperformanceofdevices.

Device Management

Onceadevicehasbeencreatedwithinavirtualenvironmentorasastand-alonedevice,

itcanbequeriedforDPWSinformation,re-located,deleted,orsavedforfutureuses.

Similarly,avirtualenvironmentincludingitsdevicescanbesavedinthefilesystemfor

beingsharedamongco-workers. Deviceservicescanbechangedoncecreatedthrough

theDeviceControlPanelassociatedtoeachdeviceasshownintheFigureA.2.It

providesanimportantapproachfordeveloperstochangedevicefunctionalitiesduring

thedevelopmentprocesswithoutre-creatingthedevice.

100 DPWSim: A DPWS Simulator

A.4 Usage Scenarios

DPWSim can be used in different phases in the development process of DPWS products

and systems. In general, it can be used in three scenarios

Scenario one - Product Integrating

Device manufacturers can pre-provide the DPWSim-compatible *.dpws file that de-

scribes functionalities of upcoming devices to developers. It enables them to test these

devices in their real IoT applications before the official release of these products.

Scenario two - Product Protyping

Developers can prototype new devices and new functionalities based on their application

requirements without going through the complex manufacturing process. The final

design then can be transferred to the manufacturer to work on it.

Scenario three - Resources Sharing

This scenario describes the situation when several teams, at the same time, develop

different modules over the same devices. To solve the problem and speed up the de-

velopment process, a new set of simulated devices is generated by DPWSim to share

among developers. The simulation can also be used for demonstration purpose without

the loss of the accuracy.

A.5 Graphical User Interface

DPWSim GUI is built on lightweight Java Swing with a high level of flexibility and the

inherent ability to override native host operating system (OS) UI controls. Swing com-

ponents do not have corresponding native OS GUI components, and every component is

free to render itself in any way possible within the underlying graphics GUIs. DPWSim

GUI is intuitive to users with the dialog/menu/context menu system. Figure A.2 shows

some snapshots of DPWSim GUI in different platforms: Windows OS, Linux OS, and

Mac OS.

A.6 DPWSim Use Cases

DPWSim has been used in several environments such as DPWS Explorer 2, a Web

application, a testbed, and in a number of DPWS studies. The following parts explain

each of these experiments on DPWSim and information about the development process.

2http://ws4d.org/dpws-explorer/

DPWSimUseCases 101

FigureA.3: DPWSExplorerdiscoversaDPWSimdeviceTerraceLightcontainingan
eventMotionDetectionandanoperationSwitch.ThegreeniconnexttotheMotionDe-
tectioneventindicatesthatDPWSExplorerissubscribingtotheevent;oncetheevent
occurs,DPWSExplorerwillreceivethenotification,e.g.,Objectdetected.

FigureA.4:AusercanturnonthelightbulbKitchenLightbyinvokingitsSwitchOn
operationviathesmartphone WebinterfaceofDPWSim Web.

DPWSExplorer

DPWSExplorerisananalyzingtoolforDPWScompliantservices.Itvisualizesvar-

iousaspectsofbothhostingandhostedserviceslikemetadataormessageexchange

andprovidescapabilitiestocallorsubscribetodeviceservicesandevents.Itisused

topreviewDPWSservicesduringthedevelopmentprocess. DPWSimdevicescanbe

discovered,theiroperationscanbeinvoked,andtheireventscanbesubscribedfrom

DPWSExplorer.FigureA.3showshowDPWSExplorerretrievesdataandinteracts

withaDPWSimdevice.

DPWSim Web

DPWSimWebisasmallWebapplicationincludedinthereleaseofDPWSimtoillustrate

anusecasewhena WebapplicationinteractswithDPWSimdevices.ItisaJava Web

applicationrunningonApacheTomcatapplication.ItcandiscoveravailableDPWS

devicesonthenetworkandretrievetheirmetadata. Followingthesedata,userscan

invokedeviceoperationstocarryouttheirtasks.FigureA.4showsDPWSim Webvia

102 DPWSim:ADPWSSimulator

FigureA.5:AvirtualhomehostingseveralDPWSdevicesisdesignedusingDPWSim
withthehelpofa3Dartist(SaHoangfromÉcoleNationaleSuṕerieured’Architecture
deParisLaVillette-ENSAPLV).

itssmartphoneinterfacetoinvokeanoperationofalightbulbdeviceKitchenLight.

Userscanswitchthelightbulbonorofffromthe Webinterfacebyclickingonthe

buttons.

ResearchProjects

DPWSimhasbeenusedwithinITEA2 WebofObjects(WoO)projecttosupportthe

developmentofanincidentmanagementscenariofortestingthecontextualobjectcollab-

oration.DPWSimhasbeenusedthroughoutthedevelopmenttodescribethecommon

interfaceforthecooperationbetweendevicesupontheassignedrightsandspecificrules

imposedinthewholesystem. Anexampleofthehomeenvironmentcreatedforthe

projectisshowninFigureA.5.ThehomeconsistsofseveralDPWSdevicessuchasa

TV,lamps,andacoffeemaker. Withthehelpofa3Dartist,itprovidesanelegant

simulationusingDPWSprotocols.

Besides,DPWSimhasbeenthusfarusedinseveralIoTstudiessuchasthesemantic

buildingautomationsystem[82],socialdevicenetworking[83],andRESTproxyfor

DPWS[84].DPWSimishostedby WoOprojectanditssourcecodeismaintainedon

aGitHubrepository(http://github.com/sonhan/dpwsim.)

Bibliography

[1] J.-P. Vasseur and A. Dunkels, Interconnecting Smart Objects with IP: The Next

Internet. Morgan Kaufmann, 2010.

[2] D. Evans, “The internet of things how the next evolution of the internet is changing

everything,” Cisco, White Paper, 2011.

[3] T. Berners-Lee, J. Hendler, and O. Lassila, “The semantic web,” Scientific Ameri-

can, pp. 29–37, May 2001.

[4] S. Cirani, M. Picone, and L. Veltri, “Cosip: a constrained session initiation protocol

for the internet of things,” in Advances in Service-Oriented and Cloud Computing.

Springer, 2013, pp. 13–24.

[5] Z. Shelby, K. Hartke, and C. Bormann, “Constrained Application Protocol

(CoAP),” IETF, IETF Internet Draft – work in progress 18, Jun. 2013.

[6] “Devices Profile for Web Services Version 1.1,” OASIS, Tech. Rep., Jul. 2009.

[7] “Web Services Architecture,” W3C, W3C Working Group Note, Feb. 2004.

[8] A. Stanford-Clark and H. L. Truong, “Mqtt for sensor networks (mqtt-sn) protocol

specification,” IBM, Tech. Rep., Nov. 2013.

[9] S. Vinoski, “Advanced message queuing protocol,” IEEE Internet Computing,

vol. 10, no. 6, pp. 87–89, Nov 2006.

[10] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key concepts and

principles,” IEEE Internet Computing, vol. 9, no. 1, pp. 75–81, 2005.

[11] D. Miorandi, S. Sicari, F. D. Pellegrini, and I. Chlamtac, “Internet of things: Vision,

applications and research challenges,” Ad Hoc Networks, vol. 10, no. 7, pp. 1497–

1516, 2012.

103

104 Bibliography

[12] O. Mazhelis, E. Luoma, and H. Warma, “Defining an internet-of-things ecosystem,”

in Internet of Things, Smart Spaces, and Next Generation Networking, ser. Lecture

Notes in Computer Science, S. Andreev, S. Balandin, and Y. Koucheryavy, Eds.

Springer Berlin Heidelberg, 2012, vol. 7469, pp. 1–14.

[13] R. V. Prasad, C. Sarkar, V. S. Rao, A. R. Biswas, and I. Niemegeers, “Opportunistic

service provisioning in the future internet using cognitive service approximation,”

in 28th WWRF Meeting, Athens, Greece, 2012.

[14] B. Mandler, F. Antonelli, R. Kleinfeld, C. Pedrinaci, D. Carrera, A. Gugliotta,

D. Schreckling, I. Carreras, D. Raggett, M. Pous, C. Villares, and V. Trifa, “Com-

pose – a journey from the internet of things to the internet of services,” in 2013

27th International Conference on Advanced Information Networking and Applica-

tions Workshops (WAINA), Mar. 2013, pp. 1217–1222.

[15] S. Lee and I. Chong, “User-centric intelligence provisioning in web-of-objects based

iot service,” in 2013 International Conference on ICT Convergence (ICTC), Oct.

2013, pp. 44–49.

[16] S. Gagnon and K. Cakici, “Integrating business services networks and the internet

of things: A new framework for mobile software as a service,” in V conference of

the Italian chapter of AIS (itAIS 2008), Paris, France, 2008.

[17] D. Guinard, V. Trifa, S. Karnouskos, P. Spiess, and D. Savio, “Interacting with the

soa-based internet of things: Discovery, query, selection, and on-demand provision-

ing of web services.” IEEE Transactions on Services Computing, vol. 3, no. 3, pp.

223–235, Jul. 2010.

[18] S. Li, G. Oikonomou, T. Tryfonas, T. Chen, and L. D. Xu, “A distributed con-

sensus algorithm for decision making in service-oriented internet of things,” IEEE

Transactions on Industrial Informatics, vol. 10, no. 2, pp. 1461–1468, May 2014.

[19] R. T. Fielding and R. N. Taylor, “Principled design of the modern web architec-

ture,” ACM Trans. Internet Technol., vol. 2, no. 2, pp. 115–150, May 2002.

[20] “Programmableweb,” ProgrammableWeb. [Online]. Available: http://www.

programmableweb.com/

[21] D. Guinard, V. Trifa, T. Pham, and O. Liechti, “Towards physical mashups in the

web of things,” in Proceedings of INSS 2009 (IEEE Sixth International Conference

on Networked Sensing Systems), Pittsburgh, USA, Jun. 2009.

http://www.programmableweb.com/
http://www.programmableweb.com/

Bibliography 105

[22] D. Guinard and V. Trifa, “Towards the web of things: Web mashups for embedded

devices,” in Workshop on Mashups, Enterprise Mashups and Lightweight Compo-

sition on the Web (MEM 2009), in proceedings of WWW (Intl. World Wide Web

Conferences), Madrid, Spain, 2009.

[23] D. Guinard, “Mashing up your web-enabled home,” in Current Trends in Web

Engineering. Springer, 2010, pp. 442–446.

[24] D. Guinard, M. Mueller, and J. Pasquier-Rocha, “Giving rfid a rest: building a

web-enabled epcis,” in Internet of Things (IOT), 2010. IEEE, 2010, pp. 1–8.

[25] D. Guinard, C. Floerkemeier, and S. Sarma, “Cloud computing, rest and mashups

to simplify rfid application development and deployment,” in Proceedings of the

Second International Workshop on Web of Things. ACM, 2011, p. 9.

[26] D. Guinard, M. Mueller, and V. Trifa, “Restifying real-world systems: A practical

case study in rfid,” in REST: From Research to Practice. Springer, 2011, pp.

359–379.

[27] D. Zhiquan, Y. Nan, C. Bo, and C. Junliang, “Data mashup in the internet of

things,” in 2011 International Conference on Computer Science and Network Tech-

nology (ICCSNT), vol. 2. IEEE, 2011, pp. 948–952.

[28] E. Avilés-López and J. A. Garćıa-Maćıas, “Mashing up the internet of things: a

framework for smart environments,” EURASIP Journal on Wireless Communica-

tions and Networking, vol. 2012, no. 1, pp. 1–11, 2012.

[29] K. Kenda, C. Fortuna, A. Moraru, D. Mladenić, B. Fortuna, and M. Grobelnik,

“Mashups for the web of things,” in Semantic Mashups. Springer, 2013, pp. 145–

169.

[30] “BUGswarm,” BUGswarm. [Online]. Available: http://developer.bugswarm.net/

[31] “Carriots,” Carriots. [Online]. Available: https://www.carriots.com/

[32] “Evrythng,” EVRYTHNG. [Online]. Available: http://www.evrythng.com/

[33] “Grovestreams,” GroveStreams. [Online]. Available: https://grovestreams.com/

[34] “Nimbits,” Nimbits. [Online]. Available: http://www.nimbits.com/

[35] “Open.Sen.se,” Open.Sen.se. [Online]. Available: http://open.sen.se/

[36] “Paraimpu,” Paraimpu. [Online]. Available: http://paraimpu.crs4.it/

[37] “Sensinode,” NanoService. [Online]. Available: http://www.sensinode.com/

http://developer.bugswarm.net/
https://www.carriots.com/
http://www.evrythng.com/
https://grovestreams.com/
http://www.nimbits.com/
http://open.sen.se/
http://paraimpu.crs4.it/
http://www.sensinode.com/

106 Bibliography

[38] “SensorCloud,” SensorCloud. [Online]. Available: http://www.sensorcloud.com/

[39] “Thinkspeak,” ThingSpeak Community. [Online]. Available: https://www.

thingspeak.com/

[40] “Thingworx,” ThingWorx. [Online]. Available: http://www.thingworx.com/

[41] “Xively,” Xively (Pachube). [Online]. Available: https://xively.com/

[42] “Yaler,” Yaler. [Online]. Available: https://yaler.net/

[43] “RDF Primer,” W3C, W3C Recommendation, Feb. 2004.

[44] “OWL 2 web ontology language document overview,” W3C, W3C Recommenda-

tion, Oct. 2009.

[45] M. Compton, P. Barnaghi, L. Bermudez, R. GarćıA-Castro, O. Corcho, S. Cox,

J. Graybeal, M. Hauswirth, C. Henson, A. Herzog et al., “The ssn ontology of the

w3c semantic sensor network incubator group,” Web Semantics: Science, Services

and Agents on the World Wide Web, vol. 17, pp. 25–32, 2012.

[46] A. Gangemi, “Ontology design patterns for semantic web content,” in The Semantic

Web - ISWC 2005, ser. Lecture Notes in Computer Science, Y. Gil, E. Motta,

V. Benjamins, and M. Musen, Eds. Springer Berlin Heidelberg, 2005, vol. 3729,

pp. 262–276.

[47] P. Barnaghi, M. Presser, and K. Moessner, “Publishing linked sensor data,” in

CEUR Workshop Proceedings: Proceedings of the 3rd International Workshop on

Semantic Sensor Networks (SSN), vol. 668, 2010.

[48] “Sparql 1.1 query language,” W3C, W3C Recommendation, Mar. 2013.

[49] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong, H. Hasemann,

A. Kroller, M. Pagel, M. Hauswirth, M. Karnstedt, M. Leggieri, A. Passant, and

R. Richardson, “Spitfire: toward a semantic web of things,” IEEE Communications

Magazine, vol. 49, no. 11, pp. 40–48, 2011.

[50] H. Hasemann, A. Kroller, and M. Pagel, “Rdf provisioning for the internet of

things,” in 2012 3rd International Conference on the Internet of Things (IOT).

IEEE, 2012, pp. 143–150.

[51] D. Bimschas, H. Hasemann, M. Hauswirth, M. Karnstedt, O. Kleine, A. Kröller,

M. Leggieri, R. Mietz, A. Passant, D. Pfisterer, K. Römer, and C. Truong,

“Semantic-service provisioning for the internet of things,” Electronic Communi-

cations of the EASST, vol. 37, 2011.

http://www.sensorcloud.com/
https://www.thingspeak.com/
https://www.thingspeak.com/
http://www.thingworx.com/
https://xively.com/
https://yaler.net/

Bibliography 107

[52] S. De, P. Barnaghi, M. Bauer, and S. Meissner, “Service modelling for the internet

of things,” in 2011 Federated Conference on Computer Science and Information

Systems (FedCSIS), Sep. 2011, pp. 949–955.

[53] O. Kleine, “Integrating the physical world with the internet – a concept evaluation,”

in 2013 IEEE 6th International Conference on Service-Oriented Computing and

Applications (SOCA), Dec. 2013, pp. 323–327.

[54] A. Dunkels, “The contikimac radio duty cycling protocol,” 2011.

[55] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, “Software-based on-line energy

estimation for sensor nodes,” in Proceedings of the 4th workshop on Embedded net-

worked sensors. ACM, 2007, pp. 28–32.

[56] M. Kovatsch, S. Duquennoy, and A. Dunkels, “A low-power coap for contiki,” in

Proceedings of the 8th IEEE International Conference on Mobile Ad-hoc and Sensor

Systems (MASS 2011), Valencia, Spain, Oct. 2011.

[57] M. Kovatsch, M. Lanter, and Z. Shelby, “Californium: Scalable cloud services for

the internet of things with coap,” in Proceedings of the 4th International Conference

on the Internet of Things (IoT 2014), 2014.

[58] “Web Service for Devices Initiative,” Web Service for Devices Initiative. [Online].

Available: http://www.ws4d.org/

[59] S. Cirani, L. Davoli, G. Ferrari, R. Léone, P. Medagliani, M. Picone, and L. Veltri,

“A scalable and self-configuring architecture for service discovery in the internet of

things,” IEEE Internet of Things Journal, vol. 1, no. 5, pp. 508–521, 2014.

[60] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algo-

rithms, 2nd ed. The MIT Press, 2001.

[61] H. Chen, Z. Wu, and P. Cudré-Mauroux, “Semantic web meets computational

intelligence: State of the art and perspectives [review article],” IEEE Computational

Intelligence Magazine, vol. 7, no. 2, pp. 67–74, 2012.

[62] T. Berners-Lee and D. Connolly, “Notation3 (N3): A readable rdf syntax,” W3C,

W3C Team Submission, Mar. 2011.

[63] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, “Cross-level sensor

network simulation with cooja,” in Proceedings 2006 31st IEEE Conference on Local

Computer Networks, Nov 2006, pp. 641–648.

http://www.ws4d.org/

108 Bibliography

[64] S. N. Han, G. Lee, N. Crespi, N. Luong, K. Heo, M. Brut, and P. Gatellier, “Dp-

wsim: A devices profile for web services (dpws) simulator,” IEEE Internet of Things

Journal, vol. 2, no. 3, pp. 221–229, Jun. 2015.

[65] C. Lerche, N. Laum, G. Moritz, E. Zeeb, F. Golatowski, and D. Timmermann,

“Implementing powerful web services for highly resource-constrained devices,” in

2011 IEEE International Conference on Pervasive Computing and Communications

Workshops, 2011, pp. 332–335.

[66] G. Moritz, D. Timmermann, R. Stoll, and F. Golatowski, “Encoding and com-

pression for the devices profile for web services,” in 2010 IEEE 24th Interna-

tional Conference on Advanced Information Networking and Applications Work-

shops (WAINA), 2010, pp. 514–519.

[67] G. Moritz, F. Golatowski, C. Lerche, and D. Timmermann, “Beyond 6lowpan: Web

services in wireless sensor networks,” IEEE Transactions on Industrial Informatics,

vol. 9, no. 4, pp. 1795–1805, Nov. 2013.

[68] I. Samaras, G. Hassapis, and J. Gialelis, “A modified DPWS protocol stack for

6lowpan-based wireless sensor networks,” IEEE Transactions on Industrial Infor-

matics, vol. 9, no. 1, pp. 209–217, Feb. 2013.

[69] X. Yang and X. Zhi, “Dynamic deployment of embedded services for DPWS-enabled

devices,” in 2012 Int. Conf. on Computing, Measurement, Control and Sensor Net-

work (CMCSN), 2012, pp. 302–306.

[70] T. Cucinotta, A. Mancina, G. Anastasi, G. Lipari, L. Mangeruca, R. Checcozzo, and

F. Rusina, “A real-time service-oriented architecture for industrial automation,”

IEEE Transactions on Industrial Informatics, vol. 5, no. 3, pp. 267–277, 2009.

[71] P. Spiess, S. Karnouskos, D. Guinard, D. Savio, O. Baecker, L. Souza, and V. Trifa,

“SOA-based integration of the internet of things in enterprise services,” in IEEE

International Conference on Web Services (ICWS 2009), 2009, pp. 968–975.

[72] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social internet of things (SIoT)

- when social networks meet the internet of things: Concept, architecture and

network characterization,” Computer Networks, vol. 56, no. 16, pp. 3594–3608,

2012.

[73] D. Dietrich, D. Bruckner, G. Zucker, and P. Palensky, “Communication and com-

putation in buildings: A short introduction and overview,” IEEE Transactions on

Industrial Electronics, vol. 57, no. 11, pp. 3577–3584, Nov. 2010.

Bibliography 109

[74] EN 14908-x (1-6), Open Data Communication in Building Automation, Controls

and Building Management - Control Network Protocol. European Committee for

Standardization, Brussels, Belgium, 2005-2010.

[75] ISO 16484-5, Building automation and control systems – Part 5: Data communica-

tion protocol. International Organization for Standardization, Geneva, Switzerland,

Jul. 2012.

[76] ISO/IEC 14543-4-1, Information technology – Home electronic system (HES) archi-

tecture – Part 4-1: Communication layers – Application layer for network enhanced

control devices of HES Class 1. International Organization for Standardization,

Geneva, Switzerland, Jun. 2008.

[77] B. Schilit, N. Adams, and R. Want, “Context-aware computing applications,” in

Proceedings of the 1994 First Workshop on Mobile Computing Systems and Appli-

cations, ser. WMCSA ’94, Washington, DC, USA, 1994, pp. 85–90.

[78] S. Dustdar and W. Schreiner, “A survey on web services composition,” Intl. Journal

of Web and Grid Services, vol. 1, no. 1, pp. 1–30, 2005.

[79] J. Elliott, R. Eckstein, M. Loy, D. Wood, and B. Cole, Java Swing. O’Reilly, 2002.

[80] D. E. Comer, Internetworking with TCP/IP: Principles, Protocol, and Architec-

tures. Prentice Hall, 2000.

[81] B. L. Nelson, J. S. Carson, and J. Banks, Discrete-Event System Simulation. Pren-

tice hall, 2001.

[82] S. N. Han, G. Lee, and N. Crespi, “Semantic context-aware service composition

for building automation system,” IEEE Transactions on Industrial Informatics,

vol. 10, no. 1, pp. 752–761, Feb. 2014.

[83] D. Hussein, S. N. Han, X. Han, G. M. Lee, and N. Crespi, “A framework for

social device networking,” in 2013 IEEE International Conference on Distributed

Computing in Sensor Systems (DCOSS), May 2013, pp. 356–360.

[84] S. N. Han, S. Park, G. M. Lee, and N. Crespi, “Extending the device profile for web

services (dpws) standard using a rest proxy,” IEEE Internet Computing, vol. 19,

no. 1, pp. 10–17, Jan. 2015.

Acronym

6EdR 6LoWPAN Edge Router

6LoWPAN IPv6 Low-power Wireless Personal Area Network

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

BAS Building Automation System

BLE Bluetooth Low Energy

CoAP Constrained Application Protocol

CPDL Composition Plan Description Language

CSMA Carrier Sense Multiple Access

DECT Digital Enhanced Cordless Telecommunications

DPWS Devices Profile for Web Services

DTLS Datagram Transport Layer Security

ETSI European Telecommunications Standards Institute

FP European Framework Programme

HTTP Hypertext Transfer Protocol

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPv6 Internet Protocol version 6

IRTF Internet Research Task Force

ITEA Information Technology for European Advancement

LLN Low-power and Lossy Network

LoWPAN Low-power Wireless Personal Area Network

LPM Low-power Mode

LQI Link Quality Indication

MQTT Message Queue Telemetry Transport

N3 Notation3

NDP Neighbor Discovery Protocol

NLP Natural Language Processing

110

111

ODP Ontology Design Pattern

OSN Online Social Network

OWL Web Ontology Language

RDF Resource Description Framework

REST Representational State Transfer

RFID Radio-Frequency Identification

RPL Low-Power and Lossy Networks

RSSI Received Signal Strength

RTT Round-trip Time

RX Reception

SIoT Social Internet of Things

SLIP Serial Line Internet Protocol

SNMP Simple Network Management Protocol

SOA Service-Oriented Architecture

SSN Semantic Sensor Network

TCP Transmission Control Protocol

TSCH Timeslotted Channel Hopping

TUN Network TUNnel

TX Transmission

UDDI Universal Description, Discovery and Integration

UDP User Datagram Protocol

W3C Word Wide Web Consortium

WSDL Web Service Description Language

WUI Web-based User Interface

XMPP Extensible Messaging and Presence Protocol

Publications

1. S. N. Han, G. M. Lee and N. Crespi, “Towards Automated Service Composition

Using Policy Ontology in Building Automation System,” 2012 IEEE 9th Interna-

tional Conference on Services Computing (SCC), pp. 685-686, June 2012.

2. S. N. Han, G. M. Lee and N. Crespi, “Context-aware Service Composition Frame-

work in Web-enabled Building Automation System,” 2012 16th Intl. Conf. on

Intelligence in Next Generation Networks (ICIN), pp. 128-133, October 2012.

3. D. Hussein, S. N. Han, X. Han, G. M. Lee and N. Crespi, “A Framework for

Social Device Networking,” 2013 IEEE International Conference on Distributed

Computing in Sensor Systems (DCOSS), pp. 356-360, May 2013.

4. S. N. Han, G. Lee and N. Crespi, “Semantic Context-Aware Service Composition

for Building Automation System,” IEEE Transactions on Industrial Informatics,

vol. 10, no. 1, pp. 752-761, February 2014.

5. S. N. Han, G. M. Lee, N. Crespi, V. L. Nguyen, H. Kyoungwoo, M. Brut and

P. Gatellier, “DPWSim: A Simulation Toolkit for IoT Applications Using Devices

Profile for Web Services,” 2014 IEEE World Forum on Internet of Things (WF-

IoT), pp. 544-547, March 2014.

6. A. Ortiz, D. Hussein, S. Park, S. N. Han and N. Crespi, “The Cluster Between

Internet of Things and Social Networks: Review and Research Challenges,” IEEE

Internet of Things Journal, vol. 1, no. 3, pp. 206-215, June 2014.

7. S. N. Han, S. Park, G. M. Lee and N. Crespi, “Extending the Device Profile for

Web Services (DPWS) Standard using a REST Proxy,” IEEE Internet Computing,

vol. 19, no. 1, pp. 10-17, January 2015.

8. D. Hussein, S. Park, S. N. Han and N. Crespi, “Dynamic Social Structure of

Things: A Contextual Approach in CPSS,” IEEE Internet Computing, vol. 19,

no. 3, pp. 12-20, May 2015.

9. S. N. Han, G. Lee, N. Crespi, N. Luong, K. Heo, M. Brut and P. Gatellier, “DP-

WSim: A Devices Profile for Web Services (DPWS) Simulator,” IEEE Internet of

Things Journal, vol. 2, no. 3, pp. 221-229, June 2015.

	Introduction
	Motivation
	Contributions
	Dissertation Outline

	Literature Review
	IoT Protocol Stack
	Link and Adaptation Layers
	Internet Layer: Routing
	Transport Layer
	Application Layer

	Service Provisioning in IoT
	General Models
	SOA-based Models
	RESTful Service Provisioning

	Semantic Annotation and Provisioning
	Literature Analysis

	System Architecture
	Requirements
	Open Standards and Interoperability
	Low Energy Consumption
	Reliability
	Security and Privacy
	Scalability

	IoT Application on Web
	System Architecture
	Reference Infrastructure
	Data Model
	Multilayer Architecture
	Functional Block Diagram
	Provisioning Workflow

	Summary

	Design and Performance Study of 6LoWPAN
	6LoWPAN Design
	Internetworking Architecture
	6LoWPAN Edge Router

	6LoWPAN Implementation
	Hardware
	Software

	Performance Evaluation
	Energy Consumption
	Duty Cycle
	Network Performance
	Service Communication

	Discussion and Lessons Learned
	Energy Consumption
	Contiki OS 3.x and Network Performance
	Current IPv4 Infrastructure
	Web Services
	Deployment

	Summary

	Semantic Service Provisioning
	Provisioning Issues
	Service Provisioning
	Service Discovery
	Scheduling
	Semantic Annotation
	Authorization with OAuth 2.0
	URI Mapping
	Web API Generation
	Resource Management

	In-network Implementation with DPWS
	Devices Profile for Web Services
	Use case
	Global Dynamic Discovery
	Publish/subscribe Eventing
	WSDL Caching

	Performance Evaluation
	Transparency
	Scheduling: Simultaneous Requests Handling
	Scheduling: Energy Consumption
	Semantic Annotation
	REST Proxy Message Overhead and Latency

	Summary

	Case Studies: IoT Applications on Web
	Devices Profile for Web Services
	ThingsChat: A Social Internet of Things Platform
	System Architecture
	Socialized Web API
	ThingsChat Platform
	Prototype and Experiment

	SamBAS: A Building Automation System
	System Architecture
	Building Ontology and Graph Database
	Semantic Context-aware Service Composition
	Prototype and Experiments

	Implementation Remarks

	Conclusion and Future Work
	Conclusion
	Future Work

	DPWSim: A DPWS Simulator
	Simulation Model
	DPWSim Components
	DPWSim Core Functionalities
	Usage Scenarios
	Graphical User Interface
	DPWSim Use Cases

	Bibliography
	Acronym

