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We can only see a short distaradeead,
but we can see plenty there that needs to be done.
Alan Turing, 1950
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Abstract

Due to the rising complexity of automotive Electric/Electronic embedded systems, Functional Safety
becomes a main issue in the automotive industry. This issue has been formalized by the introduction
of the 1ISO26262 standard for functional safety in 20Ihe challenges are, on the one hand to design

safe systems based on a systematic verification and validation approach, and on the other hand, the
fulfilment of the requirements of the ISEB262 standard. Following ISE6262 recommendations,

our approach, &sed on fault injection, aims at verifying fault tolerance mechanisms and non
functional requirements at all steps of the development cycle, from early design phases down to i
plementation.

Fault injectionis a verification technique that has been invedéd for a long timeHowever the role

of fault injectionduringdesign phasand its complementarities with the experimental validation of the
target have not been explored. In this wose investigate a fault injection continuum, from system
designvalidation to experiments on plemented targets. The proposed approach considers the safety
analyses as a starting point, with the identification of safety mechanisms and safety requirements, and
goes down to the validation ¢fie implementation o$afety mehanismshroughfault injection e-
perimentsThe whole approach is based on a key fault injection framework, called FARM (Fewlt, A
tivation, Readouts and Measures).

We showthat this approach can b@egrated in thelevelopment process of the automoevebedded
systems described the SO 26262 standar@ur approach is illustrated on an automotive case study:
a FrontLight system.

Keywords: Fault Injection, Automotive, Embedded $ms, Safety, Verificatiognd 1S0O26262
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Résunme

En raison de la complexité croissante des systamtsnobilesembarquésla sireté de fonctiorex

mentest devenuein enetuPDMHXU GH OfLQG XV WU LdfoissaqhWK AR B/L @/H D &EKWWL G
sortie en 2011e la norme ISO 26263ur la sécurité fonctionnellées défisauxquelles sont confre

tés les acteurs du domaine sont donc les suiva@®4 X Q H laScDridaption desystémes sdrs, et
GIDXWUH SDUW ODgenée® tR laPrioivie 1S8BR262.MIptre approchese base sur
OYDSSOLFDWLRQ V\VWpPDWLTXH GH OfLQMHFWLRQ GH IDXWHV S
VPpFXULWp WRXW DX ORQJ GX F\FOH GH GpYHORSSHratdidl@W GHV S
/TLQMHFW Lshaus @aimeDeX Yakiculier de vérifier que les mécanismes de tolérance aux fautes

sont efficaces et que les exigences-fanttionndles sont respectées.

/ Ynjection de faute est une technique de vérificatiés ancienneCependantson role lorsde la

phase de conception stscomplémentarittavecl D YDOLGDWLRQ H[SpULPHQWDOH Pp
I1RWUH DSSURFKMIUS$BOE KDN VRQ Ga(td3 Gigadidhs) R&Edvés et Mesures)

tout au long du processus de développementahab/ses de slresbnt le point de d#art de notre

approche avec lidentification d& mécanismesde tolérance aux fautes et des exigences non
fonctionnelles etse erminent pala validationde cesmécanismegar lesexpérienceslassiques'in-

jedtion de fautes.

Enfin, mous montrons queotreapproche peut étre intégrdans le processus de développement des
systéme embarqués automobiles décdens la norme ISO 262.Les contributions de la these sont
illustréesVXU OTpWXGH GH FPO LXK N\DWREW GIXQH DXWRPRELOH

Mots-clés : Injection de fautes, Automobile, Systéemes Embarqués, Sécurité, Vérification,
1ISO 26262
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Introduction

The criticality of automotive embedded systembdasominga major issue. Indeed, the growingreo
plexity of these systemdue to the integration of more functionalities as well as the integration of
mixed criticality functionalities into electronic systems, may lead to hazatwrhesviorif the devé
opment process is nanproved The introduction otomfort system ¢€.g, Electronic Power Steae

ing2 EPS),active safety systenig.g, airbags brake assistind,in a near futureof autonomous cars
necessitates more stringent verification and validation methods.

Safety is a major issue in the automotive domain, due to the cost of vehicle recall when aleritical
fect is discovered.Major car manufacturers have been confronted to these massive recalls
(Shepardson, 2013%trong, 2015)In addition, severatlass actionsued car manufacture(BARR
Group, 2014)(Koopman P. , 2014jor defect of electric/electronic devicddence, activities must
tend toward a rigoroudevelopment process, which closely integrates safety design actigitips (
definition of safety requirements, definition of safety mechanisms) and the verification activities.

The introduction of IS@6262 standard for functionahfety, in 2011, in the automotive industry, is

an important step in this direction. The 136262 standard proposes methods and techniques that
should be integrated in the development process in order to ensure safe?@2k0Onotably hil-

lights that falt injection should be used in the development process. All the verification and validation
activities are impacted, even for the verification of the design. This recommendation raised the issue
of the role of fault injection in the design phase, whictagsfar as we know, a difficult problem that

has not been investigated yet.

)DXOW ,QMHFWLRQ LV D YHULILFDWLRQ WHFKQLTXH WKDW KDV E
HDUO\ VvV 7RGD\ IDXOW LQMHFWLRQ rgeB\MOfeHth® Sixe®Qd, HG WR P
Middleware web services, web servers, embedded systetonsThe results of fault injection oa

paigns are twofold: the verification of the fault tolerance mechanisms, with the estimation of error
detection and error recovecpverage, and the experimental evaluation of the robustness of the target,
i.e.the identification of the failure modes.

In this dissertation, we investigate a fault injection continuum, from system design validationrto expe
iments on implemented targefBhe proposed approach catesis the safety analyses as a starting
point, with the identification of safety mechanisms and safety requirements, and goes down to the
validation of safety mechanisms implementation with fault injection experiments.
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Previous work performedon implemented targets has shown the relevance of the FARM fault inje
tion model.FARM stand for Fault, Activation, Readouts and/leasuresFARM is a key concept
enabling a precise definition of fault injection experiments on implemeatgets. Most fault inje-
tion studies are based on this model and all studies are compatible with this model.

Our study starts with the investigations of the two followiugstionsCan the FARM method be
appliedat WKH HDUO\ GHVLJQ SKDVH" :KDW DUH WKH H[SHFWHG IDXC
validation of safety requirements?

As wewill see, these two questions can be refined:
- What arethe targets?Can we use the models as targets?

- What arethe measuress the final aim to check that a safety mechanism exists, or to look
for possible violations of a given property?

- What isthe fault model? Do we define it from system design, which results in an abstract
fault model, or from system semantics,, applicaton-oriented?

- What doesactivation mear? How behavioral description, defining when fault injection is
triggered, can be provided? Should we derive it from use cases, state diagrams or séquence d
agrams?

A deep analysis of these questions led udeteelopan approach covering the whole development
process which enables the validation of critical embedded. Our approach shows the link between
safety analysis and the application of fault injection in a seamless fashion; it shows the coraplement
rities of bothapproaches in the design and validation process. We show that this approach can be part
of the development process of the automotive embedded systems desdtiled826262 standard.

This dissertation is structured in six chapters.

Chapter JandChapter Ppresent definitions and general notions about automotive sysiepesda-

bility, and development process

Chapter 1discusseslependabilitynotions(dependability attributes, threats and meaars] their p-

plicability in the automotive industryparticularly in the context of the 1SE5262 standard-inally,

we focus on a specific verificatiand validationrmethod Faultinjection. The state of the art of Fault
injection adlresses the different objectives of this noeththe developed techniques and tools that
have been developed and the reeenbomotive studies related to this topic.

Chapter faims at highlighihg the integration of fault injection into tlievelopment cycle of an aut

motive sysem in the context ofSO26262.We describe separately the activities of the functional
development process and the safety development process. Then, we disitngadtsand the obje
tives of fault injection in theariousphases of the development cycle. This discussiges the main
issue of the thesishe continuous application of fault injection activity all along the development c
cle of an automotive embdéed system.

This question is answered @hapter gandChapter #Our approach enablés manage fault injection
in all phases of the development cycle, beginning in thénmptementation phaspChapter $ and
ending by the post implementation phf§adpter % The meaning of fault injection during this phase
is investigated usingARM modelas a framork in all phaseswWe show the complementarities-b
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tween the safety analyses and fault injection. In addition, we show how fault injection experiments
should be guided using the results of-pnplementation phases, and we discussnti@asures o
tained in the posimplementation phase on the analyses of thémppéementation phase.

Chapter $andChapter @illustrate thewhole methodology on a case study, from analyses to iexper
ments. The ase study is a Froitight System, which controls the lelaeam headlights of the vehicle.
(Chapter $applies the proposed approaciGifapter gandChapter 4by performing FIA and identjf

ing the fault injection experimentm[Chapter $the experiments, defined/@hapter bare performed
on a prototypeusing a fault injection tool developed during the thesis.

Finally, we conclude by reminding the main problem addressed, and our principal achievements in
dealing with itand recommendations. Possible directions for the future research developmal#s are
presented.
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In this chapterpur objective is to describe thwrerall context of this studyWe recall here the recent
evolutionof automotive embedded systetngether with standardization of tHevelopment process,
particularly for safety Then,we summarizehe basic concepts of dependabilifjnese concepts are
linked with safety issues and specific terminology of dlméeomotive systems. Finallyhe validation
techniquej.e., fault injection is characterized by presenting its apprazgcmethods and techniques.

1.1 Electric/Electronic Embedded Systems (E/E Systems)

1.1.1 Automotive E/E Systems

6LQFH WKH H Qtie ditorhdtivélindusty has changed its way to design vetécid the a-
derlying systems thatompose avehicle. Back then, the systems were desigiollowing a federal
architecture whera singleECU wasdedicated to one function or service.

The innovation pachasrisenquite rapidly particularlyregardingelectronicand @mputingfacilities
thatlead to replace mechanic and hydraulic commands by electronic compd@efore that, each
function/system o& carwasdeveloped independently from the others.

7 R G Derfibédded systems cover a large spectrumutdmotivesystens. motor control €.g, fuel
injection), passive safetye.g, airbags), braking systems.g, Anti-Lock Blocking System+ABS,
Electronic Stability Control ESB, steering €.g, Electronic Power SteeringePS).

These systemsxhibit now the followingproperties:

X systems arénterconnected. Microcontrollers (or Electronic Control Unit ECU) of the
vehicle communicate with each other.

x functions/services armtegrated in complex systems. A system provides severatfun
tions, e.g, the Body Controller of the vehicle controls windows, lights, immobilizes the
vehicle,etc.

x functions aredistributed on multiple systems. Several parts of a function are hosted by
different systems (microcontrollers). For example, the steering colunkinpsystem,
or the air conditioning system are distributed.

The main advantage of these solutions is the reduction of the number of ECU in the vehicle. However,
it increases significantly the complexity of each ECU. The development edferiarger andhe ce-
velopment processiust be improved in order to ensareorrectbehavior of the system, particularly
regardingdependability aspects.

1.1.2 Standardization Needs: 1ISO 26262

The integration of E/E systennaisedthe problem othe coexistence of functions eervices having
different levels of criticality in a singlgystem. Indeedsurrentsystems integrate both critical and non
critical functions.A critical functioncanlead to an Undesired EvehUE, i.e., an accidenin the
worst caseln addition manyactors are involved in the development process of aacar manufa-
turer (Original Equipment ManufacturétOEM), and several suppliers (Tier 1, Tier 2) which develop
productsfor the system defined by the OEM. Each company has its own developmergsprtbee-
fore it is necessary to define and follow robust design rules in trdlestify work methodsanddoc-
umentation at all development steps. Hence, all activities ensuring dependavitiobe traced.
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It is worth noting thathere are neither galations nor directives on functional safety in the aatom

tive industry. Besides, there is no legal requirement for certification of automotive E/E systems. First,
severalactors decide to adhere (voluntary) to the state of the art defined in the IEQS1EC
61508, 201Q)Contrary to ARRA754/ED79 (SAE International, 2010k uidelines For Development

Of Civil Aircraft and Systems, ED-12#/DO1784RTCA & EUROCAE, 2011)with # = A in 1985,

B in 1992 and C in 2011) f@oftware Considerations in Airborne Systems and Equipment Cer
fication, or the safety guide®(g.50-SG-D3 and 56SG-D8) in nuclear industry, this standard is not
reserved to only one domain. Indeg&ghroposes an approach applicable to generic embedded systems.
The IEC61508 standard focuses on the ovedaiVelopment process of a system and the steps that
have to be respected in order to achieve safety. Particularly, it defines achievable gbelsgecif

cation, the design, the implementation ahd assessment of Electrical/ Electronic/ Electronio-Pr
grammable Systems (E/E/EP).

Since 2011, a derived version called I3&262(1SO 26262, 2011)s used. Thistandard is the result

of ajoint work between the major actors of thetomotivedomainaiming atspecifying best practices

for the documentation, the interactions between actors and the methods and techniques to fustify fun
tional safety of systems. Thigardardfacilitates exchanges between OEMs anppliers byexhibit-

ing requirements to achieve.

The scope of the 1S@6262 is thfunctional safety, i.e, S\WKH DEVHQFH RI XQUHDVRQDE
KD]DUGVY FDXVHG E\ PDOIXQFWLR QNI XHKDLYR @ BOECIS Rui¢HOE\Y W H P V'
of the scope of the studg,g, a cause of a malfunction could not be a fire causesktgrnal cond

tions, such thaa humid environment on an E/E systemanelectrical shockvith a contacto ahigh

voltage sourcelnstead, functional safety covers fire due to an over excitation of an altewitktior

the system in operatiqdesign bug, aging of wiresic).

The 1S0O26262 is divided in ten parésdescribe in|Figurel.1

FIGURE 1.1 THE TEN PARTS OF THEISO 26262(1SO 26262,2011)

Our work deals with Past4, 5and 6, which provideall the requirements for the development of an
automotive system. However, other parts are also very helpful for understanding these requirements:
Pars 1,8, 9 and 10.
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1.2 Basic Concepts of Dependability & 1ISO 26262

The definition of dependability emergeaiin the work done ithe IFIP WG10.4vorking groupon

Dependable Computing and Fault Toleran@ependability isdefined agshe SWUXVWZRUWKLQHVYV
FRPSXWLQJ V\VWHP ZKLFK DOORZV UHOLDQFH WR @ WXVWLILDE
10.4, 2015)

Dependability is a key concefur any critical system. It could be seen as the aptitude to avoid the
failures that occur during service deliyefThe service corresponds to behavior perceived by the users
(human or notpr servicesn interaction withit.

Dependability isalso a welldocumented concepgand a complete taxonomyan be found in
(Avizienis, Laprie, Randell, & Landwehr, 2004phdeed, dependability is defined by siitributes,
three hreats and four categories of means.

1.2.1 From Dependability Attributes to Automotive Safety Integrity Levels
1.2.1.1 Dependability Attributes

Dependability encompasses the following attributes, which characterize the quality of the delivered
service

Availability : readiness for correct service;

Reliability : continuity of correct service;

Safety. absence of catastrophic consequences on the user(s) and the environment;
Confidentiality : absence of unauthorized disclosure of information;

Integrity : absewe of improper system alterations;

Maintainability : ability to undergo modifications and repairs.

X X X X X X

Depending on the industrial field, the significance of each attribute varies. This chlds®n the
objectives that should be achievied a givenservice For example, in transportation fields, reliability
and safety are of prime priority; in communicateystem availability, reliability andconfidentiality
are the target attributes

Historically, in automotive industry, the effort was on the achievemrgliability and availability.

The improvement of the reliability of components was sufficient to improve the quality of service.

Then, the growing complexity and the criticality of E/E systems lead to focsafety Today, secuw

ty importance isrisRJ TXLFNO\ LQ SDUDOOHO ZLWK FDUTVWHIR®QHFWLYL
will mainly concentrate osafetyaspects

1.2.1.2 Safety & Automotive Safety -Integrity Level

Considering the dependability attributes, the actor givan domain cardefinea scale of criticaty

for the given attribute. Indeedall systens shouldbe developed correctiyHowever,depending on
their level of criticality, they do not require the sardevelopmenefforts,in terms of both design and
validation.For examplecar awio and videosystemddo not require the same safety effort than a fuel
injectionsystem

The 1S026262 standardntroduces the concept of Automotive Safety Integrity Level (ASIL). They
are four levels: from ASIL A (the less critical) to ASIL D (the mosti@al). There is also a level,
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noted Quality Management (QM), which is not associated with any specific requirements. Hence, no
safetyrelated activitiesrerequired by IS@6262in this caseThe ASIL is determined by the highest
criticality of hazardssituations at vehicle level that may lead to harm person the system is interacting
with.

When assigning these levels, three parameters must be taken into accola|eské

1. severity that is based on thseriousness of injuriesaused by incidents or accidents
(S1: Light and moderate injuries, S2: Severe and-thfeatening injuries (survival
probable) S3 Life-threatening injuries (survival uncertain), fatal injuries);

2. probability of exposure. Occurrence of the use case: E1l: very low probability, E2:
Low probability E3: Medium probability, E4: High probability;

3. controllability . It is a subjective concephat is based on the abilities of tlmad us-
er’ (e.g, drivers, pedestriangtc) to handle the hazard (C1: Simply controllable, C2:
Normally controllable, C3: Difficult to control or uncontrollable).

The objective of theseriticality levels isto quantfy the level of 3 W U at Whiththe system should be
designed tgrovideits functions correctly. The mosafety criticalthe system is, theigherthe ASIL
is, resulting in stringent efforts to comply with the standard

TABLE 1.1 DEFINITION OF THESAFETY-ASIL MATRIX (1ISO 26262,2011)

Controllability
Sev?]rity of the P(;?gigglty c1 c2 c3
arm
sure
El QM QM QM
s1 E2 QM QM QM
E3 QM QM ASIL A
E4 QM ASIL A ASIL B
El QM QM QM
s2 E2 QM QM ASIL A
E3 QM ASIL A ASIL B
E4 ASILA | ASILB ASIL C
El QM QM ASIL A
S3 E2 QM ASIL A ASILB
E3 ASILA | ASILB ASIL C
E4 ASILB | ASILC ASIL D

Due to the imperfections inherent to all systedependabilityattributes have to be interpreted in a
relative sense, not in an absolute, deterministic one. The requirements for the attributes are therefore
specified according to levels and some of them may not be required for a given system.

1.2.2 From Dependability Threa ts to Fault Model
1.2.2.1 Dependability Threats

The threats to dependability are faults, errors, failureser&ice failure, also abbreviated tailure,

is an event that occurs when the service delivered by the implemented system function deviates from
the correct service. Hence, it affects the targeted level of satisfaction of one or several dependability
attributes. They are linked within the chain of dependability thithastrated ifFigure1.2]
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FIGURE 1.2 RECURSIVECHAIN OF DEPENDABILITY THREATS

At the beginning of a service failure, there ifaalt, i.e. the origin ofa potential failure A fault is a
defect thatan be internal or external to a syst@ihey have beenlassifiedinto three major overfa
ping categoriegAvizienis, Laprie, Randell, & Landwehr, 2004)

x development faults that include all fault classes occurridgring development;
X physical faults, that include all fault classes that affect hardware;
X interaction faults, that include all external faults.

Although a system may contain a fault, its input and state conditions may never cause this fault to be
activatedso that an error occurs; in this case, the fault is referrddrasant. Then, as soon as a fault

has been activated, it produceseror, i.e., a part of the system state that may cause a subsequent
service failure. The failure occurs when a propagatimgr dinternalpropagation zreaches and alters

the interface of the considered system service.

Finally, the failure may propagate the interface of another system service (external propagation),
that appears as an external fault to this servicerdfésred toascausation

1.2.2.2 Fault Model in Automotive Embedded Systems

An automotive embedded system may fail in operation due to either physical faults (hardware aging,
EMC, etc) or residual bugs from design or development phase.

Regarding the faults of systems and specific hardwhlements a classificon is proposed in the
Annex D of ISO 262625 (1ISO 26262, 2011)In the table, given IAPPENDIX 1| each type otle-
mentis considered: E/E System, relays, communication links, sensors, processingtcinits,

Then, for each component, a set of typical faults, errors or failures of hardware is described- The pr

posed listngt GRHV QRW FODLP H[KDXVWLYHQHVY DQG FDQ EH DGMXV\
GHSHQGLQJ RQ WTRsisDriichded o Pravid& representatinedeline of the fault ma-

el that should be considered in the automotive donf@r example, sensor fault model encompasses

faults such as stuetut of range, stuck range, oscillations and offsets.

This table also proposes a guideline for the diagnostic coverage achievable by a safety mechanism.
According to this table, a sajeimechanism that covers a category (each componetthtegsate-

ries) of faults has the ability to achieve low (60%), medium (90%) or high (99%) diagnostic coverage.

For example, a safety mechanism covering all the sensor faults ddgm@veously can pretend to

achieve aiigh, 99% DC.3, QS XW FRPSDULVRQ YRWLQJ RR isalRmposed) EHWW
measure to achieve this high DC.

It should be noted that a similar classification of the Appendix D of26Z525 has been also den
in the Electronic Architecture and System engineering for Integrated Safety syH&84S Europe-
an projeciLu, 2009a) However, EASIS classification does not propose an achievable DC level.

10
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Specifically, in software @plications, physical faults are modeled as permanent fault (leading to hang
or crash) and transient faults.g.bit-flips and stuckat in the code and data memory segments leading
to value errors). Such faults are always possible due to the aggressieament of automotive g
plications and the increasing complexity of the hardware components and system architecture.

To take into account such aggressive environments and complex architd@0r&§2626 (highly)
recommends injection of arbitrary vakui@.g, by corrupting values of variables, by introducing code
mutationsor by corrupting values of CPU registers).

Regarding software faults, also called systematic faults, they may occur due-respected rules

during the design. The errors couldib&oduced in system, hardware or software design, because of a
misinterpretation of the specifications. In software, the following are potential causes of these design
errors: wrong temporal design (sizing, execution oreler), wrong resource sizingyrong data usage

(wrong choice of data for usage, wrong handling of a ditg, or nonexpected modes. These bugs

DUH LQWURGXFHG GXULQJ PDQXDO FRGLQJ RU ZLWK FRPSLOHU |

1.2.3 From Dependability Means to Verification

Finally, dependability manswhoseobjective is to ensure dependability attributes from dependability
threats, are grouped in four categories:

fault prevention aims to prevent the occurrence or introduction of faults;

fault tolerance aims to avoid service failure in the presence of faults;

fault removal aims to reduce the number and the severity of faults;

fault forecasting aims to provide an estimation of the present number of faults, future
incidence and possible consequences oltau

X X X X

Fault prevention is ensured by quality control technigaesh as adherence to design rullesyugh-
out the development and the manufactupnocesf the system.

1.2.3.1 Fault Tolerance

In order to prevent a service failure, a fault tolerant system rieadgegrate in its design errora
dling techniques, includingrror detection error correction error recovery redundancyanddivers-
fication (for systematic faults).

All these techniques, when integrated in a design, provide a fault tolerant auchitegainst pre
defined faults. Various architectures have been studied and each industrial domain has devaloped sol
tions that meet its constraints. For example, triplication with majority vote is a common solution for
railways avionic or aerospace syste since decades, contrarythe automotive domain where this
robust solution isisually not necessary, and fadfe designs are used

1.2.3.2 Fault Forecasting

Fault forecasting is conducted by performing an evaluation of the system behavior with refspétt to
occurrence or activation. The evaluation is composed of two aspects:

X qualitative, or ordinal, evaluation. This aimsat identifying, classifyng, rankng the
failure modes, or the event combinations (components failures or environmenta cond
tions) whch may lead to system failures,

11
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X quantitative, or probabilistic.evaluation. This aimsat evaluaing in terms of probabit
ties the extent to which some of the attributes of dependability are satisfied; those a
tributes are then viewed as measures of degleitith. This evaluation is baseah the
alternation of correct and incorrect service delivery, to define reliability, availability and
maintainability measures.

Particularly in the automotive domain, specific methave to be calculated: Probabilisticeiic of
Hardware FailureRMHF), Single Point Fault MetricSPFM) and Latenfault Metric(LFM ).

Numerous methods enable to evaluate qualitative and quantitative §$pbt#d_2|lists safety angt
sis methods

TABLE 1.2 SAFETY ANALYSES METHODS

Safety ﬁ]noac;yss - Qualitative | Quantitative | Automotive Industry Specific Information
1 Also referred to as Preliminary Hazard Ang
AR g ysis (PHA) in automotive industry
FME(C)A® 9 9
Specific to automotive industry. Enables th
FMEDA® 9 9 calculation of architectural metrics from th
1ISO 26262 (SPFM and LFM)
4 Analyzes independence, and rAaterference
DFA 9
between elements of the component
CPA 9
FTA® 9 9 9
RBD® 9 9
Markov Chain’ 9
Stochastic Petri Nets 9
ETA® 9 9

Then, the evaluation of the measures can be performed using modeling and analstsestbrdugh
testing.This experimenbased approadhk tackled withfault injection techniques.

1.2.3.3 Fault Removal

Here, we focus on the fault removal activities during development phase. In this phase, the objective is
to perform preventive or corrective mgnance, by patching software, replacement of electraic d
vices,etc.

The fault removal activity consists mainly in a verification process, which leads to diagnose the threats
and finally to proceed to the necessary corrections. Then, the process miegiela¢ed in order to
checkthatthe fault removal process has not inserted new fdualtstactice this step is referred to as
non-regressionverifications.

! Hazard Analysis & Rislssessmente(g, HAZOP)(M20S, 2014)

2 Failure Mode, Effect (and Criticality) Analys{8outi & Kadi, 1994) (Department of the Army, 2006)ECSSQ-30-02B,
2008)

3 Failure Mode, Effect and Diagnosis AnalyéigHostis, 2013)

4 Dependant Failure Analys{SO 26262, 2011)

® Fault TreeAnalysis(Barlow & Lambert, 1975)

® Reliability Block Diagram(SaRS: Safety and Reliability Society, 2011)

7 (SaRS: Safety and Reliability Society, 2011)

8 Event Tree AnalysigM20S, 2014)

12
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Verification techniques can be classified according to whether or not they involve exercissyg-the

tem. One the one hand, if the system is not activated these arestafied erification techniques

6WDWLF DQDO\WHYVY FDQ EH SHUIRUPHG PDQXDOO\ RU &XWRPDW
YLHZV™ 3ZDONWK U Rk, Pétdddsah QLT ohlihy20Q2)onsisting ina detailed anla

ysis ofa systenartifact (specifications, design, source coele,). Even if this technique is time o

suming, a large number of faults can be identified prior to any executiore clyitem. Automatic

ones based on software tools give informative metrics or lists of anomalies. Static analyses also i

clude theorem proving (requires formal specificationthis casgand modekthecking techniques.

On the other hand, thlynamic verification techniquesof the systemare usually referred to asg-

ing. A test aims at providing inputs to a system, and verifyirag the observed behavior is correct
with respecto the specificationdue to complexityof modern automotive systefisis not manag-
able to verify exhaustively a system (excéptvery specific simple cases). Indeed, a test campaign
does not provide a proof of the zatefaultbehavior of thesystem;neverthelesst enables to increase
GHVLIJQHUV DQG GHYsysR gty WUXVW LQ WKH

Moreover, a test is driven by verification objectives: performance, functional requirement, robustness,
etc. Each of the test categories is important and provides complementary information on the systems.
Among testing objectives, the intuction of dependability raises the issue of the verification of fault
tolerance mechanisms. Similarly to other verification techniques mentioned, befemmandatory to
introducefaults or errors in the system talidatethe fault tolerance mechamsduring thetesting

phase This technique callefhwult injection (FI) will be discussed in the following section.

1.3 Fault Injection for the Verification and Validation of Automotive
E/E Systems

The introduction of fault injection in 1IS@6262, in 2011, hanewed thénterestof this method in

the automotive industry. However, this weftablished verificatiomethodis now usedby many
industriesin severaldomains. Fault injectioffBarbosa, Karlsson, Madeira, & Vieira, 2018)a key
techniquen the evaluation of the dependability of systems. We have seen in the previous section that
fault injectionwasa dedicated method for bothult forecastingpy predicting the posieployment
behavior of the systems under rédaeatsandfault remova) by identifying weaknesses or defects in

the implementation of safety mechanisms.

In this section, we first identify the objectives of fault injection campaignsshad how to chare-
terize a fault injection environmerparticulrly the attributes of faulbjection. We alsogive an ove

view of typical fault injection techniques and tools, and finally several studies related to thevoautom
tive domain are discussed.

1.3.1 Known Approaches

The insertion of faults e systemsduring the ‘erification phasdnas been recognized useful in many
worksto enhance the qualityf service regarding fault handling, and thus to improve the dependability
of a system. The first approach is based on the idea that the environment of the target iglcorrupte
Hence, the goal is to evaluate the ability of the system to handle unexpected inputs, cautadtby

in the environment of the system under test. This approach hasnbestigatedn RIFLE (Madeira,

Rela, Moreira, & Silva, 1994BALLISTA project(Koopman, DeVale, & DeVale, 2008)
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A second approactonsists in performing a modification tife target by inserting an artificial fault
andobsening the behavior of theeaction of thaarget. The objective of the lattisrthe validation of
the internalfault tolerance mechanisms or/and the evaluatiortheffailure mode distribution
(Albinet, Arlat, & Fabre, 2004)

Both approachescan be applied to perform robustnesssting and dependability benchmanlkg
(DBench, 2004)A framework for defining dependability benchmsfkr computer systemeas -
veloped in theDBenchEuropearproject. This framework empdisizes thevalidation of Commercial
Of-The Shelf (COTSromponents, in particular operating systemg.(Several Linux and Windows
versions)

Finally, anotherfault injection approackvaluateghe ability of the tests cases to detect falltata-
tion tesding (DeMillo, Guindi, McCracken, Offutt, & King, 1988Y his wellknown techniqueallows
the improvement ofoftware quality duringhe development. In this approach, Iswage introduced in
a program: manuallythandseeded faultst or automatically generated (mutants) using rules-intr
ducing defects. In the followingye will concentrate on safety related, deterministic testing, héigce
lastfault injectiontechniquewill not be developed.

1.3.2 FARM

Several studies have proposed a structure for fault injection environments. To deuliprgection
campaign(Christmansson & Chillarege, 1996gveral questionseed to be addressed

1. Whatis theappropriate error modethat mimics representative software faults?

2. Whereshouldthe errorbe injected to emulate a particular software fault?

3. Whenshouldthe errorbe injected?

4. How should arepresentative operational profil§i.e. a probabilistic description of %y
tem usage) be designed that will maintain reasonable experiment times?

What readoutsshould becollected and which measures should be calculated?
How should thecalculated measurebe related to analytical models of deybility?

o o

Among the variousfault injection environment modelsased on the above key issuese has been
particularly usedn different works to characterize fault injection on Barget: theFARM model
(Arlat, et al., 1990)(Arlat, Costes, Crouzet, Laprie, & Powell, 199@enso A., 2011)The FARM
model is composed of the four following attributes:

the set of faults to be injected (tRrault model),

the system activities under which the faults are injectedAittevation),
the Readouts of the experiment results,

and theM easures evaluated, based on data of the experimdft®\, R >.

X X X X

The FARM model characterizes in an effective way the faultcinpm environment, and it is used in
this study as a referentmr the definition of fault injection experiments.

1.3.2.1 Fault Model
The set of fau to be injected into the target is also called a fault list. Each fault is characterized by a

model €.9.stuckat, bitflip, etc), a location ¢.g.memory address, a piatc) and an injection time
(e.g.eventdriven, after a given timetc).

14
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Generally, the size of the fault list is assumed to be infinite. An exhagstivé experiments covering

the ull fault list in fault injection campaign is impossibie achieveln practice the fault listused to
perform the experiments a subset of the entire fault list that can be injected in a reasonable time but
still able to provide significant resultthe main criteria here ighe representativenessof the fault
model. Many studies hawealt with this probleniNatella R. , 2011jCosta, Silva, & Madeira, 2009)
(Natella, Cotroneo, Duraes, & Madeira, 2013)

Orthogonal Defect Classification (ODQThristmansson & Chillarege, 1998)a measurement fiec
nology that is consistently applied to a large number of IBM ptej& he fault types, representing the
defects in the source code, @fassifiedin six types,as follows: Assignment, Checking, Algorithm,
Timing/Serialization, Interface, and Function.

1.3.2.2 Activation Model

The set of activationé specifies how the targét exercised (its functional behavior) during the e
periment. Itcorresponds to set of functional inputs applied to the target. Theplexity of theActi-

vation model directly influences the length of an experiment, amjieion timeis directly depad-

ent of theActivation length. This Activation model is often referred asviterkload of the fault inje-

tion campaignAn important characteristic of the workload is again its representativeness; ideally, it
should be similar to the real behavior of #ystem in operation. However, most of activation models
are implemented with synthetic workload, not representative of the real behavior, but easy to handle
and to observe (readout#)n incorrectactivation mode/A may result in the two main consequences:

i) incompleteor nonsignificantresults 2 the inferred measures obtathon the target arbiased or

i) no effectof thefaultsis perceived? whenthe fault is not activated by the workload. In this case,
the experiment is categorized as harmless @dweit could lead to a critical failure using a different
activation set. The Activation model could be defined basedperational profiles to be represent

tive of the activation of the target szenariebased test from the use cases defined duringraydé-

inition.

1.3.2.3 Readouts Model

The set ofReadous corresponds to the logged behavior of the sysiaia and events, execution
flow, etc.It encompasses all the observations ttaatbe made on the target system. This is strongly
depenént onthetargetsystemand the fault injection tool#\ simulated execution @ system is eas

er to monitor than a prototype. However, the choicR ofiust bedone carefullysince it has a strong
impact on the results and the analy$ise set ofeadoutsk is composed of variables values, states of
the system, detection timingtc.

1.3.2.4 Measures Model

The Measurs are obtainedfrom the Readouts duringr after an experiment. Different types of
Measurescan be assessed. Firghe behavior of the targesystemin the presence of faults cdoe
evaluated, particularly the failure mode distribution. A severity slled CRASH has been defined

in BALLISTA project (Koopman, DeVale, & DeVale, 2008) characterize the behavior ©perating
System and middlewar€RASH is an acronym forCatastrophicRestart,Abort, Silent, Hindering.

In BALLISTA, a fault corresponds to the corruption of the parameters of a system call executed by a
process. The semantics of these failure modémigsthe following:

- Catastrophicthe target computer crashes
- Restart: the benchmark process hangs and needs a restart;
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- Abort: the benchmark process aborsg(core dump;
- Silent: no error code is returned when one should have been;
- Hindering: an incorect error code is generated

It is worth notinga specific scalenustbe definedor a given target, although some similarities can be
found with other existing scale¥he definition 6 these categories is a major issue. Moreover, the
measure should not ntackle the first occurrence of a failure mode but also next ones. The work
presented irfAlbinet, Arlat, & Fabre, 2004has shown that the first occurrenceadhilure is not &

ways sufficient to characterize a fairjection experimentThe detection of the error may occur and

in that case, the system is restarted. However, the restart can be insufficient, as another catastrophic
failure mayoccur. Hence, the verification that a reaction has been performed is fiotesufto cha-

acterize if the system is safe, and the target should be observed for a second failure.

The main measures conceerror detection coveragéEDC) anderror recovery coveragéERC).
Most of the time these measures are illustrated with piealizgdistinguishing an error detection
sector and another sector giving the distribution of failure modes when the error is not dee€ted.

is computed according|®quationl.1

qop JQIZARNBATLANE ISEPQAPAARNAGN .
T J0I>AMB - QHPFA?REKANEIAJPO 1 '

Another important set of measureghg determination of error handling timingmdthe Error ha-
dling timings of the fault tolerance mechanisms.

The timing requirements of fault tolerance are defined in the2k&B2 part 1SO 26262, 2011)and

Figurel.3lfillustrates the associated terminology.

FIGURE 1.3 DIAGNOSTIC TESTINTERVAL, REACTION TIME AND TOLERANCE TIME INTERVAL

First, before theccurrence of the fault, the whole system is in a fault free statermal operation
Then,whenthe fault is activatedhe system enters in an abnormal system state, in which the error
detection mechanisms should handle the eifbe error can also neain latent or lead to a failure
when there is propagation of the errdfhen the error is detecteayecoveryprocedure is needed

handle the error and put the system in adafe state or trigger a dedesl mode of operation. The
Diagnostic Test Interval (DTI) is theupper boundf theinterval between the occurrence of the fault
and the detectigrthis time is defined according to the period of the recurrent test use to detect the
error. TheReaction Time(RT) is the time between the detection anel ¢nd of the @very.

Finally, aTolerance Time Interval (TTI) is the delay between the fault activation and the violation of
asafetygoal TheTolerarce Time Intervalis an intrinsic characteristic of a systert should be noted
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that the transition ta failure mode may not be sufficient, as a failure mode could be tolerated a short
amount of time. For example, the loss of the headlights while driving on a motorway is a failure, ho
HYHU LW LV FRQVLGHUHG 3VDIH" LInWKH IDLOXUH LV WROHUDWH

The TTl is difficult to estimate in practice. However, the following relation must be ensured:

&6E46066+ Equationl.2

To conclude, it is worth to mention that theeasures to be evaluated have to be defined first, since
they guide the whole fault injection process. However, their values are evaluated in the last step, by
processing informatiorgiven by the Readouts. The-ault model, the systerActivation and the
Readuts have to be defined obtainthe significantM easures imn efficient way.

1.3.3 Techniques

Several Fault injection techniques have been appiieiifferent types of targets (hardware, software,
simulation modelsetc). While these techniques are vatifferent in their implementation, they all
share the same environment desdatibe the following section. Then, a section is dedicate@rio
overview the existing fault injection techniques and tools.

1.3.3.1 Environment

A fault injection environmenfHsueh, Tsai, & lyer, 1997f a Target Systemshouldencompasshe
following componentsas defined ifFigure1.4]

X TheTarget System.

X The Controller controls the whole experiment,e., the Workload Generator, the
Fault Injector and theMonitor .

X TheFault Injector injects fault selected from th&ault Library into the target system.

x The Workload Generator generates the inputs, selected from Yderkload Library ,
for the target system.

X The Monitor tracks the execution of the fault injection experiment for @untroller
and theData Collector

x TheData Collector collects the dataReadouts) during the experiment.

x TheData Analyzer analyzes th&keaduts collected by thBata Collector

FIGURE 1.4 A TYPICAL FAULT INJECTIONENVIRONMENT (HSUEH, TSAI, & IYER, 1997)
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1.3.3.2 Techniques and Tools

Fault injection is a mature technolothat has been successfully applied using several techniques on
different targets. It is important to notice that the number and the diversity of fault injection techniques
is a consequence of the type of targets that have been investigated (hardweaes soidbdels). Many
techniques are based on specific $poften developedor a differentpurpose(e.g. debugging) to
perform fault injectionThese toolsllow either to inject a specific fault model ordontrola specific

target.

Fault injection techniques can be categorized depending on the targdHsyosh, Tsai, & lyer,
1997) (Ziade, Ayoubi, & Velazco, 2004fSvenningsson R. , 201Mhe classification is illustrated in

FIGURE 1.5 FAULT INJECTIONTECHNIQUESCLASSIFICATION

Physical fault injection can be performed by bombarding the system with eitheribrayarlsson,

et al.,, 1998)or electromagnetic interferences (EMlKarlsson, Liden, Dahlgren, Johansson, &
Gunneflo, 1994)to mimic Single Event Upset (SEU) that could happen in operation. Today, this
technique is less applied as the major drawbacks are the low controllabilithedadk ofrepeataldi

ity of experiments withhis method.

Thenphysical fault injection is divided to two parts:

i) Injection of faults in the hardware of the systéng. stuckat faults) i.e. Hardware
Implemented Fault Injectioh HIFI, and

i) Simulation of physicafaults in the software of a systeirg. Softwarelmplemented
Fault Injectionz SWIFI.

Typically, HIFI corresponds to pilevel fault injection and tegiort based fault injection. Rievel

fault injection encompassed techniques that emulate faults by affecting the state of pins of dn integra
ed circuit(Madeira, Rela, Moreira, & Silva, 1998Arlat, et al., 199Q) Testport based fault injection
techniques rely on debug ports available on several microcontrollers and CPU irocaideeds the
memory of a chip and simulating the effects of hardware faults. One variant of this technique is based
on theNexus standardor IEEE-ISTO 50012003 (Nexus5001)Dees, 2012)hat ddines a standard
debugging interface. This technique has been used in GQ@&tmark, Vinter, Folkesson, &
Karlsson, 2001)(Skarin, Barbosa, & Karlsson, 201@nd INERTE (Yuste, de Andrés, Lemus,
Serrano, & Gil, 2003)This standard is indeed integrated in the microcontrollers used in thecautom
tive industry.
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SWIFI techniques are widely used today, as they are easy to deploy. They cardée iditd pre
runtime techniques,e. the fault is injected in the software before its deployment on the target system
(Han, Shin, & Rosenberg, 199%nd runtime techniques. In the latter, the faults are injected during
the execution of the software on the targBenso, et al., 2003Kanawati, Kanawati, & Abraham,
1995)(Barbosa, Silva, & Cunha, 201@}arreira, Madeira, & Silva, 1998)

Model Implemented Fault Injection has been introducg®wenningsson R. , 201IJhe injection of

faults is performed on models using Simulati@sed techiques on VHDLmodels of hardware oo
ponents. This technique was developed when no physical injection solution was manageable on these
targets. Hence, the idea was the modeling and the simulation of the fault injection expdisrants

E. , Arlat, Rimen, Ohlsson, & Karlsson, 1994&nn E. , Arlat, Rimbn, Ohlsson, & Karlsson, 1994)

recent years, fault injection on model has grown in interest, together with Model Based Development.
Indeed, some software modules are not developed in programming language, like C, but with beha
ioral modeling,e.g.Simulink, from which the source code is automatically generated. It is thus poss
ble to test the behavior in presence of fault of the comuatesign when these behavioral models are
executed. These techniques have been developed on SitENEhkningsson R. , 201and SCADE
(Vinter, Bromander, Raistrick, & Edler, 2007)

1.3.4 Related Work in Automotive Systems

A quick overview of fault injection has been presented in this chapter. Recently, the introduction of
fault injection requirements in the ISX8262 has renewed tlimterest of thisdpic in the automotive
industry (Silva, Barbosa, Cunha, & Vieira, 201Fana, et al., 2013Beveral subjects have beat a
dressed.

1.3.4.1 Fault Injection in AUTOSAR architecture

First, several studies proposed techniques and tools to perform fault injection in automotive systems,
in particular on AUTOSARbased software architecture.(ltu, 2009a)Lu, Fabre, & Kilijian, 2009b)

hooks provided by AUTOSAR are used to inject faults in the application but also to monitor its beha
ior. The same SWIFI technigue is usedlianigan, Narasimhan, & Fuhrman, 201Gjith hooks, to
developa framework based on CANoe from Vector, in order to control the whole experiment through
the CAN Network. The approach developedmiper, Winter, Manns, & Suri, 2012 based on the
3SLQVWUXPHQWD W L R@ripdrént\iifkaH AVROSAR Rpplitation. In this case, theunstr
mentation is done using a wrapper at the interface between two software components to capture all
communication signals. The wrappers allow the implementation ebaddnctionalities to control

the fault injection experiments.

A similar approach is evaluated {fislam, Karunakaran, Haraldsson, Bernin, & Karlsson, 2014)
(Karunakaran, 2013where the instrumentation of the wpap is done at binary level to perforni- B

nary Level Fault Injection (BLFI). This is an intrusive method as the size of the binary integrates the
wrapper code. However, the source code of the target application is not modified. In this study, the
executiortime overhead is quite lolut it generally depends on the functionalities added in thp-wra
pers and the number of wrappers. Finalalkham, Pecchia, & Silva, 201B)oposes an approach
EDVHG RQ WKH $8726 $Gde\Dr&é& FCHO)H order to control the experiment. The
objective here is to take advantage of the generic implementation of AUTOSAR to provideea fram
work in which the controller can be easily implemented in several projects without modifying the
basicsoftware.
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1.3.4.2 Fault Injection in Simulink Models

Then, as it has already been discussed in the previous section, several works have tackled the injection
of faults in Simulink models, as in the MODIFI proj¢&venningsson, Eriksson, Vinter, & Torngren,

2010) (Svenningsson R. , 201{$venningsson, Vinter, Eriksson, & Térngren, 201@preover, the

tests performed on models have beemndatéd by injection of the same error on a prototype target.
(Rana, et al., 2013)Iso proposed a similar approach to perform fault injection on Simulink models.
Again, the choice of Simulink models is driven by their frequese in the development of application

and embedded functions.

1.3.4.3 Fault Injection Experiment definition using Safety Analysis

Few studies have investigated the similarities between safety analysis and fault injection. The main
objective is to use the ressiibf safety analyses as FMEA in order to improve the fault injection ca

paigns Yogitech(Yogitech, 2015proposed a metha@ariani & Boschi, 2007)(Mariani, Boschi, &

Colucci, 2007) (Mariani, Fuhrmann, & Vittorelli, 2006)to perform the verification at Systeom-

Chip (SoC) level, according to IE€1508, using FMEA. The approach use FMEA to determine the
3VHQVLEOH JRQHV™ LQ ZKLFK WKH IDXOWYV DUH LQMHFWHG 7KHQ
using IEEEe standard Verification Languad¢éEEE Std., 2006)n Specmariool from Cadence The

main objective is to verifgoC architecture using fault injection.

Moreover, (Bidokhti, 2009)discusses the complementarity between FMEA and fault insertion tests.
These tests, hardware implemented fault injection experiments, are performadiomre parts to
improve verification. Fault injection helps to validate FMEA.

1.3.4.4 Other Studies

The work described ifiBlin, Laarouchi, & Quéré, 2014roposes two interestingchniquesone
using virtualization and one usimgnulatior) to inject errors in memories without alteritige source
code of the applicatior€oncerning the emulation techniquesnajoradvantages thatthe entire co-
trol of timing aspects of emulated OS., thetemporal impact on behaviof the application, is low
Moreover, emulation allows quick unit testing without deploying the software applicatienmain
drawback of this method is tiieed of aremulationframework and itgost.

The BeSafe projedefines the foundation of functial safety benchmarking of automotive E/E-sy

tems. The work presented (lslam, et al., 2013ackles the problem of the benchmark targets and the
benchmark measures on Safety Elements out of Cori8KooC. SEooC is a comutedefined in the

part10 of the IS(26262. It addresses safalated elements that are not developed in the context of

a particular vehicle but assumptions that have to be validated before integration into the final system.
Finally, fault injection hasbeen used in several studies in order to verify automotive products
(Trawczynski, Sosnowski, & Gawkowski, 2008br instance the verification of an Anti Breaking
System (ABS). This is a key concept also in the EASIS projdatrevfault injection has been used to
validate fault tolerant architectures. These architectures centralise error detection and error handling in
adedicated softwarsafety mechanisnalledFault Management Framewotk=MF (Xi, 2008).
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1.4 Conclusion

In this chapter, we have shown that I36262 Standardhas motivated newsafety practices in the
automotive industryThe ISO 26262 redefined specific dependability concéms shouldoe applied
by theactorsof theautomotivedoman.

Fault injection is now a highly recommended method in thed&Z52, and is required in early phases

of the development process. However, we have shown that fault injection has been studied on concrete
targets, but to our knowledge, no evaluationtsfimtegration in the development process has been
performed yet. The next chapter will describe the development cycle of an automotive embeédded sy
tem, and the integration of fault injection according to BEBR262 in this process will be investigated.
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Our objective is to describe a generic development process of Automotive E/E Sy&tsimsve start
by defining the terminology of automotive embedded systems, in compliance with tH6280
norm. Then, the functional development process and the safeslagenent process are detailed
Thoseform the foundationsve will base on for oustudy, since our final goal is to integraftault in-
jection in this process. Then, IXB262 requirements on fault injection &lentified They represent
a second set ofonistraints our approach must comply wittme final section describes the thesis e
pected outcomes.

2.1 Development Process of Automotive E/E Embedded Systems

2.1.1 Automotive Embedded Systems

Thefinal objective of the development process in the automotive indissthe production of veh

cles. Today, the design of a vehicle is complex as it imposes to integrate a large number of systems to
be competitive on the market atwloffer the functionalitiesequestedy the customers. There is a

wide rangeof systems: tHUPDO UHJXODWLRQ KHDWHU DLU FRQGLWLRQLQ.
combustion engine system, electrical systems, Advanced Driver Assistance SYdD&83, visibil-
ity systems (headlights, wiper®tc. All these systems are specified by OEMs, ahhintegratehem
in the vehicle.

An E/E system performBinctions thatdrive actuators of mechanical, electromagnetic, hydraulic or
chemicalnature according to information gathered by sensors (Human Machine Inteidié),
sensors of a physicgqlantity €.g, voltage, current, pressyje

To develop these systems in a project, the functions are refined at differentravetered from (LO)
up to (L3),until elementary components are reached. System is the highest level of abstraction (LO)
and(L3) deals withelementary components. All these levels are illustraf&igure2.1]

FIGURE 2.1 ARCHITECTURALABSTRACTIONLEVELS OF AVEHICLE

It should be noted that the terminology used in the thesis is slightly different from tH2525Q.
However, this terminology is completely compatible with the terminology of the2E&282 and e-
fines it tocomply with the terminology used in Valeo. The differences will be highlighted in ¢he d
scription.

The Systenglevel LO)is decomposed into several Products (L1). The functions of the sysexis-
tributed between theggoductsand they share informationa a network. Finally, a product ¢om-
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posed of at least a microcontroller that will handle a part of the function of the sgsgeimandle one
sensor, drive one actuatetc. This level is not mandatory but most of the systems involve more than
one poduct to achieve a function.

In the 1S0O26262 standard no difference is made between System and Product levels. They corr
spond to two consecutivgystem levednd SubSystem levelThe main difference with our termirel

gy is that it may exist as manylssystem levels asequired We considered special case with two
levels.

Then, functional requirements of a Product camdfmedinto Functional Blocks requirements (L2).
These requirements are then allocated to hardware, software or both. Thetip¢hitoa defines
Hardware Blocksand Software BlockgL2). In 1ISO26262, they are referred to Hardware comp-
nent levelndSoftware component levaspectively

The Software Block€ncompass both the static and the dynamic architectures of the software. The

static architecture describes the structure of the software in layers and taldasdefines the inte

faces between the functions gathered Bwdtware Module$l.3). Then,the dynamic architecturesd

scribes the configuration of the operating system (tasks priorities and periodicity, interruptions, events,

etc.. DQG WKH PDSSLQJ RI WKH 3IXQFWLRQ FDOOV" RQ WKHVH WD)\

The designed architecturnpopulated with implementatioof SW Modules, must meet the rdahe
constraints when executed or programmed on the HW Blocks. 1126362, Software moduleare
referred to aSoftware Units

The HW Block architecture is the description of HW parts used in order to complete Progliretre
ments.This final terminology is the same than the one used in th&262Standard A HW Block
may contain two categories of HW Parts (L3):
X Integrated circuits: Microcontrollers, FieldProgrammable Gate Arra(FPGA),
RAM, ROM, etc.that support th execution of the SW Blocks.

x Electronic/electric components Transistor, diodes, capacitor, resistor, connector,
relay, bus interfacee(g, CAN, LIN, FlexRay, and Ethernetgtc.

2.1.2 System Engineering

System engineering aims at rationalizing the produdaifce system and the followp of the different

phass of the life cycle, by taking into account all activities of system lifecycle in a progressive and
methodological approacfihe system life cycle refers to the following phases: concept, desigh, pr
ducion distribution, maintenance and elimination. System engineering is focused on answering the
needs expressed by the client at the beginning of the concept phase.

In this work, we focus oseveral development phasegich encompass the following activitiedef-
nition of functional requirements, definition of architectures, implementation, integratidtesting.

These activities enables to detailthe functional requirements, thém proposetechnical solutions

and finallyto verify that the solutioranswers the needi parallel to these technical solutions, env
ronment issues, cost, planning, project management and maintenance will constrain the development
processHence,the envisionedprocess should establish strategies in order to gomph the client

needs anéxpectedjuality, while ensuring a trad®ff betweercost and time.
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In practice, several methods and models have been profmssgstem engineering: waterfall,-V
cycle, spiral, incremental, prototyjsased development, agile developinetie. They mainly differ in
their phase flow buthe types ofctivities are not different. The choiad the methodlepends on the
systenmto be built the company desigexpertiseetc.

A specificity of the automotive industry imposes the coordinatiointefaction between OEM and
Tier-1, Tier2 and Tiefr3 suppliers. A common automotive design process starts with the OEM, which
describes angrovidesthe system architecture and the products functional requirements to tHe Tier
that, in turn, may delegathe design of lower levelementgL2 or L3) to a Tie2, etc.

The V-cycle development model described hereafter is widely used in the automotive industry.

2.2 V-Cycle Development Model

The V-cycle development model, as depictetﬁFigure 2.2| describes the relationship between the
differentactivities of the design phase.

The goal of the development activities in the left hand side of thed/refinethe functionakequire-
mentsat each level of desigflevels are referred to as LO to L3). They are consistently refined from
the highest level, LO (system) to the lowest one, L3 (hardware parts or software modules).

The right hand side of the V cycle corresponds tovthdication and validation activities of thessy
tem.

In the context of this work, we use the temmne-implementation andpostimplementation phases

referring respectively ttheleft hand side of the V, and the right hand side, since the software module

and hardware parts are implemented only at the end of tHenplementation phase. Software dro

XOHYV LPSOHPHQWDWLRQ FRUUHVSRQGY WR FRGLQJ DFWLYLWLH

FIGURE 2.2 V-CYCLE DEVELOPMENTPROCESS ANDTERMINOLOGY USED
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2.2.1 Requirements Analysis

Functional requiremesexpresghe services a system must perform, accordingly to the needs defined
by the client. The performance of thessvices (set of functionsg.g.timing constraints, the enrv
ronmental conditions wherthe system is used, and the eventual operating modes, must be taken into
account in thenalysisof these requirements.

The functional requirements could be expressed with various forms:

X Textual description: natural language, formalgoaphicallanguag;
x Drawings/diagrams:
0 Giving clear definition of the operation of the components involved at a
given level. (Static view/ Architectural view);
o Describing the various interactions and dependencies between these
components (Behavioral view/Dynamic view)
X Models of the functions with the following properties:
0 Granularity: brief or detailed;
o Architectural/behavioral,
0 Executable with software simulation tools

The definition of functional requirements starts wsistem functional needs LO, which are refiad

in system functional requirementEhen, the system functional requirements are refingoroduct
functional requirementswhich are, in turn, refined ihardware blocks functional requiremeraad
software Blocks functional requirememesspectively.Finally, the hardware blocks requirements are
refined in hardware parts functional requirements and software blocks requirements are refined in
Software modules functional requirements.

Today, thesystemdevelopment trend is to use models. Meoe$ed sysims engineering (MBSE)
tries to formalize modelinfpr all the activities of the development progdssm system requirements
to V&V activities. This formalization or abstraction of the real waréthbe done at all architectural
levels.In software desig several languagdSimulink), (Stateflow) (Statematepre usedn the al-
tomotive industrythey put forwardhe development of graphical programmiagd hence havieeen
adopted and integratéad currentdevelopment process

2.2.2 Implementation, Integration and Testing Activities

The implementation is a pivot point ihe developmenprocessPractically, it consists in the coding
activity of SW modules anthe integration of HW parts on the E/E circuit. After the implementation,
there are twamain activities at each architectural level: integration of the considered components of
the level, and integratioresting. All these tests are part of the verification and validation activities,
which are of prime importance in the development process. Indeed, at each level, tests must verify that
a givencomponent complies with its specifications. Many tesistbe performed at each levegrom
requiremenbased tests to performance tests. The testing process follows a-bpt@approach. It
starts with the verification of L8omponentswith SW modules unit testing performed on personal
computer PC (SW inthe-loop2 SiL) and then executkon the targeted processor (Processah@

loop? PiL). HW parts are testlon hardware mockips in order tacheckspecific hardware schetra

ics. At L2, SW integration is also testwith PiL, but HW integration is performed on manuadtte
benches.

At L1, testing starts with HW/SW integration tests on HW manual test bench, and often nesessitate
an emulator ora debugger in order to verify the behavior of the software. Then, the product tests are
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performed on automatic test bench. Hehe, énvironment of the producainbe simulated. At LO,
integration tests performed orthe System integration bench, where all products are integrated (the
system products are no longer simulatddhe final validation is performed by integrating the ®yst

into a vehicle.

2.2.3 Relationship between V Branches

The V-cycle model also describes relationships between the two branches of(tizgrig, et al.,
1995) Indeed, at each architectural levlle results of the testsay induce modifications anani
provements on design activities. This is the main drawback of this nasdigsting is done at the end

of the development, the detection of errors in functional requirements or the implementatiog-may si
nificantly affect thedevelopment of thproject.

Practically, the activities of the-®ycle are not fixed. A systemayintegrate evolutions in the spec
fications due to the integration of new functionalities from the cliefiecause oproblemsidentified
during adetailed design.

It has been shown that dependability activitisstbe integrated in the development process, partic
larly for safety. These activities are introdueadll the steps dhe system development process. The
safety process is describerdthe following section.

2.3 Safety Development Process

The complete safety process aims at properly handling functional safety in a project at all architectural
levels. The safety processims at identifyinghe potentialfaults leading toa possible hazardnd ab-

fining the safety concepts, which encompass the specifications of safety requirements (safeestate, saf
ty mechanisms independence, ASéttc). In[Figure2.2] activities belonging to the safety process
markedin green. Activities of the safety process and their integration in the development process are
now described

2.3.1 Safety Analyses at System Level

The safety process begins with the Praliany Hazard Analysis (PHA) activity that covers the Hazard
Analysis and Risk AssessmeénHA&RA requirements of the IS@6262. The main objective of PHA
is to identify the system Undesired Eve(ltfE) and to rate them according to their ASIL. Then for
each UE, a safety godISG), i.e. the toplevel safety requirementss defined.

Then, at system level (LO), in parallel to the definition of the System architeittar®llowing safety
activities are performed. THest step is thalefinition of theFunctional Safety ConceptFSC. The
safety concept formally describes how functional safety will be achievdte abnsidered level. It
refines the safety goals into detailed functional safety requirements that are r@appmedystem a
chitecture. Thesenore detailed functional safety requiremeoatsrespond tdahe product safetyer
quirements. The definition of FSC is supported by qualitative and quantitative safety analyses.

® For the sake of completenedsaleo strategyregardinglSO 26262 and the Safety process deploymiendescribed in
(Leeman, 2013)
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Then, in the automotive safety process, at least one of the two followingagual#énalyses is pe
formed: FME(C)A and FTA. These analyses are not specific to the automotive industry apd are a
pliedto most development processvhen safety is.concern.

2.3.1.1 Failure Mode Effect (and Criticality) Analysis FME(C)A

FMECA (Bouti & Kadi, 1994) (Department of the Army, 20060 ECSSQ-30-02B, 2008)s an inde-
tive approach whose principle is to analyze, for ezleiment(a conponent or a functional reqe#
ment), the consequences of its possible failure modes to identify systematically all the effects on other
components anat the system leveUndesired Evest It can be applied as an accompanying process
from the design taie system use phase. In general, the application of an FMECA consists in listing in
a table &s exemplified ifiTable2.1), based on the functionahdstructural description of the system,
the various failure modes of each component and their characterization. Each failure mode-is chara
terized by:
X (3) Its posgble causes.
X (4) The mission phase or a specific operational mode oélkbment
x (5-6) Its effect, which can be locai,e. only theelementbehavior is affected, ocan
propagate up to the system level.
x (7) lts criticality.
X (8) The associatedletectionmeans and the corrective actions, especially when dealing
with a highly critical failure mode.
X (9) Theeffect in presence of detection and corrective means.

TABLE 2.1 TYPICAL QUALITATIVE FMECA SPREADSHEETLINE

1 2 3 4 5 6 7 8 9
Element | Failure | Potential | Mission Phase/| Local Upper Criticality/ Failure Detection UpperLevel
Modes Causes [Operational Mod| Effects Lewel Risk Level Method Effect with
Effects /Compensating SM
Provisions

The criticality ofa givenfailure mode is a categorization thiis failure mode based dts severity,its
frequency of occurrence, and sometimes, the possibility of detecting earlier symptoms. In automotive
systens, it is determinecdhccording to the ASIL.

When the criticality othe failure mode is not taken into account, this analysis is referred to as FMEA.

During the operational phaseME(C)A spreadsheatan be used as a guifle collecting field data
for assessing analysis accuraayning atdeveloping maintenandsoubleshooting procedures.

However, it is worth noting that the approach has some limitations. For a complex system, it-is pract
cally impossible to reach failure modeshaustiveness. In addition, the approach is not designed to
address combinations ddifures, since each failure mode is addressed separately. Actually, given the
number of failure modes that may be identified, considering their combination raises the problem of
combinatorial explosion. Deductive approaches as fault tree analysis iatlinsapes with combia-

tion of failures.
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2.3.1.2 Fault Tree Analysis

Fault tree analysis (FTA) is a deductive approach, which consists in describing the combinations of
events that may lead to a ttgvel eventwhich is usually atundesirecEvent

An FTA is basd on a graphical representation of the events using logical connectors or gates. Many
logical connectors can be found in the literature but the fundamental ones are the AND and OR gates.
The resultingdiagram, called fault tree, consists in successivedesfeevents The toplevel event,

i.e, the tree root, is the UE. Therecursively, onaletermines the causes using a systemati&-bac
ward-stepping process, until reaching basic esent

FTA is a qualitative analysis activity, but the obtained fault ine¢ alsoassist quantitative evadu
tion.

In Valeo process, FMECA is performed for all ASIL to fulfill the 126262 requirement of an indu

tive approach. Then, FTi& produced for ASILC & ASIL D where deductivapproach isequired by

the standard. Morgenerally, FMECA is easy to produce and helps to achieve the exhaustiveness of
the analysis of all the potential causes. FTA is also widely used as its graphical formalism is easy to
understan@nd helps identify the critical paths

2.3.2 Safety Analyses at Product Architecture Level and HW Architectural Level

The qualitativesafety analyseat one architectural levebuldbe summarized as follows. Considering

the UEs identified atl; and the failure modes of the component of the considered IgtbElgoabf

safety analyses is the identification of the critical paths between the failures and the UEs. The analysis
could be performed in a tegiown approache(g, FTA) or a bottorrup approacheg.g, FMECA). H-

nally, the critical path identified enables to detme the UEs of L., the safety requirements and their
ASIL. This could be repeated recursively at all following levels, especially at product (L1) ahd har
ware (L2) levels.

2.3.3 Quantitative Safety Analyses

In order to assegsbe system, product and hardweaarchitecture, 1ISQ6262 defines three metrics that
should be fulfilled. These metrics are calculated based oiKtbdJ GZDUH SDUWIe fllb LOXUH U
quencyof a component failre expressed in failures per hour) and thi@gnostic coveraggDC) of

the safety mechanismgestimation of the coverage of the safety mechanisms). These inputs are given
by component supplisithat test intensively samples of their components or by standard tables from
historical database of industriglovernmenior comnercial sourcesRegardingdiagnostic coverage,
AnnexD of the ISO26262standard providesstimations of the achievable coverage depending on the
failure modes considered in the safety analyses. Concerning the meMEes-( SPFM andLFM ,
seeSectiof1.2.3.3, they must fit within the budgets fixed for each ASIL level and defined in the
ISO 26262. More information can be found on the definition anatimeputatiorof architectural me

ricsin (Leeman, 2013)L'Hostis, 2013)(Cherfi, Leeman, & Rauzy, 2014)

These metris can be obtainedrom the qualitative safety analyses by enimghthe analysis with
numbers. Tis can be computed frothe FMECA, wha the failure mode could be associated with a
failure rate (for HW parts) and the proposed safety mechanisms could be associated with a DC,
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se¢Table2.2] The FMECA including the quantitative analyses are often reféores: Failure Mode,
Effect and Diagnosis Analys{(EMEDA), in the automotive industry.irGilarly, the same approach is
done with FTA. Then, the FMECA tables or the FTA trees eadelith quantitative values are used
to computethe different metrics.

TABLE 2.2 EXAMPLE OF ENRICHED FMECA SPREADSHEET WITHQUANTITATIVE DATA

Mission Upper Failure dete- | Diagnostic Cove | Upper
Ele- Failure |Failurel Potential  Phase/ Local |2\F/)e| Criticality / | tion method / |age (errodetectior] level
ment | modes | rate | causes| Operational| effects Risk level | compensating | or tolerance cove effect
effects s :
Mode provisions age) with SM

2.3.4 Safety Analyses at Software Architecture Level

Similarly to other levels of architecture, the safety analyses camsiderthe propagation of failures
betweensoftware modules anderify that hey are mitigated by safety mechanisms. These activities
also lead to refine the SW safety requirements and the allocation of ASILs to the SW modules.
ISO 26262 explicitly requires the use afpecific methods, such as FMECA, FTA and Critical Path
Analysis(CPA).

A major aspect in software is the evaluation of Breedom From Interference (FFI) property
Nowadays, the processing capabilities of the microcontrollers used for automotive systems allow
designing more amplex products. fie software design takemdvantage of these resources, by
proposinganintegraton of several applications on one microcontroller. In parallel, these systems also
embed more critical functions. An important safety issue appears with the integration of applications
with differentASIL levelsin the same microcontrolleAccording to IS26262, all the modules an

given microcontroller should be developed according to the highest ASIL that apply on the
microcontroller because of the strong interrelationship between these applications. The main
drawback is that the application with the lower ASIL is required to be developed with unnecessary
efforts. Indeed, higher ASIL modules require applying ntamplextechniques athmethods.

However, the IS@6262standardallowstheintegrationof modules with different ASILs, but imposes

WR SURYH WKDW WKH )), LV HQVXUHG )), LV GHILQHG DV WKH 3]
more elements that could lead to the vitl&® Q R1 D V DI H W AdJad &xémpldth® idt€gyetion

of a Quality Management (QM) or lower ASIL module is allowed if and onlydéitbe prove that it

does not interfere directly or indirectly with the behavior of any higher A8llocatedmodues. The

following interferences have to be considered between the two software applidatemrsuption of
shareddata,ii) calls of Application Programming Interface (AP$grvice,iii) the realtime behavior

(e.g, scheduling, task premption, iv) sharedmemory access ang) shared hardware peripherals.

Safety mechanismsay be addedto handlesuchinteferences. This activity is referred to as a FFlI

Analysis? FFIA.

2.3.5 Safety Tests

Depending on the ASIL allocated to the component under test, it maycessaey to strengthen the
existing test strategy to ensure that appropriate combinations of the many test methods required in
part4, part5 andpart6 of ISO 262621SO 26262, 2011pre used. All safety tests are specified and
performed within testing activitieand he test strategy must cowadf safety requirements.

In practice, proper testing of the safety mechanisms often requires a stronger involvement of safety
engineers. Ineled, robustness tests on a target implementing safety mechanispesfarmed with
respect toexternal faults. For instance, incoherent network frameas (CAN, LIN) or out of range
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values are serdsinputsto the tested product. Howeveamrrently,the injection of arbitrary faults in
memory in order to verify software safety mechanisms or the instrumentation of highly integrated
hardware is ndfully integrated in the process

2.4 Fault Injection Requirement of ISO 26262

The previous section highligid that today fault injection is not completely integratetbithe
development process of automotive systepet ISO 26262 requirefault injection all along the
developmenprocess

Indeed, the standard highly recommends the use of fault injection teelnifuoughout the
development procesgonsideringboth pre and postimplementations phases, to verifly safety
requirementsre correctly handled safety mechanisms.

The requirements of the ISEB262, which recommend fault injection, are recapitdlsz’ Table2.3
and the activities impacted in the development process illustrakégure2.3

2.4.1 Requirements duri ng Pre-Implementation Phase

Two requirements propose fault injection during-ipnplementation phase. One atstyn Level Re-

quirement ) and one at Hardware levdRéquirement 8. The preimplementation requirements are
highlighted in light grey ifTable2.3] Here, fault injection is a part of simulatitiased tests, and aims
DWHULI\LQJ WKH VDIHW\ UHTXLUHPHQW\Wsé¢ Rdve BIRORESIOthEE) FH DQG
tion[1.3.3thatfault injection canbe performed on models.

Particularly, fault injection shouldhecksome aspects tifie design for whicFDQDO\WLFDO PHWKEF
such as safety analyses are not considered suffiditawever, the exact objectives of performing
fault injection during this phase and the possible links with safety anaigeds to be clarified

FIGURE 2.3 FAULT INJECTIONREQUIREMENTS OHSQO 26262WITHIN THE DEVELOPMENTPROCESS
TABLE 2.31SO26262REQUIREMENTS FORFAULT INJECTIONTECHNIQUES

Highly Re-
commended

Requ-
rement

ISO 26262 Chapter Referenceo recommendation
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# ASILs (++)
7.48.1 The system design shall be verified for compliance and completeness with
1 Verification of | regard to the technical safety concept using the verification methods. ASILC &D
system design | ¥ 7 D EQOSysem design verification
The correct implementation of the technical safety requirements at tte har
2 ware-software Ievel_shall be der_nonstrated L_Jsing feasible test methods. ASILB C &D
8.4.22 T 7 D EDEDbrrectimplementation of technical safety requirements at the '
Ha& dWére hardwar&s_oftware level ‘ _ _
: The effectiveness of the diagnostic coverage of the hardware fault detectio
software intega- . : h
tion and testing mechanlsms, with respect to the fault models, shall be ensured by applying
3 feasible test methods. ASILC &D
t 7TDEDOHIIHFWLYHQHVYV RI D VDIHW\ PHFKDQL
hardwaresoftware level
The correct implementation of the functional and technical requirements at|
system level shall be demonstrated using feasible test methods.
4 Part 4 8.43.2 ¥ 7DE O HCorrect implementation of functional safety and technical safe| ASILC&D
Syste-m. iﬁtegl- reqwreme_nts at the system level _ .
tion and testin The effectiveness of the safety mechanisms' failure covertigesgistem level
g . )
5 shall be demonstre_lted using feasible test methods. _ ASILC &D
T 7 D E O HEffectiveness of a safety mechanism's failure coverage at the
system level
The correct implementation of the functiosafety requirements at the vehicle
6 level shall be demonstrated using feasible test methods. ASILA, B, C
8.4.4.2 ¥ 7D E QG HCorrect implementation of the functional safety requirements § &D
Vehicle intega- | the vehicle level
tion The effectiveness of the safety mechanifaifiste coverage at the vehicle leve
7 and testing shall be demonstrated using feasible test methods. ASILC &D
Tt 7 D E O HEffectiveness of a safety mechanism's failure coverage at the
vehicle level
Verizifa.lﬁloln of The hardwarelesign shall be verifie_d for compliance and completeness wit
8 regard to the hardware safety requirements. N/A
the Hardware . o
. ¥ 7 D ExOH4rdware design verification
Design
Part 5 The hardware integratic_)n and testin_g activities shall veth"ty comp]eteness
10.4.5 and correctness of the implementation of safety mechanisms with respect
9 Hardware iné- | hardware safety requirements. ASILC &D
gration and T 7 D E @ HHardware integration tests to verify the completeness and tor
Testing ness of the safety mechanisms implementation with regpére hardware
safety requirements
The software unit testing methods shall be applied to demonstrate that the
software units achieve:
x  compliance with the software unit design specification;
9.4.3 x  compliancewith the specification of the hardwaseftware interface
10 Software unit x  the specified functionality; ASILD
testing x  confidence in the absence of unintended functionality;
X  robustness; and
x  sufficient resources to support their functionality.
t 7 D E @ HMethods for software untesting
Part 6 The software integration test methods listed in Table 13 shall be applied to
demonstrate that both the software components and the embedded softwa|
achieve:
10.4.3 X compl?ance w?th the soﬂvya}mghitectural design; .
11 Software intega- x  compliance with the specification of the hardwacdtware inte- ASIL C &D

tion and testing

face;
x  the specified functionality;
X  robustness; and
x  sufficient resources to support the functionality.
¥ 7D E G HMethods for software integration testing

2.4.2 Requirements during Post -Implementation Phase

In the postmplementation phase, the objectives of fault injection are well defined. Theseerequir
ments tackle hardware, software, product, system and vehicle levels. Besides software level, fault i

jection isa method, which aimat

The first objectives to evaluate the efficiency die implementation, the design or the integration of

WKH VDIHW\ PHFKDQLVPV )DXOW LQMHFWLRQ LV WKHUH GHILQF
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2. demonstraing the correct implementation of the safety requirements
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WHVW" WR YHULI\ WiKislonM ré@tiredKbr QighvVASWL$ASIL C & ASIL D), and re-
resats a huge amount of warkhe entire fault model handled by the safety mechanism should be
identified, and the fault injection experiments defirmatordingly Indeed, it is required testimate

the error detection and recovery coverage of the safetyanisrhs, and verify that thienplemena-

tion of the safety mechanism is robust to arbitrary aoitinterferences from its environment. This
requirement is very demanding, as the fault injection campaign must inject-r@stoctive fault
model. Howeverthis is highly recommended for ASIL C & D safety mechanisms. This objective is
specifiedby Requirement 3Requirement 5andRequirement 7

The second objective,e., the correct implementation of safety regenments must be verified at
different archiecturallevels, and also applies toomponerg with lower ASILs (depending on the
considered level, sfable 2.3).The verification of the absence of violation of safety requirements
must be ensured by fault injection, Requirersteated tests or Badh-back tests. Fault injection
helps in the verificatin of non-occurence of an Undesired Event in the presence of faults. This second
objective covers a wider set of critical systems. Indeed, according t@a3&2, fault injection is
required at least for ASIL C and even for ASIL B at HW/SW integratiorl.leve

Fault injection must be consistent with other validation activities for all ASILs. Indeed, the
Requirement-based test(both functional requirements and safety requirements) is another dedicated
method to address this objectivrit the method is requulefor all ASILs (from ASIL A to ASIL D).

This activity may lead to define fault injection experimentexercisea safety mechanisms for a
given ASIL. This is why faultinjection canalso be required to ensure ttaasafety requiremenis
satisfied at alASILs.

Contrary to the the first objective, there is no need for injectinggxhaustive fault model. For
example, the verification of a safety mechanism should dmbgkits implementatiorwith respect to
the failures modes identified in the safety analyses.

This objective ispecifiedby Requirement 2Requirement 4Requirement 6andRequirement 9

2.4.2.1 SW Unit Testing & SW Integration Testing

At software level, fault injection is a dedicated method for software integration testing and software
unit testing, together witRequirementsbased testinterface test Resource usage tesaindBack-to-
back comparison test between model and cdidee oljectives of these methods is to demonstiiade
the software module or the software architecture achi@eguirementl0, Requirementll):

a) compliance with the software unit design specification;

b) compliance with the specification of the hardwacdtwareinterface

c) the specified functionality;

d) confidence in the absence of unintended functionality;

e) robustnesse.g, the absence of inaccessible softwadead codethe effectiveness of

error detection and error handling mechanisms
f) sufficient resources teupport their functionality.

On software, dult injection that includes the injection of arbitrary fault®y corrupting values of
variables, by introducing code mutation, or by corrupting values of CPU regisdest) least
recommendedor all ASILs, andis highly recommended for ASID and specifically for ASILC
regardingSW Integration testing.
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A distinction can be made between the objective 6FRPSOLDQFH ZLWK WidH VSHFL
SUREXVWIgHVYVYW RQH FDQ EH DdeWdRStratdmf Bh& catrietikipniehtation

of the safety requirements UHTXLUHG DW DbyOn@ansReMitenmkehibased tésts. Then

3UR E XV WHOuHdvbeevaluated forhighly critical software ung (i.e., ASIL D) or software

integration {.e., ASIL C and D),by the 3demonstratiorof the effectiveness of the safety mechanisms
GLDIJQRVWLF FRYHUDJH °

To concludeat all leves fault injection should be used for all ASILs in order to verify the propagation
of the potential caused failuresidentified in the safety analyse®n the one handault injection is a
dedicated method to verify the correctnessaiétyanalysesOnthe other hand, fault injection should
also be used in order to verify the robustnesa givencomponent at different les. Hence, our
interpretation of the 1SQ6262 standardleads us to apply fault injection tests tall ASILs. Our

interpretation is summurized [Trable2.4

TABLE 2.4 INTERPRETATION OHSO 26262REQUIREMENTS FORFAULT INJECTIONTECHNIQUES

. Highly Recom- Our interpret a-
Reqm;ement Reference to recommendation mendedASILs tion of the
(EH8) 1SO 26262 (++)
1 The system desigall be verified for compliance and completeness with ASIL C & D
regard to the technical safety concept using the verification methods.
The correct implementation of the technical safety requirements at tte h
2 ware-software level shall bdemonstrated using feasible test methods. ASILB, C&D ASILA,B,C&D
The effectiveness of the diagnostic coverage of the hardware fault detec]
3 mechanisms, with respect to the fault models, shall be ensured by applyi ASILC &D
feasible test methods.
The correct implementation of the functional and technical requirements
4 the system level shall be demonstrated using feasible test methods. ASILC&D ASILA,B,C&D
5 The effectiveness of the safety mechanisms' failure coverage at éme syst ASIL C &D
level shall be demonstrated using feasible test methods.
6 The correct implementation of the functional safety requirements at the ASILA B.C&D
vehicle level shall be demonstrated using feasible test methods. C
7 The effectiveness tife safety mechanisms' failure coverage at the vehicle ASIL C &D
level shall be demonstrated using feasible test methods.
The hardware design shall be verified for compliance and completeness
8 . N/A
regard to the hardware safety requirements.
The hardware integration and testing activities shall verify the completen
9 and correctness of the implementation of safety mechanisms with respeq ASILC&D
hardware safety requirements.
The software unit testing methods shall be applietktoonstrate that the
software units achieve:
a) compliance with the software unit design specification;
10 a) b) compliance with the specification of the hardwaagtware interface ASILD ASILA,B,C&D
c) the specified functionality;
d) confidence in the absence of unintended functionality;
e) suficient resources to support their functionality.
The software unit testing methods shall be applied to demonstrate that th
10 b) . . ASIL D
software units achieve robustness
The software integration test methods shalépplied to demonstrate that
both the software components and the embedded software achieve|
compliance with the software architectural design;
11a) compliance with the specification of the hardwaddtware interface; ASILC&D ASILA.B,C&D
the specified functionality;
sufficient resurces to support the functionality.
11 b) The software integration test methods shall be applied to demonstrate ASIL C &D
both the software components and the embedded software achieve roby

2.5 Thesis Orientation & Proposed Methodology Overview

In this chapter, the development process of automotive systeas been described and
ISO 26262requirement®n fault injection have beediscussed

Firstly, we have shown that fault injection is required during theampéementation phas&everal
tools have been developed to inject faults or failures into specific mosetsin various industrial
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domains, see Sectiin3.3.3However, these studies do not provide a justification of the interest of
fault injection during this phase. There is no continuous process to integrate fault injection at all steps
of dewelopment cycle. Moreover, as far as we know, only a few works have investigated the- integr
tion of fault injection at multiple levels of abstraction, even in the -jmoglementation phase
(Kaaniche, Romano, Kalbarczyk, lyer, & Karcich, 1998¢nce, we have tried to explore the various
facets of fault injection in the different phases.

To reach this goal, we focused on the application of FARM method at each step. FARM is a keystone
of our approach, and we consider thattfanjection must be based on FARM to be well defined.

In[Chapter 8 we will investigate the applicability of FARM during the preplementation phase.

What are tk targets? What are the objectives? Which fault model and activation model should be
considered? Then, we will integrate the obtained results into the development process described in this
chapterWhat are the relatiahipsbetween fault injection and thhequirements®hich links can be

drawn withthe safety analysed®inally, the continuum between the different levels of architecture

will be explored, by showing how fault injection can be guided between several levels of abstraction.

This contributionwill be illustrated on a case study: an Electronic Steering Column Lock (ESCL)
System.

We will also tackle, ifChapter 4the problenof the identification of the fault injection experiments.
Following FARM, we define the fault injection experiments during the-pogtementation phase.
Themain problem is th&lfillment of ISO 26262 requirements on fault injection:

1. the demonstration dhe effectiveness of the safety mechanisms.
2. the demonstration the correct implementation of the safety requirements.

Moreover, fault injection campaign may lead to the definitod intensive tests. An objective is to put
necessary efforts on the right component. This is why we need to exploit the results of the contribution
on preimplementation phase to prevent unnecessary costly campaigns. However, this must not lead to
biasthe evaluationof thetwo previous objectives

The definition of fault injection experiments during the post implementation phase is important to
maintain the traceability of the requirements (functional or safety ones) defined in the pre
implementation pase. This last issue corresponds to the analysis datiiteinjection experimenfs
which can lead to validate, or identify improvements and modifications of the design. In conclusion, in
[Chapter }wewill investigatecomplementaritiesf fault injection with safety analyseé/hatare the
hypotheses during the pmaplementation (safety analysis) thanbe validate by fault injection by
experiment8

In[Chapter $we will apply the overall approach on a case study: a fight System. We will first

show using different safety analyses how FIA helps in the definof the design. We then illustrate

the importance of one particular software safety mechanisms in this architecture: the AUTOSAR
Watchdog Manager. We will also show between different levels of abstraction what the critical paths
are.

Finally, in|Chapter § we depict our fault injection environment and give the measures of tha-exper
ments resulted from the FIA. These experiments enable to validate the objetfiael injection in
the development process, according to the 26262.
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INTEGRATING FAULT INJECTION IN THEPRE-IMPLEMENTATION PHASE

We have shown that ISP6262 recommends major efforts for the integration of verification amnd val

dation techniques in the safety development prodegsrticular emphasis should be mtthe def

QLWLRQ RI 3VWDWH RI WKH DUW"™ PHWKRGY DQG WHFKQLTXHV DC
system or entityandon the improvement of traceabilifpr safety and/&V requirements

In this chapter, we will present our contribution to fault injection integration during the pre
implementation phase, which is recommended by the2&B2 standardas explained ifChapter »

Our investigations propose a continuous way to perform safety analyses, during the whole- develo
ment process.

The chapter ends with an illustration of the method on an Electronic Steering Column Lock (ESCL).

3.1 Is Fault Injection Applicable During the Pre -Implementation
Phase?

3.1.1 Preliminaries

We have shown, ||G:hapter | that fault injection covers a large spectrum of techniques, verification
and validation activities: from model verification, to software and electrical and electronic devices
verification. As Fault Injection is generally ustdevaluate implemented targets, we propose to apply
a Fault Injection method among those presentesietioff1.3.Jon elements, which exist during the
postimplementation phase. In the rest of this section we will explore the mearfi®Rdl on these
elements, starting with the pdstplementation phasevbere Fault injection is commonly used), then
considering the pramplementation phase. The latter constitutes our contribution to the integration of
fault injection in the early phases ofthlevelopmenfFigure 3.1]recalls the terminology used in the
whole document.

FIGURE 3.1 V-CYCLE DEVELOPMENTPROCESSPHASE ADDRESSED INCHAPTER3
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Targets

During the postmplementation phase, a fault injection Target will be a set of elements: system /
products / HW parts / SW modules that can be accessed/corrupted by using tools. In theony, fault i
jection experimentsay be appliedn any target. However, it issually used to assess the efficiency

of the safety mechanisms and the robustness of the architecture with regards to the fault model. Fault
injection experiments also aim to verify that fault model doesmpact the functions of the target.
Hence, Fault Injection target is at least an implementation of functions/actions/tasks, on which
measures can be assessed, the robustness.

During the premplementation phase, all existing elements are in the &rfunctional requirements
together with their associated safety requirements and analyses. Fault injection possible taggets corr
spond thus to th&unctional Requirementsand all their representations that are produced bg-a d
signer/developer along pimplementation phase, and this, at each considered level. Indeed, these are
theonly representations that allayg to analyze or compute (when this kind of maglelailable) the
propagation of a fault model.

Hence, we consider that the target of a giverlléL)) is composed of (). functional requirements.
For example, at System Levelgflwe target (Ly) functional requirements: the System functionatl R
quirements.

$V WKH 37DUJHWV" DUH QRZ GHILQHG OHW XV H[SOB&#H WKH PHD
Measures

The aim of a measure is to check if a defined safety requirement is handled correctly and to ensure that
a safety requirement violation is mitigated as much as possible. These Measures can be either qualit
tive or quantitative.

X Qualitative characterizethe factwhethera specified safety property or a set of properties
holds

X Quantitative correspond tgrobabilistic or statisticaineasures onhe occurrencef states
characterized by property combinations.

During preimplementation, we canhalefine the measures of particular systems or of a givei arch
tecture. Particularly, we cannot estimate the distribution of failure nafdes system/element. Mo

ever, we can identify defense mechanisms that must be evaluated when implemented oalse can
identify missing mechanisms that can be added in order to prevent the violation of a safegy requir
ment.

Fault Model

On an implementation, the Fault Model is defined with respect to the Measures of the targetto be an
lyzed. Hence, the fault modelseadifferent for distinct measures. A measure can be the distribution of
failure modes, or the coverage of a safety mechanism. In addition, the Fault Model heavily depends on
the accessibility to the target and on the capabilities of the used fault injexilo

Hence, at a given architectural level, we can consider:

x failure modes of thelements of the targets
x errors of theelements of the targets
x faults of theelements of the targets
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INTEGRATING FAULT INJECTION IN THEPRE-IMPLEMENTATION PHASE

During the preamplementation phas&rrors andFaultscannot belefined precisely; they are referred

to as potential causes of failure modé& consider that, in the pimplementation phase, the pote

tial causes of all failure modes at a given level create the set of faults of the considered lewel. More
ver, the falt model at a considered abstraction level cannot be more precise than the potential causes
that are identified at this level. However, such potential causes can be triggeredlbydofaults

(i.e., software and hardware faults).

Activation

During postimplementation phase, the fault activation model consists in a set of defined data patterns
aimed at exercising the injected faults. This model describes where and when the faults sheuld be i
jected. It is strongly correlated with the target nature.

This can be specificor described byepresentative scenarios in which the fault may be injected at
several instants. Depending on this instant, the fault will activate and thematyq@ropagate. These

tests cases should be selected in order to mimic scenario that can be encountered during the system
lifetime. Additionally, these scenarios have to be chosen carefully to minimize testing complexity.

During the pramplementation phaséhe activation model of aalementis related to its functional
specification. The definition of the system activation at this step requires the description of the diffe
entactivation modes, use cases of the tarfbé more detailed is the modeling oé thehavior at the
considered level, the more relevaxperimensequences or use cases can be defined.

It is worth to emphasize the primary role of behavioral models during thenpfementation phase.
They allow a thorough understanding of system fionstand behavior. In particular, they allgwan
easy identification of potential failure causes, &nd precise analysis of fault propagation.

Readouts

In a fault injection campaign, readouts refer to the observed reactions of the system wheife lzafaul
been injected following an activation model A.

Therefore, during pramplementation, the readouts are related to the state of the element resulting
from the propagation of the injected fault(s). At a given level, they are the effects, which aam be
lyzed or computed, resulting from the application of the fault model on target assuming an activation
model.

Therefore, the failure modes of the considered level are part of the readouts. However, again probabi
ity distribution cannot be obtained thrdugxperiments in the pienplementation phase.

3.1.2 Differences between Pre - and Post-Implementation Phases

Performing FI according to the FARM method is meaningful during thengoementation phase.
Moreover, we also clearly defined the various elementseofrtethod for this phase.

Hence, the main difference between FI during the @ne posimplementation phases lies in tha-n
ture of faults that can be injected, in the control of the fault propagation, and in the measures that can
be assessed.

X In the preimplementation phase, one has to take into account all faults (or at least as much as
possible) that may impact safety requirements, in order to analyze their effects and propose

40



INTEGRATING FAULT INJECTION IN THEPRE-IMPLEMENTATION PHASE

architectural solutions to reduce the effects. During-pogtementation pase, all faults may

not easily be injected. A detailed analysis might be necessary to group faulEsjiitalent
Classesvhen they share the same effects. It is a way for optimizing the campaign by reducing
the number of FI experiments.

X In the preimplementation phase, fault propagation must be performed based on assumptions
that are applied to the element functional description, either directly or by using executable
models or not. In the latter case, model building requires a significant effort,tbok may
help handling the complexity in order to perform a faster analysis. On the other hand,-for post
implementation, fault propagation is directly related to the system activity and does not r
quire any specific control.

x In the preimplementation phas¢he measures cannot be estimated or assessed. This is due to
the control of the fault propagation and the accuracy of the assumptions regarding the element
behavior and fault effects behavior. Therefore, duringipmementation phase, we can only
define the measures that will be later estimated duringfmoglementation phase.

), DFWLYLWLHY UHODWHG WR D V\VWHP GHVLJQFauk th}dithLSWLRQ F
$Q D O\VLVConyestional FI techniques targeting the real system or a prototype will be referred

toas3)DXOW ,QMHFWLRQ E\ ([SWithiréspeQt YFigWeBR| GIA chrresponds to F

during preimplementation and FIE to FI during the posplementation phase.

3.2 Application of the FIA Flow at a Given Architectural Level

We investigate FIA and activities to be performed to produce aswvalitured FIAconsidering the
whole preimplementation phasé@ hese activities are similar at all levels and are illustratethe
product functional requirements level)Ilconsidered as an example.

3.2.1 Applying FIA at the Product Level L 1

The different steps of the FIAt the product level are summarizecﬁﬁigure 3.2 ( . This figure

also indicates the interactions of this FIA with the upper and lower levglsuid (L), as well as the
interactions with the safety analyses (for other products at the same level due to fault propagation b
tween products and the systeafety analysis).

The outputs of the analyses at the product level correspond to the functional requirements of the HW
and SW blocks together with the safety analyses of these blocks.

Definition of the FIA Target at Product Level:

At Product level, the FlAargetis a critical product composed of HW & SW Bloakchitecture that
IROORZV WKH IXQFWLRQDO DQG WKH VDIHW\ UHTXLUHPHQWV :H

Definition of the Measures at Product Level:

Fault injection aims to determine if thedat handles correctly the effects of the Fault Model.

1) A first measure concerns the criticality of the effectsThe effect of our Fault Model at
Product Level may be a failure mode of the Product, which in turn leads to the violation of a
system safety regrement. Hence, the effect of the Fault Model leads to a Product Undesired
Evens, classified at system level accordingtiimpact on safety. The first measure is the set
of analyzed faults that lead to Product UEs. Similarly, we also obtain theawlpted faults
that do not affect the product safety requirements
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FIGURE 3.2 FIA FLOW OF THEPRODUCTLEVEL AND ITS INTERACTIONS WITH OTHERACTIVITIES

2)

In addition, it can assess a partial loss of the prodactdegradation of functions, safe mode,
etc.
This measure is linked to the occurrence of associated Product Undesired Event (faa-quantit
tive dependability measures). Their distribution will bealeated during the post
implementation phase based on experiments.
A second measure concerns the mitigations means of the fault modé&lhen analyzing the
propagation of the faults, it can be verified if a safety mechanism is included in order to:

o0 Detectpossible failure modes (or their causes)

0 Inhibit (or cover) their effects

During this phase, it is only possible to assess the existence of mechémisah failure

modes. Their efficiency corresponds to their error detection and recovery coveragentpreve

ing a failure to occur and placing the system in a safe state). In addition, it is not possible to
evaluate these numerical values, they only can be evaluated based on experimentation during
the postmplementation phase.

At product level, the FIA enabs$ to identify the critical fault model and to propose appropriate safety
mechanisms in order to reduce the risk by diminishing the effects and the occurrences of dritical fai
ure modesilt is important to note that the measures can be deduced from depesdaend interfe

ences (safety analyses) between the blocks. It is of prime importance at this level with the definition of

HW &SW Blocks, which are strongly interlaced. This ismplementation dependency

101t should be noted that the considered evaluation does not correspond to the evaluation of the Diagnostic Ciuicerage, w
fault model encompasses an estimation of residual faults. However, it is possible to assess the DC based on given fault model
and saéty mechanisms.
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Fault Model Identification at Product Level:

This activity relates to the identification of the possible causes of the product failure medése
determination of the possible failure modes of HW & SW block functional requirements. Tlae prop
gation of these failure modes has to be analyzed. However, the causes of the latter will be completed
with information provided by the lower architectural levels (via the link from the Measures of HW and

SW block FIA,in|Figure3.2).

The above shows that even though the FIAs should be carried out starting from the highest (system)
level downto HW and SW modules, each level needs more detailed infornfatim lower levels to
be completed.

Fault Propagation Analysis & Readouts Identification:

Faults are propagated from lower levels to the considered level and from the considered level to upper
levels. At product level, the failure modes of the SW & HWdkfunctional Requirements pap

gate to the product level. Thedffects on the targetshould be assessed. These effects are referred to
aslocal effects(local with respect to the considered level)

The analysis can be based on the knowledge of theextthie and the behavior defined in thed?ro

uct Architecture activity. If the definition of the product functional requiremengsven bya textual
description, the only way to perform this activity is by hand. However, if an executable model exists
(mockl that simulates the propagation of failures) getting the eftactise automated.

Assessment of the Measures:

Based on the knowledge of the Undesired Events at the system level, the analysis of failure modes
propagation allows us to attribute a critigalevel (or a risk level) to the failure modes of the HW&

SW blocks

The FIA enables to determine if there is a defined defense mechanism in order to mitigate the effects
of several HW&W block failure modes. Then, if a mechanism already exists and handles correctly
the fault propagation, then the mechanism should be identified and associated with the corresponding
failure modes. Otherwise, the product architectireuld be modified (aimdicated ifFigure3.2), as

well as the other safety Analyses of the same product (FMECA/FIA/BEEA,

These madifications and improvements, safagchanisms, have also to be associated with the mit
gated HW&SW block failure mode, in order to trace the mechanisms responsible of the mitigation of
the fault model.

To conclude this section, at a given level, the FIA flow helps to summarize the [Esgure 3.3

FIGURE 3.3 RESULTS FROM THEFIA FLOW
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3.2.2 Relationship between FIA and other Safety Analyses

The various qualitative safety analyses, such as Fault Tree Analyses, Reliability Block Diagrams or
cut sets, address the propagation of specific faults at each architectural level and between levels in
Sectio Their ultimate aim is the identification of critical paths. This is also the aim of FI during
the preimplementation phase.

More precisely, for a given level, FI and Failure Modes, Effectd &briticality) Analysis
FME(C)A exhibit strong similarities and share several common objectives. An important objective
shared between fault injection and FMECA is the identification of all critical faults/failures ofghe sy
tem. This objective is achiettdoy analyzing the effects of the potential causes of failures on she sy
tem in a FMECA, and by analyzing system behainathe presence of faultdor the FIA. Both are
based on the same kind of analyses. Moreover, both aims at identifying elemereggquatspecific
safety mehanisms for error detectiar error recovery to mitigate the effects of the critical causes.

From a practical point of view, we can illustrate this analogy by comparing the reSHLI& de-
scribed in thFigure3.3|With typical information reported in a FMECA spreadsheet, represented in
|Tab|e3.1| In this FMECA spreadsheet, an element has to be uoddras a function or an entity.

TABLE 3.1 TYPICAL QUALITATIVE FMECA SPREADSHEETLINE (ECSSQ-30-02B,2008)

1 2 3 4 5 6 7 8 9
Element| Failure Potential | Mission Phase/|] Local Upper Criticality/ FailureDetection UpperLevel
Modes Causes [Operational Mod| Effects Level Risk Level | Method/Compensatind Effect with

Effects Provisions SM

A FMECA line is guided by théailure modes and their potential causes, supposing the worst-activ

tion mode of the system that may propagate the failure mode. However, the activation model is not
described in this FMECA line. It is usually provided by the underlying analyses perftyrbaid the

)0(&$ VSUHDGVKHHW :KHQ QHFHVVDU\ D FROXPQ 30LVVLRQ 3KD
can be added, in order to precise a static modeeoglement, in which the failure mode is
considered if the fault propagation is different.

Thus, the activation model and the readouts are represented in the FMECA spreadsheet by:
X Column 4: Mission Phase/Operational Mode
X Column 5: Local Effects
X Column 6:UpperLevel Effects

It is worth to mention that Column in|Table3.1|is related to what is usually called Criticality/Risk
level in the FMECA spreadsheet. In the amtdive domainthe criticality of the failure modes are
usuallyrelated to the ASILSafety levelintroduced inSectio These two notions are twoda
ets of the same phenomena.

Column 9 ofTable3.1fis typical in a FMECA It analyzes the effects on the upgmrel, in the pre-

ence of the defense mechanisms. According to our analogy, it represents a different Fl analysis that is
done on the same Element, but with another architecture where the fault activation andiprojzagat
modified, for the same target and fault model.

If two FI analyses are performed on the same tgvgigt without the safety mechanisnfsy the same
fault model, respectively FiAandFIA.4, the two obtained results show the impact of the added safety
mechanisms. This is illustrated{figure3.4] Usually the FMECA spreadsheet takes into accownt th
se twoFIAs, on only one line by aggregating the different propagations and the Measures.
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FIGURE 3.4 ITERATION OFFIA FLOW AFTER THEMODIFICATION OF THEARCHITECTURE

Finally, a set of FI analyses, using as famtidel the set of potential causes of failure modes, lead to
the identification of the related failure modes of an element in a FMECA. A line of a FMECAlsprea
sheet can be seen as summarizing the results of a set of Fl analpslesr words, FIA makesisible

and explicitthe analyses supporting the FMEGpreadsheets.

3.3 Links between FIA Levels

We have introduced the basis of FI analyses at one level during timpteenentation phase. We
have demonstrated the analogy with other safety analyses, particularly FMECA. From now, the
FMECA spreadsheet describegiTiable3.2|is used to describe the results of the FIA at a defined level.

TABLE 3.2 REPRESENTATIVEFMECA SPREADSHEET

1 2 3 4 5 6 7 8

Element| Failure | Potential Local | UpperLevel | Risk Safety UpperLevel
Modes Causes Effects Effects Level | Mechanisms (SM)| Effect with SM

In the following section, the main interest is to link the FIA at various levels in order to link the var
ous analyses and measures.

It is important to note that the links between safety analyses at different architectural levels-are well
known. The use of FMECA at multiple levels is already described in various (ECI&ESQ-30-02B,
2008)andis usdl in projects, particularly in Valeo. However, this is of interest when addressing FIA.
Only few works have addressed Fl on various levels of abstractions. This is why it is interesting to
address what can the results at each level induce on the othersa8ésveauare awardjerarchical Fl

has only been investigated in DEPEND, a simulatiased environment, by injecting faults at several
levels of abstractiofKaaniche, Romano, Kalbarczyk, lyer, & Karcich, 1998)

3.3.1 S and Z-shaped Causal Chain

The various levels of the FIA can be linked, based on the propagation of failure modes from one level
to the upper level. Two links are of particular interest, based on the following considerations (using the

column ofTable3.2):

x link-A: level L; Failure modes (Column 2) corresponds to level;; Upper
leveleffectColumnb).

x link-B: level L., Potential causes (Column 3) corresponds to level; Failure
modeqColumn?2).

45



INTEGRATING FAULT INJECTION IN THEPRE-IMPLEMENTATION PHASE

These two links are at the origin of two types of causal chaisRafed and-8haped causal chains.

The Sshaped Causal Chainis based on LinlA (segqFigure 3.5). L; failure modegpropagate td;
upper level effectsvhich correspond tola.; failure mode which in turn propagates tq, upperlevel
effect

FIGURE 3.5 S-SHAPEDCAUSAL CHAIN

An S-shaped chaigaptures the propagation through the architectural levels of the effects of an initial
failure mode. Moreover, the propagation of the initial failure mode (leyef an elemenE; may lead

to several Uppelevel effects. Thereford,; ; failure modeof several elements can be reac
highlights this propagationdm the elemeri; atthe levelto the element at levél.;. Then, several
elementsi;, E; « j(« .fofaconsidered level can also lead to the same dppareffect.

FIGURE 3.6 MULTIPLE S-SHAPEDCAUSAL CHAINS FROM AN INITIAL FAILURE MODE

The Sshaped causal chain also provides traceability of the fault model with the safety level defined at
the uppedtlevel. This property is due to the assessment of the Uepelreffect, whiclcan be an Unet

sired Event (associated with a safety level). Hence, the fault model of the considered level is associated
with the highest safety level.

This causal chain alsenables the definition of safety mechanisms to handle error propagation at the

most appropriate architectural levels. It follows the same approach as the Failure Detection, Isolation

and Recovery (FDIR) in aerospace systems. This is defin@dAiSA, 2005) DV 37KH PHDQV WR GF
off-nominal conditions, idate the problem to a specific subsystem/entity, and recover of vehs:le sy

tems and capabilities. FDIR may be accomplished by the onboard crew, onboard software algorithms,
JURXQG FRPPDQGLQJ RU D FRPELQDWLRQ RI WHkidachudedFtdaGLQJ P}
define the different mechanisms (detection, isolation, reconfiguration...) use in order to ensere the d
pendability of a critical system. In these systems the decision control can be done by ground control,
software algorithm or also by havdre protections.
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Following one of these chains, it can be determined, what is the best level to handle (detect or recover)
the faults in order to mitigate the occurrence of an Undesired Bventexample, adding a safety
mechanism at higher level enables to handle a much larger fault model, but it will have a slow reaction
time, compared to lovevel mechanisms that handles quickly the detected errors but will focus on a
dedicated and small & model. Finally, the decision between several solutions will be done by a
tradeoff between advantages and drawbacks of each solution.

This causal chain also helps in the definition of the readouts of FI experiments (FIE) at the successive
architecturalevels, during the posiplementation phase.

The Z-shaped Causal Chairstarts from the potential causes column of ldyelnd propagates as a
failure mode of the same level, and continues on l&ygltowards the failure mode column.
(SegFigure3.7).

FIGURE 3.7 Z-SHAPEDCAUSAL CHAIN

A Z-shaped chain helps refining the fault model of the considered level by identifying equivalent
faults,i.e., faults leading to the same failure mode at the ufgel (with the same effects at thessy
tem level).

Thus, it will help selecting the fauld e injected during FIE, taking into account the Fl instrument
tion and the Fl accessibility of the target.

Indeed, this chain illustrates the IMEHILQHPHQW RI WKH IDXOiMhgfgGreB2] R1 XSSH!
Hence, the failure modes of the lower level, will be reported following the identifidaed chain
in the columrPotential Causesf the upper level

Hence, the failure modes of the lower lekglvill be reported following the identified-Shaped chain
in the columnPotential Causesf the upper level; ;. Then, it is possible to determine thesEaped
chains.

Similarly to the Sshaped chairthelFigure 3.8|shows a failure mode of a considered ldvel may

belong to more than oneshaped chaindepending on the number of element contributing to the fai

ure mode.

FIGURE 3.8 MULTIPLE Z-SHAPEDCAUSAL CHAIN FROM AN INITIAL POTENTIAL CAUSE
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3.3.2 Initialization and Termination of the FIA Flow

We described the FIA at a given level by highlighting the goals of each aeidtshowing how to
perform themWe have alsshown the links between consecutive levels of FIA, usingaBd Z
shaped causal chains. In this section, we describe how the FIA flow can be initialized and terminated,

in the framework of the \¢ycle of theFigure3.1]

The FIA flow starts at System leve} In which the Definition of the System Architecture has been (or

is being) performed. In order to define the measures to be assesstedaasiyn criticality levels of

the various failure modesystem safety level and system safety requiremest$ to be definecer
spectively in the uppdevel FIA and the uppdevel safety analyses. In practice, these two activities

are part of Hazardnd Risk Analyses. In our context, we will use the Preliminary Hazard Analysis
(PHA). The PHA aims at identifying undesired events (UEs) and the system safety requirements. The
latter are referred to as Safety Goals. Usually, the UEs and the SGs am etletbe adequate saf

ty level (ASIL according to 1ISQ6262).

In theory, the FIA flow ends whemo targets cabe decomposed in stddements, or when the lowest
fault model granularity is considered. Practically, following oucyéle, it ends with HW &SW
Block level.

At the HW block level, the fault model considered is thieas physical faults that ledd the failure of

a HW part. HW parts are the elements that can be handled and for which it can be interesting to assess
if a safety mechanism is eded. For example, at this level, the considered failure modes are the
short/open circiti of capacitor, resistor, coiktc.or a parameter change of these parts. There is also the
stuckat model for integrated circuits,g, inputs or outputs of theircuit stuck at low value or high

value.

Going deeper in the fault model will only help a component manufacturer to improve the reliability of
the HW part, and this is out of the scope of our work.

At the SW Block levelthe lowest fault granularity levéd software development/coding faults as they
lead to the failure of SW Modules that are the elements of SW architecture.

These faults will be injected on the experimental side of togdle.
3.4 Steering Column Locking System
In this section, we illustratihe application of FIA t@ Steering Column Locking System

3.4.1 System Description

This system controls a locking/unlocking motor on the steering column of the cEﬁg{sw&Qk

Conventionally steering column locks are purely mechanical and directly coupled to the ignition lock.
This decreases the degrees of freedom in the design of a dashboard and of the complete interior. This
system is mandatory in the design of ieéhfor legal and insurance reasons. Indeed, this is a leey sy

tem for vehicle theft prevention. The mechanical locking bolt is drivethd$teering Column Ldc

ing System. It can be driven to lock the steering column, or by reversing the commanidckoit.
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This is also a frequently used system to illustrate safety in the automotive industry, as it isTguite si
ple, but also as it owns the highest level of criticality (ASIL D).

This system has two functional requirements, which are defined dufiby EVAVWHP IXQFWLRQDC
activity:
X The locking management of the steering column when the driver wants to immobilize the vehicle
and prevent theft of the vehicle.

X The unlocking management of the steering column when the driver wants to move off.

FIGURE 3.9 STEERING COLUMN LOCKING SYSTEM ARCHITECTURE

There are two system safety requirements, referred to as Safety Goals (SG) that must be easured. Th
se SG are defined in the PHA and each SG is alloeaté®IL:
X SGI The system shall not lock the steering column when the vehicle speed is oveefinae
threshold. It has the highest safety level, ABIL

X SG2 If the steering column is locked, the system shall prevent to start the engine of the vehicle
SG2 has the lowest safety level, AS\L

In the rest of this section, we will first illustrate the FIA approach at system level LO, to idertify fai
ure modes that can violate the safety goals SG1 and SG2, and to check the existence of safety mech

nisms peventing their occurrence. Then, we will use results from the FIA at product level (L1) to
illustrate the Sshaped chain.

3.4.2 Steering Column Locking System FIA (LO)

FIA Target: Products Functional RequirementBhe products must ensure the system functional
requirements and take into account system safety requirements. The product functional requirements

are allocated to the architecture giva[Figure3.9| They are extracted from the S8 Architecture

activity and summarized MThe ESCL is the main product in the system. The
WKUHH RWKHU SURGXFWY SURYLGH FRPPRQ IXQFWLRQW VXFK DV
FOH LQ PRWLRQ ™ LQIRUPDW LéhG@onRthe drive@ (i BEnQyLJdhEoller@dlReis? D W
DQG WUDQVPLWY FRPPDQGY IURP WKH GULYHUY LQWHUIDFHYV

TABLE 3.3 FUNCTIONAL REQUIREMENTS OF THEPRODUCTS

Product Functional Rquirements
ESCL: Electronic Steering ESCL-F1: Lock the Steering column
Column Locking ESCL-F2: Unlock the steering column
BC: Body Controller BC-) 7UDQVPLW /RFN &RPPDQG IURP G
BC-F2 Transmit UQORFN &RPPDQG IURP GUSCY
BA: Break Assistance BA-) 7UDQVPLW 3YHKLFOH LQ PRW,
PS: Power Supply PSF: Supply a switched electrical power to ESCL
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Measures Two main measures can be considered, related respectively to the violation of one of the
safety goals SG1 and SG2.

Failure Modes:|Table 3.4|lists the failure modesfdhe ESCL and their local effects. This table is
obtained by analyzing functional requirements of ESLand ESCH-2, as well as the propagation
of the failures at product level.

TABLE 3.4 FAILURE MODES OFESCL

Functional # FailureMode Product Efects
Requirement
ESCL-F1 FM1 Spurious Lock Erroneous lock command
FM2 ESCL-F1 Lost (No lock) No lock command is possible
FM3 ESCL-F1 stuckat ESCL always performs lock command
ESCL-F2 FM1 Spurious Unlock Erroneous unlock command
FM2 | ESCL-F2 Lost(No unlock) No unlock command is possible
FM3 ESCL-F2 stuckat ESCL always performs unlock commang

Fault Propagation and Readouts Identification:

We focus on the fault propagation of the ESEL-FM1: spurioustransmission of a lock command
when the vehicle is dtigh-speedeads toSteering column lockeas a local effect while the speed is
over the pradefined threshold. The result at system level isldbking of the steering column by the
ESCL while drivig. The system effect violates the safety goal SG1.

The FIA aims at checking the existencqafhelping thedefinition of) safety mechanisms to prevent
this propagation and the violation of SG1. Two safety mechanisms are identified:

x Braking Assistanceroduct sends vehicle in motion signal to the ESCL when the speed is higher
than a defined threshold, thus an ESCL mechanism must check this value before locking the m
tor. If vehicle in motion is true then SSM1 must inhibit lock command. (SSM1)

X The PowerSupply product is a safety mechanism, as it must not power the ESCL when the car
engine is running, thus the ESCL is in a safe state. (SSM2)

The FIA of the ESCIF1-FM1 results in the first line of FMECA [ihable3.5| Similarly, analyzing the
other failure modes, we obtaimet complete System FMECA table availab|eAI?PENDIX 2|

Thus, FIA identifies three safety mechanisms (SSM1, SSM2, and SSM3) whose coverage will be
measured through experiments on real target using conventional fault injection. The failure modes will
be used to select the most appropriate faultsetinjectedj.e., fault that should be handled by each
safety mechanisms.

3.4.3 ESCL Product FIA Flow (L1)

To illustrate our approach, we focus on ESCL product. The HW&SW Blocks functional requirements,

allocated to the product architecturfFogure3.10] are:

X Micro-controller Block: it controls the state of the MDB.

x Communication Block: it transmits requests from BC and replies from ESCL.
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FIGURE 3.10HW AND SWBLOCKS ATESCLPRODUCTLEVEL

X Motor Drive Block (MDB): it powers the motor of the steering column. This power converter
output is controlled by the micr@ontroller using four switches: locking, unlocking, breaking the
motor and ufpower the motor.

X Sensor Block: it senses the positiminthe motor of the steering column (locked, unlocked, u
known).

Measures: We identified three critical failure modes (or UES) at system le&gekious lock (ESCL-
F1-FM1), ESCL-F1 stuck-at (ESCL-F1-FM3), No Unlock (ESCL-F2-FM2). At this level, the causas
these UEs should have been identified.

TABLE 3.5 PARTIAL FMECA OF THE STEERING COLUMN LOCKING SYSTEM: ESCLPRODUCT™

. UpperLevel
Element|Failure Mode|"2tentig Local B- UpperLevel Effect Safetyl System Safety M- | "o 4 itk
Causegy fects Level| chanisms (SSM) SSM
Lock |Spurious Locl Erroneous| Steering column locked SSM1:Vehicle in
steering| ESCL-F1- lock cam- while driving ASIL motion No effect *
column EM1 mand SG1 Violated D SSM2: Switched
ESCL-F1 power supply
ESCL-F1 Lost No lock [Parked vehicle with steeri
(No lock) command i column unlocked NA
ESCL-F1- possible
FM2
ESCL-F1 ESCL &- Steering column remaing SSM3: Monitoring of
stuckat ways pe- [locked => vehicle starts wi| ASIL [motor position shou No effect *
ESCL-F1- forms lock lockedcolumn A be implemented
FM3 command SG2 Violated
Unlock Spurious Erroneous|Parked vehicle with steeri
steering Unlock unlock column unlocked NA
column | ESCL-F2- command
ESCL-F2 FM1
ESCL-F2 Lost No unlock | Steering column remains SSM3: Monitoring of
No unlock) command i§ locked ==> vehicle start§ ASIL |motor position shou No effect *
ESCL-F2- possible with locked column A be implemented
FM2 SG2 Violated
ESCL-F2 ESCL d4- |Parked vehicle with steeri
stuckat wayspe- column unlocked NA
ESCL-F2- forms unloc
FM3 command

* assuming a perfect coverage of safety mechanisms

1 The compéte table is available [RPPENDIX 2
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In this section, we focus on one critical failure mod®. L FOdRtrollerF1-FM1, Erroneous assigr
ment of the outputs of the miecontroler GHOLYHUHG WR WIbe®8(%  JLYHQ LQ

The Micro-ControllerF1-FM1 failure mode puts the MDB in a locking state, the BApowering up

the motor in locking mode. In this case, the ESCL triggers a spurious lock of the steering column
(ESCL-F1-FM1 failure mode). Two mechanisms are proposed. The firstxt&M1 +is a hardware
watchdog whiclrenable the detecion of abnormal eftwarebehavior This could be a cause of ausp

rious locking command sent by the ESCL. Then, a fault tolerance mechanism is implemented to ha
dle single point failurejwo independent software modules should be responsible for the locking
command of the W@B.

TABLE 3.6 PARTIAL FMECA oF THEESCL (FAILURE MODE OF THEMICRO-CONTROLLER BLOCK)12

. . Product
Element Failure Modes Potentiay Local Effects UpperLevel | Safety Safety Mechanisms Effect with
Causes Effect Level (SM) SM
PSM1: Watchdog
Erroneous assig . — n (HW),
Cont e 30 mentofouputsof | SParossseaton g sputous oo | pe 2 iferent S, e
C-F1 the micrecontroller, state “EML modulesshould be
H pC-F1-FM1 ' — implemented to contr
the uGF1 (redundancy

* assuming a perfect coverage of safety mechanisms

This example illustrates the links between the product and system levels of the architecture, thanks to
the Sshaped chain whose elements are indicated in f€dble3.6|andthen inTable3.5{ For illustra-
tion purpose, during the prmplementation phase, this chain helps in the following two itietv

x Propagation through the architectural levels of the effects of an initial failure mode and
traceability of the fault model with the safety level.

The failure mode Micre&ControllerF1-FM1 leads to the ESCE1-FM1 product failure mode
that affects SGat system level.

x Definition of safety mechanisms to handle error propagation at the most appropriate aréh
tectural levels.

The proposed design includes safety mechanisms (SM) at two levels. PSM1 detects and recovers
at product level MicraControllerF1-FM1 failure mode. However, if PSM1 fails, ESE1-FM1

occurs but can be covered by SSM1 and SSM2 at system level. Indeledktbécoverage of

SM1 can be handled by the System safety mechanisms. Both safety mechanisms placed at two
different levels are motivated by the required high safety level.

3.5 Synthesis on Fault Injection Analyses

We have demonstrated the continuum in thkdation process from fault injection point of view. In
addition, the methodology has been illustrated by the use of S-ahdpéd causal chains. We have
highlighted that the first one helps in the definition of the experimental measures and thealilesy en
to define the fault model for fault injection experimem#e have shown that Fl analyses during the
system pramplementation phase provide information that can be synthesized in FMECAlsprea
sheetsHowever, as the critical path are clearly desctildth the fault model, the possible critical
corsequences and the fault toleraneechanisms, it is possible to describe a whole set of attributes of
fault injection. FTA or other safety analyses can help to answer fault injection requirefrents-

12 The complete table is availabld MPPENDIX 3

52



INTEGRATING FAULT INJECTION IN THEPRE-IMPLEMENTATION PHASE

vantage of FIA is to make visible and explicit all the detailed analyses performed manually or based
on models, and tools for activatiand fault propagation analyzes.

It should be noted that, even if we have shown FMECA are the most suitable analysesatswer
fault injection objectives, several actors of the industry are used to base their safety processes on FTA
rather than on FMECA.

From a practical point of view, FTA is a deductive approach whereas FIA and FMECA are inductive
approaches. They can biwed as complementary. FTA gives an overview of fault propagation not
only between the levels but also between elements of the same level. They do not necessarily show
explicitly the details related to fault propagation and criticalip. the other hand-1A and FMECA

give more details fault by fault, without showing all the relationships (or propagation) explicitly in the
lines.We proposed to analyzkd S and Zshaped causal chaites provide such siew.

Fault trees representation is interestingtfee representation of fault injeati. First, the two causal
chains,S and Zshapedare represented. Hence, the traceability between levels is shown.-The S
shaped correspond to bottarp reading of a branch of the fault tree. However, the multipleteftsd

a fault cannot be identified directly, on the fault tree, as a branch only represents a critical path. The Z
shaped chain corresponds to the causes analyzed in the fault taee. Zshaped chains are respe

tively illustrated in red and blue[figure3.11] in both a fault tree and a FMECA spreadsheet.

FIGURE3.11S- AND Z-SHAPED CAUSAL CHAINS IN FTA AND A FMECA TABLE

Another interesting pointoncerning FTA is its management of the combination of faults. For the
moment,we have only highlighted the effect of single failure, but fault injection is not reserved to
single failures. The injection of fault in multiple locations have already beeredte.g, duatpoint

fault in (Ayatolahi, Sangchoolie, Johansson, & Karlsson, 208t of the time, these aspects are not
tackled by FMECA, therefore FTA can enrich the set of experiments, by adding combinationoof
more faults.
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In practice, the integration of these experiments in the campaign has to be analyzed. In most of the
cases, multiple failures are not exhaustively considered in the analyses, even for dual point faults. A
particular aention can be fpught to thesc FDOOHG 3VHFRQG RUGheLhuRIMdtiveD QL V P~
industry, they detect the error of the first order safety mechanisms. In this case, ipgriogimple
fault injection is sufficient to evaluate these mechanisms.

Finally, in order toconform to the IS@6262 standard, many actors in the automotive domain have
started looking for new approaches to Fl in the early development phase, with the fear that integrating
Fl in the early development process will incur a redefinition of the wieelopment process. Imte
estingly, the analogy between FIA and safety analyses developed in this chapter shows that FI can
indeed be easily integrated in the existing process, and willieyaove the efficiency of the global
process

x Safety analyses, MFECA, must be integrated in the development process and, in practice,
FMECA is already integrated.

x Safety analyses are required by the BB262 at all levels described before: system, product,
software and hardware. Moreover, they are required for dllh8ven the lowest one.

In the next chapter, we will complete our approach with the determination of the fault injection expe
iments based on the FIA. Our approach follows studies that have highlights the relationship between
FMECA and fault injection eperiments.

3 More information about the characterization of the first and second order safety mechanisms can be fq@mgef, in
Rauzy, & Leeman, 2014)

54



Chapter 4AULT INJECTIONDURING POST-

IMPLEMENTATION PHASE

A1 FIE OVEIVIEW. ....eeiiiiiiiiiie ettt ettt eent et e ettt e e et e e s rmm e e e e e s 56
4.2 From FIA to FIE: Definition of te EXPeriments.........cccccooviiiiiiiieeniieeiee e 57
4.2.1 Application of FARM ... e 57
4.2.2 Experiment Traceability.............ccoeiiiiii e 61
4.2.3 Determination othe FIE using FMECA.........cooiiiiee e 61
4.2.4 Conclusion on the Identification of the Experiments..............cccccovvveeeennnnnn 65|
4.3 Execution of the Experiments and Evaluation of the Measwures...................cceeu. 65|
4.3.1 Optimization of the EXPeriments..........coooiiuiiiiiieeeieieeeeeeiee e 65|
4.3.2 Assessment of the FIA with regardstothe ElE.........cccooooiiiiiiicccnnnld 67
4.3.3 Assessment of one Fault Injection EXperiment...........cccccovviiiimmniiiiiinnnnnn. 67
4.3.4 Synthesis Of the FIE..........ooii e 68
N o] o ol [ 11 o] o F PP PPPPPPPPP 69

55



FAULT INJECTIONDURING POST-IMPLEMENTATION PHASE

Theobjectiveof the chapteis the identification ofault injectionexperiments ogoncretetargets The
Readouts and the Measuresn be deduced frohe Sshaped causal chainshen, the Zshaped
causal chaimenablethe identification of the &ult model. Finallythe Activation of the targetorre-
spondgo thefunctional behavipof the targeted elemer fault injection campaigeanbe definedas
a wholefor atargetbelongingto a particulafdevel. Finally, weevaluate thdenefits on the FlAf the
obtained masures of the FIE.

4.1 FIE Overview

The FIA enabledidentifying the propagation of failure modes at different levels of architeetnde
enabledddining the meas (safetymechanisms) to mitigate the propagatainhe most appropriate
level.

Our aim in the following section t® answer the following questiofo what extent FlAis of interest
for conducting the FI experiments in real targets?

Fault Injection Experimergtaim atcheckng, during the posimplementation phase, that the various
fault tolerance mechanisnaefined during the pramplementation phase are correctly implemented
Another output of such experiments is the quantitative assessmtm ofst impactng safety p-
rameters.

Firsty, we show how taisethe results opreimplementation phasgChapter 8 to define thefault
injection experiments onatgets. Particularly,-Sand Zshaped causal chains will be used to identify
the measures and the experiments

Secondly, we investigatie continuum of the fault injection experiments between the different levels,
andwe compareobtained measures with &I The objective is to validate the measuoéshe FIA
identificationof safety mechanisms and critical paths, with the results of the experitmeadklition,

the campaign can be optimized, guided by the FIAs and the causal chains, in order &ffamdmtt
experimentsThen, we investigate theomplementarity of experiments with analysis.

Finally, we discuss the process and the outcomes with the requirements of 262620

The contributions tackéein this chapter witlrIE are highlighted i‘rh?igure4.l

FIGURE 4.1 CONTRIBUTIONS OFCHAPTER 4
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4.2 From FIA to FIE: Definition of the Experiments

In this section, the applicability of the FARM methéor the identification of the attributed fault
injectionexperimentandtheir planning is discussed.

4.2.1 Application of FARM
4.2.1.1 Definition of the Experimentation Target s

The FIAenableghe identification othe most critical elements and propagation paths of the archite
turethanks to the traceability of ASILs of all the elemeiatsdfollowing the Sshaped causal chain.
These critical elements and paths should be particularly verified, in ordalidatethatthe causes of
safety requirement violation have bgmoperlymitigated.Considering a specific level of integration,
thetargets chosefor the experiments hawedecreasing ASIL.

The targets uslig implement at least, one safety mechaniéetecion or tolerancelault injection
experimens mustdemonstrate¢he efficiency of safety mechanismaith respect to theonsidered fault
model.

4.2.1.2 Measures to be Assessed

Fault injection has two main objectives. On the one hkhgerifiesthat the safety irements are

not violated,i.e., the considereerror (failures) identified irthe safety analyses does not propagate
through critical path$o violate safety requirement$he violation of safety requiremertan be quia-

tified by identifying the failuremodes distribution, in which the failure modes are associated with
safety requirements. The failure modes distribubtanEH UHSUHVHQWHG XVLQJ 3SLH FKI
RU 3KLVWIR dddifidaMhe temporal behavior of error handling is important. The detection time
and the reaction time maye part of the definition of the assertioproviding themeasures. Indeed
safety requirements impose a detection or reaction timeyaioate metherthe system handles safely

the fault model. Experiments where there is a detection of an error, and experiments where-the dete
tion is within the timing requirements should be distinguished. The former asafeoif they do not
comply with the timng margins on theontrary to the latter. Finally, these measures enable the-eval
ation of fault proportiorthat leado violate a safety requirement.

On the other hand, FI addresses the verification of the eeess of the safety mechanisms,
whether the fault modelidentified in sfety analyses ignitigatedby the sifety mechanisms. Thizb-

jective aims atassedsg the Error Detection Coverage ahdr the Error Recovery Coveragé the

safety nechanism. Generally, these results are represenfed 8LH FKDUW ™ LQ RUfGHU WR L
ference between the fautterrectly handle@nd the coverageeficiency

Thesemeasures quantify the effectiveness of the safety mechaprswening the occurrence afin-
desired gents.

4.2.1.3 Faults to be injected

Fault model is extracted from the failure modes of the elements identified for each element or path. If
the failure mode is too abstract, it will befined using the Zhaped causal chain. The potential causes

of the failure modes help identifying elementhere the faults/errors can be injectedo Fl strae-

gies are possible, related to two complementary objectives:
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X Objective 1: verificationthat a given faure mode identified by the FIfs handled correctly
by the implemented safety mechanisiBg.injecting representative causes of failures leading
to the considered failure mode, the identified safety requirements will be soliciteég donihg
so,will be easily testedThis strategyelies on theassumption that the failure modes of the e
ementhave been deeply analyz@lg, important backgroundormerstudies).

Figure4.2|illustrates this strategy. We consider that thiseré Q ~ (iValene Classes (EC) of the fai

ure mods of the SW ModuleAt least one potential cause identified in the FIA is chosen for each EC.
Hence, thisenables verifing that the safety mechanism mitigates correctly the Failure Mode of the
SW Module oridentified alack of coverage.

FIGURE 4.2 ILLUSTRATION OF FIRST STRATEGY
("HILQLWLRQ RI )DXOW ORGHO ZLWK Q" 3BRWHQWLDO &DXVHV 5HS

x Objective 2: verificationthat a set of identified causes of a failure mode will lead effectively to
this failure mode. In this case, experiments consist in injecting as much causes as possible to
check that the fault/failure propagation paths identified by FIA are Jalithis second strat
gy, the objective is more exhaustivighis strategy should be appli®hen the failure mode
distribution of the potential causegdifficult to analyze.

Figure4.3|illustrates this strategyere, the safety analyses leaddentify a set of potential causes.
All the potential causeshould be injected to validate that theaye real causes of tii@lure of the SW
Module.Whena potentialcause leaslto a failure modethe experiment checks whethtbe propag-
tion is well mitigated

FIGURE 4.3 ILLUSTRATION OF SECOND STRATEGY FOR THEDEFINITION OF FAULT MODEL
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At this stage definition of thefault mode}, we assume that the strateggédecte independently from
FI capabilities provideé by the available FI toolThe goal is to define the set of fasithat should be
injected in order to obtain the desired measures.

4.2.1.4 Activation Model

In the case of FIE, the &tivation model is a set of data patterinat aim satexercising the injected
fault. For a general purpose, a solution congistsing a representative program. It aims at evaluating
the behavior of the systems in presence of faulttiguhe representative uses of the target. They
could be chosen according to the frequency, the criticalityof the program.

For theFIE, the Activation model is a set oinput patterrs that ains at exercisingi) the target Eé-
ment (EUT, Element Uret Test) andii) the location of thenjected faultto limit the number ofri-
significant experimentdhe best solutiomonsistsn using a representative prograhnataims atstim-
ulating the BJT in a realistic fashion and awaluatingits behavior in pesence of faultsActivation
profiles carbeselectechccordingo criteria e.g.the frequency, the criticalitgtc.

Nonetheless, the determination of the Activation set could be significantly improved using behavioral
models of the dynamilbehaviorof the targein its environment. Our proposal is to use the behavioral

models developed during the FIA (sequence diagrams, timing diagrams or use cases). The goal is to
determine when to trigger thault injectioni) TURP WKH VWDWHY RheékartbrW DU JH W §
ii) according to specifimputs from the environment.

4.2.1.5 Readouts

The readouts are obtained in order to verify and validate the system according to the safety requir
ments and to verify the effectiveness of the safetghanismg,e., computaibn of relevant measures.

It is worth noting that the identification of the readouts should help in the identification of precise
oracle(s)of fault injection experiments. Tharacle problem(Gaudel, 1995)s one of the main cha

lenges for testers. Observing the tests outputs and deciding wbetha verification conditions are

met is sometime difficult. In fault injection campaigns, there are three main forms of oracles:
i) specificationji) error degction mechanisms ari@) goldenrun (Leeke & Jhumka, 2009 he spe-

ification and error detectiomechanisms areelated to the definition of propertythat should bere

forced during the experiment. These propertiestiban be formalized using observation points of the
targets,i.e. the Readouts. More information on the formalization of robustness testsedannd in

(Chu, 2011) Thegolden runis an execution of the system under normaldd@tmns that generates a
reference run and its corresponding outputs. The outputs of reference run can be then compared to
thoseof the run when a fault has been injected. However, the golden run approach is recommended for
black boxtesting but in our case, our measures are based on safety requirements evaluation.

To definethereadouts, we recommend using the AAst, the fault model must be monitored as well
as the propagation of the faults (the local effects and higher levels effects). Second, the behavior of the
safety mechanisms must be monitored.

Datg variables (physical or digitaBndeventshave to be observeahd acquired on the target. Further
details about the measurement peifgtate or eventg.g, timestamps, log files of variablesic)
should also be registered. This couple of variables/states indicates whatsafety mechanism has
been triggeredndii) the error handling is correct.

59



FAULT INJECTIONDURING POST-IMPLEMENTATION PHASE

Then, from the readouts, a logia@tpression or a safety propeftgsed orthe target states can be
established to detect when a safety requirement is violated.

4.2.1.6 Assessment of the Measures

The analysis of the readts leads to assess the measures defined at the beginning of the process.
However, as we are performing tests, the results could be ambiguous and must be analyzed. We
choose to classify these experiments into four categori We considered experiments
thatimplement at least one safety mechanism, and an experiment on which we verify thatesafety r
guirements are ensured. This table ignores faults that have moatteted and that usually fall into

WKH QR REVHUYDWLRQ" FDWHJRU\

TABLE 4.1 READOUTSANALYSIS

Case

/

Activation of a

YES

safety nechanism(s)

. YES NO NO
safety nechanism
Safety requirement
Vsl NO YES YES NO
Comments and further Expected Coverage alc?t?\jzzgnogmﬁe Fault injected correctly but
analysis results deficiency no effects observed

The expected behaviatCase. tis the activation of safety mechanisms in the presence of faahs pr
venting the violation of the safety requirement. This behavior should have the highest probability.
Obviously, in all other cases, safety mechanisms need to be deeply analyzed thatditeth ekea-

tion traces of experiments.

Case FRUUHVSRQGYV dafigierigy ¢F R¥ HriplBrddnted safety mechanism(Bhe safety
mechanism is activated, but the propagation of the fault is not mitigated correctly.

Case DQG / RIWHQ P H InQlerden@tibl proklenR since the safety mechanisms have not

been activated.

Case LV VLPSOHU WR DVVHVV &RQWUDU\ WR &DVH /
tion of a safety requirementhe nonractivation of the safety mecham can be due to a wrongd

sign, in which this potential cause has been omitted or a wrong safety mechanism has beeit chosen
can also be an implementation error: bug in the design of the safety mechanism, a wrong integration.

LWaFRUUHVS

Case/, i.e,, experimentwhere no effects are observedyresponds tseveral categoriethat should

be analyzedFirstly,itmay UHVXOW IURP WKH LQMHFWLRQ 2262\arbBH ADXO W’
safe faultis a fault whose occurrence will not significantly increase the probability of violation of a
safety goalHence, the nothing will be observddefaults in the fault injection experiments can also

be a reason for this last cagean error remaislatent andhas not been activated lay experiment
scenarioji) the fault has been tolerated by another mechanism or by desigitiédlezation of a data
corrupted by the injection before using it).

In a conventional faulihjection campaign, the outpat the exyerimentss represented as pie chart
composed of the previoustegoriesldeally, 100% of eors are detected and recovered, tinsuees

that the safety requirement is not violated. In reality, some errors are not detected by internal error
detectionmechanismsor are not recovered. Upper level safety mechanisms should then prevent the
violation of safety requirement.
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The observation of the time whetiee monitoredeventoccurs(e.g, fault injectiontime, detection,
return to a safe statetc) is important This observation enablég verify the timing requirements,
defined ifFigure1.3Jare ensureddiagnostic Test Interval (most of the time it correspondidole-
tection Time) the Reaction Time artie ToleranceTime Interval (TTI)

To conclude, safety analyses check/recommend safety mechanisms to be put in placexpaid Fl
mentsquantify their efficiency, namely detection and recovery coverage. Asatagy snechanisms
may prevent UEs to be reached, this will enable viadgfthe safety requiremenfand the FFI proge
ty) is ensured.

When a safety property is violatede of the two followingonclusiors holds
x lackof coverage of a safety mechanism. The implementation of the mechanism shoudd be an
lyzed in order to improve the coverage, if necessary.
X absence of a safety mechanism leading thus to a revision of the design.

4.2.2 Experiment Traceability

This link between th&lA and the FIE is important in a development process. The definition of the
experiments is linked to the assumptions used in the analyses. It is of paramount interest to link the
experiments with the safety requirements. The planning of the campaignnaiude all necessary

fault injection experiments to be able at the end to verify that all the requirements have been tested.

4.2.3 Determination of the FIE using FMECA

As we show in t4@hapter BFIA is linked to FMECA spreadsheets. In this section, the objective is to
show how fault injection experiments can be defined from a FMECA row together withdSZ
shaped causal chains. Then, we define the measures tha ohtained by gathering the experiments
from several FMECA rows and how they are selected. This enables obtaining measures of-the effe
tiveness of a safety mechanism or the-aimtation of a safety requirement.

4.2.3.1 Definition of Experiments u sing One Line of FMECA

We considethe FMECA line of(Table2.1 (p hasbeen done at one level Firstly, the target is an
implementation / integration ohé specified element at a given architectural level. The analysis of the
FMECA starts with the evaluation of the criticality/risk/safety level.

Secondly, the measures have to be assessed. They can be found in the column 5 and 6. Concerning the
demonstratin that the safety requirements are not violated, we need the description of a physical
quantity, variables or signals, involved in the definition of the assertion to ensure that the system is
safe. In addition, column 7 helps to identify the safety mdshanthat should be monitored during

the experiments. These mechanisms have to be characterized according to their error handling capabi
ities (detection and recovery).

More generally, if the target implements also upper levels, then following-8feafedcausal, all
safety requirements that may be impacted at each level have to be assessed, that is to say all the safety
mechanisms must be evaluated.

The fault model is defined using columns 1, 2 and 3. Firstly, the daihades of the entities (eo
umnl) have to be considered. Depending on fault injection capabilities on the target, a given
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fault/failure mode can be injected easily or not. In the latter case-shaped causal chain will help
determining the potential causes at levig] br lower levels, and this way provides means to activate a
given fault at multiple levels. This would simplify the implementation of the experiments in many
cases, this being an interesting result of the FIA regarding the definition of the FIE.

Concerningthe Readouts of the experiments, a similar analysis following 4teafed causal chain

has to be performed he following columrs: failure mode(column2), local effect(column4), upper

levels effectawith or without safety mechanisnfsolumn5 and 8) and the safety mechanisr{tl-

umn7), must be taken into accoummt determination othe readoutsFirst, te failure modemust be
monitored to validate that an injected fault is activaiduen, the different effects enable defining the
assertions definipthe propagation of the fault model, the ssfges in order to assess the coverage of

the safety requirements. The column 7 focuses on the readouts needed for the assessment of the safety
mechanisms.

However, the Activation model can only be definechgsihe description of the functional recgsir
ments,i.e. the architectural and behavioral models. The latter gives a detailed specification xf the e
pected activation profild,e. the software to be developed to perform the experiments, including stubs
anddrivers for the target component.

4.2.3.2 Example using the Steering Column Locking System

Let's take as aexample the line describeqTable4.2|of the Product FMECA of the ESCL.
TABLE 4.2 CONSIDEREDLINE OF ESCLPRODUCTFMECA

Product
. . UpperlLevel | Safety| Product Safety Meah -
Element Failure Modes |Potential Caust Local Effects Effect Level nisms (PSM) EﬁleDCSt '&wth
Erroneous assig| RAM, Flash, PSMl(;_'V\thCthQ
[ e eLizE5G) (RO GOl Spuriousactivation of[ Spurious lock PSM2: 2 different SW| .
Control the stat the micre tion, h locki ASIL D dulesshould b No effect
of the MDB Sl Oscillator SWt e MDB locking stat§ESCL-F1-FM1 ~ modulesshould be
C-F1-FM1 defect’ implemented to contrg
WorPomVe the pGF1 (redundancy

First, we consider that the whole product has been implemented aruv the considered target.
There are two important properties to evaluate. First, we must check that no spurious lock is observed
since this is a critical Product Undesired Event rated ASILChen, the two safety mechanisms should

be assessed to verifhat the proposed solution is able to handle the faults leading to the "Failure
Modes" identified in the FMECA spreadsheet.

7KH FRQVLGHUHG IDXOW PRGHO DW WKLV OHYHO LV RHUURQHF
FRQWUROOHU " 7KH teRfsiieOniddelnce FAMXMash, ROM corruptions fromt-sof

ware defects or the uC oscillator defects. A fault injection technique and tools have to be selected to
inject faults corresponding to this fault model. In our case, our tool provides appropuiitees,

from SWIFI to Tes{port basedault injection techniques (sf@hapter }.

Concerning the Readouts, the target should be monitored to ensure the injected fault/error has been
activated/propagated as required for the analysis. Then, different effects and particularly the Upper
level effect have to be monitored in order to verifgtta safety requirement is not violated. The-non
occurrence of undesired effect shoblkelobserved to ensure that the PSMs are efficienis is the
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case of PSM1In our case study, PSM2 cannot contribute to the readouts of the experiments, as it is
only a recommendation for the implementation at a lower level.

To describe completely the experiment, the final step is the identification of the activation Asdel.
alreadymentioned, the activatiomodel is not integrated in the FMECA spreadsheet but ird¢he
scription of the functional architecture atite behavior of the product. The behavior of the locking
sequence is described in the sequésncescribed in the sequence diagram

When the Microcontroller receives a Lock request from the Communication blockt thest follow
the following sequence:

x Preactivation of the MDB: the motor is stopped,

x MDB powers up the motor (Locking): the motor accelerates,

x MDB brakes the motor: the motor decelerates until stopping, and
x MDB returns to an inactive mode: the motor is off.

FIGURE 4.4 BEHAVIORAL DESCRIPTION OF THELOCKING SEQUENCE OFMOTOR ATPRODUCTLEVEL

During this sequence, the motor should reach the Lock position. In the sequence diagram, we
identified six states wherdaults corresponding tthe previously defined fault model could be
injected during the locking sequence to chels&impact on the ESCL product.

4.2.3.3 Definition of Experiments u sing Multiple Lines of FMECA

We have shown that one line of FMECA helps to determine the experiments that enable assessing the
nonviolation of a safety ragrement and the coverage of safety mechanisms with respect to a fault
model. Similarly, the FMECA lines should be gathered in order to globally assess the robustness of
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safety mechanisms against the whole fault model of the systemtke set of all the failure
modes/potential causes which have been identified), and theiaglation of the safety requirements.
The determination of the fault model is of course the main iF$weefault model is the set of potential
causes that, throhghe SShaped causal chains, leadingte® or a set of UES

In thgFigure4.5| we illustrate the assessment of the occurrendgbofl (considered as a criticahu
desred event). In this case, we can see that two FMECA lines may lé#d tbdue to two different
entitiesE; and E,. Then, the causal chain highlighispotential causes of these failure modes at the
lower lever. Hence, the FIE must gatladirthe considexd failure modes (FM FM,, FMs; « ) 0,),

that may lead tJE_1

The same "causality link" approach can be applied to a safety mechanism, instead of an undesired
event, leading thus to the same kind of global analysis of experimental results.

FIGURE 4.5 S-SHAPED CAUSAL CHAIN IN THE DEFINITION OF GLOBAL MEASURES

4.2.3.4 Example using the Steering Column Locking System

In the case of the ESCL, we focus on the evaluation of theviotation of SG1 Here we consigr

two levels: system (SCL) and product (ESCL Product). At System level, there are two failure modes
that may violatesG1 ESCL_F1 FMlandBC_F1_FM2 Then, considering the ESCL, all the follo

ing failure modes will propagate through theéSBaped Causal Che pC-F1-FM1, CBF1-FM2,
MDB-F1-FM2, MDB-F4-FM1, MDB-F5-FM1, MDB-F5-FM2, SBF-FM1, SBF-FM2.

Finally, in order to verify that safety mechanisms have been well defined to prevent the violation of
the safety goal 1, the fault model encompasses afaihee modes identified in the FIA at System
and product levels.

We give a summary of this conclusion in the two lioethe System FMECA, hereafter| In

Table4.3| the two failure modes of ESEEL and BGF1 are described as well as the potential causes

of the ESCLF1-FM1. Faults leading to all thie failure modes highlighted in red should be injected
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TABLE 4.3 SYSTEM FMECA LEADING TO VIOLATE SAFETY GOAL 1

. System
Element [Failure Mode|Potential Caus{| Local Effects| UpperLevel Bfect Eafety SystemSafety Mechanism Effect with
evel (SSM™) SSM
UC-F1-FM1
CB-F1-FM2
ESCL-F1: [Spurious Loc MBEE‘EM§ Erroneous locl Steering column locke| SSM1: Vehicle in motion
Lock steerin| ESCL-F1- while driving ASIL D| SSM2: Switched power | No effect
column FM1 ALLERFE AL | T SG1 Violated supply
MDB -F5-FM2
SB-F-FM1
SB-F-FM2
BC-F1:
Transmit Unintended SSM1: Vehicle in motion
Lock Can- | Unintended Lock Comman Steering column locke| SSM2: Switched power
mand from BC-F1  [Out of our scof transmits to thi while driving ASIL D supply No effects
GULY HBC-F1-FM2 ESCL SG1 Violated SSM4: Plausibility check i
interfaces tq the ESCL
ESCL

4.2.4 Conclusion on the Identification of the Experiments

At this stage, we have shown how to identify the experiments of the fault injection campaign. These
experiments aim at demonstrating the robustness of the safety mechanisms and also at showing the
efficiency of the mechanisms to prevent undesired eventshdVehighlightedthe importance of S

and Zcausal chains in the definition of the Readouts and the Measures for the first one andfin the de
inition of the Fault model for the second one. Finally, the Activation model can easily be defined from
the behawral description of the system or a comporsrgtem.

4.3 Execution of the Experiments and Evaluation of the Measures

In this section, we first analyze the way FI campaigns are carried out based on the identified exper
ments. The first objective is the optiation of FIE. Indeed, the final fault model may be very large;
further analyses may help reducing the complexity without reducing the validity of the measures. The
second objective of this section is the assessment of the fault injection experimenespétti to the

safety analyses. A thorough investigation tackles the completeness of the approach.

4.3.1 Optimization of the Experiments

A first objective is the optimization of the number of experiments. There are sdiragaisionsor
the optimizationOptimization is frequently tackled in all fault injection studies reported ititira-
ture

4.3.1.1 Fault Model

Following the conceptual causal chain faedtorfailure, itis worth noting that the faults injected are
in practiceerrors, i.e. subtle corruptions of sgem input and state. Hence, these errors represent a
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class of equivalent faults. This is a first way to reduce the number of experiments. This issue has been
discussed ifiChristmansson & Chillarege, 1996)

When al the faults cannot be exhaustively injected, two strategies can be used. The frexores
the fault model by selecting specifiata type, range of values, boundary valeés, The second stta
egy is the injection ofandom faults using probabilistic approach.

4.3.1.2 Activation Model

The activation modetan also be optimized. The main objective is the improvement of the efficiency

of the experiment. In most of the cases, a fault could remakactirated, but also errors may not be
propagatedTo improve efficiency, the solution is to select the activation profile in order to make sure
that the fault Wl be activated or the error will propagate: considering the corruption of a variable in
the memory during the execution of an applicationctiveuption must be done before the actuadirea

ing of the target variable. In this case, the corruption is going to propagate, contrary to cases where the
corruption is injected just before writing the variable. In the latter case, the error is overwvitiem.

these cases are easy to determined, then it is possible to optimize the efficiency of the experiments and
to speed up the fault injection experiments. More details are also availafihristmansson &
Chillarege, 1996)

4.3.1.3 Other Testing A ctivities

In the development process, several testing methods are required nfdthsds which can be pe
ceived as fault injection experimentgve two purposesirst, it can behe verification of a safety
mechanism. Theesting of the functional behavioof the safetymechanism can be also done dy
fault injection approachSecond robustness testsan be performed anid general lead to generate
fault injection tests cases.

This is why fault injection and other testiagtivitiesmay lead t@mverlapping testsAn analysis of this

issue should avoid the repetitiontebts cases arttie helpoptimizing the purpose of each test case.

This means that fault injection tests are already carried out in practice, but theot aedled fault

injection tests. This is something that can be argued to show that the development process of a given
provider takedSO 26262requirements into account regarding fault injection. But, this remams li

ited. The work presented in the thegises far beyond current tests to comply with E8262 e-
quirements with respect ¥&V by fault injection.

4.3.1.4 Results of FIE of Lower Level

Finally, the measures obtained on a target component at lower levels of FIE help reducing o the nu
ber of experimerst when this target component is integrated into the tested entity. This is similar to
unit testingvsintegration testing. When verifying the integration of the component, it is not necessary
to inject the entire fault model defined for this entity. Indeee remaining deficiencies of therge

ponent should be trigged by fault injection to verify if an uppdevel safety mechanism is able to
handle these deficiencies. The faults internally mitigated by the component EDC/ERC mechanisms are
not interestingat the upper level. This approach is only of interest when the system exlfilertsrdi

66



FAULT INJECTION DURING POST-IMPLEMENTATION PHASE

levels of integratione.g, when a first target component (a product) is integrated into a system, the
measures obtained on the product can be used for the system.

4.3.2 Assessment of the FIA with regards to the FIE

We have shown that the FIA is a guide for the planning of the fault injection experiments. Then, the
FIE is used to validate the analyses done in the FlAatWile want to demonstrate in thigesisis the
mutualcontribution of FIA and FIE.

When the whole FIE campaign has been performed and the measures obtained, the results of the FIE
have to be analyzed. At the end of the FIE, there are two types of results: the measures of the error
detection and error recovecpverage and the global measures of l{dtthe coverage of safete+
guirements (completeness) &jiiyl the coverage of safety mechanisms (efficiency).

4.3.3 Assessment of one Fault Injection Experiment

We consider amxperimenin which aset of faults coesponding to théault modelis injected, and
the set of safety mechanisrdsveloped tqrevent the propagation of the effects of the fault model
The result of the experimerg either(i) the fault isdetected/toleratedc is the coverage valugpr

(i) a coverage deficiency?& @A? K1 L H A | ABiRally, we consider that thexperimentas been
identifiedin FIA.

It should be noted that the namerference of the fault injection technique or tool in the obtain
readouts must be investigad before this assessment.

When at leasbne safety mechanisdetects dault, i.e., in the nominal case, thesult of theexper-
mentis compliant with theé-IA.

Whenexperiment&xhibit acoverage deficiengyhen several causes can be identified:

1. theimplementation or integration ofsafety mechanisms wrong.
2. the implementation of aafety mechanisms correct but its definition is incomplete.

In the second case, the solution is the definition of a new appropaifgly mechanisito handle the
fault model

If a newsafety mechanisis required, thé=IA is impacted. Consideringfault mode| the main qus-
tion is the following:

Do the observed effects of th&perimentare the same as those identified in Fe&?

If not, it means that the analysisvisong. TheFIA should be revised and corrected with the effects
observed on the target. Thennaw safety mechanisghould be identified to prevent the observed
effects.

In addition, the new observed effect can lead to identify a new propagation dzaisdbetween le

els. For instance, a low level fault may trigger a-idmmtify failure mode at upper level of abstraction
levels. Then, the whole propagation of this new failure mode should be analysed and its criticality
determined.
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Figure4.6[summarizes this assessment in a flowchart where the evaluationesipdr@gmentdeads to

modify the implementation of a safety mechanism and to modify the integration sdfétg mech-
nism or need a correction of tHdA (e.g, the safety mechanism, the propagation of the fault between
levels).

FIGURE 4.6 FLOWCHART OF INTERPRETATION OFF| EXPERIMENTS
4.3.4 Synthesis of the FIE

We have synthesized the FIE flow at product level (as an example) in order to show its interactions
with the others activitiegzigure4.7|shows the main steps of FIE for the product level anihtésac-
tions with other activities.

The first step of this flow is the definition of the FARM elements based on the results akthe P
implementation phase: namely the HW and SW Block functional requirements and the results of the
FIA. After the definition of the fault injection campaign, the set of experiments can be optimized by
reducing their number, thanks to the identificatiomemfundancies with other testing activitiet;. At

this stage, the fault injection experiments can be run on the target using a fault injection environment.
Finally, the assessment of the measures will lead either to the validation of the identifiedldault

ance mechanisms or to the modification of the implementation of the target or of the design.
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FIGURE 4.7 PRODUCT LEVELFIE FLOW
4.4 Conclusion

In this chapter, we k& demonstrated the usefulness of thA Kl the definition of the FIE. We also
tacklad issues regardingthe contribution of fault injection experimenfiar the verification and the
validation of the safety analyses performed duringipmementation phase

This chapter raises the issue of toenpleteness of the experiments definition with this method. In our
view, the use of early phase analyses cannot guarantee the completeness of the fault injedtion exper
ments. However, aystematicapproach for definition of the fault injection experiments, based on
systematic safety analysis, is at least a concrete guide to the definition of fault injection campaigns.
The defined campaigns enable the validation of the proposed safety mechanifragpferention of
hazards.

The main worry with this method is the definition of an erroneous fault model that does not enco
pass a complete set of potential causes. However, this problem is not inherent to our approach; all fault
injection campaigns mayalre the same problem. Fault injection campaigns rely on the knowledge of
the target or on a specific fault model, and then the main benefit of our approach is to be able to trace
the fault model from the beginning of the design down to the experimentseiGely, FIE results

enable to validate, at least partially, the safety analysis done during {imepteenentation phase.

The major difficulty of any fault injection campaign is the definition of the fault model. The injection
of large amount of faults ngahelp finding noranalyzed critical paths and/or undesired eventsv-Ho
ever, this testing approach has often a low efficieney,most of the tests lead to no observation, and
huge campaigns are difficult to analyze. In our approach, we define acsiticaf faults. These faults
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will more likely produce efficient experiments. The efficiency of the experiments is very important in
the industry as a high efficiency reduces testing efforts (time and cost).

The traceability of the experiments is very impat in a development process, to make sure that no
experiment has been forgotten. In an industrial project, this is a major issue, as complex systems will

be developed by several engineers and tested by others. This approach helps the collaborfatipn of sa
engineers and test engineers.
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The objective of this chapter is to d&pphe overall methodologyo a representative automotivessy

tem. The approach is illustrated on a Fruight system. This electronic system controls the two
headlights of a car. This is a very simple system and this system has only a moderateitszdéty

level: ASIL % $W WKLV OHYHO DOO WKH UHTXLUHPHQWY RQ IDXOW |
the ISO VWDQGDUG +RZHYHU D *SURRI RI FR QEad 8aMdon&gnl WKH SU
this case studywe focus on the softwasechitectural level anthe software module level.

In order to contextualize the SW architecture, a first part is dedicated to the descriptiesystem

level andthe product levelFaultinjection tests are based on assumptions and analyses daogleeat h
levels of architecturelhey are determined frothe traceability of the requiremenéading thus tehe
identification of efficient fault injection tests casés the verification and validation of safety
mechanismsThe considered targets for thests are especially the SW architecture and a SW module.
A particular attention has been paid to the design of the software architecture. The solution integrates a
partitionning between a QM application and an ASIL B application. We are able to tespéeific
problem in the demonstration of safety that is of paramount importance: the verification of the
Freedom From Interferenceésee[Chapter 2 This problem isvery important because of the
integration of multiple software modules with different ASILs on the same platform, a tendency that is
growing up in todays complex embedded automotive systems..

5.1 Application of FIA on the Front -Light Manager System

The FrontLight System controls the two Headlights of a car. This is a common automotive case study
often usedo exempliff AUTOSAR conceptgFurst, 2008) The proposed design of the Frduight
System is not representative of a realomotive system, as the application is too simple. However, it
follows the development process and the design rules of any system accordin@62620

The architecture of the Frehight System is depicted |iF\igure5.l A 12V battery powers the Front
Light System. Its main function consists in the control of the two headlights of the wanttiné road

at night, in tunnelslt also controls an indicator on tB®shboard. This indicator signals to the driver
the state of the headlights. The Fraight System communicates with the Dashboard ECU through
the CAN network of the car.

FIGURE 5.1 ARCHITECTURE OF THEFRONT-LIGHT SYSTEM
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A Preliminary Hazard Analysis (PHA) identifieme Undesired EventUEO1, d.oss of the Hed-
lights ", rated ASILB

The ASILis allocated by estimating the severity, exposure, controllat{iﬁ@bleal

able Event, using the ASIL Matrix|i@hapter |

TABLE 5.1 FRONT-LIGHT SYSTEM $ UES ASIL ALLOCATION

of the Undesi-

UEs Situation Severity Exposure Controllability
. S3: E2: C3:
Loss l(‘)JF t%t Hea- N'ﬂgﬂégrggfl Life-threatening injuries Low probability. at Difficult to
dliahts lights (survival uncertain), fata night'tunnelwithout control or un-
9 9 injuries streetlights controllable

The PHA defines the following ASIB safety goal.
x SG1: The system shall not spuriously cut off both Headlig#sSIL B)

The following section will describe tH&lA process at System, Product and Software levels. Tdie pr

cess will highlight how the system should be designed to ensure the two safety goals, and will prepare

the fault injection experiments definition.

5.2 FIA at System Level: Front-Light System

The FroniLight Systemdepicted irliFigureS.l encompasses four producihe main product is the
FrontLight ECU, which gathers information from lgion Switch ECU and Light Switch ECU in
order to set the Headlights On or OFF and to light the Dashboard indith&ocontrol logic of the
FrontLight ECU s very simple: itmust light the two headlights of the car and the Dashboardamndic
tor when both Light Switch statasd Ignition switch status are ON.

All the product functional requirements are synthesingihble5.2

TABLE 5.2 DESCRIPTION OF THEFUNCTIONS OF THEFRONT LIGHT SYSTEM.

Product Product Function Id # Product Functional Requirements
FrontLight FL-ECU_FO1 FrontLight ECU must send Dashboard State (ON/OFF) through {
ECU CAN Network
FL-ECU_F02 FrontLight ECU drives the Headlights state (ON/OFF) in less the
600ms
Light LS The Light Switch provides a ON/OFF signal to the Fight ECU
Switch
Ignition IS-ECU The Ignition Switch ECU must send periodically the Ignitiwitch
Switch Status (ON/OFF) through the CAN Network to the Frbight ECU
ECU
CAN CAN-FO1 Transmit Ignition Switch Status from Ignition Switch ECU to Fron|
Network Light ECU
CAN-F02 Transmit Dashboard indicator status from Frbight ECU to
Dashboard ECU

73



CASE STUDY: FRONT-LIGHT MANAGER

The FMECA spreadsheet, givenTiable5.3] summarizes the fault injection analysis carried out for

the six functional requirements

TABLE 5.3 FMECA OF THEFRONT-LIGHT SYSTEM

Element| Failure Modes | Potential Local Effects UpperLevel Effect | Safety Element Failure
Causes Modes
The Dashboard Indicatd
Loss of Dashboar| No Dashboard Indicat{ Status is not lighted oM
indicator Status Status sent according to the specif
FL- cation
ECU_F01 The Dashboard Indicatd
Erronequsl_)ash- Erroneous Dashboar{ Status is not lighted
board indicator . . .| QM
S Indicator Status senf according to the specif
tatus sent -
cation
Unintended Ha- Unintended Headligh| .
I dlight state ON state ON Discharge of the batter] QM
ECU_FO02 |oss of Headlight . . Fail-safe implemerat-
state Loss of Headlights sta| Loss of the Headlights tion of the EL ECU
. . ] Check done by the
Loss ofLight Light Switch Status O . No effect
Switch signal not sent to the FECU L= Ote (rIsEe s FL'ECUni(SSn\:\)I 1555 *
LS
Erroneous value Light Switch Status
OFF not sent to the FIl Discharge of the battery QM
ON sent
ECU
Loss of lanition Ignition Switch Statug Check done by the No effect
> OT 19 ON not sent to the FL| Loss of the Headlights| FL-ECU (SW mech- .
Switch Status ;
ECU nism)
Unintended set Erroneous Ignition
ing of the Ignition Switch Status ON sen| Discharge of the battery QM
IS-ECU | Switch Status ON to the FL-ECU
St ey Soo | Nosfect
higher than x- CAN saturation Loss of the Headlights Netgvork for Ignition .
PEFEL g Switch Status
error)
. ) CAN data integrity
Ignition Switch Statug -
Loss of .CAN ON not received by th| Loss of the Headlights (eIl @ SR [ fﬁeCt
communication Frame counter,
FL-ECU )
timeout)
CAN-FO1 CANG - -
Erroneous CAN Corrupted Ignition (el el
> . . . (combination of CRJ No effect
communication Switch Status receive| Loss of the Headlights .
) Frame counter,
(interferences) by the FI-ECU timeout)
- The Dashboard Indicatq
Loss of CAN DEEINE0E ) |nd|caFor Status is not lighted
S status ON not receive) . ~..| QM
communication according to the spegif
by the FI-ECU -
cation
CAN-Fo2 The Dashboard Indi
Erroneous CAN Erroneous Dashboar gtatiss isc:1ac:t i nht':gt(
communication Indicator Statusa- 9 QM

(interferences)

ceived by the DEECU

according to thepecif-
cation

* assuming a perfect coverage of safety mechanisms

In the FMECA spreadsheet, we can idensfy failures modes that may lead to violate the safety

goals. Most of the proposed mechanisms cannot be completely determined at thihkseimech-
nisms will be refined at underlying levels. For example, the failure modes of tB€BLwill not be
handled at System level but the choice has been made to desigsadddil-ECU in order to mit
gate the occurrence of failure modes.
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In the preadsheet given above, we have also identified that a checking of the outputs of LS, CAN and
IS-ECU must be verified to ensure that they are valid.

We also see that specific analyses must be done on the CAN network. Indeed, it transmits safety crit
cal information that may lead to violate a safety goal. It should be designed according t8.ASIL
However, we consider the bus CAN to be QM. ThenErd to End2 E2E protection is needed to

keep safe the critical signal from-ESCU to FL-ECU. The purpose of E2frotection is to prevent the

data through serial communication from corruption, deletion, repetition, insertion, incorrect sequence,
delay, masquerading. The E2E protection invol@&C, time out monitoring or counter. The inspl
mentation of the E2E protieon is sufficient to fulfill the saféy requirements (ASIIB) of the can-
municationaccording to théSO 26262

5.3 FIA at Product Level: Front -Light-ECU

We focus on the development of the Frbight ECU product.By analyzing the results of the
FMECA, we idetify oneline of the Froni_ight ECU that lead to the violation of the safety goalisTh
failure mode will later be referred &sProductundesired eventP-UEO01: Loss of Headlights state

At this, level,we consider the micamntroller that runs theoftware applications on the Frelrght

ECU. Because the inputs and outputs at product level are the same as those at system level, the failures
at product level are those observed at system level. Looking more careftiilyfailure at product

level, in this simple example, the failure mode at product level are directly duedftnlure mode at

SW block level P-UEO1 can be considered aSW-UE, software undesired event (SWEO1).

The architecture of the Product level is describg€igure5.2| The FroniLight Software Architecture
implements two functiongj) the control of the Headlights status (EICU_F02% ASIL B, (ii) the
control of the Dashboard Indicator Requést-ECU_F03 2 QM. The Software Architecture must
also manage the inputs from the Light Switch (A8B)Land from the CAN network (QM). Hence the
FrontLight Software Architecture integrates mixed ASILs modules.

FIGURE 5.2 ARCHITECTURE OF THEFRONT-LIGHT ECU

Two interesting issues must be investigated at this level. These two issues are raised by the
implementations dependeiesof the hardware blocks and the sedte blocks. First, as we will not
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investigate in more details the FIA of the hardware, we will at least evaluate the chosen micro
controller. Then, we can easily idegtithat the Software architecture must integrate two functions
with differents ASIL leels. Hence, two solutions are proposed following the 28262 standard:

i) the development of the two applications according to the highest level of criticality, the
integration of the two applications with different ASILs and a demonstration of the Freedom From
Interference.

5.3.1 Safety Analysis of the Micro -Controller

The chosen microontroller is a Leopard SPC56EL{STMicroelectronic, 2013)This model is
based ora PowerPC architecture andcludestwo identicalcores(e200z4d cores) connected to a
singleshared main memoryrhis architecture as been defined by the manufacturer to design a puC that
fullfil the architectural metrics anthe PMHF for ASILD. The architecture is illustrated

The microcontrollecanbe configured ito lockstep or decoupled modes.

FIGURE 5.3 SPC56EL7ARCHITECTURE(STMICROELECTRONIG 2013)

In lockstep mode, the two cores run the same instructionsttendRedundancy Checker (RC)
compare the results. It is requiceto ensure the safety of critical functioresg, ASIL C and D) by
offering a toleranceo transient hardware faultdt can be noted that the safety level has been
demonstrated by the manufacturer as a Sdtgynent out of Context (SEooCllhe decouplé mode
enables different instruction® be executesn each core, and therefore execute several tasks in
parallel. This mode can be used in order to enhance the performance of the application and/or
implement safety mechanisms.

The lackstep mode has beadopted. This configuration of the gables handling most of the CPU
errors due to single Event Upsets (SEU) in the CPU.

5.3.2 Freedom From Interferences Analysis

The FFIA(Freedom From Interferences Analysisiables several causes of malfunction of thedrigh
ASIL functions to be identified by analyzing the interferenceropagation channels. These
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interferences are by definition cadsky the lower ASIL functionalities(here, QM funtions) The
identified causes also require mitigation meadsfinition of safety mechanismsin order to prevent
the violation of safety gosl

Without going into details, twapplications with different criticality levels have been allocated on the
microcontroller. There ar@an ASIL B application(the Headlight command and théht Switch input
signal managemenénd a QM applicatio(Dashboard Indicator Signal and CAN management).

In practice the QM application must not interfere with the ASBLapplication following these
channels:

1. Realtime behavior Interferences e.g, erroneous execution of the QM application
(excessive execution time, erroneous period)

2. Service Calls Interferences e.g, wrong input provided by the QM application to
ASIL B application.

3. Shared Data Interferences e.g, corruption by the QM application of a critical data
used bythe ASIL B application.

4. Shared Memory Interferences e.g, corruption of Critical data by the QM application
through shareagnemory (ROM, RAM, stack)

If the QM application interferes with theitizal application a safety requirement may be violated.
Hence, the safety application should be protected up to anRB\&fainst these interferences.

To enable the correct execution of the critical part of the software, temporal and spatial partionning
must be implemented. These mechanisms must protect the computational and communication
channels from thanterferenceslue tononsafety software.

X Spatial Partitioning ensures that one softwaneodule cannot alter the code or private data of
another soft@re module It also prevents a softwareodulefrom interfering withthe control of
external devices (e. g., actuators) of other softwardule

x Temporal Partitioningensures that a software module cannot affect from a timing viewpoint the
ability of othe software modules to access shared resources, such as the network or a shared
peripheral This includes the temporal behavior of the services handling such resources (latency,
jitter, duration of resource usage during an access).

These two kinds of mech&ams must be implemented. However, the solutietginedcannot be d-
scribel precisely at product level as thdgpend orthe detailedsoftware architecture.

It is important to understand that the interferences given above are due to the implemehtagon
application requirements. They introduce dependencies between applications that can lead to failures.
Such failure modes cannot be analyzed in the FIA since the FIA is carried out at a more abstract level.

Each interference model can be consider®a #ailure mode of the partitioning mechanism inspre
ence of a potentially corrupted QM application (worst caBegsefailure modes may all lead toori

late the PUES. They are respectively referenced to as: SWB02 to SWBUEOQ05. These software
blocks umlesired events are all rated ASBLas their occurrences can cause the violation of SG1 or
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SG2. All the SWBUEs are reported iiale 5.4. These failure modes will have to be refined at-sof
ware block architecture.

TABLE 5.4 SOFTWARE BLOCK UNDESIREDEVENTS

Software-UEs # Failure Mode Description ASIL
SWBUEO1 Loss of Headlights state ASIL B
SWBUEQ® Realtime behavior Interferences| ASIL B
SWBUE® Service Callsterferences ASIL B
SWBUEQ! Shared Data Interferences ASIL B
SWBUE® Service Calls Interferences ASIL B

5.4 FIA at SW Block Architectural Level

5.4.1 AUTomotive Open System Architecture  AUTOSAR

AUTOSAR (AUTOSAR, 2015)is a standard for automotive E/E software architectures developed by
major OEMs and supplier§hecore partnerswhich pilot the consortium, includgosch, Continen-

tal, BMW, Volkswagen,PSA Ford, General Motor, Toyota and Daimler Chrysérd. hundreghart-

ners calledoremiums memberscluding Valeo, participate to the drafting of the specification of the
software modules. Thassociated membecan use the standard. Today, AUTOSKR majortrend

of software development in the automotive industry.

AUTOSAR supportsan applicatiorspecific approach for automotive software developmentpas o
posed to an ECAdpecific one. Thispproactprovides means for developing applications that are pla
form independent as long as they abide by a specified procesthardterfaces provided. The
AUTOSAR architecture mainly encompasses an application layer (comprising Software Components
(SW-C), a RunTime Environment (RTE) and the Basic Software (BSW).

The BSW is composedf three main layers: Service Layer, ECU Ahbstion Layer, and
Microcontroller Laye. These layers are decomposed into five stacks (each stack is cross
layer):

X the Service stack,

x the Memory stack,

FIGURE 5.4 DESCRIPTION OFAUTOSAR LAYERS AND STACKS OF THEBASIC SOFTWARE
(AUTOSAR, 2015)
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x the Communication stack,
x the Input/Output Hardware Abstraction stack,
x and theComplex Devices Drivers stack.

One imporant component of the BSW is a priorligsedask schedulefcalled AUTOSARQOS), each

task being composed of application runnables belonging teCSWA runnable is a processing step
belonging to a SWC (a Cfunction) that can be periodic and/or aperiodic. Runnables can be connected
through the RTE for data communication. Runnables are mapped to tasks depending on their
characteristicsg.g. period, input dataschemeetc). In practice, AUTOSAROS is a modulef the

basic software, derived from the OSEK/VDX Kernel, enabtimg scheduling of tasks and Interrupt
Service Routine3 ISRs

5.4.2 Partitioning Concept in AUTOSAR

In order to implement the partitioning requirements imposed by FFIA, the following AUTOSAR
concets and moduleshallbe involved.

OS-Application: The AUTOSAROS offers the possibility to group different OS objects (Tasks,
ISRs, Alarmsetc) into so called OS\pplications. All objects within one G8pplication share their
memory protection schemadthe access rights.

According to AUTOSAROS SpecificationsAUTOSAR_SWS_0OS, 2014)OSApplications can
either be trusted or netnusted. Trusted O8pplications are allowed to run in CPU Supervisor Mode
without restrictionsand nortrusted ones are running in CPU User Mode with limiedess to OS
and HW resources.

,W VKRXOG EH QRWHG WKDXW WHIGX VG\HH GQ LDMLR @Y R®R QRW PDWF]|
VDIHW\" ,Q D V.d mvBad thefeDaxeHonly one safe@S-application and one QM GS
DSSOLFDWLRQ LPSOHPHQWHG WKHQ WKH 3WUXVW H-GV UXS/S\HED W
and requires to be runned with limited access.

In other cases, itan exist multiple OSApplications with different ASILs.7KHQ W KWUXRMH G’
mode shall be divided into multiple instance to protect separately eaétp@igation.

The OSApplication enables both spatial and temporal partionrimgoe implemented, at least
partially.

MMU/MPU:_ The basic memory protectionq@irementto be fulfilled by the OS is tgsegregatelata,
code and stack sectisnf an OS-Application. In the AUTOSAR OS standard, this protection i& act
vated during the execution of the amasted OSApplications in order to prevent the corruption tod t
trusted OSApplication memory sections. Moreovéne MMU/MPU canalsobe used to protect ipr
vate dad and stack within the same @$plication if necessary.

The memory protectiorelies ona hardwaresupport (MMU/MPU) integrated in the microcontroller.
The MPU/MMU provides spatigdrotectionof the memory.

AUTOSAR Inter OS-Application_ Communicator_+lOC: The communication between two OS
Applications has also to be protected. Indeed;Ap§Blications inend to create memory protection
boundaries, therefore dedicated communication mechanisms are needed to cross them. This feature is
implemented in AUTOSAFOS and called IOGAUTOSAR_SWS_OS, 2014)it is the dedicated
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communicatiormean between G8pplications, whether or not the ©$plications are allocated to

the same core (the communication can be between twagplcations on the same core, or allocated

to two different cores in mulgore architectures). Its main functiontes ensure the integrity of the
transmitted messages via a buffer. These messages can be data structures or notifications (activation of
D WDVN FDOOEDFN«

5.4.3 Software Architecture of the Front -Light Manager

The software architecture is illustratedhigure 5.5| The execution of the software is controlled by
AUTOSAR-OS that needs to be developed according the highest ASIL of applications running on the
microcontroller,i.e. ASIL B in our example.

According to the requirements on spatial and temporal partitioning to ensure the FFI, two OS
Applications are defined. The first one manages the safety critical functionalities RBASihd the
second onenonsafety (QM) functionalities. These @oplication will be respectively referred as:
Front - Light OS - Application and DemoApp OS Application . This implies that allthe
modules of the critical OB pplication should be developped according to ABIL

FIGURE 5.5 FRONT-LIGHT SOFTWAREARCHITECTURE

The Front - Light OS - Application ASIL B is composed ofour Software Components (S@®)

(Switch EventLight RequestFront-Light Manager andHeadligh). These moduleaim at producing

both headlights and dashboard indicator output according to the inputs received from the Ignition
Switch and the Light Switch. Their behavior will be detailed in the next Section.
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The basic softwareBSW (Systems Services, 10 HW Abstiiact Stack.etc) is ASIL B and enables
reading the input information from the Light Switch, and it enables the outputs of the uC to be set for
the Headlights.

An 10C is used by th®emoApp OS Application to communicate with th€ront - Light OS -
Application . Inputs from the QM O\ pplication received by the ASIB OS-Application must be
checked. The E2E protection mechanisms is used to protect the ignition switch status. Here, it enables
the data received through the CAN to be unwrapped and validated (thisenegnt comes from the
System FIA).

Besides, thé&demapp OS- Application QM is composed ofwo SW-Cs (ComStackDemoApgand

the SysStackDemoApp(i) ComStackDemoApis involved in the dispatching of messages between
CAN and SWCs, (ii) SysStackDemoApp anindependant SWC in the functional behavior of the
application that is representative of othgossible SWCs integrated into the software architecture.

In both cass the RTE plays its role of communication middleware between software entiti€s. SW
In both cases, it is composed of jiefined communication channels interconnecting software
components belonging to the same-&lication, either theFront - Light OS - Application or

the DemoApp OS Application . It is important to mention that each OSpipation hasits own
instance of RTEmanaging the interaction between the -84/ previously described. The
Communication Stacthat handles CAN transmissions and receystics located within the QM GS
Application.

Finally, the micrecontroller enables adessing space protection through the MPU; hence, thaiexec
tion of theDemoApp OS Application is run in protected mode to prevent incorrect access to the
FrontLight OS-Application memory space.

5.4.4 Behavioral Description of the Application

The objective of the section is to describe the behavior of the Application. The Software architecture
is based on the AUTOSAR OS.

The safety critical OS-Application, i.e. the Front - Light OS - Application , is composed of two
tasls.

Task lencompasses the runnables of the safety critical software modules. The runnables are executed
in the following order every 1fs:

o Switch Event
f CheckSwitch()It reads and checks the value of the Light Switch from
the IOHWADbs through the RTE, arsknds achecked status to the Light
request module through the RTE.
o0 Light Request
f Check_Plausibility():It unwraps the E2E protection, reads and checks
the value of the Ignition Switch from the ComStackDemoApp through
the 10C and then compares this value witle tvalue received from the
Switch event module. Finally, it writes the result in the global variable
u8PlausResult
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f Request_Light():Based on the value ofi8PlausResujtthis runnable

sends the command to the Front Light Manager through the RTE.
o Front-Light Manager.

f Request_Check()it reads and checks the command from the Light
request. Then, it sends the command for the indicator to the
COMStacksemoApp through the IOC, and also sets a global variable
u8lsReqValidvith the command for the headlight.

f Set light(): It reads the value ai8IsRegValidand sends the command to
the Headlight module through the RTE.

o0 Headlight

f Set Command()it reads the value sent by the Frdnght Manager
module and then sends the Command to the IO HW Abstraction module
throudgh the RTE.

o 1O Hardware Abstraction
f 1OHWAbs_ReadWriteUpdate()The module switches the headlights
throught the DIO Digital Input Outpuj channels based on the command
from Headlight module. It also reads the inputs of the Light Switch from
the DIO and sedis the value to the Light Switch module through the
RTE.

Task 2contains themain functions of the basic software except COM stack. Each function is called
according to a spda periodic timing event at 1ts (Watchdog Mgr, ECU Mgr, BSW Mgr,
diagnostic gent managers, development error traege). This task provides low level services for
the execution of our critical OS application.

TheQM OS-Application is composed of one task which encompasses the COMStack _DemoApp and
the COM. This task is periodic ainas.

The COM stack manages the communication between the Hraiit ECU and the other ECUs
through the CAN network. It receives and sends the messafjesdiby the COMStack_DemoApp.

The COMStack _DemoApp transmits the data between the SW modules of the safety critical OS
Application and the COM Stack. It transmits the ignition switch wrapped signal to the Light Request
module and it transmits the Dashboard indicator status to the COM stack.

5.4.5 FIA of the Software Architecture
A FMECA has been dorte detail the fault propagation paths through the software architecture.

We have consideredsbftware modules that perfor2® functions. To simplify the analysis, the RTEs
and the 10C failures have not been consdén our analysidut their failures may affect the RTE
and the wrapped function. We have also decided to focus on one SW module only: tHaghtont
Manager Module that is highly critical in tifeont - Light OS - Application

It is worth noting that theeomplete table is composed of 116 linds extract of the complete
spreadsheet, which focus on the Fbight Manager Module, is given The failure
modes considered are timing erroesy( task period too fast or too slow, an erroneous scheduling, an
execution timeout), data errors (Corrupted data dilge of range, valid reor, or data loss), function
call errors (function not called, function call with wrong arguments).
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TABLE 5.5 SOFTWARE FMECA OF THEFRONT-LIGHT MANAGER MODULE (SUBSET OF THEFMECA)

. Potential Upperlevel Software Safet Uppeklevel
Element Failure Modes Causes Local effects p(Fe]ffect Mechanisms (SI\);I) effepcri with SM
FrontLightManager Period too Erroneous SWB-UEO1 WdgM alive Reset + Safe
must (periodically slow u8IsReqValid monitoring2 (10 Mode
10ms) read the used ms)
provided light request Erroneous Erroneous SWB-UEO01 WdgM Control Reset + Safe
Scheduling u8IsReqValid Flow Mode
(Before/After) used
Execution Erroneous SWB-UEO1 WdgM Deadline Reset + Safe
Timeout u8lIsReqValid Monitoring Mode
(more than used
designed)
Erroneous Erroneous SWB-UEO1
data red u8lsReqValid
used
FrontLightManager Periodtoo Erroneous SWB-UEO1 WdgM alive Reset + Safe
must (periodically slow u8IsReqValid monitoring2 (10 Mode
10ms) refresh used ms)
u8lsReValid Erroneous Erroneous | SWB-UEO1 WdgM Control Reset + Safe
Scheduling u8IsReqValid Flow Mode
(Before/After) used
Execution Erroneous SWB-UEO1 WdgM Deadline Reset + Safe
Timeout u8IsReqValid Monitoring Mode
(morethan used
designed)
data not Erroneous SWB-UEO1
refreshed u8lsReqValid
used
Erroneous Erroneous SWB-UEO1
data refresh u8lIsReqValid
used
FrontLightManager Period too Erroneous SWB-UEQ03
must (periodically slow Dashboard SWB-UE04
10ms) send Dashboar Request used
Request to the Erroneous Erroneous | SWB-UEO3
COMStackDemoApp | - scheduling Dashboard | SWB-UE04
throught IOC based or) (gefore/After) Request used
ulsReqValid Execution Erroneous | SWB-UEO1 WdgM Deadline | Reset + Safe
Timeout Headlight Monitoring Mode
(more than command
designed) used
No data sent Erroneous SWB-UEQ3
Dashboard SWB-UEX QM
Request used
Erroneous Erroneous SWB-UEQ3
Request sent Dashboard SWB-UE04 QM
Request used

These failures may have multiple causes:

1. Software (gstemati¢ faults:
a. wrong design of a software module

b. wrong design of the software architecture

c. wrong implementation of the requirements (including interferences)

2. Hardware failures: Corruption of the uC memories (RAM, ROM, registers, not handled

by Error Carecting Codes).

Safety mechanisms have been identified in order to handle the failure modes of the software modules.

Three alive supervision functions of the WdgM are configured to check that thalcB#Cs are
still executed. Alive supervisionsf ComStackDemoApp andheCan stackare implemented to

prevent interference on the Ignition Switch status provided to the Light Request. Control flow and

deadline supervision functions are implemented to monitor the execution of thd8ABN-Cs.
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It should benoted that propagation of the above mentioned failare risky in two cases:

x Use case 1the headlights are already ON and the user does not change the inputs (Light
Switch OFF or Ignition OFF). In this case the loss of the headlights violates the safety
goal.

X Use case 2the headlights are OFF and the user wants to change the state to ON. In this
case the safety goal may be violated if the lights are not put ON when requested by user
inputs (Light Switch ON or Ignition ON). In this case the loss of thadlights violates
the safety goal.

It is assumed that the response time to light the headlights must be less thasn 0@ application
must reach the intended state (headlights ON in the considered use cases) within this time window.

Finally, we carobserve in the FMECA that some failure modes have not been completely handled. In
this application, valid errors are potentially provided by several modules in the critical path. These
valid errors correspond to wrong values transmitted by a module,éutrtimg value is within a valid

range. Then, the error canrm¢ detected by our architecture. They may lead to a safety requirement
violation. This lack of coverage has been neglected in this application example because of its low
probability of occurrene. This situation may be handled by a slightiesign and the inclusion of
fine-grain data checks and/or more complex runtime assertions.

5.5 SShaped Causal Chain

In this section, our objective is to illustrate how fault injection can be planned folloéng§shaped
Causal chain in thiBrontLight Manager application

First, we isolated the first line [@fable5.5{and we traced the propagation of the cause through product
and system level |fﬁab|e5.6|

The SVKDSHG FDXVDO FKDLQ KLJKOLJKWYV WKDW WKH FRQVLGHUH
/ILJKW ODQDJHU ™ PD\ torHdDtGe ¥ufBty \@olls SETHS Crifical path is highlighteded

in[Figure5.6| There are two identified mechanisms to recomnfenwi this threat: the use of a robust
microcontroller and the integration alive supervision in the WdgM software module.

The tables given above aeg&tracted from the complete FIA analysis. In the low level reported in the
tables,we can see that a safety mechanism has been identified: the WdgM. In reality, several safety
mechanisms have been identifiedive monitoring deadline monitoring andontrol flow checking.

All these individual safety mechanisms are implemented with the WdgM, a generic module providing
such safety mechanisms and that can be configured for a given applieatidav periodthe entity

is alive, deadline values, referencentrol flow graph). In the last chapter of the thesis, the WdgM wiill

be the target for the experiments.

Hence, to demonstrate the coverage of the safety requirement, the injection of potential causes of the
failure mode should demonstrate that therevignmpact on the critical application outputs and that the
WdgM detects it and handles it correctly.

As soon as the fault injection target has been identified, experiments must be defined following the
FARM model explainedn|Chapter 1 Following this FARM model, we define here the experiments
that must be carried out.
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TABLE 5.6 ILLUSTRATION OF THES-SHAPED CAUSAL CHAIN

Then, theFDXOW PRGHO VKRXOG EH GHILQHG WR PLPLF WKH RFFXU
VORZ" 7KH FDXVHV RI WKH IDLOXUH PRGH KDYH WR EH GHWHUP|
to kill the task responsible for the executioithe function. However, for taking into account more

failure mode variants, it has been decided to test different values of the period of the function. In
normal behavior, the period of the runnable is 10ms. The tests have been performed with period values
from 20 ms to 100ms with a step of 1fhs.

Looking at theActivation model, two use cases (Sectod.9 may lead to the violation of a Safety

Goal. Renember that, in th€ront - Light OS - Application , the global variabl@i8IsReValidhas

an important role since it determines the setting of tlaglights. As shown in Table 5.the local

effect affecting the Frortight Manager Module is related to this 'ab E @rkbnedus u8IsReqValid

used’ ,QGHHG WKH IDLOXUH PR G H.ightWdnageMcarina QrovideH@ naK H ) U R «
value ofu8lsReqValid

The corruption of the8IsReqValidnust be carried out when the system is in two states:

x On the one handhe error must be injected when the headlight are already ON. In this case, the
headlight may blink or switch OFF.

x On the other hand, it corresponds to a use case where the headlights are OFF, the Light Switch
already ON, and an Ignition Switch commasdeceived through the CAN.

In this last case, if the Frehight Manager period is too long, the headlight may light with a delay.

The following Readouts are needed to analyze the result of the experiment. The local effext of
FMECA line ¥Erroneousu8IisRegValid used VKRXOG EH PRQLWRUHG LQbWKH /LJK
also the headlight state. Then, the WdgM should detect and handle correctly the error. Finally, if the
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safety mechanism is efficient the headlights will be ON, otherwise they will re@féin This is the
mode in which the system is put for safety.

FIGURE 5.6 SOFTWARE ARCHITECTURE OF THEFRONT-LIGHT MANAGER WITH THE CRITICAL PATH IN
RED OF THESW-FMECA LINE

In this implementationan impotantcomponent for safety is the Watchdog Manager. This is why we
focus on the Watchdog Manager (WdgMUTOSAR-WDGM, 2014) the mechanism identified in

the SWFMECA in[Table5.6] in order to mitigate the considered $iiédulefailure mode. The obje

tive of the supervision of the WdgM in our application is to ensure FFI and prevent the violation of
safety goad. Moreowr, the WdgM is an important safety mechanism tzet the same ASlhsthe
critical application (ASILB in this example).

The WdgM is a generic mechanismesure liveness, deadline and control flow properties opan a
plication It is worth noting thathe WdgM must be configured for a given application, in terms of
deadline valuesyindow periodthe Supervised Entity is aliva graph representing the correct control
flow within a given application.

To comply with the IS@6262 requirements about theifieation of the robustness of a safety mec
anism, the WdgM must be analyzed. The functional behavior of the WidgMhe effectiveness of

the WdgM coverage, both EDC and ERC, and the characterization of error handling timing must be
assessed. These tesim at verifying that the WdgM is efficient as a safety mechanism. However,
these verifications do not prevent from wrong integrations or configurations.

Due to its importance, the WdgM has been analyzed to fulfill the requirements oBASknce, we

have studied two implementaterR1 WKH :GJO D ILUVW RQH FDOOHG 340 YHUV
FDOOHG 3VDIHW\ YHUVLRQ" ZKLFK LQWHJUDWHV VDIHW-\ PHFKDCQC
plementationWe assesthe robustness of the two WdgM implerteions to evaluate the imprev

ments between versions. Particularly, we assess the behavior of the WdgM, in the presence of memory
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corruption (RAM/ROM/stack). This kind of experiment also evaluates the quality of the code and can
highlight weaknesses ingtdesign. The experiments have shown that corruption of memory cells may
lead to the raising of falséaam, and the nodetection ofiveness, deadline or control flow errors.

5.6 SW Module Level: AUTOSAR Watchdog Manager

The WdgM module is a key SW Module MUTOSAR to ensure that the application works safely and
to detect the violation of timing and logical constraints. The WdgM is part of the System Services
layer and is responsible for error detection, isolation and recovery. It provides three supe@ision
anisms

x Alive supervision,

X Deadline supervision,

X Control flow supervision;

and four error reactions:
X signaling errors to other AUTOSAR modules,
X logging the errors into a Diagnostic Event Manager or Development Error Tracer modules,
X partition resetre-initialization of a specific Of\pplication,
x and micrecontroller reset: this will lead to a-meitialization of the MCU hardare and the
complete software.

The WdgM is also responsible for the management of a watdilaay (Wdg) of systen{integrated
in uC or externalyia thewatchdog interface (Wdglfithe watchdogdlriver periodically refreshea
hardware counter. Hence tiife hardware counter is not refreshnbn a software reset is triggered.

The WdgM supervisions are based onttlb&on of Supervised EntitiexSE SEs have no fixed r&!
tionship with software blocks or software modules in AUTOSAR),, SW-Cs, CDDs, RTE, BSW
modules etc.However, a SE is linked to one or several software modules implementing a fumctional
ty that reeds to be monitoredlive monitoring, deadline monitoring or control flow monitoring.

Concerning its implementation, the monitoring is based on numbered checkpoints and configured
transitions. A checkpoint is here defined as a step in the control fltwnva SE. A SE sends a
checkpoint to the WdgM (call of the WdgM APNdgM_CheckpointReachedepending on its &x

cution (start and end of an action, each step of a praaegs)n the AUTOSAR WdgM terminology,

a checkpoint is defined more preciselyagmint in the control flow of Supervised Entitwhere the activity

is reported to the Watchdog Managdihen, the WdgM verify that the received checkpoint is coherent
with the defined supervisioithese supervisions work as follow.

5.6.1 Alive Supervision

An alive supervision enables to verify that tP&E constraints on the number of times they aee ex
cuted within a given time span are respected. By means of Alive Supervision, Watchdog Manager
checks periodically if the Checkpoints of a Supervised Erditg been reached within the givemi

its. This means that Watchdog Manager checks if a Supervised Entity is run not too frequently or not
too rarely”.

The alive supervision may filter the occurrence of a failure (too many or not enough receivded chec
pointg. Indeed, the verification of the counter of checkpoints received during the period is done within
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a rangeCounter_Min< CheckpointReceived Counter_Max Although this corresponds tror de-
tection, the alive supervision can be configured to confirendéfect during several periods before
triggering a reaction.

5.6.2 Deadline Monitoring

The deadline supervision checks the timing transition between two checkpoints (start checkpoint and
end checkpoint) of a SE. When the WdgM receivesstiie checkpoint, it g&rts a timing counter.

On the reception of thend checkpoint, the WdgM veiisthat the timing counter is in the configured
bounds. If not, a reaction is triggered.

5.6.3 Control Flow Monitoring

In Control Flow monitoring, at runtime, the SEs call the WdgM #Psend a checkpoint at eachpre
defined steps of a process. The WdgM checks that the checkpoints follow a graph of the-valid s
guences. These graphs are defined statically during the configuration of the WdgM.

An example is shown |Rigure5.7] We assumed that a supervised entity is a task in which there are
six checkpoints (CR)Thesecheckpointsare called following two mandatory sequences (wensd-
ered that one runnab}sends one checkpoi@PX):

1. CPO/ CP1/CP2/ CP4
2. CPO/ CP1/CP3/CP5/CP4

Both valid sequences are represented inréferencegraph (A). In the first example given, we 8l

trate a valid sequence (B): the execution in the prapsequence is correct and will not triggera r
action. In the second example (C), we illustrate an incorrect seqguedeed, in the second sequence,
there is no transition between CP1 and CP5, then the execution flow is incorrect and the \ydgM tri
gers areaction.

(A) Reference graph (B) Correct control flow (C) Error detected
FIGURES.7 AUTOSARWDGM: CONTROL FLOW MONITORING EXAMPLE
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The overall WdgM functions and theteractions with othesoftware modules are synthesizefFig-

FIGURE 5.8 WDGM FUNCTIONAL DESCRIPTION

5.7 FIA at SWModule Level

We performed Safety analyses on this software module, considering it as a SEooC. We first identify
the failure modes of this module. They can be categorized in:
x False alarm the WdgM unexpectedly triggers a reaction (signaling an error, logging an
error, resetting the targettc). It should be noted that a false alarm is not saéeitycal
for the system as a whole. However, it may have a bad impact on the availabiliy of
service.
x False negativeit is a bad coverage of the detection or the management of theierrahe
WdgM does not detect an erroneous behavior. The consequences of this failure can be more
important. Indeed, the nedetection may lead the violah of a safety requirement in a case
of double failures.
x Timing error (too soon/too late) The most interesting case is when the WdgM detects and
handlesan error, @iming delay, whichis far beyond what is expected. Tig®ften called e
ror detectioratency.

These failure modes categories are then detailed according to the interactions with Watchdog interface
Wdglf, the DEM, the MCU, the SEs and the BSWM. For example, considering the interaction with
WKH 0&8 WKH UROH RI WKH :é&WigMvhuat kebudsRad Oringdiafedresedf the
microcontroller by callingMcu_PerformResét ,Q WKLV FDVH WKH FRQVLGHUHG IDL
lowing:

1. No request of immediate MCU reset (False Negative)

2. Unintended request of immediate reset (False Alarm)
3. Timing error in the request of the reset (too soon/too late)
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Finally, we have identified 2fhilure modes of the WdgM.

FTAs havebeen performed in order to find the possible causes of all WdgM failure modes. in exa

ple is given i IRU WKH FDVH 3QR UHTXHVW RI WKH LPPHGLDWH
found potential causes and then proposed mechanisms. For example, there is a global variable used to
store the global state of the WdgMidgM _udteGlobalStatu3 he corruption of the datin this global

variable is critical as it can lead to all the failure modes of the Wdgl\prevent these side effects, it

has been decided to triplicate the data in different memory cells, in order to mask the error affecting
onereplica usinga majorty voting technique.

FIGURE 5.9 PARTIAL FTA OF 3 10 REQUEST OF THEMMEDIATE MCU RESET” FAILURE MODE

In addition, a safety analysis has highlighted that there vaficiencyin the implementation of the
QM version as some errors can remain undetected.
x Deadline Errors: the violation of a deadline may not be detected, or can be detected too late.
Indeed if the final checkpoint is not received on time, no error is detected.
x Control Flow Errors: if the appli¢@n stops sending its checkpoints in the middle of the co
trol flow graph, no error will be detected by the Wdgktithe graph is incomplete.

In order to handle these cases, it was decided to change the implementation of both the deadline and
the controlflow supervision in order to check timing limits, whether or not the last checkpoigt is r
ceived by the WdgM.

Finally, two implementations of the WdgM have betmvelod to illustrate the efficiency of error
detection and recovery mechanisms providethis/generic module. The following instances are used
in the experents reported in nexhapter:
X A QM version, which implements AUTOSAR requiremeritst is limited in term®f error
detection coverageegarding deadline and control flow errors.
x A Safety versionwhich implements the requirements added by the safety analyses: @nhanc
ment of the robustness of the implementation and error detection deficiencies.

The fault injection experiments have been defined according to the safety analysed| Fegorngs.9
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5.8 Lessons Learnt

In this chapter, we have illustrated the continuity between safety analysis and fault injection exper
ments. Although our case study issimple application, we haveerformed analyseson a realistic
system, starting from the tdpvel safety goals down to safety mechanisms at the software block level.
Such mechanisms are the targets for the fault injection experiments. Thank to our apjeseh
mechanisms are linked through both S and Z chains to safety issues at upper levels, prodset and sy
tem. This is a core benefit of our approach: traceability in the handling of safety requirements.

Our analysis started from Undesired Eventsg)UEsystem level and led to the identification ofesaf

ty goals together with their ASIL allocation. At product level, sateenentdave been identified and

the FIA process was applied to precisely identify the failure modes of the corresponding functions. In
this step of the produdtvel analysis, we have shown that some failure modes may lead to the viol
tion of the safety goals at upplewvel, i.e.the system level list of safety mechanisms was identified

at product level then. Goingnestepfurther inthe analysisi.e. considering SW blocks, we have
shown that product level mechanisms can be related to concrete safety mechanisms or implementation
choices. The WdgM is a concrete module responsible for the implementation of a collectiomsf para
eterizedsafety mechanisms, namedjive, deadline and control flow monitoring mechanisms. The
implementation choices may also lead to some safety issues. The AUTRHSAR implementation

and the coexistence of QM and ASIL B OS application may lead to interfetteatcare also part of

the analysis at low level. FFI can be solved thanks to partitioning concepts.

Fault injection in ISO 26262 must be perceived as a causal chain through the various development and
verificationsteps Fault injection at the uppeD EVWUDFWLRQ OHYHO FDQ EHaLQWHUSL
tion by fault injection. The target here is not concrete. Going down to more detailed levels, one can see
WKDW WKH WDUJHW HOHPHQWV EHFRPH PRUH FRQFUdie®®H 7KH 3
fault injection whose aim is to evaluate the efficiency of safety mechanisms (EDC andTERG.

VKDSHG FDXVDO FKDLQV WUDFH WKLV URXWH IUR Pectign_dodV XDO "~ ILC
by the way determinghat kind of fault injetion experiments must be carried out.

Controversial questions can be raised now:
Is the notion of fault injection at upper level really sound?

7TKH ,62 VWDQGDUGY DGYRFDWH IDXOW LQMHFWLRQ KDV HDU
in the curent version of the standard. A clear interpretation of this recommendation is necessary,
which is the main motivation for this work. Our interpretation is that fault injection at upper design
levels corresponds to detailed safety analyses, these baieguding FMECA or FTA. A row in an
FMECA table represesthe behaviour of a given element in the presence of fault: a fault (the pote

tial cause) may lead to a failure mode of the element having thus a local effect on its behaviour (due to
an error), butlso upper level effects (propagation) that must be handled by safety mechanisms (fault
tolerance design patterns). This phrasing is very similar to the definition of a fault injectior exper
ment, at least partially since measures cannot be computedracabesels. However, the recursion

ends as soon as concrete items are found (SW or HW blocks) and then conventional fault injection
experiments can be carried out to get EDC and ERC measures.

Was it possible to identify the fault injection experimentthaut FIA?
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The answer is yes. Anyone can understand that the WdgM is a target for fault injection and that EDC
and ERC measures are of high interest. The benefit of FIA relies again on the traceability ofrthe expe
iments carried out regarding the upperelesafety goalsimproving the traceability is essential to
demonstrate the completeness of the tests carried out with respect to the system safety goals and the
Undesired Events that must be avoided, closing thus the loop between FIE and FIA.

In the nextChapter, we describe the implementation of experiments carried out to illustrate the
measures that can be obtained by fault injection on a real target, namely the WdgM identified in our
case study.
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6.1 Fault Injection Platform

A fault injection tool has been developed at Valeo, in otdémplement the FI campaigns designs
from the safety analyses. We mainly focus on the integrationwof techniques:Software
Implemented Fault Injection (SWIFI) and NexBased Fault InjectioriThese two methods habeen

introduced i

6.1.1 Fault Injection Environ ment

Figure6.1|shows an overview of the FI Environment

FIGURE 6.1 FAULT INJECTIONENVIRONMENT

This environmenencompasses:

X The Target Systemis composed othe FrontLight Manager application (binary files
ELF compiled from sources with Wind River Compiler) running on 8i@C56EL70
microcontroller described before.

x The Controller is composed of the interface of the debugger Lauterbach TRXCE
enables fault injection experiments via scripts (PRACTICE Langudgealso captures
the execution trace of the target, controls the accefsetmemoryfor monitoting some
variables, androvidescommand to start the fault injection test cases accogdio a
specified workload.

x The Lauterbach debuggernLauterbach, 2015)is a central component of the
Environment. It is connected to the controller vdaUSB link and to the target
throughout a Nexus Probe. The debugpgmvides accesgo all memory sections of the
microcontroller, particularly by monitoring the trace thie execution of the application
(Monitor).
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X

The Lauterbach debugger is alsoFault Injector, as it allows corrupting/modifying
memory locations of the application. These capabilities amrovided by the
implementation of Nexus Clags defined by the Nexus 5001 ForlUfn(Nexus5001,
2015) This class of debugger enables two important features to perform read/write into
the memory withouainy impact orthe reaitime execution of the application KLV -32Q
theIO\" UXQWLPH PHPRU\ DFFHVV GRHV QRW DGG WHPSR
debugger also takes adwages of orchip watch points (avatch point enables the
activation d the fault injection experimentso be triggeredor signaling application
events without stopping the applicatjorFinally, the debugger enabl@sonitoring the
behavior of the execution of the Software through the memory to collect observation
data (readuts) andto synchronizethe activation of the experimentsNprkload
Generator), and finally, modifying the mmory to inject fault in memoryregistes, etc.
(Fault Injector)

We also use SWIFI method to inject specific fault/error/failure. Hence, we mstru

the code to mimic the faulty behavior directly by modifying the source code of the
faulty software module, and finaly compiling the mutant application.

The Data Collector stores the data collected during the experiments into log files: Th
se argiming information, variables values and events.

The Data Analyzer in our environment is mostly manual. The data is gathered attoma
ically in the logs, however the analysis of the resultstbasedone manuallye.g, the
categorization of the experiments

6.1.2 Fault Injection Characterization of the Tool

We present the characterization of the fault injection techniques integrated in tool by considering the
following properties, defined ifArlat, et al., 2003)

X

Reachability Using both preruntime SWIFI and Nexubased fault injection, we are
able to manage a high level of reachability. Indeed, we are able to inject fault directly in
the memory, the CPU registers using the debugger. It is also ppasbig SWIFI to
corrupt higher levels of granularity, by injecting information explicitely processed by
the computing system.

Controllability, with respect tespace and time: The controllability is also high as the
fault can be triggexd using lowlevel mechanisms from the delgeys (break and watch
points in the program flow, writing/reading access to specific datapaitalso be used
together with SWIFI, for instand® triggera branch of instrumented code.

Repeatability (with respect to experiments) anleproductibility (with respect to
results): A high repeatability isattained hanks to the high level of controllability.
However, a distributed architecture with complex environmgnaltiple ECU on the
network) may B more difficult to synchronizand thus, it would be mordifficult to
ensure repeadability in this cada.our case the microcontroller behavior allows a high
repeatability

Non-intrusiveness The intrusiveness of the Nexus capabilities is very low. The
intrusion can also be related to the use of watch poiet W WKHUH DWHPIHHZ 3UH
watch pointsin practice In addition considering the SWIFI,t is clear that the
intrusivenessiepends on the size of tkkerruptionmade in the source code. In our case,
this secad type of intrusion is negligie. Then, theuse of SWIFI does not modify the
behaviour or the structure of the safety mechanisms. Otherwise, the experiment results
may be biased.

Time measurement(e.g, error detection latency)Here, time measurementare
performedby the debugger. It is possibile get the execution time between two events.
Efficacy to generate significant experiments: Generally, this property aims at
characterizing a fault injection technique together with a fault model. In our approach,
the efficacy is basedn the identificatio of the tests casemore precisely the selection

of the fault to be injected.
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To conclude, the tool enables handling most of the Fault Injection experiments on any target
application running on any miciwontroller.

6.2 WdgM Implementations Assessment

In thewhole section, we consider two implementations of the WdgM. The QM version hasedeen d
veloped without specific mechanisms, and thealted safety version that integratdgsemectha-
nisms and additional improvements. The campaign described in thisnsdo@e not run the Front
Light Application. The software architecture involves another-GVWithe ComStackDemoAp@ese-
cially desigredto generate the workload.

6.2.1 Error Detection and Error Recovery Coverage

Firstly, we have tested if the implementatiwasefficient to detect and recover from Alive / Deadline
/ Control Flow errors (in other words, the aim of these tests is to verify that the WdgM fulfillsats fun
tional specificion when integrated).

The measures and the target have been previously defirgedbjective being the verification of the
effectiveness of the EDC and ERC of the WdgM. Another aspect is the verifittsitdhe weaknes-
esidentifiedin the QM implementatioare well coveredh the safetywersionof the WdgM. Now we
will focus on thedefinition of the fault model, the Activation model and the Readouts.

The consideredFault Model corresponds to a wrong behavior of a SE, particularly the
ComStackDemoApgwo faulty SE behaviors have been used: too many checkpoints sent by the SE
or notenough.

For the deadline supervision, the following faults are considered:
X Reception of the end checkpoint first from the SE
X Reception of the start checkpoint oritpm the SE
X Reception of the end checkpoint too late from the B%. made several experiments in
which we increase the sendiimgtantof the end checkpoint by fis at each experiment.

Concerning the control flow monitoring vuse a reference graph as an orathes graph corresponds
to the correct behaviour of the application and it is established a p¥iehave injectedll the poss
ble sequencewithout repetition. Hence all the sequences titahot comply withthe graph must be
detected.

For theActivation mode| we do not identify a specific use case. However, we have to make sure that
the initialization of the application is correct and completed before starting the experiment.

The objective is to evalualeasuresi.e. the coverage of the error detectimechanisms implemen

ed in the WdgM and the identification of the corresponding failures. To this aim, we have to monitor
the local status variable of each SE, a sort of flag indicating if an error was detected by the WdgM
(Detection Coverage).

Then, wehave to monitor the reactiaf the WdgM (Recovery Coveragéi this case, we configured
the WdgM in order to perform an immediate reset by callindvtbe PerformResdtnction. The call
must be monitored as well as the reset (we put a watch poineamath() function of the application
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to trace the resétsThe resetorresponds to the recovery actior,, the WdgM performeatorrectly
its recovery action.

104 differentexperimentsvere carried out in the fault injection campaignd we obtaiedtheresults
presented jifrigure6.2| The WdgM QM version detects 94% of #eors Among the detected errors,
49% lead to reset the application, and 45% leatbteaction.

About 6% of the fault injection experiments ledutadetected errorgge. no observation. These 6% of
undetected error are of prime importance. They correspond to experiments highlighted in the Safety
Analyses. For example, whem and checkpoint is never received by the WdgM, the error (control
flow or deadline monitoring) is not detected.

We have performed the same set of experiments for both the QM and the Safety implementation of the
WdgM. The objective is the verification of added features (timeout for the detection of deadline errors
and for the detction of a correct incomplete control flow sequence) and the evaluation of their eff
ciency.We can observin[Figure6.2] that the detection coveragf the Safety version is 1008th

the same experiments. It is worth noting that the previously undetected errors are now detected and
then the expected reaction is performed.

(A) WdgM QM Version (B) WdgM Safety Version
FIGURE 6.2 EFFECTIVENESS OFEDC/ERCOF THE TWOWDGM IMPLEMENTATIONS (104 EXPER-
MENTS)

We can conclude that this campaign improves our confidence in the error detection and Ewer Reco
ery coverage of the WdgM against alive errors /deaddrrors /control flow monitoring. We alsolva

idate a solution, which take into account errors that are introduced by the implementation of functional
behavior of the WdgM.

6.2.2 Timing Evaluation of the WdgM

In parallel to the evaluation of both the EDC dihd ERC, we also evaluate the timing behavior of the
corresponding error detection and recovery mechanisms. The objectives of these experiments are to
measure and evaluate the error detection time and the reaction time of the WdgM withoratjeed

dedlline and control flow monitoring.
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According to the configuration of the WdgM that has been made, the period of execution of the main
function of the WdgM is 20ns. Then, concerning the Deadline aadtrol flow monitoring, we co-
sidered that the error detectedhfter theexecution of th&VdgM_MainFunction()

Moreover, the alive monitoringjlters three failed periods beforsignalingthe error.Then, in the
worst case, an aliverror is detected in less than four periads, 80 ms.

We obtained resultsummarized ifTable6.1| Thedetection time of both alive monitoriragd control

flow monitoringare within the range of the configuration. Considering the deadline monitoring for the

QM implementation, the detectp WLPH GHSHQGV RQ WKH IDLOXUHeW\SH I \
ceived very late, the detection will be as late as the reception of this checkpoint. In our tests cases, all

the detection delays were greater thanmB9for the QM version. The detection aglhas beenni-

proved in the safety version. Indeed, the detection is also verified in the periodic main function of the
WdgM by verifying if the deadline is exceeded. In our case, the safety module detects the-error b

tween 14ms and 20ns. In the safetyarsion of the WdgM, it is possible to set a time bound for the
detection.

TABLE 6.1 RESULT OFTIMING CHARACTERIZATION OF THE WDGM

Alive monitoring Deadline monitoring Control flow monitoring

Detection Time ~63,9ms ~627 ms 19ms <Detection time14 ms <Detection time<20ms ~8.4ms ~8.7ms
REENRINCI(EEM ~ 36,8ms ~277ms ~377ms ~271ms ~364ms ~26,5ms

Then we also measure theaction time. Here, we consider that the reaction is the time between the
detection and the start of the main function of the application after the reset. The reaction time is stable
in the two versions. However, the implementation in the safety vessithnis faster.

Even if the absolute values are not significant for all the configurations of the WdgM, the result shows
that the safety version improves the QM version from botlerage antiming viewpoint.

6.2.3 Robustnessof the implementation of the WdgM

Finally, we have teevaluatethe robustness of the WdgM implementation against interferences from
HW faults (bitflip in the memory/registers), and from others software modules malfunctions during
runtime.

This assessment is important as we consideredAtHEOSAR WM as a Component Offhe
Shelf(COTS). This module can be redsen a different architecture, anthusa robust implemeat
tion should be made and assessspecially when the WdgM will be used in highly safety critical
system.

It is interestily to note that the memonrglated interferences in the Wdglld notimpact the safety of

the System; such type of interference ketadfalse alarms and a reset. However, interferences may be
safety relevant with second order cut sets. In this case, nttidetef deadline, alive or control flow
errors,may violate a safety goal.

All the faults have been defined using th&Haped causal chaimdeed, he fault model used fahis
campaignis the corruption of variables of the WdgMe#e variables have &e identifiedas safety
critical in FTA performed in order to find causes of the WdgM failure motlesn, for each ident
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fied variables, we inject errsifollowing a data type fault model. Basically, the injected values are
based on the data type of thariable,e.g, the global status of the WdgM is coded into the variable
WdgM_udteGlobalStatushich type is &its unsigned integer, according to the AUTOSAR speific
tion. Moreover, there are five valichluesfrom zero to four (s. To corrupt the variable,
we forced the value dfvdgM_udteGlobalStatus all the valid inputs and we add the maximum value
of the typeO4#: 47+08L t“FsL twwand a media variable04'& 4 +08L t= t L

stz

TABLE 6.2 AUTOSAR SPECIFICATION OFWDGM_ GLOBALSTATUSTYPE(AUTOSAR-WDGM, 2014)

Name WdgM_ GlobalStatusType

Type uint8

Range WDGM_GLOBAL_STATUS_OK 0 Supervision did not show any failures
WDGM_GLOBAL_STATUS_FAILED 1 | Supervision has failed but is still withir

the limit of allowed failures.
WDGM_GLOBAL_STATUS_EXPIRED 2 | Supervision has failed, the allowed lim
of failures has been exceeded, but th

Watchdog Driver has not yet been

instructed to stop triggering.

WDGM_GLOBAL_STATUS_STOPPED 3 | Supervision has failed, the allowed lim

of failures has been exceeded, bet th
Watchdog Driver has been instructed

stop triggeringA watchdog reset is

about to happen.

WDGM_GLOBAL_STATUS_DEACTIVATED | 4 WdgM is not initialized and therefore
will not manage the watchdogs.
Description: | This type shall be used for variables tregiresent the global supervision status of the Watchd
Manager module

This type of corruption has been done with all the variables identified in the FTffgure5.9

Considering the activation model, we have shown in sgétifithat there are two main cases where a
corruption of the WdgM may lead to the identified failure modes:

x Activation 1: In normal modej.e., in the use case the supervised entities work es d
fined they send chekpoints regularly for alivesupervision, within deadlines andlfo
lowing the control flow graph. In this use case, the considered fault model may lead to
false alarms.

X Activation 2: In the second use case, we consider that an error $eprén one supe
vised entity. Then, this corruption may remain undetected by the WdgM.

To correctlyimplement theséwo cases, we have toakesure that the corruptioZ R b® \Werwri-
tenduring theSE execution.

Concerning the readouts, we have to monitorltloation of corrupted datdy the fault injection

Then, we monitor the entire set of variables fteg the error detectelly the WdgM (WdgM global

status, local statugtc). Then a reaction should be leal by the WdgM: immediate reconfiguration
thoughWdgM_PerformReseind the reset should be monitored. In this campaign, the reset could be
due to the reaction of the WdgM after the detection of an error or because of the software watchdog is
not periodic#ly kicked by the WdgM.

It is important to mention that we did not evaluate timing issues in this campaign. The robustness may
be even less when considering timing performance of the detection (error detection latency).

In this campaign, we have perform2tl7 experiments on each version.
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The experiments have been categorized as fellow
X No deviation Observed FRUUHVSRQGY WR WHVWYVY ZKHUH WKH EHKD®
with or without the injected DXOW  FD\FbleDIPG / RI
0 the corrupted variable is refreshed with the correct value.
0 In the case oActivation 2 i.e. in presence of a SE failure, it may corresptmex-
periment where a false alarm has been raised.
o0 this also corresponds to test cases where the corrupted value is equal to the current
value.
x STransient Internal Deviation Observed™ FRUUHVSRQGYV WR H[SHULPHQWYV Zk
agates but is toleratetE HIRUH OHDGLQJ WR D IDLOXUH PEBEGableRl WKH
[ 47). Infact, this case corresponds to experiments where the corruption |esi®toe a e-
viation of the WdgM behaviore(g, unintended detection of an errorAgtivation 1cas¢, but
there is no déct on the WdgM outputs. éfe, the detection is tolerated by the Wdgi a
there are no reaction called
x dnternal latent error ~ corresponds to experiments where no WdgM failure modebdis o
served (false alarm or false positive). However, the corruption done ora@gation of this
error remanODWHQW DQG LV QRW DFWLYDWHG E\ WoffFabRJFWLYDW
[ 41). It also corresponds to experiments where the corrupted variables are neither read nor
written. Latent errarhighly depend on the activation of tteadet.
x Failure mode reached +HUH D IDOVH DODUP RU D IDOVH®HJIDWLY'

[rable 1)

The results of the campaign on the twiplementation of the WdgM are presented inkigure6.3

(A) WdgM QM Version (B) WdgM Safety Version
FIGURE 6.3 ROBUSTNESSCAMPAIGN ON THE WDGM IMPLEMENTATIONS (217 EXPERIMENTS)

First, a good rast is that among the 214 tests cases, only 35% areigaificant tests cases (nb-o
servation).This shows thatin this particular cas¢he use of safety analyses in the determination of
experimentlead to efficientexperiments, which is a major isste,the industry and in the domain.
Moreover, we found that 35% of the experiments led to a failure mode of the \Wrighkitularly,
among the 7@&xperiments (with the QM versiothat lead to a failure mode, alive/deadline/Control
flow error, have not beedeteded in 19 experiments (False negativeand57 experimentsleads to
unintended resets of the WdgM.
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Then, we can compare the two versiaf the WdgM. First, we can easily observe that even if the
number ofexperimentdeading to a failure mode has been reduced, the result is not significant.

This shows that the proposed robustness mechanisms are either not efficient or not wektegle
In fact, in our case, the tested version implements few prescribed mecharti@maie have shown
thatthe coverage of the WdgM has been improvedthe robustness of the implementati@mains
similar.

Theresults highlight that some efforts can be done on the implementatibecision can be made to
improve or not the implemeation. A tradeoff has to be made between memory consumptionr-perfo
mances and WdgM implementation of safety requirements.

The improvement should focus on basic events that lead to Failure Modes (red) and errors that remain
latent (orange).

To conclude, wénaveillustratedall FI experiments that should be made according to the26282
on a software safig mechanism:
1. demonstration ofhe effectiveness of the safety mechanisms
a. verification of the error detection and error recovery coverage
b. verification oftiming requirements of the mechanisms
2. verification of the robustness of the implementation of the safety mechanism

6.3 Front-Light Software Verification

In the previous section we have shown that safety mechanisms have been characterized. Now, we
will verify the correct implementation of the safety requirements of the front light software. In other
words, the objective is the verification of thesiSaped causal chain identified in the FMEC/N able]

6.3.1 Verification of one Line of FMECA: S-Shaped Verification

18 tests cases haween performed for the considered critical patfor®ach use cases. The results

could be categorized in (3€egure6.4):

FIGURE 6.4 VERIFICATION OF ONE FMECA LINE (18 EXPERIMENTY)
x Tolerated errors: the WdgM does not detect efemrcording to his configuration) and
the system works even if the period is partially degraded (the output is refreshed less
than specified). [period = 2Ms]
x Detected errors and no reaction: the WdgM detects the error but does not perform any
recovery adbns. The system works in a degraded mode (the output is refreshed less
than specified). [period 30 ms or 40ms]
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x Detected and recovered errors: in these cases, the WdgM detects the alive error, and
start a reset of the microcontroller. Then, in use chsthere is alinking wherethe
headlight are OFF during 3Ws (reset time) and then the system wvsogcoperly
(headlights are ON). In use ca3gi.e. the headlights are OFF and the user requests to
switch them ON. Tie system will not switclthe headligks ON before a delay &f20 ms
because ofheinjected error, thatorresponds to th&/dgM detectiontime and reset of
the application. [Periods between B& and 100ms].

All the tests could be put itases. D Q G tligRable4.1|There is no violation of SG1 or SG2.

To conclude, the implemented application enables to meet the requirements and the safety
mechanisms handleorrectly the faulty behavior within a bounded response time. Here, a single
failure is not sufficient to violate a safety g@dbne in the worst case, the failure mode occurs but a
reset is triggered fast enough to remain unnoticed.

6.3.2 Global Verification of the FMECA Spreadsheet

Finally, we consider the evaluation of the software architecture, and the impacts of all the software
faults on the system. The objective is to verify that there are no violations of the safety goals and that
the safety mechanisnmpsoposed in the FIA process are efficient.

As wesaw inSectio5.4.4 the complete FMECA spreadsheet encompasses 48 lines that may violate
the saéty goal: SG1. For each failure mode, we defined a set of experiments similarly to theine co
sidered inSectio The campaigis composed of 218 experiments.

These failure modes have been injected using SWIFI: modification of the RTE module to control the
flow of the executed runnables, and modification of the memory using the debugger, in order to mod
fy several variablespuriously or permanently.

Theresult of the campaign given in the left pie chadf|Figure6.5

FIGURE 6.5 GLOBAL RESULT OF THEVIOLATION OF THE SAFETY REQUIREMENTS AND THETRIGGERED
SAFETY MECHANISMS (218 EXPERIMENTS)

First, it should be noted that experiments have been categorized into three types:

Application remairs operationatl These are the experimenlsSKLFK OHDG WR 31R REVHUYDW
URU GHWHFWHG DQG RU UHDFWLRQ"™ $W WKH HQG RI WKH H[SHUL
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Safestate reachedThis category encompassed theeriments thaead to multiple resets of therta

get. In this case, thimainly encompassed permanent error corruption of critical variables. Then, it
leads to multiple reset of the target. This behavior is handled by a mechanism that stops the application
after three consecutive resets. Téws ofthe functionality is considedhereas safe.

Violation of a safety goallt corresponds to the blinking of the application or the loss of the headlights

while they should be ON. In fact, we found that these experiments correspond to the line of the
FMECA where a lack of coverage hasen identified. The cause of this problem is the-aetection

RI 3YDOLG HUURUV® D YDOLG Heunliheoed! RIFFX/&UE hBEdbedsent ibstediR R G C
of a correct ON valu§ However, the value is incorrect with respect to the system. gtlitother e-

rors correspond to incorrect values that could be given to the ON/OFF variable (different from ON and

OFF coded value) and thus easier to detect. In summary, thdetextion of permanent valid error is

a key issue.

To conclude the globaloverage of the safety requirement is 90%, the system is safe in 90% of
fault injection experiments.

Then, we show that the error detection mechanisms prevent the violation of a safety goal. The results
are shown in the right pie chart of The following categories have been found:

No detection This category encompasses several types of experiments. First, it may correspond to
errors that aréolerated by the functional behavior of the application (periodically refreshed values). It
also corresponds to the errors detected by checking a range of correct values, but reported.

Then, other categories correspondi® proposed safety mechanisms:

WdgM alive supervisionof the runnables,

WdgM Deadline monitoring of the executiorof the critical runnables, and

WdgM control flow monitoring

Finally, theinternal watchdog is able to detect an infinite loop. In this case, therinte
nal watchdog is resporide for the reset.

X X X X

To conclude, this campaign intends to demonstrate that the safety requirements have been correctly
handled. The measures show the proposed architecture handles most of the failure modes defined in
the FIA.

Some problems have been foundhe implementation of the front light manager. First, a wromg i
plementation of a range checking has been found leading to the violation of a safety goal. Then, in
other experiments, a lack of coverage has been identified early in thed-Bome sitiations where a

safety mechanism was not proposed in the FIA.

We have found that, in some cases, the violation of the safety requirement only appears when there is
a permanent corruption of the critical value with a specific value. Improvements/modifscahould
then be proposed to handle these remaining issues.

6.4 Conclusion

A proof of concept of the method has been realized on simple automotive application.ignont
System. The software architecture of this case study is based on AUTOSAR 4.X. €helsstbeen
described at different levels of development together with safety analyses, to show the traceability of
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the requirements and their importance in the assessment of FI measures. At the end of the FIA process
applied to this example, we have idéat safety mechanisms (WdgM) that are targets of fault
injection experiments.

In order to carry out thplannedtests, we have develega FI test platform. Two implementations of
the WdgM (QM and safety) have been evaluated by fault injection expesiment

A first interestingresult obtained with the experim&al measurs is the efficiency of the injected
faults,i.e. the fact that all injected faults lead either to an edetection or to the violation of safety
properties. The term efficiency may be misleading here, but it enables the error detection coverage of
the various implementatisrof the WdgM to be estimade A non detection leads to the viotat of a

safety property and that in turn requires to improve the WdgM

In other words, the injected faults have an impact on the target (they lead to a failure mode or they
triggered a safety mechanism).

The obtainedmeasures provide reasonable insights to demonstrate the effectiveness of the safety
mechanisms (the WdgM), the correct implementation of the safety requirements, and the FFI. Our
current work aims at obtaining global measures from FlI experiments andizipginthe whole
development process by defining an optimal set of experiments.

To conclude, this method offers interesting results for the integration of the Fl in an automotive
development process following the requirements of the 26ZB2. However, tli may lead to
significant efforts and timing overhead on a complete architecture. Hence, the FI experiments must be
carefully selected.
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The development alependable systems has always beemnadlenge for engineers. With the growing
criticality of functions allocated to E/E systenisis becoming increasingly imp@ant to guarantee

that the safety requirements have been correctly handled during the whole development process.
Therefore, it isessential t@ropose a structured and systematic validation process that provides
vincing evidencs of their correctdesign andmplementation. The work presented in this thesis is a
contribution towards the satisfaction of this need.

This means thasafety issues must be correctly addressed at early stages of the system design, then
through all development phases down to the implementation and then intensively tested. Safety ana
yses are very important since they identify potential causes of faithess effect on the system in

order to identify, early in the development process, the required safety mechanisms to ade-in the d
sign. Any omission at this stage means that, although the system is correctly developed, some failures
may lead to undesirableffects, some being critical, i.e. potentially leading to a hazard.

Testing is a challenge as far as critical systems are concerned. Any improvement of testing methods
regarding safety critical systems is of course of interest. Fault injection is agueeshihat comp-

ments functional testing since it focuses on the behavior of a system or a component in the presence of
faults. Its contribution is well known when targeting dependability mechanisms: verification of safety
mechanisms anevaluation of compnent robustnes3.oday, ampenquestionrelatesto the contritu-

tion of fault injectionwhen applied during the design phase.

More generally, the question tackl&ud this thesis is the complementarity between safety mechanisms
definition during the desigand their practical evaluation by fault injection when implemeritechur
mind, this is an underlying question raised by the introduction of fault injection in th@d3&2
standard, and this ischallenge.

The main contribution of this thesis concsrthe integration of fault injection in the whole deyelo

ment process. Fault injection was seen as an efficient method to assess the robustness ef an impl
mented target. Based on a method designed for experimalitidtion (FARM), we demonstrate that

the introduction of fault injectiomnalyses was of interest for the overall development process. We
have shown that fault injectianalysisis strongly related to detailed safety analyses: more spécifica
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ly detailed FMECA. This analoggnd its justifications a first contribution of the thesis that clarifies
the meaning of fault injection at early stages of the design.

The outcome of this work is that a process based on fault injection can be applied and advantageously
integrated in a standard developmpriticess for automotive systentgault injection analyses ag-d
scribed in this thesis enrich the already existing safety analyses.

Our contribution shows the major role of fault injection in the verification and validation of safety,
during the whole devefoment process.

The paradigm of Sand Zshaped causal chains is of a great help for analyzing error propagation b
tween the various development levels and entities. It is not only important during the design phase, but
also for fault injection on an impleanted target. We have in particular demonstrated the importance

of the traceability of the fault propagation, using these causal chains. The first advantage of FIA is the
traceability of the fault injection experiments, since fault injection experimeatdedned from the

FIA (S-chain), and conversely that the results of an experiment can be related to upper level items and
obligations in the design (reported in the FMECA spreadsheets). This work is a clear contribution to
the understanding of fault injgan in the development process, since it is easier to demonstrate that a
safety requirement has been tested correctly. In addition, it is of major interest in the planning of Fl
campaigns, as the concrete measures to assess can be identified eadgweltdpmment process. The
second advantage is more practical for the testing team. The fault propagation enables tha-identific
tion of potential causes of a hazard to be injected into the targéia{d).

The proposed approach is of course compliant wighI8026262 standard. Indeed, safety analyses

are required for all safety critical elements, and we have highlighted the importance of fault injection
at all stages making a clear link between conventional fault injection on concrete targets and safety
aralyses. Even if the fault injection activities imply efforts, our approach moderates the impact, by
reusing safety analyses, which are already performed. Now, these analyses will be used as inputs of
the fault injection campaigns.

From a practical point ofiew, a fault injection tool have been developed, which helpedilledate
successfullyour approach on a simple example. Now, the objectitieeislevelopnent ofthis prob-
type, FIP, to enable the verification and validation of several targeénext generation needs to be
easier to use, and with automatic assistance in the definition of the experiRieally, we expect
that a mature tool will based withinvValea

We are aware that the systematic applicatioowfapproach in the design ofsgstem is time ao

suming and requiresot of efforts, particularly for performing detailed FMECA on software archite

tures or HW parts. However, safety analysis is highly recommended by the standard, so this can be
managed. If analyses are correctly parfed from the early development phases, then the iexper
mental part will be easier.

The scalability of the approach has not been demonstrated in this work, just proofs of concepts have
been done using two case studies. This is certainly something thit bbalone in a sizable induistr
al project.The first perspective of our work is thus its application to real systems.

To take advantage of this systematic approach, it is clear that the industrialization of the methodology
in tools is mandatory. For exaimepthe outputs from the safety analyses should be investigated more
precisely, particularly regarding the fault model. Notably, the definition of a standardized fault model
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can help choosing the most appropriate technique (or tool) for performing théenjaction exper
ments. This problem is strategic in a project, astéists means should be identifedhe beginning of

a project. Another aspect is to use the tools to follow then8 Zchains and to look for completeness
of the experiments. The assion of a failure mode is still an open problem, but our approach limits
this drawback.

A second perspective is the definition of benchmarks for COTS. We partially illustrate this issue with
the WdgM, as it can be reused in several applications. Genetfa#l is particularly of interest for
AUTOSAR architecture. Similar campaign can be performed with different implementation of the
same WdgM module, but parameterized differently. The campaign, based on the safety analyses of the
COTS, leads to defineset of experiments that could be performed on different implementation of the
COTS. This approach is of prime importance in the case of safety mechanisms. This will help defining
the most appropriate version of the component, i.e., which mitigates ttsetfaumore efficiently.

Finally, it is worth noting that the proposed approach can be applied to any critical system in many
domains: railways, avionicmedical devicegPark, Yi, Kwon, & Jeon, 2014&tc.
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Analyzed Faults or Failures Modes in theration ofDiag-
nosticCoverage (IS@6262, Part 5, Annek)
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Element Analysed failure modes for 60 %/99%
Low (60 %) | Medium (90 %) | High (99 %)
General elements
E.E Systems No generic fault model No generic fault model | No generic fault model avai
available. available. able.
Detailed analysis nese Detailed analysis nese Detailed analysis necessary
sary. sary.
Electrical elements
Relays Does not energize or de| Does not energize or de Does nokenergize or de

energize. energize. energize.
Welded contacts. Individual contacts wel Individual contacts welded
ed
Hamesses including splice and connectors Open Circuit Open Circuit Open Circuit

Short Circuit to Ground

Short Circuit to Ground
(d.c Coupled)
Short Circuit to Vbat
Short Circuit between
neighbouring pins

Contact Resistance

Short Circuit to Ground (d.c

coupled)
Short Circuit to Vbat

Short Circuit between neig

bouring pins
Resistive drift between pins

Sensors including signal switches

No generic fault model
available.
Detailed analysis nese
sary. Typical &ilure
modes to be covered

include.
Outof-range
Stuck in range

No generic fault model
available. Detailed ang
sis necessary. Typical
failure modes to be &o
ered include.
Outof-range
Offsets
Stuck in range

No generic fault model avai
able. Detailechnalysis nece
sary. Typical failure modes tg

be covered include
Outof-range
Offsets
Stuck in range
Oscillations

Final elements (actuators, lamps, buzzers,

No generic fault model

No generic fault model

No generic fault model avai

screen) available. available. Detailed an@l | able. Detailed analysis nece
Detailed analysis nese sis necessary. sary.
sary.

General semiconductor elements

Power supply

Under and over Voltage

Drift
Under and over Voltage

Drift and oscillation
Under and over Voltage
Powerspikes

Clock

Stuckaf®

d.c. fault modé

d.c. fault modél
Incorrect frequency
Period jitter

Non-volatile memory

Stuckaf for data and
addresses and control
interface, lines and logic

d.c. fault modélfor data

and addresses (includes

address lines with same
block) and control inte
face, lines and logic

d.c. fault modélfor data,
addresses (includes addres:
lines within same block) and
control interface, lines and

logic

Volatile memory

Stuckat® for data, d-
dresses and control imte
face, lines andbgic

d.c. fault mod@lifor data,
addresses (includes

address lines within sam
block and inability to

write to cell) and control

interface, lines and logic,|

Soft error modélfor bit

cells

d.c. fault mod@&lfor data,
addresses (includes addres:
lines within same block and
inability to write to cell) and
control interface, lines and

logic

Soft error modélfor bit cells

Digital I/O

Stuckat® (including signal
lines outside of the mior
controller)

d.c. faultmodeP (includ-
ing signal lines outside of
the microcontroller)

d.c. fault modél(including
signal lines outside of the
microcontroller)
Drift and oscillation

Analogue 1/0

Stuckat® (including signal
lines outside of the mior
controller)

d.c. fault mod@(includ-
ing signal lines outside of
the microcontroller)
Drift and oscillation

d.c. fault modél(including
signal lines outside of the
microcontroller)
Drift and oscillation

Specific semiconductor elements

Unit, DMA addressing logic,

Soft error modél(for

ALU - Data Path Stuckat® Stuckat® at gate level d.c. fault modél
Soft error modél(for seque-

@ tial parts
c
; Registers (general purpose registers Stuckat® Stuckat® at gate level d.c. fault mod@&lincluding no,
£ EDQN '0$ WUDQVIHU Soft error modél wrong or multiple addressing
@ internal RAM of
8 registers
a Soft error modelc

Address calculation (Load/Store Stuckaf® Stuckatf® at gate level d.c. faultmodef including no,

wrong or multiple addressing
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Element Analysed failure modes for 60 %/99%

Low (60 %) Medium (90 %) High (99 %)
memory and bus interfaces) sequential parts) Soft error modél(for seque-

tial parts)
Interrupt handling Omission of or contin- Omission of or contia- Omission of or continuous

ous interrupts ous interrupts interrupts
Incorrect interrupt exed¢u |  Incorrect interrupt executed

ed Wrong priority

Slow or interfered interrupt
handling causing missed or
delayed interrupts service

Control logic (Sequencer, coding and No code execution Wrong coding or no Wrong coding, wrong or no
execution logic including flag regs- Executiontoo slow execution execution
ters and stack control) Stack overflow/underflow| Execution too slow Execution out of order

Stack overflow/underflow| Execution too fast or too slo
Stack overflow/underflow

Configuration Registers _ Stuckatf® wrong value Corruption of registers (soft
errors)
Stuckat’ fault model
Other sub-elements not belonging to Stuckat® Stuckat® at gate level d.c. fault mod@l
previous classes Soft error modél(for seque-
tial part)
On-chip communicaton including Stuckat’ (data, control, d.c. fault modél(data, d.c. fault modé&l(data, ca-
bus-arbitration address and arbitration control, address and trol, address and arbitration
signals) arbitration signals) signals)
Time out Time out
= No or continuous arbiar- No or continuous or wrong
£ tion arbitration
_S Soft errors (for sequential
5 part)
E Data transmission Failure of communication Previous + Previous +
o (to be analyzed peer Resequencing Masquerading
o With ISO 26262-6:2011, Annex D) Message corruption Insertion of message

Message delay
Message loss
Unintended message

repetition

NOTE 1 Higher DC can be claimed based on analysis. Likewise, lower coverage would result if the dominant failure mhsteds not

NOTE 2 Transient faults are considerglden shown to be relevant due, for instance, to the technology used.

NOTE 3 Failure modes for Processing Units can be adjusted to recognize a.c. fault models, such as transition fautisgglod $tow to fall nodes at appl
cation frequency) and paittelays. Faults of this type are expected to be more prevalent with smaller process geometries. Usually tests for tfiéseltypes
are done at startp, or powerdown, or both, due to their intrusive nature and their ability to detect failures adrlynargin tests. Since they are hard to gisan|
fy, these failure modes are generally not included in failure rate calculations.

NOTE 4 If properly exercised, methods derived from stacg&imulations€.g.N-detect testing), but executed at applicationditions, are known to be effe
tive for d.c. fault and transition models as well.

f36WX0AW”~ LV D IDXOW FDWHJRU\ WKDW FDQ EH GHVFULEHG ZLWK FRQW lfoeleRXrts whicliae 3 ~ R

element level pin interfaces.
P3G F IDXOW PRGHO’ 3GLUHFW FXUUHQW IDXOW P R& Rats, stuQdpenXapeh dr MyK kpedadc@ RuE[u, Jasl ell @
short circuits between signal lines. It is not intender e require an exhaustive analysis, for example to require the exhaustive analysis of bridging faul
can affect any theoretical combination of any signal inside a microcontroller or in a complex PCB. The analysis focusesigmatsar on verhighly
coupled interconnections identified with a layout level analysis.

°3VRIW HUURU PR &Hd.0t flipg)RuertheesUtR &f Wansient faults caused by alpha particles from package decay, rgatitese transient faults
are also rafrred as Single Event Upset (SEU) and Single Event Transient (SET).
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Steering Columi.ock System FMECA
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._IUpperLevel
Element | Failure ModegPotential Causq Local effects | UpperLevel Bfect Safety[System Safety Mechanis Effect with
Level (SSM) SSM
UC-F1-FM1
CB-F1-FM2
MDB-F1-FM2 . L .
" VTRV Steering column SSM1: Vehicle in motion
Spurious Loc MDB-F4-EML | Erroneous lock {0y o 4 hite drivingASIL D| SSM2: Switched power | No effect *
ESCL-F1-FM1| MDB-F5-FM1 command SG1 Violated el
MDB-F5-FM2 =02 Vioate e
SB-F-FM1
ESCL-F1: SB-F-FM2
Lock steerin
column | ESCI-F1 Lost Parked vehicle wit
(No lock) MCDBI:éfIQAI\il N Iingo(;(;?Glne]am steering column NA
ESCL-F1-FM2 P unlocked
Steering column
ESCL-F1 stucki MDB-E3-FM2 ESCL always | remains locked = SSM3: Monitoring of
at MDB-F4-FM2 performs lock | vehicle starts with|]ASIL A] motor position should bq No effect *
ESCL-F1-FM3 command locked column implemented
SG2 Violated
Spulrlous W- | cB-F2-FM2 | Erroneous unlocf P2rked vehicle wit
ock MDB-F2-FM2 command steering column NA
ESCL-F2-FM1 unlocked
. Steering column
ESCL-F2: . N
Unlock | ESCL-F2 Lost c-F1-EM2 | No unlock can- | remains locked SSM3: Monitoring of
steering No unlock) gB-FZ-FMl mand is possible vehicle starts with|ASIL A] motor position should bqg No effect *
column. |ESCLF2-FM2 P locked column implemented
SG2 Violated
ESCL-F2 stucki ESCL always | Parked vehicle witl
at MDB-F2-FM1 | performs unlock] steering column NA
ESCL-F2-FM3 command unlocked
BC-FL: | Loss of BGF1 No Lock Con— Parked_ vehlcllevnth
Transmit | BC-F1-FM1 Out of our scopt mand transmit tq  steering column NA
Lock Cam- the ESCL unlocked
mand from SSM1: Vehicle in motion
. G UL Y HunintendeddCH Unintended Lock Steering column SSM2: Switched power
interfaces tg F1 Out of our scop| Command tras- |locked while drivindASIL D supply No effects*
ESCL | Bc-F1-FM2 mits to the ESCL| ~ SG1 Violated SSM4: Plausibility check
in the ESCL
Steering column
BCF2: | Loss of BGF2 BC cannot transi| remains locked SSM3: Monitoring of
Transmit | BC-F2-FM1 Out of our scopj Unlock Commang vehicle starts with|JASIL A| motor position should bg No effects ¥
Unlock to the ESCL locked column implemented
Command SG2 Violated
IURP G : 5
interfaces tdUnintended BG Unintended Y- 1 parked vehicle wit
ESCL F2 Out of our scop S steering column NA
BC-F2-FM2 unlocked
ESCL
BA-F does not . o
Loss of BAF SURYLGH 3| Loss of ESCEFL SEREEVemIEy 6 X
BA-F: BA-E-FM1 Out of our scop| PRWLRQ’ and ESCLE? ASIL A| motor position should bq No effect
Transmit ESCL implemented
A Uni ded BA-F id
PRWLR| Unintende "~ PIOVIGES 1 oss of the safet
Y|
3
the ESCL permagent BAlout of our scop WT_ : gl‘ FV?; OLQH 3YHH
BA-F-FM2 permanently PIRESLRG™ S
PSFE: PSF does not SSM3: Monitoring of
Supply a LF?;SFC-)II;IZ?: Outof our scop{ supply electrically L%Snsdoéggg‘;l ASIL A] motor position should bq No effect *
switched ESCL implemented
electrical |~ Unintended PSF supply | Loss of a switched
power to |nermanent PE|Out of our scop| permanently thelpower supply prote
ESCL PSF-FM2 ESCL electrically tion

* assuming a perfect coverage of safety mechanisms
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Electronic Steering Column Lock (ESCL) Product FMECA
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Product Safety

Element Failure Modes |Potential Caus Local Effects UpperLevel | Safety Mechanisms Pro_ductEffect
Effect Level (PSM) with PSM
PSM1: Watchdog
HW)
Erroneous s RAM, Flash, (_ ?
signment of | ROM Corrip- : - n Ptz 2 alie et Safe State
) Spurious activation d Spurious lock SW modules
LIS Eifine tion, the MDB lockingstate] ESCL-F1-FM1 e should be imps- (E=CL el
micro-controller | Oscillator, SW| 9 down)
uC-F1: C-F1-EM1 defect mented to control
Control the staf the uGF1 (redun-
of the MDB dancy)
RAM, Flash, .
ROM Corrip- ESCLF2 Lost PSM3:The UC | ate state
Loss of uGF1 A The MDB state canng ok should send perd)] h
UC-F1-FM2 _tlon, be changed (NDUmEsy) || AL A ically its status tg (ESCL s
Oscillator, SW ESCL-F2-FM2 the BCM down)
defect...
CB-FL: Loss of CBF1 | LIN saturatedj No Lock Command ES(ﬁ(I:I;leL)ost NA
Transmit Lock CB-F1-FM1 LIN opened..| transmitto the uC ESCL-F1-FM2
requests from| Unintended CB Unintended Lock n . — Safestate
BC to the pC F1 elcill(r:\lofraututri; Command transmits ESS%T'O:liSFk;;II( ASIL D Psmtcil?)usmglty (ESCL sht-
CB -F1-FM2 ption.. the uC =2t tVL YU down)
) ] CB cannot transmit] ESCL-F2 Lost PSM5: uC should]  Safe state
T el L((:)sBS_'(:)fZ_C'Z:IiAIiZ ILII"\\II s(;atg:;tgd, Unlock Command tg (No unlock) | ASIL A | verify if CB-F2is | (ESCL sht-
|£|??£Eéhsts pened... the pC ESCL-F2-FM2 alive down)
from BC to the] U”'“tegged CBl LN satura- Cgrr:nmtggget?aggrlr?i(tzg Spurious Unloc NA
C i -F2-
H CB-F2-FM2 ed/corruption.. the pC ESCL-F2-FM1
Loss MDB commanq the MDB cannot locK ESCLF1 Lost
(No lock) NA
MDB-F1: MDB-F1-FM1 opened... the motor
ESCL-F1-FM2
The MDB lockg Safe sial
the motor Unintended | Internal closed Unintended lock of th] Spurious lock ASIL D PSM6: Plausibility (ESaCeLSsﬂnf
MDB-F1-FM2 circuit... motor by the MDB | ESCL-F1-FM1 check by uC down)
ESCL-F2 stuck PSM7: uC should] Safe state
MDB-F2: Loss MDB commanq the MDB cannot o- at ASIL A | verify if MDB-F2| (ESCL she-
The MDB MDB-F2-FM1 opened... lock the motor ESCL-E2-EM3 's alive down)
nlocksthe - : :
Y e — Unintended | Internal closed Unintended unloclof |Spurious Unloc NA
MDB-F2-FM2 circuit... the motor by the MDY ESCL-F2-FM1
Loss MDB comman - Not safety
MDB-F3: MDB-F3-FM1 opened... DEEIER 2 [t related NA
The MDB . Unintended brake of ESCL-F1 stuck .| Safe state
brakes the motf  Unintended | Intermaleloseq e morory the MDB at AsiL A [PSME Plausiitt 6 sy
during unlocking | ESCL-F1-FM3 YH down)
Loss (motor JMDB comman n . _ - Safe state
MDB-F4: always supplied] closed (short Unmtenrc]lqect)czolfck sy ESS%J['?:ulSFICI\)/Tll( ASIL D Psg]%ciliuabclhty (ESCL sht-
The MDB un | MDB-F4-FM1 circuit) Eo Pl TV Y| down)
supplies the . Unintended ursupply] ESCL-F1 stuck PSM10 pC shoulq Safe state
motor Mggf‘éir_"‘__‘fﬂdz MDOB comMant " of the motor by the at ASIL A | verify if MDB-F2| (ESCL sha-
P MDB ESCL-F1-FM3 is alive down)
PSM11: uC must Safe state
i Erroneous Drift / value |Erroneous MDB staty Spurious lock ASIL D check the plausibi (ESCL shtr-
MDB-F5: MDB-F5-FM1 coding sent to the uC | ESCL-F1-FM1 ity of sensor statd
The MDB seng input down)
the his status {
) PSM12:uC must] Safe state
the uC Loss .. |Erroneous MDB stat] Spurious lock -
Open circuit ASIL D | check thef SB | (ESCL sht+
MDB-F5-FM2 sentto the uC | ESCL-F1-FM1 e down)
Loss ofSB-F Drift / value | Erroneous sensor std Spurious lock ASIL D Pcshgilf tﬁg.;ngét (ESS(f:eLsstﬁE
SB-F: SB-F-FM1 coding senttothe uC | ESCL-F1-FM1 alive down)
Monitor the PSM14:uC must
position of the| . ’ -] Safe state
; Erroneous SH~ ... | Erroneous sensor st§ Spuriousock check the plausibi
steering colum
g coll SB-F-FM2 I sent to the uC ESCL-F1-FM1 3151 ity of sensor stats (Esdg\ll‘w?)hm'

input

* assuming a perfect coverage of safety mechanisms
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