. Bien-sur and . Cet-ordre, Par exemple, si nous enlevons la moitié des instances STRUCT, la stratégie Good sélectionne (CBT,FC,d) en troisième position et (BTD,FC,w) en quatrième position, le reste étant inchangé. Cependant, si nous enlevons toutes les instances STRUCT, l'ordre devient très différent et la meilleure configuration basée sur BTD devient (BTD,FC,w) et est sélectionnée en quatrième position, Voici l'ordre de sélection donné par la stratégie Good avec la moitié des instances STRUCT en moins

C. , F. Cbjr, and F. , w)

[. Amadini, M. Gabbrielli, and J. Mauro, An Empirical Evaluation of Portfolios Approaches for Solving CSPs, Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems, pp.316-324, 2013.
DOI : 10.1007/978-3-642-38171-3_21

URL : https://hal.archives-ouvertes.fr/hal-00909297

[. Ansótegui, M. Sellmann, and K. Tierney, A Gender-Based Genetic Algorithm for the Automatic Configuration of Algorithms, Principles and Practice of Constraint Programming-CP 2009, pp.142-157
DOI : 10.1007/BF02430370

A. B. Baker, The hazards of fancy backtracking, AAAI, pp.288-293, 1994.

R. Battiti and M. Brunato, The LION Way : Machine Learning plus Intelligent Optimization. Lionsolver inc, 2013.

R. Bessiere, T. Coletta, and . Petit, Learning implied global constraints, IJCAI, pp.44-49, 2007.
DOI : 10.1007/11564751_57

URL : https://hal.archives-ouvertes.fr/lirmm-00195896

[. Boussemart, F. Hemery, C. Lecoutre, and L. Sais, Boosting systematic search by weighting constraints, ECAI, p.146, 2004.

[. Blet, S. Ndojh-ndiaye, and C. Solnon, Experimental Comparison of BTD and Intelligent Backtracking: Towards an Automatic Per-instance Algorithm Selector, Principles and Practice of Constraint Programming -20th International Conference, CP 2014 Proceedings, pp.190-206, 2014.
DOI : 10.1007/978-3-319-10428-7_16

URL : https://hal.archives-ouvertes.fr/hal-01301069

C. Bessiere and J. Régin, MAC and combined heuristics: Two reasons to forsake FC (and CBJ?) on hard problems, Principles and Practice of Constraint Programming?CP96, pp.61-75, 1996.
DOI : 10.1007/3-540-61551-2_66

[. Birattari, T. Stützle, L. Paquete, and K. Varrentrapp, A racing algorithm for configuring metaheuristics, GECCO, pp.11-18, 2002.

T. Cover and P. Hart, Nearest neighbor pattern classification. Information Theory, IEEE Transactions on, vol.13, issue.1, pp.21-27, 1967.

L. [. Cornuéjols and . Miclet, Apprentissage artificiel : concepts et algorithmes . Algorithmes (Paris). Eyrolles, 2002.

C. Cortes and V. Vapnik, [CvB01] Xinguang Chen and Peter van Beek. Conflict-directed backjumping revisited, Machine LearningDar01] A. Darwiche. Recursive conditioning, pp.273-29753, 1995.

M. Dorigo and M. Birattari, Ant colony optimization, Encyclopedia of machine learning, pp.36-39, 2010.

T. Simon-de-givry, G. Schiex, [. Verfaillie, R. Dechter, . Mateescudp87-]-r et al., Exploiting tree decomposition and soft local consistency in weighted csp AND/OR search spaces for graphical models The Cycle-cutset method for Improving Search Performance in AI Applications, AAAI Proceedings of the third IEEE on Artificial Intelligence ApplicationsDP89] R. Dechter and J. Pearl. Tree-Clustering for Constraint Networks, pp.1-673, 1987.

. Hani-el-sakkout, G. Mark, E. Wallace, X. Fages, T. Lorca et al., An instance of adaptive constraint propagation Self-decomposable global constraints Czech Republic -Including Prestigious Applications of Intelligent Systems Taking Advantage of Stable Sets of Variables in Constraint Satisfaction Problems Using model trees for classification, Principles and Practice of Constraint Programming?CP96 ECAI 2014 -21st European Conference on Artificial Intelligence Proceedings of the ninth International Joint Conference on Artificial IntelligenceFre78] E. Freuder. Synthesizing constraint expressions. CACMFWI + 98] Eibe Frank Machine Learning, pp.164-178, 1978.

M. Ginsberg, Dynamic backtracking, Journal of Artificial Intelligence Research, vol.1, pp.25-46, 1993.
DOI : 10.1007/3-540-58601-6_105

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Glover, M. Laguna, . Tabu-search-[-gls00-]-g, N. Gottlob, F. Leone et al., Algorithm portfolios, A Comparison of Structural CSP Decomposition Methods. Artificial Intelligence Artificial Intelligence, vol.124, issue.1261, pp.343-28243, 1997.

J. A. Hartigan, Classification and Clustering, Journal of Marketing Research, vol.18, issue.4, 1975.
DOI : 10.2307/3151350

G. Holmes, A. Donkin, H. Ian, and . Witten, WEKA: a machine learning workbench, Proceedings of ANZIIS '94, Australian New Zealnd Intelligent Information Systems Conference, pp.357-361, 1994.
DOI : 10.1109/ANZIIS.1994.396988

G. Hamerly and C. Elkan, Learning the k in k-means Advances in neural information processing systems, p.281, 2004.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann et al., The WEKA data mining software, ACM SIGKDD Explorations Newsletter, vol.11, issue.1, pp.10-18, 2009.
DOI : 10.1145/1656274.1656278

I. P. Hussain, C. A. Gent, L. Jefferson, I. Kotthoff, G. F. Miguel et al., Discriminating instance generation for automated constraint model selection, CP, 2014.

[. Hutter, H. Holger, K. Hoos, T. Leyton-brown, and . Stützle, Paramils : an automatic algorithm configuration framework, Journal of Artificial Intelligence Research, vol.36, issue.1, pp.267-306, 2009.

B. Hurley, L. Kotthoff, Y. Malitsky, O. Barry, and . Sullivan, Proteus: A Hierarchical Portfolio of Solvers and Transformations, CPAIOR, 2014.
DOI : 10.1007/978-3-319-07046-9_22

H. Holger and . Hoos, Programming by optimization, Communications of the ACM, vol.55, pp.70-80, 2012.

[. Jussien and O. Lhomme, Local search with constraint propagation and??conflict-based heuristics, Artificial Intelligence, vol.139, issue.1, pp.21-45, 2002.
DOI : 10.1016/S0004-3702(02)00221-7

URL : https://hal.archives-ouvertes.fr/hal-00869124

S. [. Jégou, C. Ndiaye, and . Terrioux, Computing and exploiting treedecompositions for solving constraint networks, Proceedings of CP, pp.777-781, 2005.

S. [. Jégou, C. Ndiaye, and . Terrioux, Strategies and Heuristics for Exploiting Tree-decompositions of Constraint Networks, Inference methods based on graphical structures of knowledge (WIGSK'06), ECAI workshop, pp.13-18, 2006.

]. P. Jnt07a, S. N. Jégou, C. Ndiaye, and . Terrioux, Dynamic Management of Heuristics for Solving Structured CSPs, Proceedings of 13th International Conference on Principles and Practice of Constraint Programming (CP-2007), pp.364-378, 2007.

P. Jégou, S. Ndojh-ndiaye, and C. Terrioux, Dynamic Management of Heuristics for Solving Structured CSPs, Proceedings of the 13th international conference on Principles and practice of constraint programming , CP'07, pp.364-378, 2007.
DOI : 10.1007/978-3-540-74970-7_27

]. P. Jt03a, C. Jégou, and . Terrioux, Hybrid backtracking bounded by treedecomposition of constraint networks, Artificial Intelligence, vol.146, pp.43-75, 2003.

P. Jégou and C. Terrioux, Hybrid backtracking bounded by tree-decomposition of constraint networks, Artificial Intelligence, vol.146, issue.1, pp.43-75, 2003.
DOI : 10.1016/S0004-3702(02)00400-9

U. Kjaerulff-judex and R. R. , Triangulation of graphs -algorithms giving small total state space, 1990.

Y. Kadioglu, A. Malitsky, H. Sabharwal, M. Samulowitz, and . Sellmann, Algorithm Selection and Scheduling, Principles and Practice of Constraint Programming?CP 2011, pp.454-469, 2011.
DOI : 10.1007/978-3-642-23786-7_35

E. [. Laarhoven and . Aarts, Simulated annealing : theory and applications, 1987.
DOI : 10.1007/978-94-015-7744-1

[. Lecoutre, F. Boussemart, and F. Hemery, Backjumpbased techniques versus conflict-directed heuristics, 16th IEEE International Conference on, pp.549-557, 2004.
DOI : 10.1109/ictai.2004.37

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Lecoutre, Constraint Networks : Techniques and Algorithms, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00870016

G. Di-liberto, S. Kadioglu, K. Leo, and Y. Malitsky, DASH: Dynamic Approach for Switching Heuristics, European Journal of Operational Research, vol.248, issue.3, 1307.
DOI : 10.1016/j.ejor.2015.08.018

[. Mladenovic and P. Hansen, Variable neighborhood search, Computers & Operations Research, vol.24, issue.11, pp.1097-1100, 1997.
DOI : 10.1016/S0305-0548(97)00031-2

URL : https://hal.archives-ouvertes.fr/hal-00979295

A. El-mouelhi, P. Jégou, and C. Terrioux, Microstructures for csps with constraints of arbitrary arity, Proceedings of the Tenth Symposium on Abstraction, Reformulation, and Approximation, pp.11-12, 2013.

[. Morara, J. Mauro, and M. Gabbrielli, Solving XCSP problems by using Gecode. arXiv preprint arXiv :1112, 2011.

D. Laurent, P. Michel, and . Van-hentenryck, Activity-based search for black-box contraint-programming solvers, 2011.

E. Mahony, A. Hebrard, C. Holland, . Nugent, O. Barry et al., Using case-based reasoning in an algorithm portfolio for constraint solving, Irish Conference on Artificial Intelligence and Cognitive Science, 2008.

[. Pralet and G. Verfaillie, Travelling in the World of Local Searches in the Space of Partial Assignments, CPAIOR, pp.240-255, 2004.
DOI : 10.1007/978-3-540-24664-0_17

P. Refalo, Impact-Based Search Strategies for Constraint Programming, Principles and Practice of Constraint Programming?CP 2004, pp.557-571, 2004.
DOI : 10.1007/978-3-540-30201-8_41

R. John and . Rice, The algorithm selection problem Advances in Computers, pp.65-118, 1976.

P. [. Robertson and . Seymour, Graph minors. II. Algorithmic aspects of tree-width, Journal of Algorithms, vol.7, issue.3, pp.309-322, 1986.
DOI : 10.1016/0196-6774(86)90023-4

M. Barbara, . Smith, E. Martin, and . Dyer, Locating the phase transition in binary constraint satisfaction problems, Artificial Intelligence, vol.81, issue.1, pp.155-181, 1996.

H. [. Selman, B. Kautz, and . Cohen, Noise strategies for improving local search, Proceedings of the Twelfth National Conference on Artificial Intelligence, pp.337-343, 1994.

]. D. Wal75 and . Waltz, Understanding line drawings of scenes with shadows, The Psychology of Computer Vision, pp.19-91, 1975.

L. Xu, F. Hutter, H. Hoos, and K. Leyton-brown, Evaluating Component Solver Contributions to Portfolio-Based Algorithm Selectors, Theory and Applications of Satisfiability Testing -SAT 2012 -15th International Conference. Proceedings, pp.228-241, 2012.
DOI : 10.1007/978-3-642-31612-8_18

[. Xu, F. Hutter, H. Holger, K. Hoos, and . Leyton-brown, Satzilla : Portfolio-based algorithm selection for SAT, J. Artif. Intell. Res.(JAIR), vol.32, pp.565-606, 2008.

L. Xu, H. Hoos, and K. Leyton-brown, Hydra, Proceedings of the 2005 ACM workshop on Storage security and survivability , StorageSS '05, pp.210-216, 2010.
DOI : 10.1145/1103780.1103797

R. Zivan, U. Shapen, M. Zazone, and A. Meisels, Retroactive Ordering for Dynamic Backtracking, CP, pp.766-771, 2006.
DOI : 10.1007/11889205_67