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Introduction

This dissertation is concerned with the simulation of the dynamics of multibody systems with unilateral

contact and friction. The dynamics of these mechanisms is modeled with the framework of nonsmooth

mechanics. The nonsmooth mechanics field has emerged thanks to the pioneering and outstanding

work of Jean-Jacques Moreau [98, 82, 83, 99, 100], considered to be the father of this discipline. This

approach allows for discontinuities in the time evolution of the state of the system, this state being

described by the positions and velocities of the system.

This PhD is a collaboration between the Bipop research team of INRIA Grenoble and the Ansys

company. This thesis is intended to improve and build new efficient and robust time integration

methods for the computation of the dynamics of systems with impacts and friction. Two major time

integration families are used in the field of nonsmooth mechanics: event-driven schemes and time-

stepping schemes. Event-driven methods accurately detect the events and integrate the dynamics

with a classical differential algebraic equations (DAE) solver during the smooth period between two

events. When an event occurs, it is handled and the integration is resumed starting from the time

of occurrence of this event. Time-stepping schemes do not care about the exact detection of events

and provide the opportunity of handling the smooth dynamics and the nonsmooth dynamics with the

same framework. The work presented in this thesis is divided into two segments.

The first segment is concerned with the improvement of the event-driven method in the industrial

context of Ansys. A bibliography on the numerical methods for DAEs and ODEs enabled to select

several algorithms whose relevance has been theoretically proved and whose numerical efficiency has

been previously addressed only in an academic context. Unfortunately, these methods are not (enough)

known to be implemented in industrial software. The chosen methods have been compared on several

academic and industrial benchmarks, on the basis of several criteria including: enforcement of the

constraints, time efficiency and handling stiff dynamics. The outcome of this study allows for having

a clear idea on the way to select a suitable time integration method knowing the characteristics of the

9
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system. The comparison work has been presented in two conference papers [64, 65] and in an article

submitted to the journal Multibody System Dynamics in October 2014.

In the second segment, we examine several problems that are frequent in most practical industrial

applications. Namely, accumulation of impacts, friction and edge transitions due to non-perfect ge-

ometry in a CAD description. After addressing the numerical difficulty raised by the aforementioned

issues, we propose an algorithm to handle them. The proposed method is a hybrid event-driven/time-

stepping scheme that enables to take advantage of both time integration methods (event-driven and

time-stepping schemes). The idea is to use the event-driven scheme until a switch condition is satis-

fied, then the integration is resumed with a time-stepping method. The switch criteria are discussed

and the algorithm is tested on several examples.



Chapter 1

The coordinates systems and the

formulation of the dynamics of rigid

multibody systems

1.1 The coordinates systems

The first step in the simulation of multibody systems is the choice of an adequate set of coordinates

that describes unequivocally the position, velocity and acceleration of each body of the system. In the

field of multibody dynamics, there exist two major types of coordinates: independent coordinates

and dependent coordinates. The first type is composed of the degrees of freedom of the system and

its main advantage is that it enables to formulate the motion equations as a minimal set of second

order ordinary differential equations (ODEs) for which a multitude of efficient and robust numerical

integrators exist. However, computing such coordinates is difficult and requires some more attention as

discussed in Section 1.2.2.4. The latter type (dependent coordinates) is the most commonly used in the

field of multibody dynamics. The number of dependent coordinates exceeds the number of the degrees

of freedom of the system, thus algebraic constraints must be written which relate these coordinates.

Dependent coordinates lead to motion equations formulated as differential-algebraic equations (DAEs).

There are mainly three types of dependent coordinates: reference point coordinates (also called

absolute coordinates), relative coordinates and natural coordinates. An extensive study of these

sets of coordinates has been performed by J. García de Jalón [52] and E.E. Soellner and C. Führer

11
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x

y

O

P

O1
r1

x1
y1

θ

Figure 1.1: Cartesian coordinates

[42]. In this document we present the salient characteristics of each of the three types.

1.1.1 Reference point coordinates

In the framework of reference point coordinates, the absolute position of a given body is deter-

mined by the position of a point P of the body, and the orientation of the body with respect to a

fixed reference frame R(O, x, y), as illustrated in Fig. 1.1. Therefore, the position of a point P in the

reference frame can be written as

r = OP = rO1 + r1, (1.1)

where O1 is a reference point of the body (usually the center of mass is used), rO1
= OO1 and

r1 = O1P defines the position of point P with respect to the body fixed frame R1(O1, x1, y1). The

position of the chosen point P can be defined using Cartesian coordinates for example. The orientation

of the body is given by a rotation of R1 expressed in R and can be described by one of the options

discussed in Section 1.1.4. Let us consider a 4-bar mechanism. When the reference point coordinates

are chosen, this system can be described in the reference frame R(O, x, y) with the coordinates vector

q = [x1, y1, ϕ1, x2, y2, ϕ2, x3, y3, ϕ3] as shown in Fig.1.2.

From the numerical standpoint, the reference point coordinates have the advantage that they

lead to motion equations with sparse matrices, for which efficient algorithms make the computational

effort less costly [52]. In addition, the constraint equations associated with a given kinematic joint are

simpler. In turn, their main drawback is their large number.

1.1.2 Relative coordinates

In this representation, the position of a body is defined with respect to that of the neighboring one

in the kinematic chain, which leads to a recursive formulation. Recursive algorithms improve the
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Figure 1.2: 4-bar mechanism with Cartesian coordinates

numerical efficiency of the calculation of the dynamics. Indeed, for holonomic systems, the inversion

of the inertia matrix to compute the state of the system is costly. Recursive algorithms [44, 45], based

on a graph topology of the multibody system, avoid this inversion. In a recursive formulation, the

translation and rotation velocities of a body are related to those of its neighboring body. A graph is

composed of nodes (or vertices), representing the bodies, and edges (or arcs) representing the joints

or force elements connecting pairs of nodes. When a direction is given to each edge/arc, the graph is

said to be directed. Wittenburg [132] proves that the kinematics description of a multibody system is

made simple if the corresponding graph is tree-structured. In [132, Ch. 5, p. 95], Wittenburg defines

a tree structure as a graph where "between any two vertices there exists a unique minimal chain of

arcs and vertices connecting the two vertices". In other words, a tree is composed of the nodes of the

graph, connected with edges without any closed loop. In this case, the kinematic chain is said to be

open. When closed loops exist, as it is usually the case for multibody systems, they are cut at the

"proper" joint or body to create an open loop. McPhee also made a pioneering work in the field of

graph representation of multibody systems and automation of generation of kinematics and dynamics

equations as in [95, 96], to cite but a few examples.

The choice of relative coordinates leads to a minimum number of dependent coordinates, which

represents their main advantage by choosing the coordinates corresponding to the degrees of freedom

allowed by the link. In addition, this number of coordinates coincides with the number of degrees of

freedom of the system in the case of open kinematic chains. This fact makes these coordinates the

most popular in the robotics field since robots can usually be modeled with open chains. However,

the equations of motion described with relative coordinates use dense matrices whose evaluation can

be numerically expensive. This fact in addition to the pre-processing (definition of the tree structure)

and post-processing (definition of the absolute positions) tasks, constitute the main drawbacks of these
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ϕ3

ϕ2

ϕ1

Figure 1.3: 4-bar mechanism with relative coordinates

coordinates (see [52] for more details). Note that for a closed kinematic chain, the number of relative

coordinates is larger than the number of degrees of freedom. Using the relative coordinates, the 4-bar

mechanism can be described using the rotation angles q = [ϕ1, ϕ2, ϕ3] in Fig. 1.3.

1.1.3 Natural coordinates

The natural coordinates, initially introduced by García de Jalón and co-workers in 1988 [51, 52],

define the position of a body using the coordinates of basic points, in the frame of reference, that

belong to the body. The choice of such points and vectors shall meet certain conditions recalled

hereinafter as quoted from in [52, Chapter 2]:

• Each element should have at least two basic points for the motion to be defined.

• There should be a basic point in each revolute joint. This point is shared by the two elements

linked at this joint.

• Each prismatic joint links two bodies, and the two basic points at one of these determine the

direction of the relative motion. Although one of the basic points of the other body can be

located on the segment determined by the two basic points of the first one, this is not absolutely

necessary.

• In addition to the basic points that model the body, any other important point of any body can

be selected as a basic point, and its coordinates would then automatically become part of the

set of unknown variables.
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(x1, y1)

(x2, y2)

(x3, y3)

Figure 1.4: 4-bar mechanism with natural coordinates

In the 2D case, the natural coordinates can be obtained by moving the reference points to the joints.

This is illustrated on the 4-bar mechanism in Fig.1.4. The basic points are taken at the revolute joints,

and the system is therefore described by the set of coordinates q = [x1, y1, x2, y2, x3, y3].

When these points are strategically located (for example in the joints), one can reduce the number

of variables and even avoid writing additional constraints that describe the way the coordinates are

inter-related. From the numerical viewpoint, natural coordinates offer a simple formulation and

implementation. Furthermore, the constraint equations that arise from the rigid body condition or

from the kinematic joints are quadratic or linear, which makes it easy for the evaluation of the Jacobian

matrix.

1.1.4 Representation of rotations

The encoding of the orientation is a crucial point which deserves some explanations. In the 3D

case, the finite rotations can be represented by 3 major means: rotation matrices, systems of 3

parameters and unit quaternions.

1.1.4.1 Rotation matrices

In the case of a rotation matrix representation, the columns represent the direction cosines of the

moving axes with respect to the fixed frame. 3D rotation matrices represent the rotations about 3

individual axis. We consider that we work in the frame R(O, x, y, z). Let us begin with a rotation of
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angle θ1 about the x-axis. This rotation can be written as:

Rx =











1 0 0

0 cos θ1 − sin θ1

0 sin θ1 cos θ1











. (1.2)

Similarly, a rotation of angle θ2 about the y-axis can be written as

Ry =











cos θ2 0 sin θ2

0 1 0

− sin θ2 0 cos θ2











. (1.3)

Likewise, a rotation of angle θ3 about the z-axis can be written as:

Rz =











cos θ3 − sin θ3 0

sin θ3 cos θ3 0

0 0 1











. (1.4)

In the general case, a rotation can be considered as a sequence of 3 rotations about 3 updated axis.

Therefore, a general rotation can be thought as the product of 3 rotation matrices. If we consider a

rotation about the x-axis, followed by a rotation about the new y-axis and finally a rotation about

the newest z-axis, the global rotation is written:

R = RzRyRx =











cos θ2 cos θ3 sin θ1 sin θ2 cos θ3 − cos θ1 sin θ3 cos θ1 sin θ2 cos θ3 + sin θ1 sin θ3

cos θ2 sin θ3 sin θ1 sin θ2 sin θ3 + cos θ1 cos θ3 cos θ1 sin θ2 sin θ3 − sin θ1 cos θ3

− sin θ2 sin θ1 cos θ2 cos θ1 cos θ2











.

(1.5)

The rotation matrix R satisfies the condition RTR = I, where I is the identity matrix. Orthogo-

nality and normalization conditions of the rotation matrix lead to a set of 6 equations that relate the

nine elements of the matrix. This representation has the advantage that the inversion of the rotation

matrix is easy to perform since the inverse is equal to the transpose. In turns, its major disadvantage

is that we cannot extract a set of 3 elements that can unequivocally represent the orientation of the

moving frame in relation to the fixed reference frame. In addition during the simulation, the drift of

the constraints of orthogonality and normalization needs to be properly corrected.

1.1.4.2 The 3-parameter representation

The 3-parameter representation (Euler angles for example) enables to alleviate the issues that are

faced when choosing the matrix representation. The most famous representations are Euler angles
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Figure 1.5: Euler angles, z − x− z convention

and Bryan (or Cardan) angles. This representation is based on three successive rotations. If we

consider the Euler angles for example, there are many conventions for the choice of the consecutive

rotations. The z − x − z convention is one of the most commonly used: first a rotation of angle α

about the z-axis, then a rotation of angle β about the new x-axis and finally a rotation of angle γ

about the newest z-axis, see Fig. 1.5.

The global rotation is represented by the composition of the 3 rotations as explained in Section

1.1.4.1. Euler and Bryan angles do not need any additional algebraic constraints, however, they have

the drawback of presence of singularities. Indeed, let’s denote T (q) the Olinde-Rodrigues transforma-

tion matrix that links the angular velocity ω to q̇ = [α̇, β̇, γ̇]
T
:

ω = T (q)q̇, (1.6)

the matrix T (q) may be singular for some values of (α, β, γ). As a consequence, there may exist

different values of the parameters of rotation q leading to the same configuration of the system.

1.1.4.3 Quaternions

The quaternion representation remedies the singularity issue. A quaternion is denoted by

q = [w, x, y, z]
T

= w + xi+ yj + zk, (1.7)

where (w, x, y, z) ∈ R
4 and i, j and k satisfy



































i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j.

(1.8)
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The quaternion can also be denoted by (w, v) with v being the vector containing the imaginary

parameters. The norm of the quaternion q is given with

|q| =
√

w2 + x2 + y2 + z2 =
√

w2 + ||v||2. (1.9)

In the case of a unit quaternion, that is w2 + ||v||2 = 1, there exists an angle θ such that:







cos2 θ = w2

sin2 θ = ||v||2.
(1.10)

Therefore, the unit quaternion can be expressed in terms of the angle θ and the unit vector u = v
‖v‖ =

(u1, u2, u3):

q =

















cos(θ)

sin(θ)u1

sin(θ)u2

sin(θ)u3

















, (1.11)

that is the rotation of angle θ about the axis defined by the unit vector u. It is worth noting that when

choosing the quaternion formalism to encode the orientation of bodies, the normalization condition

of the quaternion must be verified during the simulation, and corrected in case that constraint drifts.

Despite the fact that they are less intuitive than the 3-parameter formalism, the advantage of quater-

nions over this latter representation is their mathematical simplicity and lack of singularities which

make them very popular for encoding the orientation of rigid body orientation. For more information

about rigid bodies orientation, we refer to [132, Chapter 2] and [34, 57, 97].

1.2 Formulation of the dynamics of rigid multibody systems

This section deals with the approaches to formulate the equations of motion of a rigid multibody

system. The form of the equations of motion is directly linked to the choice of the coordinates

(dependent/independent). An overview of the different formulations has been presented in [52, 17, 88],

a summary of the formalisms is presented in this section. The Lagrangian formalism with and without

friction will be detailed.

A very important feature characterizing a multibody system is the presence of kinematic joints and

contacts. These joints result in equality constraint equations as well as Lagrange multipliers associated

to the contact forces at the joints, while the contacts can be modeled as unilateral constraints.

Two major types of formalisms are utilized to compute the dynamics of constrained multibody

systems: the first one keeps these multipliers in the equations of motion (Section 1.2.1), with non-
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minimal coordinates. The second one uses techniques of elimination of the Lagrange multipliers

(Section 1.2.2) by using a minimal set of generalized coordinates.

1.2.1 Formulations solving the Lagrange multipliers

In this section, we shall derive the Lagrange equations of motion for the frictionless and for the

frictional case.

1.2.1.1 The equations of dynamics using the Lagrangian formulation

Let us consider a rigid multibody system described with a set of generalized coordinates q ∈ R
n. The

Lagrangian of the system is L = T (q, q̇) − U(q), where T is the kinetic energy of the system and

U is its potential energy. The kinetic energy can be expressed as T = 1
2v

TM(q)v, with v = q̇, and

M(q) ∈ R
n×n is the symmetric positive definite matrix of inertia.

If in addition, the system is submitted to m holonomic and scleronomic constraints of the form

g(q) = 0, g : Rn −→ R
m, a new Lagrangian L is introduced as

L = L(q, q̇)− g(q)Tλ, (1.12)

where λ ∈ R
m is the vector of Lagrange multipliers. Let’s introduce the action integral I defined as

I =

∫ t2

t1

L(q, q̇, λ)dt, (1.13)

where [t1, t2] is the interval of time during which the system evolves. According to Hamilton’s prin-

ciple, I has a stationary value, which can be expressed as

δI = 0, (1.14)

or in other words
∂L

∂q
−
d

dt

(∂L

∂q̇

)

= 0. (1.15)

It follows that
∂L

∂q
−
d

dt

(∂L

∂q̇

)

−
(∂g

∂q

)

T

λ = 0. (1.16)

Finally, the Lagrange equations read







q̇ = v

M(q)v̇ = F (q, v, t) +GT (q)λ,
(1.17)

where:
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◦ F (q, v, t) = dM
dt q̇− q̇

T ∂M
∂q q̇+Fext comprises the external applied loads and the non linear inertial

terms,

◦ g(q) ∈ R
m is the vector of constraints imposed to the system.

◦ G(q) is the Jacobian matrix of the constraints:

G(q) =
∂g(q)

∂q
= ∇T g(q) ∈ R

m×n where ∇g(q) = (∇g1(q), ...,∇gm(q)) ∈ R
n×m is the gradient

matrix

Lagrange equations can also be derived when the system is subject to unilateral constraints of the

form g(q) ≥ 0. Many options have been proposed to modify the Lagrangian L. These options are not

addressed in the present document, however, interested readers are referred to [30, Section 3.5].

1.2.1.2 The frictionless case

In general, multibody systems are subjected to both bilateral and unilateral constraints. Both types

of constraints can be taken into account in the Lagrangian formalism. Therefore, the dynamics can

be described by the system of equations:



































q̇ = v

M(q)v̇ = F (q, v, t) +GT (q)λ

gβ(q) = 0, β ∈ B

0 ≤ gα(q) ⊥ λα ≥ 0, α ∈ U,

(1.18)

where:

◦ B ⊂ N denotes the index set of bilateral constraints,

◦ U ⊂ N denotes the set of unilateral constraints,

◦ the set of all constraints is denoted by I0 = B ∪ U.

The complementarity condition in (1.18) illustrates the fact that there is a reaction force only when

the bodies are in contact. When the constraint gα(q) is active, the reaction force has to be positive,

that is λα > 0 ⇒ gα(q) = 0, α ∈ {B∪U}. Furthermore, if the contact is open, that is to say gα(q) > 0,

then the reaction force is null: λα = 0.
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nα

t1
t2
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Figure 1.6: Signed distance between two bodies A and B at contact α

Fig. 1.6 illustrates one unilateral constraint gα defined as the signed distance between the points

CA and CB. In this case, gα = (CB − CA).n
α, where nα is the outward normal vector with respect to

body A at CA.

We suppose that impacts occur in infinitely short periods so that the displacements of the bodies

during the collisions can be neglected, and we use the global Newton impact law with a coefficient of

restitution e. For the closed contacts index set I1 = {α ∈ I0, g
α = 0}, we compute the impulse pn

and the post-impact velocity v+(tn) by solving the Newton impact equations























































M(q(tn))(v
+(tn)− v−(tn)) = pn

Uα,+
N (tn) = Gα(q(tn))v

+(tn)

Uα,−
N (tn) = Gα(q(tn))v

−(tn)

pn =
∑

α∈I1

GαT (q(tn))PN,n

0 ≤ Uα,+
N (tn) + eUα,−

N (tn) ⊥ Pα
N,n ≥ 0,

(1.19)

where






























Uα
N (t) =

dgα(q(t))

dt
= Gα(q(t))q̇

v+(tn) = lim
τ→tn, τ>tn

v(τ)

v−(tn) = lim
τ→tn, τ<tn

v(τ).

(1.20)

The complementarity condition in (1.19) describes the Signorini condition written at the velocity level

and augmented by the Moreau impact law [98]. In (1.19), UN is the vector of normal relative velocities

and PN is the vector of local impulses at the contact points. The scalar e ∈ [0, 1] is the global Newton’s

coefficient of restitution. When the inertia matrix is invertible, problem (1.19) can be reduced to local

unknowns U+
N (tn) and PN,n, computed by solving the following Linear Complementarity Problem
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(LCP)






U+
N (tn) = G(q(tn))M

−1(q(tn))G
T (q(tn))PN,n + U−

N (tn)

0 ≤ U+
N (tn) + eU−

N (tn) ⊥ PN,n ≥ 0.
(1.21)

The LCP matrix G(q(tn))M
−1(q(tn))G

T (q(tn)) is called the Delassus matrix at t = tn. Equation

(1.21) describes the so-called contact-impact LCP.

1.2.1.3 Definition of the index of a DAE

The techniques solving the Lagrange multipliers are inextricably related to the resolution of an index-3

DAE. Many authors advise to lower index-3 DAE or to a lower index DAE or to an ODE because

of the numerical problems associated to the resolution of these DAEs. García de Jalón and Bayo

detailed these numerical issues, the salient conclusions are as follows. First, instability problems may

be present for index-3 DAEs, particularly in presence of discontinuities of the dynamics (in the case

of impacts for example). Second, the numerical schemes suffer from round-off errors which become

larger as the time step size decreases. These issues will be detailed in the section dealing with the

numerical schemes for the integration of the equations of motion.

In the literature [29, 42], the differential-index of a DAE is the number of differentiations of this

DAE that must be performed in order to transform it into an ODE. For a constrained multibody

system, when the contacts are closed for a non trivial period of time, that is α ∈ I2, I2(t) = {γ ∈

I0, (t) g
α(q(t)) = 0, ġα(q(t)) = 0}, the dynamics of the system is described with the following index-3

DAE


































q̇ = v

M(q)v̇ = F (q, v, t) +GT (q)λ

gα(q) = 0, α ∈ I2

gα(q0) = 0, α ∈ I2.

(1.22)

For the sake of readability, we omit the time argument t in the index sets I0, I2. It is well known

that index-3 differential algebraic equations are difficult to numerically handle [121]. Therefore, the

dynamics is usually integrated with an ODE by reducing the original index 3 of the system to 1. It

amounts to solving the problem at the acceleration level by differentiating twice the constraints. Index

reduction consists in differentiating w.r.t time the constraints as many times as necessary to get a

set of equations that may be solved using methods for lower index problems. Hence, if the constraint
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g( · ) is differentiated once with respect to time, one obtains the following index-2 DAE



















































q̇ = v

M(q)v̇ = F (q, v, t) +GT (q)λ

Gα(q)v = 0, α ∈ I2

gα(q0) = 0, α ∈ I2

Gα(q0)v0 = 0, α ∈ I2.

(1.23)

If g(.) is differentiated twice, one gets the index-1 DAE







































































q̇ = v

M(q)v̇ = F (q, v, t) +GT (q)λ

Gα(q)v̇ +
dGα(q)

dt
v = 0, α ∈ I2

gα(q0) = 0, α ∈ I2

Gα(q0)v0 = 0, α ∈ I2

Gα(q0)v̇0 +
dGα

dt
(q0)v0 = 0, α ∈ I2.

(1.24)

The system (1.24) can be written using matrices as





M(q) −GT (q)

G(q) 0









v̇

λ



 =





F (q, v, t)

−
dG(q)

dt
v



 . (1.25)

When the Delassus operator G(q)M−1(q)GT (q) is invertible, the DAE (1.24) can be rewritten as an

ODE of the form ẏ = f(y, t), or more explicitly





q̇

q̈



 =





v

−M−1(q)GT (q)(G(q)M−1(q)GT (q))
−1

(dGdt v +G(q)M−1(q)F (q, v, t)) +M−1(q)F (q, q̇, t)



 ,

(1.26)

It can be checked that the dynamics in (1.26) renders the manifold {(q, q̇) | g(q) = 0 , ġ(q) = 0}

invariant. Under the Lipschitz continuity of the right hand side in (1.26), a unique solution (q, v)

of (1.26) is guaranteed. If in addition the initial values (q0, v0) satisfy the position and the velocity

constraints, that is to say g(q0) = 0 and G(q0)v0 = 0, then the solution of (1.26) satisfies the initial

problem in (1.22).

An additional differentiation of the constraints w.r.t. time leads to

g(3)(q) =
d2G

dt2
(q)q̇ + 2

dG

dt
(q)q̈ +G(q)q(3) = 0. (1.27)
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We also differentiate the second equation of (1.22) and we get:

q(3) =
d(M−1(q)F (q, q̇, t))

dt
+
d(M−1(q)GT (q))

dt
λ+M−1(q)GT (q)

dλ

dt
. (1.28)

By injecting the expression of q(3) into (1.27), it follows that:

G(q)M−1(q)GT (q)λ̇ = −
d2G

dt2
(q)q̇ − 2

dG

dt
(q)q̈ −G(q)

d(M−1(q)F (q, q̇, t))

dt

−G(q)
d(M−1(q)GT (q))

dt
λ.

(1.29)

Therefore, we can formulate an ODE for the Lagrange multipliers λ as

λ̇ = f̃(q, q̇, q̈, λ), (1.30)

where

f̃(q, q̇, q̈, λ) =
(

G(q)M−1(q)GT (q)
)−1(

−
d2G

dt2
(q)q̇ − 2

dG

dt
(q)q̈

−G(q)
d(M−1(q)F (q, q̇, t))

dt
−G(q)

d(M−1(q)GT (q))

dt
λ
)

.

(1.31)

This implies that the differentiation index of the DAE (1.22) is indeed 3, provided that the Delassus’s

operator G(q)M−1(q)GT (q) be invertible.

In the case of unilateral constraints, a relative degree can be defined as in [4] which can be seen as

the counterpart of the differential index for DAEs. We can adopt the same principle as for bilateral

constraints and write the complementarity relation at the velocity or the acceleration levels. Indeed,

the complementarity relation 0 ≤ g(q) ⊥ λ ≥ 0 can be formulated at the velocity level as

if g(q) = 0, then 0 ≤ ġ(q) ⊥ λ ≥ 0,

else, λ = 0.
(1.32)

or at the acceleration level as

if g(q) = 0, ġ(q) = 0, then 0 ≤ g̈(q) ⊥ λ ≥ 0.

else, λ = 0.
(1.33)

We refer to [61] for a rigorous derivation of the previous relations.

1.2.1.4 The frictional case

Friction is a fundamental mechanical phenomenon that appears at the contact points between two

bodies. Friction has extensively been studied and its modeling is still the object of an active research

driven by a strong need to build more robust models for engineering applications.
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In this section, we shall present the Lagrange equations of motion in the frictional case. One

major model is usually used for dry friction, namely the Coulomb model. This model is used in the

simulations presented in this section and exposed in Section 1.2.1.4.

When using the Lagrange formalism, the equations of motion are written as























M(q)q̈ = F (q, q̇, t) +GT
N (q)λN +GT

T (q)λT

gβ(q) = 0, β ∈ B

0 ≤ gα(q) ⊥ λαN ≥ 0, α ∈ U,

(1.34)

where GN (q) = ∂gN
∂q ∈ R

m×n comprises the normal directions of the constraints while GT (q) =

∂ġT
∂q̇ (q) ∈ R

dm×n contains the tangent directions of the constraints. The value of the scalar d is 1 in

the 2D case and is 2 in the 3D case.

Coulomb’s model In this work, we only consider the friction model of Coulomb. It is probably

the most practical and popular friction model, derived from the experimental work of Coulomb and

published in 1785. In the case of a frictional contact, the reaction force λ has a normal component λN

as well as a tangential part λT . Coulomb’s friction states that when the tangential relative velocity

ġT between the contacting bodies is nonzero, then the tangential (frictional) force is proportional to

the normal force: ‖ λT ‖= µλN and acts in the opposite direction to the relative velocity: this case

is called sliding. If the relative velocity is zero, then the components of the contact force satisfy the

condition: ‖ λT ‖≤ µλN , we are then in the sticking case. The coefficient µ ≥ 0 denotes the coefficient

of friction and has experimentally been shown to depend on several parameters including the sliding

velocity and the materials of the bodies in contact [19]. Both cases of friction are illustrated in Figures

1.7 and 1.8.

In case of planar isotropic friction, the set of possible friction forces is a disk of radius µ. In the

3D case, this set defines the so-called friction cone given by:

FC = {λNn+ λT |λN ≥ 0 and ‖ λT ‖≤ µ|λN |}, (1.35)

where n is the normal vector at the contact point.

Mathematical formulation of the frictional contact The Coulomb friction model can be sum-

marized as

‖ λT ‖≤ µ|λN | and







‖ λT ‖< µ|λN | ⇒ ġT = 0

‖ λT ‖= µ|λN | ⇒ ġT 6= 0, and ∃α ≥ 0 |λT = −αġT .
(1.36)
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n

t1

t2

λ λN

λT ġT

Figure 1.7: Sliding case (ġT 6= 0)

n

t1

t2

λ λN

λT

Figure 1.8: Sticking case (ġT = 0)

Figure 1.9: Coulomb’s friction cases

This law can be formulated as an inclusion written as

−ġT ∈ NC(µλN )
(λT ), C(µλN ) ⊂ R

2, (1.37)

where C(µλN ) denotes the section of the friction cone and NC(µλN )(λT ) is the normal cone at λT . For

an anisotropic friction, this section is elliptical. This work is limited to isotropic friction for which the

cone’s section is a disk of radius µλN defined with

C(µλN ) = {λT | µ|λN |− ‖ λT ‖≥ 0}. (1.38)

Coulomb’s friction model is a set valued force law and it is discontinuous at the transitions between

sliding and sticking phases. From the mathematical point of view, in the 3D case, this law involves

non-linearities and can be formulated as Nonlinear Complementarity Problem (NCP). However, NCPs

solvers are not as developed as LCPs solvers, and available methods can be very cumbersome from the

computation time standpoint. Therefore, the friction cone is usually approximated with a polyhedral

cone in order to formulate the friction problem as LCP. Klarbring [84] was probably the first to propose

a polyhedral approximation to the friction cone to solve the quasi static problem. The authors in [116]

used the approximation in the dynamical case and proposed a more compact formulation leading to a

faster solution. However, one should be aware that a good approximation (increasing the number of

edges of the polyhedral cone) is computationally expensive and will impact the numerical efficiency

of the LCP solvers, on the other hand, a poor approximation is to the detriment of accuracy. In

addition, Glocker [58] pointed out that the polyhedral approximation does not allow to consider

constraints dependency in a multibody system as it is usually the case, which leads to a lack in the
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physical properties in the model; he also mentioned that the pyramidal cone can affect the collinearity

between the friction force λT and the relative tangent velocity ġT , this can be avoided by increasing

the number of vertices of the polyhedral, but it will be to the detriment of the computation time. A

quantitative evaluation of the efficiency may be found in [114] where several solvers of the frictional

contact problem in the 3D case are compared on various problems. Another drawback related to the

polyhedral approximation is the problem of cycling due to the degeneracy, this issue is discussed in

[4, Chapter 13].

For the LCP formulations of the friction problem, review papers that may be consulted are [4, 49,

58, 62, 111, 112]. Most of the aforementioned references formulate the problem with constraints on

the acceleration level. The major problem of using this force-acceleration model is that the problem

does not necessarily have a solution, and when this solution exists, it may not be unique for some

configurations. This problem is known as the Painlevé paradox. Painlevé showed on a simple

model that the contact LCP may not have a solution for some configurations and velocities. In [124],

Stewart explains that in configurations of inconsistency, the problem does not have a continuous force

solution, but proved the existence of an impulsive force solution [123]. The proof of existence of a

solution is also valid under restrictive conditions. In the work of Cadoux et al. [6, 5], it is shown that

even with an impulsive motion, it may happen that the system has no solution. In [21] for example,

upper bounds are defined for the friction coefficients which guarantee that the Painlevé paradox never

occurs.

1.2.2 Formulations eliminating the Lagrange multipliers

In this section we shall discuss the formulations that eliminate the Lagrange multipliers from the

equations of motion. Probably the most classical technique is to transform the index-3 DAE in (1.22)

to an ODE as in (1.26). In the following, other techniques are discussed.

1.2.2.1 Udwadia and Kalaba formulation

Based on the Moore-Penrose generalized inverses, Udwadia and Kalaba derived a more gen-

eral form of the null space formulation. Let’s introduce the "free-constraints" accelerations q̈f =

M−1(q)F (q, v, t). The authors consider a more general form of the constraints, at the accelera-

tion level, in the form: G(q, q̇, t)q̈ = b(q, q̇, t), with b ∈ R
m. The inertia matrix M(q) is as-

sumed to be positive definite, as it is usually the case. Two matrices M−1/2 and K are defined

as: M(q)−1 = M(q)−1/2M(q)−1/2 and K(q, q̇, t) = M(q)−1/2
(

G(q, v, t)M(q)−1/2
)+

. The superscript
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+ denotes the Moore-Penrose generalized inverse of G(q, q̇, t)M(q)−1/2. Finally, the acceleration of

the system is given by

q̈ = q̈f +M−1/2(q)K(q, v, t)(b(q, v, t)−G(q, v, t)q̈f ). (1.39)

For more details about this formulation, we refer to [128, 129, 16, 88].

1.2.2.2 Maggi’s/Kane’s formulation

While the previous methods consider the acceleration constraints, Maggi’s/Kane’s formulation

enforces the velocity constraints. In 1896 and then in 1901, Maggi [88, 16, 22, 53] presented his

formulation of the dynamics for the more general case of systems with nonholonomic constraints,

based on the D’Alembert’s principle. Later, in the second half of the XXth century, Kane separately

derived a formulation of the dynamics which is very close to that of Maggi. The core idea of both

methods is to extract a minimal set of independent coordinates, and to formulate the dynamics using

only these coordinates. This minimal set of coordinates can for example be established with a graph

analysis of the multibody system. When the system has a tree structure, the independent coordinates

correspond to the joint coordinates. When the system contains closed loops, the graph representing the

system is transformed into a tree by "cutting" some appropriate joints, a minimal set of coordinates

is then extracted. For a deep explanation about tree representation of multibody systems with closed

loops, we refer to [132, Section. 5.6].

Since both methods are equivalent [22], in the following we only present Maggi’s method, derived

from the D’Alembert’s principle that states that the virtual work of the difference between applied

forces and inertial forces must vanish for any virtual displacement. This can be formulated as

δW =
(

F (q, q̇, t)−M(q)q̈
)T
δq, (1.40)

where δq is the virtual displacement. In 1896 and then in 1901, Maggi presented his formulation of

the dynamics for the more general case of systems with m nonholonomic constraints based on the

D’Alembert’s principle. Many authors [88, 16, 22, 53] have studied this method, in the following we

recall the salient steps that lead to it. Let us assume that the nonholonomic constraints take the form

G(q, t)q̇ + gt(q, t) = 0. (1.41)

G ∈ R
m×n is not necessarily the jacobian of some set of constraints, it is assumed to be of full row

rank. Maggi defines a set of n −m independent kinematic variables e, not integrable in the general

case, as

e = B̃(q, t)q̇ + b̃(q, t), B̃ ∈ R
(n−m)×n. (1.42)
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The block matrix (G B̃)
T

is assumed to be invertible, its inverse is denoted (G̃ B). Therefore, the

velocity vector can be expressed as a function of the kinematic variables as

q̇ = B(q, t)e+ b(q, t), B ∈ R
n×(n−m), (1.43)

with b(q, t) = −(G̃c+Bb̃), with G̃ ∈ R
n×m. From equations (1.41), (1.42) and (1.43), we can write:



































GG̃ = I ∈ R
m×m

B̃B = I ∈ R
(n−m)×(n−m)

B̃G̃ = 0 ∈ R
(n−m)×m

GB = 0 ∈ R
m×(n−m),

(1.44)

where I denotes the identity matrix. From the fourth equation in (1.44), we can see that B(q) spans

the null space of G(q). By taking the derivative of equation (1.43), we get:

q̈ = B(q, t)ė+ h(q, q̇, t), (1.45)

where h(q, q̇, t) = Ḃ(q, t)e+ ḃ(q, t) = Ḃ(q, t)B̃(q, t)q̇ + Ḃ(q, t)b̃(q, t) + ḃ. Let us consider the Lagrange

equations of motion;

M(q)q̈ = F (q, q̇, t) +GT (q, t)λ. (1.46)

By injecting the expression of q̈ in equation (1.45) into equation (1.46), it follows that:

M(q)B(q, t)ė = F (q, q̇, t)−M(q)h(q, q̇, t) +GT (q, t)λ (1.47)

To reduce the problem to the minimal coordinates set, that is the set of the kinematic variables, we

multiply by the transpose of the matrix B. One obtains

BT (q, t)M(q)B(q, t)ė = BT (q, t)F ⋆(q, q̇, t) +BT (q, t)GT (q, t)λ, (1.48)

where F ⋆(q, q̇, t) = F (q, q̇, t)−M(q)h(q, q̇, t). Since BTGT = 0, the problem is reduced to

BT (q, t)M(q)B(q, t)ė = BT (q, t)F ⋆(q, q̇, t). (1.49)

Equation (1.49) defines the Maggi’s formulation of the equations of motion for a system with non-

holonomic constraints. It is clear that the main challenge of this formulation is the choice of the

kinematic variables e and the evaluation of matrix B. The matrix B can be computed by means of

Gauss-Jordan elimination of matrix G.

In the literature, we can find several works on the equivalence between Kane’s formalism and other

well-known formulations of the equations of the dynamics. In [22], Borri, Bottasso and Mantegazza
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θ1 C1

θ2 C2

Figure 1.10: Double pendulum

have established the equivalence between Kane’s equations and Maggi’s equations based on the fact

that the essence of both methods is to find a minimal set of variables to describe the dynamics.

Let’s illustrate Maggi-Kane’s equations on the double pendulum depicted in Fig.1.10. The bars are

of massesm1 andm2 and of lengths l1 and l2 respectively. The vector of generalized coordinates is com-

posed of the cartesian coordinates of the centers of mass C1 and C2, therefore q = [xC1
, yC1

, xC2
, yC2

]
T
.

Intuitively, the vector of kinematic variables is composed of the time derivatives of the angles:

e = [θ̇1, θ̇2]
T
. The mechanism studied here being simple, we can establish by inspection the matrix B

by expressing q̇ as a function of e. We have











































xC1 =
1

2
l1 sin(θ1)

yC1 =
1

2
l1 cos(θ1)

xC2 = l1 sin(θ1) +
1

2
l2 sin(θ2)

yC2 = l1 cos(θ1) +
1

2
l2 cos(θ2),

(1.50)

therefore










































ẋC1
=

1

2
l1θ̇1 cos(θ1)

ẏC1
= −

1

2
l1θ̇1 sin(θ1)

ẋC2 = l1θ̇1 cos(θ1) +
1

2
l2θ̇2 cos(θ2)

ẏC2 = −l1θ̇1 sin(θ1)−
1

2
l2θ̇2 sin(θ2).

(1.51)
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It follows that

B =

















1
2 l1 cos(θ1) 0

− 1
2 l1 sin(θ1) 0

l1 cos(θ1)
1
2 l2 cos(θ2)

−l1 sin(θ1) − 1
2 l2 sin(θ2)

















. (1.52)

The mass matrix being

M =

















m1 0 0 0

0 m1 0 0

0 0 m2 0

0 0 0 m2

















, (1.53)

we have

BTMB =





(m1

4 +m2)l
2
1 m2

l1l2
2 cos(θ2 − θ1)

m2
l1l2
2 cos(θ2 − θ1) m2

l22
4



 . (1.54)

On the other hand

h = Ḃe =

















− l1
2 θ̇

2
1 sin(θ1)

− l1
2 θ̇

2
1 cos(θ1)

−l1θ̇
2
1 sin(θ1)−

l2
2 θ̇

2
2 sin(θ2)

−l1θ̇
2
1 cos(θ1)−

l2
2 θ̇

2
2 cos(θ2)

















, (1.55)

The vector of external forces is

F =

















0

−m1g

0

−m2g

















, (1.56)

where g denotes the gravity. Finally, after some calculations that we do not show here, we obtain

Maggi’s formulation of the dynamics of this double pendulum:




(m1

4 +m2)l
2
1 m2

l1l2
2 cos(θ2 − θ1)

m2
l1l2
2 cos(θ2 − θ1) m2

l22
4









θ̈1

θ̈2



 =





(m1

2 +m2)l1g sin(θ1)−m2
l1l2
2 θ̇22 sin(θ2 − θ1)

m2
l2
2 g sin(θ2) +m2

l1l2
2 θ̇21 sin(θ2 − θ1)



 .

(1.57)

1.2.2.3 The null space formulation

The null space formulation uses the null space matrix R(q) ∈ R
(n−m)×m of the Jacobian matrix

G(q) ∈ R
m×n, that is RT (q)GT (q) = 0. The number of rows of R(q) is equal to the number of degrees

of freedom of the system. The idea behind this formulation is to write the equations of motion in a

way that enables to distinguish the kinematic equations from the dynamics equations, as in equation
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(1.58). This is performed by projecting the equations of the dynamics onto the tangent plane of the

constraints manifold. When the inertia matrix M(q) is invertible and the Jacobian matrix G(q) has

full rank, the matrix





RT (q)M(q)

G(q)



 is square and invertible, and the initial problem formulated in

the index-1 DAE (1.24) is transformed into an ordinary differential equation (ODE), as follows





RT (q)M(q)

G(q)



 q̈ =





RT (q)F (q, q̇, t)

dG
dt q̇



 , (1.58)

which has a unique solution [54]. The computation steps that lead to this equation are detailed in

[16, 52].

It is clear that the evaluation of the null space R(q) dominates the computational cost of this

method. Several techniques can be used to evaluate the matrix R(q). To cite but a few: the Singular

Value decomposition, the QR Decomposition and the Gaussian triangularization. It is worth noting

that for most applications, the evaluation of the constraint forces is required. Since they are eliminated

by this technique, an additional post-processing task will be necessary, which constitutes an additional

numerical effort.

1.2.2.4 The coordinate partitioning method

An alternative solution to the previous techniques is the coordinate partitioning method . Initially

proposed by Wehage and Haug [130, 131], its basic idea is to consider a partition of the generalized

coordinates vector q in two sets of dependent and independent coordinates in the form: q = [qd, qind]
T
,

where qind ∈ R
ndof represents the set of independent coordinates while qd ∈ R

n−ndof is the set of depen-

dent coordinates, with ndof being the number of degrees of freedom of the system. This partitioning is

performed by applying a Gauss-Jordan reduction of the Jacobian matrix G(q), with column pivoting

or by using SVD or LU factorization. LU factorization leads to a set of independent coordinates as

part of the generalized coordinates, while the SVD leads to a set expressed as a linear combination of

the generalized coordinates. The partition requires the matrix G(q) to be of full row rank. The set

of independent coordinates qind locally parameterizes the constraints manifold, and the partitioning

requires the Jacobian of the constraints w.r.t qd to be non singular, that is detGd(q) = det( ∂g
∂qd

(q)) 6= 0.

This property added to the implicit function theorem enables to express qd as a function of qind using

a function u, as many times differentiable as g, as: qd = u(qind).

While in the null space method, the entire set of coordinates q is computed during the simulation,

in the coordinate partitioning formalism, only the independent velocities are numerically integrated.
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The dependent velocities are deduced by solving the linear system

(

Gd(q) Gind(q)
)





q̇d

q̇ind



 = −gt, (1.59)

The equations of motion are then partitioned as






















M iiq̈ind +M idq̈d +GT
indλ = Find

Mdiq̈ind +Mddq̈d +GT
d λ = Fd

Gdq̈d +Gindq̈ind =
dG

dt
q̇,

(1.60)

where M ii, M id, Mdi, Mdd, Find, Fd are "appropriate" submatrices and subvectors of M and F

respectively [20, 102, 47]. After eliminating q̈d and λ, one obtains

M̂ q̈ind = F̂, (1.61)

where










M̂ =M ii −M idG−1
d Gind −GT

ind

(

G−1
d

)T (
Mdi −MddG−1

d Gind

)

F̂ = Find −M idG−1
d

dG

dt
q̇ −GT

ind

(

G−1
d

)T (
Fd −MddG−1

d

dG

dt
q̇
)

(1.62)

For more details about the computations leading to equation (1.61), we refer to [93] for example.

From a numerical point of view, some crucial points should be mentioned. First, the choice of qind

is not global, that is, this set should be updated during the simulation. This update increases the

computational effort and propagates integration errors. In addition, a bad choice of this set may result

in algorithms with ill-conditioned systems and/or very numerically demanding. Several algorithms

have been proposed that optimize the partitioning technique and propose solutions to choose the best

set of independent coordinates, we refer to [102, 20] for example.

As explained in [52], in general, no set of independent coordinates is able to describe neither the

whole motion of the system nor all the possible positions. Therefore the set of independent coordinates

must be updated during the time integration of the dynamics equations. In [52], the authors propose

several techniques to perform this update, which is the main challenge of this approach.

McClamroch and Wang [94] introduced a different method of partitioning based on a transfor-

mation of the coordinates. Assuming that the Jacobian matrix G(q) is of full row rank, and us-

ing the implicit function theorem, the authors define a function Ω : R
n−m −→ R

m, such that :

g(Ω(q2), q2) = 0, ∀q2 ∈ R
n−m. The vector of generalized coordinates q is partitioned as q = [q1, q2]

T

where q1 ∈ R
m and q2 ∈ R

n−m, and a transformation X : Rn −→ R
n is introduced as follows

x = X(q) =





q1 − Ω(q2)

q2



 , (1.63)
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X is differentiable and its differentiable inverse is

q = Q(x) =





x1 +Ω(x2)

x2



 , (1.64)

with x = [x1, x2]
T , x1 ∈ R

m, x2 ∈ R
n−m. The jacobian T of Q is introduced

T (x) =
∂Q

∂x
=





Im
∂Ω
∂x2

0 In−m



 . (1.65)

Eq (1.18) with only bilateral constraints becomes

TT (x)M(Q(x))T (x)ẍ+ TT (x)
(

F (Q(x), T (x)ẋ) +M(Q(x))Ṫ (x)ẋ
)

= TT (x)Fc, (1.66)

with Fc = GT (q)λ. This equation is then reduced to







E1M̃(x2)E
T
2 ẍ2 + E1F̃ (x2, ẋ2) = E1T

T (x2)Fc

E2M̃(x2)E
T
2 ẍ2 + E2F̃ (x2, ẋ2) = 0,

(1.67)

where


































M̃(x) = TT (x)M(Q(x))T (x)

F̃ (x, ẋ) = TT (x)
(

F (Q(x), T (x)ẋ) +M(Q(x))Ṫ (x)ẋ
)

In = [ET
1 , E

T
2 ], E1 ∈ R

m×n, E2 ∈ R
(n−m)×n

E2T
T (x2)Fc = 0.

(1.68)

The vector F̃ (x2, ẋ2) denotes F (x, ẋ) evaluated at x = [0, x2] and ẋ = [0, ẋ2]. The ODE presented

in the second equation of system (1.67) describes the motion in the constraint manifold. A big

discrepancy with respect to other methods is that the dynamics in (1.66) or (1.67) is a Lagrange

dynamics because the transformation is based on the generalized coordinates transformation (1.64)

and generalized diffeomorphic coordinates transformations are known to preserve the Lagrangian

structure.

1.3 Conclusion

In this chapter, we discussed several coordinates systems and several formulations of the equations of

motion of multibody systems. Relative coordinates are probably the one that are the most frequently

used, they enable to write the equations of motion with the least number of bilateral constraints.

As regards the formulation of the dynamics, some formulations aim at eliminating the Lagrange

multipliers from the equations of the motion by means including :
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• using some particular set of coordinates as in Maggi-Kane’s formulaion,

• using the null space matrix of the jacobian matrix as in the null space formulation,

• partitionning the coordinates into independent and dependent coordinates, and writing the

dynamics as an ODE with the independent coordinates,

• using the Moore-Penrose inverse as in the Udwadia and Kalaba formulation.

The Lagrange equations solve the Lagrange multipliers, they have been exposed for both the

frictionless and the frictional case. The obtained equations may be formulated as an index-3, index-2

or index-1 DAE together with an impact law. For instance, the Newton’s impact law may be used.

Let us mention that concerning the work presented in this document, the dynamics of the academic

tests is defined with Lagrange equations, while the Maggi-Kane formulation is used for the industrial

benchmarks from the Ansys software.
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Chapter 2

Numerical integration of the equations

of motion

The simulation of the dynamics of multibody systems requires a great care. Indeed, the bodies are

linked with kinematic joints, modeled with bilateral constraints that must be enforced with selected

integration scheme. In addition, bodies may be subjected to impacts leading to jumps in the state.

Classical DAE schemes are not able to handle such a nonsmooth dynamics. In this chapter, we discuss

the integration methods that are commonly used for the computation of the dynamics of constrained

multibody systems.

2.1 The global integration process

There are two major techniques for the simulation of the dynamics of multibody systems subjected

to non-smooth events such as impacts and transitions from sticking to sliding: event-detecting

time–stepping schemes (a.k.a. event–driven schemes) and event-capturing time–stepping

schemes (also shortly called time–stepping schemes). In this section, we shall discuss both

families, their advantages and their drawbacks.

2.1.1 Event-driven schemes

The event-driven schemes are based on the separation between events or nonsmooth dynamics at

discrete times, and the smooth dynamics [4, 1, 49]. The detection of the occurrence of an event (an

impact for example) is a major step. Indeed, the time of occurrence of the events must be defined very

37
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accurately not to break down the order of the consistency of the method as discussed in Section 2.1.1.2.

Between two successive events, the dynamics is described with a smooth formulation (DAE, ODE)

and integrated with any classical numerical scheme [66, 67]. When an event occurs, the dynamics is

updated after computing the new initial conditions at the switching time (time of occurrence of an

event) with some suitable algorithm. These initial conditions are used to advance the time integration

up to the next event. In this section, we introduce the definition of the index sets that describe the

status of the contact, and then we present the general algorithm of the event-driven scheme.

2.1.1.1 The abstract algorithm of an event-driven scheme

In the event-driven strategy, three index sets are generally introduced in order to characterize the

state of the contacts:

◦ the index set I0 of all possible constraints to which the system is submitted: I0 = B ∪ U,

◦ the index set I1 of contacts active in position: I1 = {α ∈ I0 | gα(q) = 0},

◦ the index set I2 of contacts that are active in position and velocity: I2 = {α ∈ I1 | ġα(q) = 0}.

In the frictionless case, events are defined by a change in I1 or in I2. When an event occurs, it is

handled and the dynamics is initialized from its time of occurrence. The event-driven scheme used in

this work is illustrated in Fig.2.1.

Some steps in the algorithm of Fig.2.1 deserve further consideration:

• Compute the index sets: some numerical thresholds τ0 and τ1 are defined that are required to

evaluate equalities and inequalities of floating point numbers when considering the index sets I1

and I2. Therefore, we write: I1 = {α ∈ I0 | gα(qm) ≤ τ0} and I2 = {α ∈ I1 | ġα(qm) ≤ τ1},

where qm denotes the position evaluated at time tm.

• Project on active position and velocity constraints: for bilateral constraints gα(q), α ∈ B, if

during the simulation we have |gα(q)| > τ0 or |ġα(q)| > τ1, then we project the constraints on

the position and velocity manifolds (see Section 2.1.1.3). For unilateral constraints, we project

if there is some numerical interpenetration, that is to say gα(q) ≤ 0, α ∈ U.

• Handle the event: there are many types of events, including:

1. nonsmooth change in the loading conditions.

2. impacts (activation of constraints), in this case we solve the impact LCP (1.21) at the

instant t⋆ of the event.
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Set the initial conditions.

Initialize the index sets

Solve the smooth dynamics (1.22)

or (1.23) or (1.24) or (1.26) from

tn to tn+1 = tn + h (see Sec.2.2)

Did an event

occur at

t⋆ ≤ tn+1?

Handle the

event at t⋆

tn → tn+1

Drift beyond

user-defined

tolerance?

Project on

active position

and velocity

constraints

belonging to I2

Update the index

sets I1 and I2

Go to the

next step

yes

no

yes

Figure 2.1: The event-driven scheme. Synopsis of a one-step integration.
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3. change in the normal vector that leads to a jump in the constraints and contact forces.

This point is discussed in chapter 4.

4. change in the sliding status in case of friction (sticking, sliding).

When friction is taken into account, then additional index sets are written which define the status

of the frictional contacts. These additional sets are:

• ISt = {i ∈ I2 | ‖ ˙gT i(q) ‖=‖ (GT (q)q̇)i ‖= 0}: the set of sticking contacts.

• ISl = {i ∈ I2 | ‖ ˙gT i(q) ‖=‖ (GT (q)q̇)i ‖6= 0}: the set of sliding contacts.

A frictional contact α can go through the following modes:

• Sliding: ‖ ġαT ‖≥ 0, and ‖ λαT ‖= µα|λαN |.

• Sliding to sticking: ‖ ġαT ‖ moves from a positive value to 0, and ‖ λαT ‖≤ µα|λαN |.

• Sticking: ‖ ġαT ‖= 0, and ‖ λαT ‖< µα|λαN |.

• Sticking to sliding: ‖ ġαT ‖ moves from 0 to a positive value, and ‖ λαT ‖= µα|λαN |.

From a numerical standpoint, the transitions sliding-sticking or sticking-sliding have to be detected

by the interpolation of the tangential velocities ġT . Then we solve the equation ġT (t) = 0 with

some numerical method like the Newton’s method, or the dichotomy. When the sticking occurs, the

tangential velocity vanishes and the contact problem is formulated on the acceleration level as:

• Sticking: ‖ λαT ‖< µα|λαN |, and ‖ g̈αT ‖= 0.

• Sliding: ‖ λαT ‖= µα|λαN |, and ‖ g̈αT ‖6= 0.

In the 2D case, if ‖ ġαT ‖6= 0, the sliding contact can be formulated as





M(q) −(Gα,T
N (q)− µα sign(ġT )G

α,T
T (q))

Gα
N (q) 0









v̇

λN



 =





F (q, q̇, t)

dGα
N (q)
dt q̇



 . (2.1)

The authors in [21] proved that if

• M(q) is positive definite,

• Gα
N (q) have full column rank,

• µα <
σmin(W

NN (q))

σmax(WTT (q))
, where: WNN (q) = Gα

NM
−1Gα,T

N , WTT (q) = Gα
NM

−1Gα,T
T , σmin and

σmax denote the smallest and the biggest singular values of WNN and WTT respectively,
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then q̈ and λαN can be computed uniquely. Other results on the existence and uniqueness of a solution

to the friction problem may be found in [7, 14, 15, 21, 41, 68, 69, 75, 76, 77, 85, 106, 107, 115]. Most

of these works derive upper bounds on the friction coefficients which guarantee the existence of a

solution.

When gαT vanishes, the sticking may be followed by a sliding phase. Glocker and Pfeiffer [62] have

formulated sufficient conditions for a possible sticking-slipping transitions in the 2D case as







λ̃αT = µαλαN − |λαT |

λ̃αT ≥ 0, g̈αT ≤ 0, λ̃αT g̈
α
T = 0.

(2.2)

Due the non-linearity brought by the term |λαT | in addition to the fact that the sliding in two possible

directions, the resolution of the problem (2.2) requires the introduction of new variables. Then the

problem is formulated as an LCP whose resolution enables to compute the acceleration and the contact

force at sticking.

2.1.1.2 Global order of the event-driven scheme

Let us consider that the event-driven method incorporates a DAE solver of order p. Since in the

event-driven strategy we stop at every single event to handle it and manage the jumps in the state,

the influence of the non-smoothness on the order p is questionable. Janin and Lamarque [74] provided

a theoretical and an numerical answer to this matter on a single-degree-of-freedom system whose

motion is described with:

ẍ(t) + 2aẋ(t) + ω2x(t) = f(t), (2.3)

together with the Newton’s impact law

x(t) = xmax =⇒ ẋ(t+) = −eẋ(t−). (2.4)

The analysis shows that the order is affected by the accuracy of the detection of the impacts.

Specifically, three means of detecting the impact times are addressed:

1. the first one, referred to as (IM1) consists of a linear interpolation using the approximation of

the solution at the beginning and at the end of the time step,

2. the second one (IM2) uses a second order polynomial involving the approximations at the be-

ginning and at the end of the time step and the derivative at the beginning of the step,

3. the third one (IM3) is the dichotomy method, for which the precision must be set to hp where

h is the time step size.
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It is concluded that:

• if the numerical DAE solver is at least of order 2, and is used together with the methods (IM1)

or (IM2), with f assumed to be differentiable and of a bounded derivative in R
+, then the

event-driven scheme is consistent and of order 2.

• if the numerical DAE solver is at least of order 3, and is used together with the method (IM2),

with f assumed to be differentiable and of a bounded second derivative in R
+, then the event-

driven scheme is consistent and of order 3.

• if the numerical DAE solver is at least of order 4, and is used together with the method (IM3),

with f assumed to be differentiable and of a bounded third derivative in R
+, then the event-

driven scheme is consistent and of order 4.

It also appears that the order is affected by the phenomenon of accumulation of impacts. In this

case, the impacts are detected with an accuracy of hp, however the transition to the sticking state is

not very clear.

An experimental analysis is provided which consists in studying three numerical schemes, namely:

the Newmark scheme (p = 2), and two Runge-Kutta methods: RK24 (p = 3) and DOPRI5 (p = 4).

The general findings in the case of multiple impacts are reported as follows:

• when using the Newmark scheme: the accuracy of the event-driven scheme is not improved by

improving the localization method. When the time step size is small enough, then a second

order accuracy for the velocity is reached.

• when using the RK24 method: the event-driven scheme is of order 3 with the (IM2) method

and of order 4 with the (IM3) method.

• when using the DOPRI5 method: the event-driven is of order 4 with the (IM3) method set to

the precision h4.

2.1.1.3 Violation of the constraints

In continuous time, considering the constraints on the position, velocity or acceleration levels are the

same provided that the initial conditions satisfy the constraints on the three aforementioned levels.

When using a time discretization, this is no more valid. Therefore, when reducing the original index-

3 system (1.22) to the index-2 DAE (1.23), we loose the information about the position constraint

g(qi) = 0. And when reducing it to the index-1 DAE (1.24), we lose information about both position
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and velocity constraints. To quote Simeon in [121], these two quantities are "invariants of the system".

It is well know that invariants are not enforced under discretization and their violation is even increased

due to truncation errors. Therefore, these invariants require a specific discretization in order to be

conserved during time integration. The phenomenon of violation of the constraints is called the

drift-off phenomenon and illustrates the fact that the numerical approximations do not belong to the

manifold of the constraints. Let us make a global estimation of the propagation of this drift, w.r.t

time, for the index-2 and index-1 formulations. We assume that at t = 0, the initial conditions of the

problem verify

g(t0) = g0, ġ(t0) = ġ0, g̈(t0) = g̈0, (2.5)

then by a first order approximation, that we obtain with a low order scheme, we get

ġ(t) = (t− t0)g̈0 + ġ0 +O(t− t0)
2, (2.6)

which means that the drift propagates linearly for the velocity constraints. With a second integration,

we get

g(t) =
1

2
(t− t0)

2
g̈0 + (t− t0)ġ0 + g0 +O(t− t0)

3, (2.7)

which illustrates a quadratic drift of the acceleration constraints w.r.t time. For a detailed analysis of

this phenomenon, we refer to [121, section 7.1.2]. To remedy this issue, there are two major solutions:

stabilization of the constraints and projection on the constraints manifold.

Stabilization of the constraints In [18], Baumgarte proposed one of the first solutions to the

problem of drift of the constraints. The idea is to consider a new constraint g̃ that is a linear

combination of the original constraint and its time derivatives, as

g̃ = g̈ + 2αġ + β2g = 0, (2.8)

where α and β are two scalars. The constraint g̃ is now to replace the acceleration constraint g̈ in the

system of equations (1.24), which becomes





M(q) −GT (q)

G(q) 0









q̈

λ



 =





F

−g̈ − 2αġ − β2g



 , (2.9)

where the scalars α and β are usually chosen to be positive in order to guarantee the stability of the

solution of (2.9). This modification of the original constraint can be interpreted as a spring-damper

model to bring back the constraints to their manifold. Indeed, the term β2 can be seen as the spring

coefficient, while 2α can be interpreted as a damping coefficient. This method has been widely used,
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and some of its drawbacks have been reported. Namely, there is no systematic method to choose the

parameters α and β, which seem to be problem-dependent; in addition, giving them "large" values

may lead to stiff systems.

Projection on the constraints manifold Let us denote Qn and Vn the position and the velocity

obtained by a DAE/ODE scheme at time tn. In order to bring the positions to the invariant manifold,

the minimization quadratic problem (2.10) has to be solved:

qn = argmin
qn

1

2
(qn −Qn)

TA (qn −Qn)

subject to g(qn) = 0,

(2.10)

where A is a symmetric and positive definite matrix. Likewise, another quadratic problem (2.11) is

solved to bring the velocity Vn to the invariant manifold:

vn = argmin
vn

1

2
(vn − Vn)

TA (vn − Vn)

subject to G(qn)vn = 0.

(2.11)

Usually, the inertia matrix M is chosen to solve the aforementioned problems (2.10) and (2.11), that is

to say A =M . This choice may be explained by the fact that the inertia matrix already appears in the

equations of motion, which enables to save the computation time that would be spent in computing a

new matrix. From a numerical point of view, since the corrected positions and velocities are closed to

the values provided by the integrators, using the inertia matrix prevents from updating the iteration

matrix used in the Newton-Raphson method for solving (2.10) and (2.11). Another advantage of using

the inertia matrix is the consistency

One method for correcting the position and velocity constraints is the Lubich stabilization by

projection procedure [67], performed in two steps:

1. Projection on position constraint: The projected position qn to the solution manifold is the

solution of the system






M(Qn)(qn −Qn) +GT (Qn)Λ = 0

g(qn) = 0
(2.12)

This system is solved with a nonlinear equations solver (Newton method for example).

2. Projection on velocity constraint: The projected velocity vn is obtained by the resolution of the

system






M(Qn)(vn − Vn) +GT (qn)Λ = 0

G(qn)vn = 0.
(2.13)
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The scaling with the inertia matrix M(Qn) enables one to perform a resolution which is consistent

with the metrics of the problem.

2.1.1.4 Discussion about event-driven schemes

Event-driven schemes have sensitivity to the thresholds, which are for example used for the evalua-

tion of the index sets or for the occurrence of an event. They also have difficulties handling finite

accumulations of impacts, called the Zeno phenomenon. Indeed, when too many events occur in a

very short time interval, the simulation becomes slow because every single event has to be handled

within the event-driven strategy. On the other hand, the separation of the smooth dynamics from

the non-smooth dynamics enables to use high order schemes to compute the smooth part and also to

efficiently adapt the time step size to the required precision and thus save the numerical effort. For

more details and applications, we refer for example to [49, 113, 90, 89].

2.1.2 Time-stepping schemes

In time-stepping schemes [82, 83, 99, 100, 80, 9, 126, 60, 81] , the formulation of the dynamics enables

to simultaneously handle the smooth dynamics and the non-smooth events. Let us consider a system

with perfect unilateral constraints, the smooth dynamics can be formulated as a differential inclusion

[4, 80, 99]






















q̇ = v

M(q)
dv

dt
= F (q, v, t) + r

− r ∈ NC(q),

(2.14)

where r is the vector of generalized forces/reactions associated to the unilateral constraints, and















C = {q ∈ R
n| gj(q) ≥ 0, j ∈ {1 . . .m}} is the admissible set,

NC(q) = {Λ ∈ R
n| Λ = −

∑

j

λj∇gj(q), λj ≥ 0, λjgj(q) = 0}, is the normal cone to C.
(2.15)

The basic idea behind these schemes is to consider the dynamics equations as a measure differential

inclusion. On the velocity level, we get























q̇ = v

M(q)dv = F (q, v, t)dt+ di

− di ∈ NTC(q)(v
+),

(2.16)
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where dv is the velocity measure, di is the reaction measure and dt is the Lebesgue measure. TC(t)

denotes the tangent cone to C. It is worth noting that equation (2.16) is equivalent to an index

reduction of system (2.14). The inclusion in (2.16) is known as Moreau’s sweeping process of second

order [98]. Let us consider a simple case to illustrate this fact. If C = R
+, then

0 ≤ λ ⊥ g ≥ 0 ⇔ −λ ∈ NR+(g) ⊇ NT
R+ (g)(ġ

+), (2.17)

therefore, we have







g > 0 ⇒ ġ+ ∈ TR+(g) = R and NR+(g) = {0}, thusλ = 0

g = 0 ⇒ ġ+ ∈ TR+(g) = R
+ and NR+(g) = R

− , thus 0 ≤ ġ+ ⊥ λ ≥ 0.
(2.18)

Time-stepping schemes consider the integrals of the forces and allow for impulsive forces. The value

of the impulse
∫ tn+1

tn
di over a time step [tn, tn+1] is considered as the primary unknown. J.J. Moreau

and M. Jean [98, 82, 83] have performed a pioneering work in the field of simulation of nonsmooth

dynamics, and the scheme they proposed, the Moreau-Jean method, is one of the most popular time-

stepping schemes, it has proved its robustness while being simple. Since then, various schemes have

been developed. In the following section, the Moreau-Jean scheme is discussed and some of the most

popular time-stepping schemes are presented.

2.1.2.1 The Moreau-Jean time-stepping scheme

In the Moreau-Jean method, the unilateral contact is modeled with a Signorini condition at the

velocity level, that is a complementarity between the contact impulse and the relative velocity, which

ensures the impenetrability. In order to handle several contacts, with possibly changing status, an

implicit algorithm is chosen to integrate the dynamics. Let us consider for simplicity that Fint(q, v) =

−Cq̇ −Kq and that M(q) =M . The discrete form of the equations of motion reads



















q(ti+1) = q(ti) +

∫

]ti,ti+1]

v+ dt

M(v+(ti+1)− v+(ti)) =

∫ ti+1

ti

(−Cv(t)−Kq(t) + Fext) dt+

∫

]ti,ti+1]

di.

(2.19)

The smooth terms may be discretized using a θ−method as


































qi+1 = qi + h [θvi+1 + (1− θ)vi]
∫ ti+1

ti

(Cv+ +Kq) dt = h [θ(Cvi+1 +Kqi+1) + (1− θ)(Cvi +Kqi)]

∫ ti+1

ti

Fext dt = h
[

θ(Fext)i+1 + (1− θ)(Fext)i
]

(2.20)
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One then gets


































qi+1 = qi + h [θvi+1 + (1− θ)vi]

vi+1 = vfree + M̂
−1
pi+1

M̂ =M + hθC + h2θ2K

vfree = vi + M̂
−1 [

−hCvi − hKqi − h2θKvi + h
[

θ(Fext)i+1 + (1− θ)(Fext)i
]]

,

(2.21)

with pi+1 ≈
∫

]ti,ti+1]
di is the approximation of the impulse over the time step. We can notice that

the acceleration of the system is never explicitly computed because it becomes infinite for impulsive

forces. The kinematic relations are discretized as follows for a contact α






































































ġαn+1 = Gα(qn)vn+1

Pα
n+1 ≈

∫

]tn,tn+1]

dλα

pαn+1 = GαTPα
n+1

gαn+1 = gαn + h
[

θġαn+1 + (1− θ)ġαn
]

q̃n+1 = qn +
h

2
vn

if gα(q̃n+1) ≤ 0 , then 0 ≤ ġαn+1 ⊥ Pα
n+1 ≥ 0.

(2.22)

Finally, the Newton’s law is implicitly formulated as


































if gα(q̃n+1) ≤ 0, then 0 ≤ Uα
n+1 + eUα

n ⊥ Pα
n+1 ≥ 0

if gα(q̃n+1) > 0, thenPα
n+1 = 0

Uα
n = ġαn

Uα
n+1 = ġαn+1.

(2.23)

In the case of a frictional impact, the nonsmooth problem formulated in (2.23) becomes:























































































M̂(vn+1 − vfree) = pn+1 =
∑

α

pαn+1

Uα
n+1 = Gα(qn)vn+1 = Ŵ

∑

α

Pα
n+1 +Gα(qn)vfree

pαn+1 = Gα,T (qn)P
α
n+1

if gα(q̃n+1) ≤ 0 then :

Ûα
n+1 =

(

Uα
N,n+1 + eαUα

N,n + µα
∥

∥Uα
T,n+1

∥

∥

∞
, Uα

T,n+1

)T
, ∀α ∈ I1

FC
⋆ ∋ Ûα

n+1 ⊥ Pα ∈ FC

if gα(q̃n+1) > 0 then Pα
n+1 = 0.

(2.24)
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The frictional impact law formulated in the last four equations of (2.24) are derived from bipotential

function of De Saxcé which enables to write a complementarity problem involving the modified velocity

Ûα
n+1 and the contact force Pα

n+1 as discussed in [4, Chapters 3 and 10]. The subscriptsN and T refer to

the normal and tangent directions, respectively. In the case of a single contact, Ŵ =





WNN WNT

WTN WTT



,

where WNN = GNM̂
−1
GT

N , WNT = GNM̂
−1
GT

T , WTN = GT M̂
−1
GT

N and WTT = GT M̂
−1
GT

T . In

the case of more than one contact, the extra diagonal blocks of the LCP matrix Ŵ must take into

account the interactions between the active constraints. Let us write the matrix in the case of two

active constraints α and β, for example:

Ŵ =

















WNN
αα WNT

αα WNN
αβ WNT

αβ

WTN
αα WTT

αα WTN
αβ WTT

αβ

WNN
βα WNT

βα WNN
ββ WNT

ββ

WTN
βα WTT

βα WTN
ββ WTT

ββ

















. (2.25)

An implementation of the scheme is proposed in [4, Chapter 10] and a sketch of the algorithm is

presented in appendix A.3.

In the Moreau-Jean’s method, the constraints are discretized at the velocity level, therefore a

violation of the position constraints may be observed during the simulation. This drift can be corrected

by some means of projection on the constraints manifold as proposed in [3].

2.1.2.2 Other velocity-based time-stepping schemes

The Moreau-Jean time-stepping method has inspired various extensions which are briefly summarized

hereafter.

In [125, 122], Stewart and Trinkle use the Moreau-Jean’s scheme and consider the polyhedral

approximation of the friction cone as proposed by Klarbring [84]. This approximation reads

ˆFC(q) = {λNn+Dβ |λN ≥ 0, β ≥ 0, eTβ ≤ µλN}, (2.26)

where e ∈ R
k, k being the number of edges of the polyhedral, the matrix D ∈ R

3×k contains the

directions di ∈ R
2, and β ∈ R

k contains the weights corresponding to each direction. It is assumed

that if di belongs to D, then there exists dj in D such that di = −dj . The polyhedral cone is illustrated

in Fig.2.2. The discretized equations of motion read







Mn+1(vn+1 − vn) = hñλN + hDβ + hFn+1

qn+1 = qn + hvn+1,
(2.27)
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d1

d4

d2

d5

d3d6

n

Figure 2.2: Polyhedral approximation of the friction cone

with ñ = ∇qg(q). With the assumption of inelastic collisions and shocks, these equations are aug-

mented by the complementarity relations describing the frictional contact:






















0 ≤ ñqn+1 − α0 ⊥ λN ≥ 0

0 ≤ α1e+DT vn+1 ⊥ β ≥ 0

0 ≤ µλN − eTβ ⊥ α1 ≥ 0,

(2.28)

where α0 is a user defined tolerance, and α1 is a positive scalar that satisfies α1 ≥ maxi{d
T
i vn+1}. The

first complementarity relation of (2.28), written on the position level, involves the normal multiplier.

The other two complementarity relations describe the Coulomb friction model. Indeed, if µλN−eTβ >

0, then α1 = 0 and therefore DT vn+1 ≥ 0. If DT
i vn+1 > 0, then there is an index j such that

DT
j vn+1 = −DT

i vn+1 < 0, which contradicts the fact that DT vn+1 ≥ 0. Therefore DT
i vn+1 = 0,

which means that the tangential velocity is zero. In case there is some relative tangential motion,

then there is at least one index i such that DT
i vn+1 > 0, which implies α1 > 0. It follows that

µλN − eTβ = 0, which means that the contact force lays on the boundary of the polyhedral cone.

Inspired by the work in [125, 122], Anitescu and Potra [10] proposed a time-stepping scheme

in which the equations of motion are discretized with a backward Euler method, both unilateral and

bilateral constraints are taken into account, on the velocity level, and the friction cone is approximated

as in (2.28). The equations of motion read

M(vn+1 − vn) = hF (qn+1, vn+1, tn+1) +BT
b (qn+1)λb + ñλN +Dβ, (2.29)
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together with the complementarity relations



































Bbvn+1 = 0

0 ≤ ñvn+1 ⊥ λN ≥ 0

0 ≤ α1e+DT vn+1 ⊥ β ≥ 0

0 ≤ µλN − eβ ⊥ α1 ≥ 0,

(2.30)

where Bb represents the jacobian of bilateral constraints, λb is the contact forces vector associated

with them.

This scheme is also able to handle partially elastic collisions using Poisson’s model, as developed

in a generalized framework by Pfeiffer and Glocker [49]. Complementarity relations corresponding to

contact laws in the normal and tangent directions are formulated as an LCP which is solved with

Lemke’s algorithm that guarantees a solution within a finite number of iterations, provided that the

constraints are linear. This work has then been extended to deal with stiff systems [11], by discretizing

the dynamics with an implicit Euler method. In [8], the authors propose a time-stepping scheme in

which bilateral and unilateral constraints are enforced. The constraints are linearized and implicit

Euler method is used to discretize the dynamics.

Dzonou and Monteiro Marques [40] propose a numerical approximation to (2.14) where they con-

sider a purely inelastic constraint. In this paper, the authors present the first proof of convergence

and existence of a solution, in the frictionless case, under the assumption of a varying inertia matrix.

They extended their work in [39] to elastic impact with a restitution coefficient. Paoli [108] proposed

a time-stepping scheme where the formulation uses the proximal method. The author presents a proof

of convergence of the proposed algorithm.

Funk and Pfeiffer [50] consider the measure differential equation (2.16) and discretize forces and

velocities with a θ-method. Considering the case of planar friction, the authors formulate the contact

problem as a linear system by decomposing the tangent velocity into positive and negative parts, and

by writing the contact force as a linear combination of the two edges of the friction cone.

Forg, Pfeiffer and Ulbrich [112] discretize the dynamics implicitly and formulate the contact prob-

lem in the normal and tangent directions using the proximal point function. The gap function and the

relative velocity are linearized with a Taylor expansion of first order and an iterative method is used

to solve this augmented Lagrangian approach. This approach is then compared, on a benchmark, to

LCP formulation solved with Lemke’s algorithm, and to a projected Gauss-Seidel algorithm.

Actually, some researchers have explored ways in which they can increase the order of time-stepping

schemes. Let us cite for example the work in [127] where the dynamics during smooth periods is
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computed using extrapolation methods, and with the classical Moreau-Jean scheme during impulsive

methods. Extrapolation methods enable for a step size adjustment, and a suitably chosen minimum

time step is used for the impulsive periods, in order not to break down the global order of the scheme.

Another solution for augmenting the order of classical time-stepping schemes is addressed in [2]

where the author proposes a solution for augmenting the global order of an integration method in-

corporating the Moreau-Jean scheme. The proposed algorithm uses classical DAEs integrators dur-

ing smooth periods. Events are roughly identified and the dynamics during nonsmooth periods is

integrated using the Moreau-Jean time-stepping method. Conditions on the time step size of the

Moreau-Jean method are identified which guarantee that the order of the DAE solver will not break

down when switching to the Moreau-Jean scheme.

In [117, 118, 119] another option is proposed which consists of using the classical time-stepping

scheme with the constraints on the velocity level, together with time-discontinuous Galerkin methods.

The authors [119] propose to embed a classical time-stepping scheme in time discontinuous Galerkin

methods, therefore allowing for a high order numerical approximation of the solution during the

smooth periods.

Authors in [35] propose to split the contribution of smooth variables from that of the impulsive

variables. The smooth variables can be computed using any classical high order DAE integrators.

For instance, the implicit generalized-α method is chosen to take advantage of its ability of dealing

with stiff dynamics. The impulsive variables are evaluated with the classical Moreau-Jean time-

stepping scheme, which ensures the consistency of the global integration method. Both unilateral and

bilateral constraints are discretized on the velocity level, which leads to an index-2 scheme. However,

considering the velocity constraints leads to the violation of the position constraints, which can be

a critical problem in some applications. As a solution to this issue, the authors in [31] propose to

exactly solve both position and velocity constraints, based on the well-known approach of Gear, Gupta

and Leimkuhler (GGL method). Contrary to [35], the bilateral constraints are taken into account

as smooth variables which enables to handle them with high order DAE methods. The unilateral

constraints are formulated as complementarity relations at both position and velocity levels and are

implicitly solved.

2.1.2.3 A position-level time-stepping scheme: Schatzman-Paoli algorithm

Contrary to the aforementioned time-stepping schemes, Schatzman and Paoli propose a scheme that

takes into account the constraints on the position level [109, 110]. In practice, this method is of order

one with respect to the positions, and of order zero with respect to velocities. The authors discretize
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the equations of motion using finite differences. Their method reads











































M(qn+1)(qn+1 − 2qn + qn−1) = h2F (qn+1, vn+1, tn+1) + pn+1

vn+1 =
qn+1 − qn−1

2h

pn+1 = GT (
qn+1 + eqn−1

1 + e
)Pn+1

− pn+1 ∈ NK(
qn+1 + eqn−1

1 + e
),

(2.31)

where NK(.) is the normal cone to the admissible set K = {q ∈ R
n | g(q) ≥ 0}. We note that (2.31)

incorporates a Newton-like impact law, since the coefficient of restitution e is applied to the positions,

while it is applied to the velocities in the original Newton law. Equation (2.31) can be written as

0 ≤ g(
qn+1 + eqn−1

1 + e
) ⊥ GT (

qn+1 + eqn−1

1 + e
)Pn+1 ≥ 0. (2.32)

Schatzman-Paoli’s method projects the generalized coordinates on the admissible set. Therefore,

the position constraints are enforced during the numerical integration of the motion. However, the

computed velocity does not directly satisfy the Newton impact law, which gives no physical meaning

to the impulse pn+1. It goes without saying that pn+1 is an important quantity for most mechanical

applications. Another issue related to this method is that in the case of a collision, the velocity is

reversed two steps after the interval containing the time of the collision.

2.1.2.4 Discussion about time-stepping schemes

The advantage of time-stepping schemes over event-driven schemes is that no accurate event-detection

is required and only one or no index sets are needed. This makes the former algorithms more robust

for handling problems with several contact points as well as the problem of accumulation of impact

(Zeno phenomenon). In addition, time-stepping algorithms have been proved to converge (under the

assumption of independent constraints), which is not the case of event-driven methods. However,

time-stepping schemes are of low order which may lead to the use of small time step sizes to meet the

defined precision. This may lead to increase the numerical effort.

2.2 Numerical methods for ODEs and DAEs

When choosing the event-driven method as an integration strategy, the smooth dynamics is integrated

using some numerical scheme that is suited to the formulation used: index-3 DAE, index-2 DAE or

an index-1 DAE equivalent to an ODE when the Delassus operator is invertible. In this section,
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we present definitions of some concepts that are often used in this section, and then we address the

numerical methods that are widely used in the field of computational mechanics.

2.2.1 A few definitions

Let us consider the initial value problem







ẏ = f(y, t)

y(t0) = y0.
(2.33)

solved using a general one-step method of the form:

yn+1 = yn + hϕ(yn, tn, h), (2.34)

where ϕ is an increment that depends on f , yn, tn and h. For numerical methods, the concept of

error can be broken down into:

• Rounding error, due to finite precision of floating-point arithmetic.

• Truncation error, also called discretization error, due to the approximation method. Two types

of truncation errors are defined:

– local error, which is the error made in one step and can be written at time step n, starting

from yn−1 = y(tn−1), as

ln = yn − y(tn), (2.35)

where y(.) denotes the exact solution.

– global error, which is the difference between the exact solution and the approximation given

by the method and reads

en = yn − y(tn), starting from y0 = f(t0). (2.36)

The method is said to be consistent to order p if

ln = O(hp), (2.37)

and is said to be consistent if

lim
h→0

ln = 0. (2.38)

The scheme is said to be convergent to order p if

en = O(hp), (2.39)
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and is said to be convergent if

lim
h→0,t→T

en = 0, (2.40)

with [0, T ] being the interval of time during which the calculation has been performed. Another

important concept has to be introduced: stability. In [55], Gear gives the following definition: "A

one-step method is stable if for each differential equation satisfying a Lipschitz condition there exist

positive constants h0 and K such that the difference between two different numerical solutions yn and

ỹn each satisfying (2.34) is such that: ‖ yn − ỹn ‖≤ K ‖ y0 − ỹ0 ‖, ∀ 0 ≤ h ≤ h0".

Finally, we should recall that according to Lax theorem, a consistent and stable method is conver-

gent.

2.2.2 Methods for index-1 DAEs / ODEs

When the Delassus’s operator G(q)M−1(q)GT (q) is invertible, the index-1 DAE (1.24) is equivalent

to the ODE (1.26) which is of the form

ẏ = f(y, t). (2.41)

The literature in the field of numerical methods for ODEs is richer than that for DAEs because

it is older. Numerical methods for ODEs can be split into to categories: one-step methods, and

multistep methods. In the sequel, we will present some of the numerical schemes that are widely

used in computational mechanics.

2.2.2.1 Runge-Kutta methods

Runge-Kutta methods [66, 67, 42, 121] are probably the most famous one-step schemes that are

used for the numerical integration of ODEs. The discretization of (2.41) is given with


























Yi = yn + h

i
∑

j=1

aijf(Yj , tn + cjh), i = 1 . . . s,

yn+1 = yn + h

s
∑

j=1

bjf(Yj , tn + cjh),

(2.42)

where yn denotes the approximation of the solution at the beginning of the time step, h is the size of

the current time step, s is the number of stages, while aij , cj and bj are the coefficients of the method.

Butcher [33] gave a more compact form to this formulation, using a tableau as

c A

−−− −−−

bT
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Depending on the structure of the coefficients matrix A, RK methods can be split into explicit and

implicit schemes.

• If aij = 0 for i ≤ j, then we have Explicit RK methods, abbreviated as ERK,

• If aij = 0 for i < j and at least one aii 6= 0, we have Diagonal Implicit RK methods, abbreviated

as DIRK.

• In the other cases, we have fully Implicit RK methods, abbreviated as IRK.

Usually, the evaluation of the integration error is done by comparing the used method with another

scheme, this can be costly from a numerical effort point of view. To remedy this, Embedded RK

methods have been developed which consist of pairs of RK methods using the same coefficients c and

A and differ in the coefficients b which are computed in order to get two estimations of the solution:

one of order p and the other of order p + 1. The integration error is given as the difference between

these two estimations. The ERK methods have bounded domains of stability, which becomes an issue

especially for stiff ODEs. Probably, the most popular ERK schemes are RK4, Runge-Kutta-Fehlberg

and Dormand-Prince scheme. These schemes are briefly presented in Appendix A.1.

IRK schemes remedy the issues of stability domain and handling stiff ODEs. The most popular

IRK schemes are based on collocation methods, which consist in finding a polynomial u ∈ P
s (Ps being

a set of polynomials of order s) satisfying







u(tn) = yn

u̇(tn + cih) = f(u(tn + cih), tn + cih), i = 1 . . . s.
(2.43)

The coefficients ci are called in this case the collocation points. Collocation methods are shown to be

equivalent to RK methods, described with (2.42), with










































































for j = 1 . . . s :

aij =

∫ ci

0

lj(θ)dθ

bj =

∫ 1

0

lj(θ)dθ

lj(θ) =
∏

k 6=j

θ − ck
cj − ck

un+1 = un +

s
∑

i=1

bif(u(tn + cih), tn + cih).

(2.44)

IRK schemes that are the most widely used are: 2s-order Gauss methods for which the coefficients

ci are the roots of the Legendre polynomials ds

dts (t
s(t− 1)

s
), and (2s− 1)-order Radau IIA methods,
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where the coefficients ci are the zeros of the polynomial ds−1

dts−1 (t
s−1(t− 1)

s
). For an application of

IRK schemes in the context of multibody dynamics, we refer to [70, 71] or to [102] where the authors

transform the initial index-3 DAE describing the dynamics of a multibody system into a State Space

ODE (SSODE) by using the technique of coordinate partitioning. This SSODE is obtained after

performing a partitioning on the coordinates to extract a set of minimal coordinates whose dynamics

is formulated as an ODE. This SSODE is solved using the SDIRK (Singly Diagonally Implicit Runge

Kutta) algorithm. Comparisons with the explicit DDEABM (Direct Differential Equations Adams-

Bashforth-Moulton) solver on stiff mechanical systems show that the SDIRK method outperforms

DDEABM; indeed, this latter can be 50 times more time-consuming than the SDIRK scheme. How-

ever, such a result is not surprising since the DDEABM is an explicit solver, and therefore it is not

the best choice to deal with stiff dynamics because it uses very tight time steps for stability concerns.

2.2.2.2 Symplectic schemes

As said in Section 2.1.1.3, invariants of a given system require a specific treatment to be preserved.

Symplectic algorithms [66, 67] can be used to this aim, particularly to preserve the Hamiltonian

after discretization. These numerical methods have been widely investigated for long-time simulation

of Hamiltonian systems, described with the index-3 DAE:































q̇ =
∂H

∂p
(p, q)

ṗ = −
∂H

∂q
(p, q) +GT (q)λ

g(q) = 0,

(2.45)

and whose symplectic structure is lost under discretization. In (2.45), the vector p is the momentum,

H denotes the Hamiltonian function and is given by H(p, q) =
1

2
pTM−1(q)p+U(q), U is the potential

energy of the system. The most popular symplectic schemes are probably: Störmer-Verlet, SHAKE

and RATTLE algorithms. The Störmer-Verlet scheme is intended for unconstrained Hamiltonian

systems, whose discretization is given by



























qn+1 = qn +
h

2

(

∇pH(pn+1/2, qn) +∇pH(pn+1/2, qn+1)
)

pn+1/2 = pn −
h

2
∇qH(pn+1/2, qn)

pn+1 = pn+1/2 −
h

2
∇qH(pn+1/2, qn+1).

(2.46)
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The SHAKE algorithm is an adaptation of the Störmer-Verlet scheme for constrained Hamiltonian

systems, whose discretization becomes























qn+1 = qn + hM−1(qn+1/2)pn+1/2

pn+1/2 = pn−1/2 −
h

2
∇qU(qn) +

h

2
GT (qn)λn

g(qn+1) = 0.

(2.47)

To get around the difficulty of evaluating pn+1 that requires the evaluation of qn+1 in the Störmer-

Verlet scheme, pn+1 is evaluated in the RATTLE scheme as











pn+1 = pn+ 1
2
−
h

2
∇qU(qn+1) +

h

2
GT (qn+1)µn

G(qn+1)M
−1pn+1 = 0,

(2.48)

where the Lagrange multiplier µn arises from the hidden constraint G(q)
∂H

∂p
(p, q) = 0 obtained with

a time differentiation of the constraint appearing in (2.45).

2.2.2.3 Families of Newmark and Generalized-α schemes

In the field of linear structural dynamics, where the equations of motion take the classical form

Mq̈ + Cq̇ +Kq = F (t), (2.49)

one of the most widely used schemes is probably the family of Newmark schemes [104, 86]. In

(2.49), C denotes the damping matrix and K denotes the stiffness matrix. The discretization of the

state variables in (2.49) is defined by



























Mq̈n+1 + Cq̇n+1 +Kqn+1 = F (qn+1, vn+1, tn+1)

qn+1 = qn + hq̇n +
h2

2
((1− 2β)q̈n + 2βq̈n+1)

q̇n+1 = q̇n + h((1− γ)q̈n + γq̈n+1),

(2.50)

where β and γ are some coefficients that determine the stability and the order of the method. Indeed,

if γ ≥ 1
2 and β ≥

γ+ 1
2
2

4 , then we have a stable method. It is worth mentioning that for γ = 1
2 and

β = 1
4 , we obtain the trapezoidal method. When β = 1

2 , then we have a 2nd order accuracy. It is

well known that when a multibody system contains some flexible bodies, classical numerical schemes

are unable to properly deal with the stiffness arising from the presence of high frequencies. HHT

methods [73, 34] alleviate this issue. These are a modification of the Newmark schemes that introduce
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some numerical dissipation in order to damp out the spurious frequencies without dropping the order

to one. These schemes replace the equations of the dynamics as

Mq̈n+1 + (1 + α)Cq̇n+1 − αCq̇n + (1 + α)Kqn+1 − αKqn = Fn+1, (2.51)

where the state variables are discretized as in (2.50). For the solution to be stable, the coefficients α,

β and γ must satisfy: 0.3 ≤ α ≤ 0, γ = 1
2 − α and β = (1−α)2

4 . It is worth noting that for α = 0, we

retrieve the Newmark scheme. In [36], Chung and Hulbert proposed the generalized-α methods, a

family of schemes that generalizes all the α methods. An acceleration-like variable an is introduced

which is defined by the recurrence relation

(1− αm)an+1 + αman = (1− αf )q̈n+1 + αf q̈n. (2.52)

The discretization of the equations of motion becomes











qn+1 = qn + hq̇n + h2(
1

2
− β)an + h2βan+1

q̇n+1 = q̇n + h(1− γ)an + hγan+1,

(2.53)

where the constants αf , αm, β and γ are suitably chosen so that the scheme is stable for the linear

dynamics. The algorithm is unconditionally stable [32] if the coefficients are chosen such that for

ρ∞ < 1,














































αm =
2ρ∞ − 1

ρ∞ + 1
<

1

2

αf =
ρ∞

ρ∞ + 1
<

1

2

γ =
1

2
− αm + αf >

1

2

β =
1

4
(γ +

1

2
)
2

.

(2.54)

The numerical damping is made easier in this scheme thanks to the coefficient ρ∞, called spectral

radius parameter . Indeed, ρ∞ = 0 corresponds to asymptotic annihilation of the high frequencies,

while ρ∞ = 1 corresponds to no numerical damping.

At the beginning of the simulation, this variable is initialized as a0 = q̈0. The generalized-α scheme

incorporates a multistep-like method since at each time step, the evaluation of the acceleration requires

the knowledge of the acceleration-like variable computed in the previous step, as written in (2.52).

The generalized-α methods have been modified to be used in the context of constrained multibody

systems whose dynamics is formulated as an index-2 or index-3 DAE, as discussed in Sections 2.2.3

and 2.2.4.
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2.2.2.4 Multistep schemes

The previous methods require only the approximation of the solution at the beginning of the time

step to compute the solution at the end of the step. Multistep methods require an initialization of

the solutions, meaning that one or more estimations at the beginning of the simulation have to be

computed using a one-step method. In this section, we limit ourselves to a breve presentation of three

of the most widely used multistep methods: BDF, Adams-Bashforth and Adams-Moulton schemes

[67, 121, 42].

The BDF methods are a class of implicit multistep schemes and are the most widely used to cope

with stiff ODEs of the form (2.41). The idea behind these methods is to find a polynomial P that fits

the solution yn+1 at the end of the time step and whose derivative interpolates the function f at k

previous solutions, that is






P (tn+1−i) = yn+1−i, i = 0 . . . k

Ṗ (tn+1) = f(yn+1, tn+1).
(2.55)

Using the Lagrange polynomials, one obtains the formula:
∑k

i=0 αiyn−i = hβ0f(tn, yn) with α0 = 1.

The backward differentiation formulas for orders from 1 to 6 are presented in Table A.1 of Annex A.2.

For an order greater than 6, the stability domain is so small that the method is useless.

Adams methods are derived by transforming the ODE (2.41) into its integral form: y(t) =

y0 +
∫ te
t0
f(θ, y(θ))dθ. Then the method is defined with yn+1 = yn +

∫ tn+1

tn
P (θ)dθ, where P is the

polynomial that interpolates f at the k previously calculated solutions. Adams-Bashforth methods

are explicit multistep methods that assume the general form yn+1 = yn + h
∑k−1

j=0 ajf(yj , tj). The

Adams-Bashforth formulas for orders from 1 to 5 are presented in Table A.2 of Annex A.2.

Adams-Moulton methods are implicit multistep methods. Their formulas have the general form:

yn+1 = yn+h
∑k

j=0 ajf(yj , tj), where k is the order of the method. The coefficients are derived in the

same manner as for the Adams-Bashforth methods. Table A.3 of Annex A.2 shows the Adams-Moulton

formulas for orders from 1 to 5.

When reducing the initial index 3 of the DAE by differentiating twice the constraints, the position

level and velocity level constraints are not enforced anymore. Therefore, a great research work has

been performed in order to extend the numerical schemes from ODEs to DAEs of higher index.

2.2.3 Methods for index-2 DAEs

To numerically compute the dynamics of a constrained multibody system formulated as a semi-explicit

system of index 2 as in (1.23) , we can use half-explicit or implicit methods.
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2.2.3.1 Half-explicit methods

Half-explicit schemes were initially introduced by V.Brasey and E.Hairer and we can cite their well

known scheme in its 4th order and 5th order forms: HEM4 and HEM5 [25, 28, 66]. The discretization

of the equations of motion in the HEM5 scheme is























M(Qi)V̇ i = F (Qi, Vi, tn + cih) +GT (Qi)Λi

Q̇i = Vi

G(Qi)Vi = 0, i = 1 . . . 8,

(2.56)

where the stages are defined by



















Qi = qn + h
∑

j<i

aijQ̇j ,

Vi = vn + h
∑

j<i

aij V̇ j , i = 1 . . . 8.
(2.57)

The computation of coefficients ci and aij is explained in [26]. At each stage, the estimations of

position Qi and velocity Vi are explicitly computed thanks to (2.57), while the acceleration V̇i and

the Lagrange multiplier Λi are obtained by solving the implicit system





M(Qi) −GT (Qi)

G(Qi+1) 0









V̇ i

Λi



 =





F (Qi, Vi, tn + cih)

ri



 , i = 1 . . . 8, (2.58)

where

ri = −
G(Qi+1)

hai+1,i
(vn + h

i−1
∑

j=1

ai+1,j V̇ j). (2.59)

Note that the matrix in (2.58) is not necessarily symmetric since we evaluate the first line of (2.56)

at tn + cih and the third line of (2.56) at tn + ci+1h to form the linear system. At the end of the time

step, the numerical solution is given by

qn+1 = Q9 = qn + h

8
∑

i=1

biQ̇i (2.60a)

vn+1 = V9 = vn + h

8
∑

i=1

biV̇ i, (2.60b)

with bi = a9i. In order to get the acceleration and the Lagrange multiplier at the end of the time

step, an additional linear system has to be solved





M(qn+1) −GT (qn+1)

G(qn+1) 0









v̇n+1

λn+1



 =





F (qn+1, vn+1, tn+1)

rn+1



 (2.61)
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where rn+1 = −Gqq(vn+1, vn+1) = −(
dG(q)

dt
v)(qn+1,vn+1,tn+1). This method is of order 5 for the

positions and the velocities, and of order 3 for the Lagrange multipliers.

In the case of the HEM5 solver, the estimations of velocities are built in such a way that there is

no drift of the constraints at the velocity level in the internal stages. Indeed, from Equation (2.58),

one can deduce that

G(Qi+1)V̇ i =
G(Qi+1)

hai+1,i
(vn + h

∑

j<i

aij V̇ j) , ∀i = 1 . . . 7. (2.62)

Then, we have

G(Qi+1)vn + hai+1,iG(Qi+1)V̇ i + hG(Qi+1)
∑

j<i

aij V̇ j = 0, ∀i = 1 . . . 7. (2.63)

On the other hand, from Equation (2.57), by multiplying the second equation by G(Qi+1), one can

deduce that

G(Qi+1)Vi+1 = G(Qi+1)vn + hG(Qi+1)
∑

j<i

aij V̇ j

= G(Qi+1)vn + hai+1,iG(Qi+1)V̇ i + hG(Qi+1)
∑

j<i

aij V̇ j

= 0.

(2.64)

Finally, from Equation (2.63), we have

G(Qi)Vi = 0 , ∀i = 1 . . . 8. (2.65)

For the last stage, on the one hand, we have

G(Q9)V̇ 8 =
G(Q9)

hb8
(vn + h

∑

j<8

biV̇ j), (2.66)

and on the other hand

V9 = vn + h
∑

j≤8

biV̇ j . (2.67)

Multiplying the last equation by G(Q9), we obtain

G(Q9)V9 = G(Q9) vn + hG(Q9)
∑

j≤8

biV̇ j = G(Q9) vn + h b8G(Q9)V̇ 9 + hG(Q9)
∑

j≤7

biV̇ j (2.68)

Finally, we can write G(Q9)V9 = 0.

For more details about half-explicit methods, the reader is referred to [13, 66]. It is worth noting

that half-explicit methods ensure the enforcement of the velocity level constraints since they are

directly solved, however their is still a drift of the position constraints that must be treated properly.
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2.2.3.2 Partitioned Runge-Kutta methods

Half-explicit schemes suffer from an order reduction when it comes to the calculation of the Lagrange

multipliers [12]. However the problem can be avoided by improving the approximation of the Lagrange

multipliers, for this we refer to [12] in which the author suggests to introduce an additional stage to

get a better approximation of λn+1 and substitute the first stage by an explicit Runge-Kutta stage.

These methods have been given the name of Type B Half-Explicit schemes, most popular examples

include the PHEM56 scheme of Murua [101]. With this class of methods, the discretization reads























Q̇i = Vi

M(Qi, τi)V̇i = F (Qi, Vi, τi) +GT (Q̄i, τi)Λi

G(Q̄i, τ̄i)V̄i = 0,

(2.69)

where


























































































Qi = qn + h
∑

j<i

aijVj

Vi = vn + h
∑

j<i

aij V̇j

Q̄i = qn + h
∑

j≤i

āijVj

V̄i = vn + h
∑

j≤i

āij V̇j

τi = tn + cih

τ̄i = tn + c̄ih.

(2.70)

The coefficients aij are the components of a strictly lower triangular matrix A and āij are the co-

efficients of a lower triangular matrix Ā. The PHEM56 scheme is a 6-stage partitioned half-explicit

method of order 5. At each stage, the accelerations and the Lagrange multipliers are evaluated with:





M(Qi, τi) −GT (Qi, τi)

G(Q̄i, τ̄i) 0









V̇i

Λi



 =





F (Qi, Vi, τi)

ri



 (2.71)

with ri = −
G(Q̄i, τ̄i)

hāi,i
(vn + h

i−1
∑

j=1

āi,j V̇ j). Once again, we are dealing with a non-symmetric matrix in

(2.71). The acceleration an+1 and the multipliers λn+1 at the end of the time step can be evaluated

with one of the following two solutions:

• Solution 1: Use (2.71) with: Q̄i = Qi = qn+1, V̄i = Vi = vn+1 and replace ri with

Gqn+1qn+1
(vn+1, vn+1).
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• Solution 2: adding a 7th stage

Compute Q̄7 = qn + h
∑

j≤i ā7jVj

Solve





M(Q6, τ6) −GT (Q6, τ6)

G(Q̄7, τ̄7) 0









an+1

λn+1



 =





F (Q6, V6, τ6)

r7



 . (2.72)

The solution at the end of the time step is given with qn+1 = Q̄6 and vn+1 = V̄6. The PHEM56 schemes

solves the constraints at the velocity level. Therefore, at each time step, we verify G(Q̄i)V̄i = 0. This

scheme is of order 5 for the positions and velocities, and of order 3 for the Lagrange multipliers [12].

2.2.3.3 Generalized-α schemes for index-2 DAEs

The most popular technique to overcome the issue of violation of the position constraints in the index–

2 formulation is certainly that due to Gear/Gupta/Leimkuhler [56] who added the position constraints

to the equations of (1.23) and gave rise to the GGL method, where the equations of motion read



































q̇ = v +GT (q)µ

M(q)v̇ = F (q, v, t) +GT (q)λ

G(q)v = 0

g(q) = 0.

(2.73)

As seen in the first equation of (2.73), this method requires the introduction of additional Lagrange

multipliers µ that vanish analytically µ(t) = 0. In [56] the authors solve (2.73) using the BDF schemes.

The GGL method has been extended to the case of multibody systems with unilateral constraints,

as in the work of Acary [3] where the GGL method is used to enforce the position and the velocity

constraints in the Moreau-Jean time-stepping scheme, and the work of Brüls et al. [31] that has

already been presented in section 2.1.2.

In [91], C. Lunk and B. Simeon present a customization of the generalized–α to the index-2

DAE case based on the idea of Gear/Gupta/Leimkuhler.Therefore, using (2.53) and introducing the
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holonomic constraints, the discretization of the equations of motion reads






















































M(qn+1)
qn+1 − qn

h
=M(qn+1)(vn + h(

1

2
− β)an + hβan+1) + h

(

(
1

2
− β̄)GT (qn) + β̄GT (qn+1)

)

λn+1

M(qn+1)
vn+1 − vn

h
=M(qn+1)((1− γ)an + γan+1) +

1

2
(GT (qn)λn+1 +GT (qn+1)µn+1)

(1− αm)M(qn+1)an+1 = αfF (qn, vn, tn) + (1− αf )F (qn+1, vn+1, tn+1)− αmM(qn)an

G(qn+1)vn+1 = 0

g(qn+1) = 0,

(2.74)

where a denotes the acceleration-like variable. We can mention that in addition to the classical

coefficients (β, αm, αf and γ) of the α–method, there is a new parameter β̄ that is introduced in the

first equation of (2.74). The second order convergence for position and velocity is proved in [91], first

order accuracy is ensured for the Lagrange multipliers. Separately, Jay and Negrut [78] also applied

the generalized-α method to the GGL formulation, leading to a discretization that is almost the same

as the one in (2.74).

The generalized-α scheme can be adapted to the resolution of the dynamics described by the

index-2 DAE (1.23). The discretization of the system is then























qn+1 = qn + hq̇n + (
1

2
− β)h2an + 2βhan+1

q̇n+1 = q̇n + (1− γ)han + γhan+1

G(qn+1)vn+1 = 0,

(2.75)

In this case, the correction step is performed using Newton iterations to solve the linear system




β
′

M(qn+1, tn+1) + γ
′

Ct(qn+1, q̇n+1, tn+1) +Kt(qn+1, q̇n+1, tn+1) −GT (qn+1)

G(qn+1) 0









∆q̇

∆λ



 =





Rq

G(qn+1)vn+1.





(2.76)

where β
′

= 1−αm

hγ(1−αf )
and γ

′

= hβ
γ , Rq =M(qn+1)q̈n+1 − F (qn+1, vn+1, tn+1)−GT (qn+1)λn+1.

While the scheme in (2.74) takes into account only the holonomic constraints, a more interesting

and general extension of the generalized–α method is proposed in [79] that also takes into account

nonholonomic constraints as well as non-constant mass matrices.

Starting from the underlying ODE

q̈ =M−1(q)(F (q, v, t) +GT (q)λ), (2.77)

the authors in [133] wanted to bring a solution to the problem of the numerical oscillations that

appear when applying the α-schemes family to index-2 or index-3 DAEs. By differentiating twice the
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constraints, projecting on the position and velocity constraints manifold and eliminating an+1 from

the equations, the discretization of (2.77) reads:


































Mn+1(qn+1 − q̂n)− β̂h2Fn+1 +GT
n+1νn+1 = 0

Mn+1(vn+1 − v̂n)− γ̂hFn+1 +GT
n+1µn+1 = 0

Gn+1vn+1 = 0

g(qn+1) = 0,

(2.78)

where






































q̂n = qn + hvn + h2
(

(
1

2
− β)an − βαM−1

n (Fn −GTλn)
)

v̂n = vn + h
(

(1− γ)q̈n − γαM−1
n (Fn −GTλn)

)

β̂ = β(1 + α)

γ̂ = γ(1 + α).

(2.79)

The Lagrange multiplier ν results from the projection on the position constraints:






M(q)(q − q̃) +GT (q)ν = 0

g(q) = 0,
(2.80)

while µ results from the projection on the velocity constraints:






M(q)(v − ṽ) +GT (q)µ = 0

G(q)v = 0,
(2.81)

where q̃ and ṽ are respectively the projections of the positions and velocities on the manifolds. We

note that this scheme is nothing but the Generalized-α scheme applied to the so-called underlying

ODE. While in the classical generalized-α for an index-2 DAE, the velocity constraints are solved

exactly, this scheme needs additional methods (projection on the constraints manifold as in (2.81)),

which represents additional computational time.

The method can also be applied for the index-1 formulation using the coordinate split formulation.

For instance if an annihilation matrix P (q) is used such that P (q)GT (q) = 0, the method reads


































Pn+1

(

Mn+1(qn+1 − q̂n)− β̂h2Fn+1

)

= 0

Pn+1

(

Mn+1(vn+1 − v̂n)− γ̂hFn+1

)

= 0

Gn+1vn+1 = 0

g(qn+1) = 0.

(2.82)

Numerical tests have been performed that show that the proposed algorithms are stable and able to

damp out the spurious oscillations.
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2.2.4 Methods for index-3 DAEs

Index-3 DAEs are difficult to solve. Indeed, dedicated schemes face difficulties to deal with the

instabilities that arise from the constraints and it is usually advisable to reduce the index to compute

the dynamics. However, many authors have proposed extensions of some classical schemes initially

designed for ODEs. To cite but one example, the joint work of M. Arnold and O. Brüls.

In [32], M. Arnold and O. Brüls present an extension of the generalized–α method for index–3

DAEs, in which the discretization of the state variables (q and q̇) is the same as in (2.53), with the

discretization of the position constraints as

g(qn+1) = 0. (2.83)

This scheme is based on a prediction step and a correction step where some Newton iterations are

performed in order to reduce the dynamical and the constraint residuals defined by






Rq =M(qn+1, tn+1)q̈n+1 − F (qn+1, q̇n+1, tn+1)−GT (qn+1)λn+1

Rλ = g(qn+1).
(2.84)

The Newton iterations amount to solving the following linear system




β
′

M(qn+1, tn+1) + γ
′

Ct(qn+1, q̇n+1, tn+1) +Kt(qn+1, q̇n+1, tn+1) −GT (qn+1)

G(qn+1) 0









∆q̈

∆λ



 =





Rq

Rλ



 ,

(2.85)

where β
′

= 1−αm

h2β(1−αf )
, γ

′

= γ
hβ , Kt = ∂(Mq̈−F+G⊤λ)

∂q is the stiffness matrix, and Ct = −∂F
∂q̇ is

the damping matrix. The second order convergence of position, velocity and acceleration is ensured

provided that the coefficients satisfy (2.54).

Negrut et al. have also worked on the adaptation of the HHT scheme for constrained multibody

systems in [103]. The authors propose a discretization of the dynamics that reads

1

1 + α
(Mq̈)n+1 + (GTΛ− F )n+1 −

α

1 + α
(GTΛ− F )n = 0. (2.86)

Methods to estimate the integration error and to control the time step size are also proposed. The

authors compared their scheme to the GStiff solver on mechanical systems with large number of

degrees of freedom. GStiff is a solver of stiff mechanical systems, it can manage index-3, index-2 and

index-1 DAE forms of the equations of motion, which are integrated using BDF methods. Results

of the comparisons show that the GStiff solver is 3 to 5 times more time-consuming than the HHT

scheme. This result may be explained by the fact that the BDF method faces stability problems and

accuracy issues when the step size changes frequently. Therefore, the GStiff solver needs tight time

steps to handle the accuracy demanded by the user.
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2.2.5 Stability of the DAEs numerical solvers

The complexity of solving the initial index-3 DAE form of the equations of motion comes from the

propagation of the errors in the dynamical variables: positions, velocities, accelerations and contact

forces. These errors can make the integration of the dynamics very difficult and must therefore be

treated properly. In this section, we will analyze the propagation of errors and recall the scaling that

has been proposed to obtain well-conditioned systems. In [23], the authors analyze the propagation of

the errors in the dynamical variables computed from the integration of an index-3 formulation using

the BDF family, which takes the form
∑k

i=0 αiyn−i = hβ0f(tn, yn). However, results may be extended

to other numerical schemes. The authors address the problem with the assumption that the mass

matrix is the identity, as






















q̇ = v

v̇ = F (q, q̇, t) +GT (q)λ

g(q) = 0.

(2.87)

When using implicit schemes, some Newton iterations have to be performed, which take the form of

a linear system

Az = b. (2.88)

In our case, the iteration matrix is

A = hJn =











α0I −hI 0

hX α0I + hY −hG

hGT 0 0











, (2.89)

where














X = −
∂F

∂q
(q, q̇, t)−GT (q)λ

Y = −
∂F

∂v
(q, q̇, t).

(2.90)

The inverse of the iteration matrix is given by

A−1 = (hJn)
−1

=
1

α0











I − T γ(I − T )R−1 γ−1R−1GS

−γ−1T (I − T )R−1 γ−2R−1GS

−γ−2SGT −γ−1SGTR−1 γ−3S











, (2.91)
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where






































R = I + γY + γ2X

S = (GTR−1G)
−1

T = R−1GSGT

γ =
h

α0
.

(2.92)

The authors use a result of Petzold and Lötstedt stating that the accuracy of the ith component of

the solution of (2.88) can be evaluated as

|∆zi| ≤ rǫ
∑

j

|(A−1)ij | ‖A‖∞‖z +∆z‖∞, (2.93)

where r is some unknown coefficient that is of order of the size of A [72], ǫ is the machine accuracy

and






(A+∆A)(z +∆z) = b

‖∆A‖∞ ≤ rǫ ‖A‖∞.
(2.94)

Therefore, using (2.91) and (2.93), the round-off errors are:



































∆q = O(h−1)

∆v = O(h−2)

∆λ = O(h−3)

C = ‖A‖∞‖A−1‖∞ = O(h−3).

(2.95)

We can see then that when the time step size becomes tight the Lagrange multipliers and the con-

ditioning number C deteriorates quickly. To remedy this, the authors propose not only a left and a

right preconditioning, but also to scale the λ which is the most affected by the round-off errors. The

dynamics reads:






















q̇ = v

v̇ = F + sGT λ̃

g = 0,

(2.96)

where λ̃ = λ
s and s = O(h−2) is the scaling factor. The Newton iterations are modified as Ãz̃ = b̃,

where






















Ã = DLADR

z̃ = DR
−1z

b̃ = DLb.

(2.97)



2.2. NUMERICAL METHODS FOR ODES AND DAES 69

DL and DR are the left and the right preconditioning matrices, respectively. They are defined by

DL =











I 0 0

0 hI 0

0 0 h−1I











, DR =











I 0 0

0 h−1I 0

0 0 h−2I











. (2.98)

When using the left-right-preconditioning, the round-off errors are:



































∆q = O(h0)

∆v = O(h0)

∆λ̃ = O(h0)

C = ‖A‖∞‖A−1‖∞ = O(h0).

(2.99)

The authors have used this preconditioning on several mechanical systems, and proved that their

solution makes the variables less sensitive to round-off errors, better than using only left or right

preconditioning.

In [24], the authors have performed an asymptotic analysis on the index-3 DAE formulation of

the dynamics, integrated this time using the Newmark family. After eliminating the acceleration-like

variable an+1, the index-3 DAE (1.22) can be discretized using the Newmark scheme as follows:































qn+1 − qn = h
(β

γ
vn+1 + (1−

β

γ
vn)

)

−
h2

2

(

1−
2β

γ

)

an

1

γh
Mn+1(vn+1 − vn) = Fn+1 +GT

n+1λn+1 −
(

1−
1

γ

)

Mnan

g(qn+1) = 0.

(2.100)

This system is linearized and solved using Newton iterations in which a linear system of the form

(2.88) is solved with

A =











X 1
γhU −G

I −βh
γ I 0

GT 0 0











, (2.101)

where


























X = −
∂F

∂q
(qn+1, vn+1, tn+1)−GT (qn+1)λ

Y = −
∂F

∂v
(qn+1, vn+1, tn+1)

U =M(qn+1) + hγY.

(2.102)
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b is defined as

b =











− 1
hγMn+1(vn+1 − vn) + (Fn+1 +GT

n+1λn+1)−
1
γMnan

)

−(qn+1 − qn) + h
(

β
γ vn+1 + (1− β

γ vn)
)

− h2

2

(

1− 2β
γ

)

an

−g(qn+1)











. (2.103)

The inverse of this iteration matrix is given with

A−1 =











h2βW WU T−1GR−1

hγW γ
hβ (I −WU) − γ

hβT
−1GR−1

−R−1GTT−1 1
h2βR

−1GTT−1U 1
h2βR

−1











, (2.104)

where


































T =M + hγY + h2βX

R = GTT−1G

S = GR−1GT

W = T−1(I − ST−1).

(2.105)

Therefore, we can write

lim
h→0

A =











O(h0) O(h−1) O(h0)

O(h0) O(h1) 0

O(h0) 0 0











, (2.106)

and

lim
h→0

A−1 =











O(h2) O(h0) O(h0)

O(h1) O(h−1) O(h−1)

O(h0) O(h−2) O(h−2)











. (2.107)

Likewise, we have

lim
h→0

∆b =











O(h0)

O(h0)

O(h0)











. (2.108)

Expanding (2.88) in Taylor series about ǫ = 0 and after some computations that are not presented

here, the authors obtain

| lim
h→0

zi(h, ǫ)| ≤
∑

j

| lim
h→0

A−1
ij (h, ǫ)| | lim

h→0
bj(h, ǫ)|

≤ ‖ lim
h→0

A−1(h, ǫ)‖
∞
‖ lim
h→0

b(h, ǫ)‖
∞
.

(2.109)
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The result expressed in (2.109) provides a quantification of the effect of a perturbation of b on the

solution. Finally, using (2.107), (2.108) and (2.109), the authors deduce the round-off errors:


































∆q = O(h0)

∆v = O(h−1)

∆λ̃ = O(h−2)

C = ‖A‖∞‖A−1‖∞ = O(h−3).

(2.110)

They propose a left-right-conditioning in which the matrices are

DL =











βh2I 0 0

0 I 0

0 0 I











, DR =











I 0 0

0 γ
βhI 0

0 0 1
βh2 I











, (2.111)

where γ and β are the coefficients of the Newmark schemes. This preconditioning lead to reduce the

effects of the round-off errors, which become


































∆q = O(h0)

∆v = O(h0)

∆λ̃ = O(h0)

C = ‖A‖∞‖A−1‖∞ = O(h0).

(2.112)

In this section, we could form a quantitative idea on the amplifications of the errors and perturba-

tions, w.r.t to the time step size. Pre-conditioning the involved matrices proves to be a good solution

to this issue, despite the additional computational effort related to this method.

2.2.6 A few words on the KKT systems

We note that the matrix that appears in equation (1.25), called the augmented matrix, is met very

often. When the matrix M is positive definite, the problem formulated in (1.25) can be written as a

quadratic optimization problem, as described in [105]. Indeed, let us consider the quadratic problem

defined as

minimize
v

p(v) =
1

2
vTM(q)v + vT d

subject to G(q)v = b.

(2.113)

Let us assume that G(q) is full row rank. The first-order necessary condition for equation (2.113) to

have a solution v̂ is the existence of a variable λ̂ satisfying




M(q) −GT (q)

G(q) 0









v̂

λ̂



 =





−d

b



 . (2.114)



72 CHAPTER 2. NUMERICAL INTEGRATION OF THE EQUATIONS OF MOTION

In optimization, the augmented matrix is called the Karush-Kuhn-Tucker (KKT) matrix. Let R(q)

denote the null space matrix of the constraints matrix G(q), that is G(q)R(q) = 0. If RTMR is

positive definite, then the KKT matrix is nonsingular and the problem (2.114) has a unique solution

(v̂, λ̂) [105, lemma 16.1].

Another result on the existence of a solution of the KKT system (1.24) is given in [21]:

• if G(q) has full column rank and M(q) is positive semi-definite, then the KKT matrix in (1.24)

is non-singular if and only if ker(M(q)) ∩ ker(G(q)) = 0. In this case, there is a unique solution

(q̈, λ) for (1.24).

• if G(q) has an arbitrary rank but satisfies the compatibility of the constraints, that is to say

dG
dt (q)q̇ ∈ Im(G(q)), then a solution (q̈, λ) exists. Moreover, (q̈, GT (q)λ) are unique if and only

if ker(M(q)) ∩ ker(G(q)) = 0 is satisfied.

It may happen that the KKT matrix be assymetric as in (2.58) or (2.71). In [21] such systems are

proved to have a unique solution if and only if the rank of the KKT matrix is n +m. Let us recall

that in (2.58) and (2.71) M(q) ∈ R
n×n and G(q) ∈ R

m×n.

2.2.7 Time step selection

A general method to compute the optimal step size is the halved step sizes method, which is described

in the scheme of Fig.2.3. We can define two approximations of the solution at the end of two successive

yn yn+1 y0n+2

y1n+2

h h

2h

Figure 2.3: halved steps method

time steps, each one of size h: y1n+2 obtained with a direct integration starting from time tn to time

tn+2, and a more precise one y0n+2 obtained with an integration from tn to tn+1 and then to tn+2.

In order to explain this method, let us consider that the numerical approximation is obtained with a

Runge Kutta method of order p. Let yn+1 be the approximation of y(tn + h). The truncation error

of yn+1 is:

l1 = y(tn + h)− yn+1 = Chp+1 +O(hp+2), (2.115)

where C depends on the coefficients of the method and also on the derivatives of f of order p+1. The

error of y0n+2 contains the transported error from tn to tn+1, added to the error from tn+1 to tn+2,
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therefore:

l02 = y(tn + 2h)− y0n+2 = 2Chp+1 +O(hp+2). (2.116)

Similarly, the error of y1n+2 is

l12 = y(tn + 2h)− y1n+2 = C(2h)
p+1

+O(hp+2). (2.117)

From equations (2.116) and (2.117), we can eliminate the constant C and deduce a better extrapo-

lated approximation ỹ2 for y(tn + 2h) as











y(tn + 2h) = ỹ2 +O(hp+2)

ỹ2 = y0n+2 +
y1n+2 − y0n+2

2p − 1
.

(2.118)

Finally, the optimal step size is defined as

hopt = h

(

tol

‖ ỹ2 − y0n+2 ‖

)
1
p

, (2.119)

or

hopt = s h

(

tol

‖ y1n+2 − y0n+2 ‖

)
1
p

, (2.120)

where tol is the user defined precision, s is a safety coefficient that increases the probability to have an

acceptable error for the next step, h is the size of the previous step and p is the order of consistency

of the method. But this method is expensive from the computational point of view.

2.2.7.1 Time step control for the generalized-α scheme

To evaluate the integration error of the generalized-α scheme, we follow the methodology proposed

by Géradin and Cardona in [57] and Negrut et al. in [103] for the HHT schemes family. The exact

value of the positions vector can be approximated by a limited Taylor series development around

tn+1 = tn + h:

qe(tn + h) = qn + hq̇n +
h2

2
q̈n +

h3

6

dq̈n
dt

+O(h4). (2.121)

The integration error is computed as

ln = qn+1 − qe(tn + h). (2.122)

By substituting the expression of qn+1 from (2.53) into (2.122), we get:

ln = h2(
1

2
− β)an + h2βan+1 −

h2

2
q̈n −

h3

6

dq̈n
dt

+O(h4). (2.123)
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The third derivative dq̈n
dt of the position can be approximated by

dq̈n
dt

=
q̈n+1 − q̈n

h
+O(h). (2.124)

By substituting this expression of
...
qn into (2.123) and using the relations in (2.53), we obtain

ln = qn+1 − qn −
1

h
q̇n −

h2

3
q̈n −

h2

6
q̈n+1 +O(h4). (2.125)

We compute the optimal time step size using (2.120) with p = 2.

2.2.7.2 Time step selection for the HEM5 solver

The halved step sizes method is very expensive since the calculation of the truncation error needs many

evaluations of the derivatives. To avoid this, we will rather use a method that is suited to Runge-

Kutta schemes: Embedded Runge-Kutta formulas. These methods were first proposed by Merson

(1957), further methods have been proposed by Fehlberg (1964). They provide 2 approximations of the

solution using the same number of estimations of the right-hand side member. These approximations

are used to compute the truncation error and then the optimal step size for a much lower price than

with the halved step sizes method.

Concerning the HEM5 solver, V.Brasey and E.Hairer [26] define an error based on the 7th and 8th

estimations

l1 = ‖qn+1 −Q8‖s = O(h4) (2.126)

l2 = ‖qn+1 − qn − h(
5

2
V7 −

3

2
V8)‖

s
= O(h3). (2.127)

Finally:

ln =
l1
2

l1 + c l2
= O(h5), (2.128)

where c is a scalar that ensures a good combination between l1 and l2 such that ln is of order 5. This

scalar is set by default to 0.01 in [26]. The optimal step size is computed with Eq. (2.120) with p = 5.

We experimentally studied the influence of the coefficient c by evaluating the order of the error on

the slider-crank mechanism discussed in Section 3.1. For different values of c, and for different values

of the time step size, we compute the error in (2.128). In Fig.2.4, we draw the integration error with

respect to the time step size, and we observe an order 5 of the error, for all the values of c. However,

we also see that this error is reduced when we increase the value of c from 0.001 to 10. We can

say that the coefficient c is problem-dependent and its calibration is therefore hard to perform in a

unique manner. A a consequence, we cannot clearly know if the computed error ln is over-estimated

or under-estimated unless we know an analytical solution of the problem which enables us to evaluate

the integration error.
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Figure 2.4: Order of the integration error of HEM5

2.2.7.3 Time step selection for the PHEM56 scheme

The integration error is estimated with:

e = ||qn+1 − Q̃7|[, (2.129)

where Q̃7 = qn + h
∑

j≤i b̄jVj and V7 = V̄6 = vn+1 . Finally, the optimal time step is given with

Eq. (2.120) where p = 5.

2.2.7.4 Time step selection for the 4th order RK-Fehlberg method

The computational error is the difference between the 5th and 4th order estimations of the solution,

as

e = ‖yn+1
(5) − yn+1

(4)‖ (2.130)

Finally, the expression of the optimal step size is given by Eq.(2.120) with p = 4.

2.2.8 Dense output

We often need to evaluate a variable at some points which do not correspond to those of the dis-

cretization times. For instance, in the event-driven strategy, we need to detect the time of occurrence

of a new event, an impact or a detachment for example. For this, we use either an interpolation of the
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required variables, or even better, a dense output method, which is a continuous function which will

provide the value of a given variable at any given time at a given accuracy. In the case of a contact,

we need to evaluate the gap function g(q) at each point of the step to detect the time t∗at which it

vanishes in a given time interval [tn, tn+1], as illustrated in Fig. 2.5.

Figure 2.5: Example of a contact active during a step

2.2.8.1 Hermite interpolation

This quintic Hermite interpolation consists in finding a curve ψ(s) that fits






























































ψ(0) = q0

ψ̇(0) = v0

ψ̈(0) = a0

ψ(1) = q1

ψ̇(1) = v1

ψ̈(1) = a1,

(2.131)

considering that 0 and 1 are the extremities of the interval of interpolation. Using the basis function

representation:

ψ(s) = H0(s)q0 +H1(s)v0 +H2(s)a0 +H3(s)a1 +H4(s)v1 +H5(s)q1 (2.132)

one needs to find polynomials that satisfy the conditions announced above. These polynomials are






























































H0(s) = 1− 10s3 + 15s4 − 6s5

H1(s) = s− 6s3 + 8s4 − 3s5

H2(s) = 0.5s2 − 1.5s3 + 1.5s4 − 0.5s5

H3(s) = 0.5s3 − s4 + 0.5s5

H4(s) = −4s3 + 7s4 − 3s5

H5(s) = 10s3 − 15s4 + 6s5.

(2.133)
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The roots of ψ(s) can be computed using a bisection method for example. The first event, whose

time of occurrence corresponds to the smallest real value, is handled first. The parameter s corresponds

in our case to

s =
t− tn
h

, (2.134)

where t is time at which we would like to evaluate the solution, tn is the beginning of the time step

and h is the time step size.

2.2.8.2 Dense output for the HEM5 scheme

The dense output proposed by V.Brasey and E.Hairer [26, 27] is of order 4 and satisfies the velocity

constraints. Basically, the approach reads






















































u(t) = yn + h

s⋆
∑

i=1

b̂i(θ)F (Yi), t ∈ (tn, tn+1), θ =
t− tn
h

, Yi = [qi, vi]
T

g(u(t)) = 0

Yi = yn + h

i−1
∑

j=1

aijF (Yj)

g(Yi) = 0.

(2.135)

In order to have a 4th order dense output, it is proved in [27] that we should have :


































b̂1(θ) = 0, ∀θ ∈ [0, 1]

b̂2(θ) = 0, ∀θ ∈ [0, 1]

b̂3(θ) = 0, ∀θ ∈ [0, 1]

b̂4(θ) = 0, ∀θ ∈ [0, 1].

(2.136)

The HEM5 scheme comprises 8 internal stages in addition to the last stage that gives the numerical

solution. This last stage is considered as the 9th stage of the dense output, which therefore contains

10 stages, thus s⋆ = 10. The method is as follows:

• Let us denote: Q9 = qn+1 and V9 = vn+1.

• Construct the 10th stage for the dense output, that is:

1. Form Q10 = qn + h(a10,6V6 + a10,7V7 + a10,9V9)

2. Compute V̇9 and Λ9 with




M(Q9) −GT (Q9)

G(Q10) 0









V̇ 9

Λ9



 =





F (Q9, V9)

r9



 , (2.137)
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where r9 = −
G(Q10)

ha10,9
(vn + h(a10, 6V̇6 + a10, 7V̇7 + a10,9v̇n+1)).

3. Form V10 = vn + h(a10,6V̇6 + a10,7V̇7 + a10,9V̇9)

• Construct vectors pi and wi that satisfy:







pi = Di4V4 +Di5V5 +Di6V6 +Di7V7 +Di8V8 +Di9V10, i = 1, 2, 3, 4

wi = Di4V̇4 +Di5V̇5 +Di6V̇6 +Di7V̇7 +Di8V̇8 +Di9V̇9, i = 1, 2, 3, 4,
(2.138)

where Dij are some coefficients.

• The dense outputs qd(θ) and vd(θ) for the position and velocity are given with:







qd(θ) = qn + hθ(p1 + θ(p2 + θ(p3 + θp4)))

vd(θ) = vn + hθ(w1 + θ(w2 + θ(w3 + θw4))).
(2.139)

This fitting enables to construct a polynomial approximation Pg

Pg(t) = g(qd(t)), (2.140)

of the gap function, and thus makes it easier to look for a root of Pg to detect the occurrence of a

contact. Moreover, if we need to detect some detachment, then we need to evaluate the Lagrange

multipliers at any time during the simulation. Indeed, a change in the sign of the multipliers during

a time step would indicate that a detachment has happened. In this section, we propose a dense

output for the accelerations by taking the time derivative of the velocities, and we propose one for the

Lagrange multipliers using linear combinations of the 4th to 6th estimations of these variables. These

dense outputs read:






















q̈d(θ) = w1 + 2θw2 + 3θ2w3 + 4θ3w4

xi = Di4Λ4 +Di5Λ5 +Di6Λ6 +Di7Λ7 +Di8Λ8 +Di9Λ9 i = 1, 2, 3, 4

λ(θ) = x1 + 2θx2 + 3θ2x3 + 4θ3x4.

(2.141)

Let us consider a slider-crank described in Section 3.1.2. We perform a simulation with a time

step of 10−6 in which we compute accelerations and Lagrange multipliers using Eq.(2.61). The output

of this simulation will be considered as a reference solution. We also perform other simulations using

larger time steps: 0.05, 0.01, 0.005 and 0.001. For each of these simulations, we compute positions

and velocities using the dense output formulas. These values will be compared to the reference values,

which will enable us to observe the order of the dense output. On the other hand, we compute the

accelerations and Lagrange multipliers by two means:
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(a) Slider crank : error in q (b) Slider crank : error in v

(c) Slider crank : error in v̇ (d) Slider crank : error in λ

Figure 2.6: The slider crank: errors made when using the dense output

1. Using equation (1.25) as




M(q(t)) −GT (q(t))

G(q(t)) 0









q̈(t)

λ(t)



 =





F (q(t), v(t), t)

R(t)



 , (2.142)

with R(t) = −Gq(t)q(t)(v(t), v(t)). q(t) and v(t) being the positions and velocities given by the

dense output (2.139).

2. Using the dense output of λ (2.141).

Results of the comparisons are presented in Fig.2.6. For the positions and velocities, we observe an

order close to 5. When accelerations and Lagrange multipliers are computed from the linear system
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(1.25), the error is of order 4 but the construction of the block matrix that appears in (1.25) and

the evaluation of the second member of the acceleration-level constraints are time consuming. It is

worth noting that the obtained orders meet the expected theoretical order for the dense output of

the positions, velocities and accelerations, which is 4 [27]. There is no clear theoretical result for the

order to expect for the dense output of the Lagrange multipliers, but we know that this order cannot

exceed the order of the approximation given by the discretization of the HEM5 method, which is 3.

When the accelerations are computed with (2.141), the error is of order 3. Thus, we lose one order of

magnitude on the precision with respect to the first method. However we do not have any additional

numerical effort but forming linear combinations of variables that have already been calculated in the

stages. Let us recall that the theoretical order of the Lagrange multipliers computed with the HEM5

scheme is 3 and can break-down as discussed in section 2.2.3.2. The dense output of the Lagrange

multipliers may be used to find the time when it becomes null and therefore detect a detachment.

2.3 Conclusion

In this chapter, we discussed two major integration families that are used for the integration of

the equations of motion of nonsmooth multibody systems, namely: event-driven schemes and time-

stepping schemes. Event-driven methods stop at every single event, handle the event and continue

the integration starting from the time of occurrence of the event. These methods allow for using high

order DAE solvers during the smooth period and require accurate methods for detecting the events

in order not to break down the order of the DAE scheme. Event-driven schemes are efficient for

systems with few number of contacts and become inconsistent and time-consuming for large number

of contacts. Time-stepping scheme provide a unified framework for solving both the smooth and the

nonsmooth dynamics. They have a low local order in general, but they have proved their efficiency

for large number of contacts. Furthermore, time-stepping schemes have convergence proofs as well as

energy conservation properties [63].

Moreover, a summary of several numerical methods for index-3, index2 and index-1 DAEs was

presented. The literature is abundant with numerical integrators for ODEs and DAEs, however there

is a few results ([102, 103, 12] for example) proving the efficiency of these methods, by for example

testing them on some industrial benchmarks. Neverthless, the bibliography presented in section 2.2

enabled us to select several numerical methods that from a theoretical point of view seem to be suitable

for the integration of the dynamics of multibody systems with unilateral and bilateral constraints. The

chosen methods are then tested on several academic and industrial benchmarks and the results are
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addressed in Chapter 3.
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Chapter 3

Comparison of several numerical

schemes

The literature is abundant with numerical integration methods for ODEs and DAEs. The selection of

the most suitable scheme must be carried out with many considerations in mind. Apart from obtaining

a numerical approximation of the solution with a high accuracy and with the least numerical cost,

these considerations include:

• Handling bilateral constraints in case of closed kinematic chains. These constraints must be

enforced during the simulation, otherwise the obtained results will drift from the expected kine-

matics of the mechanism. When the discretized dynamics is solved with some numerical scheme

that does not enforce the constraints, additional methods have to be performed to correct these

constraints. However, this requires additional numerical effort. Therefore, the chosen method

should enforce as best as possible the constraints.

• Coping with stiff systems. When an inappropriate scheme is used to integrate stiff dynamics,

very tight time step sizes are required to perform the numerical integration, which slows down

the simulation. Through several examples, we will demonstrate that explicit and half-explicit

methods may fail in computing dynamics involving high frequencies.

• The knowledge of the contact forces is important in most practical applications. Therefore, the

chosen scheme has to provide good approximations of the Lagrange multipliers. In addition, the

checking of the status of the contacts involves the evaluation of the Lagrange multipliers at the

83
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impact times. Therefore, the schemes have to enable dense outputs for an accurate evaluation

of these variables.

• Taking into account the change of the status of the contacts in the framework of event-driven

schemes. Multistep methods are not considered in this chapter because of their lack of robustness

in handling impacts. Indeed, the solution has to be restarted after each impact. This requires

a step of initialization with another DAE integrator, involving many evaluations depending on

the order of the chosen multistep method.

This chapter is concerned with the analysis of several numerical schemes dedicated to index-3,

index-2 and index-1 DAEs in the context of an event–driven strategy: the generalized-α scheme for

index-3 DAEs and index-2 DAEs , HEM5 and PHEM56 for index-2 DAEs, and RK4 and Runge-

Kutta-Fehlberg for index-1 DAEs. The aforementioned schemes have been chosen based on the state

of the art presented in Chapter 2. We compare these schemes in terms of efficiency, violation of the

constraints and the way they handle stiff dynamics. Points of comparison include the drift of the

constraints which is an important feature when we have to update the index sets of the active unilat-

eral constraints, numerical efficiency and capability of handling stiffness. Comparisons are performed

on several academic examples and also on numerous industrial benchmarks that contain several non-

smooth additional effects, central in our study, such that the use of CAD description, with all the

geometric imperfections related to the design, also introducing discontinuities in the contact surface

description.

The work exposed in this chapter has been presented in a paper which has been submitted to the

journal Multibody System Dynamics, at the time this document is being written.

3.1 Comparisons on academic examples

In this section, we compare the four schemes that have been described in the previous sections,

namely, the HEM5, the PHEM56, the RKF and the generalized-α schemes. Several numerical tests

with different values of the tolerance on the integration error will be performed on four mechanisms,

using the same time step control strategy. The aim of these tests is to compare the selected solvers

in terms of computational effort and drift of the constraints. Table 3.1 presents the parameters of

time-step control strategy in (2.120). We set the tolerance on the drift of the constraints to a large

value (10−2) in order to prevent from a too severe requirement for certain schemes when applying the

time-step control strategy.



3.1. COMPARISONS ON ACADEMIC EXAMPLES 85

Table 3.1: Parameters for time step control

Integration toler-

ance (tol)

Minimum time

step

Tolerance for

nonlinear equations

solver for the

implicit integrators

Maximum drift

of g and ġ

safety factor (s)

[10−10, 10−2](*) 10−6s 10−10 10−2 0.9

(*) We vary the value of tol to compare the computational effort and the drift of the constraints

In order to be able to evaluate the behavior of the constraints when using the aforementioned

schemes, we make the choice of not correcting the constraints during the simulations of the academic

examples. Therefore, no stabilization or projection methods were used. In addition, the time step size

is only adapted to the truncation error, and not to the violation of the constraints. For the simulation

of the academic examples, we used a Python implementation of HEM5, PHEM56, RKF and the

generalized α-scheme (in its index-2 and index-3 versions). A few words about code implementation

are discussed in Annex B.

3.1.1 Four-bar linkage

In this section we consider the four-bar linkage system, with three bars linked with revolute joints and

the fourth one fixed to the ground, as described in Figure 3.1. This system is driven by a constant

torque of value τ = 6N.m applied at the first joint, and is described by the vector of generalized

coordinates q = [ϕ1, ϕ2, ϕ3]
T
. During the simulation of the motion of the bars, the lengths of the

bars must be kept constant. For this aim, we write two constraints







g1(q) = l1 cos(ϕ1) + l2 cos(ϕ2)− l3 cos(ϕ3)− d = 0

g2(q) = l1 sin(ϕ1) + l2 sin(ϕ2)− l3 sin(ϕ3) = 0
(3.1)

The equations of motion of the system can be written in the form of (1.18) with:

M(q) =











I1 +m1(l1/2)
2
+m2l1

2 0.5m2l1l2 cos(ϕ1 − ϕ2) 0

0.5m2l1l2 cos(ϕ1 − ϕ2) I2 +m1(l2/2)
2

0

0 0 I3 +m3(l3/2)
2











, (3.2)
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d

ϕ1

l1

ϕ2

l2

ϕ3

l3

Figure 3.1: Four-bar linkage

with I1 and I2 being the moments of inertia of the rods,

F (q, q̇, t) =











−(0.5m1l1 +m2l1)g cos(ϕ1) + 0.5m2l1l2 sin(ϕ2 − ϕ1)ϕ̇2
2 + τ

−0.5m2g l2 cos(ϕ2)− 0.5m2l1l2 sin(ϕ2 − ϕ1)ϕ̇1
2

−0.5m3g l3 cos(ϕ3)











, (3.3)

G(q) =





−l1 sin(ϕ1) −l2 sin(ϕ2) l3 sin(ϕ3)

l1 cos(ϕ1) l2 cos(ϕ2) −l3 cos(ϕ3)



 . (3.4)

The values of the parameters are given in Table 3.2.

The initial conditions of position and velocity are compatible with the constraints at both position

and velocity levels. We performed simulations with different values of the tolerance (tol) on the

truncation error ln, with the PHEM56 method, HEM5 solver, the Runge-Kutta-Fehlberg scheme and

the generalized α-schemes (index-2 and index-3 forms). The results are summarized in Table 3.3.
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Table 3.2: The four-bar-linkage characteristics

Initial conditions
q0 = [π3 , 0.24256387,

2π
3 ]

T
rad

v0 = [0, 0, 0]
T
m/s

Gravity g 9.81 m/s2

Inertial properties m1 = m2 = m3 = 1 kg

I1 =
m1l

2
1

12 , I2 =
m2l

2
2

12 , I3 =
m3l

2
3

12

Geometrical properties

l1 = 300 mm

l2 = 360.55 mm

l3 = 400 mm

d = 700 mm

Simulation characteris-

tics

tend = 2 s
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Table 3.3: Four-bar linkage: average time step size, simulation time ts, number of accepted steps, number of rejected steps and drift of the

constraints for different tolerances.

method tolerance average h ts accepted rejected ‖ g1 ‖∞ ‖ g2 ‖∞ ‖ ġ1 ‖∞ ‖ ġ2 ‖∞

HEM5

10−2 0.088 0.44 50 17 8.60 10−5 7.92 10−5 6.34 10−16 7.55 10−16

10−4 0.038 0.88 86 27 1.78 10−7 3.47 10−7 6.07 10−16 6.65 10−16

10−6 0.017 2.13 215 56 6.74 10−10 3.06 10−9 5.04 10−16 9.24 10−16

10−8 0.006 5.04 557 105 2.51 10−12 1.53 10−9 5.34 10−16 1.07 10−15

10−10 0.002 12.47 1188 445 2.33 10−15 1.52 10−9 7.13 10−16 9.83 10−16

PHEM56

10−2 0.090 0.21 45 7 6.80 10−4 6.97 10−4 5.99 10−16 5.37 10−16

10−4 0.054 0.34 64 20 2.27 10−5 1.21 10−5 2.97 10−16 4.23 10−16

10−6 0.023 0.77 128 49 3.36 10−7 7.08 10−8 7.35 10−16 6.34 10−16

10−8 0.011 1.77 291 83 4.38 10−9 1.86 10−9 6.24 10−16 7.17 10−15

10−10 0.004 4.31 699 269 4.36 10−11 1.52 10−9 8.53 10−16 8.65 10−16

RKF

10−2 9.97 10−3 2.54 109 10 3.29 10−5 1.76 10−5 3.36 10−5 1.86 10−5

10−4 0.016 2.05 99 31 2.64 10−4 1.07 10−4 2.76 10−4 1.04 10−4

10−6 0.008 4.60 214 72 3.85 10−6 2.74 10−7 3.78 10−6 3.66 10−7

10−8 0.003 12.49 504 106 1.29 10−7 2.37 10−9 1.29 10−7 1.12 10−8

10−10 0.001 29.30 1241 447 3.04 10−9 1.55 10−9 2.95 10−9 1.8 10−9

α-scheme,

position level

10−2 0.003 6.97 1146 451 3.33 10−16 1.66 10−16 9.91 10−4 9.97 10−4

10−4 0.002 7.06 1356 591 3.33 10−16 1.66 10−16 9.46 10−4 7.35 10−4

10−6 4.64 10−4 24.87 6455 2253 3.33 10−16 2.22 10−16 1.88 10−4 1.08 10−4

10−8 8.63 10−5 119.99 34607 10366 3.33 10−16 2.22 10−16 2.68 10−5 2.09 10−5

10−9 1.81 10−5 565.44 164528 47231 3.33 10−16 2.22 10−16 1.06 10−6 3.04 10−4

α-scheme,

velocity level

10−2 0.042 2.43 66 26 9.21 10−3 4.93 10−3 3.05 10−12 3.86 10−12

10−4 0.013 4.74 235 140 4.75 10−4 2.44 10−4 8.67 10−13 6.32 10−13

10−6 0.003 4.38 1067 448 2.18 10−5 1.03 10−5 2.08 10−13 1.56 10−13

10−8 6.07 10−4 15.77 4937 1480 1.00 10−6 4.65 10−7 2.22 10−14 1.96 10−14

10−10 1.31 10−4 66.36 22897 5771 4.65 10−8 2.28 10−8 1.49 10−14 8.44 10−15
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It is worth noting that a step is rejected if the integration error is greater than the prescribed

tolerance or if the drift exceeds the user defined tolerance. As expected, for HEM5 and PHEM56, the

drift of the constraints at the velocity level (columns 9 and 10 of Table 3.3) is at the same order of

magnitude (10−16) for all the tolerances. This value corresponds to the machine accuracy.

As shown in column 3 of Table 3.3, the PHEM56 scheme uses larger time steps than those used by

HEM5. With less stages, PHEM56 is 2 to 4 times more efficient than the HEM5 scheme. The velocity

constraints are maintained at the machine accuracy, and the position constraints are maintained at

reasonable levels for both schemes. However, for the same value of the tolerance, HEM5 has better

performance dealing with the drift as shown in columns 7 and 8. This is due to the fact that PHEM56

uses larger time step sizes than the HEM5, and we observe that for equivalent time step sizes, HEM5

and PHEM56 reduce the position constraints to the same level. The drift of the constraints with the

Runge-Kutta-Fehlberg method reaches acceptable levels for tolerances on the truncation error higher

than 10−6, but this drift is much higher for larger tolerances, unlike HEM5 and PHEM56.

With the α-scheme at the position level, the drift of g1 and g2 is at the order of magnitude of the

machine accuracy. It is worth noting that when considering the velocity constraints instead of the

position constraints, the computational effort, measured by the computation time, is divided by 3 or

4. Nevertheless, the violation of the velocity constraints is never reduced to the machine accuracy

for the index-2 form of the generalized-α scheme, unlike the HEM5 and PHEM56. This is due to the

fact that the generalized-α scheme has a lower order (2) than the order of the other aforementioned

methods which is 5.

For this mechanism, we can say that overall the HEM5 and the PHEM56 solvers satisfy the user

defined tolerances on the integration error and on the drift of the constraints with a lower cost than in

the case of the Runge-Kutta-Fehlberg method or the generalized α-scheme. The difference with the

other solvers is even more remarkable for tight values of the tolerance for which HEM5 and PHEM56

are cheaper than the Runge-Kutta-Fehlberg, about 15 times cheaper than the generalized-α scheme

with position constraints, and almost 3 times cheaper than the generalized-α scheme with velocity

constraints. We know however that the generalized-α scheme is a low order scheme that is well suited

for flexible multibody dynamics where high frequency non-linear dynamics can render the integration

difficult.

When the user-defined tolerance is equal to 10−10, the proportion of rejected steps over the accepted

steps is higher than the case of the other tolerances, for all the solvers. This is due to the fact that

the safety factor 0.9 is too high and must be reduced for very tight tolerances.
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x

α1

l1

α2 l2

Figure 3.2: The slider-crank system

3.1.2 The slider-crank system

The system and its characteristics are depicted in Figure 3.2. Let m1, m2 and l1, l2 denote the masses

and the lengths of the rods, m3 the mass of the slider, and let g denote the gravity acceleration. The

system is described with the vector of generalized coordinates q = [α1, α2]
T
. The revolute joints lead

to a constraint which may be written as

g(q) = l1 sin(α1) + l2 sin(α2) = 0. (3.5)

The equations of motion can be written in the form of (1.18) with

M(q)q̈ = F (q, q̇, t) +GT (q)λ, (3.6)

where :

M(q) =





I1 + (0.25m1 +m2 +m3)l
2
1 (0.5m2 +m3)l1l2 cos(α2 − α1)

(0.5m2 +m3)l1l2 cos(α2 − α1) I2 + (0.5m2 +m3)l2
2



 , (3.7)

with m1, m2 and m3 being the masses of the crank, the connecting rod and the slider respectively.

F (q, q̇, t) =





(0.5m2 +m3)l1l2 sin(α2 − α1)α̇2
2 − (0.5m1 +m2 +m3)l1g cos(α1)

−(0.5m2 +m3)l1l2 sin(α2 − α1)α̇1
2 − (0.5m2 +m3)l2g cos(α2)



 , (3.8)

G(q) =
(

l1 cos(α1) l2 cos(α2)
)

. (3.9)

The parameters of the simulation are presented in Table 3.4. We start the simulation with ini-

tial conditions that are compatible with the constraint manifold {(q0, v0)| g1(q0) = 0 and ġ1(q0) =

G(q0)v0 = 0}. In Fig. 3.3 we present the average time step size and the maximum value of the drift

of the constraints at both position and velocity levels as well as the computational work, as functions

of the tolerance (precision) on the integration error.
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| ∞

HEM5
PHEM56
RKF
α-scheme at position level
α-scheme at velocity level

(e) maximum of violation of the velocity constraint

Figure 3.3: Slider crank: simulation characteristics
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Table 3.4: The slider crank characteristics

Initial conditions
q0 = [0, 0]

T
rad

v0 = [4,−2]
T
rad/s

Gravity g 9.81 m/s2

Inertial properties m1 = m2 = m3 = 1 kg

I1 =
m1l

2
1

12 , I2 =
m2l

2
2

12

Geometrical properties
l1 = 1 m

l2 = 1 m

Simulation characteris-

tics

tend = 1 s

With the HEM5 solver, the drift of the constraints at the velocity level is at the order of magnitude

of the machine accuracy (Fig.3.3e). The drift of the position constraints is at very acceptable levels

for all the values of tolerances on the integration error (Fig.3.3d). The PHEM56 scheme is about 3

times less time consuming than the HEM5 scheme. Once again, for the same user defined tolerance,

we observe larger drift of the position constraints with PHEM56 than with HEM5. With the Runge-

Kutta-Fehlberg method, the tolerance at the integration error is met with large time step sizes as

shown in Fig.3.3c but the drift of the constraints is much higher than with HEM5 or PHEM56.

For the slider crank mechanism, the drift of g (Fig.3.3d) using the α-scheme with position con-

straints is at the order of magnitude of the machine accuracy. However, the accuracy at the velocity

level is quite low. Because of this drift, the detection of the closed contacts defined by the set I2

in section 3 is affected if the drift is greater than the tolerance used to define I2. When using the

velocity-level α-scheme, the drift is large for tolerances larger than 10−6 (Fig.3.3d), and we can notice

in Fig.3.5b that the numerical effort is 2 up to 3 times smaller than for the position-level α-scheme.

From the computational effort point of view, PHEM56 and HEM5 are less time-consuming than the

Runge-Kutta-Fehlberg scheme, five times less time-consuming than the α-scheme with the position

constraints and two times cheaper than the α-scheme with the velocity constraints. Overall, for

this example, we draw the same conclusions as for the four-bar mechanism either concerning the

computational effort or concerning the enforcement of the constraints.

3.1.3 The slider-crank system with a flexible connecting rod

This system is illustrated in Figure 3.4. This system has been studied in [120] in which the reader
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α1

α2

Figure 3.4: The slider-crank with a flexible connecting rod

will find more details about the modeling and the initial conditions as well as an illustration of the

mechanism. We performed simulations with different values of the tolerance on the truncation error,

with the HEM5 solver, the PHEM56 solver, the Runge-Kutta-Fehlberg scheme and the generalized

α-scheme. We started simulations with a safety factor of 0.9, and we noticed that the number of

rejected steps was high, so we decreased its value to 0.85. Table 3.5 summarizes the results.
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Table 3.5: Flexible slider crank: average time step size, simulation time, number of accepted steps, number of rejected steps and drift of the

constraints for different tolerances.

method tolerance average h ts accepted rejected ‖ g1 ‖∞ ‖ g2 ‖∞ ‖ g3 ‖∞ ‖ ġ2 ‖∞ ‖ ġ2 ‖∞ ‖ ġ3 ‖∞

HEM5

10−2 1.17 10−4 19.76 961 391 4.69 10−14 2.03 10−10 8.08 10−14 4.10 10−15 3.88 10−15 0.0

10−4 1.06 10−4 22.84 1066 445 2.87 10−7 8.18 10−8 4.44 10−14 4.10 10−15 5.04 10−15 0.0

10−6 1.55 10−4 13.97 737 240 3.71 10−11 2.05 10−10 5.32 10−14 4.08 10−15 3.88 10−15 0.0

10−8 1.06 10−4 21.32 1055 445 7.30 10−13 2.03 10−10 2.13 10−14 4.08 10−15 3.48 10−15 0.0

10−10 3.20 10−5 70.84 3522 1328 7.65 10−15 2.03 10−10 3.91 10−14 4.10 10−15 3.78 10−15 0.0

PHEM56

10−2 1.03 10−4 13.08 1131 341 4.02 10−3 2.11 10−3 1.42 10−14 8.00 10−13 3.14 10−12 0.0

10−4 6.29 10−5 19.65 1712 452 7.06 10−5 8.01 10−5 2.13 10−14 8.17 10−14 1.78 10−13 0.0

10−6 6.19 10−5 20.01 1752 488 2.29 10−14 2.03 10−10 5.50 10−14 4.08 10−15 3.92 10−15 0.0

10−8 6.20 10−5 20.71 1733 385 5.86 10−11 2.12 10−10 5.68 10−14 4.02 10−15 3.80 10−15 0.0

10−10 5.77 10−5 21.81 1861 535 4.31 10−13 2.03 10−10 3.37 10−14 3.98 10−15 4.39 10−15 0.0

RKF

10−2 5.67 10−5 58.98 2005 682 1.25 10−9 2.10 10−10 8.08 10−13 5.76 10−8 9.87 10−9 0.0

10−4 5.06 10−5 85.57 2245 751 1.84 10−8 2.34 10−8 8.17 10−14 9.80 10−7 6.88 10−7 0.0

10−6 4.12 10−5 104.94 2769 906 1.18 10−9 2.17 10−10 5.06 10−14 1.20 10−8 2.83 10−10 0.0

10−8 7.27 10−5 234.03 5428 2517 1.19 10−9 2.03 10−10 7.28 10−14 1.19 10−8 1.78 10−11 0.0

10−10 6.66 10−5 549.06 12989 6659 1.19 10−9 2.04 10−10 1.42 10−13 1.19 10−8 9.62 10−13 0.0

α-scheme,

position level

10−2 3.06 10−4 3.60 382 78 4.05 10−17 1.33 10−16 0.0 8.83 10−5 9.57 10−5 2.39 10−9

10−4 3.28 10−4 3.85 338 10 4.05 10−17 1.33 10−16 0.0 8.83 10−5 9.57 10−5 2.39 10−9

10−6 4.37 10−4 33.03 2863 580 4.02 10−17 1.33 10−16 0.0 9.47 10−5 9.97 10−5 2.51 10−9

10−8 9.47 10−6 86.61 11281 3635 4.09 10−17 1.34 10−16 0.0 8.88 10−5 8.57 10−5 9.76 10−8

10−10 2.20 10−6 369.03 15921 30170 4.11 10−17 1.34 10−16 0.0 8.47 10−6 4.06 10−5 7.11 10−7

α-scheme,

velocity level

10−2 2.68 10−3 0.67 42 7 3.09 10−6 5.75 10−6 1.49 10−13 2.25 10−14 1.49 10−14 0.0

10−4 8.76 10−4 2.04 127 50 3.09 10−6 5.75 10−6 1.49 10−13 2.25 10−14 1.49 10−14 0.0

10−6 2.79 10−4 7.38 536 213 1.37 10−5 2.10 10−5 3.91 10−14 1.77 10−14 8.38 10−14 0.0

10−8 6.06 10−5 28.95 2475 741 6.21 10−7 9.78 10−7 3.02 10−14 7.47 10−15 8.19 10−14 0.0

10−10 1.31 10−5 119.77 11484 3294 2.87 10−8 4.56 10−8 1.10 10−13 1.03 10−14 1.76 10−14 0.0
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The position constraints g1, g2 and g3, are defined in [120]. This mechanism shows clearly the

limitations of (half-)explicit or partitioned schemes against implicit ones when stiff or highly stiff

mechanisms are considered. For tolerances larger than (or equal to) 10−4, the generalized α-scheme at

the position level is less time-consuming than HEM5, PHEM56 and RKF (column 4 of Table 3.5). On

the other hand, for tolerances larger than or equal to 10−6, the α-scheme with the velocity constraints

outperforms the other schemes. For tighter tolerances, HEM5 and PHEM56 are more efficient than the

α-scheme. For tolerances between 10−2 and 10−8, HEM5 and PHEM56 have equivalent simulation

times, even if HEM5 uses larger time steps. This can be explained by the fact that HEM5 has 2

more stages than PHEM56. In this example again, dealing with the velocity constraints instead of

the position constraints enables to reduce drastically the numerical effort. Indeed, the generalized

α-scheme with velocity constraints is almost 5 times cheaper than the one with position constraints.

It is also worth noting that the RKF scheme is the most time consuming. Concerning the drift, since

all the schemes are dealing with quite tight time steps (≈ 10−5s), the drift is kept at acceptable levels

for all the values of the tolerances, for all the methods.

3.1.4 Work-precision diagrams

We present the precision-work diagrams for the three mechanisms in Figures 3.5a, 3.5b and 3.5c. In

view of the results presented in all the tables that summarize the computational effort required by

PHEM56, HEM5, RKF and the α-scheme, we can say that overall the PHEM56 and HEM5 solvers

are the most computationally efficient for rigid mechanisms since they meet the high tolerances on

the integration error with a cheaper cost than the other methods. Furthermore, for low tolerances

and thus small time step sizes, PHEM56 and HEM5 solver hold the constraints at both position and

velocity levels at very acceptable levels compared to the other solvers. Conversely, the generalized-α

scheme is the most computationally efficient when stiff mechanical systems and large tolerances are

considered (see Figure 3.5c).

3.1.5 Preliminary conclusions on the academic examples

Based on the results presented in the foregoing tables and in Figure 3.5, we could make the following

conclusions:

• For rigid systems with bilateral constraints, PHEM56 and HEM5 are the most efficient to save

the computational effort while enforcing the velocity constraints at the machine accuracy and

maintaining the drift at very low values for a wide range of the precision on the integration error.
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Figure 3.5: Work/Precision diagrams for the four-bar linkage, the slider-crank, and the flexible slider-

crank
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Both schemes enforce the constraints at equivalent levels for equivalent time step sizes. With two

less stages, the PHEM56 is less time consuming than the HEM5. Given its high order (equal to

4), the RKF scheme gives good results concerning the computation time and the enforcement of

the constraints for tolerances larger than or equal to 10−6. Being initially designed for simulating

the structural dynamics, the generalized-α scheme is less computationally efficient for this kind

of systems. However, it is important to stress that when using the α-scheme with velocity

constraints instead of the position constraints, we divide the numerical effort by 3 to 5. Let us

also stress that the numerical solver incorporated in the event-driven scheme has to enforce the

position and velocity constraints for a good evaluation of the index sets presented in Section

2.1.1.1. Indeed, the correct computation of these index sets, and hence the robustness of the

event–driven scheme, is very dependent on the correct computation of the constraint in terms of

drift and contact forces. These properties of the numerical time integration scheme are therefore

crucial for the development of a robust event–driven solver.

• For stiff mechanisms, implicit schemes outperform (half-)explicit or partitioned schemes for large

tolerances. Yet, for tight tolerances, the HEM5 and the PHEM56 schemes prove to be less time

consuming than the implicit scheme. For the studied flexible slider crank, the RKF scheme was

the more time consuming.

• From the simulations using HEM5, PHEM56 and the generalized-α with velocity constraints,

it follows that a better stabilization of the constraints is obtained with a discretization of the

constraints on the velocity level. Indeed, these schemes enforce the velocity constraints at the

machine accuracy while maintaining the drift at very low levels. HEM5 and PHEM56 obviously

outperform the generalized-α scheme with velocity constraints due to their higher order (equal

to 5).

3.2 Industrial benchmarks

In this section, the above algorithms are compared on benchmark examples from the ANSYS Rigid

Body Dynamics, 16.0 test library (<http://www.ansys.com/Products/). Let us mention that this

software describes the dynamics using minimal relative coordinates. Newton-Euler formalism is used to

describe the dynamics, with a nonsmooth formulation of the contact. The dynamics is then simulated

using the above event-driven scheme. The goal is to confirm the preliminary conclusions on real

examples that come from industrial applications with non ideal geometries. In order to get some
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Table 3.6: Characteristics of the sets

Set Max # of DOF Min # of DOF Max # of joints Min # of joints Max # of pairs of contacts

1 19 1 38 2 -

2 18 2 22 3 -

3 11 2 15 2 7

4 31 5 15 4 1

insight into the performance of schemes on large test sets, we use performance profiles. They allow us

to draw some general conclusions that are valid in a statistical manner.

3.2.1 Description of the mechanisms

The mechanisms we study are split into four sets described in Table 3.6. The first test set comprises

simple problems with a number of degrees of freedom between 1 and 19 and a number of joints between

2 and 38. This set will enable us to test the kinematics and the dynamics with a wide range of joints,

without unilateral contacts and impact. The second set comprises tests with large simulation time;

the mechanisms have a large number of degrees of freedom and a large number of joints, and no

impacts. The third set comprises mechanisms with impacts. It will help to validate the strategy of

solving the impact at the impact time and resuming the computation of the dynamics. The fourth

set contains systems with flexible beams, with square or rectangular sections; the dynamics of these

bodies is simulated under different types of loads and with impacts in some cases. This set contains

9 systems with beam models, the number of degrees of freedom varies between 5 and 31 and the

number of kinematic joints varies between 4 and 14. Illustrations of some mechanisms from each set

are depicted in Figures 3.6, 3.7, 3.8, and 3.9.

3.2.2 Performance profile

The following metric is introduced in [38]. Let us consider a set P of np problems, and a set S of ns

solvers (or numerical methods). For each problem p and solver s we define a performance criteria:

tp,s = computing time required for solver s to solve problem p . (3.10)

We define the performance ratio as

rp,s =
tp,s

min {tp,s, s ∈ S}
. (3.11)
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(a) Epicyclic gear train (b) Rotating disk attached to a rod

with a collar

(c) A cam mechanism

Figure 3.6: Examples from the first set

Then, we define the probability ρs(τ) for a solver s ∈ S that a performance ratio rp,s is below a factor

τ ∈ R :

ρs(τ) =
1

np
size{p ∈ P, rp,s ≤ τ} ≤ 1. (3.12)

Thus, ρs(τ) is the distribution function for the performance ratio. It is worth noting that ρs(1)

represents the probability that the solver s beats the other solvers, and ρs(∞) characterizes the

robustness of the method. The higher ρs is, the better the method is. The term performance profile

will be used in the sequel for this concept. This concept will be made clearer when used for the

analysis of the simulation results presented in section 3.2.3.

3.2.3 Simulations results

For each set, we ran simulations on the mechanisms using HEM5, RK4 and the generalized-α methods.

According to the conclusions drawn in the Section 3.1, we choose to use the generalized-α in its index-

2 DAE form, because it proved to better stabilize at both the position and velocity levels and to

use larger time steps than its index-3 DAE form. At the time this document has been written,

the PHEM56 scheme has not yet been implemented in the Ansys solver, therefore no results on the

industrial benchmarks are available for this method. The tolerance on the integration error is set

to 10−4 for all the aforementioned schemes. For each simulation, we collected some simulation data,

namely the simulation time, the average time step size and the number of steps performed by each

numerical scheme. Figures 3.10, 3.11, 3.12, and 3.13 show the average time step and the number of

steps for each problem and for each solver as well as the distribution function ρs(τ) for each solver,

with different values of τ between 1 and 2.6. For the first set, we observe that RK4 reaches the
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(a) Windshield wiper (b) Trunnion mechanism

(c) Air piston (d) Subway door

Figure 3.7: Examples from the second set
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(a) Press machine (b) An excavator model

(c) A watch mechanism sub-assembly (d) Escapement of a mechanical watch

Figure 3.8: Examples from the third set

(a) Beam under gravity in contact with a cylinder

Figure 3.9: Example from the fourth set



102 CHAPTER 3. COMPARISON OF SEVERAL NUMERICAL SCHEMES

0 5 10 15 20 25 30 35 40 45
Problem identifier

10-4

10-3

10-2

10-1

100

Av
er

ag
e 

tim
e 

st
ep

 (s
)

HEM5
RK4
α-scheme

(a) haverage

0 5 10 15 20 25 30 35 40 45
Problem identifier

100

101

102

103

104

Nu
m

be
r o

f p
er

fo
rm

ed
 s

te
ps

HEM5
RK4
α-scheme

(b) # steps

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8
τ

0.0

0.2

0.4

0.6

0.8

1.0

ρ

HEM5
RK4
α-scheme

(c) performance profile

Figure 3.10: Average time step, number of iterations and performance profile of the first set
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probability of 1 contrary to the other solvers, which means that it is more robust to solve this kind of

problems. This can be explained by the fact that this set contains "simple" problems for which using

an 8-stage scheme (HEM5) is very time-consuming. The performance profiles of Figures 3.11 and

3.12 show that when the dynamics is more challenging (large number of degrees of freedom, more non

linear terms), the HEM5 scheme proves its robustness over the other methods.

From the graphics of Figures 3.10, 3.11 and 3.12, we can see that the generalized-α and RK4 need

smaller time step sizes and larger number of steps to solve the dynamics than HEM5. Furthermore,

HEM5 stands out for solving more problems than RK4 or the α-scheme for the time ratio τ , even if the

problems involve large number of degrees of freedom and constraints. Table 3.7 shows a comparison

between the three schemes for τ = 1.2. ρs(1.2) defines the percentage of problems solved by a solver

s in a ratio of 1.2 with respect to the fastest solver.

Table 3.7: Comparison of ρ between HEM5, RK4 and generalized-α for τ = 1.2, for the various test

sets

Set number ρHEM5(1.2) ρRK4(1.2) ρα−scheme(1.2)

1 0.88 0.43 0.01

2 0.84 0.24 0.04

3 0.95 0.48 0.05

4 0.89 0.44 0.11

Most of the tests of the fourth set involve systems with linear beams which dynamics is not very

stiff, which explains the fact that the implicit scheme is not outperforming the two other schemes.

Indeed, we observe in Fig. 3.13 that RK4 and the generalized-α use equivalent time steps sizes that

are even slightly smaller than those used by HEM5; and need an equivalent number of performed

steps. However, the α-scheme is more time consuming than the two other schemes, probably due

to the computation of the tangent matrices and the resolution of linear systems at each Newton

iteration. Nevertheless, we can see that the problem whose identifier is 3 does not follow the pattern.

Indeed, unlike the other test cases, its dynamics is actually very stiff and non linear. Let us study this

particular example more deeply in the sequel. It consists of an eccentrically rotating beam with 31

degrees of freedom, illustrated in Fig. 3.14. It is subjected to a constant rotation velocity constraint.

We ran simulations on this particular system for different values of the integration error tolerance and

we collected results that we present in Table 3.8. We can see that the α-scheme uses time step sizes

that are 10 to 100 times larger than those used for HEM5 and RK4. It is also 50 to 90 times less
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Figure 3.11: Average time step, number of iterations and performance profile of the second set
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Figure 3.12: Average time step, number of iterations and performance profile of the third set
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Figure 3.13: Average time step, number of iterations and performance profile of the fourth set

θ

Figure 3.14: Flexible rotating beam
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Table 3.8: Eccentrically suspended rotating beam: average time step size, simulation time, number of accepted

steps and number of rejected steps for different tolerances.

method tolerance average h ts accepted rejected

HEM5

10−2 4.22 10−4 548.98 34123 1381

10−4 4.20 10−4 549.70 34364 1393

10−6 2.40 10−4 985.79 62255 179

RK4

10−2 3.38 10−4 384.13 41428 2903

10−4 3.34 10−4 376.89 41700 2825

10−6 3.37 10−4 398.29 41562 2876

α-scheme,

ρ∞ = 0.99

10−2 9.61 10−2 10.55 156 0

10−4 8.01 10−3 86.32 1869 3

10−6 2.35 10−3 264.80 6371 3

α-scheme,

ρ∞ = 0.8

10−2 9.61 10−2 10.69 156 0

10−4 3.16 10−2 24.42 474 0

10−6 6.15 10−3 109.83 2437 0

α-scheme,

ρ∞ = 0.5

10−2 9.61 10−2 11.29 156 0

10−4 2.74 10−2 28.72 538 0

10−6 5.50 10−3 123.09 2714 0

time-consuming than HEM5 and up to 36 times less time-consuming than RK4. Introducing some

numerical damping by decreasing the value of the parameter ρ∞ in (2.54), enables the α-scheme to

be more efficient by using larger time steps and reducing the computation time. As expected, fully

implicit time stepping schemes are more relevant for stiff mechanical systems.

Let us consider another challenging mechanism consisting of a rotor mechanism that has been

analyzed in [87], depicted in Fig. 3.15. The system is composed of a flexible shaft, a symmetric disk,

and a bearing. The axis of the rotor is along the y axis and displacements are allowed in the y and z

directions. The system exhibits frequencies that are around 105Hz. This makes it extremely hard for

HEM5 and RK4 to compute the dynamics of the mechanism. Indeed, these two solvers fail to integrate

the dynamics with adapted time steps, with a minimum value of 10−8s. We computed the dynamics

using the α-scheme using a constant time step of 4. 10−4s. The amplitude of the displacement of the

rotor with respect to the rotation velocity is shown in Fig.3.16.

Therefore, when the dynamics is stiff, either resulting from some geometric stiffening as in the

case of the rotating bar, or when the dynamics involves high frequencies as in the case of the rotor

mechanism, explicit and half-explicit schemes use very small time steps in order to stay inside their

stability regions. However, the implicit schemes, for instance the generalized-α scheme either for

index-3 or index-2 DAE, proves to be efficient. In addition, introducing some numerical damping
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through the the spectral radius ρ∞ enables to reduce the computation time, as shown in Table 3.8.

Overall, we came across the same conclusions that we drew for the academic examples:

• Explicit and half-explicit schemes outperform the implicit schemes on mechanisms involving

unilateral and bilateral constraints, when the dynamics is not stiff.

• The discretization of the constraints at the velocity level proves once again to be a better option

than considering position constraints or acceleration constraints. Indeed, it enables a better

stabilization of the drift, and therefore saving computation time because it reduces drastically

the need of performing calculations to correct the constraints.

• When the dynamics is highly stiff and non-linear, implicit schemes represent the best, if not the

only option, to integrate the equations of motion.

3.3 Conclusion

This chapter aimed at performing a thorough comparison between index-3, index-2 and index-1 DAE

solvers. To this purpose, we chose several methods: the generalized-α scheme with bilateral constraints

discretized at the position level for the first category, the PHEM56, HEM5 and the generalized-α

scheme with bilateral constraints discretized at the velocity level for the second one, and the Runge-

Kutta-Fehlberg and RK4 methods for the third category. These schemes have been compared on
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academic and industrial benchmarks. The comparison covers three aspects: stabilization of the drift

of the constraints, computational effort and handling the difficulties in case of a stiff dynamics. In

order to achieve our objective, we performed simulations on several mechanisms with an adapted time

step size to the user defined tolerance on the truncation error. After analyzing the time step sizes

used by each solver, the computational cost, the maximum drift of the constraints and the behavior

in case of stiff dynamics, the following salient conclusions may be drawn:

• Computational effort. Even though the PHEM56 and HEM5 solvers contain more stages (8 and

6 respectively) than the RKF45 and RK4 scheme (5 and 4 respectively), the numerical effort

of the semi-explicit solvers is lower than that of the explicit ones when a strategy of time step

control is used. Indeed, the order (5) of PHEM56 and HEM5 in addition to their characteristics

of reducing the violation of the constraints, enable to use larger step sizes than those used for

RKF45 and RK4, and then to reduce the computational effort. For non-stiff mechanisms, both

explicit and half-explicit methods give better results than the generalized-α scheme that needs

very small time step sizes mainly due to its lower order (2) and the drift at the velocity level

when using it with the index-3 DAE formulation. We can also notice that using the α-scheme

with velocity constraints enables to do simulations that are less time-consuming than in the case

of position constraints.

• Drift of the constraints. PHEM56 and HEM5 enforce the constraints at the velocity level, this

enables to reduce drastically the drift at the position level. This enables often to perform the

integration without any procedure of projection of the constraints on the admissible manifold.

This is not the case of the explicit scheme where a projection on the constraints is required

in some cases. The generalized-α scheme used with the index-3 DAE formulation enforces the

constraints at the position level but the drift at the velocity level may lead to numerically losing

the contact depending on the tolerances that are chosen for the index set I2 of closed contacts.

Discretizing the dynamics with a formulation of the constraint at the velocity level seems to be

a good compromise to stabilize the drift at acceptable tolerances.

• Stiff dynamics. When the mechanisms have a stiff and non-linear dynamics, explicit and half-

explicit methods are not numerically efficient compared to the implicit α-scheme. We even saw

that when high frequencies are involved, as in the case of the rotor mechanism, HEM5 and

RK4 were unable to integrate the dynamics. In such cases, the generalized-α scheme proves

its efficiency by handling this high frequency non-linear dynamics by the ability of introducing

some numerical damping.
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Half-explicit methods (HEM5 and PHEM56 for example) use linear systems (see (2.58) and (2.71)

for example) involving jacobians that are evaluated at two different time instants. This represents

additional computation time as well as some storage management in order to build and save the

jacobian of the previous time. Moreover, when the constraints are redundant, a QR decomposition

is performed on the jacobians. For systems such as (2.58) and (2.71), a QR decomposition has to be

performed on each jacobian, which represents another numerical effort.



Chapter 4

A hybrid integration method

4.1 Motivation

In this section, we shall address several problems that are frequently encountered in the simulation

of constrained multibody systems, and whose simulation requires attention. Namely, accumulation of

impacts, accumulation of friction transitions, and C1 and C2 discontinuities in CAD geometries which

lead to velocity and acceleration jumps. Let us be clear that handling such problems is difficult when

using an event-driven strategy as it is the case in the Ansys RBD solver.

Our solution to these issues is a hybrid integration method, consisting of a mixed event-driven/time-

stepping integration. The aim is to take advantage of the positive characteristics of each integration

family. Indeed, event-driven schemes formulate the dynamics as DAEs over smooth periods, i.e.

periods which are free of events. During these periods, root-finding algorithms are performed on the

constraints functions to detect as accurately as possible the time of occurrence of an event, time where

the event is handled.

Event-driven methods are proved to be efficient for a limited number of events. However, when

the transitions or the events are frequent in a short time interval, then the event-detection methods

become very time-consuming because of the need to handle every single event. In practice, it may

happen that the normal post-impact velocity computed for one of the accumulated impacts does not

satisfy the numerical thresholds defined for the index sets, therefore it is not taken into account after

and the corresponding unilateral constraint is violated in the following steps, leading to wrong results.

Heuristics may be used consisting for example in setting to zero the restitution coefficient for an impact

when the velocity is small enough. However this requires introducing additional numerical thresholds

111
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that in practice prove to be problem-dependent. Another issue that occurs very often when handling

events accumulation with event-driven schemes is the clustering of events. This consists in considering

that the times of occurrence of two or more events are numerically close enough to assume that they

happen simultaneously and therefore that they have to be solved at the same time in the same LCP

(1.21). In the case of accumulation of "too many" events, it happens that some events are not selected

in the set of the events to be clustered due to numerical thresholds that are not suitable for all the

events. This leads sometimes to non-physical penetration because one or more contacts have not been

solved, or to scenarios that are varying greatly when changing the time step.

In the frictional case, detection of sticking/sliding transitions and handling changes of sliding

directions is time-consuming for event-driven methods, and very difficult in 3D. In addition, event-

driven schemes are very sensitive to the tolerances used to define the index sets.

On the other hand, time-stepping schemes, which operate in the impulse-velocity domain, do

not need as many index sets as for event-driven methods. Furthermore, they have proved their

robustness for handling large number of events, as well as accumulation of impacts (known as Zeno

phenomenon). However, these methods have low order (usually the local order is 1), contrary to

event-driven schemes which allow for the use of high-order integration methods over the smooth

periods. As discussed in section 2.1.2, several authors have tried to bring some improvements to

the time-stepping schemes, either by using extrapolation techniques to enable a step size adjustment

during impact-free periods as in [127], or by using high order DAE solvers during smooth periods

as in [2]. The authors in [118, 117, 119] proposed to embed the classical Moreau-Jean time-stepping

scheme in the discontinuous Galerkin methods in order to provide a high order approximation of the

solution during the smooth periods. Another approach proposed in [35] consisted in the separation

of the contribution of the nonsmooth variables and that of the smooth variables. This enables to

integrate the smooth variables with any high order DAE solver, while the nonsmooth variables are

evaluated with the classical Moreau-Jean scheme. This approach has been improved in [31] by taking

into account both the position and the velocity constraints, following the GGL approach. For the

evaluation of the smooth variables, the generalized-α method has been chosen to enjoy its stability

characteristics when dealing with a stiff dynamics. Of course, all the aforementioned techniques do

not allow for the increase of the global order of accuracy of the method.

In [43], a mixed even-driven/time-stepping integration method is proposed where classical DAEs

solvers are used during smooth impact-free periods. A stop function detects roughly if one or more

contacts are closed and enables to switch to the time-stepping scheme. This later is used to compute

the dynamics as long as the contacts are closed (depending on the defined thresholds) in order to
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prevent multiple transitions from an integration scheme to the other and save the computation time

used at the reinitialization. However, no precise information is given about the stop function or about

the conditions upon which the switch from event-driven to time-stepping (or vice versa) is made. In

our work, more accurate conditions are established upon which we switch from an integration scheme

to the other. We also discuss the global order of the proposed method and numerical simulations are

used to discuss the efficiency of the method.

4.2 The hybrid integration algorithm

4.2.1 Presentation of the algorithm

The proposed algorithm lays on the idea of using the event-driven method with an order p DAE solver

until a criterion indicating a switch situation is satisfied. The integration is then resumed with a time-

stepping scheme method. When this criterion is no longer valid, we switch back to the event-driven

method. This mixed event-driven/time-stepping strategy is illustrated in Fig.4.1.

The switch criteria are discussed below:

• When an impact is detected, its time of occurrence t⋆i is saved and compared to that of the

previous one t⋆i−1. The size of the time interval [t⋆i−1, t
⋆
i ] defined by these two impacts is compared

to a critical time step size h⋆. When t⋆i−t
⋆
i−1 ≤ h⋆, then we consider that there is an accumulation

of impacts. In this case, we perform the computation using the Moreau-Jean time-stepping

scheme over the time interval [tn, tn + h⋆]. The time-stepping scheme is then used until the

contact is released or in a stable closed state, then we switch back to the event-driven method.

• The case of friction deserves more attention. The difficulty of dealing with friction comes from

the difficulty to handle the different transitions: sliding to sticking and sticking to sliding. In the

2D case, the interpolation of gT (q(t)) is doable since gT (q(t)) ∈ R even if it brings an additional

numerical effort. Due to the numerical effort related to the resolution of the sticking-sliding

transition using the solution proposed by [62], we choose to handle this transition using the

time-stepping scheme. Therefore, if the tangential velocity vanishes during a step [tn, tn+1],

then the dynamics during this step is re-computed with the Moreau-Jean time-stepping scheme.

By means of interpolation of the normal contact force λαN , we can detect if its sign has changed

at some some t̃⋆. A change of the sign of λαN means that the contact has been released (or has

become open). If this happens, then we switch back to the event-driven scheme. In the 3D case,

handling the transitions is time-consuming and the interpolation of the tangential velocity and
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Figure 4.1: The mixed event-driven/time-stepping scheme
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detecting the time it vanishes is a very hard task. In addition, detecting if the contact force is

on the boundary of the friction cone, or inside the cone requires yet another threshold, also due

to the numerous thresholds that are used. Therefore, in the 3D, all the steps during which a

frictional contact is active are going to be handled using the time-stepping scheme.

• Finally, due to non-perfect geometries given in a CAD description, edges might be present that

may render the resolution of the contact difficult. Indeed, in the neighborhood of an edge, the

contact solver detects contact points on the left and on the right of the edge. When in addition

the constraints are not sufficiently smooth in the neighborhood of the edge, then the systems

that formulate the contact are ill-posed, as discussed in Section 4.3.3. Therefore, when the event

of crossing such edges is detected during a step [tn, tn+1], then the dynamics during this step

is re-computed with the Moreau-Jean time-stepping scheme. The time-stepping scheme is used

to compute the dynamics until we only detect contact pairs on the right or on the left of the

transition. The detection of a transition is given by a function OngoingTransition() that uses

the data from the geometry engine and returns a boolean indicating that there is an ongoing

transition.

Let us denote ED the event-driven method and TS the time-stepping scheme. A sketch of the hybrid

method is presented in Algorithm 1. Let us recall that ISl and ISt denote the index sets of sliding

and sticking contacts, respectively, and are defined in Section 2.1.1.1.

4.2.2 Order of consistency of the mixed event-driven/time stepping strat-

egy

In section 2.1.1.2, we discussed the consistency and the global order of an event-driven scheme when

used with a DAE solver of order p. We consider that the conditions discussed in section 2.1.1.2

are satisfied so that the event-driven method is also of an accuracy order p. When we resume the

integration with a time-stepping scheme with a time step size h⋆, this time step has to satisfy certain

conditions in order not to reduce the order of the DAE method incorporated in the event-driven

method. These conditions are addressed below.

Assumption 4.2.1 The solution is assumed to have positions which are absolutely continuous and

right velocities v+ which are of Locally Bounded Variations, at each instant.

Assumption 4.2.2 We assume that:

• the inertia matrix M(q) is definite positive and of class Cp.
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Algorithm 1 The hybrid integration method

Require: qn, vn, tn

Ensure: qn+1, vn+1, λn+1

qn+1, vn+1, λn+1 = ED(qn, vn, tn)

Interpolate the position constraints g(t)

Interpolate the tangential velocity constraints ġT (t)

Evaluate the index sets I2(t) and ISt(t) (see section 2.1.1.1)

case ∃t⋆i | gα(t⋆i ) = 0, and |t⋆i − t⋆i−1| ≤ h⋆ :

repeat

qn+1, vn+1, λn+1 = TS(qn, vn, tn)

until α ∈ I2

case
(

∃α ∈ ISl(tn) and ∃t⋆ ∈ [tn, tn+1] | ġ
α
T (t

⋆) = 0
)

or
(

ISt(tn) 6= ∅
)

:

repeat

qn+1, vn+1, λn+1 = TS(qn, vn, tn)

until ISt(tn+1) = ∅

case Edge transition at t⋆:

repeat

qn+1, vn+1, λn+1 = TS(qn, vn, tn)

until OngoingTransition() returns false
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• the force vector F (q, v, t) is of class Cp.

• the constraints vector g(q) is of class Cp+1.

• G(q) is of full row rank.

Cp denotes the set of functions f whose derivatives f (1), f (2), . . . f (p) exist and are continuous.

Assumption 4.2.3 The event-driven scheme is of order of consistency p.

Assumption 4.2.4 The Moreau-Jean time-stepping scheme is used with a time step size h⋆ such that

h⋆ = hp+1.

Proposition 4.2.5 Under assumptions discussed in section 2.1.1.2, 4.2.1, 4.2.2 4.2.3 and 4.2.4, the

order of consistency of the proposed algorithms illustrated in Fig. 4.1 is p.

The proof of this proposition can be found in [2, 92].

4.3 Applications

In the following, several applications are presented where the dynamics is computed using the mixed

event-driven/time-stepping scheme presented in Fig. 4.1.

4.3.1 Example with accumulation of impacts

The test consists of a classical example of a vertical chain of 3 beads, illustrated in Fig. 4.2. In Fig. 4.3,

we show the time step sizes during the simulation time, as well as the evolution of the gap functions.

The integration is started with the event-driven scheme and the HEM5 scheme is used to integrate

the dynamics and the step size is adjusted to meet a tolerance of 10−4 on the integration error. When

the criterion indicating an accumulation of impacts is satisfied, which specifically means that the time

interval between two successive events is smaller than a critical time step h⋆, then the integration

is resumed with the classical Moreau-Jean scheme, with a time step h⋆. As discussed in Section

4.2.2, h⋆ should satisfy the condition h⋆ = h6, since HEM5 provides a solution of order p = 5. This

means that if the event-driven scheme uses a time step h = 10−2,then h⋆ = 10−12, this time step

is very small and will definitely prevent the simulation from advancing. In practice, we decided to

set a minimum time step size hmin = 5. 10−7, if the computed h⋆ is smaller than hmin, then we set

h⋆ = hmin. This explains that all the steps computed with the Moreau-Jean scheme are run with the
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g1

g2

g3

Figure 4.2: Chain of 3 balls

Table 4.1: Chain of balls: maximum violation

tol maximum violation for g1 maximum violation for g2 maximum violation for g3

10−2 3.54 10−9 5.26 10−9 4.64 10−9

10−4 3.83 10−9 2.87 10−9 8.54 10−9

10−6 2.44 10−9 2.78 10−9 2.49 10−9

10−8 1.81 10−9 7.11 10−9 1.72 10−9

minimum time step hmin. After a step size computed with the Moreau-Jean scheme, the integration

is resumed with the event-driven strategy for which the time step size is adapted to meet the tolerance

on the integration error. Fig.4.3b shows a zoom on the simulation result, namely the step size of an

event-driven step, followed by a time-stepping step, and then the time step size is increased following

the control strategy defined in (2.120). Finally, the time history of the gap functions of the problem

are depicted in Fig.4.3c. Events are accurately detected in the event-driven strategy, the time step

used for the time stepping scheme is small enough to prevent any non-physical penetration. When

contacts are closed, the dynamics is computed with the event-driven scheme and the HEM5 scheme

enforces very well the position constraints.

The maximum violation of the constraints with the hybrid scheme are reported in Table 4.1. We

observe that for all the chosen precisions, the violations of the constraints is low and at the same

order of magnitude (10−9). This may be explained by the fact that for all the tolerances, the precision

on the detection of the events is the same. Furthermore, since no correction of the constraints is

performed, the HEM5 scheme in the event-driven method enforces the position constraints but not to

a better level than the violation corresponding to the accuracy of the detection of the impacts.
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Figure 4.3: Chain of 3 balls, time step sizes and constraints with respect to time
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Figure 4.4: Comparison of the hybrid method with the Moreau-Jean scheme on a chain of three balls

We compared the proposed mixed event-driven/time-stepping scheme with the classical Moreau-

Jean scheme with an adapted time step strategy. We chose the halved-steps method, discussed in

Section 2.2.7 to control the time step size of the time-stepping scheme. The Moreau-Jean scheme is of

local order 1 w.r.t.positions and at least of local order 0 w.r.t velocities (since they can undergo jumps

during the simulation), we chose to use the positions to approximate the error. If q2 is the position

calculated with the Moreau-Jean scheme with a time step of length h, and q 1
2

is the approximation

calculated after two steps of length h
2 each, then the error is ln =‖ q 1

2
− q2 ‖. The optimal time step

is computed using (2.120) with p = 1.

For several tolerances on the integration error, we compared the simulation time for both schemes.

Results are presented in the work-precision diagram of Fig.4.4.

The Moreau-Jean scheme being of a very low local order, needs to use much smaller time steps

than the hybrid scheme where most steps are performed with the event-driven scheme with large time

steps. Therefore, the simulation times with the Moreau-Jean scheme are much longer than with the

hybrid scheme. It is worth noting that since we set a minimum value for the time step size when using

the hybrid scheme, we cannot be sure that the required accuracy is satisfied. In general, it is difficult

to evaluate the order of accuracy of the hybrid scheme, unless we have a reference (or analytical)

solution that enables us to evaluate the error.
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Figure 4.5: A slider-crank mechanism with clearance

4.3.2 Example with friction

As an example to illustrate our method in case of friction, we run a simulation on a rigid slider-crank

mechanism with clearance, illustrated in Fig. 4.5. This system has been studied for example in [48, 3].

We used the strategy described in Fig.4.1, the HEM5 method is chosen to be the integration method of

the event-driven scheme, the time step size is adjusted to meet a tolerance of 10−4 on the integration

error. The mechanism is subjected to 4 unilateral constraints with friction.

Figures 4.6a, 4.6b and 4.6c depict the phase diagrams of the crank rod and the connecting rod.

These results corroborate those given in [48, 3].

We compared our algorithm with the Moreau-Jean method where the time step has been controlled

using the halved steps method discussed in sections 2.2.7 and 4.3.1. For different values of the tolerance

on the integration error, we run simulations on the slider-crank mechanism with both methods, and

we compared the performances of both algorithms. Figure 4.7 presents the work-precision diagram

for both strategies, and Table 4.2 presents the average time step size for each method.
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Figure 4.6: Slider-crank with clearance and friction, speeds of the crank and connecting rods
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Figure 4.7: Work-precision diagram for the mixed event-driven/time-stepping scheme and the adaptive

Moreau-Jean scheme for the Slider-Crank mechanism with clearance

tol haverage with the Hybrid algorithm haverage with the adaptive Moreau-Jean scheme

10−2 1.75 10−2 3.99 10−4

10−4 7.15 10−3 2.66 10−3

10−6 2.97 10−3 4.20 10−4

10−8 1.11 10−3 8.62 10−5

Table 4.2: Comparison of the hybrid algorithm and the adaptive Moreau-Jean scheme on the Slider-

crank mechanism with clearance

For all the selected values of the tolerance on the local error, the hybrid integration scheme needs

less simulation time than the adaptive Moreau-Jean scheme because (see Fig. 4.7) it takes advantage

from the high order DAE solver (HEM5) incorporated in the event-driven method. The local order

of the Moreau-Jean scheme being lower, it needs smaller time steps to meet the tolerances than those

used for the hybrid method. Once again, we recall that the defined accuracies are imposed on the

integration error for the HEM5 scheme incorporated in the event-driven method. For this accuracy to

be satisfied for the hybrid scheme, the detection for the events must be "very" accurate for the event-

driven method and the time-step size used for the time stepping scheme must satisfy the Assumption

4.2.4. Since we define a minimum value for the time step size (hmin = 10−7s), this assumption is not

satisfied and we cannot be sure that the hybrid scheme accuracy meets the defined tolerance. The

accuracy order of the hybrid scheme is not easy to evaluate, unless we know an analytical solution for

the problem, which enables us to evaluate the error made.
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4.3.3 Bodies with C
0 and C

1 constraints

In this section, we discuss the changes that occur when there are some edges or other discontinuities in

a given geometry. These discontinuities make the integration of the equations of motion difficult, and

could even lead to incoherent results if they are not correctly treated. In practice, the geometry engine

(of Ansys for example) provides pairs of contact points that are within a "touching" tolerance. When

the theoretical points are close to the transition between two surfaces separated by an edge, pairs of

contact points on both sides meet the contact touching tolerance, also meaning that we have active

constraints on both sides of the edge. The data (normal velocities for instance) of these contact points

are then used to formulate the contact problem, leading therefore to ill-posed problems as discussed

in the sequel.

4.3.3.1 C0 constraints

Glocker has addressed the problem of jumps in the state at the transitions in [59] for C0-constraints,

starting from the measure equality of Moreau:

M(q)dv = Fdt+ dR. (4.1)

where F collects the external and the Coriolis forces, and dR denotes the impulse of the impact. The

post-impact velocity at a given time t⋆ is computed by integration Eq.(4.1), which gives

M(q⋆)dv = dR = G(q⋆)dλ. (4.2)

Glocker proposes two solutions to compute the post-impact velocity as well as the impulse. Both

methods preserve the kinetic energy of the system and are briefly exposed below.

The time scaling method An artificial time τ ∈ [0, 1] is introduced such that dv = vdτ and

dR = Rdτ , with dτ being a Lebesgue measure on [0, 1]. Therefore, the discontinuous gradient at the

connection is transformed into a continuous gradient defined as

G(τ) = (1− τ)G1 + τG2, τ ∈ [0, 1]. (4.3)

A smooth relative velocity is also defined with

ġ = GT v = 0. (4.4)

After differentiating twice the relative velocity, we consider the index-1 problem






Mv = Gλ

g̈ = GT v + ĠT v = 0
(4.5)
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Finally, integrating this equation over {t⋆} gives the post impact velocity and the impulse

∫

{t⋆}

Mdv =

∫ 1

0

Mv(τ)dτ, (4.6)

∫

{t⋆}

dR =

∫ 1

0

G(τ)λ(τ)dτ, (4.7)

with v(τ = 0) = v− and v(τ = 1) = v+.

The reflection law Glocker states in [59, Proposition 3] that "every velocity jump v+ 6= v− at

which kinetic energy is preserved may be interpreted as a non-dissipative collision, i.e. as a reflexion

with v+ being the mirror image of v− with respect to a hyperplane with normal in the direction of

M−1R". The starting point of this method is to transform the initial non-convex problem into a

convex one by restricting the impact impulse R to lie in the convex cone {G1, G2}. Two variables u

and u⊥ are defined as

u = v− + v+ (4.8)

and

u⊥ = v− − v+. (4.9)

To construct the reflexion, the angle bisector of G1 and G2 has to be computed. To this aim, two

normal vectors n1 and n2 are defined as

n1 =
G1

‖ G1 ‖
(4.10)

and

n2 =
G2

‖ G2 ‖
. (4.11)

Therefore, one possibility for the bisector is

nP =
n1 + n2

‖ n1 + n2 ‖
. (4.12)

Once the direction nP of R has been determined, u⊥ is determined using the relation

u⊥ = 2M−1nPn
T
P v

−. (4.13)

Finally, the post impact velocity is computed with

v+ = v− − u⊥, (4.14)

and the impulse is computed with

R =M(v+ − v−). (4.15)
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The calculations have not been presented in detail in this section but can be found in [59].

In this section, we analyze the problem starting from the formulation (1.22), Filippov theory is then

used to better understand the issue. Next, examples are studied that enable to illustrate the difficulty

of numerically computing the dynamics when crossing an edge. Finally, solutions are proposed to

solve the issue and applied to the examples.

4.3.3.2 C1 constraints

In this section, we consider multibody systems with C1 constraints, meaning that the jacobians are

continuous and that there is a jump in the Hessians matrices.

Let us consider two rigid bodies BA and BB which can come in contact, as illustrated in Fig.1.6

where CA and CB denote the potential contacting points on BA and BB respectively, and nα the

normal vector to the contact tangent plane, oriented from B1 to B2 and gα denotes the signed distance

between the two bodies. The kinematic equations can be written



























gα(q) ≥ 0

ġα(q) = ∇gα(q)T q̇

g̈α(q) = ∇gα(q)T q̈ +
(d∇gα(q)

dt

)

T

q̇.

(4.16)

In the case of problems with a change in the curvature as depicted in Figure 4.8, and when the

contact is closed (gα(q) = 0 and ġα(q) = 0), the term
(d∇g(q)

dt

)T
q̇ in (4.16) is discontinuous. For the

problem illustrated in Fig. 4.8, the "domains" C1, C2 and the transition Sd may be defined using some

geometrical function h(q) as:























C1 = {q | g1(q) = 0, h(q) > 0}

C2 = {q | g2(q) = 0, h(q) < 0}

Sd = {q | g1(q) = g2(q) = h(q) = 0}.

(4.17)
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Figure 4.8: Problem with a change in the curvature

When crossing a transition, the solution may have jumps in the velocities and in the accelerations.

Indeed, when formulating the dynamics of the constrained system as an index-1 DAE or as an ODE,

to compute the accelerations and the contact forces, we have to solve system (1.25) or (1.26). Both

systems involve the second derivative of the constraints. However, these systems are not solvable in

the case of a system containing a change in the curvature, also meaning that we are considering two

bilateral constraints whose second derivatives are not equal at the connection. Let us denote td the

time at which the integration process arrives at this singularity, meaning that h(q(td)) = 0. Let us

assume that the motion goes from C1 to C2. Just before the singularity, at t−d , system (1.25) (for

example) is written with respect to the first constraint:





M(q(t−d )) −G1
T (q(t−d ))

G1(q(t
−
d )) 0









v̇(t−d )

λ1



 =





F (t−d , q(t
−
d ), v(t

−
d ))

−dG1(q)
dt v(t−d )



 . (4.18)

Just after the singularity, the system becomes





M(q(t+d )) −G2
T (q(t+d ))

G2(q(t
+
d )) 0









v̇(t+d )

λ2



 =





F (t+d , q(t
+
d ), v(t

+
d ))

−dG2(q)
dt v(t+d )



 . (4.19)

Therefore we switch from a given DAE to another one. Just at the singularity, if both constraints are

active and if we do not take any care regarding the discontinuity the system reads





M(q(td)
−GT

1 (q(td))

−GT
2 (q(td))

G1(q(td))
G2(q(td))

0















v̇(td)

λ1

λ2











=











F (td, q(td), v(td))

−dG1(q)
dt v(td)

−dG2(q)
dt v(td)











.

However the right-hand-side may not be in the image of the left block matrix. Numerically, this

singularity results in a difficulty when computing the estimations of the accelerations or Lagrange
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multipliers because the system (1.25) is ill-posed. In the case of implicit schemes, the discontinuity

results in a difficulty when solving system (2.84) which becomes ill posed at the singularity.

There is another problem related to the transition of edges when using Runge-Kutta methods

in event-driven schemes. Indeed, these methods are based on the estimations of the solution at

different moments of the time interval. When a transition happens, then some of the estimations use

the constraints related to contact pairs on the left of the edge while others use constraints related to

contact pairs on the right of the edge. As a consequence, the resultant approximation at the end of the

time step leads to a relatively big truncation error and therefore to using small time step sizes. When

the jacobians are equal at the transitions, we hoped that we do not have any problem computing

the dynamics when using index-2 DAE solvers since they use the constraints at the velocity level.

However, it appeared these schemes are not efficient at the transitions since they use linear systems

involving jacobians that are evaluated at different times. As a consequence, we may have systems with

jacobians corresponding to constraints on the left and on the right of the transitions, which renders

the systems ill-posed (see Section 4.3.3.4).

4.3.3.3 Formulating the problem with C1 constraints as a Filippov’s differential inclusion

The theory of Filippov discussed in this section will help us validate the numerical results obtained in

the following sections.

Let us consider a system subject to a set of bilateral constraints of the form g(q) = 0. In this case,

we define

g(q) =







g1(q), if q ∈ C1

g2(q), if q ∈ C2,
(4.20)

keeping in mind that g(q) is a C1 function of q. We showed that when the Delassus operator is

invertible, we can evaluate λ and q̈ as










λ = −(GM−1GT )
−1

(GM−1F +
dG

dt
q̇)

q̈ =M−1F +M−1GTλ.

(4.21)

Let us denote dG
dt

−
= dG1

dt and dG
dt

+
= dG2

dt . In the problem defined in Fig. 4.8, because of the change

in the curvature between curves C1 and C2, we have

M(q)q̈+F (q, q̇, t) =



















−GT (q)((G(q)M−1(q)GT (q))
−1

(G(q)M−1(q)F (q, v, t) + dG
dt

−
q̇)) if q ∈ C1

−GT (q)((G(q)M−1(q)GT (q))
−1

(G(q)M−1(q)F (q, v, t) + dG
dt

+
q̇)) if q ∈ C2.

(4.22)
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To simplify the expression in (4.22), let us denote W (q) the Delassus operator G(q)M−1(q)GT (q), i =

1, 2, we then have

M(q)q̈ + F (q, q̇, t) =



















−GT (q)(W−1(G(q)M−1(q)F (q, v, t) + dG
dt

−
q̇)) if q ∈ C1

−GT (q)(W−1(G(q)M−1(q)F (q, v, t) + dG
dt

+
q̇)) if q ∈ C2.

(4.23)

Let us consider the case when the dynamics is formulated as an ODE, as in equation (1.26). The

presence of a singularity leads to





q̇

q̈



 =















































v

M−1(q)F (q, v, t)−M−1(q)GT (q)W−1
(

G(q)M−1(q)F (q, v, t) + dG
dt

−
q̇
)



 if q ∈ C1





v

M−1(q)F (q, v, t)−M−1(q)GT (q)W−1
(

G(q)M−1(q)F (q, v, t) + dG
dt

+
q̇
)



 if q ∈ C2.

(4.24)

Since g is C1 then λ computed with (4.21) may be discontinuous but remains bounded. If in addition

the initial conditions (q0, v0) satisfy the constraints: g(q0) = 0 and G(q0)v0 = 0, then, the dynamics

evaluated with (4.24) ensures that the submanifold {(q, v) | g(q) = 0, G(q)v = 0} is invariant.

Let us denote X =





q

q̇



 and fi(X) = u(q, q̇, t) + wi(q, v, t) where











u(q, v, t) =M−1(q)F (q, v, t)−M−1(q)GT (q)W−1
(

G(q)M−1(q)F (q, v, t)
)

wi(q, v, t) = −M−1(q)GT (q)W−1

(

dGi

dt
q̇

)

, i = 1, 2.
(4.25)

Then the problem can be formulated as

Ẋ =







f1(X), if q ∈ C1 ,

f2(X), if q ∈ C2 ,
X(0) = X0 ∈ R

n. (4.26)

This problem is a piecewise smooth system, which can be analyzed using the theory of Filippov

[46]. Let us consider system (4.26). The state space R
n is split into the subspaces C1 and C2 by the

surface Sd defining the zone of the singularity, characterized by a function s : R2n −→ R, such that

Sd = {X ∈ R
2n | s(X) = 0}. When s ∈ Ck (Ck is the set of functions with k derivatives), we can define

the unit normal vector to the tangent plane to Sd at X as

ñ(X) =
∇(s(X))

‖ ∇(s(X)) ‖
. (4.27)
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Since dG
dt

+
q̇ 6= dG

dt

−
q̇, the dynamics is not defined at Sd where both constraints are active. A common

way to overcome this problem is to extend the discontinuous system into a Filippov’s differential

inclusion, also known as Filippov convex method [46], defined as

Ẋ ∈



















f1(X), if q ∈ C1 ,

f2(X), if q ∈ C2 ,

fH(X), if q ∈ Sd ,

X(0) = X0 ∈ R
n, (4.28)

where H is the closed convex hull defined as H = {fH | fH(X) = (1−α)f1(X)+αf2(X) , X ∈ Sd, α ∈

[0 , 1]}. In the case of a constrained multibody system, this convex hull is given with

H = {fH | fH(X) = (1− α)w1(X) + αw2(X) + u(X) , X ∈ Sd, α ∈ [0 , 1]} (4.29)

where the functions u, w1 and w2 are defined in (4.25). Let f1p = ñT f1 and f2p = ñT f2 be the

projections of f1 and f2 onto the normal to Sd.

Remark: Filippov’s convexification method totally disregards what may happen on the disconti-

nuity surface. It focuses on the right- and left-limits of the vector fields and defines a sliding motion

in case the discontinuity surface is attractive.

Different modes can be defined [46, 37] depending on the sign of the product f1
T
p f2p.

• If f1
T
p f2p > 0 on Sd, then trajectories leave the surface Sd. We have a transversal mode. In

this case, a solution in the sense of Carathéodory can be defined [46, 30].

• If f1
T
p f2p < 0 on Sd, then:

1. if f1p > 0 and f2p < 0, we have an attractive sliding mode on Sd. Solutions are

approaching Sd from both sides as time increases and Filippov provides an extension of the

solution on Sd as

fe(X) = (1− α(X))f1(X) + α(X)f2(X), (4.30)

where α(X) =
f1p

f1p−f2p
.

2. if f1p < 0 and f2p > 0, we have a repulsive sliding mode. The solution can leave the

surface Sd at any time, or stay on it.

Fig. 4.11 illustrates the transversal and sliding modes.
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n Sd : S(X) = 0
f2

S(X) < 0

f1

S(X) > 0

Figure 4.9: Transversal mode

n Sd : S(X) = 0
f2

S(X) < 0

f1

S(X) > 0

Figure 4.10: Sliding mode

Figure 4.11: Transversal and Sliding modes

The analysis developed in this section leads us to believe that the simulation of the dynamics of

systems with edges resulting from non-perfect CAD descriptions would be difficult only when using

schemes dedicated to index-1 DAEs or ODEs because these methods solve the constraints on the

acceleration level. When the acceleration constraints are discontinuous, these methods fail because

the systems to solve to get the estimations are ill-posed. However, we also experienced problems when

using solvers for index-2 DAEs, as discussed in the following.

4.3.3.4 Illustrative examples for C1 constraints

We will now present some examples that illustrate the problems presented in the previous subsection.

In each of the following examples, the mechanical system can be considered as being submitted to two

different smooth constraints, and the switch between both constraints is made at the "geometrical

discontinuity" where they are both active, or as one constraint that is not sufficiently differentiable at

a singularity. We choose to consider the first option in this document. Through two simple examples,

we try to reproduce the difficulties faced with the Ansys solver when contact pairs on the left and on

the right of a transition are detected.

Example 1 Let us consider the case of a ball sliding on a portion of a parabola of equation y = 1
2x

2

before sliding on the plane of equation y = 0, as depicted in Figure 4.12.
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x
y

g

g2 : y = 0

g1 : y − 0.5x2 = 0

Figure 4.12: Ball sliding on a parabola and then on a plane

The ball is described by the generalized coordinates [x, y]T and is submitted to gravity. Its initial

position and velocity are: [2, 2]T and [−1, −2]T respectively. Note that the initial conditions are

consistent with the constraints, which are written as







g1(q) = y − 0.5x2, ifx ≥ 0

g2(q) = y, ifx ≤ 0,
(4.31)

the Jacobians are given by






G1(q) = [−x 1], ifx ≥ 0

G2(q) = [0 1], ifx ≤ 0,
(4.32)

and the Hessian matrices are





−1 0

0 0



 if x ≥ 0 and





0 0

0 0



 if x ≤ 0 . The function h defined in

section 4.3.3.2 reads: h(q) = x.

The equations of motion can be written as







mẍ = rx

mÿ = −mg + ry,
(4.33)

where m denotes the mass of the ball, g denotes the gravity and r=[rx, ry]=G
T (q)λ is the contact

force. By substituting with the expressions of G(q), F (q, q̇, t) and M(q), one gets











rx =
−mx

1 + x2
(g + ẋ2), ifx ≥ 0

rx = 0, otherwise

(4.34)











ry =
m

1 + x2
(g + ẋ2), ifx ≥ 0

ry = mg, otherwise.

(4.35)
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At the junction point (0, 0), the second derivatives of the constraints are not equal. Indeed, the

Hessian matrices at this point are





−1 0

0 0



 if x ≥ 0 and





0 0

0 0



 if x ≤ 0, which means that the

term dG(q)
dt q̇ is discontinuous at the connection point.

In this case, the numerical solvers experience some issues during the resolution of the dynamics in

the neighborhood of the singularity (x = 0), assuming that the singularity is detected with a tolerance

of 10−8. In the step that follows the detection of this event, the systems used for the computation of

the estimations V̇ i and Λi become ill-posed. Using the HEM5 scheme in the event-driven strategy,

the system becomes:

















1 0 0 0

0 1 −1 −1

0 1 0 0

6.65031 10−5 1 0 0





















V̇ 1

Λ1



 =

















0

−9.81

44.1971

−3.62238 10−2

















.

We can mention that the Hessian matrices (computed at the plane and at the parabola) are not

compatible in the zone of the edge. The 3rd and 4th rows of this matrix show the non consistency of

the normals evaluated at Q1 and Q2 respectively.

Let us analyze this problem applying the theory presented in Section 4.3.3.3, augmented of the

higher order analysis presented in [37]. Let us denote X =





q

q̇



 = [x, y, ẋ, ẏ]T . The equations of

motion of this system can be formulated as

Ẋ =











































f1 =





v

f11(X, t)



 if x > 0

f2 =





v

f22(X, t)



 if x < 0.

(4.36)

where f11(X, t) =





−x
1+x2 (g + ẋ2)

−g + g+ẋ2

1+x2



 and f22(X, t) =





0

0



. The normal to the switching surface

in the state space R
4 at the singularity is defined with ñ = [1, 0, 0, 0]T . We define the functions

f1p = fT1 ñ = ẋ and f2p = fT2 ñ = ẋ. These vector fields are illustrated in Fig. 4.15 in which

the switching line is in red, they are based on a simulation using the HEM5 scheme. We have

f1p|
T
x=0f2p|x=0 = ẋ2s ≥ 0, where ẋs denotes the x component of the velocity of the ball at the

singularity. Different cases must be taken into account.
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• If ẋs 6= 0, then we have a transversal intersection.

– If ẋs < 0, the trajectories leave the singularity at x = 0 to enter the curve C2 defined by

the constraint g2(q) = 0.

– If ẋs > 0, the trajectories leave the singularity at x = 0 to enter the curve C1 defined by

the constraint g1(q) = 0.

• if ẋs = 0, then the problem is continuous.

Example 2 Let us consider now another example, which is quite close to the one presented in section

4.3.3.4.

x
y

g

g1 : y = 0

g2 : y + 0.5x2 = 0

Figure 4.13: Ball sliding on a plane and then on a parabola

The ball is described by the general coordinates q = [x, y]T and is submitted to gravity. Its initial

position and velocity are: [2, 0]T and [−2, 0]T respectively. The bilateral constraints read







g1(q) = y, if x ≥ 0

g2(q) = y + 0.5x2, if x ≤ 0,
(4.37)

the Jacobians are given by






G1(q) = [x 1], ifx ≥ 0

G2(q) = [0 1], ifx ≤ 0,
(4.38)

and the Hessian matrices are





1 0

0 0



 if x ≥ 0 and





0 0

0 0



 if x ≤ 0 . By substituting with the

expressions of G(q), F (q, q̇, t) and M(q), one gets the constraint force r = GTλ given by











r = [0 mg]
T
, ifx ≥ 0

r = [
−mx

1 + x2
(−g + ẋ2) −

m

1 + x2
(−g + ẋ2)]

T

, ifx ≤ 0
(4.39)
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This problem can be formulated as a piecewise smooth system. By taking X =





q

q̇



 = [x, y, ẋ, ẏ]T ,

we have

Ẋ =











































f1 =





v

f11(X, t)



 if x > 0

f2 =





v

f22(X, t)



 if x < 0.

(4.40)

where f11(X, t) =





0

0



 and f22(X, t) =





−x
1+x2 (−g + ẋ2)

−g − −g+ẋ2

1+x2



 . The normal to the switching surface

in the state space R
4 at the singularity is defined with n = [1, 0, 0, 0]T . The projections of the vector

fields on the switching surface evaluated at the junction are f1p|x=0 = ẋs and f2p|x=0 = ẋ2s, where

ẋs denotes the x component of the velocity of the ball at the singularity. Therefore, the analysis

developed in Section 4.3.3.4 holds here.

The integration of the dynamics at the singularity fails because it requires to solve problems that

are ill-posed. Here is an example of such a system when the HEM5 scheme is used
















1 0 0 0

0 1 −1 −1

0 1 0 0

−1.99999 10−5 1 0 0





















V̇ 1

Λ1



 =

















0

−9.81

−3.99999

0

















.

The use of the least squares method to overcome this issue does not give satisfactory results. Indeed,

with the HEM5 scheme, when it arrives to the edge with both constraints activated, the ball goes

back in the direction to the plane instead of going on the parabola. This failure can be explained by

the fact the least squares method is suitable for systems with a full rank matrix, which is not the case

for example in (4.41).

4.3.3.5 Applying the solution to the issues

In this section, we present the evolution of the dynamics of each of the 2 examples, when applying

the hybrid integration method to overcome the problems due to geometry.

Example 1 Figures 4.14a, 4.14b, 4.14c, 4.14d, 4.14e and 4.14f depict the evolution of some variables

with respect to the x position. The constraints defined for this system have jacobians which are equal

at the edge. Therefore, the velocities are continuous as illustrated in Figures 4.14c and 4.14d. However,
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(a) ball sliding on parabola/plane, y vs x
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(b) ball sliding on parabola/plane, λ vs x
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(c) ball sliding on parabola/plane, ẏ vs x
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(d) ball sliding on parabola/plane, ẋ vs x
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(e) ball sliding on parabola/plane, ÿ vs x
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(f) ball sliding on parabola/plane, ẍ vs x

Figure 4.14: parabola/plane example, dynamical variables with respect to x
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their second derivatives are not equal. This leads to a jump in the accelerations and therefore in the

contact forces, as showed in 4.14e and 4.14b. The vector fields of Fig. 4.15 show indeed a transverse

mode where the velocities enable to cross the edge.

(a) Vector field f11 (b) Projected Vector field f11

(c) Velocities field

Figure 4.15: Vector fields describing the dynamics of the parabola/plane example

Example 2 Numerically, the edge is detected at x ≃ −1.755.10−15. Figures 4.16a, 4.16b, 4.16c, 4.16d, 4.16e,

and 4.16f depict the evolution of some variables with respect to time. We can draw the same conclu-
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(a) ball sliding on plane/parabola, y vs x (b) ball sliding on plane/parabola, λ vs x

(c) ball sliding on plane/parabola, ẏ vs x (d) ball sliding on plane/parabola, ẋ vs x

(e) ball sliding on plane/parabola, ÿ vs x (f) ball sliding on plane/parabola, ẍ vs x

Figure 4.16: unversed parabola/plane example, dynamical variables with respect to x
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sions as for the previous example. The velocities of the bead are continuous because the constraints

to which the system is subjected are equal at the connection. However, we observe a jump on the ÿ

component of the acceleration and on the Lagrange multiplier. These jumps result from the fact the

hessians of the constraints are not equal at the edge.

Fig. 4.17 illustrates these vector fields when using the hybrid integration method for the simulation.

These vector fields are consistent with a transverse mode, the velocity field in Fig. 4.17c allow for

crossing the transition at x = 0.

(a) Vector field f22 (b) Projected Vector field f22

(c) Velocities field

Figure 4.17: Vector fields describing the dynamics of the plane/parabola example
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4.4 Conclusion

In this chapter, we addressed several problems that are frequently met in practical applications of the

multibody dynamics field. The problems refer to handling accumulation of events, friction and edge

transitions in a CAD description. The proposed solution takes advantage of event-driven methods and

time-stepping schemes. The algorithm is a mixed event-driven/time-stepping method where the event-

driven is used with a high order DAE solver until a criterion indicating a switch condition is satisfied.

The integration is then resumed with a time-stepping method. Conditions have been discussed in

4.2.2 that have to be satisfied to prevent the breakdown of the global order when switching from

the event-driven to the time-stepping. In practice, the condition on the size of the time step of the

time-stepping scheme cannot always be satisfied because it leads to very small time steps that prevent

the simulation from advancing quickly. Therefore, in practical applications, we set a minimum time

step size for the time-stepping method, even if the global order is not maintained.

Finally, several examples have been treated in order to prove the robustness and the numerical

efficiency of the proposed hybrid scheme. Our solution has also been compared to a Moreau-Jean time

stepping scheme with an adaptive strategy of the time step size. As expected, the hybrid integration is

less time-consuming than the adaptive Moreau-Jean method since it can use large time steps because

the incorporated DAE solver is of high order.

The implementation of the hybrid scheme is ongoing in the Ansys solver and the preliminary results

make it one of the priorities for the future developments in the Ansys Rigid Body solver.



Chapter 5

Conclusion

This thesis is dedicated to improve and build numerical schemes for the simulation of the dynamics of

nonsmooth multibody systems, i.e. multibody systems with impacts and friction. An extensive state

of the art has been presented in Chapter 2 in which we discussed numerical schemes dedicated to the

resolution of index-3, index-2 and index-1 DAEs. Based on this state of the art, several numerical

schemes have been selected to run simulations over several sets of mechanical systems.

In chapter 3, four numerical schemes have been used to run simulations on several academic

examples and a wide range of industrial benchmarks, in the context of event-diven schemes. Namely,

• the implicit generalized-α scheme in its index-3 and index-2 DAE forms,

• the HEM5 schemes, a half-explicit method for index-2 DAEs,

• the PHEM56 method, a half-explicit partitioned method, also dedicated to index-2 DAEs,

• and the RK4 and RKF methods for the resolution of ODEs.

These methods were compared from the point of view of their ability to enforce the constraints,

their efficiency and their robustness in the case of stiff dynamics. The salient conclusions from the

simulations are the following:

• the numerical experiments support the theory on the relevance of discretizing the constraints on

the velocity level. Indeed, the schemes for index-2 DAEs (HEM5 and PHEM56) exactly solve

the velocity constraints while keeping the violation of the position constraints to low levels. The

generalized-α scheme in its index-3 DAE form solves exactly the position constraints, however

we observe a high violation of the velocity constraints. The schemes for ODEs enforce the
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acceleration constraints while the position and velocity constraints are violated. However, the

chosen methods (RK4 and RKF) are of high order (4), therefore when they are used with a

"tight" tolerance on the integration error, they enforce the position and velocity constraints to

acceptable levels. Let us mention that in the context of event-driven schemes, we are mainly

interested in the position and velocity constraints to evaluate the index sets describing the status

of the contacts. These index sets are sensitive to the defined thresholds. Therefore, the best

method is the one that drastically reduces the violation of the constraints at both position and

velocity. For this, index-2 DAE solvers have proved their superiority over other schemes. Of

course one can propose to correct the violated constraints by some means of stabilization or

projection techniques. Nevertheless, from a numerical point of view, this correction represents

and additional computational work.

• index-2 DAE methods are more time-efficient than the other methods. Indeed, the selected

methods (HEM5 and PHEM56) being of high order (5) and almost not requiring any correction

of the constraints, are able to solve problems in a less time than the other schemes. The

generalized-α in its index-2 DAE form is less time-consuming than in its index-3 DAE form.

When it is used in its index-3 DAE form, the generalized-α needs to use short time steps sizes

to maintain the drift at low levels. In addition, correction of the constraints are most of the

time required when the system involves nonlinear constraints. RK4 and RKF proved to be

efficient but less than HEM5 and PHEM56 because they require the use of methods to correct

the constraints.

• when the dynamics is stiff, implicit methods prove their numerical superiority over the other

methods. With its ability to introduce a numerical damping, the generalized-α method is able

to solve the dynamics of systems with high frequencies with reasonable time step sizes. Half-

explicit and explicit schemes either need very tight time steps to deal with a stiff dynamics, or

completely fail when the involved frequencies are too high.

The second segment with this thesis deals with several problems that are frequent in the simulation

of multibody systems: accumulation of impacts, friction and handling the numerical singularities due

to imperfect geometries in a CAD description. To deal with these issues, we proposed a hybrid event-

driven/time-stepping integration method. The aim is to profit from the advantages of both integration

families (event-driven and time-stepping). This mixed integration consists in using the event-driven

scheme with a high order DAE integrator until a switch criterion is satisfied, then the integration

is resumed with the Moreau-Jean time-stepping scheme. In order not to reduce the high order of
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the event-driven scheme when using the Moreau-Jean method, this latter has to use small time steps

satisfying the conditions established in Section 4.2.2. In practice, these conditions lead to very small

time steps that prevent the simulation from advancing quickly. This is why we set a minimum value

for the time steps of the time-stepping method, even if the order of the DAE solver incorporated in the

event-driven method breaks down. We used this hybrid integration on several academic examples, and

in some cases our algorithm has been compared to the Moreau-Jean scheme with an adaptive strategy

for the time step size. The Moreau-Jean method having a local order 1, it needs much smaller time

steps to achieve the tolerances on the integration error than the mixed event-driven/time stepping

scheme.

As a perspective to this work, the hybrid method should be tested on industrial benchmarks, with

several degrees of freedom and several contact points, to prove its robustness. Furthermore, the switch

criteria have to be precised and adapted to an industrial development context. The implementation

of this mixed algorithm is being performed in the Ansys solver, but this work is not advanced enough

to run simulation on some industrial tests.
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Appendix A

Discretization of some numerical

method

A.1 Some Runge-Kutta schemes

There are a multitude of Runge-Kutta methods, but RK4, Runge-Kutta-Fehlberg and Dormand-

Prince are probably one of the most popular. In the following, we present their discretization.

A.1.1 RK4

RK4 is based on 4 estimations of the derivatives as











































Y1 = hf(yn, tn)

Y2 = hf(yn +
1

2
Y1, tn +

h

2
)

Y3 = hf(yn +
1

2
Y2, tn +

h

2
)

Y4 = hf(yn + Y3, tn + h).

(A.1)

The solution at the end of the time step is given with

yn+1 = yn +
1

6
(Y1 + 2Y2 + 2Y3 + Y4). (A.2)
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A.1.2 Runge-Kutta-Fehlberg

This scheme is based on 6 estimations of the derivatives










































































Y1 = hf(yn, tn)

Y2 = hf(yn +
1

4
hY1, tn +

1

4
h)

Y3 = hf(yn + h(
3

32
Y1 +

9

32
Y2), tn +

3

8
h)

Y4 = hf(yn + h(
1932

2197
Y1 −

7200

2197
Y2 +

7296

2197
Y3), tn +

12

13
h)

Y5 = hf(yn + h(
439

216
Y1 − 8Y2 +

3680

513
Y3 −

845

4104
Y4), tn + h)

Y6 = hf(yn + h(−
8

27
Y1 + 2Y2 −

3544

2565
Y3 +

1859

4104
Y4 −

11

40
Y5), tn + h)

(A.3)

Then, a 4th order approximation of the solution at the end of the step can be defined as

yn+1
(4) = yn +

25

216
Y1 +

1408

2565
Y3 +

2197

4101
Y4 −

1

5
Y5 (A.4)

and a 5th order one as

yn+1
(5) = yn +

16

135
Y1 +

6656

12825
Y3 +

28561

56430
Y4 −

9

50
Y5 +

2

55
Y6. (A.5)

There is a debate on whether the 4th or the 5th order estimation should be chosen as an approximation

of the solution at the end of the time step. The 4th order estimation seems to be more stable than the

other one, therefore it will be chosen in the work presented in this report. The value yn+1
(5)− yn+1

(4)

is used to estimate the integration error and compute the optimal time step size, as explained in

Section 2.2.7.4.

A.1.3 Dormand-Prince scheme

Dormand-Prince method is based on 7 estimations of the derivatives as follows

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
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




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




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


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
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









Y1 = hf(yn, tn)

Y2 = hf(yn +
1

5
hY1, tn +

1

5
h)

Y3 = hf(yn + h(
3

40
Y1 +

9

40
Y2), tn +

3

10
h)

Y4 = hf(yn + h(
44

45
Y1 −

56

15
Y2 +

32

9
Y3), tn +

4

5
h)

Y5 = hf(yn + h(
19372

6561
Y1 −

25360

2187
Y2 +

64448

6561
Y3 −

212

729
Y4), tn +

8

9
h)

Y6 = hf(yn + h(
9017

3168
Y1 −

355

33
Y2 −

46732

5247
Y3 +

49

472
Y4 −

5103

18656
Y5), tn + h)

Y7 = hf(yn + h(
35

384
Y1 +

500

1113
Y3 +

125

192
Y4 −

2187

6784
Y5 +

11

84
Y6), tn + h)

(A.6)
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Order Formula

1 yn+1 = yn + hfn+1

2 yn+1 = 4
3yn − 1

3yn−1 +
2
3hfn+1

3 yn+1 = 18
11yn − 9

11yn−1 +
2
11yn−2 +

6
11hfn+1

4 yn+1 = 48
25yn − 36

25yn−1 +
16
25yn−2 −

3
25yn−3 +

12
25hfn+1

5 yn+1 = 300
137yn − 300

137yn−1 +
200
137yn−2 −

75
137yn−3 +

12
137yn−4 +

30
137hfn+1

6 yn+1 = 360
147yn − 450

147yn−1 +
400
147yn−2 −

225
147yn−3 +

72
147yn−4 −

10
147yn−5 +

60
147hfn+1

Table A.1: BDF schemes

As in the case of the RKF scheme, we have a 4th and a 5th order estimations defined with

yn+1
(4) = yn +

35

384
Y1 +

500

1113
Y3 +

125

195
Y4 −

2187

6784
Y5 +

11

84
Y6, (A.7)

and

yn+1
(5) = yn +

5179

576000
Y1 +

7571

16695
Y3 +

393

640
Y4 −

92097

339200
Y5 +

187

2100
Y6 +

1

40
Y7. (A.8)

The difference between these two estimations is used to evaluate the integration error and to control

the time step size.

A.2 Some multistep methods

There are three families of linear multistep methods: BDF schemes, Adams-Bashforth methods and

Adams-Moulton methods. These methods are presented below for different accuracy orders.

A.2.1 BDF schemes

The BDF formulas for different orders are presented in Table A.1.
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Order Formula

1 yn+1 = yn + hfn

2 yn+1 = yn + h( 32fn − 1
2fn−1)

3 yn+1 = yn + h( 2312fn − 16
12fn−1 +

5
12fn−2)

4 yn+1 = yn + h( 5524fn − 59
24fn−1 +

37
24fn−2 −

9
24fn−3)

5 yn+1 = yn + h( 1901720 fn − 2774
720 fn−1 +

2616
720 fn−2 −

1274
720 fn−3 +

251
720fn−4)

Table A.2: Adams-Bashforth formulas

A.2.2 Adams-Bashforth formulas

Adams-Bashforth formulas for different orders are presented in Table A.2

A.2.3 Adams-Moulton formulas

Adams-Moulton formulas for different orders are presented in Table A.3.

A.3 The Moreau-Jean algorithm

In this section we present the algorithm of the Moreau-Jean time-stepping scheme as implemented in

the Ansys solver.

GB(q) andGU (q) stand for the jacobians of the bilateral and the unilateral constraints, respectively.
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Algorithm 2 Moreau-Jean time-scheme implementation

Require: qn, vn

Require: θ, γ

Require: Kt = −∂F (q,v,t)
∂q , Ct = −∂F (q,v,t)

∂v

Ensure: qn+1, vn+1

q = qn, u = vn

i = 0

repeat

M̂ =M(q, tn+1) + hθC(q, u, tn+1) + h2θ2K(q, u, tn+1)

F̃ = (1− θ)F (qn, vn, tn) + θF (q, u, tn+1)

R0 = −M(u− vn) + hF̃

vfree = u+ M̂
−1
R0

Compute the index set I1 = {i |gi(q) = 0}

if I1 6= ∅ then

Solve a linear problem for the bilateral constraints





M̂(q, u) GT
B(q)

GB(q) 0









∆V

λB



 =





F̃

−ġB



 (A.9)

Solve the nonsmooth problem (for a frictionless impact) for the unilateral impact :





M̂(q, u) GT
U (q)

GU (q) 0









∆V

λU



 =





0

Ufree + eUn



 (A.10)

with Ufree = GU (q)vfree and Un = GU (qn)vn

end if

Update velocities: u = vfree +∆V (if no unilateral constraints, then ∆V = 0)

Update positions: q = qn + h((1− θ)vn + θu)

Compute the dynamics residual: R = −M(q̃, tn+1)(u − vn) + h
(

(1 − θ)F (qn, vn, tn) +

θF (q, u, tn+1)
)

+GT (q)λ

Compute the error: error = ‖R ‖∞

i = i+ 1

until error < tol

Update the state: qn+1 = q, vn+1 = u



150 APPENDIX A. DISCRETIZATION OF SOME NUMERICAL METHOD

Order Formula

1 yn+1 = yn + hfn+1

2 yn+1 = yn + h( 12fn+1 +
1
2fn)

3 yn+1 = yn + h( 5
12fn+1 +

8
12fn − 1

12fn−1)

4 yn+1 = yn + h( 9
24fn+1 +

19
24fn − 5

24fn−1 +
1
24fn−2)

5 yn+1 = yn + h( 251720fn+1 +
646
720fn − 264

720fn−1 +
106
720fn−2 −

19
720fn−3)

Table A.3: Adams-Moulton formulas



Appendix B

A few words about the industrial code

implementation

The work presented in this thesis is based on a python code which I developed, as well as a C++

implementation in the Ansys Rigid Body Dynamics solver performed together with the team in Ansys.

B.1 Python implementation

The python code is based on major 10 scripts:

• LagrangianSystem contains the class defining a Lagrangian system (inertia matrix, applied forces,

position, velocity...),

• IndexSets contains the definition of the index sets defined in Section 2.1.1.1,

• DenseOutput contains the methods to interpolate the position and velocity constraints as well

as the methods to find the time at which these variables vanish, as the dichotomy method for

example,

• HEM5,PHEM56, RKF and GeneralizedAlpha which contain the discretizations of the HEM5,

PHEM56, Runge-Kutta-Fehlberg and generalized-α methods, respectively,

• EventDriven contains the event-driven strategy. It calls the DAE method requested by the user,

and the LagrangianSystem, IndexSets, DenseOutput scripts,

• MoreauJean contains the Moreau-Jean time-stepping method,

151



152 APPENDIX B. A FEW WORDS ABOUT THE INDUSTRIAL CODE IMPLEMENTATION

• MixedEDTS, contains the hybrid event-driven/time-stepping method. It contains the switch

conditions discussed in Chapter 2 and uses the EventDriven and MoreauJean python scripts.

To run a simulation for a mechanism, a python script must be created which contains the char-

acteristics of the system: inertia matrix, forces, constraints, jacobian of the constraints and the

second derivatives of the constraints. The user also defines the initial conditions, the initial time

step size, the accuracy tolerance and the integration strategy (event-driven, time-stepping, hybrid

event-driven/time-stepping).

B.2 Implementation in the Ansys Rigid Body software

About 6 months of my thesis consisted in implementing the HEM5, generalized-α and the Moreau-

Jean methods in the Ansys software. The work has been performed together with the team in charge

of the development of the Rigid Body Dynamics module of Ansys. The generalized-α method is now

available in the 16.0 commercial release of the Ansys software. The implementation of the hybrid

integration method is ongoing and the preliminary results obtained on academic benchmarks make it

sufficiently promising to be part of the priority future developments to do in the Rigid Body Dynamics

module.
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