L. W. Alvarez, J. A. Anderson, F. Elbedwe, J. Burkhard, A. Fakhry et al., Search for Hidden Chambers in the Pyramids, Science, vol.167, issue.3919, p.832, 1970.
DOI : 10.1126/science.167.3919.832

G. Ambrosi, F. Ambrosino, R. Battiston, A. Bross, S. Callier et al., The MU-RAY project: Volcano radiography with cosmic-ray muons, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.628, issue.1, pp.120-123, 2011.
DOI : 10.1016/j.nima.2010.06.299

URL : https://hal.archives-ouvertes.fr/in2p3-00523594

L. Avan and M. Avan, Intensit et distribution angulaire de la composante pntrante du rayonnement cosmique sous le sol, Comptes Rendus hebdomadaires des scances de l'Acadmie des Sciences, pp.1122-1124, 1955.

L. Bergamasco, B. D. Piazzoli, and P. Picchi, ?????????????? ???????????????????? ?????? ?????? ???????????? ((50??4300) ?? ??.??.) ?? ???????????????????????????? ???????????? ???? ???????????? ?????? ??, Il Nuovo Cimento B Series 11, vol.1, issue.1, pp.59-67, 1971.
DOI : 10.1007/BF02737564

H. A. Bethe, Moli??re's Theory of Multiple Scattering, Physical Review, vol.89, issue.6, pp.1256-1266, 1953.
DOI : 10.1103/PhysRev.89.1256

D. Bhattacharyya, Effect of Solar Modulation on the Low Energy Sea Level Muon Spectrum Near the Geomagnetic Equator, Australian Journal of Physics, vol.31, issue.5, pp.451-453, 1978.
DOI : 10.1071/PH780451

K. Borozdin, G. Hogan, C. Morris, W. Priedhorsky, A. Saunders et al., Surveillance: Radiographic imaging with cosmic-ray muons, Nature, vol.422, issue.6929, p.277, 2003.
DOI : 10.1038/422277a

C. Carloganu, V. Niess, S. Bene, E. Busato, P. Dupieux et al., Towards a muon radiography of the Puy de Dôme, Geoscientific Instrumentation Methods and Data Systems, pp.55-60, 2013.

R. C. Fernow, Introduction to experimental particle physics, p.421, 1986.
DOI : 10.1017/CBO9780511622588

M. Boezio, The Cosmic???Ray Proton and Helium Spectra between 0.4 and 200 GV, The Astrophysical Journal, vol.518, issue.1, pp.457-472, 1999.
DOI : 10.1086/307251

URL : https://hal.archives-ouvertes.fr/in2p3-00018944

L. W. Alvarez, Search for Hidden Chambers in the Pyramids, Science, vol.167, issue.3919, p.832, 1970.
DOI : 10.1126/science.167.3919.832

H. K. Tanaka, High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: The density structure below the volcanic crater floor of Mt. Asama, Japan, Earth and Planetary Science Letters, vol.263, issue.1-2, pp.104-113, 2007.
DOI : 10.1016/j.epsl.2007.09.001

N. Lesparre, Geophysical muon imaging: feasibility and limits, Geophysical Journal International, vol.183, issue.3, pp.1348-1361, 2010.
DOI : 10.1111/j.1365-246X.2010.04790.x

URL : https://hal.archives-ouvertes.fr/in2p3-01019332

C. Carloganu, Geoscientific Instrumentation Methods and Data Systems, pp.55-60, 2013.

V. Kudryavtsev, Monitoring subsurface CO2 emplacement and security of storage using muon tomography, International Journal of Greenhouse Gas Control, vol.11, pp.21-24, 2012.
DOI : 10.1016/j.ijggc.2012.07.023

S. Kedar, Geoscientific Instrumentation Methods and Data Systems, pp.157-164, 2013.

T. Gaisser, Cosmic rays and particle physics, 1990.
DOI : 10.1017/CBO9781139192194

V. Kudryavtsev, Muon simulation codes MUSIC and MUSUN for underground physics, Computer Physics Communications, vol.180, issue.3, pp.339-346, 2009.
DOI : 10.1016/j.cpc.2008.10.013

I. Lázaro, proceedings of i-DUST conference, pp.1003-1007, 2014.

L. W. Alvarez, J. A. Anderson, F. El-bedwe, J. Burkhard, A. Fakhry et al., Search for Hidden Chambers in the Pyramids, Science, vol.167, issue.3919, pp.832-839, 1970.
DOI : 10.1126/science.167.3919.832

C. Carloganu, V. Niess, S. Bene, E. Busato, P. Dupieux et al., Towards a muon radiography of the Puy de Dôme, Geoscientific Instrumentation Methods and Data Systems, pp.55-60, 2013.

F. Fournier, P. Leonide, K. Biscarrat, A. Gallois, J. Borgomano et al., Elastic properties of microporous cemented grainstones, GEOPHYSICS, vol.76, issue.6, pp.211-226, 2013.
DOI : 10.1190/geo2011-0047.1

T. Gaisser and B. Garry, Cosmic rays and particle physics, 1990.
DOI : 10.1017/CBO9781139192194

E. P. George, Cosmic rays measure overburden of tunnel, Commonwealth Engineer, pp.455-457, 1955.

Y. Giomataris, P. Rebourgeard, J. P. Robert, and G. Charpak, MICROMEGAS: a high-granularity position-sensitive gaseous detector for high particle-flux environments, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol.376, issue.1, pp.29-35, 1996.
DOI : 10.1016/0168-9002(96)00175-1

I. I. Giomataris, D. Oliveira, R. Andriamonje, S. Aune, S. Charpak et al., MICROMEGAS: results and prospects Micromegas in a bulk, ICFA Instrumentation Bulletin Giomataris, 1999.

K. Jourde, D. Gibert, J. Marteau, J. De-bremond, S. Gardien et al., Experimental detection of upward going cosmic particles and consequences for correction of density radiography of volcanoes, Geophysical Research Letters, vol.74, issue.24, pp.6334-6339, 1002.
DOI : 10.1029/2008GL036451

URL : https://hal.archives-ouvertes.fr/insu-00944062

S. Kedar, H. K. Tanaka, C. J. Naudet, C. E. Jones, J. P. Plaut et al., Muon radiography for exploration of Mars geology, Geoscientific Instrumentation Methods and Data Systems, pp.157-164, 2013.

V. Kudryavtsev, Muon simulation codes MUSIC and MUSUN for underground physics, Computer Physics Communications, vol.180, issue.3, pp.339-346, 2009.
DOI : 10.1016/j.cpc.2008.10.013

V. Kudryavtsev, N. Spooner, J. Gluyas, C. Fung, and M. Coleman, Monitoring subsurface CO2 emplacement and security of storage using muon tomography, International Journal of Greenhouse Gas Control, vol.11, 2012.
DOI : 10.1016/j.ijggc.2012.07.023

I. Lázaro, F. Hivert, J. B. Decitre, D. Oliveira, R. Pizzirusso et al., Muon telescope based on Micromegas detectors: from design to data acquisition. I-DUST conference, 2014.

N. Lesparre, D. Gibert, J. Marteau, Y. Declais, D. Carbone et al., Geophysical muon imaging: feasibility and limits, Geophysical Journal International, vol.183, issue.3, 2010.
DOI : 10.1111/j.1365-246X.2010.04790.x

URL : https://hal.archives-ouvertes.fr/in2p3-01019332

S. Martoiu, H. Muller, A. Tarazona, and J. Toledo, Development of the scalable readout system for micro-pattern gas detectors and other applications, Journal of Instrumentation, vol.8, issue.03, pp.3015-3025, 2013.
DOI : 10.1088/1748-0221/8/03/C03015

K. Nagamine, M. Iwasaki, K. Shimomura, and K. Ishida, Method of probing inner-structure of geophysical substance with the horizontal cosmic-ray muons and possible application to volcaniceruption prediction. Nuclear instruments and method in physics research section A, pp.738-746, 1995.

L. J. Schultz, K. N. Borozdin, J. J. Gomez, G. E. Hogan, J. A. Mcgill et al., Image reconstruction and material Z discrimination via cosmic ray muon radiography. Nuclear instruments and method in physics research section A, pp.687-694, 2004.
DOI : 10.1016/j.nima.2003.11.035

H. K. Tanaka, T. Nakano, S. Takahashi, J. Yoshida, M. Takeo et al., High resolution imaging in the inhomogeneous crust with cosmic-ray muon radiography: The density structure below the volcanic crater floor of Mt. Asama, Japan, Earth and Planetary Science Letters, vol.263, issue.1-2, 2007.
DOI : 10.1016/j.epsl.2007.09.001

J. Asama, Earth and Planetary Science Letters

. Des-taux-de-radon, cours d'une période d'arrêt du système de ventilation des galeries du LSBB Les coïncidences sont intégrées sur une heure puis divisées pour être présentées en nombre de coïncidences par minute sur le graphique, p.124, 2014.

. Perineau, Répartition des points d'écoulements et de la fracturation de surface dans les galeries du LSBB, p.143, 2011.

. Février, La densité de protons dans les vents solaires est tirée des données de l'expérience ACE (http ://www.srl.caltech, p.155, 2014.

. Berkova, Les courbes dénissent les coecients barométriques calculés pour des pression atmosphériques de 1013 mb (solides) et 600 mb (pointillés) Les marqueurs correspondent aux résultats expérimentaux obtenus sur diérents détecteurs : points 0 à 14 (Sagisaka La valeur du coecient barométrique obtenu au LSBB est reportée sur ce graphique (étoile) pour une énergie minimale des muons équivalente à ? 60 m de roche avec une densité de 1, Coecients barométriques théoriques et expérimentaux, pp.28-158, 1972.