.. De-lewis, Schéma 82 -Réactivité d'organosilanes avec le CO 2 en présence d'acides, p.122

.. 'ester, Schéma 118 -Surface d'énergie potentielle calculée pour la formation de l, p.172

. Arduengo, et utilisées comme base libre. I t Bu a été synthétisé par déprotonation du sel d'imidazolium correspondant I t Bu

. Ipr, 355 mmol) sont successivement ajouté et dissous dans 15 mL de THF. Le milieu est placé sous agitation magnétique pendant 2 h à température ambiante, Après évaporation du solvant 9.3.4.2. Synthèse de 3e (1b) à partir de l'aniline Sous atmosphère inerte (Ar), une fiole de Schlenk J. Young de 75 mL

Y. Et-d-'un-barreau-aimanté-téflonné-le and D. , 50 mmol) et le phénylsilane (348 µL, 3,0 mmol) La fiole est alors gelée dans l'azote liquide, dégazée sous vide, mise sous atmosphère de CO 2 (1 bar), fermée hermétiquement puis placée dans un bain d'huile à 100 °C pendant 72 h. Après retour à température ambiante, 5 mL de CH 2 Cl 2 sont ajoutés. La phase organique est lavée avec 2 x 10 mL d'une solution d'HCl (1 M) pour faire passer la TMA en sel d'ammonium sous sa forme TMA Rendement isolé moyen sur trois réactions, HCl, vol.364, issue.93

. Synthèse-d-', IPrCuOSiMe 3 : En BAG, dans un ballon, IPrCuCl (150 mg, 0,30 mmol) et KOSiMe 3, p.31

. Ml-d-'etoh-absolu, Sous atmopshère inerte, PhSi(OMe) 3 (1,12 mL, 6 mmol) et NEt 3 (0,840 mL, 9.5.3.3, Procédure pour les réactions d'estérifications avec le TBAT La procédure générale est détaillée pour la réaction du TBAT avec le CO 2 et n-PrI (61a) en

M. F. Ali, B. M. Ali, and J. G. Speight, Handbook of Industrial Chemistry-Organic Chemicals, McGraw-Hill 2005. 6. Tracking industrial energy efficiency and CO 2 emissions International Energy Agency, 2007.

T. E. Müller, E. Environ, /. Sci, P. Iea, O. Pulz et al., CO 2 Capture and Storage: A Key Carbon Abatement Option Carbon Dioxide Capture and Storage, IPCC, Cambridge Carbon Capture and Storage: Progress and Next Steps, Appl. Microbiol. Biotechnol J. Biotechnol. Chem. Soc. Rev. Chem. Rev. Angew. Chem. Int. Ed. Engl, vol.5, issue.57, pp.7281-313, 1259.

H. Bipp and H. Kieczka, Formamides; in Ullmann's Encyclopedia of Industrial Chemistry, p.34, 2000.

. Technol-59, S. Itagaki, K. Yamaguchi, N. Mizuno, M. Flores-alamo et al., A: Chem. 2013, 366, 347. 60. González-Sebastián, J. Mol. Catal. Organometallics J. Am. Chem. Soc, vol.32, pp.7186-61, 2013.

. I. Chem, F. Zhu, L. Zhu-ge, G. Yang, S. Zhou et al., Polymer Letters, Phosphonites and phosphinites ligands, pp.9948-81, 1615.

. Am, . Chem, S. Soc-das, F. D. Bobbink, G. Laurenczy et al., A: Chem. 2013, 366, 347 Rates and Equilibria of Organic Reactions, Angew. Chem. Int. Ed. Engl. Angew. Chem. Int. Ed. Engl. 2013 J. Mol. Catal. J. Am. Chem. Soc. Fang, X.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. Engl. J. Org. Chem. Chem. Rev. Jacquet, O Chem. Sci. González-Sebastián, L.; Flores-Alamo, M.; García, J. J. Organometallics Angew. Chem. Int. Ed. Engl. J Angew. Chem. Int. Ed, vol.133, issue.53, pp.9708-88, 1956.

X. Cui, X. Dai, Y. Zhang, Y. Deng, and F. Shi, Methylation of amines, nitrobenzenes and aromatic nitriles with carbon dioxide and molecular hydrogen, Chem. Sci., vol.97, issue.2, p.649, 2014.
DOI : 10.1039/C3SC52676C

K. Kon, S. M. Siddiki, W. Onodera, and K. Shimizu, Sustainable Heterogeneous Platinum Catalyst for Direct Methylation of Secondary Amines by Carbon Dioxide and Hydrogen, Chemistry - A European Journal, vol.36, issue.412, p.6264, 2014.
DOI : 10.1002/chem.201400332

E. Blondiaux and T. Cantat, Efficient metal-free hydrosilylation of tertiary, secondary and primary amides to amines, Chem. Commun., vol.355, issue.66, p.9349, 2014.
DOI : 10.1039/C4CC02894E

URL : https://hal.archives-ouvertes.fr/hal-01157653

P. Arya, J. Boyer, R. J. Corriu, G. F. Lanneau, and M. Perrot, Reactivity of hypervalent species of silicon: reduction of CO2 to formaldehyde with formation of silanone, Journal of Organometallic Chemistry, vol.346, issue.1, p.11, 1988.
DOI : 10.1016/0022-328X(88)87015-3

Y. Jiang, O. Blacque, T. Fox, and H. Berke, Frustrated Lewis Pairs???Metal Hydrides Functioning as FLP Bases, Journal of the American Chemical Society, vol.135, issue.20, p.7751, 2013.
DOI : 10.1021/ja402381d

S. Park, D. Bezier, and M. Brookhart, An Efficient Iridium Catalyst for Reduction of Carbon Dioxide to Methane with Trialkylsilanes, Journal of the American Chemical Society, vol.134, issue.28, p.11404, 2012.
DOI : 10.1021/ja305318c

R. Naef, D. Seebach, S. G. Ouellet, J. B. Tuttle, W. C. Macmillan et al., )-Valin, Helvetica Chimica Acta, vol.68, issue.1, pp.135-119, 1985.
DOI : 10.1002/hlca.19850680117

S. W. Ragsdale, E. Pierce, . Biochim, J. Biophys-gras, T. Lettb et al., Carboxylic Acids, Aliphatic in Ullmann's Encyclopedia of industrial Chemistry, Chem. Commun. Z. J., Chem. Soc. Rev. Chem. Commun. Chem.Technology Rev. Fatty Acids Synthesis and Applications N.J. Org. Lett, vol.32, issue.48 9 11, pp.9956-127, 1715.

J. Takaya, N. Iwasawa, Y. Fukue, S. Oi, and Y. Inoue, Catalyzed by Silyl Pincer-Type Palladium Complex, Journal of the American Chemical Society, vol.130, issue.46, pp.15254-139, 1994.
DOI : 10.1021/ja806677w

H. Mizuno, J. Takaya, and N. Iwasawa, via Chelation-Assisted C???H Bond Activation, Journal of the American Chemical Society, vol.133, issue.5, p.1251, 2011.
DOI : 10.1021/ja109097z

M. Shi, K. M. Nicholas, J. Hruszkewycz, D. P. Wu, J. Hazari et al., Palladium-Catalyzed Carboxylation of Allyl Stannanes, Journal of the American Chemical Society, vol.119, issue.21, pp.5057-148, 1069.
DOI : 10.1021/ja9639832

J. Wu, N. Hazari, and C. D. Incarvito, Ni(L) Complexes, Organometallics, vol.30, issue.11, p.3142, 2011.
DOI : 10.1021/om2002238

K. X. Bhattacharyya, J. A. Akana, D. S. Laitar, J. M. Berlin, and J. P. Sadighi, Carbon???Carbon Bond Formation on Reaction of a Copper(I) Stannyl Complex with Carbon Dioxide, Organometallics, vol.27, issue.12, p.2682, 2008.
DOI : 10.1021/om8001729

D. S. Laitar, Synthetic and Catalytic Studies of Group 11 N-Heterocyclic Carbene Complexes, Ph.D. Dissertation, Massachusetts Institute of Technology, 2006.

T. Fujihara, T. Xu, K. Semba, J. Terao, and Y. Tsuji, Copper-Catalyzed Hydrocarboxylation of Alkynes Using Carbon Dioxide and Hydrosilanes, Angewandte Chemie International Edition, vol.29, issue.2, p.523, 2011.
DOI : 10.1002/anie.201006292

T. Fan, F. K. Sheong, and Z. Lin, and Hydrosilanes, Organometallics, vol.32, issue.18, p.5224, 2013.
DOI : 10.1021/om4008532

J. R. Herron and Z. Ball, Synthesis and Reactivity of Functionalized Arylcopper Compounds by Transmetalation of Organosilanes, Journal of the American Chemical Society, vol.130, issue.49, p.16486, 2008.
DOI : 10.1021/ja8070804

N. P. Mankad, T. G. Gray, D. S. Laitar, and J. P. Sadighi, Reactivity of a Two-Coordinate (Carbene)copper(I) Methyl Complex, Organometallics, vol.23, issue.6, p.1191, 2004.
DOI : 10.1021/om034368r

J. Resd-)-yoshida, K. Tamao, H. Yamamoto, T. Kakui, T. Uchida et al., Organofluorosilicates in organic synthesis. 14. Carbon-carbon bond formation promoted by palladium salts, Organometallics, vol.1, issue.3, p.542, 1486.
DOI : 10.1021/om00063a025

S. Riggleman, P. Deshong, A. S. Pilcher, H. L. Ammon, and P. Deshong, Application of Silicon-Based Cross-Coupling Technology to Triflates, The Journal of Organic Chemistry, vol.68, issue.21, pp.8106-183, 1995.
DOI : 10.1021/jo034809g

K. Itami, K. Mitsudi, T. Kamei, T. Koike, T. Nokami et al., Si Group as a Directing Group and as a Phase Tag, Journal of the American Chemical Society, vol.122, issue.48, p.12013, 2000.
DOI : 10.1021/ja002582q

K. Itami, T. Nokami, and J. Yoshida, Palladium-Catalyzed Cross-Coupling Reaction of Alkenyldimethyl(2-pyridyl)silanes with Organic Halides:?? Complete Switch from the Carbometalation Pathway to the Transmetalation Pathway, Journal of the American Chemical Society, vol.123, issue.23, p.5600, 2001.
DOI : 10.1021/ja015655u

K. Itami, T. Nokami, Y. Ishimura, K. Mitsudi, T. Kamei et al., Diversity-Oriented Synthesis of Multisubstituted Olefins through the Sequential Integration of Palladium-Catalyzed Cross-Coupling Reactions. 2-Pyridyldimethyl(vinyl)silane as a Versatile Platform for Olefin Synthesis, Journal of the American Chemical Society, vol.123, issue.47, p.11577, 2001.
DOI : 10.1021/ja016790+

K. Itami, T. Koike, and J. Yoshida, Si Group, Journal of the American Chemical Society, vol.123, issue.28, p.6957, 2001.
DOI : 10.1021/ja0157346

T. Du?ak, B. Zarychta, and V. Olijnyk, ??-Complexes: Structure and Stability, Zeitschrift f??r anorganische und allgemeine Chemie, vol.64, issue.1, p.57, 2014.
DOI : 10.1002/zaac.201300323

S. L. Baxter, J. S. Bradshaw, K. Revunova, and G. I. Nikonov, A new conversion of esters to ethers and its application to the preparation of furano-18-crown-6, The Journal of Organic Chemistry, vol.46, issue.4, pp.831-207, 1981.
DOI : 10.1021/jo00317a045

T. Shimada, I. Nakamura, and Y. Yamamoto, Intramolecular C???N Bond Addition of Amides to Alkynes Using Platinum Catalyst, Journal of the American Chemical Society, vol.126, issue.34, p.10546, 2004.
DOI : 10.1021/ja047542r

F. Zhao, D. Zhang, Y. Nian, L. Zhang, W. Yang et al., Palladium-Catalyzed Difunctionalization of Alkynes via C???N and S???N Cleavages: A Versatile Approach to Highly Functional Indoles, Organic Letters, vol.16, issue.19, p.5124, 2014.
DOI : 10.1021/ol5024745

R. W. Hooft and N. B. Collect, The Netherlands, 1998.

Z. Otwiniwski and W. Minor, [20] Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol, vol.276, p.307, 1997.
DOI : 10.1016/S0076-6879(97)76066-X

L. Farrugia, -III with a Graphical User Interface (GUI), Journal of Applied Crystallography, vol.30, issue.5, p.565, 1997.
DOI : 10.1107/S0021889897003117

URL : https://hal.archives-ouvertes.fr/hal-00655769

T. B. Nguyen, J. Sorres, M. Q. Tran, L. Ermolenko, and A. Al-mourabit, Boric Acid: A Highly Efficient Catalyst for Transamidation of Carboxamides with Amines, Organic Letters, vol.14, issue.12, p.3202, 2012.
DOI : 10.1021/ol301308c

URL : https://hal.archives-ouvertes.fr/hal-00722046

T. Kato, T. Matsuda, S. Matsui, T. Mizutani, and K. Saeki, Activation of the Aryl Hydrocarbon Receptor by Methyl Yellow and Related Congeners: Structure???Activity Relationships in Halogenated Derivatives, Biological & Pharmaceutical Bulletin, vol.25, issue.4, p.466, 2002.
DOI : 10.1248/bpb.25.466

D. A. Watson, M. Su, G. Teverovskiy, Y. Zhang, J. Garcia-fortanet et al., Formation of ArF from LPdAr(F): Catalytic Conversion of Aryl Triflates to Aryl Fluorides, Science, vol.325, issue.5948, p.1661, 2009.
DOI : 10.1126/science.1178239

B. P. Fors, D. A. Watson, M. R. Biscoe, and S. L. Buchwald, A Highly Active Catalyst for Pd-Catalyzed Amination Reactions: Cross-Coupling Reactions Using Aryl Mesylates and the Highly Selective Monoarylation of Primary Amines Using Aryl Chlorides, Journal of the American Chemical Society, vol.130, issue.41, p.13552, 2008.
DOI : 10.1021/ja8055358

L. A. Goj, E. D. Blue, S. A. Delp, T. B. Gunnoe, T. R. Cundari et al., Single-Electron Oxidation of Monomeric Copper(I) Alkyl Complexes:?? Evidence for Reductive Elimination through Bimolecular Formation of Alkanes, Organometallics, vol.25, issue.17, p.4097, 2006.
DOI : 10.1021/om060409i

S. Riggleman and P. Deshong, Application of Silicon-Based Cross-Coupling Technology to Triflates, The Journal of Organic Chemistry, vol.68, issue.21, p.8106, 2003.
DOI : 10.1021/jo034809g

N. Chernyak, A. S. Dudnik, C. Huang, and V. Gevorgyan, PyDipSi: A General and Easily Modifiable/Traceless Si-Tethered Directing Group for C???H Acyloxylation of Arenes, Journal of the American Chemical Society, vol.132, issue.24, p.8270, 2010.
DOI : 10.1021/ja1033167