Skip to Main content Skip to Navigation

Relation entre la méthylation des promoteurs du gène IGF1 et les variations de la croissance des enfants

Abstract : At the interface of genetics and environment, epigenetics contributes to phenotypic diversity. Quantifying the impact of epigenetic variation on quantitative traits (QT), an emerging challenge in humans. Growth provides a handset of quantitative traits to epigenetic studies. We studied the variability of several inter-related QTs: clinical QTs (height, height reponse to growth hormone and biological QT (serum IGF1 and serum IGF1 response to GH). Since insulin-like growth factor 1 (IGF1) controls postnatal growth in mammals including human, we tested whether the CG methylation of the two promoters (P1 and P2) of the IGF1 gene could be a epigenetic contributor to the individual variation i) in circulating IGF1 and stature in growing children. ii) on response of these parameters to treatment with (GH). Child height and circulating IGF1. To explore the relation between IGF1 promoter methylation and height, we studied two cohorts of pedriatric endocrinology department, totalling 216 prepubertal children with various statures. The methylation of a cluster of six CGs located within the proximal part of the IGF1 P2 promoter showed a strong negative association with serum IGF1 and growth. These correlations were observed in two cohorts of growing children. Tall children show lower levels of methylation in several CGs in P2 and P1 promoters of IGF1 gene than short children with idiopathic short stature. CG methylation contributed 13% to the variance of height and 10% to the variance of serum IGF1. To test if the found association reflected biological causality, we tested if methylation at the P2 promoter affects the transcriptional activity of the IGF1 gene. The transcriptional activity of the P2 promoter was inversely correlated with the CG methylation in mononuclear blood cells. We established that high levels of CG methylation at the two promoters of IGF1 contributed to the many molecular mechanisms responsible for “idiopathic” short stature. Response to treatment with (GH). Short children using growth hormone (GH) to accelerate their growth respond to this treatment with a variable efficacy. The causes of this individual variability are partially understood and could involve epigenetics. In this aim, we investigated the contribution of DNA methylation to the response to GH at two levels: direct effect of GH on transcription of IGF1 gene, on circulating IGF1 and on the growth response to GH. Following a GH injection, we found a variable increase in IGF1 transcripts across the studied children. The increase in P2-driven transcripts showed a strong inverse correlation with 4/8 of P2 CGs. Among the CGs of P1 promoter, only CG-611 showed an inverse correlation with P1-driven transcripts. Variability of DNA methylation in these CGs contributes with 27% to 67% of increase in transcripts. In 136 children with idiopatic short stature, we showed that DNA methylation of the P2 promoter is associated with growth response to GH during the first year of GH administration, for both increment in growth rate and circulating IGF1. CG-137 methylation of P2 promoter contributes 25% to variance of growth response to GH. The link between DNA methylation and the response to a treatment in humans illustrating the role of epigenetic marks as potent contributors to conclusion « pharmacoepigenetics». Our work can find application in growth physiology and therapeutics, as well as for studies in aging, longevity or cancer where IGF1 has a prominent role.
Document type :
Complete list of metadata
Contributor : Abes Star :  Contact
Submitted on : Wednesday, September 23, 2015 - 6:48:28 PM
Last modification on : Saturday, July 11, 2020 - 3:48:50 AM
Long-term archiving on: : Tuesday, December 29, 2015 - 9:41:33 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01203811, version 1



Meriem Ouni. Relation entre la méthylation des promoteurs du gène IGF1 et les variations de la croissance des enfants. Génétique. Université Sorbonne Paris Cité, 2015. Français. ⟨NNT : 2015USPCB052⟩. ⟨tel-01203811⟩



Record views


Files downloads