D. [. Anklekar, R. Agrawal, and . Roy, Microwave sintering and mechanical properties of PM copper steel, Powder Metallurgy, pp.44-48, 2001.

A. Rostislav and . Andrievski, Compaction and sintering of ultrafine powders, The International Journal of Powder Metallurgy, pp.30-31, 1994.

M. [. Artz and R. A. Ashby, Ashby On interface reaction control of Nabarro-Herring creep and sintering Scripta metallurgica, Verrall Interface controlled diffusional creep Acta Metallurgica Acta Materialia, vol.313, issue.22, pp.1977-1989, 1969.

E. [. Batista and . Muccillo, Densification and grain growth of 8YSZ containing NiO, Ceramics International, vol.37, issue.3, pp.1047-1053, 2011.
DOI : 10.1016/j.ceramint.2010.11.031

M. [. Bernache-assolant, C. Soustelle, and . Monty, Chimie Physique du frittage, 1993.

]. G. Ber07a, ?. Bernard, C. Granger, and . Guizard, Sintering of an ultra pure a-alumina powder : I. Densification, grain growth and sintering path, Journal of Materials Science, vol.42, pp.6316-6324, 2007.

]. G. Ber07b, C. Bernard-granger, and . Guizard, Apparent activation energy for the densification of a commercially available granulated zirconia powder, Journal of the American Ceramic Society, pp.90-94, 2007.

S. [. Bhattacharjee, A. Sinha, and . Upadhyaya, Effect of sintering temperature on grain boundary character distribution in pure nickel, Scripta Materialia, vol.56, issue.1, pp.56-57, 2007.
DOI : 10.1016/j.scriptamat.2006.09.003

P. [. Biamino, M. Fino, C. Pavese, and . Badini, Alumina???zirconia???yttria nanocomposites prepared by solution combustion synthesis, Ceramics International, vol.32, issue.5, pp.509-513, 2006.
DOI : 10.1016/j.ceramint.2005.04.004

C. Deborah and . Blaine, Linearization of master sintering curve, Journal of the American Ceramic Society, pp.92-99, 2009.

. [. Bonis, Method of heating and forming powdered metals, US Patent n°3, p.686, 1967.

S. [. Bouvard, C. P. Charmond, and . Carry, Finite element modeling of microwave sintering Advances in Sintering Science and Technology, Ceramic Transactions, vol.209, pp.173-180, 2010.

C. [. Bowen and . Carry, From powders to sintered pieces: forming, transformations and sintering of nanostructured ceramic oxides, Powder Technology, vol.128, issue.2-3, pp.248-255, 2002.
DOI : 10.1016/S0032-5910(02)00183-3

K. H. Brosnan, G. L. Messing, and D. K. , Microwave sintering of alumina at 2,45 GHz, Journal of the American Ceramic Society, pp.86-94, 2003.

. [. Callebaut, Chauffage par induction, Laborelec) Guide Power Quality, Section 7 : « Efficacité Energétique », 2007.

M. [. Casellas, L. Nagl, M. Llanes, and . Anglada, Microstructural Coarsening of Zirconia-Toughened Alumina Composites, Journal of the American Ceramic Society, vol.68, issue.12, pp.88-95, 2005.
DOI : 10.1111/j.1151-2916.1990.tb07607.x

[. Chaix, L'analyse d'images appliquée à la caractérisation des matériaux, dans Traité des matériauxCaractérisation des matériaux, chapitre 3 ; éd. S. Degallaix, B. Ilschner, Presses Polytechniques et Universitaires Romandes, pp.67-102, 2007.

C. [. Charmond, D. Carry, and . Bouvard, Densification and microstructure evolution of Y-Tetragonal Zirconia Polycrystal powder during direct and hybrid microwave sintering in a single-mode cavity, Journal of the European Ceramic Society, vol.30, issue.6, pp.1211-1221, 2010.
DOI : 10.1016/j.jeurceramsoc.2009.11.014

URL : https://hal.archives-ouvertes.fr/hal-00528038

[. Chen and X. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, vol.4, issue.6774, pp.168-171, 2000.
DOI : 10.1038/35004548

R. [. Cheng, D. Roy, and . Agrawal, Experimental proof of major role of magnetic field losses in microwave heating of metal and metallic composites, Journal of Materials Science Letters, pp.20-37, 2001.

R. [. Cheng, D. Roy, and . Agrawal, Radically different effects on materials by separated microwave electric and magnetic fields, Materials Research Innovations, vol.5, issue.3-4, pp.5-8, 2002.
DOI : 10.1007/s10019-002-8642-6

. Ph, J. C. Colomban, and . Badot, Le chauffage par micro-ondes : méthode de cuisson des céramiques en, INDUSTRIE CERAMIQUE, p.275, 1979.

B. [. Cologna, R. Rashkova, and . Raj, Flash Sintering of Nanograin Zirconia in <5 s at 850??C, COL11] M. Cologna, A. Prette, and R. Raj, Flash sintering of cubic yttria stabilized zirconia at 750°C for possible use in SOFC manufacturing, pp.93-104, 2010.
DOI : 10.1111/j.1551-2916.2010.04089.x

. [. Combes, Micro-ondes : 1. Lignes, guides et cavités, 1996.

. [. Conta, Process for heating and sintering ferrous powder metal compacts, US Patent n°3, p.747, 1973.

. [. Conta, Process for heating and sintering ferrous powder metal compacts with radio frequency magnetic field, US Patent n°3, p.892, 1975.

. [. Conta, A Process for Improved Induction Heating of Powder Metal Compacts, Conference on electric process heating in industry, p.13, 1977.

J. [. Coster and . Chermant, Précis d'analyse d'images, p.du CNRS, 1989.

A. [. Das, S. Mukhopadhyay, D. Datta, and . Basu, Prospects of microwave processing : an overview, Bulletin of Materials Science, pp.31-38, 2008.

D. [. Demirskyia, A. Agrawal, and . Ragulya, Neck growth kinetics during microwave sintering of nickel powder, Journal of Alloys and Compounds, vol.509, issue.5, pp.1790-1795, 2011.
DOI : 10.1016/j.jallcom.2010.10.042

. [. Develey, Chauffage par induction électromagnétique : principes, Techniques de l'Ingénieur, Editions T. I, vol.5935, issue.02, 2000.

M. [. Dillon and . Harmer, Intrinsic Grain Boundary Mobility in Alumina, Journal of the American Ceramic Society, vol.89, issue.2, pp.3885-3887, 2006.
DOI : 10.1111/j.1151-2916.1986.tb04719.x

. [. Dunn, Induction sintering process and apparatus, US Patent n°4, p.615, 1988.

. [. Ernst, Cours sur les « Notions sur les aspects électriques des systèmes à induction monophasés, Groupe EPM, 2009.

[. Euler and J. May, Inductive liquid phase sintering of cu-al bronzes, Powder Metallurgy International, pp.12-15, 1980.

J. [. Fullman and . Fisher, Formation of annealing twins during grain growth, J. Appl. Phys, pp.22-33, 1951.

R. M. German, Sintering theory and practice, Chapitre 8 : Novel sintering techniques (404-408, 1996.

N. [. Goldstein, A. Travitzky, M. Singurindy, and . Kravchik, Direct microwave sintering of yttria-stabilized zirconia at 2??45GHz, Journal of the European Ceramic Society, vol.19, issue.12, pp.2067-2072, 1999.
DOI : 10.1016/S0955-2219(99)00020-5

Y. [. Grasso, G. Sakka, and . Maizza, Electric current activated/assisted sintering (ECAS) : A review of patents, Science and Technology of Advanced Materials, vol.10, p.24, 1906.

H. [. Gubicza, F. Bui, G. F. Fellah, and . Dirras, Greenwood The possible effects on diffusion creep of some limitation of grains boundaries as vacancy sources or sinks Scripta Metallurgica Microstructure and mechanical behavior of ultrafine-grained Ni processed by different powder metallurgy methods, Journal of Materials Research, vol.4, pp.171-174, 1970.

. [. Helier, Techniques micro-ondes : structures de guidage, dispositifs et tubes microondes, Ellipses Editions, 2001.

Y. [. Jia, K. Hotta, K. Sato, and W. , Homogeneous ZrO 2 -Al 2 O 3 composite prepared by nano-ZrO 2 particle multilayer-coated Al 2 O 3 particles, Journal of the American Ceramic Society, pp.89-92, 2006.

[. Khalil, . Sug-won, H. Kim, and . Kim, Consolidation and mechanical properties of nanostructured hydroxyapatite???(ZrO2+3mol% Y2O3) bioceramics by high-frequency induction heat sintering, Materials Science and Engineering: A, vol.456, issue.1-2, pp.368-372, 2007.
DOI : 10.1016/j.msea.2006.12.005

J. [. Kimrey, M. A. Kiggans, R. L. Janney, and . Beatty, Microwave Sintering of Zirconia-Toughened Alumina Composites, MRS Proceedings, vol.189, pp.243-255, 1991.
DOI : 10.1038/258703a0

[. Kim, D. Oh, and I. Shon, Sintering of nanophase WC???15vol.%Co hard metals by rapid sintering process, International Journal of Refractory Metals and Hard Materials, vol.22, issue.4-5, pp.197-203, 2004.
DOI : 10.1016/j.ijrmhm.2004.06.006

I. [. Kim, Z. A. Shon, and . Munir, Rapid sintering of ultra-fine WC-10 wt% Co by high-frequency induction heating, Journal of Materials Science, vol.15, issue.11, pp.2849-2854, 2005.
DOI : 10.1007/s10853-005-2422-9

K. [. Kim and . Khalil, High-Frequency Induction Heat Sintering of Mechanically Alloyed Alumina-Yttria-Stabilized Zirconia Nano-Bioceramics, Journal of the American Ceramic Society, vol.83, issue.3, pp.89-93, 2006.
DOI : 10.1111/j.1151-2916.1996.tb08741.x

F. [. Lance, P. Valdivieso, and . Goeuriot, Correlation between densification rate and microstructural evolution for pure alpha alumina, Journal of the European Ceramic Society, vol.24, issue.9, pp.24-33, 2004.
DOI : 10.1016/j.jeurceramsoc.2003.09.010

[. Lee, P. H. Dearhouse, and E. D. Case, Microwave sintering of alumina using four single-cavity modes, Journal of Materials Synthesis and Processing, pp.7-10, 1999.

C. [. Legros, P. Carry, H. Bowen, and . Hofmann, Sintering of a transition alumina: effects of phase transformation, powder characteristics and thermal cycle, Journal of the European Ceramic Society, vol.19, issue.11, pp.1967-1978, 1999.
DOI : 10.1016/S0955-2219(99)00016-3

H. [. Li, M. Izui, W. Okano, T. Zhang, and . Watanabe, Microstructure and mechanical properties of ZrO 2 (Y 2 O 3 ) ? Al 2 O 3 nanocomposites prepared by spark plasma sintering, pp.345-351, 2012.

L. [. Lin and . De-jonghe, Microstructure Refinement of Sintered Alumina by a Two-Step Sintering Technique, Journal of the American Ceramic Society, vol.73, issue.4, pp.80-89, 1997.
DOI : 10.1111/j.1151-2916.1997.tb03117.x

. [. Luikov, Analytical Heat Diffusion Theory, 1968.

N. [. Matsui, M. Ohmichi, N. Ohgai, J. Enomoto, and . Hojo, Sintering kinetics at constant rates of heating ; effect of Al 2 O 3 on the initial sintering stage of fine zirconia Powder, Journal of the American Ceramic Society, vol.12, pp.88-3346, 2005.

T. [. Matsui, M. Yamakawa, N. Uehara, J. Enomoto, and . Hojo, Mechanism of Alumina-Enhanced Sintering of Fine Zirconia Powder: Influence of Alumina Concentration on the Initial Stage Sintering, Journal of the American Ceramic Society, vol.89, issue.9, pp.91-97, 2008.
DOI : 10.1111/j.1151-2916.2003.tb03574.x

A. [. Mazaheri, M. Simchi, F. Dourandish, and . Golestani-fard, Master sintering curves of a nanoscale 3Y-TZP powder compacts, Ceramics International, vol.35, issue.2, pp.547-554, 2009.
DOI : 10.1016/j.ceramint.2008.01.008

R. [. Menezes and . Kiminami, Microwave sintering of alumina???zirconia nanocomposites, Journal of Materials Processing Technology, vol.203, issue.1-3, pp.513-517, 2008.
DOI : 10.1016/j.jmatprotec.2007.10.057

S. [. Minier, Y. Gallet, F. Grin, and . Bernard, A comparative study of nickel and alumina sintering using spark plasma sintering (SPS), Materials Chemistry and Physics, vol.134, issue.1, 2012.
DOI : 10.1016/j.matchemphys.2012.02.059

URL : https://hal.archives-ouvertes.fr/hal-00761278

S. [. Mizuno, S. Obata, S. Takayama, N. Ito, T. Kato et al., Sintering of alumina by 2.45 GHz microwave heating, Journal of the European Ceramic Society, vol.24, issue.2, pp.387-391, 2004.
DOI : 10.1016/S0955-2219(03)00217-6

J. [. Moulin, E. G. Favergeon, and . Béranger, Zircone ? céramique fonctionnelle N 3 210, Techniques de l'Ingénieur, Editions T.I, 2008.

U. [. Munir, M. Anselmi-tamburini, and . Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science, vol.19, issue.452, pp.41-44, 2006.
DOI : 10.1007/s10853-006-6555-2

D. [. Munir and . Quach, Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process, Journal of the American Ceramic Society, vol.20, issue.[4], pp.94-95, 2011.
DOI : 10.1111/j.1551-2916.2010.04210.x

L. [. Naimi, S. L. Minier, J. C. Gallet, F. Niepce, and . Bernard, La technologie FAST, une solution rapide pour fritter, assembler et synthétiser différentes classes de matériaux, 2011.

D. [. Nightingale, H. K. Dunne, and . Worener, Sintering and grain growth of 3

O. [. Oghbaei and . Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, Journal of Alloys and Compounds, vol.494, issue.1-2, pp.175-189, 2010.
DOI : 10.1016/j.jallcom.2010.01.068

K. [. Oishi, Y. Ando, and . Sakka, Lattice and grain-boundary diffusion coefficients of cations in stabilized zirconia, in Advances in Ceramics 7 : Additives and interfaces in Electronic ceramics, pp.208-219, 1983.

H. [. Ondik and . Mcmurdie, Phase diagrams for zirconium and zirconia systems, The American Ceramic Society, pp.10-35, 1998.

. Jr and . Osborn, Method of heating a workpiece of particulate material, US Patent n°3, p.645, 1973.

S. [. Ouyang, J. Zhu, H. X. Ma, and . Qu, Master sintering curve of nanocomposite WC-MgO powder compacts, Journal of Alloys and Compounds, vol.518, pp.27-31, 2012.
DOI : 10.1016/j.jallcom.2011.12.091

I. [. Palmour and D. R. Johnson, Phenomenological model for rate-controlled sintering, Sintering and related phenomena, pp.777-792, 1967.

M. [. Panigrahi, K. Godkhindi, P. G. Das, V. V. Mukunda, P. Dabhade et al., Sintering mechanisms of attrition milled titanium nano powder, Journal of Materials Research, vol.41, issue.04, pp.827-836, 2005.
DOI : 10.1016/S0966-9795(01)00022-X

B. B. Panigrahi, Sintering and grain growth kinetics of ball milled nanocrystalline nickel powder, Materials Science and Engineering: A, vol.460, issue.461, pp.460-461, 2007.
DOI : 10.1016/j.msea.2007.01.035

T. [. Park and . Meek, Characterization of ZrO2-Al2O3 composites sintered in a 2.45 GHz electromagnetic field, Journal of Materials Science, vol.59, issue.23, pp.6309-6313, 1991.
DOI : 10.1007/BF02387809

. [. Piluso, Etude du frittage réactif de la mullite et du titanate d'aluminium par chauffage micro-ondes, 1993.

M. [. Prette, V. Cologna, R. Sglavo, and . Raj, Flash-sintering of Co2MnO4 spinel for solid oxide fuel cell applications, Journal of Power Sources, vol.196, issue.4, pp.2061-2065, 2011.
DOI : 10.1016/j.jpowsour.2010.10.036

P. [. Raether and . Schulze-horn, Investigation of sintering mechanisms of alumina using kinetic field and master sintering diagrams, Journal of the European Ceramic Society, vol.29, issue.11, pp.2225-2234, 2009.
DOI : 10.1016/j.jeurceramsoc.2009.01.025

V. [. Ragulya and . Skorokhod, Rate-controlled sintering of ultrafine nickel powder, Nanostructured Materials, vol.5, issue.7-8, pp.5-7, 1995.
DOI : 10.1016/0965-9773(95)00293-N

M. [. Raj, J. S. Cologna, and . Francis, Influence of Externally Imposed and Internally Generated Electrical Fields on Grain Growth, Diffusional Creep, Sintering and Related Phenomena in Ceramics, Journal of the American Ceramic Society, vol.71, issue.4, pp.94-101, 2011.
DOI : 10.1111/j.1551-2916.2011.04652.x

M. [. Rao, T. Iwasa, I. Tanaka, T. Kondoh, and . Inoue, Preparation and mechanical properties of Al2O3???15wt.%ZrO2 composites, Scripta Materialia, vol.48, issue.4, pp.437-441, 2003.
DOI : 10.1016/S1359-6462(02)00440-2

D. [. Roy, J. Agrawal, S. Cheng, and . Gedevanishvili, Full sintering of powderedmetal bodies in a microwave field, SAI06] K. Saitou, Microwave sintering of iron, cobalt, nickel, copper and stainless steel powders, pp.668-670, 1999.

J. [. Samuels and . Brandon, Effect of composition on the enhanced microwave sintering of alumina-based ceramic composites, Journal of Materials Science, vol.73, issue.No. 3, pp.3259-3265, 1992.
DOI : 10.1007/BF01116022

. [. Sara, Method for induction sintering refractory carbide articles, US Patent n°3, p.951, 1967.

C. [. Sato and . Carry, Effect of powder granulometry and pre-treatment on sintering behavior of submicron-grained ??-alumina, Journal of the European Ceramic Society, vol.15, issue.1, pp.15-16, 1995.
DOI : 10.1016/0955-2219(95)91294-X

C. [. Sato and . Carry, Yttria doping and sintering of submicrometer-grained ?alumina, Journal of the American Ceramic Society, pp.79-87, 1996.

A. [. Scapolan and Y. Gagnoud, Du Terrail, Modélisation de conducteurs multibrins par conductivité électrique équivalente

T. [. Shi and . Yen, Densification and micro structure development of alumina/Y-TZP composite powder (Y-TZP-rich) compacts, Journal of the European Ceramic Society, vol.15, issue.4, pp.363-369, 1995.
DOI : 10.1016/0955-2219(95)90361-L

[. Shon, I. Jeong, I. Ko, J. Doh, and K. Woo, Sintering behavior and mechanical properties of WC???10Co, WC???10Ni and WC???10Fe hard materials produced by high-frequency induction heated sintering, Ceramics International, vol.35, issue.1, pp.339-344, 2009.
DOI : 10.1016/j.ceramint.2007.11.003

[. Shon, J. Seung-hoon-jo, J. Doh, B. Yoon, and . Park, Mechanical synthesis and rapid consolidation of nanostructured FeAl???Al2O3 composites by high-frequency induction heated sintering, Ceramics International, vol.38, issue.7, pp.6035-6039, 2012.
DOI : 10.1016/j.ceramint.2012.03.073

H. Su and D. Johnson, Master Sintering Curve: A Practical Approach to Sintering, Journal of the American Ceramic Society, vol.66, issue.69, pp.79-91, 1996.
DOI : 10.1111/j.1151-2916.1996.tb08097.x

F. [. Sudre and . Lange, Effect of inclusions on densification Microstructural development in an Al 2 O 3 matrix containing a high volume fraction of ZrO2 inclusions, Journal of the American Ceramic Society, vol.1, pp.75-78, 1993.

. [. Sutton, Microwave processing of ceramic materials, Ceramic Bulletin, pp.68-70, 1989.

T. [. Thostenson and . Chou, Microwave processing: fundamentals and applications, Composites Part A: Applied Science and Manufacturing, vol.30, issue.9, pp.1055-1071, 1999.
DOI : 10.1016/S1359-835X(99)00020-2

. [. Tokita, Mechanism of spark plasma sintering, Proceedings of the International Symposium on Microwave, Plasma and Thermochemical Processing of Advanced Materials, ed S. Miyake and M. Samandi. JWRI, Osaka Universities Japan, pp.69-76, 1997.

A. [. Travitzky, O. Goldstein, A. Avsian, and . Singurindi, Microwave sintering and mechanical properties of Y-TZP/20 wt.% Al2O3 composites, Materials Science and Engineering: A, vol.286, issue.2, pp.225-229, 2000.
DOI : 10.1016/S0921-5093(00)00812-1

F. [. Veltl, P. A. Petzold, and . Pueschner, Effects of microwaves on sintering processes, Powder Metallurgy, World Congress, vol.107, 2004.

R. [. Wang and . Raj, Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania, Journal of the American Ceramic Society, vol.8, issue.9, pp.73-78, 1990.
DOI : 10.1111/j.1151-2916.1990.tb05175.x

R. [. Wang and . Raj, Activation Energy for the Sintering of Two-Phase Alumina/Zirconia Ceramics, Journal of the American Ceramic Society, vol.67, issue.3, pp.74-82, 1991.
DOI : 10.1111/j.1151-2916.1988.tb05812.x

J. [. Wang, B. Binner, N. Vaidhyanathan, J. Joomun, G. Kilner et al., Evidence for the Microwave Effect During Hybrid Sintering, Journal of the American Ceramic Society, vol.80, issue.2, pp.1977-1984, 2006.
DOI : 10.1016/S0955-2219(98)00203-9

W. [. Weimin, G. Lei, S. Renguo, L. Xudong, and . Xikun, Sintering densification, microstructure and transformation behavior of Al 2 O 3, O 3 ) composites, pp.100-106, 2008.

I. [. Xue and . Chen, Deformation and Grain Growth of Low-Temperature-Sintered High-Purity Alumina, Journal of the American Ceramic Society, vol.73, issue.6, pp.3518-3521, 1990.
DOI : 10.1111/j.1151-2916.1990.tb06489.x

I. [. Young and . Cutler, Initial Sintering with Constant Rates of Heating, Journal of the American Ceramic Society, vol.52, issue.1, pp.53-65, 1970.
DOI : 10.1063/1.1735155

S. [. ?yme?ka, J. Saunier, D. Molimard, and . Goeuriot, Contactless Monitoring of Shrinkage and Temperature Distribution during Hybrid Microwave Sintering, Advanced Engineering Materials, vol.81, issue.9, pp.13-22, 2011.
DOI : 10.1002/adem.201000354