S. Arlot, G. Blanchard, and E. And-roquain, Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector, Learning theory, pp.127-141, 2007.
DOI : 10.1007/978-3-540-72927-3_11

URL : https://hal.archives-ouvertes.fr/hal-00125670

S. Arlot, G. Blanchard, and E. And-roquain, Some nonasymptotic results on resampling in high dimension, I: Confidence regions, The Annals of Statistics, vol.38, issue.1, pp.51-82, 2010.
DOI : 10.1214/08-AOS667

URL : https://hal.archives-ouvertes.fr/hal-00194145

S. Arlot, G. Blanchard, and E. And-roquain, Some nonasymptotic results on resampling in high dimension, II: Multiple tests, The Annals of Statistics, vol.38, issue.1, pp.83-99, 2010.
DOI : 10.1214/08-AOS668

URL : https://hal.archives-ouvertes.fr/hal-00194145

G. Blanchard, S. Delattre, and E. And-roquain, Testing over a continuum of null hypotheses with False Discovery Rate control, Bernoulli, vol.20, issue.1, pp.304-333, 2014.
DOI : 10.3150/12-BEJ488SUPP

URL : https://hal.archives-ouvertes.fr/hal-00632783

G. Blanchard, T. Dickhaus, E. Roquain, and F. Villers, On least favorable configurations for step-up-down tests, Statistica Sinica, vol.24, issue.1, pp.1-23, 2014.
DOI : 10.5705/ss.2011.205

URL : https://hal.archives-ouvertes.fr/hal-00617089

G. Blanchard and E. Roquain, Two simple sufficient conditions for FDR control, Electronic Journal of Statistics, vol.2, issue.0, pp.963-992, 2008.
DOI : 10.1214/08-EJS180

URL : https://hal.archives-ouvertes.fr/hal-00354980

G. Blanchard and E. Roquain, Adaptive false discovery rate control under independence and dependence, J. Mach. Learn. Res, vol.10, pp.2837-2871, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00446200

S. Delattre and E. Roquain, On the false discovery proportion convergence under Gaussian equi-correlation, Statistics & Probability Letters, vol.81, issue.1, pp.111-115, 2011.
DOI : 10.1016/j.spl.2010.09.025

URL : https://hal.archives-ouvertes.fr/hal-00497134

S. Delattre and E. Roquain, New procedures controlling the false discovery proportion via Romano???Wolf???s heuristic, The Annals of Statistics, vol.43, issue.3, pp.1141-1177, 2015.
DOI : 10.1214/14-AOS1302SUPP

S. Delattre and E. Roquain, On empirical distribution function of high-dimensional Gaussian vector components with an application to multiple testing, Bernoulli, vol.22, issue.1
DOI : 10.3150/14-BEJ659SUPP

URL : https://hal.archives-ouvertes.fr/hal-01275275

K. I. Kim, E. Roquain, and M. A. Van-de-wiel, Spatial Clustering of Array CGH Features in Combination with Hierarchical Multiple Testing, Statistical Applications in Genetics and Molecular Biology, vol.9, issue.1, p.40, 2010.
DOI : 10.2202/1544-6115.1532

URL : https://hal.archives-ouvertes.fr/hal-00477606

P. Neuvial and E. Roquain, On false discovery rate thresholding for classification under sparsity, The Annals of Statistics, vol.40, issue.5, pp.2572-2600, 2012.
DOI : 10.1214/12-AOS1042SUPP

URL : https://hal.archives-ouvertes.fr/hal-00604427

E. P13-]-roquain, Type I error rate control for testing many hypotheses: a survey with proofs, J. Soc. Fr. Stat, vol.152, issue.2, pp.3-38, 2011.

E. Roquain and S. Schbath, Improved compound Poisson approximation for the number of occurrences of any rare word family in a stationary Markov chain, Adv. in Appl. Probab, vol.39, issue.1, pp.128-140, 2007.

E. Roquain and M. Van-de-wiel, Optimal weighting for false discovery rate control, Electronic Journal of Statistics, vol.3, issue.0, pp.678-711, 2009.
DOI : 10.1214/09-EJS430

URL : https://hal.archives-ouvertes.fr/hal-00306219

E. P16-]-roquain and F. Villers, Exact calculations for false discovery proportion with application to least favorable configurations, The Annals of Statistics, vol.39, issue.1, pp.584-612, 2011.
DOI : 10.1214/10-AOS847SUPP

F. Abramovich, Y. Benjamini, D. L. Donoho, and I. M. Johnstone, Adapting to unknown sparsity by controlling the false discovery rate, The Annals of Statistics, vol.34, issue.2, pp.584-653, 2006.
DOI : 10.1214/009053606000000074

M. A. Arcones, Limit Theorems for Nonlinear Functionals of a Stationary Gaussian Sequence of Vectors, The Annals of Probability, vol.22, issue.4, pp.2242-2274, 1994.
DOI : 10.1214/aop/1176988503

S. Arlot, Resampling and Model Selection, 2007.
URL : https://hal.archives-ouvertes.fr/tel-00198803

Y. Baraud, Non-asymptotic minimax rates of testing in signal detection, Bernoulli, vol.8, issue.5, pp.577-606, 2002.

J. Bardet and D. Surgailis, Moment bounds and central limit theorems for Gaussian subordinated arrays, Journal of Multivariate Analysis, vol.114, pp.457-473, 2013.
DOI : 10.1016/j.jmva.2012.08.002

URL : https://hal.archives-ouvertes.fr/hal-00588606

Y. Benjamini, Are most research findings really false? Special public, the conference on Multiple Comparison Procedures (MCP) in the Statistical Sciences Research Institute of Southampton, 2013.

Y. Benjamini and H. Braun, John W. tukey's contributions to multiple comparisons. The Annals of Statistics, pp.1576-1594, 2002.

Y. Benjamini and Y. Gavrilov, A simple forward selection procedure based on false discovery rate control, The Annals of Applied Statistics, vol.3, issue.1, pp.179-198, 2009.
DOI : 10.1214/08-AOAS194SUPP

Y. Benjamini and R. Heller, False Discovery Rates for Spatial Signals, Journal of the American Statistical Association, vol.102, issue.480, pp.1272-1281, 2007.
DOI : 10.1198/016214507000000941

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate: a practical and powerful approach to multiple testing, J. Roy. Statist. Soc. Ser. B, vol.57, issue.1, pp.289-300, 1995.

Y. Benjamini and Y. Hochberg, Multiple hypotheses testing with weights. Scand, J. Statist, vol.24, issue.3, pp.407-418, 1997.
DOI : 10.1111/1467-9469.00072

Y. Benjamini and Y. Hochberg, On the Adaptive Control of the False Discovery Rate in Multiple Testing With Independent Statistics, Journal of Educational and Behavioral Statistics, vol.25, issue.1, pp.60-83, 2000.
DOI : 10.3102/10769986025001060

Y. Benjamini, A. M. Krieger, Y. , and D. , Adaptive linear step-up procedures that control the false discovery rate, Biometrika, vol.93, issue.3, pp.491-507, 2006.
DOI : 10.1093/biomet/93.3.491

Y. Benjamini and D. Yekutieli, The control of the false discovery rate in multiple testing under dependency, Ann. Statist, vol.29, issue.4, pp.1165-1188, 2001.

P. Billingsley, Convergence of probability measures, 1968.
DOI : 10.1002/9780470316962

R. M. Bittman, J. P. Romano, C. Vallarino, and M. Wolf, Optimal testing of multiple hypotheses with common effect direction, Biometrika, vol.96, issue.2, pp.399-410, 2009.
DOI : 10.1093/biomet/asp006

M. A. Black, A note on the adaptive control of false discovery rates, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.25, issue.2, pp.297-304, 2004.
DOI : 10.1073/pnas.1530509100

G. Blanchard and F. Fleuret, Occam???s Hammer, Learning theory, pp.112-126, 2007.
DOI : 10.1007/978-3-540-72927-3_10

G. Blanchard, G. Lee, and C. Scott, Semi-supervised novelty detection, J. Mach. Learn. Res, vol.11, pp.2973-3009, 2010.

M. Bogdan, A. Chakrabarti, F. Frommlet, and J. K. Ghosh, Asymptotic Bayes-optimality under sparsity of some multiple testing procedures, The Annals of Statistics, vol.39, issue.3, pp.1551-1579, 2011.
DOI : 10.1214/10-AOS869SUPP

M. Bogdan, E. Van-den-berg, W. Su, C. , and E. , Statistical estimation and testing via the sorted L1 norm, 2013.

C. Bonferroni, Il calcolo delle assicurazioni su gruppi di teste, 1935.

T. T. Cai and J. Jin, Optimal rates of convergence for estimating the null density and proportion of nonnull effects in large-scale multiple testing, The Annals of Statistics, vol.38, issue.1, pp.100-145, 2010.
DOI : 10.1214/09-AOS696

T. T. Cai and W. Sun, Simultaneous Testing of Grouped Hypotheses: Finding Needles in Multiple Haystacks, Journal of the American Statistical Association, vol.104, issue.488, pp.1467-1481, 2009.
DOI : 10.1198/jasa.2009.tm08415

A. Celisse and S. Robin, A cross-validation based estimation of the proportion of true null hypotheses, Journal of Statistical Planning and Inference, vol.140, issue.11, pp.3132-3147, 2010.
DOI : 10.1016/j.jspi.2010.04.014

URL : https://hal.archives-ouvertes.fr/hal-01197599

V. Chernozhukov, D. Chetverikov, and K. Kato, Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors, The Annals of Statistics, vol.41, issue.6, pp.412786-2819, 2013.
DOI : 10.1214/13-AOS1161SUPP

Z. Chi and Z. Tan, Positive false discovery proportions: intrinsic bounds and adaptive control, Statist. Sinica, vol.18, issue.3, pp.837-860, 2008.

K. Chin, S. Devries, J. Fridlyand, P. T. Spellman, R. Roydasgupta et al., Genomic and transcriptional aberrations linked to breast cancer pathophysiologies, Cancer Cell, vol.10, issue.6, pp.529-541, 2006.
DOI : 10.1016/j.ccr.2006.10.009

URL : http://doi.org/10.1016/j.ccr.2006.10.009

J. Dedecker and C. Prieur, An empirical central limit theorem for dependent sequences, Stochastic Processes and their Applications, vol.117, issue.1, pp.121-142, 2007.
DOI : 10.1016/j.spa.2006.06.003

URL : https://hal.archives-ouvertes.fr/hal-00685975

T. Dickhaus, False Discovery Rate and Asymptotics, 2008.

T. Dickhaus, Simultaneous statistical inference, With applications in the life sciences, 2014.
DOI : 10.1007/978-3-642-45182-9

D. Donoho and J. Jin, Higher criticism for detecting sparse heterogeneous mixtures, Ann. Statist, vol.32, issue.3, pp.962-994, 2004.

M. D. Donsker, Justification and Extension of Doob's Heuristic Approach to the Kolmogorov- Smirnov Theorems, The Annals of Mathematical Statistics, vol.23, issue.2, pp.277-281, 1952.
DOI : 10.1214/aoms/1177729445

J. L. Doob, Heuristic Approach to the Kolmogorov-Smirnov Theorems, The Annals of Mathematical Statistics, vol.20, issue.3, pp.393-403, 1949.
DOI : 10.1214/aoms/1177729991

P. Doukhan, G. Lang, D. Surgailis, and G. Teyssière, Dependence in probability and statistics, Lecture Notes in Statistics, vol.200, 2010.
DOI : 10.1007/978-3-642-14104-1

URL : https://hal.archives-ouvertes.fr/hal-00268232

R. M. Dudley, Weak Convergence of Probabilities on Nonseparable Metric Spaces and Empirical Measures on Euclidean Spaces, Illinois J. Math, vol.10, pp.109-126, 1966.
DOI : 10.1007/978-1-4419-5821-1_2

S. Dudoit and M. J. Van-der-laan, Multiple testing procedures with applications to genomics, 2008.
DOI : 10.1007/978-0-387-49317-6

D. B. Duncan, Multiple Range and Multiple F Tests, Biometrics, vol.11, issue.1, pp.1-42, 1955.
DOI : 10.2307/3001478

B. Efron, Bootstrap Methods: Another Look at the Jackknife, The Annals of Statistics, vol.7, issue.1, pp.1-26, 1979.
DOI : 10.1214/aos/1176344552

B. Efron, Second Thoughts on the Bootstrap, Statistical Science, vol.18, issue.2, pp.135-140, 2003.
DOI : 10.1214/ss/1063994968

B. Efron, Doing thousands of hypothesis tests at the same time, Metron -International Journal of Statistics, vol.LXV, issue.1, pp.3-21, 2007.

B. Efron, Microarrays, Empirical Bayes and the Two-Groups Model, Statistical Science, vol.23, issue.1, pp.1-22, 2008.
DOI : 10.1214/07-STS236

B. Efron, R. Tibshirani, J. D. Storey, and V. Tusher, Empirical Bayes Analysis of a Microarray Experiment, Journal of the American Statistical Association, vol.96, issue.456, pp.961151-1160, 2001.
DOI : 10.1198/016214501753382129

J. Fan, X. Han, and W. Gu, Estimating False Discovery Proportion Under Arbitrary Covariance Dependence, Journal of the American Statistical Association, vol.71, issue.499, pp.1019-1035, 2012.
DOI : 10.1080/01621459.2012.720478

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983872

Z. Fang and T. Hu, Developments on MTP2 properties of absolute value multinormal variables with nonzero means, Acta Mathematicae Applicatae Sinica, vol.9, issue.4, pp.376-384, 1997.
DOI : 10.1007/BF02009546

A. Farcomeni, Some Results on the Control of the False Discovery Rate under Dependence, Scandinavian Journal of Statistics, vol.23, issue.2, pp.275-297, 2007.
DOI : 10.1007/BF01192169

A. Farcomeni, Generalized augmentation to control the false discovery exceedance in multiple testing. Scand, J. Stat, vol.36, issue.3, pp.501-517, 2009.

J. A. Ferreira and A. H. Zwinderman, On the Benjamini???Hochberg method, The Annals of Statistics, vol.34, issue.4, pp.1827-1849, 2006.
DOI : 10.1214/009053606000000425

H. Finner, T. Dickhaus, R. , and M. , On the false discovery rate and an asymptotically optimal rejection curve, The Annals of Statistics, vol.37, issue.2, pp.596-618, 2009.
DOI : 10.1214/07-AOS569

URL : http://arxiv.org/abs/0903.5161

H. Finner, V. Gontscharuk, and T. Dickhaus, False Discovery Rate Control of Step-Up-Down Tests with Special Emphasis on the Asymptotically Optimal Rejection Curve, Scandinavian Journal of Statistics, vol.66, issue.2, pp.382-397, 2012.
DOI : 10.1111/j.1467-9469.2012.00791.x

H. Finner and M. Roters, Multiple hypotheses testing and expected number of type I errors, Ann. Statist, vol.30, issue.1, pp.220-238, 2002.

R. A. Fisher, Statistical methods for research workers, 1925.

R. A. Fisher, Design of Experiments, BMJ, vol.1, issue.3923, 1935.
DOI : 10.1136/bmj.1.3923.554-a

D. Foata, Some Hermite polynomial identities and their combinatorics, Advances in Applied Mathematics, vol.2, issue.3, pp.250-259, 1981.
DOI : 10.1016/0196-8858(81)90006-3

C. Friguet, M. Kloareg, and D. Causeur, A Factor Model Approach to Multiple Testing Under Dependence, Journal of the American Statistical Association, vol.104, issue.488, pp.1406-1415, 2009.
DOI : 10.1198/jasa.2009.tm08332

URL : https://hal.archives-ouvertes.fr/hal-00458049

M. Fromont, Quelques problèmes de sélection de modèles : construction de tests adaptatifs, ajustement de pénalités par des méthodes de bootstrap, 2003.

Y. Gavrilov, Y. Benjamini, and S. K. Sarkar, An adaptive step-down procedure with proven FDR control under independence, The Annals of Statistics, vol.37, issue.2, pp.619-629, 2009.
DOI : 10.1214/07-AOS586

C. R. Genovese, A tutorial on false discovery control, 2004.

C. R. Genovese and L. Wasserman, A stochastic process approach to false discovery control, Ann. Statist, vol.32, issue.3, pp.1035-1061, 2004.

C. R. Genovese, K. Roeder, and L. Wasserman, False discovery control with p-value weighting, Biometrika, vol.93, issue.3, pp.509-524, 2006.
DOI : 10.1093/biomet/93.3.509

C. R. Genovese and L. Wasserman, Exceedance Control of the False Discovery Proportion, Journal of the American Statistical Association, vol.101, issue.476, pp.1408-1417, 2006.
DOI : 10.1198/016214506000000339

S. Ghosal and A. Roy, Predicting False Discovery Proportion Under Dependence, Journal of the American Statistical Association, vol.106, issue.495, pp.1208-1218, 2011.
DOI : 10.1198/jasa.2011.tm10488

J. Goeman and A. Solari, The sequential rejection principle of familywise error control, The Annals of Statistics, vol.38, issue.6, pp.3782-3810, 2010.
DOI : 10.1214/10-AOS829

J. J. Goeman and L. Finos, The Inheritance Procedure: Multiple Testing of Tree-structured Hypotheses, Statistical Applications in Genetics and Molecular Biology, vol.11, issue.1, 2012.
DOI : 10.1515/1544-6115.1554

J. J. Goeman and A. Solari, Multiple Testing for Exploratory Research, Statistical Science, vol.26, issue.4, pp.584-597, 2011.
DOI : 10.1214/11-STS356REJ

L. Gomes, Machine-Learning Maestro Michael Jordan on the Delusions of Big Data and Other Huge Engineering Efforts, IEEE Spectrum, 2014.

V. Gontscharuk, Asymptotic and Exact Results on FWER and FDR in Multiple Hypothesis Testing, 2010.

G. Grazier, M. Sell, S. Wager, A. Chouldechova, and R. Tibshirani, Sequential Selection Procedures and False Discovery Rate Control, 2013.

W. Guo, L. He, and S. K. Sarkar, Further results on controlling the false discovery proportion. The Annals of Statistics, pp.1070-1101, 2014.

W. Guo and J. Romano, A Generalized Sidak-Holm Procedure and Control of Generalized Error Rates under Independence, Statistical Applications in Genetics and Molecular Biology, vol.6, issue.1, 2007.
DOI : 10.2202/1544-6115.1247

L. He and S. K. Sarkar, On improving some adaptive BH procedures controlling the FDR under dependence, Electronic Journal of Statistics, vol.7, issue.0, pp.2683-2701, 2013.
DOI : 10.1214/13-EJS855

P. Heesen and A. Janssen, Inequalities for the false discovery rate (FDR) under dependence, Electronic Journal of Statistics, vol.9, issue.1, 2014.
DOI : 10.1214/15-EJS1016

Y. Hochberg and A. C. Tamhane, Multiple comparison procedures, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, 1987.
DOI : 10.1002/9780470316672

W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, vol.1, issue.301, pp.13-30, 1963.
DOI : 10.1214/aoms/1177730491

S. Holm, A simple sequentially rejective multiple test procedure. Scand, J. Statist, vol.6, issue.2, pp.65-70, 1979.

J. X. Hu, H. Zhao, and H. H. Zhou, False Discovery Rate Control With Groups, Journal of the American Statistical Association, vol.105, issue.491, pp.1215-1227, 2010.
DOI : 10.1198/jasa.2010.tm09329

Y. I. Ingster, Minimax detection of a signal for l n -balls, Math. Methods Statist, vol.7, issue.4, pp.401-428, 1998.

Y. I. Ingster, Adaptive detection of a signal of growing dimension, II. Math. Methods Statist, vol.11, issue.1, pp.37-68, 2002.

Y. I. Ingster, C. Pouet, and A. B. Tsybakov, Classification of sparse high-dimensional vectors, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.1, issue.2, pp.3674427-4448, 1906.
DOI : 10.1016/S1535-6108(02)00032-6

URL : https://hal.archives-ouvertes.fr/hal-00445733

Y. I. Ingster, A. B. Tsybakov, and N. Verzelen, Detection boundary in sparse regression, Electronic Journal of Statistics, vol.4, issue.0, pp.1476-1526, 2010.
DOI : 10.1214/10-EJS589

URL : https://hal.archives-ouvertes.fr/hal-00516259

J. Jin, Proportion of non-zero normal means: universal oracle equivalences and uniformly consistent estimators, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.3, issue.3, pp.461-493, 2008.
DOI : 10.1214/aos/1176347627

J. Jin and T. T. Cai, Estimating the Null and the Proportion of Nonnull Effects in Large-Scale Multiple Comparisons, Journal of the American Statistical Association, vol.102, issue.478, pp.495-506, 2007.
DOI : 10.1198/016214507000000167

J. Jin and T. Ke, Rare and weak effects in large-scale inference: methods and phase diagrams, Statistica Sinica, 2014.
DOI : 10.5705/ss.2014.138

S. Karlin and Y. Rinott, Classes of orderings of measures and related correlation inequalities. I. Multivariate totally positive distributions, Journal of Multivariate Analysis, vol.10, issue.4, pp.467-498, 1980.
DOI : 10.1016/0047-259X(80)90065-2

S. Karlin and Y. Rinott, Total Positivity Properties of Absolute Value Multinormal Variables with Applications to Confidence Interval Estimates and Related Probabilistic Inequalities, The Annals of Statistics, vol.9, issue.5, pp.1035-1049, 1981.
DOI : 10.1214/aos/1176345583

E. L. Korn, J. F. Troendle, L. M. Mcshane, and R. Simon, Controlling the number of false discoveries: application to high-dimensional genomic data, Journal of Statistical Planning and Inference, vol.124, issue.2, pp.379-398, 2004.
DOI : 10.1016/S0378-3758(03)00211-8

J. T. Leek and J. D. Storey, A general framework for multiple testing dependence, Proceedings of the National Academy of Sciences, pp.18718-18723, 2008.
DOI : 10.1073/pnas.0808709105

E. L. Lehmann, Some Concepts of Dependence, The Annals of Mathematical Statistics, vol.37, issue.5, pp.1137-1153, 1966.
DOI : 10.1214/aoms/1177699260

E. L. Lehmann and J. P. Romano, Generalizations of the familywise error rate, The Annals of Statistics, vol.33, issue.3, pp.1138-1154, 2005.
DOI : 10.1214/009053605000000084

E. L. Lehmann and J. P. Romano, Testing statistical hypotheses, 2005.

K. Liang and D. Nettleton, Adaptive and dynamic adaptive procedures for false discovery rate control and estimation, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.100, issue.1, pp.163-182, 2012.
DOI : 10.1111/j.1467-9868.2011.01001.x

N. Meinshausen, False Discovery Control for Multiple Tests of Association Under General Dependence, Scandinavian Journal of Statistics, vol.84, issue.2, pp.227-237, 2006.
DOI : 10.1006/nimg.2001.0764

N. Meinshausen, Hierarchical testing of variable importance, Biometrika, vol.95, issue.2, pp.265-278, 2008.
DOI : 10.1093/biomet/asn007

N. Meinshausen, L. Meier, and P. Bühlmann, -Values for High-Dimensional Regression, Journal of the American Statistical Association, vol.104, issue.488, pp.1671-1681, 2009.
DOI : 10.1198/jasa.2009.tm08647

URL : https://hal.archives-ouvertes.fr/hal-00122771

N. Meinshausen, M. H. Maathuis, and P. Bühlmann, Asymptotic optimality of the Westfall???Young permutation procedure for multiple testing under dependence, The Annals of Statistics, vol.39, issue.6, pp.3369-3391, 2011.
DOI : 10.1214/11-AOS946

C. J. Miller, C. R. Genovese, R. C. Nichol, L. Wasserman, A. Connolly et al., Controlling the False-Discovery Rate in Astrophysical Data Analysis, The Astronomical Journal, vol.122, issue.6, pp.3492-3505, 2001.
DOI : 10.1086/324109

J. Muris, B. Ylstra, S. Cillessen, G. Ossenkoppele, J. Kluin-nelemans et al., Profiling of apoptosis genes allows for clinical stratification of primary nodal diffuse large B-cell lymphomas, British Journal of Haematology, vol.34, issue.1, pp.38-47, 2007.
DOI : 10.1073/pnas.1732008100

P. Neuvial, Asymptotic properties of false discovery rate controlling procedures under independence, Electronic Journal of Statistics, vol.2, issue.0, pp.1065-1110, 2008.
DOI : 10.1214/08-EJS207

URL : https://hal.archives-ouvertes.fr/hal-00286066

P. Neuvial, Asymptotic results on adaptive false discovery rate controlling procedures based on kernel estimators, J. Mach. Learn. Res, vol.14, pp.1423-1459, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00460677

V. H. Nguyen and C. Matias, On Efficient Estimators of the Proportion of True Null Hypotheses in a Multiple Testing Setup, Scandinavian Journal of Statistics, vol.3, issue.4, 2014.
DOI : 10.1111/sjos.12091

URL : https://hal.archives-ouvertes.fr/hal-00647082

D. Pantazis, T. E. Nichols, S. Baillet, and R. M. Leahy, A comparison of random field theory and permutation methods for the statistical analysis of MEG data, NeuroImage, vol.25, issue.2, pp.383-394, 2005.
DOI : 10.1016/j.neuroimage.2004.09.040

P. Pacifico, M. Genovese, C. R. Verdinelli, I. Wasserman, and L. , False Discovery Control for Random Fields, Journal of the American Statistical Association, vol.99, issue.468, pp.991002-1014, 2004.
DOI : 10.1198/0162145000001655

F. Picard, A statistical tour of genomic data. Habilitation à diriger des recherches, 2014.

R. L. Plackett, Karl Pearson and the Chi-Squared Test, International Statistical Review / Revue Internationale de Statistique, vol.51, issue.1, pp.59-72, 1983.
DOI : 10.2307/1402731

D. N. Politis, J. P. Romano, and M. Wolf, Subsampling. Springer Series in Statistics, 1999.

A. Reiner-benaim, FDR Control by the BH Procedure for Two-Sided Correlated Tests with Implications to Gene Expression Data Analysis, Biometrical Journal, vol.84, issue.1, pp.107-126, 2007.
DOI : 10.1002/bimj.200510313

D. Revuz and M. Yor, Continuous martingales and Brownian motion, of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences, 1991.

S. Robin, A compound Poisson model for word occurrences in DNA sequences, Journal of the Royal Statistical Society: Series C (Applied Statistics), vol.1, issue.4, pp.437-451, 2002.
DOI : 10.1089/106652701752236179

K. Roeder and L. Wasserman, Genome-Wide Significance Levels and Weighted Hypothesis Testing, Statistical Science, vol.24, issue.4, pp.398-413, 2009.
DOI : 10.1214/09-STS289

J. P. Romano and A. M. Shaikh, On stepdown control of the false discovery proportion, Optimality, pp.33-50, 2006.
DOI : 10.1214/074921706000000383

J. P. Romano and A. M. Shaikh, Stepup procedures for control of generalizations of the familywise error rate, The Annals of Statistics, vol.34, issue.4, pp.1850-1873, 2006.
DOI : 10.1214/009053606000000461

J. P. Romano, A. M. Shaikh, and M. Wolf, Control of the false discovery rate under dependence using the bootstrap and subsampling, TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, vol.17, issue.3, pp.417-442, 2008.

J. P. Romano, A. M. Shaikh, and M. Wolf, Consonance and the closure method in multiple testing, Int. J. Biostat, vol.7, issue.27, 2011.

J. P. Romano and M. Wolf, Exact and Approximate Stepdown Methods for Multiple Hypothesis Testing, Journal of the American Statistical Association, vol.100, issue.469, pp.94-108, 2005.
DOI : 10.1198/016214504000000539

J. P. Romano and M. Wolf, Control of generalized error rates in multiple testing, The Annals of Statistics, vol.35, issue.4, pp.1378-1408, 2007.
DOI : 10.1214/009053606000001622

D. Rubin, S. Dudoit, and M. Van-der-laan, A Method to Increase the Power of Multiple Testing Procedures Through Sample Splitting, Statistical Applications in Genetics and Molecular Biology, vol.5, issue.1, p.pp. (electronic), 2006.
DOI : 10.2202/1544-6115.1148

S. K. Sarkar, procedures, The Annals of Statistics, vol.30, issue.1, pp.239-257, 2002.
DOI : 10.1214/aos/1015362192

S. K. Sarkar, On methods controlling the false discovery rate, Sankhya, Ser. A, vol.70, pp.135-168, 2008.

S. K. Sarkar, Two-stage stepup procedures controlling FDR, Journal of Statistical Planning and Inference, vol.138, issue.4, pp.1072-1084, 2008.
DOI : 10.1016/j.jspi.2007.03.058

T. K. Sarkar, Some lower bounds of reliability, 1969.

S. Schbath, Compound Poisson approximation of word counts in DNA sequences, ESAIM: Probability and Statistics, vol.1, pp.1-16, 1995.
DOI : 10.1051/ps:1997100

T. Schweder and E. Spjøtvoll, -values to evaluate many tests simultaneously, Biometrika, vol.69, issue.3, pp.493-502, 1982.
DOI : 10.1093/biomet/69.3.493

URL : https://hal.archives-ouvertes.fr/hal-00581009

J. G. Scott and J. O. Berger, An exploration of aspects of Bayesian multiple testing, Journal of Statistical Planning and Inference, vol.136, issue.7, pp.2144-2162, 2006.
DOI : 10.1016/j.jspi.2005.08.031

P. Seeger, A Note on a Method for the Analysis of Significances en masse, Technometrics, vol.11, issue.3, pp.586-593, 1968.
DOI : 10.1080/00401706.1968.10490605

J. P. Shaffer, Erich Lehmann???s contributions to multiple decision making, Selected works of E. L. Lehmann, Sel. Works Probab, pp.609-616, 2012.
DOI : 10.1007/978-1-4614-1412-4_52

G. R. Shorack and J. A. Wellner, Empirical processes with applications to statistics, Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics, 1986.
DOI : 10.1137/1.9780898719017

B. Soric, Statistical "Discoveries" and Effect-Size Estimation, Journal of the American Statistical Association, vol.84, issue.406, pp.608-610, 1989.
DOI : 10.2307/2289950

P. Soulier, Moment bounds and central limit theorem for functions of Gaussian vectors, Statistics & Probability Letters, vol.54, issue.2, pp.193-203, 2001.
DOI : 10.1016/S0167-7152(01)00061-X

E. Spjøtvoll, On the Optimality of Some Multiple Comparison Procedures, The Annals of Mathematical Statistics, vol.43, issue.2, pp.398-411, 1972.
DOI : 10.1214/aoms/1177692621

J. Storey and R. Tibshirani, SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays In The analysis of gene expression data, Stat. Biol. Health, pp.272-290, 2003.

J. D. Storey, A direct approach to false discovery rates, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.82, issue.3, pp.479-498, 2002.
DOI : 10.1111/1467-9868.00346

J. D. Storey, The optimal discovery procedure: a new approach to simultaneous significance testing, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.9, issue.3, pp.347-368, 2007.
DOI : 10.1093/biostatistics/kxh021

J. D. Storey, J. E. Taylor, and D. Siegmund, Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: a unified approach, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.73, issue.1, pp.187-205, 2004.
DOI : 10.1016/S0378-3758(99)00041-5

A. C. Tamhane, W. Liu, and C. W. Dunnett, A generalized step-up-down multiple test procedure, Canadian Journal of Statistics, vol.4, issue.2, pp.353-363, 1998.
DOI : 10.2307/3315516

J. W. Tukey, The problem of multiple comparisons, The Collected Works of John W. Tukey VIII. Multiple Comparisons, pp.1948-1983, 1953.

M. A. Van-de-wiel, K. Kim, S. Vosse, W. Van-wieringen, S. Wilting et al., CGHcall: calling aberrations for array CGH tumor profiles, Bioinformatics, vol.23, issue.7, pp.892-894, 2006.
DOI : 10.1093/bioinformatics/btm030

M. A. Van-de-wiel and W. N. Van-wieringen, CGHregions: Dimension Reduction for Array CGH Data with Minimal Information Loss, Cancer Inform, vol.3, pp.55-63, 2007.

M. J. Van-der-laan, S. Dudoit, and K. S. Pollard, Augmentation Procedures for Control of the Generalized Family-Wise Error Rate and Tail Probabilities for the Proportion of False Positives, Statistical Applications in Genetics and Molecular Biology, vol.3, issue.1, p.pp, 2004.
DOI : 10.2202/1544-6115.1042

A. W. Van-der-vaart, Asymptotic statistics, volume 3 of Cambridge Series in Statistical and Probabilistic Mathematics, 1998.

A. W. Van-der-vaart and J. A. Wellner, Weak convergence and empirical processes, 1996.
DOI : 10.1007/978-1-4757-2545-2

L. Wasserman and K. Roeder, Weighted hypothesis testing, 2006.

P. H. Westfall and S. S. Young, Resampling-Based Multiple Testing Examples and Methods for P -Value Adjustment, 1993.

H. Zhao and J. Zhang, Weighted p-value procedures for controlling FDR of grouped hypotheses, Journal of Statistical Planning and Inference, vol.151, issue.152, pp.90-106, 2014.
DOI : 10.1016/j.jspi.2014.04.004