L. Bouffier-références and ]. S. Kiser, Arc welding of nickel alloys, Metals Handbook, pp.436-445

]. C. Boucher-colloque, A. S. John, N. Dupont, J. C. Lippold, P. Scott et al., Fabrication -Soudage -Contrôle Welding metallurgy and weldability of nickel-base alloys Matériaux pour les tubes de GV REP et leur résistance à la CSC, " in Evolution du choix des matériaux : petites et grandes histoires Materials challenges in nuclear energy The influence of Nb and Mo on the microstructure and mechanical properties of Ni ? Cr ? Fe GTAW welds Hot Cracking Susceptibility of Ni- Base Alloy Dissimilar Metal Welds, Aspect métallurgique du soudage des alliages base Nickel amployés dans la construction des équipements sous pression Connect, no. October Hot Cracking Phenomena in Welds II SE -10, T. Böllinghaus, H. Herold, C. Cross, and J. Lippold, pp.735-758, 1989.

]. B. Kiser and E. B. Hinshaw, Nickel alloy welding requirements for nuclear service, Focus on Nuclear Power Generation, 2005.

W. Wu and C. H. Tsai, Hot cracking susceptibility of fillers 52 and 82 in alloy 690 welding, Metallurgical and Materials Transactions A, vol.62, issue.1, pp.417-426, 1999.
DOI : 10.1007/s11661-999-0331-2

B. Hemsworth, T. Boniszewski, and N. F. Eaton, Classification and definition of hith L. Bouffier temperature welding cracks in alloys, Metal construction and british welding journal, pp.5-16, 1969.

K. Wolski and V. Laporte, Grain boundary diffusion and wetting in the analysis of intergranular penetration, Materials Science and Engineering: A, vol.495, issue.1-2, pp.138-146, 2008.
DOI : 10.1016/j.msea.2007.10.107

URL : https://hal.archives-ouvertes.fr/emse-00475598

N. Mari, K. Wolski, and M. Biscondi, Intergranular penetration and embrittlement of solid nickel through bismuth vapour condensation at 700??C, Journal of Nuclear Materials, vol.296, issue.1-3, pp.282-288, 2001.
DOI : 10.1016/S0022-3115(01)00530-X

C. F. Old, Liquid metal embrittlement of nuclear materials, Journal of Nuclear Materials, vol.92, issue.1, pp.2-25, 1980.
DOI : 10.1016/0022-3115(80)90136-1

J. Ramirez and . Lippold, High temperature behavior of Ni-base weld metal, Materials Science and Engineering: A, vol.380, issue.1-2, pp.245-258, 2004.
DOI : 10.1016/j.msea.2004.03.075

Y. C. Zhang, H. Nakagawa, and F. Matsuda, Weldability of Fe-36%Ni alloy, Transactions of JWRI, vol.14, issue.5, pp.125-134, 1985.

S. Yamaguchi, Effect of minor elements on hot workability of nickel-base superalloys, Metals Technology, vol.60, issue.11, pp.170-175, 1979.
DOI : 10.1016/0001-6160(70)90046-5

E. Giraud, Etude expérimentale et modélisation du comportement mécanique d'une alliage d'aluminium 6061 à l'état pâteux : application à la fissuration à chaud lors du soudage TIG et FE, Thèse, Institut Polytechnique de Grenoble, 2010.

E. Giraud, M. Suery, and M. Coret, Mechanical Behavior of AA6061 Aluminum in the Semisolid State Obtained by Partial Melting and Partial Solidification, Metallurgical and Materials Transactions A, vol.44, issue.222, pp.15-17, 2010.
DOI : 10.1007/s11661-010-0268-5

URL : https://hal.archives-ouvertes.fr/hal-00581456

N. Wang, S. Mokadem, M. Rappaz, and W. Kurz, Solidification cracking of superalloy single- and bi-crystals, Acta Materialia, vol.52, issue.11, pp.3173-3182, 2004.
DOI : 10.1016/j.actamat.2004.03.047

S. Vernède, P. Jarry, and M. Rappaz, A granular model of equiaxed mushy zones: Formation of a coherent solid and localization of feeding, Acta Materialia, vol.54, issue.15, pp.4023-4034, 2006.
DOI : 10.1016/j.actamat.2006.04.035

D. G. Eskin and L. Katgerman, Mechanical properties in the semi-solid state and hot tearing of aluminium alloys, Progress in Materials Science, pp.629-711, 2004.
DOI : 10.1016/S0079-6425(03)00037-9

M. Wintz, M. Bobadilla, and J. M. Jolivet, Fragilit?? ?? la solidification des aciers : influence du carbone, du soufre et du phosphore, La revue de Métalurgie-CIT, pp.105-114, 1994.
DOI : 10.1051/metal/199491010105

J. N. Dupont, C. V. Robino, and A. R. Marder, Solidification modelling of Nb bearing superalloys, 1997.

M. J. Cieslak, The welding and solidification metallurgy of Alloy 625, Welding Journal, vol.70, issue.2, pp.49-56, 1991.

J. Dupont, C. Robino, and . Marder, Modeling solute redistribution and microstructural development in fusion welds of Nb-bearing superalloys, Acta Materialia, vol.46, issue.13, pp.4781-4790, 1998.
DOI : 10.1016/S1359-6454(98)00123-2

A. C. Lingenfelter, Varestraint testing of Nickel alloys, Welding Journal, vol.51, issue.9, pp.430-436, 1972.

S. De-vito, Influence de la composition chimique et des conditions de refroidissement sur la fissuration à chaud d'alliages de nickel, Thèse, Institut national polytechnique de Lorraine, 2000.

E. Cical?, G. Duffet, H. Andrzejewski, D. Grevey, and S. Ignat, Hot cracking in Al???Mg???Si alloy laser welding ??? operating parameters and their effects, Materials Science and Engineering: A, vol.395, issue.1-2, pp.1-9, 2005.
DOI : 10.1016/j.msea.2004.11.026

I. S. Maroef, M. D. Rowe, and G. R. Edwards, The Effect of Silicon and Iron on the Weldability of Ni-Co-Cr-Si HR-160?? Alloy, Hot Cracking Phenomena in Weld, pp.119-140, 2005.
DOI : 10.1007/3-540-27460-X_8

D. Cartaud, Essais de fissuration à chaud : principes et critères d'application, Soudage et techniques connexes, pp.17-28, 1995.

V. P. Kujanpaa, S. A. David, and C. L. White, Characterization of Heat-Afected Zone Cracking in Austenitic Stainless Steel Welds Welding research, 1987.

C. D. Lundin, W. T. Delong, and D. F. Spond, Ferrite-Fissuring Relationship in Austenitic Stainless Steel Weld Metals, Welding Research, vol.8, pp.241-246, 1975.

J. A. Brooks and F. J. Lambert, The Effects of Phosphorus , Sulfur and Ferrite Content on Weld Cracking of Type 309 Stainless Steel cracking, Welding Reasearch Supplement, pp.139-143, 1978.

V. Kujanpaa, N. Suutala, T. Takalo, and T. Moisio, Correlation Between Solidification Cracking and Microstructure in Austenitic--Ferritic Stainless Steel Welds, Weld. Res. Int, vol.9, issue.2, pp.55-76, 1979.

J. Zhang, Effect of Ti and Ta on hot cracking susceptibility of directionally solidified Ni-based superalloy IN792, Scripta Materialia, vol.48, issue.6, pp.677-681, 2003.
DOI : 10.1016/S1359-6462(02)00559-6

V. Shankar, T. P. Gill, S. L. Mannan, and S. Sundaresan, Evaluation of Hot Cracking in Nitrogen-Bearing and Fully Austenitic Stainless Steel Weldments, Welding Research Supplement, pp.193-201, 1998.

T. W. Nelson, J. C. Lippold, W. Lin, and W. A. Baeslack, Evaluation of the Circular Patch Test for Assessing Weld Solidification Cracking , Part I Development of a Test Method, Welding Reasearch Supplement, pp.110-119, 1997.

J. C. Lippold, J. W. Sowards, G. M. Murray, B. T. Alexandrov, and A. J. Ramirez, Weld Solidification Cracking in Solid-Solution Strengthened Ni-Base Filler Metals, Hot Cracking Phenomena in Welds II SE -9, pp.147-170, 2008.
DOI : 10.1007/978-3-540-78628-3_9

F. Matsuda, H. Nakagawa, H. Kohmoto, Y. Honda, and Y. Mastubara, Quantitative Evaluation of Solidification Brittleness of Weld Metal during Solidification by In-Situ Observation and Measurement (Report II), Transactions of JWRI, vol.12, issue.1, pp.73-80, 1983.

J. R. Donati, D. Guttmann, and G. Zacharie, Influence of the boron content on the hotcracking tendency in the heat-affected zone of welded austenitic stainless steels 18-10, Meeting on alloy steels, 1974.

V. Shankar, T. P. Gill, S. L. Mannan, and S. Sundaresan, Solidification cracking in austenitic stainless steel welds, Sadhana : Academy Proceedings in Engineering Sciences (India), pp.359-382, 2003.
DOI : 10.1007/BF02706438

N. Kerrouault, Thermo-elastoviscoplastic approach of the thermo-mechanical conditions for hot cracking, Mathematical modeling of weld Phenomena 5, pp.835-845, 1999.

T. A. Siewert, C. N. Mccowan, and D. L. Olson, Ferrite Number Prediction to 100 FN in Stainless Steel Weld Metal, Welding Reasearch Supplement, pp.289-298

J. Rogerson and J. Borland, Effect of the shapes of intergranular liquid on the hot cracking of welds and castings, Trans. Met. Soc. AIME, vol.227, pp.2-7, 1963.

M. Braccini, Optimisation des pièces moulées : étude des phénomènes de fissuration à chaud dans les alliages Al-Cu, 2000.

D. G. Eskin and L. Katgerman, A Quest for a New Hot Tearing Criterion, Metallurgical and Materials Transactions A, vol.336, issue.1, pp.1511-1519, 2007.
DOI : 10.1007/s11661-007-9169-7

A. Fallet, G. Chichignoud, C. L. Martin, M. Su, and P. Jarry, Influence of barium addition on the microstructure and the rheological behaviour of partially solidified Al???Cu alloys, Materials Science and Engineering: A, vol.426, issue.1-2, pp.187-193, 2006.
DOI : 10.1016/j.msea.2006.03.102

V. P. Kujanpaa, S. A. David, and C. L. White, Formation of Hot Cracks in Austenitic Stainless Steel Welds ? Solidification Cracking, Welding Reasearch Supplement, pp.203-2012, 1986.

N. D. Souza and H. B. Dong, Solidification path in third-generation Ni-based superalloys , with an emphasis on last stage solidification, Scripta Materialia, vol.56, pp.41-44, 2007.

G. K. Sigworth, Hot Tearing of Metals (96-155), " Transactions of the American Foundrymen's Society, pp.1053-1062, 1996.

J. D. Wang and D. Gan, Effects of grain boundary carbides on the mechanical properties of Inconel 600, Materials Chemistry and Physics, vol.70, issue.2, pp.124-128, 2001.
DOI : 10.1016/S0254-0584(00)00484-3

T. W. Clyne and G. J. Davies, Comparison between experimental data and theoretical predictions relating to dependence of solidification cracking on composition, Solidification and Casting of Metals\ Proc. Conf.\, pp.275-278, 1977.

L. Katgerman, A Mathematical Model for Hot Cracking of Aluminium Alloys during DC Casting Essential Readings in Light Metals: Cast Shop for Aluminum Production, pp.907-911

O. Cerri, Rupture à chaud dans les aciers au cours de leur solidification - Caractérisation expérimentale et modélisation thermomécanique, 2007.

U. Feurer, Quality Control of Engineering Alloys and the Role of Metals Science, pp.131-145, 1977.

M. Rappaz, J. Drezet, and M. Gremaud, A new hot-tearing criterion, Metallurgical and Materials Transactions A, vol.26, issue.2, pp.449-56, 1999.
DOI : 10.1007/s11661-999-0334-z

. Flemings, Solidification processing, p.148, 1974.
DOI : 10.1007/bf02643923

E. Giraud, M. Suery, and M. Coret, Shear Behavior of AA6061 Aluminum in the Semisolid State Under Isothermal and Nonisothermal Conditions, Metallurgical and Materials Transactions A, vol.17, issue.222, 2011.
DOI : 10.1007/s11661-011-0743-7

URL : https://hal.archives-ouvertes.fr/hal-00632624

B. Rogberg, An Investigation on the Hot Ductility of Steels by Performing Tensile Tests on' In Situ Solidified' Samples, Scand. J. Metall, vol.12, issue.2, pp.51-66, 1983.

D. Dye, O. Hunziker, R. C. Reed, A. Of, . Weldability et al., Numerical analysis of the weldability of superalloys, Acta Materialia, vol.49, issue.4, pp.683-697, 2001.
DOI : 10.1016/S1359-6454(00)00361-X

N. N. Prokhorov, Resistance to hot tearing of cast metals during solidification, Russian Cast. Prod, vol.2, pp.172-75, 1962.

B. Magnin, L. Maenner, L. Katgerman, and S. Engler, Ductility and Rheology of an Al-4.5% Cu Alloy from Room Temperature to Coherency Temperature, Materials Science Forum, vol.217, issue.222, pp.217-222, 1996.
DOI : 10.4028/www.scientific.net/MSF.217-222.1209

A. Yamanaka, K. Nakajima, K. Yasumoto, H. Kawashima, and K. Nakai, Measurement of Critical Strain for Solidification Cracking, SUMITOMO METAL INDUSTRIES LTD AMAGASAKI (JAPAN) CENTRAL RESEARCH LABS, 1991.

Y. M. Won, T. Yeo, D. J. Seol, and K. Y. Oh, A new criterion for internal crack formation in continuously cast steels, Metallurgical and Materials Transactions B, vol.24, issue.4, pp.779-794, 2000.
DOI : 10.1007/s11663-000-0115-y

N. Kerrouault, Fissuration a chaud en soudage d'un acier inoxydable austénitique, Thèse, 2000.

W. H. Suyitno, L. Kool, and . Katgerman, Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy, Metallurgical and Materials Transactions A, vol.2, issue.402, pp.1537-1546, 2005.
DOI : 10.1007/s11661-005-0245-6

M. Bellet, O. Cerri, M. Bobadilla, and Y. Chastel, Modeling Hot Tearing during Solidification of Steels: Assessment and Improvement of Macroscopic Criteria through the Analysis of Two Experimental Tests, Metallurgical and Materials Transactions A, vol.7, issue.11, pp.2705-2717, 2009.
DOI : 10.1007/s11661-009-9955-5

URL : https://hal.archives-ouvertes.fr/hal-00487265

T. Finton and J. Lippold, Standardization of the Transvarestraint Test-A Statistical Study using Austenitic Stainless Steels and Nickel-Base Alloys, 2004.

F. Matsuda, H. Nakagawa, K. Nakata, H. Kohmoto, and Y. Honda, Quantitative Evaluation of Solidification Brittleness of Weld Metal during Solidification by Means of In-Situ Observation and Measurement (Report I), Transactions of JWRI, vol.12, issue.1, pp.65-72, 1983.

W. Lin, J. C. Lippold, W. A. Baeslack, and I. , An evaluation of heat-affected zone liquation cracking susceptibility, Part I: Development of a method for quantification, WELDING JOURNAL-NEW YORK, vol.72, p.135, 1993.

K. Wilken and H. Kleistner, Les essais de fissuration à chaud d'assemblages soudés, Soudage et techniques connexes, pp.5-6, 1991.

G. M. Goodwin, The effects of heat input and weld process on hot cracking in stainless steel, Welding Journal, vol.67, issue.4, pp.88-94, 1988.

P. T. Houldcroft, A simple cracking test for use with Argon-arc Welding, British Welding Journal, pp.471-475, 1955.

J. G. Garland and G. J. Davies, A modified Houldcroft hot cracking test with improved reproductibility, Metal construction and british welding journal, 1969.

F. Matsuda and K. Nakata, A new test specimen for self-restraint solidification crack susceptibility test of electron-beal welding bead, Transactions of JWRI, vol.11, issue.2, pp.87-94, 1982.

J. Wisniewski, Modélisation de la fissuration à chaud en soudage par faisceau d'électrons d'un alliage CuCrZr, Thèse, 2009.

V. Ploshikhin, A. Prikhodovsky, M. Makhutin, A. Ilin, and H. Zoch, Integrated L. Bouffier Mechanical-Metallurgical Approach to Modeling of Solidification Cracking in Welds, Hot Cracking Phenomena in Weld, 2005.

M. Shibahara, H. Serizawa, and H. Murakawa, Finite Element Method for Hot Cracking Using Temperature Dependent Interface Element ( Report II ) ?, Trans. JWRI, vol.29, issue.1, 2000.

G. Qiu, J. Carpreau, M. Bellet, and J. Angles, Modelisation de la fissuration à chaud en soudage d'un acier inoxydable austénitique, CSMA 2011, 2011.

C. Huang and S. Kou, Liquation Cracking in Full-Penetration Al-Cu Welds, Welding Journal, 2004.

T. Teng, P. Chang, and H. Ko, Finite element analysis of circular patch welds, International Journal of Pressure Vessels and Piping, vol.77, issue.11, pp.643-650, 2000.
DOI : 10.1016/S0308-0161(00)00041-7

S. A. David and J. J. Woodhouse, Weldability test for thin sheet materials, Welding Journal, vol.66, issue.5, pp.129-134, 1987.

C. J. Bennett, S. B. Leen, E. J. Williams, P. H. Shipway, and T. H. Hyde, A critical analysis of plastic flow behaviour in axisymmetric isothermal and Gleeble compression testing, Computational Materials Science, vol.50, issue.1, pp.125-137, 2010.
DOI : 10.1016/j.commatsci.2010.07.016

D. Fabregue, Microstructure et fissuration à chaud lors du soudage laser d'alliages d'aluminium 6000, 2004.
URL : https://hal.archives-ouvertes.fr/tel-00370426

B. Mireux, Microtomographie in situ appliquée à la déformation et la solidification d'alliages d'aluminium, Thèse, 2012.

J. Salencon, Chapitre I Le comportement élasto-plastique infinitésimal, Les Editions de l'Ecole Polytechnique, 2002.

D. François, A. Pineau, and A. Zaoui, Comportement mécanique des matériaux, Hermès, 1993.

H. J. Frost and M. F. Ashby, Deformation mechanism maps: the plasticity and creep of metals and ceramics, 1982.

W. M. Van-haaften, W. H. Kool, and L. Katgerman, Tensile behaviour of semi-solid industrial aluminium alloys AA3104 and AA5182, Materials Science and Engineering: A, vol.336, issue.1-2, pp.1-6, 2002.
DOI : 10.1016/S0921-5093(01)01987-6

T. G. Nguyen, Modélisation du comportement rhéologique d'alliages à l'état semisolide, Thèse, Institut National Polytechnique de Grenoble, 1991.

C. L. Martin, D. Favier, and M. Suéry, Viscoplastic behaviour of porous metallic materials saturated with liquid part I: Constitutive equations, International Journal of Plasticity, vol.13, issue.3, pp.215-235, 1997.
DOI : 10.1016/S0749-6419(97)00009-0

A. Zavaliangos and L. Anand, Thermo-elasto-viscoplasticity of isotropic porous metals, Journal of the Mechanics and Physics of Solids, vol.41, issue.6, pp.1087-1118, 1993.
DOI : 10.1016/0022-5096(93)90056-L

A. R. Safari, M. R. Forouzan, and M. Shamanian, Hot cracking in stainless steel 310s, numerical study and experimental verification, Computational Materials Science, vol.63, pp.182-190, 2012.
DOI : 10.1016/j.commatsci.2012.06.015

H. Wu, P. Sun, F. Zhu, and S. Wang, Tensile Flow Behavior in Inconel 600 Alloy Sheet at Elevated Temperatures, Procedia Engineering, vol.36, pp.114-120, 2012.
DOI : 10.1016/j.proeng.2012.03.018

C. Pradille, Vers une meilleure compréhension et caractérisation du comportement des aciers à trés haute température, Mines ParisTech, 2011.

R. Kopp, J. Choi, and D. Neudenberger, Simple compression test and simulation of an Sn???15% Pb alloy in the semi-solid state, Journal of Materials Processing Technology, vol.135, issue.2-3, pp.2-3, 2003.
DOI : 10.1016/S0924-0136(02)00863-4

C. L. Martin, S. B. Brown, D. Favier, and M. Suery, Shear deformation of high solid fraction (>0.60) semi-solid Sn???Pb under various structures, Materials Science and Engineering: A, vol.202, issue.1-2, pp.112-122, 1995.
DOI : 10.1016/0921-5093(95)09797-X

D. Fabregue, A. Deschamps, M. Suery, and J. M. Drezet, Non-isothermal tensile tests during solidification of Al???Mg???Si???Cu alloys: Mechanical properties in relation to the phenomenon of hot tearing, Acta Materialia, vol.54, issue.19, pp.5209-5220, 2006.
DOI : 10.1016/j.actamat.2006.06.027

M. Braccini, C. L. Martin, A. Tourabi, Y. Brechet, and M. Suery, Low shear rate behavior at high solid fractions of partially solidified AlÁ 8 wt, % Cu alloys, vol.337, pp.1-11, 2002.

E. L. Evier and L. N. Thanh, Microstructure and compression behaviour in the semisolid state of short-fibre-reinforced A356 aluminium alloys, pp.33-44, 1995.

K. Hu, A. B. Phillion, D. M. Maijer, and S. L. Cockcroft, Constitutive behavior of as-cast magnesium alloy Mg???Al3???Zn1 in the semi-solid state, Scripta Materialia, vol.60, issue.6, pp.427-430, 2009.
DOI : 10.1016/j.scriptamat.2008.11.011

M. Rowan, B. G. Thomas, R. Pierer, and C. Bernhard, Measuring Mechanical Behavior of Steel During Solidification: Modeling the SSCC Test, Metallurgical and Materials Transactions B, vol.5, issue.146, 2011.
DOI : 10.1007/s11663-010-9470-5

J. Li, S. Sugiyama, and J. Yanagimoto, Microstructural evolution and flow stress of semi-solid type 304 stainless steel, Journal of Materials Processing Technology, vol.161, issue.3, pp.396-406, 2005.
DOI : 10.1016/j.jmatprotec.2004.07.063

B. K. Hansson and H. Fredriksson, On the Behavior of Hot Crack Formation During Solidification in Fe???Ni Alloys, Advanced Engineering Materials, vol.5, issue.12, pp.66-77, 2003.
DOI : 10.1002/adem.200390011

M. S. Lewandowski and R. A. Overfelt, High temperature deformation behavior of solid and semi-solid alloy 718, Acta Materialia, vol.47, issue.18, pp.4695-4710, 1999.
DOI : 10.1016/S1359-6454(99)00252-9

B. Shi and J. Liang, Circular grid pattern based surface strain measurement system for sheet metal forming, Optics and Lasers in Engineering, vol.50, issue.9, pp.1186-1195, 2012.
DOI : 10.1016/j.optlaseng.2012.04.007

M. R. Twite, J. A. Spittle, and S. G. Brown, The Tensile Properties of Semi-Solid Aluminum Alloys, International Journal of Forming Processes, vol.7, issue.1-2, pp.233-260, 2004.
DOI : 10.3166/ijfp.7.233-260

W. M. Van-haaften, W. H. Kool, and L. Katgerman, Microstructural Observations of Cracking in AA5182 at Semi-Solid Temperatures, Materials Science Forum, vol.331, issue.337, pp.265-270, 2000.
DOI : 10.4028/www.scientific.net/MSF.331-337.265

S. Terzi, L. Salvo, M. Suéry, N. Limodin, J. Adrien et al., In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys, Scripta Materialia, vol.61, issue.5, pp.449-452, 2009.
DOI : 10.1016/j.scriptamat.2009.04.041

R. David and . Lide, Handbook of Chemistry and Physics

M. Sennour, L. Marchetti, F. Martin, S. Perrin, R. Molins et al., A detailed L. Bouffier TEM and SEM study of Ni-base alloys oxide scales formed in primary conditions of pressurized water reactor, Journal of Nuclear Materials, vol.402, pp.2-3, 2010.

J. Lemaitre and J. L. Chaboche, Mechnics of Solid Materials, p.289, 1990.

A. Lindemann, J. Schmidt, M. Todte, and T. Zeuner, Thermal analytical investigations of the magnesium alloys AM 60 and AZ 91 including the melting range, Thermochimica Acta, vol.382, issue.1-2, pp.269-275, 2002.
DOI : 10.1016/S0040-6031(01)00752-3

Y. Zhang, J. Carpreau, and M. Bellet, Modélisation et simulation de fissuration à chaud de l'Inconel 600 Stage de fin d'étude, 2012.

H. M. Aarbogh, M. Hamide, H. G. Fjaer, A. Mo, and M. Bellet, Experimental validation of finite element codes for welding deformations, Journal of Materials Processing Technology, vol.210, issue.13, pp.1681-1689, 2010.
DOI : 10.1016/j.jmatprotec.2010.05.014

URL : https://hal.archives-ouvertes.fr/hal-00526286

J. Goldak, A new finite element model for welding heat sources, Metallurgical Transactions B, vol.23, issue.2, pp.587-600, 1984.
DOI : 10.1007/BF02667333

L. Bouffier-analytique, pour tous les éléments excepté l'hydrogène, les gaz nobles et les éléments instables. La haute résolution de l'appareil des laboratoires EAG de Toulouse permet de mesurer des concentrations de l'ordre du pourcent jusqu'à l'ultra trace (ppb) avec une incertitude de mesure de +, 20% (source : Evans Analytical Group). C'est une technique fiable mais plus onéreuse que l'ICP

L. and «. Normales, des éléments dont la concentration est estimée supérieure à 0.1 % pds ont été analysées dans les laboratoires du Service Central d'Analyse

. Le-principe-de-cette-technique-d, analyse présente de nombreuses similitudes avec la technique GDMS (ionisation de l'échantillon en l'injectant dans un plasma d'argon qui est ensuite analysé soit par un réseau polychromateur (méthode optique), soit par spectrométrie de masse) mais reste moins performante pour les éléments trace (<100 ppm) En effet, le seuil de détection de cette technique est de l'ordre de 100 ppm qui permet néanmoins l'analyse de la quasi-totalité des éléments de l'alliage étudié

. Comme-mentionné-précédemment, P. De, and S. , ont été réalisées par GDMS. On note que les concentrations sont relativement homogènes dans chaque coulée, ce qui permet de considérer des teneurs moyennes pour nos modèles et

L. Bouffier, On note à l'inverse que le chrome ou le fer ont une influence beaucoup plus faible (des variations supérieures au pourcent affectent moins le chemin de solidification que des variations de l'ordre du dixième de pourcent d'éléments comme le Si

M. Un-alliage and . Quasiment-assimilable-À-un-ternaire-ni, Cr-Fe présente un intervalle de solidification beaucoup plus étroit et une température de solidus sensiblement plus élevée, Il est probable que cet alliage est moins exposé au risque de fissuration à chaud étant donné son petit intervalle de fragilité en température (BTR)