@. Soler, J. Tencé, F. Gaubert, L. Buche, and C. , Data Clustering and Similarity The ai systems of left 4 dead, Proceedings of the Twenty-Sixth International Florida Articial Intelligence Research Society Conference (pp. 492 495). thirteenth annual symposium on Computational geometry -SCG '97 Keynote, Fifth Articial Intelligence and Interactive Digital Entertainment Conference, p.454456, 2009.

C. Bossard, G. Kermarrec, D. Loor, and P. , Sport, réalité virtuelle et conception de simulations participatives, 2009.

C. Buche, Adaptive behaviors for virtual entities in participatory virtual environments. Habilitation à diriger des recherches, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00672518

F. Canales and M. Chacón, Modication of the growing neural gas algorithm for cluster analysis, Progress in Pattern Recognition, pp.4756684693-36, 2007.

C. Chang and C. Lin, LIBSVM, ACM Transactions on Intelligent Systems and Technology, vol.2, issue.3, pp.139-59, 2011.
DOI : 10.1145/1961189.1961199

D. Charalampidis and B. Muldrey, Clustering using multilayer perceptrons . Nonlinear Analysis: Theory, Methods & Applications, pp.71-2807, 2009.
DOI : 10.1016/j.na.2009.06.064

M. Chen, J. Han, Y. , and P. S. , Data mining: an overview from a database perspective. Knowledge and Data Engineering, IEEE Transactions on, vol.8, issue.23, pp.866883-866884, 1996.

R. R. Coifman and S. Lafon, Diusion maps, Applied and Computational Harmonic Analysis, vol.21, issue.1, pp.530-556, 2006.

M. Csikszentmihalyi, Flow., 1991.
DOI : 10.1037/10518-188

URL : https://hal.archives-ouvertes.fr/hal-01470857

G. Das, D. Gunopulos, and H. Mannila, Finding similar time series, Principles of Data Mining and Knowledge Discovery, pp.126388100-126388110, 1997.
DOI : 10.1007/3-540-63223-9_109

D. Defays, An ecient algorithm for a complete link method, The Computer Journal, vol.20, issue.36, pp.364366-364373, 1977.

J. Dem²ar, T. Curk, A. Erjavec, . Gorup, T. Ho£evar et al., Orange: data mining toolbox in python, The Journal of Machine Learning Research, vol.14, issue.1, pp.23492353-23492377, 2013.

I. S. Dhillon, Y. Guan, and B. Kulis, Kernel k-means, Proceedings of the 2004 ACM SIGKDD international conference on Knowledge discovery and data mining , KDD '04, pp.551556-551591, 2004.
DOI : 10.1145/1014052.1014118

D. Doherty, O. 'riordan, and C. , The Design Goals and Implementation of AI in Modern Computer Games, p.17, 2006.

M. Ester, H. Kriegel, J. Sander, and X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, Proceedings of the 2nd International Conference on Knowledge Discovery and Data mining, pp.226231-226241, 1996.

R. Evans, The Use of AI Techniques in Black & White, 2001.

U. Fayyad, G. Piatetsky-shapiro, and P. Smyth, From Data Mining to Knowledge Discovery in Databases, pp.3754-3776, 1996.

Y. Freund and R. E. Schapire, A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting, Journal of Computer and System Sciences, vol.55, issue.1, pp.119139-119173, 1997.
DOI : 10.1006/jcss.1997.1504

N. Friedman, The Bayesian structural EM algorithm, Proceedings of the Fourteenth conference on Uncertainty in articial intelligence, pp.129138-129170, 1998.

B. Fritzke, Growing cell structures???A self-organizing network for unsupervised and supervised learning, Neural Networks, vol.7, issue.9, pp.14411460-14411496, 1994.
DOI : 10.1016/0893-6080(94)90091-4

B. Fritzke, A growing neural gas network learns topologies Advances in neural information processing systems, pp.625632-625642, 1995.

B. Fritzke, Growing Grid ??? a self-organizing network with constant neighborhood range and adaptation strength, Neural Processing Letters, pp.913-949, 1995.
DOI : 10.1007/BF02332159

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. T. Goldsmith, Cathode-ray tube amusement device, 1948.

S. Grand and D. Cli, Creatures, Proceedings of the first international conference on Autonomous agents , AGENTS '97, pp.3957-3964, 1998.
DOI : 10.1145/267658.267663

A. Guénoche, P. Hansen, and B. Jaumard, Ecient algorithms for divisive hierarchical clustering with the diameter criterion, Journal of classication, vol.8, pp.530-566, 1991.

D. J. Hand, Principles of Data Mining, Drug Safety, vol.15, issue.2, 2007.
DOI : 10.2165/00002018-200730070-00010

P. Hart, N. Nilsson, R. , and B. , A Formal Basis for the Heuristic Determination of Minimum Cost Paths, IEEE Transactions on Systems Science and Cybernetics, vol.4, issue.2, p.7, 1968.
DOI : 10.1109/TSSC.1968.300136

P. Hayes and K. Ford, Turing test considered harmful, International Joint Conference on Articial Intelligence, pp.972977-109, 1995.

J. J. Hopeld, Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences, pp.7925542558-29, 1982.

D. Isla, Handling complexity in the Halo 2 AI. Game Developers Conference, p.18, 2005.

A. K. Jain, Data clustering: 50 years beyond K-means, Pattern Recognition Letters, vol.31, issue.8, pp.31651666-31651701, 2010.
DOI : 10.1016/j.patrec.2009.09.011

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

O. Johnston and F. Thomas, Disney Animation: The Illusion of Life, 1981.

G. Karypis, E. Han, and V. Kumar, Chameleon: hierarchical clustering using dynamic modeling, Computer, vol.32, issue.8, pp.326875-326883, 1999.
DOI : 10.1109/2.781637

L. Kaufman and P. J. Rousseeuw, Clustering by means of medoids. Statistical data analysis based on the L1-norm and related methods, pp.405416-405451, 1987.

T. Kohonen, Self-organized formation of topologically correct feature maps, Biological Cybernetics, vol.13, issue.1, pp.5969-5979, 1982.
DOI : 10.1007/BF00337288

T. Kohonen, The self-organizing map, Proceedings of the IEEE, pp.14641480-14641516, 1990.

J. E. Laird and J. C. Duchi, Creating human-like synthetic characters with multiple skill levels: A case study using the soar quakebot, Simulating Human Agents, Papers from the 2000 AAAI Fall Symposium, pp.7579-7625, 2000.

L. Hy and R. , Programmation et apprentissage bayésien de comportements pour des personnages synthétiques application aux personnages de jeux vidéos, p.88, 2007.

D. Livingstone, Turing's test and believable AI in games, Computers in Entertainment, vol.4, issue.1, pp.6-17, 2006.
DOI : 10.1145/1111293.1111303

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

S. P. Lloyd, Least squares quantization in PCM, IEEE Transactions on Information Theory, vol.28, issue.2, pp.129137-129172, 1982.
DOI : 10.1109/TIT.1982.1056489

A. B. Loyall, Believable Agents : Building Interactive Personalities Thesis Committee, p.109, 1997.

M. Namee and B. , Proactive Persistent Agents: Using Situational Intelligence to Create Support Characters in Character-Centric Computer Games, 2004.

J. Macqueen, Some methods for classication and analysis, Proceedings of the fth Berkeley symposium on mathematical statistics and probability, pp.281297-281332, 1966.

T. M. Martinetz, S. G. Berkovich, and K. J. Schulten, 'Neural-gas' network for vector quantization and its application to time-series prediction, IEEE Transactions on Neural Networks, vol.4, issue.4, 1993.
DOI : 10.1109/72.238311

K. Mclaren, The Development of the CIE 1976 (L* a* b*) Uniform Colour Space and Colour-dierence Formula, Journal of the Society of Dyers and Colourists, issue.9, pp.92338341-92338363, 2008.

J. Mercer, Functions of positive and negative type, and their connection with the theory of integral equations, Philosophical Transactions of the Royal Society of London, vol.30, pp.6970-6974, 1909.

M. H. Nguyen, Segment-based SVMs for Time Series Analysis, 2012.

J. Orkin, Three states and a plan: the AI of FEAR, Game Developers Conference, pp.118-127, 2006.

R. Querrec, P. Vallejo, and C. Buche, MASCARET: creating virtual learning environments from system modelling The Engineering Reality of Virtual Reality, Proc. SPIE, pp.864911-864957, 2013.

J. R. Quinlan, Induction of decision trees, Machine learning, pp.81106-77, 1986.
DOI : 10.1007/BF00116251

R. Developement and C. Team, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, vol.1, p.24, 2008.

M. O. Riedl and R. M. Young, An Objective Character Believability Evaluation Procedure for Multi-agent Story Generation Systems, Lecture Notes in Computer Science (including subseries Lecture Notes in Articial Intelligence and Lecture Notes in Bioinformatics, pp.3661-278291, 2005.
DOI : 10.1007/11550617_24

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

J. Rivière, S. Pesty, A. , and C. , Un ACA sincère comme compagnon articiel, Workshop on Aective Compagnon Articiel, p.47, 2012.

S. T. Roweis and L. K. Saul, Nonlinear Dimensionality Reduction by Locally Linear Embedding, Science, vol.290, issue.5500, pp.29023236-29023262, 2000.
DOI : 10.1126/science.290.5500.2323

URL : http://astro.temple.edu/~msobel/courses_files/saulmds.pdf

S. Russel and P. Norvig, Articial Intelligence: A Modern Approach, 2009.

S. Salvador and P. Chan, FastDTW: Toward Accurate Dynamic Time Warping in Linear Time and Space, Intelligent Data Analysis, vol.11, issue.5, pp.561-580, 2007.

J. W. Sammon, A Nonlinear Mapping for Data Structure Analysis, IEEE Transactions on Computers, vol.18, issue.5, pp.18401409-18401436, 1969.
DOI : 10.1109/T-C.1969.222678

B. Schölkopf, A. Smola, and K. Müller, Nonlinear Component Analysis as a Kernel Eigenvalue Problem, Neural Computation, vol.20, issue.5, pp.1299-1319, 1998.
DOI : 10.1007/BF02281970

J. R. Searle, Minds, brains, and programs, Behavioral and Brain Sciences, vol.3, issue.03, pp.417424-109, 1980.
DOI : 10.1016/b978-1-4832-1446-7.50007-8

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

L. Shi, P. He, B. Liu, K. Fu, and Q. Wu, A robust generalization of isomap for new data, International Conference on Machine Learning and Cybernetics, pp.1821-1848, 2005.

R. Sibson, SLINK: An optimally efficient algorithm for the single-link cluster method, The Computer Journal, vol.16, issue.1, pp.3034-3041, 1973.
DOI : 10.1093/comjnl/16.1.30

A. Smuts, Are Video Games Art? Contemporary Aesthetics, 2005.

P. Smyth, Clustering sequences with hidden Markov models Advances in neural information processing systems, pp.648654-648691, 1997.

M. Stokes, M. Anderson, S. Chandrasekar, and R. Motta, A Standard Default Color Space for the Internet -sRGB, p.22, 1996.

D. F. Swayne, A. Buja, L. , and D. T. , Exploratory Visual Analysis of Graphs in GGOBI, COMPSTAT, number Dsc, pp.477488-477536, 2004.
DOI : 10.1007/978-3-7908-2656-2_39

F. Tencé, Probabilistic Behaviour Model and Imitation Learning Algorithm for Believable Characters in Video Games. Phd, pp.70-104, 2011.

F. Tencé, L. Gaubert, J. Soler, P. De-loor, and C. Buche, Stable growing neural gas: A topology learning algorithm based on player tracking in video games, Applied Soft Computing, vol.13, issue.10, pp.1341744184-88, 2013.
DOI : 10.1016/j.asoc.2013.06.002

J. B. Tenenbaum, V. De-silva, and J. C. Langford, A Global Geometric Framework for Nonlinear Dimensionality Reduction, Science, vol.290, issue.5500, pp.290231923-290231949, 2000.
DOI : 10.1126/science.290.5500.2319

W. S. Torgerson, Multidimensional scaling: I. Theory and method, Psychometrika, vol.3, issue.4, pp.401419-401444, 1952.
DOI : 10.1007/BF02288916

T. Trinh, P. Chevaillier, M. Barange, J. Soler, P. De-loor et al., Integrating Semantic Directional Relationships into Virtual Environments: A Meta-modelling Approach, JVRC11: Joint Virtual Reality Conference of EGVE -EuroVR, pp.6774-6821, 2011.

A. M. Turing, Computing Machinery and Intelligence, Mind, vol.59, issue.236, pp.433460-109, 1950.

V. Vapnik, S. E. Golowich, and A. Smola, Support vector method for function approximation, regression estimation, and signal processing, Advances in Neural Information Processing Systems 9, pp.281287-281291, 1996.

P. Viola and M. J. Jones, Robust Real-Time Face Detection, pp.137154-137188, 2004.

. Viterbi, Error bounds for convolutional codes and an asymptotically optimum decoding algorithm, IEEE Transactions on Information Theory, vol.13, issue.2, pp.260269-260301, 1967.

C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba, HOGgles: Visualizing Object Detection Features, 2013 IEEE International Conference on Computer Vision, pp.18-48, 2013.
DOI : 10.1109/ICCV.2013.8

B. G. Weber and M. Mateas, A data mining approach to strategy prediction, 2009 IEEE Symposium on Computational Intelligence and Games, pp.140147-102, 2009.
DOI : 10.1109/CIG.2009.5286483

I. H. Witten and E. Frank, Data mining, ACM SIGMOD Record, vol.31, issue.1, p.24, 2005.
DOI : 10.1145/507338.507355

R. Zhang and A. I. Rudnicky, A large scale clustering scheme for kernel K-Means, Object recognition supported by user interaction for service robots, pp.289292-289327, 2002.
DOI : 10.1109/ICPR.2002.1047453