N. Chiaruttini, L. Redondo-morata, A. Colom, F. Humbert, M. Lenz et al., Compression of ESCRT-III spiral springs drives membrane deformation, Roux* Cell, 2015.

M. Murrell, P. Oakes, M. Lenz, and M. L. , Forcing cells into shape: the mechanics of actomyosin contractility, Nature Reviews Molecular Cell Biology, vol.110, issue.8, p.486, 2015.
DOI : 10.1038/nrm4012

M. Saleem, S. Morlot, A. Hohendahl, J. Manzi, M. Lenz et al., A balance between membrane elasticity and polymerization energy sets the shape of spherical clathrin coats, Nature Communications, vol.75, p.6249, 2015.
DOI : 10.1038/ncomms7249

URL : https://hal.archives-ouvertes.fr/hal-01135880

M. T. Falzone, D. R. Lenz, and M. L. Kovar, Assembly kinetics determine the architecture of ??-actinin crosslinked F-actin networks, Nature Communications, vol.179, p.861, 2012.
DOI : 10.1038/ncomms1862

T. Lenz, M. L. Thoresen, and . Gardel, Contractile Units in Disordered Actomyosin Bundles Arise from F-Actin Buckling, Physical Review Letters, vol.108, issue.23, p.238107, 2012.
DOI : 10.1103/PhysRevLett.108.238107

S. Morlot, *. , M. Lenz, *. , J. Prost et al., Deformation of Dynamin Helices Damped by Membrane Friction, Biophysical Journal, vol.99, issue.11, p.3580, 2010.
DOI : 10.1016/j.bpj.2010.10.015

M. Basan, T. Idema, M. Lenz, J. Joanny, and T. Risler, A Reaction-Diffusion Model of the Cadherin-Catenin System: A Possible Mechanism for Contact Inhibition and Implications for Tumorigenesis, Biophysical Journal, vol.98, issue.12, p.2770, 2010.
DOI : 10.1016/j.bpj.2010.03.051

URL : https://hal.archives-ouvertes.fr/hal-00961044

S. Lenz, A. Morlot, F. Roux, and . Lett, Mechanical requirements for membrane fission: Common facts from various examples, FEBS Letters, vol.321, issue.23, p.3839, 2009.
DOI : 10.1016/j.febslet.2009.11.012

T. Betz, M. Lenz, J. Joanny, and C. , ATP-dependent mechanics of red blood cells, Proceedings of the National Academy of Sciences, vol.106, issue.36, p.15320, 2009.
DOI : 10.1073/pnas.0904614106

M. Lenz, D. J. Crow, and J. , Membrane Buckling Induced by Curved Filaments, Physical Review Letters, vol.103, issue.3, p.38101, 2009.
DOI : 10.1103/PhysRevLett.103.038101

M. Lenz, J. Prost, and J. Phys, References [1] Andrew G Szent-Györgyi. The early history of the biochemistry of muscle contraction, Mechanochemical J. Gen. Physiol, vol.78, issue.1236, pp.11911631-641, 2004.

F. Fay, D. Fujiwara, K. Rees, and . Fogarty, Distribution of alpha-actinin in single isolated smooth muscle cells, The Journal of Cell Biology, vol.96, issue.3, pp.783-795, 1983.
DOI : 10.1083/jcb.96.3.783

L. Cramer, T. Siebert, and . Mitchison, Identification of Novel Graded Polarity Actin Filament Bundles in Locomoting Heart Fibroblasts: Implications for the Generation of Motile Force, The Journal of Cell Biology, vol.118, issue.6, pp.1287-1305, 1997.
DOI : 10.1016/0012-1606(88)90279-5

A. Carvalho, A. Desai, and K. Oegema, Structural Memory in the Contractile Ring Makes the Duration of Cytokinesis Independent of Cell Size, Cell, vol.137, issue.5, pp.926-937, 2009.
DOI : 10.1016/j.cell.2009.03.021

O. Medalia, I. Weber, S. Achilleas, D. Frangakis, G. Nicastro et al., Macromolecular Architecture in Eukaryotic Cells Visualized by Cryoelectron Tomography, Science, vol.298, issue.5596, pp.2981209-1213, 2002.
DOI : 10.1126/science.1076184

A. Verkhovsky, T. Svitkina, and G. Borisy, Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles, The Journal of Cell Biology, vol.131, issue.4, pp.989-1002, 1995.
DOI : 10.1083/jcb.131.4.989

Y. Aratyn-schaus, P. W. Oakes, and M. L. Gardel, Dynamic and structural signatures of lamellar actomyosin force generation, Molecular Biology of the Cell, vol.22, issue.8
DOI : 10.1091/mbc.E10-11-0891

G. Salbreux, G. Charras, and E. Paluch, Actin cortex mechanics and cellular morphogenesis, Trends in Cell Biology, vol.22, issue.10, pp.536-545, 2012.
DOI : 10.1016/j.tcb.2012.07.001

J. Joanny and J. Prost, Active gels as a description of the actin???myosin cytoskeleton, HFSP Journal, vol.3, issue.2, pp.94-104, 2009.
DOI : 10.2976/1.3054712

F. Mackintosh and A. Levine, Nonequilibrium Mechanics and Dynamics of Motor-Activated Gels, Physical Review Letters, vol.100, issue.1, p.18104, 2008.
DOI : 10.1103/PhysRevLett.100.018104

S. Yumura, cells, The Journal of Cell Biology, vol.8, issue.1, pp.137-146, 2001.
DOI : 10.1073/pnas.95.23.13652

A. G. Clark, K. Dierkes, and E. K. Paluch, Monitoring Actin Cortex Thickness in Live Cells, Biophysical Journal, vol.105, issue.3, pp.570-580, 2013.
DOI : 10.1016/j.bpj.2013.05.057

E. L. Barnhart, K. Kun-chun-lee, A. Keren, J. A. Mogilner, and . Theriot, An Adhesion-Dependent Switch between Mechanisms That Determine Motile Cell Shape, PLoS Biology, vol.15, issue.Pt 22, p.1001059, 2011.
DOI : 10.1371/journal.pbio.1001059.s022

T. Odijk, Stiff Chains and Filaments under Tension, Macromolecules, vol.28, issue.20, pp.7016-7018, 1995.
DOI : 10.1021/ma00124a044

B. Gilboa, D. Gillo, O. Farago, and A. Bernheim-groswasser, Bidirectional cooperative motion of myosin-II motors on actin tracks with randomly alternating polarities, Soft Matter, vol.92, issue.11, pp.2223-2231, 2009.
DOI : 10.1039/b823400k

M. Murrell, L. Margaret, and . Gardel, F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex, Proc. Natl. Acad
DOI : 10.1073/pnas.1214753109

M. Soares-e-silva, M. Depken, B. Stuhrmann, M. Korsten, C. Fred et al., Active multistage coarsening of actin networks driven by myosin motors, Proceedings of the National Academy of Sciences, vol.108, issue.23
DOI : 10.1073/pnas.1016616108

M. Poul, . Bendix, H. Gijsje, D. Koenderink, Z. Cuvelier et al., A quantitative analysis of contractility in active cytoskeletal protein networks, Biophys. J, vol.94, issue.8, pp.3126-3136, 2008.

D. Mizuno, C. Tardin, C. Schmidt, and F. Mackintosh, Nonequilibrium Mechanics of Active Cytoskeletal Networks, Science, vol.315, issue.5810, pp.315370-373, 2007.
DOI : 10.1126/science.1134404

L. Nilushi, . Dasanayake, J. Paul, . Michalski, E. Anders et al., General mechanism of actomyosin contractility, Phys. Rev. Lett, vol.107, issue.11, p.118101, 2011.

T. Liverpool and M. Marchetti, Bridging the microscopic and the hydrodynamic in active filament solutions, Europhysics Letters (EPL), vol.69, issue.5, pp.846-852, 2005.
DOI : 10.1209/epl/i2004-10414-0

T. Thoresen, M. Lenz, and M. L. Gardel, Reconstitution of Contractile Actomyosin Bundles, Biophysical Journal, vol.100, issue.11, pp.2698-2705, 2011.
DOI : 10.1016/j.bpj.2011.04.031

A. Reymann, R. Boujemaa-paterski, J. Martiel, C. Guérin, W. Cao et al., Actin Network Architecture Can Determine Myosin Motor Activity, Science, vol.336, issue.6086, pp.3361310-1314, 2012.
DOI : 10.1126/science.1221708

URL : https://hal.archives-ouvertes.fr/hal-00735922

K. Kruse and F. Jülicher, Actively Contracting Bundles of Polar Filaments, Physical Review Letters, vol.85, issue.8, pp.1778-1781, 2000.
DOI : 10.1103/PhysRevLett.85.1778

K. Kruse and F. Jülicher, Self-organization and mechanical properties of active filament bundles, Physical Review E, vol.67, issue.5, p.51913, 2003.
DOI : 10.1103/PhysRevE.67.051913

T. Thoresen, M. Lenz, and M. L. Gardel, Thick Filament Length and Isoform Composition Determine Self-Organized Contractile Units in Actomyosin Bundles, Biophysical Journal, vol.104, issue.3, pp.655-665, 2013.
DOI : 10.1016/j.bpj.2012.12.042

URL : https://hal.archives-ouvertes.fr/hal-01108704

H. Kojima, T. Ishijima, and . Yanagida, Direct measurement of stiffness of single actin filaments with and without tropomyosin by in vitro nanomanipulation., Proceedings of the National Academy of Sciences, vol.91, issue.26, pp.9112962-12966, 1994.
DOI : 10.1073/pnas.91.26.12962

S. Steven, J. Rosenfeld, L. Xing, H. Chen, and . Sweeney, Myosin IIB is unconventionally conventional, J. Biol. Chem, vol.278, issue.30, pp.27449-27455, 2003.

H. Gijsje, Z. Koenderink, F. Dogic, . Nakamura, M. Poul et al., An active biopolymer network controlled by molecular motors, Proc. Natl. Acad. Sci. U.S.A, vol.106, issue.36, pp.15192-15199, 2009.

J. Alvarado, M. Sheinman, A. Sharma, F. C. Mackintosh, and G. H. Koenderink, Molecular motors robustly drive active gels to a critically connected state, Nature Physics, vol.41, issue.9, p.591, 2013.
DOI : 10.1038/nphys2715

H. Isambert and A. C. Maggs, Dynamics and Rheology of Actin Solutions, Macromolecules, vol.29, issue.3, pp.1036-1040, 1996.
DOI : 10.1021/ma946418x

W. A. Lam, O. Chaudhuri, A. Crow, K. D. Webster, T. Li et al., Mechanics and contraction dynamics of single platelets and implications for clot stiffening, Nature Materials, vol.78, issue.1, pp.61-66, 2011.
DOI : 10.1038/nmat2903

H. Ehrlich, Wound closure: evidence of cooperation between fibroblasts and collagen matrix, Eye, vol.66, issue.2, pp.149-157, 1988.
DOI : 10.1038/eye.1988.28

J. Chauying, L. V. Jen, and . Mclntire, The structural properties and contractile force of a clot, Cell Motil, vol.2, pp.445-455, 1982.

F. Jülicher, K. Kruse, J. Prost, and J. Joanny, Active behavior of the Cytoskeleton, Physics Reports, vol.449, issue.1-3, pp.1-33, 2007.
DOI : 10.1016/j.physrep.2007.02.018

M. C. Marchetti, J. F. Joanny, S. Ramaswamy, T. B. Liverpool, J. Prost et al., Hydrodynamics of soft active matter, Reviews of Modern Physics, vol.85, issue.3, p.1143, 2013.
DOI : 10.1103/RevModPhys.85.1143

Y. Shokef and S. A. Safran, Scaling Laws for the Response of Nonlinear Elastic Media with Implications for Cell Mechanics, Physical Review Letters, vol.108, issue.17, p.178103, 2012.
DOI : 10.1103/PhysRevLett.108.178103

D. Head, F. Levine, and . Mackintosh, Mechanical response of semiflexible networks to localized perturbations, Physical Review E, vol.72, issue.6, p.72061914, 2005.
DOI : 10.1103/PhysRevE.72.061914

R. Loughlin, R. Heal, N. François, and ´. Lec, meiotic spindle organization, The Journal of Cell Biology, vol.115, issue.7, pp.1239-1249, 2010.
DOI : 10.1083/jcb.200807046

E. Atilgan, D. Wirtz, X. Sean, and . Sun, Morphology of the Lamellipodium and Organization of Actin Filaments at the Leading Edge of Crawling Cells, Biophysical Journal, vol.89, issue.5, pp.3589-3602, 2005.
DOI : 10.1529/biophysj.105.065383

J. Zhu and A. Mogilner, Mesoscopic Model of Actin-Based Propulsion, PLoS Computational Biology, vol.103, issue.11, p.1002764, 2012.
DOI : 10.1371/journal.pcbi.1002764.s011

S. Ulrich, S. A. Schwarz, and . Safran, Physics of adherent cells, Rev. Mod. Phys, vol.85, issue.3, p.1327, 2013.

C. Broedersz and F. Mackintosh, Modeling semiflexible polymer networks, Reviews of Modern Physics, vol.86, issue.3, pp.995-1036, 2014.
DOI : 10.1103/RevModPhys.86.995

L. Nilushi, . Dasanayake, E. Anders, and . Carlsson, Stress generation by myosin minifilaments in actin bundles, Phys. Biol, vol.10, issue.3, p.36006, 2013.

A. Carlsson, Contractile stress generation by actomyosin gels, Physical Review E, vol.74, issue.5, p.51912, 2006.
DOI : 10.1103/PhysRevE.74.051912

C. Broedersz and F. Mackintosh, Molecular motors stiffen non-affine semiflexible polymer networks, Soft Matter, vol.7, issue.7, pp.3186-3191, 2011.
DOI : 10.1039/c0sm01004a

A. S. Abhilash, B. M. Baker, B. Trappmann, C. S. Chen, and V. B. Shenoy, Remodeling of Fibrous Extracellular Matrices by Contractile Cells: Predictions from Discrete Fiber Network Simulations, Biophysical Journal, vol.107, issue.8, pp.1829-1840, 2014.
DOI : 10.1016/j.bpj.2014.08.029

P. Ronceray and M. Lenz, Connecting local active forces to macroscopic stress in elastic media, Soft Matter, vol.9, issue.3, pp.1597-1605, 2015.
DOI : 10.1039/C4SM02526A

URL : https://hal.archives-ouvertes.fr/hal-01135366

J. D. Eshelby, The continuum theory of lattice defects . Solid State Phys, pp.79-144, 1956.

M. Sheinman, C. P. Broedersz, and F. C. Mackintosh, Nonlinear effective-medium theory of disordered spring networks, Physical Review E, vol.85, issue.2, p.21801, 2012.
DOI : 10.1103/PhysRevE.85.021801

P. Chase, X. Broedersz, . Mao, C. Tom, . Lubensky et al., Criticality and isostaticity in fibre networks, Nat. Phys, vol.7, pp.983-988, 2011.

C. P. Broedersz, M. Sheinman, and F. C. Mackintosh, Filament-Length-Controlled Elasticity in 3D Fiber Networks, Physical Review Letters, vol.108, issue.7, p.78102, 2012.
DOI : 10.1103/PhysRevLett.108.078102

C. Storm, J. J. Pastore, F. Mackintosh, . Lubensky, A. Paul et al., Nonlinear elasticity in biological gels, Nature, vol.100, issue.7039, pp.191-195, 2005.
DOI : 10.1038/nature03521

M. Joëllemì-ere, T. Bussonnier, C. Betz, K. Sykes, and . Carvalho, Cell-sized liposome doublets reveal active cortical tension build up. manuscript currently in review and attached to this submission for the reviewers' consideration, 2015.

K. Hayakawa, H. Tatsumi, and M. Sokabe, Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament, The Journal of Cell Biology, vol.265, issue.5, pp.721-727, 2011.
DOI : 10.1038/31735

W. Helfrich, Abstract, Zeitschrift f??r Naturforschung C, vol.28, issue.11-12, pp.693-703, 1973.
DOI : 10.1515/znc-1973-11-1209

M. Lenz, S. Morlot, and A. Roux, Mechanical requirements for membrane fission: Common facts from various examples, FEBS Letters, vol.321, issue.23, pp.3839-3846, 2009.
DOI : 10.1016/j.febslet.2009.11.012

T. Kanaseki and K. Kadota, THE "VESICLE IN A BASKET": A Morphological Study of the Coated Vesicle Isolated from the Nerve Endings of the Guinea Pig Brain, with Special Reference to the Mechanism of Membrane Movements, The Journal of Cell Biology, vol.42, issue.1, pp.202-220, 1969.
DOI : 10.1083/jcb.42.1.202

B. Pearse, Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles., Proceedings of the National Academy of Sciences, vol.73, issue.4, pp.1255-1259, 1976.
DOI : 10.1073/pnas.73.4.1255

R. Crowther and B. Pearse, Assembly and packing of clathrin into coats, The Journal of Cell Biology, vol.91, issue.3, pp.790-797, 1981.
DOI : 10.1083/jcb.91.3.790

T. Kirchhausen, Bending membranes, Nature Cell Biology, vol.80, issue.9, pp.906-908, 2012.
DOI : 10.1038/ncb2570

G. J. Marijn, B. M. Ford, M. K. Pearse, Y. Higgins, D. J. Vallis et al., Simultaneous binding of ptdins(4,5)p2 and clathrin by ap180 in the nucleation of clathrin lattices on membranes, Science, issue.5506, pp.2911051-1055, 2001.

N. Philip, E. J. Dannhauser, and . Ungewickell, Reconstitution of clathrin-coated bud and vesicle formation with minimal components, Nat. Cell Biol, vol.14, pp.634-639, 2012.

J. C. Stachowiak, E. M. Schmid, C. J. Ryan, H. Sook-ann, D. Y. Sasaki et al., Membrane bending by protein???protein crowding, Nature Cell Biology, vol.80, issue.9, pp.944-949, 2012.
DOI : 10.1038/ncb2561

A. Fotin, Y. Cheng, P. Sliz, N. Grigorieff, C. Stephen et al., Molecular model for a complete clathrin lattice from electron cryomicroscopy, Nature, vol.50, issue.7017, pp.432573-579, 2004.
DOI : 10.1006/jmbi.1993.1626

C. J. Smith, B. M. Grigorieff, and . Pearse, Clathrin coats at 21Aresolution: a cellular assembly designed to recycle multiple membrane receptors, The EMBO Journal, vol.17, issue.17, pp.4943-4953, 1998.
DOI : 10.1093/emboj/17.17.4943

G. Vigers, R. Crowther, and B. Pearse, Three-dimensional structure of clathrin cages in ice

J. Heuser and T. Kirchhausen, Deep-etch views of clathrin assemblies, Journal of Ultrastructure Research, vol.92, issue.1-2, pp.1-27, 1985.
DOI : 10.1016/0889-1605(85)90123-5

T. Harvey, E. Mcmahon, and . Boucrot, Molecular mechanism and physiological functions of clathrin-mediated endocytosis, Nat. Rev. Mol. Cell Biol, vol.12, pp.517-533, 2011.

G. Jez, J. Carlton, and . Martin-serrano, Parallels between cytokinesis and retroviral budding: a role for the ESCRT machinery, Science, issue.5833, pp.3161908-1912, 2007.

J. Albert, K. Jin, . Prasad, D. Paul, . Smith et al., Measuring the elasticity of clathrin-coated vesicles via atomic force microscopy, Biophys. J, vol.90, issue.9, pp.3333-3344, 2006.

S. Morlot, V. Galli, M. Klein, N. Chiaruttini, J. Manzi et al., Lù ?s Din`Din`?s, Martin Lenz, Giovanni Cappello, and Aurélien Roux. Membrane shape at the edge of the dynamin helix sets location and duration of the fission reaction, Cell, issue.3, pp.151619-629, 2012.

B. Sorre, A. Callan-jones, J. Manzi, B. Goud, J. Prost et al., Nature of curvature coupling of amphiphysin with membranes depends on its bound density, Proceedings of the National Academy of Sciences, vol.109, issue.1, pp.173-178, 2011.
DOI : 10.1073/pnas.1103594108

E. Evans, H. Bowman, A. Leung, D. Needham, and D. Tirrell, Biomembrane Templates for Nanoscale Conduits and Networks, Science, vol.273, issue.5277, pp.933-935, 1996.
DOI : 10.1126/science.273.5277.933

T. Baumgart, S. T. Hess, and W. W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension, Nature, vol.425, issue.6960, pp.425821-824, 2003.
DOI : 10.1038/nature02013

R. Nossal, Energetics of clathrin basket assem- 55

K. Wouter, . Den, W. J. Otter, and . Briels, The generation of curved clathrin coats from flat plaques, Traffic, vol.12, issue.10, pp.1407-1416, 2011.

S. Aghamohammadzadeh and K. R. Ayscough, Differential requirements for actin during yeast and mammalian endocytosis, Nature Cell Biology, vol.194, issue.8, pp.1039-1042, 2009.
DOI : 10.1093/emboj/21.5.920

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2875176

S. Boulant, C. Kural, J. Zeeh, F. Ubelmann, and T. Kirchhausen, Actin dynamics counteract membrane tension during clathrin-mediated endocytosis, Nature Cell Biology, vol.109, issue.9, pp.1124-1131, 2011.
DOI : 10.1073/pnas.0837027100

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3167020

H. Naim, D. Dodds, C. Brewer, and M. Roth, Apical and basolateral coated pits of MDCK cells differ in their rates of maturation into coated vesicles, but not in the ability to distinguish between mutant hemagglutinin proteins with different internalization signals, The Journal of Cell Biology, vol.129, issue.5, pp.1241-1250, 1995.
DOI : 10.1083/jcb.129.5.1241

J. Gerrit, . Praefcke, T. Harvey, and . Mcmahon, The dynamin superfamily: universal membrane tubulation and fission molecules?, Nat. Rev. Mol. Cell Biol, vol.5, issue.2, pp.133-147, 2004.

S. Sever, H. Damke, L. Sandra, and . Schmid, Garrotes, Springs, Ratchets, and Whips: Putting Dynamin Models to the Test, Traffic, vol.349, issue.5, pp.385-392, 2000.
DOI : 10.1034/j.1600-0854.2000.010503.x

Y. Chen, P. Zhang, H. Edward, J. E. Egelman, and . Hinshaw, The stalk region of dynamin drives the constriction of dynamin tubes, Nature Structural & Molecular Biology, vol.11, issue.n6
DOI : 10.1038/8997

D. Danino, . Kwan-hoon, J. E. Moon, and . Hinshaw, Rapid constriction of lipid bilayers by the mechanochemical enzyme dynamin, Journal of Structural Biology, vol.147, issue.3, pp.259-267, 2004.
DOI : 10.1016/j.jsb.2004.04.005

J. S. Chappie, J. A. Mears, S. Fang, M. Leonard, S. L. Schmid et al., A Pseudoatomic Model of the Dynamin Polymer Identifies a Hydrolysis-Dependent Powerstroke, Cell, vol.147, issue.1, pp.209-222, 2011.
DOI : 10.1016/j.cell.2011.09.003

K. Faelber, Y. Posor, S. Gao, M. Held, Y. Roske et al., Crystal structure of nucleotide-free dynamin, Nature, vol.134, issue.7366, pp.556-560, 2011.
DOI : 10.1038/nature10369

G. J. Marijn, S. Ford, J. Jenni, and . Nunnari, The crystal structure of dynamin, Nature, issue.7366, pp.477561-566, 2011.

M. Sharon, J. E. Sweitzer, and . Hinshaw, Dynamin undergoes a GTP-dependent conformational change causing vesiculation, Cell, vol.93, issue.6, pp.1021-1029, 1998.

A. Roux, K. Uyhazi, A. Frost, and P. D. Camilli, GTP-dependent twisting of dynamin implicates constriction and tension in membrane fission, Nature, vol.93, issue.7092, pp.528-531, 2006.
DOI : 10.1038/nature04718

J. Hinshaw and S. Schmid, Dynamin self-assembles into rings suggesting a mechanism for coated vesicle budding, Nature, vol.374, issue.6518, pp.190-192, 1995.
DOI : 10.1038/374190a0

K. Takei, P. Mcpherson, S. Schmid, and P. Camilli, Tubular membrane invaginations coated by dynamin rings are induced by GTP-??S in nerve terminals, Nature, vol.374, issue.6518, pp.186-190, 1995.
DOI : 10.1038/374186a0

Y. Kozlovsky, M. Michael, and . Kozlov, Membrane Fission: Model for Intermediate Structures, Biophysical Journal, vol.85, issue.1, pp.85-96, 2003.
DOI : 10.1016/S0006-3495(03)74457-9

M. Lenz, J. Prost, and J. Joanny, Mechanochemical action of the dynamin protein, Physical Review E, vol.78, issue.1, p.11911, 2008.
DOI : 10.1103/PhysRevE.78.011911

S. Morlot, M. Lenz, J. Prost, J. Joanny, and A. Roux, Deformation of Dynamin Helices Damped by Membrane Friction, Biophysical Journal, vol.99, issue.11, pp.3580-3588, 2010.
DOI : 10.1016/j.bpj.2010.10.015

T. Slagsvold, K. Pattni, L. Malerod, and H. Stenmark, Endosomal and non-endosomal functions of ESCRT proteins, Trends in Cell Biology, vol.16, issue.6, pp.317-326, 2006.
DOI : 10.1016/j.tcb.2006.04.004

I. Phyllis, R. Hanson, Y. Roth, . Lin, E. John et al., Plasma membrane deformation by circular arrays of ESCRT-III protein filaments, J

Y. Lin, A. Lisa, . Kimpler, V. Teresa, J. M. Naismith et al., Interaction of the Mammalian Endosomal Sorting Complex Required for Transport (ESCRT) III Protein hSnf7-1 with Itself, Membranes, and the AAA+ ATPase SKD1, Journal of Biological Chemistry, vol.280, issue.13, pp.12799-12809, 2005.
DOI : 10.1074/jbc.M413968200

S. Ghazi-tabatabai, S. Saksena, M. Judith, . Short, V. Ajaybabu et al., Structure and Disassembly of Filaments Formed by the ESCRT-III Subunit Vps24, Structure, vol.16, issue.9, pp.1345-1356, 2008.
DOI : 10.1016/j.str.2008.06.010

S. Lata, G. Schoehn, A. Jain, R. Pires, J. Piehler et al., Helical Structures of ESCRT-III Are Disassembled by VPS4, Science, vol.321, issue.5894, pp.3211354-1357, 2008.
DOI : 10.1126/science.1161070

URL : https://hal.archives-ouvertes.fr/cea-00817064

T. Wollert, C. Wunder, J. Lippincott-schwartz, H. James, and . Hurley, Membrane scission by the ESCRT-III complex, Nature, vol.15, issue.7235, pp.172-177, 2009.
DOI : 10.1038/nature07836

S. Pan, R. Wang, X. Zhou, G. He, J. Koomen et al., Involvement of the Conserved Adaptor Protein Alix in Actin Cytoskeleton Assembly, Journal of Biological Chemistry, vol.281, issue.45, pp.34640-34650, 2006.
DOI : 10.1074/jbc.M602263200

M. Abramowitz, A. Irene, and . Stegun, Handbook of Mathematical Functions, Number 55 in Applied Mathematics Series. National Bureau of Standards, 1972.
DOI : 10.1119/1.1972842

E. Mabrouk, D. Cuvelier, F. Brochard-wyart, P. Nassoy, and M. Li, Bursting of sensitive polymersomes induced by curling, Proceedings of the National Academy of Sciences, vol.106, issue.18, pp.7294-7298, 2009.
DOI : 10.1073/pnas.0813157106

URL : https://hal.archives-ouvertes.fr/hal-01002414

A. Callan-jones, O. Eduardo-albarran-arriagada, G. Massiera, V. Lorman, and M. Abkarian, Red Blood Cell Membrane Dynamics during Malaria Parasite Egress, Biophysical Journal, vol.103, issue.12, pp.2475-2483, 2012.
DOI : 10.1016/j.bpj.2012.11.008

URL : https://hal.archives-ouvertes.fr/hal-00802240

M. Lenz, D. J. Crow, and J. Joanny, Membrane Buckling Induced by Curved Filaments, Physical Review Letters, vol.103, issue.3, p.38101, 2009.
DOI : 10.1103/PhysRevLett.103.038101

URL : http://arxiv.org/abs/0903.3363

S. Saksena, J. Sun, T. Chu, D. Scott, and . Emr, ESCRTing proteins in the endocytic pathway, Trends in Biochemical Sciences, vol.32, issue.12, pp.561-573, 2007.
DOI : 10.1016/j.tibs.2007.09.010

G. Fabrikant, S. Lata, D. James, . Riches, A. John et al., Computational Model of Membrane Fission Catalyzed by ESCRT-III, PLoS Computational Biology, vol.175, issue.11, 2009.
DOI : 10.1371/journal.pcbi.1000575.g008

G. Anil, S. Cashikar, R. Shim, . Roth, R. Michael et al., Structure of cellular ESCRT-III spirals and their relationship to HIV budding. eLife, p.2184, 2014.

C. J. Cyron, K. W. Müller, K. M. Schmoller, A. R. Bausch, W. A. Wall et al., Equilibrium phase diagram of semi-flexible polymer networks with linkers, EPL (Europhysics Letters), vol.102, issue.3, p.38003, 2013.
DOI : 10.1209/0295-5075/102/38003

O. Lieleg, K. M. Schmoller, M. M. Claessens, and A. R. Bausch, Cytoskeletal Polymer Networks: Viscoelastic Properties are Determined by the Microscopic Interaction Potential of Cross-links, Biophysical Journal, vol.96, issue.11, pp.4725-4732, 2009.
DOI : 10.1016/j.bpj.2009.03.038

T. Tobias, M. Falzone, . Lenz, R. David, M. L. Kovar et al., Assembly kinetics determine the architecture of ?-actinin crosslinked Factin networks, Nat. Commun, vol.3, p.861, 2012.

O. Lieleg, . Kayser, . Brambilla, A. Cipelletti, and . Bausch, Slow dynamics and internal stress relaxation in bundled cytoskeletal networks, Nature Materials, vol.19, issue.3, pp.236-242, 2011.
DOI : 10.1038/nmat2939

URL : https://hal.archives-ouvertes.fr/hal-00656002

Y. Fily and M. C. Marchetti, Athermal Phase Separation of Self-Propelled Particles with No Alignment, Physical Review Letters, vol.108, issue.23, p.235702, 2012.
DOI : 10.1103/PhysRevLett.108.235702

C. S-peskin, G. Odell, and G. Oster, Cellular motions and thermal fluctuations: the Brownian ratchet, Biophysical Journal, vol.65, issue.1, pp.316-324, 1993.
DOI : 10.1016/S0006-3495(93)81035-X

V. I. Risca, E. B. Wang, O. Chaudhuri, J. Chia, P. L. Geissler et al., Actin filament curvature biases branching direction, Proceedings of the National Academy of Sciences, vol.109, issue.8, pp.2913-2918, 2012.
DOI : 10.1073/pnas.1114292109

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3286980

H. Sapun, O. Parekh, J. A. Chaudhuri, D. A. Theriot, and . Fletcher, Loading history determines the velocity of actin-network growth

T. Pujol, O. Du-roure, M. Fermigier, and J. Heuvingh, Impact of branching on the elasticity of actin networks, Proceedings of the National Academy of Sciences, vol.109, issue.26, pp.10364-10369, 2012.
DOI : 10.1073/pnas.1121238109

M. Lenz, L. Margaret, . Gardel, R. Aaron, and . Dinner, Requirements for contractility in disordered cytoskeletal bundles, New Journal of Physics, vol.14, issue.3, p.33037, 2012.
DOI : 10.1088/1367-2630/14/3/033037

M. Lenz, T. Thoresen, L. Margaret, . Gardel, R. Aaron et al., Contractile Units in Disordered Actomyosin Bundles Arise from F-Actin Buckling, Physical Review Letters, vol.108, issue.23, p.238107, 2012.
DOI : 10.1103/PhysRevLett.108.238107

M. Lenz, Geometrical Origins of Contractility in Disordered Actomyosin Networks, Physical Review X, vol.4, issue.4, p.41002, 2014.
DOI : 10.1103/PhysRevX.4.041002

URL : https://hal.archives-ouvertes.fr/hal-01073241

M. Murrell and M. L. Gardel, Actomyosin sliding is attenuated in contractile biomimetic cortices, Molecular Biology of the Cell, vol.25, issue.12, pp.1845-1853, 2014.
DOI : 10.1091/mbc.E13-08-0450

J. Allard and A. Mogilner, Traveling waves in actin dynamics and cell motility, Current Opinion in Cell Biology, vol.25, issue.1, pp.107-115, 2013.
DOI : 10.1016/j.ceb.2012.08.012

C. Bakal, J. Aach, G. Church, and N. Perrimon, Quantitative Morphological Signatures Define Local Signaling Networks Regulating Cell Morphology, Science, vol.316, issue.5832, pp.3161753-1756, 2007.
DOI : 10.1126/science.1140324

Y. Liu, L. Berre, F. Lautenschlaeger, P. Maiuri, A. Callan-jones et al., Confinement and Low Adhesion Induce Fast Amoeboid Migration of Slow Mesenchymal Cells, Cell, vol.160, issue.4, 2015.
DOI : 10.1016/j.cell.2015.01.007

C. David and . Morse, Tube diameter in tightly entangled solutions of semiflexible polymers, Phys. Rev. E, vol.63, issue.3, p.31502, 2001.

R. Galland, P. Leduc, C. Guérin, D. Peyrade, L. Blanchoin et al., Fabrication of three-dimensional electrical connections by means of directed actin self-organization, Nature Materials, vol.97, issue.5, pp.416-421, 2013.
DOI : 10.1073/pnas.0431081100

URL : https://hal.archives-ouvertes.fr/hal-00796168