Skip to Main content Skip to Navigation

Étude des formes monogéniques de diabète de type 2 et d’obésité par le séquençage de nouvelle génération

Abstract : Diabetes and obesity have reached such proportions worldwide we are talking about pandemic. Both diseases are a major cause of mortality and multiple complications. Medical and financial issues are for both diseases a major public health problem. Two groups of factors contribute to these two diseases: environment, and genetics on which this thesis is based. This work focused on rare and monogenic forms which are extreme forms of type 2 diabetes and obesity.These forms are far from being fully understood. My project focused on the use of next generation sequencing (NGS) to identify more optimally, compared to conventional Sanger sequencing, mutations in already known genes among new patients in our cohort for diagnostic purposes. The second objective was to use NGS to discover new loci associated with new signaling pathways involved in the pathophysiology of diabetes and obesity.The first approach uses a liquid-phase hybridization technique and focuses on 34 genes associated with monogenic and/or polygenic obesity. The screening was carried out on 201 people in 13 families for which the cause of obesity is unknown. This approach led to the identification of a mutation in a known gene of obesity: PCSK1. This mutation is causal because it leads to a stop codon at the beginning of the protein and is present only in obese individuals. Additionally, functional studies have demonstrated partial inhibition of PC1/3 by the truncated protein and the possible impact on the processing and secretion of this enzyme. This study has been published published in the "International Journal of Obesity" newspaper.The second approach is based on a PCR amplification technique in lipid microdroplets developed by Raindance. The first test is to re-identify the causal mutations of diabetes and/or obesity in 40 patients. This approach has yielded satisfactory results because for a large majority of patients, the causative mutations have been identified again. Only one patient was unable to be reconfirmed because current bioinformatics tools are limited in the detection of complex indels. Of the 39 patients identified, 3 of them are potential carriers of several causative mutations. This technique could be considered in the clinical field because it allows a multigene approach by providing a rapid diagnosis, cheaper and with a quality similar to the gold standard Sanger sequencing. For us, the purpose of this technique is a fast and optimal clinical diagnosis in order to identify unsolved cases, which are candidates for exome sequencing. This second study was published in "Diabetes Care" journal.The third approach involves whole exome sequencing (WES) in 4 individuals where the whole family was previously tested negative for all known genes of diabetes. This approach led to the discovery of a thirteen MODY gene, KCNJ11, and confirms the broad phenotypic spectrum that goes from neonatal diabetes to MODY depending on the mutations. The major difficulty with this technique is filtering variants in order to get a single causal mutation (or possibly several on the same gene) to identify new MODY genes. The strategy we used combined both a bioinformatics filter for example with filters on family cosegregation and on SNP databases and a biological filter, with the use of a technique for high-throughput genotyping. This pioneering study in the use of NGS to identify new genes of MODY has been published in "PLoS ONE".In conclusion, this work took advantage of technological advances such as capture, targeted sequencing and NGS to elucidate and to improve the screening of monogenic forms of diabetes and obesity. This improved understanding of the molecular mechanisms may lead to the development of better treatments like personalized medicine. We hope to see direct improvements for patients in the near future, such as a more accurate, faster and more comprehensive molecular
Document type :
Complete list of metadata
Contributor : ABES STAR :  Contact
Submitted on : Monday, September 14, 2015 - 4:02:08 PM
Last modification on : Wednesday, March 23, 2022 - 3:51:09 PM
Long-term archiving on: : Tuesday, December 29, 2015 - 2:20:19 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01198926, version 1



Julien Philippe. Étude des formes monogéniques de diabète de type 2 et d’obésité par le séquençage de nouvelle génération. Médecine humaine et pathologie. Université du Droit et de la Santé - Lille II, 2014. Français. ⟨NNT : 2014LIL2S049⟩. ⟨tel-01198926⟩



Record views


Files downloads