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faire cette thèse et d’avoir pris de son temps pour répondre à mes questions.
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Conception et réalisation d’un solveur pour les problèmes de dy-
namique des fluides pour les architectures many-core

Résumé :

La CFD, ou simulation de dynamique des fluides est l’étude de systême impliquant des écoule-
ments fluides, des transferts de chaleur, ou des réactions chimiques en utilisant des ordinateurs.
Ces simulations se font sur des systêmes discrets très grands pour atteindre un haut niveau de
précision, et requiert un grand nombre de ressources de calcul. Ces applications, si elles devaient
s’exécuter sur un ordinateur de bureau, prendraient des mois, voire des années pour s’achever,
si tant est que le problème puisse tenir dans la mémoire dudit ordinateur.

Dans ce contexte où un grand nombre de ressources de calcul sont nécessaires, nous avons à
disposition depuis quelques décennies le concept du HPC, ou calcul haute performance. Cela
consiste à mettre en commun un ensemble de ressources de calculs pour accélérer les appli-
cations. Les ordinateurs ont beaucoup évolué au fil des années, et les architectures actuelles
combinent un grand nombre de noeuds de calcul. Chacun de ces noeuds peut posséder un ou
plusieurs accélérateurs de calculs. Programmer de telles architectures est devenu un réel pro-
blème ; dans la mesure où le materiel évolue vite, maintenir les performances de son application
pour chaque nouvelle génération de matériel est coûteux en temps.

Dans ce contexte, cette thèse se propose de concevoir et développer une nouvelle plateforme
pour la résolution des équations aux dérivées partielles de la mécanique des fluides. Dans un
premier temps, nous présenterons le contexte mathématique, les méthodes numérique que nous
envisageons d’intégrer à la plateforme. Puis, dans un second temps, nous ferons un inventaire de
quelques plateforme proches en terme de fonctionnalités avant de nous pencher sur la definition
des besoins fonctionnels et techniques. Enfin, nous présenterons notre étude d’un problème
récurrent dans les applications numérique, le problème d’assemblage. Puis nous concluerons
en dressant un bilan de nos travaux et évoquerons quelques pistes d’ameliorations en guise de
perspectives.

Contexte général, et motivations

L’objectif de ce chapitre est d’introduire les méthodes aux éléments finis, d’identifier les diffé-
rences entre ces méthodes pour pouvoir généraliser et ainsi intégrer les différentes approches à
la plateforme de manière transparente.

Pour comprendre le type de problème que nous cherchons à résoudre, voici un exemple. Nous
cherchons u une fonction réelle, scalaire, définie sur un domaine Ω, sous-ensemble de l’espace
Rd, satisfaisant le problème suivant :




∇ · (~βu)−∇ · (ν∇u) + σu = f in Ω

n̂ · ~β u+ ν∇u · n̂ = 0 on ∂Ω
, (1)

avec f une fonction réelle définie sur Ω, ~β un vecteur constant de Rd, et n̂ ∈ Rd, la normale
unitaire sortante de ∂Ω, et avec σ et ν des constantes, telles que ν ≥ 0. Cette équation est
une version simplifiée de ce que l’on peut trouver dans des applications faisant du transfert
thermique, ou du transport de masse.
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Pour discrétiser notre espace, nous avons deux possibilités, des éléments finis continus, ou discon-
tinus. Les premiers distribuent les inconnus sur tous l’élément. Cela veut dire que des éléments
vont partager des informations. Les seconds vont garder l’ensemble de leurs inconnues à l’inté-
rieur de l’élément, et ne rien partager avec les autres. Première conséquence, en partageant des
informations les premiers consomment moins de mémoire mais le couplage entre les inconnus
rend l’ordonnancement des calculs plus compliqué en parallèle. Les seconds ont l’avantage de
rendre leur calculs locaux à l’élément, mais ils consommeront plus de mémoire et nécessiteront
une phase supplémentaire pour gérer la discontinuité aux interfaces entre les éléments.

Enfin, le problème est transformé en trois étapes. Une formulation variationnelle de l’équation,
l’application des conditions aux bords, et enfin la substitution de la solution discrète à la so-
lution continue. Si l’on a choisi d’utiliser des éléments finis discontinus, la troisième étape est
réalisée d’abord, puis une formulation variationnelle discrète est faite, faisant apparaitre un flux
numérique aux bords de chaque éléments.

Les challenges auxquels nous devons faire face sont les suivants :
— la gestion mémoire de deux méthodes aux éléments finis différentes ;
— le caractère hétérogène des données dû à la présence dans le maillage d’élément de formes

différentes, de degrés différents ;
— l’exploitation des architectures modernes aux hiérarchies mémoires complexes.

Conception de la plateforme

L’utilisation d’outils de simulation numérique pour comprendre les phénomènes physiques com-
plexes est critique. Il faut être en mesure de remplacer de coûteuses expérimentations par un
résultat de simulation très précis obtenu le plus rapidement possible. La précision s’obtenant en
augmentant la taille du systême, et donc en augmentant les besoins en terme de ressource de
calculs. Nous allons donc considérer dans cette partie la conception d’une plateforme permet-
tant des calculs de haute precision et exploitant les machines de calcul complexes, cela afin de
terminer l’exécution de l’application le plus tôt possible. Les besoins que nous avons pour notre
plateforme sont multiples :

Maillage. Pour avoir la plateforme la plus générique possible, nous devons supporter des
maillages hybrides, en toutes dimensions, éléments courbes ou non.

Méthodes. Dans un premier temps, nous nous intéressons à deux classes de méthodes, les
méthodes aux éléments finis continus, telles que Galerkin continu, et les methodes aux
éléments finis discontinus telles que Galerkin discontinu.

Éléments finis. Pour obtenir une solution la plus précise possible, nous aurons besoin de
supporter les éléments fini d’ordre élévé.

Performance. Dans un monde où les machines évoluent très rapidement, nous avons besoin
de maintenir les performances de notre plateforme à mesure que les machines changent.

Un tableau comparatif (voir Section 2.1, page 22) présente plusieurs plateformes faisant de
la simulation numérique, ou permettant de construire une application de simulation numé-
rique, utilisant un langage orienté objet pour la modularité que cela apporte. Certaines de ces
plateforme mélangent des paradigmes de programmation pour gérer les différents niveaux de
parallélisme. Certaines génèrent même les noyaux de calcul pendant l’exécution en fonction des
besoins de l’application.

Nous avons choisi de concevoir une nouvelle plateforme pour pouvoir utiliser les différents outils
développés dans notre institut de recherche ou dans les équipes collaborant avec nous. Cela va
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nous permettre de rester proche de la plateforme, ce qui n’aurait pas été forcément possible si
nous avions choisi de partir d’une plateforme existante.

Nos besoins fonctionnels pour la plateforme AeroSol sont les suivants :
Contribution et évolution. La prise en main de la plateforme doit être le plus simple possible

pour permettre à des collaborateurs de divers champs d’expertise de contribuer. En
cloisonnant les fonctionnalités de la plateforme, chaque module sera interchangeable, et
l’évolutivité de la plateforme sera assurée.

Opérations élémentaires. Pour pouvoir gérer nimporte quel type de maillage, quelque soit
la dimension du problème, les éléments présents dans le maillage, le degré de la solution,
quelque soir la méthode d’éléments finis employée, nous avons besoin de trouver une
représentation de nos éléments qui permettent d’optimiser la gestion de la mémoire.

Rafinement. Certaines méthodes numériques font du rafinement de maillage. Ceci est une
contrainte supplémentaire pour notre plateforme. Le rafinement permet d’augmenter la
précision de la solution sur les zones du maillage où un phénomène se produit, ou au
contraire, de réduire la précision là où plus rien ne se produit.

En terme de besoin technique, nous avons principalement besoin d’abstraire l’architecture ma-
térielle sous-jacente pour pouvoir nous exécuter sur les machine modernes et pouvoir assurer la
portabilité des performances.

Opération d’assemblage

Dans ce chapitre, nous étudions l’opération d’assemblage. Cette opération se retrouve dans di-
vers applications scientifiques, dans des solvers linéaires basés sur des méthodes multi-frontale ou
dans des applications de simulation numérique. Puis nous introduirons les supports d’exécution
sur lesquels nous avons implanté nos strategies pour l’opération d’assemblage, et présenterons
la base de nos stratégies.

Le principe de l’opération d’assemblage est le suivant : un ensemble de blocs de contributions
doit être ajouté dans le systême global, ces blocs présentent des zones de recouvrement entre
eux, ce qui oblige à séquentialiser l’assemblage de ces blocs dans la structure globale.

Dans le cadre de méthode d’éléments finis, la première technique pour résoudre ce problème
consiste à faire de la coloration de graphe. Après avoir déterminer comment les informations
sont echangées entre les éléments, par exemple, par les sommets, nous allons prendre chaque
sommet du maillage, prendre la liste des éléments possédant ce sommet, et leur attribuer une
couleur différente. Une fois tous les éléments coloriés, nous allons construire des listes dans
lesquelles nous allons ranger tous les éléments de la même couleur. Nous avons donc dans une
liste un ensemble d’éléments pouvant être traités en parallèle. L’opération d’assemblage devient
donc un traitement séquentiel des listes, nous traitons les listes une par une, et un assemblage
en parallèle des éléments d’une liste. Une deuxième approche, toujours basée sur du coloriage,
consiste á colorier les lignes de chaque bloc de contribution plutot que le bloc entier. Certes,
á un grain plus fin, on obtient un ordonnancement de qualite, mais cela oblige á disposer de
l’ensemble des blocs de contribution dès le début de l’opération d’assemblage.
Le dévelopement d’applications scientifiques pour le calcul haute performance consiste en général
à mélanger un ensemble de paradigmes de programmation. Une bibliothèque pour faire du
passage de message (MPI) entre les noeuds de calcul et une bibliothèque pour exploiter les
processeurs multi-coeurs (OpenMP). Si certains noeuds disposent d’accélérateurs de calculs, il
faut rajouter une bibliothèque pour communiquer avec l’accélérateur (CUDA). Développer et
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maintenir les performances de ces applications devient très compliqué au fur et à mesure que les
machines se complexifient. Une approche pour résoudre ce problème, consiste à passer par un
niveau intermédiaire, le support d’exécution. Les supports d’exécution sont des bibliothèques
à qui l’on va soumettre du travail (des tâches de calculs), et qui va s’occuper d’ordonnancer
les tâches soumises sur la machine de calcul. Au prix d’une re-écriture de l’algorithme sous
forme d’un graphe acyclique dirigé (DAG), et de l’implantation des différentes tâches pour les
différentes unités d’exécution, le support d’exécution va être capable d’ordonnancer ces tâches
sur la machine, il va prendre en charge tous les transferts mémoire et assurer la cohérence des
données.
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Figure 2 – Découpage des blocs de contribution.

Pour adapter l’opération d’assemblage aux supports d’exécution, nous avons dû changer l’ap-
proche. Au lieu de chercher á paralléliser les blocs, nous avons choisi de faire apparaitre du
parallélisme dans la structure globale en découpant cette structure en blocs comme représenté
dans la Figure 1. Puis nous avons projeté ce découpage sur l’ensemble des blocs de contribution
comme montré dans la Figure 2. Une fois les blocs decoupés, il est possible de chainer les blocs
contribuant au même endroit dans la structure globale, faisant ainsi apparaitre du parallélisme
entre les châınes à assembler.

Nos stratégies ont été testées sur deux cas test. Un issu du solveur à méthode multi-frontale
MUMPS, et l’autre simulant l’assemblage d’une méthode d’éléments finis. Dans le premier cas, les
méthodes de coloration ne peuvent pas fonctionner car la matrice d’adjacence des blocs n’est pas
facilement exploitable et les blocs ont des tailles variant de 1 á 100% de la taille de la structure
globale, avec des recouvrements très irréguliers.

Conclusion

Nous avons présenté une nouvelle plateforme, AeroSol. Sur les aspects paralélisation, la pla-
teforme travaille à plusieurs niveaux. Tout d’abord, une décomposition de domaine, que nous
avons délégué à une bibliothèque extérieure, et au niveau mémoire partagée par le biais de
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l’utlisation de supports d’exécution. Cela nous permettra aussi d’assurer une portabilité des
performances à un coût moindre par rapport á un scénario où nous aurions dû mettre à jour le
cœur de la plateforme à chaque nouveau matériel.

La plateforme gère de manière transparente les méthodes aux éléments finis continus ou discon-
tinus. Elle gère des maillages en toute dimension, dispose d’une large bibliothèque d’éléments
finis, de formule de quadrature, et de fonctions géométriques.

Notre plateforme AeroSol est maintenant utilisée par plusieurs équipes de recherche.

Nos perspectives sont de continuer à améliorer les performances de la plateforme. Nous avons be-
soin de pousser plus loin le portage sur les supports d’exécution. Á terme nous espérons pouvoir
exprimer l’intégralité de la simulation en graphe de tâches et ainsi en s’interfaçant avec un sol-
veur linéaire lui aussi porté sur support d’exécution pour relâcher des points de synchronisation.

Nous avons l’ambition de rendre l’outil plus accessible aux collaborations en ajoutant une couche
supplémentaire pour un langage dédié (DSL). Cela permettrait d’écrire moins de code pour faire
une application.
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Design of Generic Modular Solutions for PDE solvers for Modern
Architectures

Abstract :

Numerical simulation is nowadays an essential part of engineering analysis, be it to design a
new plane, or to detect underground oil reservoirs. Numerical simulations have indeed become
an important complement to theoretical and experimental investigation, allowing one to reduce
the cost of engineering design processes. In order to achieve a high level of precision, one need
to increase the resolution of his computational domain. So to keep getting results in reasonable
time, one shall find a way to speed-up computations. To do this, we use high performance
computing, HPC, to exploit the complex architecture of modern supercomputers. Under these
two constraints, and some other like the genericity of finite elements, or the mesh dimension, we
developed a new platform AeroSol. In this thesis, we present the mathematical background, and
the two types of schemes that are implemented in the platform, the continuous finite elements
method, and the discontinuous one. Then, we present the design choices made in the platform,
then, we study a sub-problem, the assembly operation, which can be found in linear algebra
multi-frontal methods.
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HPC, Finite Element methods, Runtime system

Discipline :

Computer science
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General Introduction

Numerical modeling is nowadays an essential part of engineering analysis, be it is to design a
new plane, or to detect underground oil reservoirs. Numerical simulations have indeed become
an important complement to theoretical and experimental investigation, allowing one to reduce
the cost of engineering design processes. Indeed, practical experimental investigations require
the construction of maquettes or even of real scale models, which is time consuming, expensive,
and sometimes can even be impossible due to safety reasons (e.g. combustion experiments, space
reentry conditions, atomic bomb testings, etc). In all these cases, numerical simulations become
the only possible tool of experimentation.

Computational fluid dynamics, or CFD for short, is the study of systems involving fluid flows,
heat transfer and/or chemical reactions using computer-based simulation. It is used in various
domains, from aerodynamics of vehicles or aircrafts, to weather forecasting, from turbomachi-
nery to biomedical engineering. The simulation of fluids involves the solution of complex and
stiff algebraic problems, defined on large computational grids, discretising space with millions of
computational cells at each time step, for very large physical times, thus for a large number of
time steps. The time to complete some simulation ranges from minutes to weeks or even months,
depending on the resolution requirements, and on the physical duration of the phenomena under
investigation. The only viable solution to reduce the simulation time is consequently to resort
to super computers and high performance parallel computing.

High performance computing, or HPC for short, first appeared in the 60’s with the first vector
processors computers. Vector computers have the capability to work on a vector of data instead
of scalar values. However, vector processors are expensive and unfit for irregular tasks, and after
dominating the early 70s, architectures based on standard, less expensive, processors emerged
to replace vector processors. Architectures can be based on RISC (Reduced Instruction Set
Computing) processors like the IBM Power architecture, and even the ARM architecture that is
ubiquitous on smart devices, tablets, smartphones. RISC processors use a smaller set of highly
optimized instructions.

In the high performance computing domain, an important observation acts as a law and governs
the evolution of the performance of computers. Moore’s law states that every two years, the
number of transistors in an integrated circuit doubles.

For years, manufacturers delivered CPU with higher clock-rate and higher instruction-level
parallelism, but the continuous increase in clock rate stopped when the CPU power dissipation
became unsustainable. Though the clock rate has stopped progressing, the miniaturization of
transistors kept progressing. Manufacturers proposed new architectures with multiples cores,
and even new specialized processing units, in the extra space freed by the miniaturization. These
new multi-core architectures introduced a new programming paradigm : the multi-threaded
approach.
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In the early 2000s emerged the GPGPU, that is general purpose computing on graphical proces-
sing units using of the GPU devices as floating-point accelerators. These devices, traditionally
used to transform sets of geometrical primitives into pictures, comprise a high number of cores,
and a high bandwidth between the central memory and the device memory. It is now common
to find nodes in supercomputers with several GPUs. Yet programming these devices is compli-
cated and requires a lot of effort to maintain the code and its performance across successive
generations of hardware. Last year, Intel introduced a new accelerator, the Xeon Phi.

All these new devices complexified the architectures of modern supercomputers. The mix bet-
ween technologies and programmation paradigm requires new techniques and new levels of
abstraction to separate the algorithms and the implementations of tasks, the “separation of
concerns”.

This thesis considers the study of algorithms allowing to solve PDE problems arising in fluid
flow modeling with finite element techniques. The proposed approaches have goals. On the one
hand, they aim at ensuring lasting quality of the software produced due to its flexibility and
capability for further extension, as well as to a transparent handling of distributed memory pa-
rallelism in presence of complex heterogeneous, dynamic data. On the other hand, we have also
started the study of issues related to the implementation of finite element techniques on modern
heterogeneous architectures involving a complex hierarchy of memory levels, and in particular
we have considered the efficiency of the implementation in presence of shared memory levels.

These contributions have translated into the production of the software AeroSol : a generic
platform for the finite element solution of PDE problems. This platform is developed in C++
and uses object-oriented programming. The platform is divided in different hierarchical levels,
each mirroring a corresponding level of the numerical discretization process. Each feature is
implemented in a specific set of classes. The main components of the platform are the following :

Hybrid Mesh : AeroSol will handle meshes of any dimension, composed of any type of
elements based on triangles and quadrangles. The solution supported by the element will
be decoupled from the geometry, so on one side, we will support an arbitrary order of
the solution on each element, and on the other side, the elements can be curved if needed
to fit the domain geometry.

Finite Elements Methods : This platform is developed by two teams, the Bacchus IN-
RIA team, historically doing residual distribution schemes, using continuous finite ele-
ments, and the Cagire INRIA project, doing experiments and using discontinuous Ga-
lerkin schemes. The platform will handle the two scheme families.

Hybrid Parallelization : To exploit the potential of modern architectures, the platform
will have to handle many-core architectures, and will be able to use GPUs and all kinds
of co-processors.

The manuscript is organised in three main chapters. The first chapter will cover some of the
mathematical aspects and give the main mathematical notations that will be used in the whole
document. To do this we will take a generic PDE and apply Galerkin methods using continuous
and discontinuous finite element to present the two Galerkin finite element methods. Relying on
those methods, we will identify the main challenges that we have had to address in this work.
The second chapter will treat the design of a generic and efficient object oriented platform for
solving PDE-based problems using finite element methods. We will illustrate our discussion
with the example of a continuous method applied to a particular problem : the SUPG scheme
applied to a vortex advection problem proposed by Yee [75]. The last chapter will cover the
question of the shared memory parallelization of finite element methods. We will present the
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state-of-the-art approach based on coloration algorithms applied at different grains. Then, we
will introduce the runtime system as a middleware abstracting the architecture specificities,
improving the maintainability of the code and of its performance.
This manuscript is ended with a conclusive chapter underlining the main contributions of this
work, and the perpectives it openes.
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Chapitre 1

Setting and main challenges

Contents

1.1 General Context and motivation . . . . . . . . . . . . . . . . . . . . . 5

1.2 Model problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Mesh and finite element approximation . . . . . . . . . . . . . . . . . 6

1.3.1 Finite elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Discrete equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Integrals and matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.2 Time dependent equation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.5.1 Abstracting the memory layout of finite element methods . . . . . . . . 15

1.5.2 Handling hybrid meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5.3 Mesh adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.5.4 Abstract the complex architecture . . . . . . . . . . . . . . . . . . . . . 18

1.1 General Context and motivation

The objective of this chapter is to introduce finite element methods and the challenges encoun-
tered in the modelization of these methods. We will use a generic formulation of a problem
to illustrate the path from a Partial Differential Equations (PDE) to a finite element method.
We will show the differences between the continuous and discontinuous finite elements. We will
describe some challenges induced by these differences, and the consequences they will have on
the design of the platform that we want to create.

1.2 Model problem

This section is devoted to the introduction of the main challenges related to the implementation
of a generic framework for the finite element solution of PDE. To illustrate this challenge, we
will introduce the methods by considering the problem of finding a scalar real function u defined
on a domain Ω, sub-set of the d-dimensional space Ω ⊂ Rd, satisfying the problem




∇ · (~βu)−∇ · (ν∇u) + σu = f in Ω

n̂ · ~β u+ ν∇u · n̂ = 0 on ∂Ω
, (1.1)
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with f a given real function also defined on Ω, ~β a given constant vector of Rd, and n̂ ∈ Rd the
exterior unit normal to ∂Ω, and with σ and ν prescribed constants, with ν ≥ 0. This equation
is a simplified model of the PDEs encountered in several applications such as :

— heat transfer : in which case u represents the temperature, ν the heat conductivity, β
accounts for convection, f an external source of heat, and σ is usually null ;

— mass transport : in which case u may represent the mass concentration of a solute, β
accounts for mass transport due to an external flow, ν is the molecular diffusivity of
the solute, σ represents of consumption production due to chemical reactions, and f an
external source of mass.

A complete characterization of the required smoothness of the function f , and of the solution
u, for problem (1.1) to be well posed is beyond the scope of this work. We refer the interested
reader to more specific material, such as e.g. [32]. It is however important to note that solutions
to (1.1) are not defined using the local PDE but rather using an integral variational statement
of the type : seek u ∈ H1, such that ∀ v ∈ H1

−
∫

Ω

∇v · ~βu dΩ +

∫

Ω

ν∇v · ∇u dΩ +

∫

Ω

v u dΩ =

∫

Ω

v f dΩ , (1.2)

where H1 denotes a particular space of functions, namely the Hilbert space of functions whose
first derivatives are integrable (see [32] for more). For the purposes of defining the exact solution
of our problem, we have to consider (1.2) instead of (1.1). Note, however, that for a sufficiently
smooth solution u, the last statement is equivalent to (1.1). In particular, it can be obtained
from the latter upon

1. multiplication by v :

v∇ · (~βu)− v∇ · (ν∇u) + σv u = v f ;

2. integration by parts over the spatial domain Ω :

∫

Ω
∇·(v~βu) dΩ−

∫

Ω
∇v·~βu dΩ−

∫

Ω
∇·(vν∇u) dΩ+

∫

Ω

ν∇v·∇u dΩ+

∫

Ω

σv u dΩ =

∫

Ω

v f dΩ ;

3. use of the Gauss theorem to convert the first and third integrals into boundary integrals :

��������
∫

∂Ω
vn̂ · ~βu ∂Ω−

∫

Ω
∇v·~βu dΩ

����������
−
∫

∂Ω
v ν∇u · ~n ∂Ω+

∫

Ω

ν∇v·∇u dΩ+

∫

Ω

σ v u dΩ =

∫

Ω

v f dΩ ;

4. application of the boundary condition n̂ · ~β u− ν∇u · n̂ = 0 on ∂Ω.

This four-step procedure is reported here as it constitutes the basis of one of the two classes of
methods we have considered in this work. The description of these two families of schemes is
the objective of the next sections.

1.3 Mesh and finite element approximation

In order to formulate discrete variants of (1.2) or (1.1), the first step is the discretization of
the spatial domain Ω. This is achieved by introducing a mesh, which is a collection of cells
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or elements E, constituting a tessellation of the domain, as illustrated on figure 1.1 for the
two-dimensional case. In particular, we shall denote the union of all the cells by Ωh, with

Ωh =
⋃
E . (1.3)

The parameter h denotes a reference size for the grid, usually the largest of the diameters of
the external spheres (or circles) to the cells. In one dimension, this reduces to the length of the
largest cell. Note that a priori Ωh is not exactly equal to omega, unless an exact approximation
of the boundary of the domain is employed. Typically, ∂Ωh is defined by a piecewise polynomial
which, save for particular cases, will only converge to ∂Ω when the mesh is refined, that is when
h tends toward to zero.

Ωh

δΩ

δΩh

Figure 1.1 – Unstructured mesh of two-dimensional domain.

As also illustrated on figure 1.1, the elements composing Ωh can have different shapes : segments
in 1 dimension ; triangles and quadrangles in 2 dimensions ; tetrahedra, prisms, pyramids, or
hexahedra in 3 dimensions. In order to improve the resolution of ∂Ω, the faces laying on ∂Ωh

can be built using some high order polynomial surfaces (curves in two dimensions). For more
details concerning these aspects, the interested reader can refer to [72].

1.3.1 Finite elements

The next step is to enrich the mesh with the necessary information required to represent a
scalar (or vector) field u. This is done by associating values of this field with certain mesh
entities, and by subsequently using these values as coefficients for some polynomial. In the finite
element framework, this is done in a cell-wise manner. Firstly, for each cell, one defines a set
of basis functions. Given a polynomial degree, say p, these functions constitute a basis of the
associated space of polynomial, meaning that any polynomial of degree p can be written as a
linear combination of these functions. The number, analytical form, and properties of these basis
functions depend on the type of approximation chosen, on the number of space dimensions, and
on the shape of the element. A thorough discussion is out of the scope of this manuscript and we
refer the interested reader to [32]. For simplicity, we will consider here the case of Lagrangian
elements. These elements are based on the polynomial interpolation of nodal values of u. In
the following, we shall denote by {φj}j≥1 the basis functions, so that on a given element of the
mesh, we will write

uh =
∑

j≥1

ujφj , (1.4)

with uj the value of u on a node j of the element, and with the degree of uh depending on
the choice of the basis. As an example, the basis functions for linear, parabolic, and cubic
interpolation (on equally spaced points) in one space dimension are shown on figure 1.2.

The choice of the finite element allows one to generate locally to each mesh cell a polynomial
uh which can be used to compute values of the field u at locations in space that differ from
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Figure 1.2 – Basis functions for standard one dimensional Lagrangian finite elements of different
degrees.

those used for the interpolation, or to evaluate derivatives of u. Note that the basis functions are
universal polynomials. This universality is obtained by defining these functions on a so-called
reference element, onto which the actual elements of the mesh are mapped. This mapping is
defined as

x = FE(x̂) =
∑

j≥1

xjφj(x̂), (1.5)

and allows one to account easily for generic elements, including curved faces. The practical use
of this mapping in the discretization is discussed in the next section, while examples of mappings
are shown on figure 1.3.
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x

y

x

y

F
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0 1/2
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1

Figure 1.3 – Mapping to reference elements in one and two dimensions.

Once we are able to recover values of a field u (and of its derivatives) locally in a cell, we have to
provide a global notion of this quantity, in order to be able to process cell faces and mesh nodes.
Two radically different approaches exist. The fist one consists in requiring that all quantities
should be single values at cell boundaries, thus ensuring the continuity of the approximated
field uh. The second does not impose this constraint, and allows one to have multiple values
at cell boundaries. For obvious reasons, these two strategies are referred to as the continuous
finite element and the discontinuous finite element approximations. Visual depictions of the
two type of approximations are provided in Figures 1.4 and 1.5 for, respectively, parabolic one
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dimensional and linear two dimensional approximations.
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Figure 1.4 – Example of parabolic finite element approximation in one dimension : continuous
(left) and discontinuous (right) cases.

Besides the implication on the numerical discretization of the equation, which will be discussed
in the following sections, the main difference between the two methods is the number of point
wise values necessary to generate the finite element polynomials. These values are generally
referred to as degrees of freedom. In the continuous case, we associate a uniquely defined value
to a node laying on an entity belonging to an element boundary. In the discontinuous case, these
values are defined locally to each element, and are thus multiplied by the number of elements
sharing the entity. This implies that the complete locality of the discontinuous approximation
induces a much larger number of degrees of freedom. As a final remark, one can note that, in
the discontinuous case, the basis functions are uniquely defined over each element, so that, for
a node j in element E, function φj has no meaning outside E. In the continuous case, on the
contrary, for a node j on the boundary of E, we may define a global function φj which has a
meaning in all elements sharing j.

Figure 1.5 – Linear finite element approximation in two dimensions : continuous (left) and
discontinuous (right) cases.

1.4 Discrete equations

We consider now the derivation of the discrete counterparts of (1.2) or (1.1), based on a conti-
nuous or discontinuous finite element approximation. By no means the presentation that follows
is meant to be extensive. The objective of these pages is to highlight the main features of the
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schemes involved. For a detailed discussion, the interested reader is referred to, e.g. [32, 29, 22]
and references therein.

The simplest discretization one may consider is the continuous Galerkin scheme obtained when
using continuous elements, and by restricting the variational statement (1.2) only to the func-
tions handled by the finite element polynomials, namely to the finite dimensional space :

Vh = span{φj}j≥1 ⊂ H1 .

This choice leads to the Galerkin scheme associated with the variational problem : seek uh ∈ Vh
such that :

−
∫

Ω

∇vh · ~βuh dΩ +

∫

Ω

ν∇vh · ∇uh dΩ +

∫

Ω

vh uh dΩ =

∫

Ω

vh f dΩ ∀vh ∈ Vh. (1.6)

For diffusion dominated cases, that is, when ν � ‖β‖h, the continuous Galerkin scheme provides
a stable approximation. When the advective transport becomes relevant, additional care has to
be taken in order to guarantee the stability of the numerical method. A possible alternative is
the so-called Streamline Upwind Petrov Galerkin method, or SUPG for short, which involves
the modified variational problem : seek uh ∈ Vh such that

−
∫

Ω

∇vh · ~βuh dΩ +

∫

Ω

ν∇vh · ∇uh dΩ +

∫

Ω

σvh uh dΩ

+
∑

E∈Ωh

∫

E

~β · ∇vh τh (~β · ∇uh + σuh)dΩ =

∫

Ω

vh f dΩ +
∑

E∈Ωh

∫

E

~β · ∇vh τh f dΩ ∀vh ∈ Vh.

(1.7)

The SUPG scheme can now be shown to provide a stable approximation also in the advection
dominated limit, that is, when ν � ‖β‖h. The so-called SUPG stabilization parameter τh re-
presents a local time scale which depends on the value of the ratio ‖β‖h/ν.

The derivation of discrete equations in the discontinuous setting takes a different path. In
particular, the main principle is to repeat steps 1. to 4. enumerated at the end of Section §1.2,
over each of the mesh elements. This is repeated here for completeness and to introduce some
additional notation. The first notion to understand is that of a global solution, which is defined
as the collection of all the local (independent) elemental solutions. This means that we consider
uh as a global entity belonging to the ensemble of functions

Vh =
⋃
V E
h , V E

h = span{φj}j∈E .
The main steps toward the obtention of a Discontinouous Galerkin discretization of 1.1 are

1. For each element E ∈ Ωh multiply 1.1 by, vEh an arbitrary element of V E
h :

vEh ∇ · (~βuh)− vEh ∇ · (ν∇uh) + vEh uh = vEh f ;

2. use integration by parts over each element E :
∫

E
∇ · (vEh ~βuh) dΩ−

∫

E
∇vEh · ~βuh dΩ−

∫

E
∇ · (vEh ν∇uh) dΩ +

∫

E

ν∇vEh · ∇uh dΩ

+

∫

E

σvEh uh dΩ =

∫

E

vEh f dΩ ;
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3. use the Gauss theorem to convert the first and third integrals into boundary integrals

∫

∂E
vEh n̂ · ~βuh ∂Ω−

∫

E
∇vEh · ~βuh dΩ−

∫

∂E
vEh ν∇uh · ~n ∂Ω +

∫

E

ν∇vEh · ∇uh dΩ

+

∫

E

σ vEh uh dΩ =

∫

E

vEh f dΩ ;

4. apply the boundary conditions. In this case, since one writes element-wise equations,
the boundary condition is not necessarily the physical condition required by problem
statement 1.1. One must realize that, while vEh is only defined in E, and its values on
the boundary of the element is given by the limit of the value inside it, function uh is
defined as a collection of cell-wise fields, a priori discontinuous on the boundaries of
the elements, as seen in the previous section. For this reason, in the boundary integrals,
the quantity (~βuh + ν∇uh) · n̂ is replaced by a so called numerical flux Ĥ, function of
the values of uh on both sides of the faces of which ∂E is composed. Denoting by E′

the (variable) neighbouring element sharing locally a face of ∂E, the final variational
statement becomes : seek uh ∈ Vh such that

−
∫

E
∇vEh · ~βuh dΩ+

∫

E

ν∇vEh · ∇uh dΩ +

∫

E

σ vEh uh dΩ

+

∫

∂E
vEh Ĥ(uEh ;uE

′
h ) ∂Ω =

∫

E

vEh f dΩ ∀vEh ∈ V E
h .

(1.8)

The last expression shows that the DG discretization is given by a local variational statement
identical to the pure continuous Galerkin one, plus a boundary term providing inter-element
coupling and stability. Typical forms of the numerical flux are of the type [29, 22] :

Ĥ(uEh ;uE
′

h ) =
~βuEh + ~βuE

′
h

2
· n̂+ ν

∇uEh +∇uE′h
2

· n̂

+α1∇vEh · n̂(uE
′

h − uEh ) + α2∇vEh · n̂(∇uE′h −∇uEh ) · n̂ .
(1.9)

1.4.1 Integrals and matrices

All of the above finite element methods are formulated as a variational statement in which we
seek a discrete solution uh generated as the linear combination of some basis functions, when
we test the original equation against an arbitrary element of a certain polynomial space. To
ensure the validity of this statement for any arbitrary element of the test space it is enough to
write it for all the elements of the basis generative the space. In other words, for the continuous
Galerkin scheme, we will write :

−
∫

Ω

∇φi · ~βuh dΩ +

∫

Ω

ν∇φi · ∇uh dΩ +

∫

Ω

φi uh dΩ =

∫

Ω

φi f dΩ ∀i ≥ 1. (1.10)
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Similarly, the SUPG equations are obtained by requiring that :

−
∫

Ω

∇φi · ~βuh dΩ +

∫

Ω

ν∇φi · ∇uh dΩ +

∫

Ω

σφi uh dΩ

+
∑

E∈Ωh

∫

E

~β · ∇φi τh (~β · ∇uh + σuh)dΩ =

∫

Ω

φi f dΩ +
∑

E∈Ωh

∫

E

~β · ∇φi τh f dΩ ∀i ≥ 1.

(1.11)

And lastly, the DG equations are obtained by requiring that :

−
∫

E
∇φi · ~βuh dΩ+

∫

E

ν∇φi · ∇uh dΩ +

∫

E

σ φi uh dΩ

+

∫

∂E
φi Ĥ(uEh ;uE

′
h ) ∂Ω =

∫

E

φi f dΩ ∀ i ∈ E, ∀E.
(1.12)

We can finally transform these variational statements in algebraic problems. To do that, we
must recall that within each element we can use the definition of uh, namely equation 1.4. This
leads to linear systems which can be written as

AU = F, (1.13)

where the size and entries of A and F , as well as the size of U , depend on which of the three
methods discussed above we select. In particular, the size of U , and F is given by the total
number of degrees of freedom, denoted in the following by N . We recall, that this number is
considerably larger in the discontinuous case, due to the repeated storage of values on element
boundaries. Matrix A is a matrix whose range is N , yet is sparse, with a pattern which will be
discussed in more detail in the following chapters.
To give an example of how these matrices are actually assembled, we recall that, for the conti-
nuous Galerkin scheme we have :

Ai,j = −
∑

E|i,j∈E

∫

E

~βφj · ∇φi dΩ +
∑

E|i,j∈E

∫

E
ν∇φi · ∇φj dΩ +

∑

E|i,j∈E

∫

E
σφiφj dΩ (1.14)

while for the right hand side we have :

Fi =
∑

E|i,j∈E

∫

E
φif dΩ. (1.15)

We now benefit from the introduction of the mapping to a reference element, which is used to
re-cast all of the integrals over these elements. We recall that over E we have :

x = FE(x̂), (1.16)

and that

φi(x) = φ̂i(x̂). (1.17)

We then define the Jacobian JF as the matrix :

JF =

[
∂xj
∂x̂i

]
. (1.18)
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This allows us to evaluate the gradients of the basis functions on the physical element as :

∇φi(x) = J−1
F .∇̂φ̂i(x̂). (1.19)

with the φ̂i universal basis functions defined on the reference elements. Finally, to evaluate the
integrals, we perform a change of variables :

dx = det(JF )dx̂. (1.20)

Using 1.20, we can for example write

Ai,j = −
∑

E|i,j∈E

∫

Ê

~βφ̂j · (J−1
F ∇φ̂i)det(JF )dx̂+

∑

E|i,j∈E

∫

Ê
ν(J−1

F ∇φ̂i) · (J−1
F ∇φ̂j)det(JF )dx̂

+
∑

E|i,j∈E

∫

Ê
σφ̂iφ̂jdet(JF )dx̂.

(1.21)

The main advantage of this formulation is that it allows us to evaluate these integrals using
numerical quadrature formulas defined on the reference element, thus using quadrature points
positions which are the same for all the elements of the mesh having the same shape. The
expressions obtained for the other schemes are similar and omitted for brevity.
It is interesting to note that, independently from the continuous or discontinuous nature of the
finite element approximation, the linear system obtained is global in the sense that it couples
all the degrees of freedom. In particular, comparing expressions 1.10 and 1.12 it is obvious that
the continuous Galerkin system matrix is obtained as an assembled sum of the discontinuous
Galerkin expressions. In particular, we can distinguish three classical blocks in finite element
analysis :

Convection matrix :

Aci,j =

∫

E

~βφj · ∇φi dΩ ;

Stiffness matrix :

Asi,j =

∫

E
∇φi · ∇φj dΩ ;

Mass matrix :

Ami,j =

∫

E
φi φj dΩ .

The continuous Galerkin method is obtained upon the assembly of these three blocks, namely :

ACG =
∑

E∈Ωh

(AcE + νAsE + σAmE ) .

This assembly is what gives the method a global character, coupling unknowns stored in nodes
in all the elements of the mesh. In the DG method, on the other hand, one only considers
one elemental instance at the time, thus in principle retaining a completely local, element-wise
character. However, this locality is broken by the term containing the flux which introduces
what we could call flux matrix entries of the type (cf. equation (1.9)) :

Afi,j =

∫

∂E

φiφj
~β · n̂

2
∂Ω +

∫

∂E

νφi
∇φj · n̂

2
∂Ω± α1

∫

∂E

∇φi · n̂φj ∂Ω± α2

∫

∂E

∇φi · n̂∇φj · n̂ ∂Ω
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with the plus or minus sign depending on whether node j belongs to a neighbouring element or
to element E itself, respectively. These entries lead to a large global algebraic system, coupling
all the degrees of freedom in all the elements of the mesh.

1.4.2 Time dependent equation

Before discussing issues related to the implementation of these methods, let us discuss shortly
the time problem





∂tu+∇ · (~βu)−∇ · (ν∇u) + σu = f in Ω,

n̂ · ~β u+ ν∇u · n̂ = 0 on ∂Ω

u(x, t) = u0(x) for t = 0.

, (1.22)

In order to extend the previous methods to this case, we first discretize in time, and then apply
the schemes including the time increment as a source/sink term. We briefly discuss two simple
cases that illustrate explicit and implicit time integration.

In the first case, we discretize the time derivative with the explicit Euler formula, obtaining :

un+1 − un
∆t

+∇ · (~βun)−∇ · (ν∇un) + σun = f. (1.23)

Applying the schemes yields the following linear algebraic equations :
— Continuous Galerkin. In this case we have :

AUn+1 = BUn + ∆tF,

where
A = Am , B = (1−∆tσ)Am −∆tAc −∆tνAs.

This shows that a global system needs to be solved, whose matrix is the mass matrix
introduced in the previous section ;

— Streamline Upwind Petrov Galerkin. In this case we obtain again :

AUn+1 = BUn + ∆tF.

However now

A = Am +Am−su , B = (1−∆tσ)(Am +Am−su)−∆tAc −∆tνAs −∆tAsu,

having introduced the additional matrices :

Am−sui,j =
∑

E|i,j∈E

∫

E

~β · ∇φi τh φj dΩ , Asui,j =
∑

E|i,j∈E

∫

E

~β · ∇φi τh ~β · ∇φj dΩ

arising from the streamline diffusion terms (cf. Equations (1.7) and (1.11)). As in the
previous case, the system matrix obtained is global, and couples all degrees of freedom.

— Discontinuous Galerkin. In this case, we can write the system as :

AEU
n+1
E = BUn + F , ∀E,

where UE represents the array containing only the degrees of freedom of element E and

AE = AmE , B = (1−∆tσ)AmE −∆tAcE −∆tνAsE + ∆tAf .

Clearly we obtain here a simpler problem, involving smaller local element-wise blocks.
The inter-element coupling is introduced in the right hand side via Af .
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Instead if we discretize the time derivative with the implicit Euler method, we obtain :

un+1 − un
∆t

+∇ · (~βun+1)−∇ · (ν∇un+1) + σun+1 = f. (1.24)

This problem can be recast as a particular case of (1.1) with modified values of the coefficients
and of the right hand side. In particular, setting w = un+1, and

~β∆t = ∆t~β , ν∆t = ∆tν , σ∆t = ∆tσ − 1 , f∆t = ∆tf + un ,

we are now solving

∇ · (~β∆tw)−∇ · (ν∆t∇w) + σ∆tw = f∆t .

As seen in the previous section, in this case, all the methods give a global system coupling all
the degrees of freedom in all the elements of the mesh. In particular, the DG methods will give
a considerably larger system for a fixed level of required accuracy, that is, for a fixed degree of
the finite element polynomials.

1.5 Challenges

In order to develop a generic platform allowing the use of all the methods discussed in the
previous section, we have identified some major challenges related to :

— the management of the memory for the two different classes of finite element approxima-
tions ;

— the heterogeneity of data in space related to the presence of elements of different shapes,
or of different local polynomial approximations in the mesh ;

— the management of dynamic changes in the data layout due to local mesh or polynomial
adaptation ;

— the efficient exploitation of modern multi-core platforms comprising complex memory
hierarchies.

A more detailed discussion of these issues is provided in the following sections.

1.5.1 Abstracting the memory layout of finite element methods

The first challenge is to find a unified model to represent the unknowns of the system. We have
shown that the finite elements differ between the two methods. At order 1, and with a continuous
method, the unknowns are localized on the vertices. Then, elements share information on the
vertices. By increasing the order of the solution, unknowns appear on the edges and the faces,
and inside the elements as depicted in Figure 1.6. As the figure shows, the coupling terms come
from all the elements sharing the unknown.

Ti

Tj

Tk

Tn

Tm

Tl

Figure 1.6 – In red, the considered equation, and in blue, its stencil.
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On the other side, discontinuous elements have the same number of unknowns but do not
share a single unknown with their neighbours. The direct consequence is a bigger global matrix
whose size is the sum of the number of unknown for each element of the system. When the
order of the solution increases, the number of unknowns in the system increases by a factor of
O(orderdimension). The coupling between the unknowns is performed during a phase where two
elements sharing a face compute a numerical flux to update the corresponding blocks in the
matrix and in the right hand side.

Ti

TjTk

Tl

(a) Local equations of the element Ti with dis-
continuous finite elements of type P2 and their
stencil.

Ai,j Ai,i Ai,k Ai,lAi,j Ai,i Ai,k Ai,l

A
(b) The equations of element Ti have coupling
terms for each unknown of the neighbouring
elements.

Figure 1.7 – The stencil for discontinuous P2 finite element.

To parallelise these methods, we act on two levels. First, we perform a domain decomposition,
to split our problem across multiple processors. This implies that we will have extra work to
do on the boundaries of the domain. The easiest way is to duplicate cells on both processors,
such as each local cell has all the information to perform the computation. Here lies the first
difference between continuous and discontinuous methods. In the former ones, cells exchange
information between their vertices and, when doing high order methods, between their edges
and faces. In the case of discontinuous methods, information is always exchanged between the
faces. It means that we will have more ghost cells in the overlapping region with continuous
methods than with discontinuous methods.

The parallelization diffes from a method to the other. In discontinuous methods, some of the
terms of the equation can be fully computed locally, while the terms related to the numerical
fluxes computed on a face between two elements must be performed carefully as they update
elements on both sides of the face. Two faces can not be treated in parallel. On the other
side, continuous methods compute contributions locally to an element, and the following phase,
the assembly operation, must be performed carefully as elements sharing unknowns will try to
update the same equations.

1.5.2 Handling hybrid meshes

The idea here will be to handle any kind of element shapes, ranging from segments in one dimen-
sion, triangles, quadrangles in two dimensions, to tetrahedra, pyramids, prisms, and hexahedra
in three dimensions. Elements will be straight or curved. Also, the polynomials approximating
the solution could have have different degrees on different elements.
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1.5.3 Mesh adaptation

The idea of mesh refinement is to modify the mesh in order to get a better resolution of a
phenomenon on a given region of the mesh. We can distinguish three types of mesh refinement :

— r-refinement : (Figure 1.8). It amounts to a deformation of the mesh while preserving
its topology. The idea here is to change the coordinates of the points without changing
connectivities.

(a) A simple grid of quadrangular elements
with the region to refine in red.

(b) Nodes are moved to follow the phenomenon
in the selected region.

Figure 1.8 – R refinement applied to a grid.

— h-refinement : (Figure 1.9). By changing the topology of the mesh, and interpolating
the old solution on the new mesh, one can refine the mesh where needed and increase the
resolution to follow small phenomenon or decrease the resolution where nothing relevant
is happening anymore and computational resources are no longer required.

(a) A simple grid of quadrangular elements
with the region to refine in red.

(b) The area has been remeshed with triangles.

Figure 1.9 – H refinement applied to a grid.

— p-refinement : (Figure 1.10). It consists in increasing or decreasing the order of the
polynomials on the selected elements in order to capture the phenomenon or, conversely,
to reduce the computational cost of a region of the mesh where nothing relevant is
expected to happen.

(a) A grid composed exclusively of quadrangu-
lar Q2 with the selected region to refine in red.

(b) The order of the elements in the selected
region has increased.

Figure 1.10 – P refinement applied to a grid.
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1.5.4 Abstract the complex architecture

A few years ago, supercomputers were essentially composed of multi-core CPUs. Programming
these architectures was easy with respect to the current situation. An hybrid approach with a
message passing paradigm like PVM or MPI, coupled with a multi-threaded library to exploit the
intra-node parallelism worked, very well. But this time is over, and now, the current generation of
supercomputers includes different accelerators, from the classic GPUs to the newest co-processor
from Intel, the Xeon Phi. Programming these architectures is tedious, as distributing work
between devices, handling the different levels of memory, and maintaining data consistency is
complicated. Worse, maintaining the platform, and maintaining the performance of the platform
on these fast-evolving architectures, can be a serious issue. These points will be discussed later
in Chapter 3.
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2.1 Introduction

The use of numerical simulation based on finite element discretizations of partial differential
equations describing physical processes is nowadays critical for the comprehension of physical
phenomena in various application fields. It aims at delivering accurate simulation results, allo-
wing to replace costly experimentation. Complexity of geometries and models and demand for
higher accuracy typically result in a huge number of modeled degrees of freedom (DoF) with
complex couplings. Due to the complexification of high performance architectures in the last
decade (multicore systems with complex memory hierarchies which may be equipped with acce-
lerators, etc), the design of high performance applications becomes a challenging task, especially
from the performance portability point of view. This results in a strong need for flexible, por-
table, and adaptable frameworks which allow domain specialists to design efficient and accurate
methods with moderate programming efforts.

In this chapter, we consider the problem of designing a flexible platform for the design of complex
numerical simulation scheme and present the AeroSol platform that we have developed for this
purpose. Even though several frameworks that target this same problem already exist, we will
show how the AeroSol approach is reliable and flexible. We will discuss and motivate the design
choices of the global architecture with respect to the challenges we found. Finally we will show
how we addressed all these issues.

Algorithm 1 General space/time iteration scheme.

1: t← 0
2: δt← δt0
3: U ← U0

4: while t < Tmax do
5: B ← 0
6: A← 0
7: for each Element e do
8: Ue ← localSolution(U, e)
9: Ge ← localGeometry(G, e)

10: ae ← f(Ge, Ue, e)
11: be ← g(Ge, Ue, e)
12: assemble (A, ae, e)
13: assemble (B, be, e)
14: end for
15: Solve A.X = B
16: U ← U − δt.X
17: t← t+ δt
18: end while

We recall in Algorithm 1 the general space/time iteration scheme used for an explicit finite
elements solvers. After a description of existing generic solvers for FEM-based numerical simu-

20



lation frameworks, we give in the following sections a description of the design choices for the
platform AeroSol.

2.2 Our needs

Our needs for a CFD platform are multiple. We can classify them in two categories. First, we
enumerate all our needs related to the mathematical aspect of the methods we are going to use :

Mesh. In order to have to most generic platform possible, we need to support any dimension
and any shape of element possible. To fit the boundaries of the computational domain,
curved elements have to be supported by the platform.

Methods. Our objective here is modest : we have to support continuous and discontinuous
methods. In our context, we do not need to extend our platform to other methods. We
are targeting two types of methods. Firstly, the methods based on continuous Galerkin
method. Among their specificities, we can cite lower memory consumption due to data
sharing between elements. The second class of methods are the discontinuous methods
like the discontinuous Galerkin method. Two important things differ from the continuous
method : the memory layout, and the algorithmic aspect. The data, normally shared bet-
ween elements is replicated in each element, enforcing a discontinuity between elements.
Consequently, an additional step of computation is performed on each interface to handle
this discontinuity.

Finite Elements. In a very classical way, our platform must handle low order and high order
solutions, coupled with a large variety of element shapes. It means that we will have to
provide a large bank of finite elements, quadrature formulae, and geometrical functions.

The second and last category relates to the high performance computing (HPC) aspect. The
ecosystem of HPC is quickly evolving and hardware architectures can be deprecated in a short
time, replaced by a new, yet close, generation, forcing the developer of such a platform to
keep his platform up-to-date. Thus, keeping a high level of performance on these architectures
requires a tremendous amount of effort. Our platform should ensure performance portability by
relying on third-party runtime systems.

2.3 Related Works

Several initiatives have emerged in the last twenty years targeting the design of solvers for mesh-
based numerical simulations. These efforts can be categorized according to modelization criteria
(e.g., mesh type, numerical scheme, type of discretization) or implementation criteria (e.g.,
parallelization scheme, genericity, etc). We display in Table 2.1 a comprehensive set of software
projects and their respective characteristics. We classified these different software according to
several criteria :

Mesh. Does the platform support any kind of element, in any dimension ? Does it support
curved elements ?

Parallelism. Does the platform uses a regular MPI approach, or does it exploit the paral-
lelism at different levels and/or use accelerators ?

Methods. Does the platform handle only the continuous or discontinuous Galerkin me-
thod ? Does it support other methods ?

As we can see, most of the software projects are dedicated to either a certain type of discre-
tization, a given class of methods or are putting most of their effort in the parallel features.
Only few of them are designed in such a generic way that they can be viewed as a toolbox on
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Hybrid Hybrid Methods
Software Mesh Parallelism DG CG other

Aghora [27, 59] yes yes yes N/A

BEM++ [69] no no yes yes

COOLFluiD [44, 67] yes yes yes yes

deal.II [13] no yes yes yes

DROPS [71] N/A yes N/A yes

Dune-Fem [28] yes no yes N/A

FEniCS [55, 56] yes yes yes N/A

freefem++ [38] no no no yes

HiFlow3 [7, 40] yes yes yes yes

hpGEM [65] yes no yes N/A

ModFEM [60] N/A yes yes yes

OP2 [35, 61] no yes N/A N/A finite volume

OpenFOAM [42, 63] yes yes no yes finite volume

Table 2.1 – Comparison of state-of-the-art softwares solving PDE problems using finite element
methods (“N/A” : information not available from the literature).

top of which one can implement any kind of numerical simulation solver. We will refer to this
category as frameworks and will give a brief description of those that are closest to our AeroSol
platform.

2.3.1 Frameworks

Dune-Fem is a framework for solving PDEs problems using discontinuous Galerkin methods. It
is developed in C++, and is parallelized using MPI. Two platforms are based on Dune-Fem :
BEM++ and ModFEM.

OpenFOAM is a toolbox for simulating finite volume and finite element methods. Developed in
C++, it uses a domain decomposition to handle distributed memory parallelism, and can use
multi-core architecture as well. It handles any kind of element, in any dimension.

The FEniCS project [1] is a framework for evaluating variational forms. It uses hybrid parallelism
to handle shared and distributed memory. It supports high order solution on hybrid meshes,
and can simulate continuous or discontinuous methods.

2.3.2 Aghora

The development of the Aghora library began in 2012 with the PRF 3 of the same name. It is a
high order, arbitrary order, finite elements library based on discontinuous elements. The models
solved are the 3D compressible Euler or Navier-Stokes and RANS equations (with BR2 formula-
tion for diffusive fluxes, see [15]) based on straight-sided and curved tetrahedra, hexahedra and
prisms. It is developed in Fortran 95, and its development is based on previous experiments
with two dimensional codes that were developed for example within the Adigma project [49].

2.3.3 deal.II

deal.II [12] is the successor of the DEAL (Differential Equations Analysis Library) platform.
The aims of deal.II are flexibility, efficiency and user-friendliness. The goals of the project are
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its extensibility and its usability by hiding all the complex details from the developer. Moreover,
performance is considered a key objective.

It is developed in C++, and is heavily documented. It uses CMake and CTest [13] for compilation
and testing. The platform simulates finite element methods [11]. The main particularity of this
platform is that it only supports segments in 1D, quadrilaterals in 2D, and hexahedra in 3D [14].

2.3.4 hpGEM

hpGEM is a framework developed in C++ that focuses on the simulation of discontinuous Galerkin
finite element methods. It can handle any dimension of hybrid meshes. It supports high order
solutions.

It makes use of the object-oriented concepts to provide a flexible and modular platform. One of
the main objectives of its authors is accessibility. They want their platform to be easy to use
for beginners who have no strong knowledge in C++.

They only handle discontinuous Galerkin methods, while we want to handle either continuous
or discontinuous methods.

2.3.5 OP2

OP2 [61] is a library framework for unstructured meshes. It is the follower of the OPlus [21] library
(Oxford Parallel Library for Unstructured Solvers). OP2 aims at decoupling the implementation
of mathematical methods from their parallel implementation, in order to achieve performance
portability. The idea behind OP2 is to develop a user code using their API, to specify the data
manipulated and to let the runtime generate dynamically the kernels required for scheduling
and running computations on the target architectures.

2.3.6 COOLFluiD

COOLFluiD [67] is a platform developed in C++ at the von Karman Institute for Fluid Dynamics
(Belgium). The main objectives of the COOLFluiD project are flexibility, efficiency and usability
of the platform.

To construct an application, a set of elementary components are composed to achieve more and
more complex features. A component implements a functionality using a set of frameworks. The
framework structures the design patterns assembled from the different classes.

2.3.7 freefem++

freefem++ is a software solving PDE in two or three dimensions using continuous Galerkin
methods. It supports only triangular elements in 2D and tetrahedra in 3D. The software is
parallelized using MPI. They provide a high-level input language for the end-user.

2.3.8 HiFlow3

HiFlow3 is a multi-purpose finite element software package that is portable across a wide variety
of platforms, including emerging technologies. It relies on a modular approach, based on object-
oriented programming, to provide an evolutive toolbox for designing numerical simulations. It
is, together with COOLFluiD, the platform closest to the AeroSol framework.
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2.3.9 PyCUDA

The PyCUDA and PyOpenCL are python wrappers [45, 47, 48] to the CUDA and OpenCL low-
level programming interfaces for GPUs. In [46] they have been used in the specific context of
numerical simulation to build a numerical simulation for discontinuous Galerkin finite elements
methods on GPU architectures. The main idea of these platforms is to generate at run time the
required kernels to perform the computations. By generating on-the-fly the source code required
for the problem, they allow the compiler to optimize the source code.

2.3.10 Discussion

Modern platforms dealing with the simulation of finite element methods use an object oriented
language. This ensures the modularity, the flexibility, and the evolutivity of the platform. Fur-
thermore, some of them use compilation and testing frameworks, like CMake/CTest, to perform
continuous integration and to ensure software robustness. Some of them dynamically generate
optimized kernels, and use them to speed-up the simulation.

In order to be modular and to enable a good re-usability, our platform will be developed in
an object-oriented language. An inheritance mechanism will simplify the code that needs to be
written by the programmer, and will allow him/her to extend/replace blocks of code. Moreover,
our platform will use CMake and CTest to compile, deploy and run tests. With non regression
testing, the developers will be able to detect problems when contributing to the software.

To ensure performance, our platform will run on modern architectures. It will require to handle
distributed memory parallelism as well as shared memory parallelism. To deal with distributed
memory parallelism, our platform will be built on top of a high level middleware which will
handle the mesh and the communications. It will produce a good domain decomposition and
a good renumbering that will ensure good load balance and improved data locality during the
computations. Each domain will be mapped onto a node of the computer and, in each node, we
will exploit shared memory parallelism with different techniques. This subject will be covered
in Section 3.1.

In the next section, we will discuss the technical requirements for our platform and see how our
platform, namely AeroSol will be structured.

2.4 General Architecture

2.4.1 Functional requirements

Evolutivity and contributing

In order to keep the platform easily maintainable and to help developers to contribute to it,
we will rely on the principle of separation of concerns. This means that we have to identify
a set of functionalities and modules and define the interactions between each module and its
peers. By using an object-oriented programming language, the separation of concerns becomes a
simple separation in objects and the definition of interfaces to manage the interactions between
these objects. Thanks to the inheritance mechanism, an external contributor can develop a new
method, a new finite element, or link the platform with his favorite linear solver.

By partitioning the functionalities into separate objects, we enable two things. Firstly, it is easier
to extend the platform by adding a new module following the rules (respecting the interfaces
of the connected objects) of the original module. Secondly, developers of various fields can join
and contribute in the platform without even considering what occurs in the other modules.
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Elemental operations

To be able to support any kind of mesh, as well as continuous and discontinuous methods, we
have to represent our element in such a way that there is no memory over-consumption. Like we
saw before, the targeted mathematical methods differ in memory layout and in the localization
of the memory on each element. Discontinuous elements embeds all the information and share
nothing with the surrounding elements, while continuous elements share a lot of information on
their interface with other elements. When the order of the solution increases on these elements,
not only does the amount of shared information increase, but the localization of this information
changes, too. In the three dimensional case, information is shared on the vertices and, as the
order increases, edges become involved and, then faces. To solve this problem, we split our
element into a hierarchical set of entities. Each entity receives an integer characterizing it. This
integer embeds information such as the shape of the entity, whether the entity is curved or not,
whether the entity is a boundary entity and thus should receive special treatment with respect
to its position on the computational domain, or the order of the solution on this entity.

With this fine decomposition of the element, we can see that it is possible to allocate the right
amount of memory for each element on an hybrid mesh. Data will simply be distributed across
this hierarchical set of entities.

Refinement of the mesh

As we saw in the previous chapter, some methods use mesh refinement to modify the mesh in
order to follow the propagation of the information in the computational domain. In practice it
can be as easy as a modification of the coordinates of some vertices, or it can require a complete
reconstruction of a sub-mesh in the domain. The most complicated approach to refinement
involves a modification of the topology of the graph associated with the mesh. The refinement
process can greatly reduce computational cost by focusing the resources on the area where the
information is propagating and by reducing the precision of the computations on the areas where
nothing is happening.

2.4.2 Proposed architecture

Based on the above with respect to the separation of concerns and to the different needs for our
platform, Figure 2.1 exhibits the retained architecture for the AeroSol platform.

The platform will be built according to the following design principles :

— the mesh object has the knowledge of the geometric data distribution. It will provide a
set of methods to iterate over the mesh ;

— the time scheme objects are high-level objects simulating the time stepping ; These objects
will manipulate opaque objects embedding solutions and data on the mesh, as well as
an abstract matrix. They will do basic manipulations on opaque data objects and pass
them to the underlying spatial scheme ;

— the spatial scheme knows the data distribution of the solution over the mesh. Using
the iterators provided by the mesh objects, it will be able to iterate over the mesh to
reconstruct elements. The knowledge of the data distribution makes this object a good
candidate to interact with the linear solver interface. It will manipulate an abstract object
representing a matrix and call methods like fill-in prediction, assembly, inversion, or solve
to complete each step of the resolution of the linear solver. It will use the the integration
objects to compute quantities on elements ;

— the integrator objects are low-level classes for computing the integrals over certain enti-
ties. The integrator uses its collection of finite element to compute integrals in a reference
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Figure 2.1 – Detailed architecture of the AeroSol platform.

element ;
— finite element, quadrature formulae, and geometrical functions are a collection of classes

defining the finite element, and the geometric methods used by the integrators. Qua-
drature formulae will provide the coordinates of the integration points and a weight
associated to this point, on a reference element. Finite element object will use these co-
ordinates to evaluate polynomial functions of shape functions and gradient of the shape
functions. Geometrical function objects will provide methods to transform the element
in the physical space to the reference space ;

— two modules to interact with the end-user will be added. An input object setting the
mesh, the solution and some constant of the domain, and an output module used by the
spatial scheme object. It will be used to export the solution in various formats.

2.4.3 Technical requirements

Modern architectures used in high performance computing exhibit a complex structure of me-
mory and processing units. Supercomputers are composed of multiple nodes, which can have
accelerators. They result in the availability of a lot of processing units of different speeds, and
of multiple levels of memory with different access times. In order to support the heterogeneity
of the modern and future architectures, we need to find a way to abstract the underlying archi-
tecture.
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2.5 Delegating the functionalities

Developing the whole software would have taken a lot of time, and this thesis had a limited time
to frame. Moreover, some of the functionalities required are provided by tools developed either
in our team or in collaborating teams. The development of this platform was a good opportunity
to build an end-user application making a set of existing tools collaborate. Among these tools,
we here present those that answer some of the technical requirements we have for our platform.

2.5.1 PaMPA

(a) A 4-triangles mesh. (b) The rich graph associated to the 4-triangles mesh.

Figure 2.2 – Transformation from a simple 4 triangles mesh (on the left) to a rich graph (on
the right).

PaMPA [52, 53], standing for Parallel Mesh Partitioning and Adaptation, is a library developed
at Inria Bordeaux Sud-Ouest. PaMPA manages unstructured meshes across the processors of a
parallel machine. The idea is to relieve the developer from writing again and again the same
error-prone functionalities of his applications : the mesh module, the data communication layer,
the re-meshing module. PaMPA manipulates meshes as graphs. As depicted in Figure 2.2, vertices
of this graph are entities of the mesh (Figure 2.2a), namely elements, faces, edges, or nodes,
and the edges of the graph represent the link between entities. Entities are associated with an
integer which represents the type of the entity. It can give simple information on the type of
the entity (element, face, or vertex), but it can also provide rich information like the shape of
the entity, or the order of the solution on this entity. We will discuss later (in section 2.6.1)
the way we use this integer. In Figure 2.2b we can see that an element, such as a triangle, is
connected to all of its faces (depicted as rectangles), and points (depicted as circles). A face is
connected to its edges and its points, etc. Elements can be connected so as to characterize the
neighborhood.

To each type of entity, can be “attached” some data. One can select an entity type, such as
the element, and attach to each element a piece of memory of an arbitrary size. The memory
area must be associated with a MPI_Datatype. The piece of memory will be divided into three
segments. The first corresponds to local entities of the domain ; the second stores boundary
entities, and the third corresponds to the ghost entities in the overlap.

PaMPA will do a parallel graph partitioning using the parallel library Pt-Scotch [33] on the
input graph. The partitioning will ensure a good load-balancing of the domains, as depicted in
figures 2.4a and 2.4b, and inside a domain, a good numbering of entities, thus enhancing the
locality of data accesses when manipulating data attached to the entities. In addition to the
domain decomposition, PaMPA will manage the overlapping parts of the graph : the boundaries,
boundary entities will be identified and replicated on remote domains to ensure the capacity to
do all the computations on the remote domains. The data attached to these ghost entities will
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Figure 2.3 – Different examples of iterators provided by PaMPA.

be duplicated on both domains, and PaMPA will handle communications to synchronize the data
when the developer asks for it. Finally, The depth of the overlap is a user-defined parameter.

PaMPA can also do a sequential re-meshing of the graph. It uses the MMG3D library [23].

PaMPA will provide two levels of iterators to the application. With the first level of iterator, the
developer will be able to visit every entity of a certain type. When visiting all the entities of
a given type, PaMPA will provide a numbering starting from 0 to Nent. In Figure 2.3 we can
see different sub-sets of entities. In Figure 2.3a, all the entities are visited, so we have a global
indexing for the entities. In Figure 2.3b, we restricted the iterator to the element entity type. We
have elements numbered from 0 to 3. In Figure 2.3c, the chosen sub-set of entities is the faces.
As in the previous iterator example, we will visit all the faces of the mesh, with a restricted
numbering. Finally, Figure 2.3d shows an iterator corresponding to border faces. The interesting
feature here is that PaMPA allows to create a 2-level hierarchy between entity types. It means
that at the top level hierarchy, one can put the element type, the face type, and the vertex type.
At the lower level, one will put all the variants of elements like triangle, quadrangular, or the
variants of faces like border faces and inner faces. This will be useful when boundary conditions
are needed. The programmer has an easy access to border faces. The interest in differencing
the entities is to allocate the exact amount of memory needed. The top-level entity type will be
referred to as the group type, and the lower-level type will be denoted as the entity type. We
will see later how we manage memory on top of this graph.

When visiting an entity, the developer can use the second level of iterators to focus on the entity
and visit entities linked to it. Thus, we can access data to reconstruct a cell, or compute the
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(a) Mesh after the distributed reading phase and be-
fore the partitioning and redistribution phases

(b) Distributed mesh after repartitioning and redis-
tribution.

Figure 2.4 – The partitioning and the redistribution of the mesh entities.

isobarycenter of an element.

2.5.2 Runtime systems

As we saw in the previous subsection, the PaMPA library handles our mesh, our data, and gives
us a domain decomposition for the distributed memory layer. What we need now is a platform
for handling the shared memory layout. The main difficulty here is the heterogeneous aspects
of a computer. Multi-threaded programming for a computer with multiple GPUs of possibly
different generations, or vendors is complicated. This is why we chose to rely on a library hiding
the specificities of the underlying architectures and to submit work to this library using an
insert-task programming model. The first step to use these libraries is to re-write our algorithm
as tasks, working on data. Our algorithm becomes a directed acyclic graph where the tasks
are the computation elementary operations, and the edges between tasks characterize the data
dependencies between these tasks.
Among our collaborators and the teams working at Inria, we have two runtime systems avai-
lable. The first one is the StarPU library, developed within the Runtime team. This library
uses an insert-task model and a global vision of the of the directed acyclic graph to take task
scheduling decisions based on the reduction of the critical path to reduce the overall completion
time. The second library we chose to use is PaRSEC. Instead of submitting tasks to PaRSEC, the
developer will submit an entry point to the directed acyclic graph, and the platform will discover
the graph dynamically when a task is completed and its dependent tasks become executable.
This dynamical discovery of the graph will allow PaRSEC to scale when graph size increases. The
specificities of each platform will be discussed in the next chapter (see Section 3.1).
To summarize, by re-writing our algorithm as tasks, and by providing implementations of the
tasks for each hardware device, the runtime system will be able to perform our computations on
an heterogeneous computer. Thanks to the fact that all the data consistency mechanisms, and
the scheduling strategies are delegated to the runtime system, we can focus on the implementa-
tion of our tasks and kernels. Theorically, performance portability is ensured at a reduced cost ;
when a new hardware is released, only tan adapted optimized implementation of our tasks will
be required.

2.5.3 Linear Solver

In many numerical applications, methods manipulate data to build matrices and, vectors and,
using either an internal module or an external library, they invert a linear system to update
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their solutions so as to progress in time. The idea of our work was not to develop our own linear
solver library. This is a large field of ongoing research, and it seems wise to rely on existing
tools developed by experts of this domain rather than trying to re-invent the wheel. There are
multiple teams working in this field, and some of them have on-going collaborations with our
team. This is why we chose to rely on their library for our platform, in addition to generic
toolboxes like PETSc. The MUMPS library has been linked with our platform. A generic interface
for sparse matrix has been designed to interface each library with our platform. Hence, the
developer of an AeroSol application only manipulates an opaque object, and does calls generic
methods to progress through the resolution of the linear system.

2.6 Functional implementation

In this section, we will present some of the solutions we implemented to solve the problems
presented in Section 2.4.

2.6.1 Specializing the entities

A central object in the platform is the EntType object. It is necessary to present this key element
of the platform. As we saw before, PaMPA handles a hierarchy of types, and each entity will have
a group type and an entity type. The entity-type attribute is the parameter that characterizes
our entity. Being restricted to use only one integer to represent the entity, we will have to
embed all the informations in this integer. To do so, we used available bits to encode the needed
informations :

Hexahedron

Degree 5

Bits interval

Degree Shape Curvature

[0;4] [5;6] [7;10] [11;13]

10100 00 0000 000

00000 00 0001001

Domain

Hexahedron 5 10100 1001 00000

Inner Hexahedron of degree 5 = entity type 1189

Figure 2.5 – Decomposition of the EntType integer. Example given for building a straight
hexahedron of order 5.

Figure 2.5 presents a table showing how the EntType attribute is decomposed. From bit 0 to
bit 4, we encode the degree of the entity. Bits 5 and 6 encode the domain information which
answer is the following questions : 1) Is this entity inside the domain ? 2) Is it a border face ?
Is it a periodic border face ? Then bits 7 to 10 characterize the shape of the entity, bending
point, point, line, triangle, quadrangular, tetrahedron, pyramid, prism, hexahedron ? The last
interval of bits, from 11 to 13, encodes the curvature degree of the element. It starts from 0 for
a straight element. The remaining bits are available for future use.

When loading the mesh, all the EntType are stored in the mesh object. This object keeps a set
of lists of EntType, each list containing the EntType’s of a given dimension. These lists can be
accessed either by the dimension of the elements in it, or by their codimension. The codimension
is defined as follows :

codimension = dimension− dimensionentity, (2.1)
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Shape table

Shape Bit values [7 :10]

Bending point 1000
Point 0100
Line 1100

Triangle 0010
Quadrangular 1010
Tetrahedron 0110

Pyramid 1110
Prism 0001

Hexahedron 1001

Table 2.2 – Values corresponding to element shapes.

Domain table

Domain Bit values [5 :6]

Border 00
Inner 10

Periodic 01

Table 2.3 – Values corresponding to domain conditions.

where dimension is the dimension of the system, and dimensionentity is the dimension required
to represent the entity. A codimension of 0 represents all the elements of the mesh while a
codimension of 1 will represent all the faces.

Entity E = 2756 00100 01 1010 100

E & Degree Mask

Degree Mask

Domain Mask

E & Domain Mask

Shape Mask

E & Shape Mask

Curvature Mask

E & Curvature Mask

11111 00 0000 000

11 0000 000

00 1111 000

00000 00 0000 111

00000

00000

00 0000 00000100

01 0000 00000000

00 00000000

00000 00 0000 100

1010

Degree 4

Curvature degree 1(+1)

Quadrangle

Border

Figure 2.6 – Use of binary masks to decompose an EntType.

The EntType will be used as a key when manipulating our data containers. Figure 2.6 shows an
EntType of value 2756, and we see how the use of binary mask allows us to extract information
about this entity. This entity type indeed corresponds to a curved (degree 2) quadrangle with
a solution of degree 4, located on the border of the mathematical domain.

2.6.2 Solution Object

This object is user-defined. The platform provides a default one. Its function is to return the
number of unknowns for an entity type. For example, in Figure 2.7, we show two examples
of decompositions of triangles. In Figure 2.7b and 2.7e, we provide two triangles with the
corresponding distribution of unknowns. Triangle P1 has 3 unknowns, while triangle P3 has 10.
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(a) Continuous P1. (b) The reference
element P1 in 2D.

(c) Discontinuous P1.

(d) Continuous P3. (e) The reference ele-
ment P3 in 2D.

(f) Discontinuous P3.

Figure 2.7 – Hierarchical decomposition of a triangle at different orders with a continuous or
a discontinuous solution.

In Figure 2.7a, we see that the 3 unknowns are localized on the entity of type point corresponding
to circles in the figure. In Figure 2.7c, all the unknowns are stored on the element entity, the
triangle. When increasing the order of the solution, in Figure 2.7f, the 10 unknowns are still
stored on the element entity. On the contrary, in Figure 2.7d, the unknowns are distributed
across several entities. The element entity receives 1 unknown, each face receives 2 unknowns,
and each point receives 1 unknown. The information related to this distribution is given by the
Solution object. This illustrates how flexible our platform is when dealing with the repartition
of the unknowns on the different elements.

2.6.3 Cell reconstruction

To do all the computations required by the mathematical method, we need a method to gather
the scattered information. As we saw previously, when the order of the solution increases, the
data are scattered on a larger number of entities. Gathering these data, and ordering them in
order to perform computations correctly, can be an issue. This is a key method of the spatial
scheme object as its responsibility to provide a valid vector of information to its integrator
objects.
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Figure 2.8 – Example of the orientation issue with two triangles.

First, let us start with an example in 2 dimensions, in Figure 2.8. In this example, the entities
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have unknowns linked to them, and these unknowns received a global index.

Triangle 1 Degrees of Freedom :

Triangle 0 Degrees of Freedom :

0, 1, 2, 3, 4, 5, 6, 7, 8, 9

1, 2,15, 10, 11, 12, 13, 5, 6, 14

Points Faces Element

Points Faces Element

1, 2,15, 10, 11, 12, 13, 6, 5, 14

Points Faces Element

-1

Figure 2.9 – The corresponding lists of DoFs.

If we try to build the list of DoFs with just the informations of the graph, we obtain an error
as depicted in Figure 2.9. The list for triangle 0 is valid, all the DoFs are well sorted, but for
triangle 1, an error appears on the face shared with triangle 0. The DoFs are inverted, because
we are missing some information regarding orientation. This information will be added to the
graph in the form of an integer vector of a size equal to the number of faces of the element, that
will be attached to the element. It will give us the orientation information required to sort the
DoFs of the face when merging the list with the others.
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Figure 2.10 – Construction of the orientation.

When we load the mesh, we will decide that the first element referring to a face will be the
owner of this face, as depicted in Figure 2.10. The link between them will have the label +1. A
face can be connected to 1 or 2 elements. So, when we will build the other element, the relation
between this element and the face will have the label −1.

This problem is slightly more complex when we deal with a three dimensional mesh. In Fi-
gure 2.11, we have, on the left, a simple high order hexahedron. We focus on face number 2.
This face contains four degrees of freedom : {1, 2, 3, 4}. This face is shared with another hexa-
hedron, on the right part. This hexahedron knows this face as its face 0. It could be anything
between 0 and 5. Yet, depending on the order of the vertices that where found in the mesh
file, face 0 can be registered in 4 different ways. When registering an hexahedron, we read 8
integers. The first four integers represent face 0. So, if this hexahedron is composed of vertices
{10, 11, 12, 13, 14, 15, 16, 17}, face 0 is defined by its 4 vertices {10, 11, 12, 13}. But it can be ro-
tated three times, and face 0 may become {11, 12, 13, 10}, {12, 13, 10, 11}, {13, 10, 11, 12}. And,
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Figure 2.11 – Orientation and Rotation issue.

for each rotation, the order of the merging of the degrees of freedom list will be different. In
the figure, when there is no rotation, the degrees of freedom list {0′, 1′, 2′, 3′} will correspond
to {1, 2, 3, 4}. In the second case, with one rotation, the list becomes {2, 3, 4, 1}. In the third
case, two rotations, the list to merge is {3, 4, 1, 2}. And finally, in the fourth case, the list to
merge is {4, 1, 2, 3}. To avoid this issue, we added another information to the relation between
an element and its faces : the rotation. The element which has an orientation of +1 will have a
rotation of 0. The other element (orientation −1) will compare the indices of the face it has with
the indices of the owner (the element with orientation +1), and deduce the rotation to apply.
The rotation will be an integer ranging from 0 to (numberofindices− 1). With these additional
data, the reconstruction method can operate and provide a flat vector of data to the integrator
objects.

2.7 Computational implementation

As we saw in the proposed architecture, our platform has a vertical hierarchy of classes, or
objects. A class asks the class(es) below to work for it, uses the result to contribute to its own
computations and sends its result to the above class. We will start our description of the different
classes from the bottom of this hierarchy, where there are no dependencies in computation, and
see what is possible to compute when considering to the upper classes.

2.7.1 Finite elements collection

As we saw, the lower levels of our hierarchy are populated with our finite element classes. The
Quadrature Formulae classes provide weights and coordinates of the integration points that will
be used to compute integrals. The number of weights and points grows along with the order of
the polynomial we want to represent.

The Finite Element classes are another collection of methods. There are two important methods
in a Finite Element class. Two methods evaluate polynomials. The first one evaluates the shape
function polynomials of each degree of freedom on the given coordinate. It returns a small vector
of the size of the number of degrees of freedom. The second evaluates the gradient of the shape
function polynomials of each degree of freedom and returns a small matrix of the size of the
degrees of freedom times the dimension of the system.

The Geometrical functions are a collection of methods that compute geometrical values, ba-
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rycenter coordinates, inscribed circle center and radius. Also, they provide the transformation
from the physical space to the reference space, and its inverse.

2.7.2 Equations of state, models and, numerical fluxes

The basis class is the Equation of State class (EOS). This class first defines the number of
equations for one degree of freedom. As the number of equations increases, the size of the global
problem is multiplied by the number of equations. This class also provides methods to convert
physical values into other physical values. Such methods are used by the model and numerical
flux classes to compute quantities used by the integrator classes

2.7.3 Integrator classes

The Integrator classes are the tools used to compute quantities over different entities. Specialized
by the Equations of state, the Models and the Numerical fluxes, they compute what is required
by the Spatial scheme.

Like we saw previously, the Finite element polynomials are evaluated on a reference element
using the coordinates provided by the Quadrature formulae. This information is stored in the
Integrator and will be used when needed with a faster access than by re-evaluating a function.
We saw that the Geometrical functions classes are a collection of methods. It means that they
inherit from the same interface. Consequently, calling these virtual methods in the inner loops of
our platform is expensive. This is why to be faster, we stored a function pointer in the integrator
so as to speed-up the process of finding the function to execute, depending on the entry entity.

2.7.4 Spatial scheme

The Space Scheme is the central object of our platform. It has the knowledge of the mesh
and of its geometrical data. It can iterate over the mesh, visit the entities in any order, use
the connectivity of each entity to move to a neighboring entity. With the cell reconstruction
method, it can gather scattered information in a flat vector and send it for computation to an
Integrator. It comprises a toolbox of integrators to compute quantities on elements or faces,
depending on user requirements. Every contribution computed can be assembled in the linear
system using the Matrix interface. Using its knowledge of the data distribution of the solution,
it can export the solution to the end-user.

More importantly, this object hides the parallel implementation of the method. It can compute
a domain decomposition, and the methods of the scheme can process a sub-domain. In each
sub-domain, to handle the shared memory problem, we can either we rely on graph coloring to
avoid race conditions when scheduling computations, or else we can use our runtime systems and
submit tasks. The graph coloring approach is discussed in Section 3.6 and will not be developed
here.

2.7.5 Time scheme

This object simulates the time stepping of our simulations. Among its features,

— It can create opaque data objects and provide them to the Spatial scheme object for
initialization.

— It has access only to the Spatial scheme interface. It provides it data objects for update,
and can perform simple operation on these data.

— It can manipulate the linear system through the Spatial scheme interface.
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2.8 Experiments and results

We compared our platform to the Aghora platform to illustrate our design choices about our
platform.

Measurement were done on the Avakas cluster 4, which is composed of 264 nodes of bi-pro
hexa-core Intel Xeon x5675 CPUs running at 3,06 GHz. Each node has 48GB of RAM.

2.8.1 Numerical tests

Due to the fact that both the Aerosol and Aghora libraries are not yet mature, a simple test was
chosen for comparing libraries. In Aghora, only three dimensional computations are possible.
One and two dimensional computations are also possible, but by extruding one layer of cells
in the z direction (and also in the y direction in one dimension). In AeroSol, true one and
two dimensional computations can be considered, but geometrical functions, finite elements
functions, and mesh I/O were not yet available for three dimensional shapes. For performing
fair comparisons, the Aghora point of view was adopted, and single layer, hexaedral meshes were
used for performing a two dimensional test. AeroSol later was extended to three dimensions.

2.8.2 Yee vortex

We consider the convection of an isentropic vortex in a 2D uniform and inviscid flow [75] with
conditions ρ∞ = 1, u∞ = ex and T∞ = 1. The domain is the unit square Ω = [0, 1]2 with
periodic boundary conditions. The initial condition consists in a perturbation of the uniform
flow which reads in primitive variables :

ρ(x, 0) =
(

1− (γ − 1)
(
M∞Mvrc

2 exp(1− r2

r2c
)
)2) 1

γ−1
,

u(x, 0) = 1−Mvy exp(1− r2

r2c
) ,

v(x, 0) = Mvx exp(1− r2

r2c
) ,

p(x, 0) =
1

γM2
∞
ρ(x, 0)γ ,

where r2 = (x− xc)2 + (y − yc)2 denotes the distance to the vortex center (xc, yc)
>, rc and Mv

are the radius and strength of the vortex, and M∞ is the Mach number of the freestream flow.
The exact solution of this problem is a pure convection of the vortex at velocity u∞.

Numerical results are obtained for physical parameters M∞ = 0.5, Mv = 4, rc = 0.1, and a final
time T = 1.

As the periodic boundary conditions were not yet available in the AeroSol library, the test
was slightly modified as follows : instead of adding a mean flow to the vortex, the initial state
was taken as the state at infinity, without any velocity. On the boundaries, the values of the
vortex are weakly applied. From a computational point of view, the workload is nearly the same,
except for the communications that are needed for periodic boundary conditions in the case of
the unsteady vortex.

Table 2.4 presents a weak scalability analysis, in which we evaluate the elapsed time observed
for the global computation and for a fixed number of 24×24 hexaedral elements per computing
core. Results are shown as a function of the number of cores. The relative increase, E, of the
elapsed time with respect to the single core is also indicated, on Figure 2.12. Note that the

4. https ://redmine.mcia.univ-bordeaux.fr/projects/cluster-avakas/wiki
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Table 2.4 – Yee vortex problem : time/proc. [s] with Aerosol and Aghora for 3000 Runge-Kutta
sub-steps.

# cores 1 4 16 64 256 1024 2048

p = 0 Aerosol 202.52 205.32 209.91 216.68 222.69 224.01 225.52

p = 1 Aghora 12.67 14.02 15.69 15.88 16.42 18.43 17.97
Aerosol 977.3 977.1 999.3 1035.6 1074.5 1074.3 1083.9

p = 2 Aghora 94.12 96.90 100.08 100.72 103.28 112.91 116.75
Aerosol 5938.6 5923.2 6047.1 6307.7 6504.6 6501.0 6640.5

p = 4 Aghora 1401.5 1421.3 1430.2 1435.5 1439.1 1451.4 1370.8

memory requirement increases with the polynomial degree : the number of degrees of freedom
per core is 4608, 15552, and 36864 for p = 1, 2, and 3, respectively. We observe that the solver
scales nearly perfectly for p = 4, while results deteriorate for lower polynomial degrees p = 1
and 2. The relative part of communications compared to the numerical scheme decreases as the
polynomial degree increases : from 1.1% for p =1 to 0.1% for p=4, as we can see in Table 2.5.
As a consequence, the high frequency of communications between processes for a large number
of cores becomes insensitive for large p-values. AeroSol has a stronger work load for boundary
sides because, in Aghora, the boundary sides of the top and the bottom are ignored in the
boundary side loop, whereas in AeroSol, a freestream boundary condition was used.

We observe in Table 2.4 that Aghora has lower execution time for a same number of RK sub-
steps. Using an analyzer, we found the following reasons for the lower efficiency of AeroSol.

— Firstly, AeroSol is a finite element code that can both use continuous and discontinuous
finite elements. In continuous finite elements, a degree of freedom is shared by many
elements, if it is located on edges, faces, or points. Consequently, a connectivity table
must be built for knowing which degrees of freedom are shared by which elements. In
AeroSol, this connectivity table is never stored, and its computation is irrespective of
continuous and discontinuous finite elements (thus, it was not optimized for discontinuous
finite elements). We found that the computation of this connectivity table is nearly three
times more costly that the computation of the local residual. We are currently developing
a version in which the connectivity table is stored.

— Secondly, in AeroSol, the geometry (e.g., the local Jacobian of elements) is never stored.
This means that, at each time step, and on all quadrature points, all the needed geometry
is computed. In the computation of the local residual, we evaluated that 35% of the time
elapsed in the computation of the local residual is for computing geometrical functions.
We will develop in the near future a version in which the geometry is stored.

— Lastly, we did not use any optimization option for compiling AeroSol.

Table 2.5 gives a detailed analysis of the relative costs of different stages of the numerical
algorithm. Results are given for one core. The implementation of surface and volume integrals
for fluxes clearly represent the most expensive stage and its relative cost increases with p. This
result is in agreement with the high scalability observed for high p-values as local operations
strongly dominate communications.

Finally, we wanted to compare the results obtained with different MPI libraries. However, Aero-
Sol needs an MPI library for which the MPI_THREAD_MULTIPLE is supported (i.e., if the process
is multi-threaded, multiple threads may call MPI at once with no restrictions), and such a func-
tionality is only available with MVAPICH2 on Avakas. That is why we show the results of this
comparison only for Aghora and not for AeroSol, see Table 2.6. Note that an important part
of this execution time can be due to the initialization of the MPI universe, see Table 2.7.

37



Figure 2.12 – Comparison of the weak scalability obtained for AeroSol and Aghora with the
library mvapich2. All the results show good scalability. The least scalable case is Aghora for
p = 1, and the most efficient is Aghora for p = 4. Nevertheless, if we consider the results given
in Table 2.4, we see that AeroSol is much more costly if execution time is considered. This
explains that weak scalability is better, as AeroSol has more computations for overlapping
communications.

Table 2.5 – Yee vortex problem : relative costs in percent of different stages of the numerical
algorithm per physical time step.

p 0 1 2 4

AeroSol AeroSol Aghora AeroSol Aghora Aghora

boundary surface integral 31.1 25.0 4.2 16.5 3.2 2.2

internal surface integral 51.3 36.4 57.5 21.2 46.8 34.6

volume integral 17.3 37.6 36.5 61.4 49.3 63.0

mass matrix inversion 0.3 1.0 1.8 0.8 0.7 0.2

# cores 1 4 16 64 256 1024 2048

IntelMPI time/proc. [s] 282.78 288.55 299.80 303.38 309.13 343.27 427.47
E [-] 1 1.02 1.06 1.07 1.09 1.21 1.51

OpenMPI time/proc. [s] 282.92 291.50 299.53 302.27 309.67 334.44 341.93
E [-] 1 1.03 1.06 1.07 1.10 1.18 1.21

MVAPICH2 time/proc. [s] 282.37 290.71 300.25 302.17 309.85 338.73 350.26
E [-] 1 1.03 1.06 1.07 1.10 1.20 1.24

Table 2.6 – Comparison of execution time by core for a polynomial degree equal to 2 (9000 RK
sub-steps). We observe that the most efficient execution is obtained for the OpenMPI library
on Avakas.
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# core 256 1024 2048

IntelMPI 15 122 5001

OpenMPI 05 010 0020

MVAPICH2 33 122 0536

Table 2.7 – Average elapsed time [s] required for initialization of the MPI universe.

2.9 Conclusion

In this chapter, we presented a state of the art of software platforms that provide features close to
the ones that we wanted to implemented. Our goals were the accessibility of the platform and, the
ability for anyone to contribute to the platform. This is an ambitious goal, but the decomposition
of the platform in modules interacting by simple interfaces, and a set of macros simplifying
reading and writing will help to improve this point. The second goal was the flexibility of the
platform. The platform uses modern tools for compilation and testing. All the basic classes,
model, numerical fluxes, finite elements, and geometric functions are heavily tested. There are
some scenari to test the time and spatial schemes although it requires an outside look to validate
the test. The third objective was the mathematical abstraction of the methods. We hid the
difference between the continuous and the discontinuous methods in the cell reconstruction
methods. All our integrators work on local cells without knowing the methods. The results
presented in the previous section are encouraging, and we are satisfied by the performance of
the platform. Choosing to be generic on every aspect, is anti-performant by definition. We lose
many easy optimizations and yet, the platform exhibits a good behavior.
In the next chapter, we will discuss the ways to parallelize finite element methods in a shared
memory environment, and we will present the second contribution of this thesis regarding the
assembly operation over a runtime system.
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Chapitre 3

The assembly operation
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3.1 Introduction

Ten or twenty years ago, the increase in performance relied exclusively on the augmentation of
clock frequency, and on a higher degree of instruction level parallelism. Sadly, one attained a
physical limit, the outcomes are not worth the power needed and the heat dissipation required
to sustain the augmentation of performance. So, rather than increasing the single-thread per-
formance, one started to miniaturize and aggregate multiple processing units on the same chip.
Multi-core processors are nowadays ubiquitous, and the evolution of computers is driven by a
run towards higher and higher numbers of cores per chip. This trend was largely anticipated by
Graphical Processing Units (GPUs).
The GPUs, well known for their use in graphics applications, comprise hundreds of slow cores,
and a fast memory, and have the best ratio of performance with respect to cost. The first
attempts to use GPU in the context of scientific computing emerged in the 90’s [64]. Recent
GPUs are relatively powerful and can outperform CPUs in term of data processing and memory
bandwidth. By comparison, the latest NVIDIA Tesla card, the K40, has a peak performance
of 1.43 × 1012 floating point operations per second for double precision operations and a me-
mory bandwidth of 288 GBytes/s. The GPU seems to be the perfect candidate for scientific
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computing,. Yet developing an application that makes efficient use of a GPU is more complica-
ted. Interfaces like CUDA, or OpenCL have quickly evolved to help the developers. The GPGPU,
General Purpose GPU, gathers all the work in the domain to ease the use of GPUs. Inspired by
all the performance of these devices working for the scientific community, Intel released a new
co-processor device as under the Intel MIC brand, the Xeon Phi. It comprises 60 optimized
cores, handling 240 threads, for a peak performance of 1012 floating operations per second. Each
core uses the x86 instruction set, and its design is based on the old and heavily optimized P54C,
one of the first Pentium processors from the mid ’90s. The main advantage of these devices
is their low consumption, and their cheap price, for a high parallelism. More recently, Intel
is trying to make the high performance accelerators and regular cores converge into complex
processors such as the Ivy Bridge processor where the graphical processor is integrated into the
same chip as the general purpose cores.

The increasing parallelism and complexity of hardware architectures requires the High Perfor-
mance Computing (HPC) community to develop more and more complex software that combine
multiple technologies in order to exploit all the available computational resources. To achieve a
high level of optimization and exploit this potential, not only the related codes are heavily tuned
for the considered architecture, but the software is often designed as a single entity that aims
at simultaneously coping with both the algorithmic and architectural needs. If this approach
may indeed lead to extremely high performance, it is at the price of a tremendous development
effort, a lesser portability and a poor maintainability.

Alternatively, a more modular approach can be employed. In this case, the numerical algorithm
is described at a high level, independently of the hardware architecture, as a Directed Acyclic
Graph (DAG) of tasks in which a vertex represents a task and an oriented edge represents a
dependency between tasks. The DAG describes explicit dependency between tasks or a data
dependency, that tasks have to be performed in some order.

A second layer is in charge of taking the scheduling decisions. Based on these decisions, a
runtime system will perform the actual execution of the tasks, maintaining data consistency
and ensuring that dependencies are satisfied. The fourth layer consists of the optimized code for
the related tasks on the underlying architectures. This approach is starting to give successful
results in various domains going from very regular applications [66, 3, 19, 74] to very irregular
ones [54, 2, 4]. However, building such complex applications on top of task-based runtime systems
requires algorithmic modifications of some core kernels of the application so that the flexibility
offered by the runtime system can be fully exploited. More precisely, these operations need
to be expressed as a task graph that should express enough parallelism to allow the runtime
system to overcome all the synchronizations/race conditions which can be met with classical
implementations of these kernels.

In this chapter we will present different approaches to parallelize a numerical simulation appli-
cation in a shared memory context and using a task-based paradigm. Firstly, we will present
the state-of-the-art approaches, based on graph coloring methods coupled with OpenMP. We will
then show how we adapted this method to our problem. We will then introduce runtime sys-
tems and see how we can use these middleware to solve the problem of the assembly operation.
Finally, we will present some results along with a discussion to illustrate our ideas.

3.2 Related Works

Considering the increasing complexity of modern high performance computing platforms, the
need for a portable layer that will insulate the algorithms and their developers from the ra-
pid hardware changes becomes critical. Each new accelerating hardware leaves programmers
to decide whether to make the application dependent of this feature, breaking compatibility
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Figure 3.1 – Comparison of the classical approach to develop applications with respect to the
runtime system approach.

with other hardware, or not, and so, misses the opportunity to increase the performance of the
platform. This common problem is known as the performance portability issue. Recently, this
portability layer appeared under the name of task-based runtime. There are two purposes of
runtime systems. First, to provide abstraction, runtime systems offer a uniform programming
interface for a specific subset of hardware. For example, OpenGL and DirectX are runtime sys-
tems dedicated to hardware-accelerated graphics. They are designed as thin user-level software
layers that complement the basic, general purpose functions provided by the operating system
calls. Applications then target these uniform programming interfaces in a portable manner. Low
level and hardware specificities are hidden inside the runtime system. The abstraction provided
by runtime systems thus enables portability. Yet, this is not enough to provide portability of per-
formance, as it does nothing to leverage low-level-specific features to get increased performance.
That’s why the second objective of runtime systems is to optimize the actual application map-
ping onto resources by dynamically scheduling the tasks onto resources as efficiently as possible.
This resource selection process is based on :

— scheduling algorithms and heuristics to decide which processor will process which task
in order to optimize a given metric (makespan, memory-usage, etc) ;

— hints provided by the application (task priorities, critical path, etc) ;
— performance counters provided by the runtime system (performance of the kernels, etc).

By relying on such a layered approach, applications can benefit architecture’s underlying
low-level capabilities, leading to enhanced performance without breaking their portability.

Runtime systems provide higher-level software layers (as opposed to low-level development kits
like CUDA [26] or OpenCL [62]) with convenient abstractions which permit to design por-
table algorithms without having to deal with low-level concerns. The main objective of these
frameworks is to provide simultaneously support for both data management and scheduling
altogether.

Runtime systems can be classified in two main groups, namely, generic or domain specific,
depending on their area of use. In the remainder of this section, we will focus only on runtime
systems with high level interfaces and implementing mainly a task-based paradigm.
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A lot of initiatives have emerged in the past years to develop efficient runtime systems for
modern heterogeneous platforms. Most of these runtime systems use a task-based paradigm
to express concurrency and dependencies by employing a task dependency graph to represent
the application to be executed. The main differences between all the approaches are related to
whether or not they manage data movements between computational resources and to which
extent they focus on task scheduling.

Qilin [57] provides an interface to submit kernels that operate on arrays which are automatically
dispatched across the different processing units of an heterogeneous machine. Moreover, Qilin
dynamically compiles parallel code for both CPUs (by relying on the Intel TBB [68] technology)
and for GPUs, using CUDA. Another relevant framework is Charm++ [43] which is a parallel
variant of the C++ language that provides sophisticated load balancing and a large number of
communication optimization mechanisms. Charm++ has been extended to provide support for
accelerators such as the Cell processors as well as GPUs [50]. Other runtime like UPC [17] rely
on the PGAS programming model to express the parallelism.

Many runtime systems propose a task-based programming paradigm. Runtime systems like
StarPU [8], KAAPI/XKAAPI [39], APC+ [37], or Legion [73] offer support for hybrid platforms
comprising CPUs and accelerators. Their data management is based on a DSM-like mechanism :
each data block is associated with a bitmap that permits to determine whether there is already a
copy locally available to a specific processing unit or not. Moreover, task scheduling is based on
dynamic strategies like work-stealing, e.g. for KAAPI. The StarSs project is actually an umbrella
term that describes both the StarSs language extensions and a collection of runtime systems
targeting different types of platforms [10, 16, 9]. StarSs provides an annotation-based language
which extends C or Fortran applications to offload pieces of computation on the architecture
targeted by the underlying runtime system. Finally, the PaRSEC [18] runtime system dynamically
schedules tasks within a node using a rather simple strategy based on work-stealing. It was
first introduced for linear algebra but was later extended to more generic applications. It takes
advantage of the specific shape of the task graphs (in the sense that there are few different types
of tasks, only a great number of instance of these tasks) to represent the task dependency graph
in an algebraic fashion. A more detailed presentation of the StarPU and the PaRSEC runtime
systems will be given in the following sections.

In parallel to the efforts mentioned in the previous section, many domain specific runtime sys-
tems (mainly targeting linear algebra) have been developed in the past years. The TBLAS
runtime system [70] follows a linear algebra specific approach. It automates data transfers and
provides a simple interface to create dense linear algebra applications. TBLAS assumes that
programmers should statically map data on the different processing units, but it supports he-
terogeneous data block sizes (i.e., different granularity of computations). The QUARK runtime
system [51] was specifically designed for scheduling linear algebra kernels on multi-core archi-
tectures. It is characterized by a scheduling algorithm based on work-stealing and by its higher
scalability in comparison to other dedicated runtime systems. Finally, the SuperMatrix runtime
system [25] follows nearly the same idea, as it represents the matrix hierarchically : the matrix
is viewed as blocks that serve as data units, while operations on those blocks are treated as
units of computation. The implementation transparently enqueues the required operations, in-
ternally tracking dependencies, and then executes the operations utilizing out-of-order execution
techniques.

The main differences between all the approaches concern whether or not they manage data
movements between computational resources, to which extent they focus on task scheduling,
and how task dependencies are expressed. These task-based runtime systems aim at performing
the actual execution of the tasks, both ensuring that DAG dependencies are satisfied at exe-
cution time and maintaining data consistency. Most of them are designed to allow writing a
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program independently of the architecture and thus require a strict separation of the different
software layers : high-level algorithm, scheduling, runtime system, and actual task implementa-
tion. Among these frameworks, we will focus on the StarPU and the PaRSEC runtime systems.

Regarding the use of task-based runtime systems for the design of high-performance applications,
a lot effort has been made in the past five years. The dense linear algebra community has
strongly adopted such a modular approach [66, 3, 19] and delivered subsequent production-
grade solvers. As a result, performance portability is achieved thanks to the hardware abstraction
layer introduced by runtime systems. More recently, this approach was considered in more
complex/irregular applications : sparse direct solvers [54, 2], fast multipole methods [4], etc.
The obtained results are promising and illustrate the interest of such a layered approach.

From the numerical simulation point of view, and more precisely regarding finite element me-
thods, a lot of effort has been made recently to exploit modern heterogeneous architectures
(i.e. multi-core systems equipped with accelerators) [41, 34]. The main idea is to be able to
have efficient implementations of the core kernels needed by the numerical simulation, namely,
assembly operation, and linear systems solution, on these architectures. We believe that this
effort is necessary to understand the bottlenecks so as to achieve a good performance on such
heterogeneous architectures. However, we believe, as stated above, that the modular approach
proposed in this chapter, coupled with a fine grain task-based expression of the application, will
ensure performance portability.

3.3 The StarPU runtime system

As most modern task-based runtime system, StarPU aims at performing the actual execution
of the tasks, both ensuring that the DAG dependencies are satisfied at execution time and
maintaining data consistency. The particularity of StarPU is that it was initially designed to
write a program independently of the architecture and thus requires a strict separation between
the different software layers : high-level algorithm, scheduling, runtime system, and actual code
of the tasks. We refer to Augonnet et al. [8] for the details and present here a simple example
containing only the features relevant to this work. Assume we aim at executing the sequence
fun1(x, y) ; fun2( x) ; fun1(z, w), where funi,i∈{1,2} are functions applied to w, x, y, z data ; the
arguments corresponding to data which are modified by a function are underlined.

A task is defined as an instance of a function on a specific set of data. Codelets are abstrac-
tions of tasks that can be executed either on a core or on an accelerator. Developers provide
implementation of the codelets for each architecture that can execute them, using their specific
programming languages. Codelets embed a high level description of the data manipulated by the
function, and their access mode.The set of data and tasks are asynchronously declared using a
submit task instruction. This is a non blocking call that allows one to add a task to the current
DAG and postpone its actual execution up to the moment when its dependencies are satisfied.
Although the API of a runtime system can be virtually reduced to this single instruction, it may
be convenient in certain cases to explicitly define extra dependencies. To do so, identification
tags can be attached to the tasks at submission time and dependencies are declared between the
related tags with the declare dependency instruction. The resolution of dependencies using
tags are faster than the classical data dependencies.

Several preexisting task scheduling policies can be applied to any high-level algorithm. Moreover,
the API offers facilities to implement new scheduling strategies. One can create as many queues
as desired, one for the the GPUs and one for the CPUs, for example, and execute the functions
triggered by the runtime layer every time a new task has its dependencies satisfied.
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3.4 PaRSEC

As described in [20], PaRSEC is a dataflow programming environment supported by a dynamic
runtime. It allows the programmer to handle easily the challenges of the ongoing changes at the
hardware level. The underlying runtime is a generic framework for architecture-aware scheduling
and management of micro-tasks on distributed many-core heterogeneous architectures. The
dynamic runtime is only one side of the necessary abstraction, as it must be able to discover
concurrency in the application so as to feed all the computing units. To reach the desired level
of flexibility, it supports the runtime with a symbolic representation of the algorithm, able to
expose more of the available parallelism than traditional programming paradigms. The runtime
is capable of exploiting this parallelism to increase the opportunities for useful computation,
predict future algorithm behaviors and increase the usage of the computing units.

Algorithm 2 Ping-Pong algorithm expressed in the PaRSEC dataflow description

1: PING(k) : k = 0 .. N
2: RW A ← (k == 0) ? A(k) : A PONG(k-1)
3: → A PONG(k)

4: PONG(k) : k = 0 .. N
5: RW A ← A PING(k)
6: → (k == N) ? A(k) : A PING(k+1)

Algorithm 2 represents a concise dataflow description of a ping-pong application, where some
data A(k) is altered by two tasks, PING and PONG, before being written back into the original
location A(k). Line 1 defines the task PING(k) and its valid execution space, ∀k ∈ [0..N ]. Line
2 depicts the input value A for the task PING(k) : if k is 0, the data is read from an array A(),
otherwise it is the output A of a previous task PONG(k-1). Line 3 describes the output flow of
the task PING, where the locally modified data A is transmitted to a task PONG(k). This task
PONG(k) can be executed in the context of the same process as PING(k), or remotely. The
runtime will automatically infer the communications depending on the locations of the source
and target task. Lines 4 to 6 similarly depict the complementary task PONG.
Each task includes, in addition to the dataflow definition depicted in the above algorithm,
several possible implementations of the code to be executed on the data, the so-called codelets.
Each codelet is targeted toward a specific hardware device (CPU, Xeon Phi, GPU) or a specific
language or framework (Open CL). The decision of which of the possible codelets is to be
executed is controlled by a dynamic scheduling that is aware of the state of all local computing
resources. Once the scheduling decision taken, the runtime provides the input data located
on the specific resource where the task is to be executed and, upon completion, it will make
the resulting data available for any potential successors. As the task flow definition includes
a description of the type of use made by a task for each data (read, write or read/write) the
runtime can minimize the data movements while respecting the correct data versioning. Not
depicted in this short description are other types of collective communication patterns that can
be either described, or automatically inferred from the dataflow description.
Overall, this symbolic description of the algorithms allows for a separation of concerns between
the different parties involved : the user, the compiler and the programming environment. The
user focuses on a high level description of the algorithm in terms of data-flows, the compiler
focuses on optimizing the codelets, while the runtime focuses on maximizing the occupancy
of computing resources (scheduling), improving data reuse and minimizing data movements.
Moreover, a significant difference between this approach and what other task-based runtimes
typically do is to be mentioned. In other task-based runtimes, the execution flow is directly
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derived from the sequential execution of the target application ; discovering the task-graph in
a scalable way in such cases is a challenge in distributed environments. In contrast, PaRSEC
’s parametrized task graph provides a concise symbolic task representation that allows for a
scalable task discovery and scheduling in distributed, heterogeneous environments.

3.5 Finite Element Method
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Figure 3.2 – A basic representation of a Finite Element Method. The method visits each
element, builds contributions and assembles them in the global linear system.

As shown in the previous chapter, to follow the evolution of a physical phenomenon, finite
element-based are often used . As mention in algorithm 1 (section 2.1) At each time step, we
assemble a linear system, solve it, and update the solution, then iterate over the next time step.
Focusing on the mathematical aspect is not our concern in this chapter. Rather, our aim is to
address the algorithmic challenges related to an efficient implementatio of these methods. We
will study two families of finite element methods : those that operate in the continuous domain,
referred as (CG , Continuous Galerkin), and those that operate in the discontinuous domain
(DG , Dicontinuous Galerkin). These methods apply to a mesh of elements. The mesh will be
be visited during algorithm 1 in various ways :

— loop over all the elements. For each element visited, we compute at least one contribution
block for the global matrix, and at least one contribution for the global right hand side ;

— loop over the border faces. The boundary conditions will be applied to the matrix and
to the right hand side ;

— loop over all the faces in the mesh. In the DG case, a numerical flux needs be computed
between elements sharing a face. This phase can update the matrix and/or the right
hand side, depending wether the method is explicit or implicit.

Each time we visit an entity like an element, we gather information coming from the entities
(its faces, edges, and points) around this element, and build a contribution, which will be
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scattered in the linear system. We distinguish two stages : first, the embarrassingly parallel
computation of each contribution block, or vector ; then the assembly of these contributions
within the global linear system. Figure 3.2 shows a small example of a method visiting the
elements of the mesh. For each element, two contributions are computed : one goes into the
global sparse matrix, and the second one into the right hand size. Both use an indirection array
that gives the correspondence between the local number of the equation in local memory and
the global numbering in the whole system. The way each contribution is computed depends on
the method and on the physics. It can be as easy as a vector product to generate a matrix, but
it can be as difficult as an inversion of a function using an iterative method.

3.5.1 Computation of contributions

In this phase of computation, each entity, element or face, can be processed in parallel. The entity
will gather local information in the case of the element, the face will gather informations coming
from the two elements sharing it. Using some reference information such as the shape functions,
the quadrature formula, and the geometry of the local entities, the method can compute the
contribution. Our first strategy is to pack elements, that we call a macro element. All elements
of the macro element are of the same kind, so the finite element is fixed. Knowing this, when
treating a macro element, the shape functions, the quadrature formula, the geometric functions
are the same for all the elements. Each operation on an elements is rewritten to work on a set
of element instead of a single element.
The ideal number of element in a macro element is determined dynamically, based on the type
of the element, the order of the solution and some parameters coming from the hardware, like
memory size of the GPU. To avoid costly indirections on GPU some information is duplicated,
such as the geometrical coordinates, and the list of degrees of freedom. This information and that
linked to the shape functions, allows us to compute the values on our elements. The laplacian
DAG is indicated in figure 3.3. In this figure, the DAG depicted is applied to an element Ei.
First, two tasks compute the contribution : the ∇U∇V and the Mass Integrator. Both these
tasks uses a temporary buffer, called B, in which the contribution is stored after computation
and a set of reference data related to the element, like the shape functions, the quadrature
formulae and, its geometry. Finally, an assembly task add the contribution in the whole linear
system using the

Mass Integrator

B,W

∇U∇V

B, RW

Assembly

B,R
A,RW

Geometry(Ei), R

Shape functions, R
Quadrature Formula, R

DoF mapping(Ei)

Figure 3.3 – Full directed acyclic graph of the computation of the contribution and assembly
for the laplacian problem.
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3.5.2 Taskified Finite Element Method using StarPU

To submit tasks to StarPU, we describe here what the developer should define. The first step
is to re-express the target application as directed acyclic graph of tasks taking input data and
producing output data. Let us take for example, the computation of the laplacian,

−∇U + U = f (3.1)

We have explained in Chapter 1 that this operation involves two integrators to compute the
contribution coming for each element : The mass integrator and the gradient (∇U∇V ).

Mass Integrator

B,W

∇U∇V

B, RW

Assembly

B,R
A,RW

Figure 3.4 – Directed acyclic graph of the assembly for the laplacian problem.

In figure 3.4, we provide a DAG representation of the operations that need to be applied to each
element of the mesh. In green ellipses, one can see the operations, or tasks, and between them, the
data dependencies associated with an access mode. As said previously, by providing the access
mode for each data, StarPU will infer the dependencies either at runtime or at the submission
phase. Please note that the order of the operations has no importance, each contribution will
be summed in the global matrix, and the sum being commutative, one can do either solutions.
One can merge the two operations (∇U∇V and the Mass Integrator) in one, but we wanted
to built a set of elementary blocks, and have avoided complex operations. We have indicated
in figure 3.4 the buffers B in which we will accumulate the contribution, and A, the matrix in
which we assemble the total contribution of the element. The complete DAG for this operation
is given in figure 3.5.

Each “instance” of this DAG will work on a certain element. Some informations are independent
from the elements and more related to the kind of element, like the shape functions and the
number of degrees of freedom. The informations linked to the quadrature formula are defined by
the finite element. Geom(Ei) contains the coordinates of the real element in the global space.
As explained in the previous chapter, our methods work on a reference element, so we have
to keep the real coordinates during the computations to be able to project the contributions
in the global space. Finally, the degrees of freedom mapping contains the indirections arrays
needed to assemble each local entry of a contribution in the global matrix. Once the DAG of the
method has been defined, The programmer needs to describe the data to StarPU. This is done by
registering all the data. Secondly, one will describe each type of task as a codelet. This structure
embeds the different implementations of our task. One can provide one implementation for each
generation of GPU, each with its own optimizations. We will provide the number of registered
data this function will manipulate, and then the access mode for each of this data. This is the
information StarPU will use to infer the dependencies between the submitted tasks.
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Figure 3.5 – Full directed acyclic graph of the resolution of the laplacian problem.

3.5.3 Taskified Finite Element Method using PaRSEC

The PaRSEC runtime is different from StarPU. Among the differences, we can talk about the
visible ones from the programmer’s perspective. First of all, in StarPU, the developer will use
an insert task method to submit tasks, dependencies will be inferred from the order tasks are
submitted : StarPU relies on the Sequential Task Flow model for the description of the task
graph. In PaRSEC, when the developer uses the JDF (an intermediate language to describe the
task graph) file method data dependencies will be explicitly described and no tasks will be
explicitly submitted. The runtime will build on its own the list of executable tasks based on the
description of the algorithm provided in the JDF : PaRSEC uses the Parametrized Task Graph
paradigm for describing the DAG. Secondly, StarPU will use its full knowledge of the directed
acyclic graph to schedule the tasks using cost models to decide the where and when to execute a
ready task. In PaRSEC, the runtime has only a local view of the DAG ; when completing a task,
it will discover the released tasks and add them to the executable tasks set. We used priorities
in our methods, it works well with StarPU, but the main scheduling criterion of PaRSEC is not
is the locality of data, the defined priorities are only used as hints. We will give a description
on how PaRSEC was used once the taskified assembly operation is introduced.

In the following section, we will present in more details the assembly operation of the contribu-
tion blocks and present the taskified approach we propose.

3.6 The assembly operation

From a general point of view, assembly operations can be viewed as scatter-add operations
of each contribution on the global matrix following the scheme depicted in Algorithm3. Each
contribution block after being built is summed with the corresponding entry of the matrix A.
The association between entries of the contribution blocks and the entries of the global matrix
A are determined during an initialization phase where two indirection arrays rmap and cmap
store the correspondence between local indices of the contribution block and global indices of
the matrix A.

In Figure 3.6, let us consider this small mesh composed of three quadrangles, for each quadran-
gular one will build a contribution block of size 4x4. The global matrix A will be 8x8 : there are
8 equations in this system. If we look at the quadrangular E2 (vertices 3, 4, 5, 6), rmap(c2, 1)
(resp. cmap(c2, 1)) will be equal to 3 while rmap(c2, 2) (resp. cmap(c2, 2)) will be equal to 4.
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1: Initialize matrix A.
2: for each contribution Ci do
3: for each entry c[i][j] of Ci do
4: A[rmap[Ci, i]][cmap[Ci, j]] + = c[i][j]
5: end for
6: end for
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Algorithm 3 – Sequential assembly operation. Figure 3.6 – Sequential assembly operation
on a simple mesh.
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Figure 3.7 – Two elements overlap. Their contributions overlap too.

Recently, a lot of work has targeted the implementation of efficient assembly operations for finite
element methods running on multi-core architectures which may be enhanced with accelerators.
The main issue with the parallelization of assembly operations comes from the race conditions
which occur when two different contribution blocks need to update the same entry of the global
matrix A. In Figure 3.7, one can see that the unknown number 4 will receive two contributions
(corresponding to C1 and C2) that must be treated sequentially.
A first approach, a naive one, is to process the contribution blocks in a sequential way using
a parallel implementation of the assembly of one block. In the figure 3.8, one can see for each
block a 1D distribution of work. Each color represents a thread, each thread working on a row
of the contribution block. One will use a fork-join model to exploit the parallelism inside the
block. This strategy requires the contribution block to be large enough to ensure performance.
Moreover, this approach suffers from the lack of scalability.
More recently, in [24] Cecka et al adapted a parallelization approach based on a coloring of the
contribution blocks to multi-core architectures : each block of the same color can be treated
in parallel. This property is guaranteed, at construction, by the fact that each element has
a different color than its neighbours. If two elements share at least one equation, those two
elements will receive two different colors. The worst case we have to consider is when elements
share equations on the vertices. Basically, it means that an equations is owned by one to n
elements. In Figure 3.9 we can see six triangles sharing an equation. Each element will contribute

51



C2

3
3
4

4 5

5

6

6

1
2
3
4

21 3 4 5 6 7 8

5
6
7
8

A

1 2

3 4

5 6

7 8
E3

E2

E1

C3

5
5 6

6
7

7 8

8

C1

1
2

21 3

3
4

4

Figure 3.8 – Each contribution block is divided in rows. And each rows is treated in parallel.

Figure 3.9 – 6 triangles share an equation. Each element receives a different color to be treated
in a sequential way.

to this equation, so we have to treat them sequentially in order to avoid the race conditions.
Each element shares a sub-set of equations with his neighbours. So, to avoid race conditions,
we just give to the element a different color than its neighbours. We then put every element of
the same color in a set. In this set, we know that we can treat all the elements in parallel. The
coloration algorithm we implemented is as follow :
In algorithm 4, we give a detailed description of the coloration algorithm. From line 1 to 3, we
initialize each element with a NULL color. Line 4 initializes the color counter. On line 5, we keep
the information of the number of element colored since the beginning, so we know the number
of elements remaining. Between line 6 and 8, we pick a random number for each element and
store it in the element. Then comes the election phase. We traverse the mesh, and for each non
colored element, we compare its random value to the one of its neighbours. If the neighbour
has neither a color, nor being colored during this round, we compare the value. If the current
element has a superior value, we keep tracking this information in a boolean. When we finished
visiting the neighbours, we can decide if the element is a local maximum and then paint it int
the current color C. Finally, during the final phase, we search for the elements forgotten during
the process. Between line 24 and 36, the idea is to color elements whose neighbours have not
been colored this round although they are not local maximum.
This approach allows to do the two phases in one time. While iterating over the elements
in parallel, using OpenMP for example, one can compute the contributions and assemble them
immediately. This will keep the memory consumption at a low level.

For c = 0 .. Ncolor -1

For i = 0 .. Nelement[c] // OpenMP loop

ComputeBlock(i, C_i)

ComputeRHS(i, B_i)

AssembleBlock(A, i, C_i)

AssembleRHS(B, i, B_i)
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Algorithm 4 Coloration algorithm

1: for each element E of the mesh M do
2: E.color ← -1
3: end for
4: C ← 0
5: while there are elements to color in M do
6: for each element E of the mesh M do
7: E.random ← random number from 0 to N
8: end for

{first step to elect local maximum}
9: for each element E of the mesh M do

10: if E.color = -1 then
11: boolean local max ← true
12: for each element F, neighbour of element E do
13: if F.color = -1 OR F.color = C then
14: if if F.random > E.random then
15: local max ← false
16: end if
17: end if
18: end for
19: if local max then
20: E.color ← C
21: end if
22: end if
23: end for

{second step to color some forgotten vertices}
24: for each element E of the mesh M do
25: if E.color = -1 then
26: boolean E to color = true
27: for each element F, neighbour of element E do
28: if F.color = C then
29: E to color ← false
30: end if
31: end for
32: if E to color then
33: E.color = C
34: end if
35: end if
36: end for
37: C = C + 1
38: end while
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One can make two observation about the coloring approach. First, deciding of the coloration
is complicated. Droux in [30] proposed an algorithm to build an optimal coloration, but this
algorithm does not ensure the existence of this coloration. Droux understood that reducing
the number of colors must not be the main objective. A small number of colors only means a
larger number of parallel tasks in a color. But if you have a limited number of computational
resources, you do not need more parallelism (the number of parallel tasks) than the number of
computational resources. That’s why he focused on building sets containing exactly the number
of threads you can execute simultaneously.

When coming to coloration, people barely talks about their method to color the elements. We can
assume that an approach where elements receive a random number, and the local maxima are
elected in the same color is a decent solution. It will not produce an optimal coloration, the latest
color lists can be under-populated, leading even to an under-utilization of the computational
resources.

This idea has been pushed further by Markall et al in [58] by improving the coloring scheme in
a way such that the number of colors used is reduced. Cecka was coloring the elements, Markall
is coloring the equations. It means that he divides the contribution block in rows. We know that
a row will overlap with a row of the matrix, and that elements overlap each other on rows. By
going at a finer grain, he is able to exhibit more parallelism with smaller tasks.

By doing this, Markall proposed a way for coloring the contribution rows. Let A be the global
matrix, let AE be the block diagonal matrix of all the contribution blocks. This matrix has a
size of (

∑
e∈Elements ndofs(e))

2, and let M be a transformation matrix working as an indirection
array between the local index of the contribution to the global matrix. mi,j = 1 if the i-th row of
AE contributes to the j-th equation of the system, else mi,j = 0. Let Mt denotes the transposed
of matrix M . The formula for building the matrix A becomes :

A = Mt.AE .M

Markall’s approach is to use matrix M to color the equation contributions. The algorithm picks
the first column of M , it looks for the first non-zero term, gives it the first color, then proceed to
next term, gives it the second color, and goes on until there is no more 1 term in the column. It
repeats this operation for each column, starting back to the first color each time it changes the
column. When the algorithm ends, every contribution received a color, and every contribution
overlapping the same equation, i.e. each contribution in the same column, has a different color.
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Figure 3.10 – On the left, a mesh with 6 triangles. On the right, the block diagonal matrix
AE , each block correspond to the contribution Ci built from the triangle Ti.
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Figure 3.11 – The matrix M , with its coefficient colored. On the right, The contributions are
divided in rows, and each row is colored according to the coloration of M .

In Figure 3.10 we have an example with six triangles. The matrix AE , block diagonal contains
the three contributions on its diagonal. And the matrix M is built as explained before (see
Figure 3.11). A 1 is placed where a contribution row overlap an equation in the system. Then,
the 1 are colored by exploring each column, and coloring them. When the matrix M is fully
colored, we deduce the coloring of the contribution block rows, and we can treat them without
worrying about the race conditions like in figure 3.12.

41
2 31

654

Figure 3.12 – Focus on the row 4, and the scheduling for summing the contributions.

This approach proposed by Markall et al has many advantages. With a finer grain than the
Cecka approach, they can build a coloration which is optimal in the number of colors. However,
this method requires the application to build all the contribution blocks before starting the
assembly phase. This implies a synchronization between the two phases, and a higher memory
consumption due to the necessity to keep the blocks in memory. Nonetheless this is a very
good approach exhibiting a lot of parallelism, and with a finer grain, the amount of time where
resources are idle, waiting for the completion of the last tasks of the current color, is less
important.

Lately, Hanzlikova et al proposed in [36] an approach which extends the work from Cecka by
using extra storage to avoid synchronizations needed to prevent race conditions.

In Figure 3.13 we focus on the fourth row of the system. As we saw in Figure 3.12, we had
six steps to sum all he contributions. By introducing a temporary buffer and splitting the
contributions between the two buffers, the assembly can be done in four steps, three for summing
the contributions in the buffers, and one step for the sum of the two buffers. It is easy to extend
this approach with a binary tree of buffers when the number of contributions is important. The
advantage of this method against the Markall approach is too exhibit more parallelism at the
cost of memory.
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Figure 3.13 – Focus on the row 4, with a temporary buffer. The contributions are splitted
between the original row 4 and the buffer. A last step will assemble the buffer in the row 4.
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Figure 3.14 – Naive assembly of three contribution blocks, with the associated task graph.

In the next Section, we propose a new taskified assembly operation scheme which exhibits high
level of concurrency while leaving the management of the race conditions to the underlying
runtime system.

3.6.1 A new taskified Assembly Operation

We introduce in this section a taskified assembly operation where the objective is to enhance
parallelism while leaving the management of race conditions which may be met to the under-
lying runtime system. The main phenomenon which limits the amount of parallelism is the
serialization of the assembly of contribution blocks updating the same block leading to a race
condition. To increase the amount of parallelism, computations must be organized such that
conflicting write operations are minimized. A naive approach to express the global assembly
operation would be to associate a task to the assembly operation of each contribution block Ci
(see Figure 3.14). In this context, all the tasks will be serialized because of the write conflicts on
the global matrix. For example, if we consider the assembly operation presented in Figure 3.14
where this naive scheme is used, the dependency task graph contains three tasks (namely t1,1,
t2,1, and t3,1) which have a write conflict on the global matrix. t1,1 (resp. t2,1, and t3,1) has as
arguments its contribution block C1 (resp. C2, and t3,1) and the global matrix. Note that since
the summation operator used during the assembly operation is commutative and associative,
the task graph where t3,1 is the predecessor of t2,1 is also valid. Any ordering of those tasks is
valid.

In order to exhibit more parallelism, one could partition the global matrix into blocks (see
Figure 3.15a) and associate a task to the assembly operation of each contribution block into
each tile of the global matrix (see Figure 3.16). Of course, if a contribution block does not
update a tile of the global matrix, the corresponding empty task is not considered. By doing
so, the amount of non-conflicting tasks is increased leading to higher degree of parallelism. For
example, if we consider now the assembly operation described in Figure 3.16 where this tile-
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Figure 3.16 – Taskified version of the assembly of three contribution blocks, with the associated
task graph.

based scheme is used, we can see that the task graph contains now 12 tasks for which the number
of conflicts are reduced. For example, the task t1,4, t2,4, and t3,1. Note that in opposition to the
naive case, in this situation each task has arguments its contribution sub-block ci,j and a tile
of the global matrix Ak. When using this scheme, the number of tasks and subsequently the
degree of parallelism is strongly linked to blocking factor used for the global matrix. A tradeoff
needs thus to be found between the needed parallelism and the management overhead induced
in the runtime system.
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Figure 3.17 – Taskified version of the assembly with the associated weight.

The approach to taskify the assembly operation that we propose is a tiled approach where the
serialized tasks are sorted according to their computational cost in each chain : the most costly
tasks are treated first. The task graph is thus composed by a set of independent chains of tasks.
This is illustrated in Figure 3.17 (the weight in blue of the task is linked to its computational
cost). We can see that the task graph is composed of a set of independent sorted chains of tasks.
This will allow to maximize the concurrency and enhance performance. This scheme will be
referred to as the flat assembly operation scheme. The chain in red denotes the possibility to
sort the tasks in a chain because the assembly operation is associative and commutative.
To overcome the overhead due the management of the large number of tasks, one could decrease
the number of tasks for a fixed tile size by merging the chains of the flat assembly scheme
into a single tasks. This will produce a fixed number of tasks corresponding to the number of
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Figure 3.18 – Tasks in a chain are gathered in a single task.

tiles of the global matrix. This approach is similar to [24], in the sense that it builds a set of
completely independent tasks preventing all race conditions from occurring. This is illustrated
in Figure 3.18, where the chain is replaced by the dashed box surrounding it. This scheme will
be referred to as no-chain assembly operation scheme. We will introduce in the next section,
scheduling simple heuristics which aim to ensure a good behavior in terms of performance.

3.6.2 Scheduling strategies for taskified assembly operations
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t2,2 t2,3

t1,2 t1,3 t3,2 t3,3 t3,4
10 6 6 4 4 4

t1,4

t2,4
14

t3,1
10 6 6 14

14

Figure 3.19 – Fixed priorities for each chain.

Taskified assembly operations are expressed using task dependency graphs composed of inde-
pendent chains of tasks (an example is given in Figure 3.16). We consider in this work dynamic
on-line scheduling strategies which are commonly used in various runtime systems. In order to
efficiently assign tasks to the computational resources it is important to take into account the
weight of each task in terms of workload and give priority to the largest ones (the larger the
contribution the higher its priority is). This strategy is used on the set of ready tasks (i.e. tasks
for which the corresponding dependencies are satisfied) and each idle processing unit picks the
task with highest priority from the set of ready tasks. By doing so, the processing units are
constantly working on the critical path of the execution.

Varying the tasks priorities allow for further improvement of the scheduling strategy. Even if the
proposed strategy is simple, there is still room for improvement considering how the priorities
are assigned to ready tasks. A first approach to express the critical aspect of a task regarding
the length of the chain it belongs to, is to associate a priority related to the cost of the entire
chain. This illustrates in Figure 3.19, where the priorities of the entire chain (blue labels) are
constant, and are computed based on the cost of the entire chain. We will refer to this priority
scheme as fixed priority scheme.

This priority management can be pushed further so that the priorities, not only take into
account the absolute length of the critical path but its current length at the moment where the
scheduling decision is taken. Thus, the priority of a task is computed based on the remaining
workload on the chain it belongs to. This allows the working units to select the tasks that
are currently the most critical. Figure 3.20 depicts the same example as before using this new
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Figure 3.20 – Adaptive priorities for each chain.

priority assignment scheme. This time the tasks belonging to a chain have a priority linked to
the length of the remaining part of the chain. We will refer to this priority scheme as adaptive
priority scheme.

One of the major differences between StarPU and PaRSEC is the way the list of ready tasks
is managed. In StarPU, the user divides data, precomputes a list of tasks working on those
data, and submits, in advance, all the tasks. This sequential submission of tasks creates implicit
dependencies between the tasks. In PaRSEC, the dependencies are explicitly specified by the user,
and the tasks are dynamically discovered by the runtime based on completed dependencies and
the symbolic description of the algorithm. From the scheduling point of view, StarPU gives the
opportunity to the user to write his own scheduler while in PaRSEC, a highly optimized scheduler
is provided, where priorities are secondary to enforcing a data locality policy.

3.7 Experimental results

In this section we evaluate the behavior of our taskified assembly operation approaches and
illustrate how increasing concurrency leads to performance improvements. This will be done on
a set of configurations arising from FEM applications on top of PaRSEC and StarPU. Moreover,
the taskified assembly operation scheme will be evaluated using irregular configurations which
can be met within the multifrontal method [31] for the factorization of sparse matrices.

3.7.1 Experimental setup

We evaluate the behavior of our task-based approach on the riri platform, composed by 4 Intel
E7-4870 processors having 10 cores clocked at 2,40 GHz and having 30 MB of L3 cache. The
platform has uniform memory access (UMA) to it’s 1 TB of RAM.

We have chosen to illustrate the behavior of our approaches on two different classes of problems.
The first class correspond to assembly operations met in finite element methods. We consider
in the following study both 2D and 3D finite element continued method applied on structured
meshes. The difference between the two cases resides in the connectivity between elements. While
on a 2D grid, each element has at most 8 neighbors, in 3D, each hexahedron has 26 neighbors
leading to higher overlapping between contribution blocks for the 3D case. The contribution
blocks are dense whereas the matrix is sparse and is built using the connectivity of the mesh.
The second class correspond to a less structured assembly operations met in a sparse direct
method (namely the multifrontal method [31]). Here, the contribution blocks are dense and
the father in which the assembly is done is dense too. The considered configuration has been
generated using the MUMPS sparse direct solver [5, 6] using input problems coming from the
University of Florida Sparse Matrix Collection 5. To be more precise, we extracted configurations
met the assembly phases needed by the sparse LU factorization. The contribution blocks for

5. http://www.cise.ufl.edu/research/sparse/matrices
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these configurations are very irregular with sizes varying from 0.01% to 100% of the father’s
size. Finally, two parameters will vary in our experiments, the size of the tile and the number
of computational resources. The bigger the tile size, the lesser parallelism one will be able to
exhibit. And the smaller the blocks, the smaller the tasks, and we will see the consequences on
the behavior of the platform. Thus, one shall find an acceptable value in sync with the second
parameter, the number of computing resources units available.

Figure 3.21 depicts the performance of the assembly operation when used in the context of a
finite element method application in a 2D mesh case. This corresponds to a case where the
overlapping between contribution blocks is small. First of all, we can observe that, by increasing
the concurrency (figures on the right, with blue plots), the taskified assembly operation obtains
a very good behavior with PaRSEC with all strategies. Moreover, we observe that the StarPU

implementation (left column, red plots) has a good behavior on a small number of processing
units but seems less efficient when the number of resources increases. As shown in Figure 3.24 this
is mainly due to the overhead induced by the management of the tasks, the tasks are not compute
intensive enough to amortize the overhead of the StarPU runtime system (which is mainly due
to the inference of task dependencies). Similarly, in Figures 3.24a and 3.24b we can notice that
independently from this observation, the no-chain assembly operation scheme behaves well in
both runtime systems mainly because there are no race conditions in this strategy, the tasks
are more compute intensive and there are less tasks to schedule. We can see also, that this
strategy gives performance equivalent to the one obtained with the coloring strategy described
in [24] and outperforms it in certain configurations (typically when there the global matrix is
tiled using fine grain blocks). This illustrates the interest of our taskified assembly scheme on
this simple scenario.

In Figure 3.22 we investigate the behavior of the taskified assembly operation on the two run-
time systems in the context of a finite element method application in a 3D mesh case. This time
both the size of the contribution blocks and their overlapping increased in comparison with the
2D case. We can observe that the functioning of our taskified schemes have a good behavior for
all tile sizes. Moreover, we can observe that the overhead of the runtime system is negligible
compared with the computational cost of the tasks and allow all the strategies to expose a
scalable behavior. Concerning the coloring scheme, it is outperformed by all the strategies when
the number of computational resources increased. Finally, once again, the no-chain assembly
operation scheme is the best efficient variant for both runtime systems. Note that the perfor-
mance in the rightmost plot is limited for both runtime systems because of a small parallelism
degree (there are at most 10 concurrent ready tasks at a time).

Finally, Figure 3.23 reports the results gathered in the context of the most irregular and com-
plex case : assembly operations arising in the sparse LU factorization using the multifrontal
method. First of all, note that in this case, it is not possible to use the coloring heuristic since
the overlapping between contributions blocks may be arbitrarily large (the cost of the coloring
heuristic is prohibitive in this case). We can observe that PaRSEC has a good performance with
all tiling strategies and all scheduling policies. We can also see that the adaptive priority sche-
duling policy is the one with the most scalable behavior. Finally, we can observe in Figure 3.26
that the overhead induced by the runtime is minimal with PaRSEC. Concerning StarPU, when
the granularity of the tiles is small, we measure that the overhead of the runtime system tends
to increase with the number of resources leading to a significant performance loss. However,
increasing the granularity allows to overcome the runtime overhead and the behavior of StarPU
becomes equivalent to the one obtained with PaRSEC. Once again, the no-chain assembly opera-
tion scheme is the most efficient variant for both runtime systems. Finally, we report also, the
behavior of the naive implementation using based on OpenMP where all the global matrix is
not tiled and the contribution blocks are treated sequentially using as many threads as provided
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by the user for each contribution block. We can see, that our taskified assembly scheme is much
more stable in terms of behavior and outperforms the OpenMP implementation for most cases.
These experimental results illustrate the interest of our taskified scheme and show we do not
sacrifice performance by relying on task-based runtime systems compared with a more simplistic
fork-join scheme. From a broader point of view and regarding the behavior of the application,
we can see that when confronted to this memory-bound operation, the overhead of the runtime
system may be prohibitive with large number of cores and very small tasks (see Figures 3.24,
3.25 and 3.26). This issue needs to be tackled from both ends : The application and the runtime
system. From the application point of view, a tradeoff needs to be found between the amount
of parallelism and the cost of the tasks. Moreover for applications having very low complexity
operations, using explicit data dependencies will be more suited. From the runtime system side
(mainly on StarPU which infers the dependencies), the cost the data management engine needs
to be further evaluated to try to reduce the global overhead.

3.8 Conclusion

The main objective of this work was to evaluate the usability and effectiveness of general-
purpose task-based runtime systems for parallelizing the assembly operation, which is a main
operation in several application fields. This was done by expressing the assembly operation in
taskified way and giving the resulting task graph to the underlying runtime systems. Several
taskification approaches which aim at enhancing the concurrency while trying to reduce the
amont of race conditions have been proposed. Overall, the results clearly indicates that for both
runtime systems, namely PaRSEC and StarPU, our approaches exhibit encouraging performance,
especially when the computational cost of the tasks increases. The results also illustrates that
on small test cases, the overhead of the runtime systems may limit the performance.
In the near future, we plan to further extend this work by using accelerators (GPU, Intel Xeon-
Phi, etc) to minimize the time-to-solution. This will be done by relying on existing assembly
kernels for the different accelerators and leave the data management and scheduling decisions to
the runtime systems (the scheduling policies need to be adapted to the heterogeneous context).
Moreover, it could be of interest to consider intra-task parallelism which may offer more flexi-
bility to enhance concurrency. In a longer term, this work represents a necessary kernel which
will be used to design complex numerical simulation applications on top of modern runtime
systems. This will allow the application to run in a more asynchronous way without relying on
the classical fork-join paradigm.
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(f) Fixed strategy with PaRSEC.
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(g) Adaptive strategy with StarPU.
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Figure 3.21 – Second test case, 2D grid with blocks of size 121x121, and a matrix of 203k
entries. Influence of the tile size for the different strategies with the two runtimes.
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(f) Fixed strategy with PaRSEC.
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Figure 3.22 – Third test case, 3D grid with 512 blocks of size 512x512 and a matrix of 185k
entries. Influence of the tile size for the different strategies with the two runtimes.
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Figure 3.23 – First test case, MUMPS reduction. The assembly is done in a dense block (the
father) of size 3061x3061. Contribution blocks sizes vary from 1 to the size of the father. Influence
of the tile size for the different strategies with the two runtimes.
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Figure 3.24 – Efficiency for the second test case, the 2d grid.
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(a) No-chain strategy with StarPU.
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Figure 3.25 – Efficiency for the third test case, the 3d grid.
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Figure 3.26 – Efficiency for the first test case, extracted from the direct linear solver MUMPS.
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General Conclusion and perspectives

Conclusion

The work of this thesis was directed towards providing a new parallel platform in which contri-
butors from diffrent backgrounds could contribute without the full knowledge of the platform.
The target platform needs to be fully parallel, able to exploit the new heterogeneous architec-
ture, with complex hierarchy of processing units and memory. Moreover, this platform has to
be evolutive, and as easy as possible to maintain, by using modern tools of development and
test.

In this thesis, we presented AeroSol, a new platform for solving PDE problems using different
finite element methods. This platform can handle different kind of finite elements, either conti-
nuous or discontinuous, thus enabling us to implement two types of finite element methods, the
continuous Galerkin, and the discontinuous Galerkin. AeroSol is able to work on hybrid meshes,
composed of elements of a variable geometry, straight or curved. We proposed a hierarchical
decomposition of the elements in order to abstract the memory differences between the two
kinds of finite elements, and thus hide the differences within the platform.

In term of parallelism, our platform works on many levels. Between the nodes, a classical domain
decomposition is computed in order to distribute the work and ensure a good load balancing
between processing nodes. An overlap is computed on each domain to ensure that computations
on boundary elements can be done by duplicating the cells at the frontier. Inside a computing
node (at the shared memory level), many approaches has been tested to parallelize the assem-
bly operation in shared memory. The proposed approach was to rely on modern task-based
runtime systems to manage to fully exploit the available parallelism. In comparison with the
classical fork-join paradigm, the task-based approach provides a fine grain management of the
dependencies of the computations which allows a better pipeline of the computations inducing
a better performance. A complete study has been proposed for the assembly operation which
enlightens the interest of the task-based approach : The performance was comparable to the
best known algorithm namely the colouring scheme. This study was done done on top of two
different task-based runtime systems.

Perspectives

The concepts proposed in this thesis provide some solutions to build a robust and portable solver
for PDE problems running on modern high performance computing architectures. Meanwhile,
the approach proposed in this thesis needs to be extended in several directions. First of all
from the modelisation point of view, it clearly will be interesting to support other numerical
methods and simulation schemes. Secondly, the study proposed in this thesis provided a first
insight of the performance granted by the use of modern runtime systems in such numerical
simulation softwares. This work has to be pushed further by increasing the interaction of the
software, the external tools and the runtime system. For example, AeroSol can rely on existing
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sparse solvers based on modern runtime system. This will allow the global iteration to be done
without explicit synchronization as soon as the structure of the sparse matrix does not change
and that the solver is able to use an elemental input format instead of the assembled sparse
matrix format. All on in all, this research direction is focussed around an increased interaction
between a numerical simulation tool (AeroSol) and external tools (sparse solvers) which share
the same runtime system. Another research direction which has to be considered is related
to the use of modern heterogeneous architectures : modern multicore systems equipped with
accelerators. We believe that a viable approach to tackle the problem is to rely on existing kernels
or kernel generators for these devices and to consider only the scheduling issues related to the
use of accelerators. Thus, the approach which will be considered consists in designing high-level
scheduling engines adapted to the needs of the numerical simulation. In this context, another
important issue is related to the granularity of computations which needs to be considered to
ensure a good performance on all the types of computing resources. Finally, we believe that a
third research axis will be the design of high level domain specific languages (DSL) to describe
the numerical simulation scheme. This will make the project easily usable for non-expert users.
Moreover, this topic opens a lot of collaborative research activities with both the compilers
and runtime systems communities. From our point of view, the main challenge is to be able to
generate the task-graph of the numerical simulation together with the actual high performance
implementation of the tasks inpendently from the numerical scheme considered.
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[4] Emmanuel Agullo, Bérenger Bramas, Olivier Coulaud, Eric Darve, Matthias Messner, and
Toru Takahashi. Task-based fmm for multicore architectures. SIAM J. Scientific Compu-
ting, 36(1), 2014.

[5] P. R. Amestoy, I. S. Duff, J. Koster, and J.-Y. L’Excellent. A fully asynchronous multi-
frontal solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and
Applications, 23(1) :15–41, 2001.

[6] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, and S. Pralet. Hybrid scheduling for
the parallel solution of linear systems. Parallel Computing, 32(2) :136–156, 2006.

[7] Hartwig Anzt, Werner Augustin, Martin Baumann, Hendryk Bockelmann, Thomas Gen-
genbach, Tobias Hahn, Vincent Heuveline, Eva Ketelaer, Dimitar Lukarski, Andrea Otzen,
Sebastian Ritterbusch, Björn Rocker, Staffan Ronnas, Michael Schick, Chandramowli Su-
bramanian, Jan-Philipp Weiss, and Florian Wilhelm. Hiflow3 – a flexible and hardware-
aware parallel finite element package. Preprint Series of the Engineering Mathematics and
Computing Lab, 0(06), 2013.

[8] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier. StarPU : A Unified Platform
for Task Scheduling on Heterogeneous Multicore Architectures. Concurrency and Com-
putation : Practice and Experience, Special Issue : Euro-Par 2009, 23 :187–198, February
2011.
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[50] D. M. Kunzman and L. V. Kalé. Programming heterogeneous clusters with accelerators
using object-based programming. Scientific Programming, 19(1) :47–62, 2011.

[51] J. Kurzak and J. Dongarra. Fully dynamic scheduler for numerical computing on multicore
processors. LAPACK working note, lawn220, 2009.

[52] Cédric Lachat, François Pellegrini, and Cécile Dobrzynski. PaMPA : Parallel Mesh Partitio-
ning and Adaptation. In 21st International Conference on Domain Decomposition Methods
(DD21), Rennes, France, June 2012. INRIA Rennes-Bretagne-Atlantique.

[53] Cédric Lachat, François Pellegrini, and Cecile Dobrzynski. PaMPA : Parallel Mesh Partitio-
ning and Adaptation. In DD22 - 22nd International Conference on Domain Decomposition
Methods, Lugano, Switzerland, September 2013. Institute of Computational Science (ICS),
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