L. Concept, modèle réduit (échelle 1/4) du véhicule et (b) schéma du prototype [65]

I. Schéma-du-scramjet-hyshot, La chambre de combustion est caractérisée par le domaine blanc, p.25

. Schéma-de-la-chambre-laerte-À-l-]...., ONERA (France), d'après [141, p.27

D. Comparaison-des-approches, L. , and R. , espace (a) spectral et (b) temporel (Poinsot et Veynante, p.44, 2005.

Z. Diagramme-en and . Burke, Schumann représentant la structure d'une flamme de diffusion dans le cas d'une réaction infiniment rapide et irréversible (d'après [141]), p.82

P. Calculs, Air à Z st , p = 1 atm et T = 1200K. Couleur : schéma réduit de Boivin ; Noir : chimie détaillée de SanDiego. Pointillés : résultats de la thèse, p.86

?. Formes-de-la-?-pdf-appliquée-À-la-température-normalisée, Les valeurs correspondantes de ? ? et fi ? ??2 sont également indiquées [164, p.91

M. Axial, RES (black) and k SGS (grey) ; (b) Pope criterion, p.114

S. A. Anderson, H. Paull, and . Alesi, The HyShot flight program and how it was developed, AIAA?AAAF 11th Int. Space Planes and Hypersonic Systems and Technologies Conference, 2002.

E. Andrew, A. Robert, and . James, Senkin : A fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis, Sandia National Laboratory Report CA, pp.94551-0969, 1988.

S. Balachandar, F. Mittal, and . Najjar, Properties of the mean recirculation region in the wakes of two-dimensional bluff bodies, Journal of Fluid Mechanics, vol.351, pp.167-199, 1997.
DOI : 10.1017/S0022112097007179

G. Balakrishnan and F. Williams, Turbulent combustion regimes for hypersonic propulsion employing hydrogen-air diffusion flames, Journal of Propulsion and Power, vol.10, issue.3, pp.434-437, 1994.
DOI : 10.2514/3.23754

R. Baurle, H. Ga-alexopoulos, and . Hassan, Assumed joint probability density function approach for supersonic turbulent combustion, Journal of Propulsion and Power, vol.10, issue.4, pp.473-484, 1994.
DOI : 10.2514/3.23797

R. Baurle, H. Ga-alexopoulos, and . Hassan, Modeling of supersonic turbulent combustion using assumed probability density functions, Journal of Propulsion and Power, vol.10, issue.6, pp.777-786, 1994.
DOI : 10.2514/3.23815

R. Baurle and D. Eklund, Analysis of Dual-Mode Hydrocarbon Scramjet Operation at Mach 4-6.5, Journal of Propulsion and Power, vol.18, issue.5, pp.990-1002, 2002.
DOI : 10.2514/2.6047

R. Baurle and S. Girimaji, Assumed PDF turbulence-chemistry closure with temperature-composition correlations, Combustion and Flame, vol.134, issue.1-2, pp.131-148, 2003.
DOI : 10.1016/S0010-2180(03)00056-7

R. Baurle, H. Hsu, and . Hassan, Assumed and evolution probability density functions in supersonic turbulent combustion calculations, Journal of Propulsion and Power, vol.11, issue.6, pp.1132-1138, 1995.
DOI : 10.2514/3.23951

M. Berglund, C. Fedina, . Fureby, V. Tegner, . Sabel et al., Finite Rate Chemistry Large-Eddy Simulation of Self-Ignition in Supersonic Combustion Ramjet, AIAA Journal, vol.48, issue.3, pp.540-550, 2010.
DOI : 10.2514/1.43746

M. Berglund and C. Fureby, LES of supersonic combustion in a scramjet engine model, Proceedings of the Combustion Institute, pp.2497-2504, 2007.
DOI : 10.1016/j.proci.2006.07.074

L. Bezgin, V. Kopchenov, . Sharipov, A. Titova, and . Starik, Evaluation of Prediction Ability of Detailed Reaction Mechanisms in the Combustion Performance in Hydrogen/Air Supersonic Flows, Combustion Science and Technology, vol.16, issue.1, pp.62-94, 2013.
DOI : 10.1016/j.proci.2004.07.050

S. Frederick and . Billig, Shock-wave shapes around spherical and cylindrical nosed bodies, Journal of Spacecraft and Rockets, vol.4, issue.6, pp.822-823, 1967.

A. Bobylev, The Chapman-Enskog and Grad methods for solving the boltzmann equation, Akademiia Nauk SSSR Doklady, pp.71-75, 1982.

O. Boiron, G. Chiavassa, and R. Donat, A high-resolution penalization method for large Mach number flows in the presence of obstacles, Computers & Fluids, vol.38, issue.3, pp.703-714, 2009.
DOI : 10.1016/j.compfluid.2008.07.003

URL : https://hal.archives-ouvertes.fr/hal-00259907

P. Boivin, C. Dauptain, B. Jiménez, and . Cuenot, Simulation of a supersonic hydrogen???air autoignition-stabilized flame using reduced chemistry, Combustion and Flame, vol.159, issue.4, pp.1779-1790, 2012.
DOI : 10.1016/j.combustflame.2011.12.012

P. Boivin, C. Jiménez, A. Sánchez, and F. Williams, An explicit reduced mechanism for H2?air combustion, Proceedings of the Combustion Institute, pp.517-523, 2011.

P. Boivin, Reduced-kinetic mechanisms for hydrogen and syngas combustion including autoignition, 2011.

R. Borghi, Turbulent combustion modelling, Progress in Energy and Combustion Science, pp.245-292, 1988.
DOI : 10.1016/0360-1285(88)90015-9

R. Borghi and M. Champion, Modélisation et théorie des flammes, Editions Technip, 2000.

J. Boris, . Ff-grinstein, R. Oran, and . Kolbe, New insights into large eddy simulation. Fluid dynamics research, pp.4-6199, 1992.
DOI : 10.1016/0169-5983(92)90023-p

URL : http://www.dtic.mil/get-tr-doc/pdf?AD=ADA249424

K. Bowcutt, A. Paull, D. Dolvin, and M. Smart, HIFiRE : An international collaboration to advance the science and technology of hypersonic flight, 28th Congress of the International Council of the Aeronautical Sciences 2012, pp.65-76, 2012.

D. Bradley, . Kwa, . Lau, S. Missaghi, and . Chin, Laminar flamelet modeling of recirculating premixed methane and propane-air combustion, Combustion and Flame, vol.71, issue.2, pp.109-122, 1988.
DOI : 10.1016/0010-2180(88)90001-6

K. Bray, The challenge of turbulent combustion, Symposium (International) on Combustion, pp.1-26, 1996.
DOI : 10.1016/S0082-0784(96)80195-0

K. Bray, . Champion, A. Paul, and . Libby, The Interaction Between Turbulence and Chemistry in Premixed Turbulent Flames, Turbulent Reactive Flows, pp.541-563, 1989.
DOI : 10.1007/978-1-4613-9631-4_26

K. Bray and N. Peters, Laminar flamelets in turbulent flames. Turbulent reacting flows, pp.63-113, 1994.

A. Bresson, . Bouchardy, F. Magre, and . Grisch, OH/acetone PLIF and CARS thermometry in a supersonic reactive layer. Tiré à part-Office national d'études et de recherches aerospatiales, 2001.

S. Burke and T. Schumann, Diffusion Flames, Industrial & Engineering Chemistry, vol.20, issue.10, pp.998-1004, 1928.
DOI : 10.1021/ie50226a005

M. Burrows and A. Kurkov, Supersonic combustion of hydrogen in a vitiated air stream using stepped-wall injection, 7th Propulsion Joint Specialist Conference, 1971.
DOI : 10.2514/6.1971-721

R. Cant and E. Mastorakos, An introduction to turbulent reacting flows, World Scientific, 2008.
DOI : 10.1142/p498

D. Carati, S. Ghosal, and P. Moin, On the representation of backscatter in dynamic localization models, Physics of Fluids, vol.7, issue.3, pp.606-616, 1994.
DOI : 10.1063/1.868585

J. Casimir, An Analysis of Combustion Studies in Shock Expansion Tunnels and Reflected Shock Tunnels, 1992.

D. Cecere, . Ingenito, . Giacomazzi, C. Romagnosi, and . Bruno, Hydrogen/air supersonic combustion for future hypersonic vehicles, International Journal of Hydrogen Energy, vol.36, issue.18, pp.11969-11984, 2011.
DOI : 10.1016/j.ijhydene.2011.06.051

W. L. , C. , and M. Ihme, Large-Eddy Simulations of a Dual-Mode Scramjet Combustor : Operating point " a " of university of virginia's scramjet experiments, 2014.

A. Chaudhuri, A. Hadjadj, and A. Chinnayya, On the use of immersed boundary methods for shock/obstacle interactions, Journal of Computational Physics, vol.230, issue.5, pp.1731-1748, 2011.
DOI : 10.1016/j.jcp.2010.11.016

T. Cheng, J. Wehrmeyer, . Pitz, G. Jarrett, and . Northam, Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame, Combustion and Flame, vol.99, issue.1, pp.157-173, 1994.
DOI : 10.1016/0010-2180(94)90087-6

J. Jung, C. Choi, S. Ghodke, and . Menon, Large-Eddy Simulation of Cavity Flame-Holding in a Mach 2

P. Cocks, Large eddy simulation of supersonic combustion with application to scramjet engines, 2011.

A. Peter, . Cocks, N. William, S. Dawes, and . Cant, The Influence of Turbulence-Chemistry Interaction Modelling for Supersonic Combustion, p.12, 2011.

W. Andrew, W. Cook, . Cabot, L. Paul, and . Miller, The mixing transition in rayleigh?taylor instability, Journal of Fluid Mechanics, vol.511, pp.333-362, 2004.

A. Cook and W. Cabot, Hyperviscosity for shock-turbulence interactions, Journal of Computational Physics, vol.203, issue.2, pp.379-385, 2005.
DOI : 10.1016/j.jcp.2004.09.011

M. Sanjay and . Correa, Turbulence-chemistry interactions in the intermediate regime of premixed combustion, Combustion and Flame, vol.93, issue.1, pp.41-60, 1993.

T. Edward and . Curran, Scramjet engines : the first forty years, Journal of Propulsion and Power, vol.17, issue.6, pp.1138-1148, 2001.

E. T. Curran, Scramjet Engines: The First Forty Years, Journal of Propulsion and Power, vol.17, issue.6, 2001.
DOI : 10.2514/2.5875

A. Cutler, . Danehy, S. Springer, . Byrne, R. Capriotti et al., Coherent Anti-Stokes Raman Spectroscopic Thermometry in a Supersonic Combustor, AIAA Journal, vol.41, issue.12, pp.412451-2459, 2003.
DOI : 10.2514/2.6844

D. Andrew, . Cutler, . Gs-diskin, J. Danehy, and . Drummond, Fundamental mixing and combustion experiments for propelled hypersonic flight, AIAA Paper, vol.3879, 2002.

A. Dauptain, T. Cuenot, and . Poinsot, Large eddy simulation of a supersonic hydrogen-air diffusion flame, Proceedings of Complex Effects in Large Eddy Simulation, pp.9-20, 2005.

S. Dennis and G. Chang, Numerical solutions for steady flow past a circular cylinder at Reynolds numbers up to 100, Journal of Fluid Mechanics, vol.3, issue.03, pp.471-489, 1970.
DOI : 10.1063/1.1692469

P. Domingo, K. Vervisch, and . Bray, Partially premixed flamelets in LES of nonpremixed turbulent combustion, Combustion Theory and Modelling, vol.26, issue.4, pp.529-551, 2002.
DOI : 10.1146/annurev.fluid.30.1.655

P. Domingo, . Vervisch, and . Payet, DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry, Combustion and Flame, vol.143, issue.4, pp.566-586, 2005.
DOI : 10.1016/j.combustflame.2005.08.023

P. Domingo, D. Vervisch, and . Veynante, Large-eddy simulation of a lifted methane jet flame in a vitiated coflow, Combustion and Flame, vol.152, issue.3, pp.415-432, 2008.
DOI : 10.1016/j.combustflame.2007.09.002

URL : https://hal.archives-ouvertes.fr/hal-00270734

C. Dopazo, E. Edward, and . Brien, An approach to the autoignition of a turbulent mixture, Acta Astronautica, vol.1, issue.9-10, pp.1239-1266, 1974.
DOI : 10.1016/0094-5765(74)90050-2

F. Ducros, . Ferrand, . Nicoud, . Weber, C. Darracq et al., Large-Eddy Simulation of the Shock/Turbulence Interaction, Journal of Computational Physics, vol.152, issue.2, pp.517-549, 1999.
DOI : 10.1006/jcph.1999.6238

URL : https://hal.archives-ouvertes.fr/hal-00910343

F. Ducros, . Laporte, . Souleres, . Guinot, B. Moinat et al., High-Order Fluxes for Conservative Skew-Symmetric-like Schemes in Structured Meshes: Application to Compressible Flows, Journal of Computational Physics, vol.161, issue.1, pp.114-139, 2000.
DOI : 10.1006/jcph.2000.6492

C. Duwig, K. Nogenmyr, C. Chan, J. Matthew, and . Dunn, Large Eddy Simulations of a piloted lean premix jet flame using finite-rate chemistry. Combustion Theory and Modelling, pp.537-568, 2011.

H. Ebrahimi, CFD validation for Scramjet Combustor and nozzle flows, part i, 1993.

R. Jack, . Edwards, A. John, . Boles, A. Robert et al., Large-eddy/Reynolds-averaged Navier?Stokes simulation of a supersonic reacting wall jet, Combustion and Flame, vol.159, issue.3, pp.1127-1138, 2012.

T. Eggers, P. Novelli, and M. Haupt, Design studies of the JAPHAR experimental vehicle for dual mode ramjet demonstration. Tiré à part-Office national d'études et de recherches aerospatiales, 2001.

M. Embouazza, Etude de l'auto-allumage par réduction des schémas cinétiques chimiques : application à la combustion homogène diesel, 2005.

N. Enjalbert, Modélisation avancée de la combustion turbulente diphasique en régime de forte dilution par les gaz brûlés, 2011.

S. John, C. J. Evans, H. Schexnayder-jr, and . Jr, Application of a two-dimensional parabolic computer program to prediction of turbulent reacting flows, NASA STI/Recon Technical Report N, vol.78, p.20463, 1978.

F. Falempin and L. Serre, French flight test program LEA status, 2010.
DOI : 10.2514/6.2009-7227

E. Fedina and C. Fureby, A comparative study of flamelet and finite rate chemistry LES for an axisymmetric dump combustor, Journal of Turbulence, vol.332, issue.12, 2011.
DOI : 10.1007/s10494-007-9107-1

V. Fichet, Modélisation de la combustion du gaz naturel par réseaux de réacteurs avec cinétique chimique détaillée, 2008.

B. Fornberg, A numerical study of steady viscous flow past a circular cylinder, Journal of Fluid Mechanics, vol.35, issue.04, pp.98819-855, 1980.
DOI : 10.1016/0045-7930(78)90015-4

D. C. , F. Jr, R. David, E. , M. Charles et al., The NASA Hyper-X Program, 1997.

A. Jesse, . Fulton, R. Jack, A. Edwards, J. Cutler et al., Turbulence/Chemistry Interactions in a Ramp-Stabilized Supersonic Hydrogen-Air Diffusion Flame, 2014.

A. Jesse, . Fulton, . Edwards, P. Christopher, . Goyne et al., Numerical simulation of flow in a dual-mode scramjet combustor, p.2011, 2011.

C. Fureby, Large eddy simulation modelling of combustion for propulsion applications, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.5, issue.1899, pp.2957-2969, 1899.
DOI : 10.1098/rsta.2008.0271

C. Fureby, . Chapuis, and . Fedina, CFD analysis of the HyShot II scramjet combustor, Proceedings of the Combustion Institute, pp.2399-2405, 2011.
DOI : 10.1016/j.proci.2010.07.055

A. Gardner, . Hannemann, J. Pauli, and . Steelant, Ground testing of the HyShot supersonic combustion flight experiment in HEG, Shock Waves, pp.329-334, 2005.
DOI : 10.1007/978-3-540-27009-6_47

E. Garnier, N. Adams, and P. Sagaut, Large eddy simulation for compressible flows, 2009.
DOI : 10.1007/978-90-481-2819-8

URL : https://hal.archives-ouvertes.fr/hal-01313539

F. Genin, B. Chernyavsky, and S. Menon, Large eddy simulation of scramjet combustion using a subgrid mixing, 2003.

F. Génin and S. Menon, Simulation of Turbulent Mixing Behind a Strut Injector in Supersonic Flow, 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, pp.526-539, 2010.
DOI : 10.2514/6.2009-132

E. George, Modélisation et simulations de l'auto-allumage de mélanges hydrocarbures/hydrogènes dans un écoulement supersonique coaxial confiné d'air chaud, 2007.

E. George, P. Magre, V. Sabel, and . Nikov, Self-Ignition of Hydrogen-Hydrocarbons Mixtures in a Hot Supersonic Confined Coflow of Air, AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, 2005.
DOI : 10.2514/6.2005-3393

P. Gerlinger, M. Nold, and . Aigner, Influence of reaction mechanisms, grid spacing, and inflow conditions on the numerical simulation of lifted supersonic flames, International Journal for Numerical Methods in Fluids, vol.55, issue.12, pp.1357-1380, 2010.
DOI : 10.1002/fld.2076

P. Gerlinger, H. Möbus, and D. Brüggemann, An Implicit Multigrid Method for Turbulent Combustion, Journal of Computational Physics, vol.167, issue.2, pp.247-276, 2001.
DOI : 10.1006/jcph.2000.6671

M. Germano, U. Piomelli, P. Moin, H. William, and . Cabot, A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A : Fluid Dynamics, pp.1760-1765, 1989.

D. Chaitanya, . Ghodke, J. Jung, S. Choi, S. Srinivasan et al., Large eddy simulation of supersonic combustion in a cavity-strut flameholder, 49th AIAA Aerospace Sciences Meeting, pp.2011-323, 2011.

D. Chaitanya, J. Ghodke, . Pranatharthikaran, J. Ghislain, S. Retaureau et al., Numerical and experimental studies of flame stability in a cavity stabilized hydrocarbon-fueled scramjet, AIAA paper, p.23652011, 2011.

O. Gicquel, Développement d'une nouvelle méthode de réduction des schémas cinétiques : Application au méthane, 1999.

O. Gicquel, N. Darabiha, and D. Thévenin, Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion, Proceedings of the Combustion Institute, pp.1901-1908, 2000.
DOI : 10.1016/S0082-0784(00)80594-9

S. Girimaji, Assumed ??-pdf Model for Turbulent Mixing: Validation and Extension to Multiple Scalar Mixing, Combustion Science and Technology, vol.291, issue.4-6, pp.177-196, 1991.
DOI : 10.1016/0360-1285(85)90002-4

G. Godel, Modélisation de sous-maille de la combustion turbulente : développement d'outils pour la prédiction de la pollution dans une chambre aéronautique, 2010.

L. Gomet, Modélisation de la combustion turbulente diphasique par une approche eulérienne-lagrangienne avec prise en compte des phénomènes transitoires, 2013.

L. Gomet, V. Robin, and A. Mura, Influence of residence and scalar mixing time scales in nonpremixed combustion in supersonic turbulent flows, Combustion Science and Technology, vol.184, pp.10-111471, 2012.

R. Gonçalves-dos-santos, M. Lecanu, S. Ducruix, O. Gicquel, E. Iacona et al., Coupled large eddy simulations of turbulent combustion and radiative heat transfer, Combustion and Flame, vol.152, issue.3, pp.387-400, 2008.
DOI : 10.1016/j.combustflame.2007.10.004

M. Gonzalez and R. Borghi, A Lagrangian Intermittent Model for Turbulent Combustion; Theoretical Basis and Comparisons with Experiments, Turbulent Shear Flows 7, pp.293-311, 1991.
DOI : 10.1007/978-3-642-76087-7_22

D. Richard, . Gould, H. Warren, D. Stevenson, and . Thompson, Simultaneous velocity and temperature measurements in a premixed dump combustor, Journal of propulsion and power, vol.10, issue.5, pp.639-645, 1994.

C. Goyne, J. Mcdaniel, . Quagliaroli, S. Krauss, and . Day, Dual-Mode Combustion of Hydrogen in a Mach 5, Continuous-Flow Facility, Journal of Propulsion and Power, vol.17, issue.6, pp.1313-1318, 2001.
DOI : 10.2514/2.5880

F. Fernando, . Grinstein, J. William, L. G. Rider, and . Margolin, Implicit large eddy simulation, 2007.

M. Joseph, . Hank, S. James, . Murphy, C. Richard et al., The X-51A scramjet engine flight demonstration program, AIAA Paper, vol.2540, 2008.

R. Hilbert, . Tap, D. El-rabii, and . Thévenin, Impact of detailed chemistry and transport models on turbulent combustion simulations, Progress in Energy and Combustion Science, pp.61-117, 2004.
DOI : 10.1016/j.pecs.2003.10.001

O. Joseph, . Hirschfelder, F. Charles, R. B. Curtiss, and . Bird, Molecular theory of gases and liquids, 1954.

H. Yannick, B. Marianna, Y. Ventikos, G. Faghani, and . Tzabiras, Organized modes and the threedimensional transition to turbulence in the incompressible flow around a NACA0012 wing, Journal of Fluid Mechanics, vol.496, pp.63-72, 2003.

A. Ingenito and C. Bruno, Physics and Regimes of Supersonic Combustion, AIAA Journal, vol.48, issue.3, pp.515-525, 2010.
DOI : 10.2514/1.43652

J. Izard, A. Lehnasch, and . Mura, A Lagrangian Model of Combustion in High-Speed Flows: Application to Scramjet Conditions, Combustion Science and Technology, vol.2, issue.11, pp.1372-1396, 2009.
DOI : 10.1007/3-540-11948-5_66

J. Casimir and . Jachimowski, An analytical study of the hydrogen-air reaction mechanism with application to scramjet combustion, 1988.

J. Casimir and . Jachimowski, An analysis of combustion studies in shock expansion tunnels and reflected shock tunnels, Citeseer, vol.3224, 1992.

J. Casimir, . Jachimowski, G. Allen, and . Mclain, A chemical kinetic mechanism for the ignition of silane/hydrogen mixtures, volume 2129. National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1983.

K. Jackson, S. Gruber, and . Buccellato, HIFiRE Flight 2 : A Program Overview, 51st AIAA Aerospace Sciences Meeting, number AIAA, 2013.

A. Jameson, . Schmidt, and . Turkel, Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, 14th Fluid and Plasma Dynamics Conference, 1981.
DOI : 10.2514/6.1981-1259

O. Jarrett-jr, . Cutler, . Antcliff, C. Chitsomboon, J. Dancey et al., Measurements of temperature, density, and velocity in supersonic reacting flow for CFD code validation, 1988.

P. Keistler, . Gaffney, H. Xiao, and . Hassan, Turbulence Modeling for Scramjet Applications, 35th AIAA Fluid Dynamics Conference and Exhibit, 2005.
DOI : 10.2514/6.2005-5382

R. Alan and . Kerstein, A linear-eddy model of turbulent scalar transport and mixing, Combustion Science and Technology, vol.60, issue.4-6, pp.391-421, 1988.

R. Alan and . Kerstein, Linear-eddy modeling of turbulent transport. II : Application to shear layer mixing, Combustion and Flame, vol.75, issue.3, pp.397-413, 1989.

A. Nikolaevich and K. , The local structure of turbulence in incompressible viscous fluid for very large reynolds numbers, In Dokl. Akad. Nauk SSSR, vol.30, pp.299-303, 1941.

C. Maarten, . Krol, J. Molemaker, and . Arellano, Effects of turbulence and heterogeneous emissions on photochemically active species in the convective boundary layer, Journal of Geophysical Research : Atmospheres, issue.D5, pp.1056871-6884, 1984.

K. Kuan-yun-kuo and R. Acharya, Fundamentals of Turbulent and Multi-Phase Combustion, 2012.

J. Lamouroux, Modélidation de la combustion diluée par tabulation de la cinétique chimique, 2013.

J. Larsson, I. Vicquelin, and . Bermejo-moreno, Large eddy simulations of the HyShot II scramjet. Center for Turbulence Research Annual Research Briefs, 2011.

J. Larsson, Large eddy simulation of the HyShot II scramjet combustor using a supersonic flamelet model, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, p.2012, 2012.
DOI : 10.2514/6.2012-4261

M. Lesieur, Large-eddy simulations of turbulence, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00261551

J. Li, Z. Zhao, A. Kazakov, L. Frederick, and . Dryer, An updated comprehensive kinetic model of hydrogen combustion, International Journal of Chemical Kinetics, vol.109, issue.10, pp.566-575, 2004.
DOI : 10.1002/kin.20026

Y. Li and C. Meneveau, Analysis of mean momentum flux in subgrid models of turbulence, Physics of Fluids, vol.16, issue.9, pp.3483-3486, 1994.
DOI : 10.1063/1.1773846

K. Douglas and . Lilly, A proposed modification of the Germano subgrid-scale closure method. Physics of Fluids A : Fluid Dynamics, pp.633-635, 1989.

P. Lindstedt, Modeling of the chemical complexities of flames, Symposium (International) on Combustion, pp.269-285, 1998.
DOI : 10.1016/S0082-0784(98)80414-1

G. Lodato, L. Domingo, and . Vervisch, Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, Journal of Computational Physics, vol.227, issue.10, pp.5105-5143, 2008.
DOI : 10.1016/j.jcp.2008.01.038

G. Lodato, Conditions aux limites tridimensionnelles pour la simulation directe et aux grandes échelles des écoulements turbulents : modélisation de sous-maille pour la turbulence en région de proche paroi, 2008.

G. Lodato, L. Vervisch, and P. Domingo, A compressible wall-adapting similarity mixed model for large-eddy simulation of the impinging round jet, Physics of Fluids, vol.21, issue.3, p.35102, 1994.
DOI : 10.1063/1.3068761

U. Maas and S. Pope, Simplifying chemical kinetics: Intrinsic low-dimensional manifolds in composition space, Combustion and Flame, vol.88, issue.3-4, pp.239-264, 1992.
DOI : 10.1016/0010-2180(92)90034-M

F. Bjørn and . Magnussen, On the structure of turbulence and a generalized eddy dissipation concept for chemical reaction in turbulent flow, 19th AIAA Aerospace Meeting, 1981.

P. Magre and P. Bouchardy, Nitrogen and hydrogen coherent anti-stokes raman scattering thermometry in a supersonic reactive mixing layer, Proceedings of the Combustion Institute, pp.697-703, 2000.
DOI : 10.1016/S0082-0784(00)80271-4

P. Magre, . Collin, . Pin, . Badie, M. Olalde et al., Temperature measurements by CARS and intrusive probe in an air?hydrogen supersonic combustion, International journal of heat and mass transfer, issue.21, pp.444095-4105, 2001.

M. Manna, A three dimensional high resolution compressible flow solver Catholic Univ. of Louvain-Von Karman Institute for Fluid Dynamics, 1992.

S. Mendez, Simulation numérique et modélisation de l'écoulement autour des parois multi-perforées, II-Sciences et Techniques du Languedoc, 2007.

S. Menon, A. Mcmurtry, and . Kerstein, A linear eddy mixing model for large eddy simulation of turbulent combustion, LES of Complex Engineering and Geophysical Flows, pp.287-314, 1993.

S. Menon and W. Jr, Subgrid mixing and molecular transport modeling in a reacting shear layer, Symposium (International) on Combustion, pp.59-66, 1996.
DOI : 10.1016/S0082-0784(96)80200-1

S. Menon and A. R. Kerstein, Stochastic simulation of the structure and propagation rate of turbulent premixed flames, Symposium (International) on Combustion, pp.443-450, 1992.
DOI : 10.1016/S0082-0784(06)80057-3

C. Merlin, Simulation numérique de la combustion turbulente : Méthode de frontières immergées pour les écoulements compressibles, application à la combustion en aval d'une cavité, 2011.

C. Merlin, P. Domingo, and L. Vervisch, Immersed boundaries in large eddy simulation of compressible flows. Flow, turbulence and combustion, pp.29-68, 2013.

H. Möbus, D. Gerlinger, and . Brüggemann, Comparison of Eulerian and Lagrangian Monte Carlo pdf methods for turbulent diffusion flames, 38th Aerospace Sciences Meeting and Exhibit, pp.519-534, 2001.
DOI : 10.2514/6.2000-188

H. Möbus, D. Gerlinger, and . Brüggemann, Scalar and joint scalar-velocity-frequency Monte Carlo PDF simulation of supersonic combustion, Combustion and Flame, vol.132, issue.1-2, pp.3-24, 2003.
DOI : 10.1016/S0010-2180(02)00428-5

P. Al-moin, . Squires, S. Cabot, and . Lee, A dynamic subgrid-scale model for compressible turbulence and scalar transport. Physics of Fluids A : Fluid Dynamics, pp.2746-2757, 1989.

V. Morgenthaler, F. Luis, B. Silva, V. A. Deshaies, . Sabel et al., Non-premixed combustion in supersonic turbulent flows - A numerical study for co-flowing H2-air jets, 9th International Space Planes and Hypersonic Systems and Technologies Conference, 1999.
DOI : 10.2514/6.1999-4917

Y. Moule, Modélisation et Simulation de la Combustion dans les Écoulements Rapides. Applications aux Superstatoréacteurs, 2013.

Y. Moule, V. Sabel-'nikov, and A. Mura, Highly resolved numerical simulation of combustion in supersonic hydrogen???air coflowing jets, Combustion and Flame, vol.161, issue.10, 2014.
DOI : 10.1016/j.combustflame.2014.04.011

V. Moureau, L. Domingo, and . Vervisch, From Large-Eddy Simulation to Direct Numerical Simulation of a lean premixed swirl flame: Filtered laminar flame-PDF modeling, Combustion and Flame, vol.158, issue.7, pp.1340-1357, 2011.
DOI : 10.1016/j.combustflame.2010.12.004

V. Moureau and A. René, Simulation aux grandes échelles de l'aérodynamique interne des moteurs à piston, 2004.

F. Nicoud and F. Ducros, Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbulence and Combustion, pp.183-200, 1999.
URL : https://hal.archives-ouvertes.fr/hal-00910373

Y. Niu, L. Vervisch, and P. Tao, An optimization-based approach to detailed chemistry tabulation: Automated progress variable definition, Combustion and Flame, vol.160, issue.4, pp.776-785, 2013.
DOI : 10.1016/j.combustflame.2012.11.015

P. Novelli, Progress of the JAPHAR cooperation between ONERA and DLR on hypersonic airbreathing prop

P. Novelli and W. Koschel, JAPHAR : a joint ONERA-DLR research project on high speed airbreathing propulsion)

Ó. Marcus, . Conaire, J. Henry, . Curran, M. John et al., A comprehensive modeling study of hydrogen oxidation, International journal of chemical kinetics, vol.36, issue.11, pp.603-622, 2004.

M. Obounou, R. Gonzalez, and . Borghi, A lagrangian model for predicting turbulent diffusion flames with chemical kinetic effects, Symposium (International) on Combustion, pp.1107-1113, 1994.
DOI : 10.1016/S0082-0784(06)80748-4

E. O-'brien, The probability density function (PDF) approach to reacting turbulent flows, Turbulent reacting flows, pp.185-218, 1980.

M. Oevermann, Numerical investigation of turbulent hydrogen combustion in a SCRAMJET using flamelet modeling, Aerospace Science and Technology, vol.4, issue.7, pp.463-480, 2000.
DOI : 10.1016/S1270-9638(00)01070-1

J. Van-oijen and L. De-goey, Modelling of Premixed Laminar Flames using Flamelet-Generated Manifolds, Combustion Science and Technology, vol.384, issue.1, pp.113-137, 2000.
DOI : 10.1088/1364-7830/3/3/304

P. O-'rourke and F. Bracco, Two scaling transformations for the numerical computation of multidimensional unsteady laminar flames, Journal of Computational Physics, vol.33, issue.2, pp.185-203, 1979.
DOI : 10.1016/0021-9991(79)90015-9

R. Pecnik, E. Vincent, F. Terrapon, G. Ham, H. Iaccarino et al., Reynolds-Averaged Navier-Stokes Simulations of the HyShot II Scramjet, AIAA Journal, vol.50, issue.8, pp.501717-1732, 2012.
DOI : 10.2514/1.J051473

N. Peters and B. Rogg, Reduced kinetic mechanisms for applications in combustion systems, 1993.
DOI : 10.1007/978-3-540-47543-9

N. Peters, Laminar diffusion flamelet models in non-premixed turbulent combustion. Progress in energy and combustion science, pp.319-339, 1984.

M. David, . Peterson, V. Graham, and . Candler, Hybrid RANS/LES of a supersonic combustor, 2008.

X. Petit, Etude de l'interaction cinétique chimique/turbulence dans une flamme cryotechnique LOx/CHA4, 2014.

D. Charles, P. Pierce, and . Moin, Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion, Journal of Fluid Mechanics, vol.504, pp.73-97, 2004.

H. Pitsch and M. Ihme, An Unsteady/Flamelet Progress Variable Method for LES of Nonpremixed Turbulent Combustion, 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.
DOI : 10.2514/6.2005-557

T. Poinsot and S. Lelef, Boundary conditions for direct simulations of compressible viscous flows, Journal of Computational Physics, vol.101, issue.1, pp.104-129, 1992.
DOI : 10.1016/0021-9991(92)90046-2

T. Poinsot and D. Veynante, Theoretical and numerical combustion, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00270731

S. Pope, PDF methods for turbulent reactive flows, Progress in Energy and Combustion Science, vol.11, issue.2, pp.119-192, 1985.
DOI : 10.1016/0360-1285(85)90002-4

S. Pope, Computationally efficient implementation of combustion chemistry using in situ adaptive tabulation, 1997.

B. Stephen and . Pope, Turbulent flows, 2000.

B. Stephen and . Pope, Ten questions concerning the large-eddy simulation of turbulent flows, New journal of Physics, vol.6, issue.1, p.35, 2004.

S. Bailey and P. , A Monte Carlo method for the PDF equations of turbulent reactive flow, 1981.

M. Porta and . Développement, vérification et validation des outils LES pour l'étude du bruit de combustion et de l'interaction combustion/acoustique/turbulence, 2007.

H. Thomas and . Pulliam, Artificial dissipation models for the Euler equations, AIAA journal, vol.24, issue.12, pp.1931-1940, 1986.

J. Ghislain, S. Retaureau, and . Menon, Experimental studies on flame stability of a fueled cavity in a supersonic crossflow, Joint Propulsion and International Energy Conversion Engineering Conferences, 2010.

G. Ribert, . Vervisch, Y. Domingo, and . Niu, Hybrid Transported-Tabulated Strategy to Downsize Detailed Chemistry for Numerical Simulation of Premixed Flames. Flow, Turbulence and Combustion, pp.175-200, 2014.

G. Ribert, L. Wang, and . Vervisch, A multi-zone self-similar chemistry tabulation with application to auto-ignition including cool-flames effects, Fuel, vol.91, issue.1, pp.87-92, 2012.
DOI : 10.1016/j.fuel.2011.07.036

G. Ribert, O. Gicquel, N. Darabiha, and D. Veynante, Tabulation of complex chemistry based on self-similar behavior of laminar premixed flames, Combustion and Flame, vol.146, issue.4, pp.649-664, 2006.
DOI : 10.1016/j.combustflame.2006.07.002

URL : https://hal.archives-ouvertes.fr/hal-00114951

L. Fry and R. , Weather prediction by numerical process, 2007.

J. Robert, Chemkin-II : A Fortran chemical kinetics package for the analysis of gas-phase chemical kinetics, Sandia National Laboratories Report, pp.89-8009, 1989.

G. Carlos, . Rodriguez, D. Andrew, and . Cutler, Numerical analysis of the scholar supersonic combustor, NASA Technical report, p.212689, 2003.

R. Rogers and W. Chinitz, Using a global hydrogen-air combustion model in turbulent reacting flow calculations, AIAA Journal, vol.21, issue.4, pp.586-592, 1983.
DOI : 10.2514/3.8117

S. Ronald and F. T. Curran, A Century of Ramjet Propulsion Technology Evolution, J. Prop and Power, vol.20, issue.1, 2004.

V. Sabel-'nikov, B. Deshaies, and L. Silva, Revisited flamelet model for nonpremixed combustion in supersonic turbulent flows, Combustion and flame, vol.114, issue.3, pp.577-584, 1998.

A. Vladimir, . Sabel, L. Nikov, and . Silva, Partially stirred reactor : study of the sensitivity of the Monte-Carlo simulation to the number of stochastic particles with the use of a semi-analytic, steady-state, solution to the pdf equation, Combustion and flame, vol.129, issue.1, pp.164-178, 2002.

P. Sagaut, Large eddy simulation for incompressible flows, 2002.

V. Sankaran and S. Menon, LES of scalar mixing in supersonic mixing layers, Proceedings of the combustion Institute, pp.2835-2842, 2005.
DOI : 10.1016/j.proci.2004.08.027

P. Saxena and F. Williams, Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide, Combustion and Flame, vol.145, issue.1-2, pp.316-323, 2006.
DOI : 10.1016/j.combustflame.2005.10.004

S. Laurent, F. François, and . France-châtillon-france, PROME- THEE : the french military hypersonic propulsion program status in, 2002.

J. Smagorinsky, GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS, Monthly Weather Review, vol.91, issue.3, pp.99-164, 1963.
DOI : 10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2

K. Michael, . Smart, E. Neal, A. Hass, and . Paull, Flight data analysis of the HyShot 2 scramjet flight experiment, AIAA journal, vol.44, issue.10, pp.2366-2375, 2006.

T. Smith and S. Menon, Model simulations of freely propagating turbulent premixed flames, Symposium (International) on Combustion, pp.299-306, 1996.
DOI : 10.1016/S0082-0784(96)80229-3

V. Subramanian, L. Domingo, and . Vervisch, Large eddy simulation of forced ignition of an annular bluff-body burner, Combustion and Flame, vol.157, issue.3, pp.579-601, 2010.
DOI : 10.1016/j.combustflame.2009.09.014

T. Sunami, K. Itoh, K. Sato, and T. Komuro, Mach 8 Ground Tests of the Hypermixer Scramjet for HyShot-IV Flight Experiment, 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference, 2006.
DOI : 10.2514/6.2006-8062

T. Sunami, P. Magre, A. Bresson, F. Grisch, M. Orain et al., Experimental Study of Strut Injectors in a Supersonic Combustor Using OH-PLIF, AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference, 2005.
DOI : 10.2514/6.2005-3304

R. Charles-swanson and E. Turkel, On central-difference and upwind schemes, Journal of Computational Physics, vol.101, issue.2, pp.292-306, 1992.
DOI : 10.1016/0021-9991(92)90007-L

S. Alison, T. Tomlin, . Turányi, J. Michael, and . Pilling, Mathematical tools for the construction, investigation and reduction of combustion mechanisms, Comprehensive chemical kinetics, vol.35, pp.293-437, 1997.

J. Van-oijen, L. Lammers, and . Goey, Modeling of complex premixed burner systems by using flamelet-generated manifolds, Combustion and Flame, vol.127, issue.3, pp.2124-2134, 2001.
DOI : 10.1016/S0010-2180(01)00316-9

L. Vervisch, P. Domingo, G. Lodato, and D. Veynante, Scalar energy fluctuations in Large-Eddy Simulation of turbulent flames: Statistical budgets and mesh quality criterion, Combustion and Flame, vol.157, issue.4, pp.778-789, 2010.
DOI : 10.1016/j.combustflame.2009.12.017

L. Vervisch, R. Hauguel, P. Domingo, and M. Rullaud, Three facets of turbulent combustion modelling: DNS of premixed V-flame, LES of lifted nonpremixed flame and RANS of jet-flame, Journal of Turbulence, vol.5, issue.4, pp.1-8, 2004.
DOI : 10.1088/1468-5248/5/1/004

D. Veynante and R. Knikker, Comparison between LES results and experimental data in reacting flows, Journal of Turbulence, vol.134, issue.7, 2006.
DOI : 10.1080/14685240600664044

URL : https://hal.archives-ouvertes.fr/hal-00133251

D. Veynante and L. Vervisch, Turbulent combustion modeling. Progress in energy and combustion science, pp.193-266, 2002.
DOI : 10.1016/s0360-1285(01)00017-x

URL : https://hal.archives-ouvertes.fr/hal-01219272

R. Vicquelin, Tabulation de la cinétique chimique pour la modélisation et la simulation de la combustion turbulente, 2010.

J. Vinuesa, F. Porté-agel, S. Basu, and R. Stoll, Subgrid-Scale Modeling of Reacting Scalar Fluxes in Large-Eddy Simulations of Atmospheric Boundary Layers, Environmental Fluid Mechanics, vol.415, issue.2, pp.115-131, 2006.
DOI : 10.1007/s10652-005-6020-9

URL : https://hal.archives-ouvertes.fr/hal-00014305

A. Vreman, An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications, Physics of Fluids, vol.16, issue.10, pp.163670-3681, 1994.
DOI : 10.1063/1.1785131

A. Manan, . Vyas, A. William, . Engblom, J. Nicholas et al., Numerical simulation of vitiation effects on a hydrogen-fueled dual-mode scramjet. National Aeronautics and Space Administration, 2010.

W. Waidmann, . Alff, . Böhm, . Brummund, M. Clauss et al., Supersonic combustion of hydrogen/air in a scramjet combustion chamber, Space Technology, vol.15, issue.6, pp.421-429, 1995.
DOI : 10.1016/0892-9270(95)00017-8

K. Wang, . Ribert, L. Domingo, and . Vervisch, Self-similar behavior and chemistry tabulation of burnt-gas diluted premixed flamelets including heat-loss. Combustion Theory and Modelling, pp.541-570, 2010.

J. Warnatz, U. Maas, and R. W. Dibble, Combustion : physical and chemical fundamentals, modeling and simulation, experiments, pollutant formation, 2006.

H. Weisgerber, . Martinuzzi, P. Brummund, and . Magre, Mesures de vitesse par PIV dans une combustion supersonique hydrogène-air à mach 2. Tiré à part-Office national d'études et de recherches aerospatiales, 2001.

D. M. Van-wie, S. M. , and M. E. White, Hypersonic airbreathing propulsion, Johns Hopkins APL Technical Digest, vol.26, issue.4, 2005.

C. Wieselsberger, New data on the laws of fluid resistance, 1922.

X. Xiao, A. Hassan, . Hassan, A. Robert, and . Baurle, Modeling Scramjet Flows with Variable Turbulent Prandtl and Schmidt Numbers, AIAA Journal, vol.45, issue.6, pp.1415-1423, 2007.
DOI : 10.2514/1.26382

H. Yamashita, T. Shimada, and . Takeno, A numerical study on flame stability at the transition point of jet diffusion flames, Symposium (International) on Combustion, pp.27-34, 1996.
DOI : 10.1016/S0082-0784(96)80196-2

T. Ye, R. Mittal, W. Udaykumar, and . Shyy, An Accurate Cartesian Grid Method for Viscous Incompressible Flows with Complex Immersed Boundaries, Journal of Computational Physics, vol.156, issue.2, pp.209-240, 1999.
DOI : 10.1006/jcph.1999.6356

A. Yoshizawa, Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling, Physics of Fluids, vol.29, issue.7, pp.2152-2164, 1958.
DOI : 10.1063/1.865552

L. Zheng and K. Bray, The application of new combustion and turbulence models to H2-air nonpremixed supersonic combustion, Combustion and Flame, vol.99, issue.2, pp.440-448, 1994.
DOI : 10.1016/0010-2180(94)90151-1