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RESUME

Dans cette these, on étudie la structuration des phases de la transformée
de Fourier d’images naturelles, ce qui, du point de vue applicatif, débouche sur
plusieurs mesures de netteté ainsi que sur des algorithmes rapides pour la synthese
de texture par I'exemple.

Le Chapitre 2 présente dans un cadre unifié plusieurs modeles de champs aléa-
toires, notamment les champs spot noise et champs gaussiens, en prétant une at-
tention particuliére aux représentations fréquentielles de ces champs aléatoires.

Le Chapitre 3 détaille 'utilisation des champs a phase aléatoire a la synthese
de textures peu structurées (microtextures). On montre qu’une microtexture peut
étre résumée en une image de petite taille s’intégrant a un algorithme de synthese
trés rapide et flexible via le modele spot noise. Aussi on propose un algorithme
de désocclusion de zones texturales uniformes basé sur la simulation gaussienne
conditionnelle.

Le Chapitre 4 présente trois mesures de cohérence globale des phases de la
transformée de Fourier. Apres une étude théorique et pratique établissant leur lien
avec la netteté d’image, on propose un algorithme de déflouage aveugle basé sur
I'optimisation stochastique de ces indices.

Enfin, dans le Chapitre 5, apres une discussion sur ’analyse et la synthese directe
de 'information de phase, on propose deux modeles de textures a phases cohérentes
qui permettent la synthese de textures plus structurées tout en conservant quelques
garanties mathématiques simples.

ABSTRACT

This thesis deals with the Fourier phase structure of natural images, and ad-
dresses no-reference sharpness assessment and fast texture synthesis by example.

In Chapter 2, we present several models of random fields in a unified framework,
like the spot noise model and the Gaussian model, with particular attention to the
spectral representation of these random fields.

In Chapter 3, random phase models are used to perform by-example synthesis
of microtextures (textures with no salient features). We show that a microtexture
can be summarized by a small image that can be used for fast and flexible synthesis
based on the spot noise model. Besides, we address microtexture inpainting through
the use of Gaussian conditional simulation.

In Chapter 4, we present three measures of the global Fourier phase coherence.
Their link with the image sharpness is established based on a theoretical and practi-
cal study. We then derive a stochastic optimization scheme for these indices, which
leads to a blind deblurring algorithm.

Finally, in Chapter 5, after discussing the possibility of direct phase analysis
or synthesis, we propose two non random phase texture models which allow for
synthesis of more structured textures and still have simple mathematical guarantees.
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Notations

|E| is the cardinality of the set E.
fEFcRLUE-F={xz—y;zeEyecF}.

T = R/27Z.

If z € C*, then arg(z) € T denotes the argument of z.

AT is the transpose matrix of A.

A is the complex conjugate of A.

A* is the adjoint of A (A* = AT).

AY? ig the square root of the symmetrical non-negative matrix A
If x,y e R¥, x.y = x"y

|vllp is the P norm of a complex vector v

||v]| is the euclidian norm of the complex vector v (||v|| = [|v]|2)
For p € [1, [, P(Z2 R™*") is the Banach space of functions f : Z? — R™*" such
that

LA = > If )P < oo

x€Z2

If p = o0, £*(Z2,R™ ") is the Banach space of functions f : Z? — R™*" such that

1fllo = sup | f(x)|| < 0.

Fx) = F(—).

Hq is a set of (complex) Hermitian matrices of size d x d (A* = A).
’Hfo is the set of non-negative Hermitian matrices of size d x d.
U(FE) is the uniform probability distribution on E.

P(A) is the Poisson distribution with intensity A,

_ A
P\ =e Azgan.
n=0

E(X) is the expectation of the matrix-valued random variable X.
Var(X) is the variance of the real random variable X.
If X,Y are two complex random vectors of same dimension,

Cov(X,Y) = E((X — E(X))(Y —E(Y))")

and by extension, Cov(X) = Cov(X, X).
We shall denote the Nyquist frequencies corresponding to a discrete rectangle of
size M x N by

Ny = (_M/270) ny = (07 —N/Q) Ney = (_M/27_N/2) :
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This thesis would certainly not have been written, had I any detectable drawing
talent. Being unable to reproduce what you see in your everyday life, however
beautiful it may be, encourages to develop a certain fascination for automatic image
synthesis.

If we admit that images are expected to reflect the reality in the most faithful
manner, several issues are at stake: the design of objects contours in the right pro-
portions, the precise reproduction of the human or animal morphology, the respect
of geometrical constraints like perspective. But an image realism also highly de-
pends on the credibility of the textural content with which objects are covered, as
one can see in Fig. 1.1. In a certain sense, textures may not be our first concern
when representing the spatial organization of a scene, but they must seem realistic,
especially if one decides to focus on them. Finding an automatic way to produce a
(possibly large) image that resembles a (possibly small) given texture sample is a
problem known as by-example texture synthesis. This thesis was motivated in great
part by texture modelling and texture synthesis, and is mostly meant to study the
role of Fourier phase (that is, the argument of the Fourier transform) in texture
modelling and image quality assessment.

1.1 Stochastic Texture Models

The ambiguous concept of texture

One main difficulty of texture modelling is that the set of texture images is not
precisely defined. According to the lexical definition [Simpson & Weiner 1989], this
word has several meanings all related to the composition of a piece of material
(fabric, rock, food, etc). The meaning that is relevant here is inherited from fine arts:
a texture is the graphical representation of an object surface. The consideration of
one single object implicitly assumes some kind of homogeneity.
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Figure 1.1: The importance of texture for image realism. One can see two
versions of the same virtual character (copyright Nintendo), the first one (left)
designed in 1998, and the second one (right) designed in 2008. One main difference
between these two images is the rendering of texture, which makes the new image
much more realistic.

Several precised definitions have been given in the image processing literature.
In [Haralick 1979], a texture is seen as “organized area phenomena”, whereas it is
defined in [Cross & Jain 1983] as a “stochastic, possibly periodic, two-dimensional
image field”. The authors of [Chellappa & Kashyap 1985] suggest to oppose “de-
terministic” and “stochastic” textures: a deterministic texture is characterized by
a set of “primitives” (i.e. micro-objects) whose arrangement obeys a (possibly ran-
dom) placement rule, whereas a stochastic texture is only described by statistical
characteristics. One can argue that these abstract concepts correspond more to an
early attempt of texture modelling than to a clear delimitation of the set of texture
images. Still, all these authors expressed the importance of randomness in texture
modelling, which agrees with the lexical definition because an object formation can
be governed by deterministic and stochastic rules.

More recently, the authors of [Wei et al. 2009] adopted a very large definition
of texture (which is shared by many researchers in the graphics community) as “an
image containing repeating patterns” [with] “a certain amount of randomness”. As
illustrated in Fig. 1.2, this definition is larger than the lexical one. But its success
is undeniable, maybe because it encompasses many (if not all) examples of textures
shown in research articles about texture synthesis, but also because this definition
still allows to think the concept of texture by negation of geometrical content (a
point of view that was precised for example in [Meyer 2001] and [Aujol et al. 2005]).
And this negative definition complies well with a two-step image synthesis scheme
that first positions graphical objects in the image and later covers them with re-
peated patterns.

A related question is to ask which mathematical objects will be involved in
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Figure 1.2: Examples of natural textures. Even if the term “texture” usually
refers to the graphical representation of an object surface (first column), it can more
generally refer to images having repeated patterns (second and third column), as
suggested by [Wei et al. 2009]. If one can distinguish such repeating patterns, then
the period of repetition is sometimes referred to as the texture scale (large scale in
the second column, and fine scale in the third column).

the modelling of textures. In this thesis, we will only work with discrete-sampled
models, and thus, as suggested by [Cross & Jain 1983], textures will be modelled
by random fields F defined on a subdomain € of Z? (which will often be a finite
subdomain of Z2, or the whole plane Z?) and with values in R? (taking d = 1 for
gray-level images, and d = 3 for color images). In other words, for all x € D, F(x)
is a R%valued random variable, and thus, ommiting to write the sample w of the
probability space, we will often describe F' as a random function

F:D—R%,

A non-trivial problem is then to impose the texture homogeneity through a formal
property of the random field F'. A common way to do this is to impose stationarity
of the random field F' with respect to the translations of D. Because of some
degenerate cases!, stationarity is not sufficient to ensure the spatial homogeneity of
the realizations. But conversely, (so far) we have not found any reason that prevent
us to consider a homogeneous texture image as the realization of some stationary
random process (in particular if all pieces of the texture have been obtained by the
same physical process). So imposing stationarity is still a relevant constraint, which
can have some practical consequences, as we will see later.

Lthink of a randomly positioned segment in a finite domain
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From constrained random models to a highly complex reality

In probability theory, the introduction of a random process is generally motivated
by a physical or a practical problem. To mention a few classical examples, Brown-
ian motion [Doob 1990] can represent the position of a moving microscopic particle
in a viscous fluid, discrete martingales [Doob 1990] can model the gain evolution
in several gambling games, and Ising model [Brémaud 1999] can describe the or-
ganization of magnetic dipoles in a ferromagnetic material. In these examples,
the physical behavior is translated into simple mathematical rules (respectively,
prescribed covariance function, null incremental conditional expectation, local con-
ditional distribution) which completely describe the corresponding random process
and allow for extensive mathematical study.

The realizations of these random models can already be considered as interesting
creations in the sense that they satisfy some criteria which make them very peculiar.
For example, almost surely, a realization of the Brownian motion is continuous and
nowhere differentiable. Of course, other constructive and non-constructive meth-
ods were formerly known to show the existence of such counter-intuitive behavior.
But one can still be intrigued by this example which illustrates the remarkable
creative power of random methods (in particular if one remembers that a Brow-
nian motion can be seen as a limit of properly renormalized “heads or tails” se-
quences). Stochastic methods can also generate visual curios since many fractal ob-
jects can be obtained with self-similar random fields [Mandelbrot & Van Ness 1968],
[Fournier et al. 1982].

Nevertheless, the constraints making these models interesting (from a mathe-
matical point of view) also make them very specific and therefore not sufficient (in
terms of visual similarity) to account for the large diversity of natural textures.
That is why, in texture synthesis by example, in some sense we follow the inverse
approach (maybe closer to the statistical paradigm): we choose a very large model
with as less constraints as possible, adjust it based on an exemplar image, and then
draw a realization of this random model to produce a new texture sample. The
main question is thus: can we find a class of random functions able to model a wide
variety of texture images for which the model analysis and synthesis is easy, and
which still allows for some kind of mathematical analysis?

The statistics of texture perception

In order to precise the model, we now have to discuss the important statistics that
rule the human perception of textures. The statistics of a random field F' are usually
sorted by order, a statistic of order p being any quantity of the form

E {cp(F(xl), .. ,F(xp))} ,

where ¢ is a measurable function such that the expectation exists and where
X1,...,Xp are p points in D. For example, knowing all the first-order statistics
is equivalent to knowing the marginal distribution, i.e. the probability distribution
of one value F'(x) of the random field (notice that this distribution does not depend
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on x since F is stationary). Among the statistics of order p, we single out the mo-
ments of order p, which are obtained by taking a p-linear function ¢ in the above
expectation. In particular, the moments of order 1 are given by E[F(x)] € R? and
the moments of order 2 are given by

E[F(x)F(y)T] e R¥*? .

We will see in Chapter 2 that, if the first-order moments are prescribed, then the
moments of order 2 are as informative as the energy spectrum (which in a periodic
discrete setting is represented by the expected square modulus of the discrete Fourier
transform). Sometimes, one does not consider the raw values of the random field
but rather the values of a linear transform (for example the Fourier transform, or a
wavelet transform); one can then define the p-th order distribution after this linear
transformation as above.

The first-order distribution of a texture is perceptually important because it de-
fines the color distribution. Also, the second-order moments are important because
they encode the frequency content of the texture. But are these statistics sufficient?
Can we state a global rule for texture perception? These problems were dealt with
by Julesz in a famous series of articles in which he exhibited several examples and
counter-examples illustrating the complexity of the two previous questions. In the
article [Julesz 1962], he formulated the conjecture that two textures with identi-
cal second-order statistics are pre-attentively indistinguishable, meaning that they
cannot be discriminated without scrutiny. Indeed, for a wide class of textures,
these first-order statistics are sufficient for discrimination. However, he showed
in [Julesz 1981] the existence of counterexamples, and two of them are reproduced
in Fig. 1.3. More precisely, he exhibited

1. pre-attentively indistinguishable textures with same second-order statistics
but different higher-order statistics,

2. pre-attentively distinguishable textures with same second-order statistics but
exhibiting different local conspicuous features based on closure, connectivity,
granularity.

With the latter example, he thus refuted his own first conjecture. The former
example illustrates the difficulty of the human visual system (HVS) to compute
high-order statistics. The two textures of this former example can actually be
attentively discriminated by paying particular attention to local details. Beyond
the refutation of his first conjecture, the experiments of this article thus led him to
two important conclusions. The first one is the clear separation between two texture
perception systems: a pre-attentive one that uses globally summed statistics of low
order, and an attentive one that takes profit of extended local analysis of features.
The second conclusion is that the perception of texture is mostly based on the
computation of first-order statistics on the textures or on local features which are
called textons. For example, the HVS is sensitive to the density of elongated blobs,
of terminations, of crosses, etc. Julesz thus introduced the word texton referring
to any textural unit that allows for pre-attentive texture discrimination. He then
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Figure 1.3: Counterexamples to the first Julesz conjecture. These texture
images are borrowed from [Julesz 1981, Fig. 2 and Fig. 5]. The left image is made
of two pre-attentively indistinguishable textures with same second-order statistics
but different higher-order statistics. The right image is made of two pre-attentively
distinguishable textures with same second-order statistics; the pre-attentive dis-
crimination is based on the density of terminators (i.e. end of lines).

formulated his modified conjecture: the pre-attentive system for texture perception
cannot compute global statistics of order > 2.

So must the Fourier modulus be thrown out?

However, the fact that texture perception is focused on first-order distribution of
textons must not prevent us from exploring texture models based on second-order
statistics. Indeed, on the one hand, since Julesz did not provide an exhaustive
and operative description of textons, it is not straightforward to derive a clear
texture model that precisely respects the density of textons. On the other hand,
considering the complexity of texture modelling, it is legitimate to exploit every
available mathematical tool that could build a texture model whose success would
be measured not only by the adequation with the theory of texture perception, but
also according to the multiple applicative issues it may solve (should it be texture
classification, texture analysis, fast texture synthesis, etc).

In particular, in this thesis, we will thoroughly study texture models based on
first and second-order moments. As it is well-known (and sometimes referred to
as Wiener-Khintchine theorem [Yaglom 1987]), the energy spectrum is the Fourier
transform of the autocorrelation, so that prescribing the second-order moments
is equivalent to impose the expected squared modulus of the Fourier transform.
Even if this link between the autocorrelation and the frequency content is already
a convincing argument to use second-order moments, one can also argue that the
autocorrelation can be used to analyze periodic patterns and to single out relevant
texture scales (see [Haralick 1979] and references therein).
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1.2 Random Phase Texture Models

Fourier modulus rescued by the success of random phase texture models

Another way to justify the use of second-order moments in texture modelling
is to observe the power of frequency-based synthesis algorithms. The richness
of frequency-based models was demonstrated for image synthesis by the authors
of [Perlin 1985], [Lewis 1984], [Lewis 1989] and [Van Wijk 1991]. In particular, in
the first one, Perlin introduces the (slightly overloaded) concept of “noise” as a
procedure to compute and display the values of a synthetic texture at prescribed
spatial positions. The authors of these four articles notice that a wide variety of
textures can be obtained by adjusting the distribution of the energy spectrum. Sec-
tion 5 of [Lewis 1984] details two methods to set up the output texture: one can
directly operate in Fourier domain (spectrum painting); or one can design a spatial
kernel h that is convolved by a (possibly white) noise called excitation function
(sparse convolution). The author explains in [Lewis 1989] that in the case of sparse
convolution, the spectrum of the output texture is the spectrum of the excitation
function multiplied by |B!2 where h is the Fourier transform of h. Thus, spectrum
painting and sparse convolution are two ways to prescribe the output texture spec-
trum. The author of [Van Wijk 1991] proposes the spot noise model which amounts
to convolve a spot h with a Poisson point process. He also discusses the interpre-
tation in spectral domain by claiming that a sample of spot noise texture can be
obtained via a multiplication by a random phase shift in Fourier domain, with a
slight confusion due to the ambiguity of the term “white noise”. But the major con-
tribution of van Wijk is to exhibit many textures that can be obtained by simple
geometric variations of the spot h.

Several years later, these frequency-based models were rigorously studied
in [Galerne et al. 2011b]. In this article, a clear distinction is made between the
random phase noise (RPN) and the asymptotic discrete spot noise (ADSN). The
RPN model is a random field with prescribed Fourier modulus, and maximally ran-
dom Fourier phase coefficients. The ADSN model is obtained as the limit for larger
and larger intensity A\ of properly renormalized spot noise functions

xv—>Zh(X—Xi) ,

=1

where (X;) is a point process of intensity A. Based on the classical central-limit
theorem, the authors of [Galerne et al. 2011b] show that the ADSN is a Gaussian
random field. They also clear up the confusion between the RPN and ADSN models
by showing that they differ in Fourier domain by a Rayleigh noise on the Fourier
modulus. Besides, they detail the application of RPN and ADSN models to by-
example texture synthesis, drawing a particular attention to the handling of color
distribution. They show that for natural exemplar textures, the realizations of both
models are perceptually similar. Since both these models have maximally random
Fourier phase (in the entropy sense), the textures that are reproduced by RPN or
ADSN in a visually satisfying manner are called random phase textures. They are
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Original

Figure 1.4: Examples of RPN and ADSN synthesis. For each row, from left
to right, one can see a natural texture, and the synthesis results obtained with RPN
and ADSN models. In the first case, the original texture is well-reproduced by RPN
or ADSN algorithm and thus one would say that this original texture is a random
phase texture. Notice that random phase textures do not have salient features nor
large-scale geometric elements.

also sometimes called microtextures because, as one can see in Fig 1.4, their per-
ceptual characteristics are concentrated on fine non-salient details. By opposition,
textures with salient geometric details are called macrotextures. Actually, the per-
ceptual unit for microtextures is exactly the Fourier modulus which led the authors
of [Desolneux et al. 2012] to a practical definition of texton for Gaussian textures.
Inspired by the work of [Galerne et al. 2011b], the richness of the Gaussian texture
model can be explained a posteriori by the universality that it inherits from the
central-limit theorem.

In Chapter 2, we give a more detailed presentation of the spot noise
model and other random phase models. Using the general framework of ran-
dom fields on Z2? (with a special attention to spectral representations) allows
for comparison with the autoregressive [Chellappa & Kashyap 1985] and moving-
average models [Cadzow et al. 1993]. The notion of texton for Gaussian tex-
ture [Desolneux et al. 2012], [Xia et al. 2014] is introduced but mainly used to ex-
plain the simulation of Gaussian random fields in simple terms; we will not ex-
tensively discuss the link between this definition of texton and the perceptual one
given by Julesz. In this chapter, we will also recall the definition of the optimal
transport distance between texture models [Xia et al. 2014] and extend it to the
case of texture models on Z2.

We explain in Chapter 3 how random phase models can be used to perform
fast by-example microtexture synthesis. After discussing the estimation procedure
for random phase models, we provide several examples of random phase texture
synthesis in order to highlight the limits of RPN and ADSN synthesis. The main
contribution of this chapter is the synthesis-oriented texton (SOT) which realizes
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Original | SOT  Point process DSN ADSN

Figure 1.5: Spot noise synthesis with the synthesis-oriented texton. The original
texture shown on the left can be successfully synthesized via the convolution of the synthesis-
oriented texton with a sparse point process. The resulting discrete spot noise is a satisfying
approximation of the asymptotic discrete spot noise. The DSN and ADSN associated with
the SOT are shown on the right.

a compact summary of a microtexture that can be used as the kernel for spot
noise synthesis. We show that many microtextures can be successfully synthesized
with a small kernel convolved with a sparse Poisson point process, as illustrated
in Fig. 1.5. The SOT thus allows fast and flexible synthesis by direct sampling of
the spot noise process. In this chapter, we also propose a solution to the inpainting
problem in the case of Gaussian textures by making use of Gaussian conditional
simulation [Lantuéjoul 2002].

1.3 The Importance of Phase in Images

What do we miss if we leave out the Fourier phase?

Even if the random phase texture models have a certain success in texture synthesis,
their richness is still limited. In particular, a part of Julesz’s textons are not directly
encoded in the energy spectrum, so that more evolved texture models must bear
some kind of structure in the Fourier phase.

Actually, with a naive approach of Fourier transforms, it may seem tempting to
consider Fourier modulus more important than Fourier phase for the three following
Wrong reasons:

1. many basic scholar examples of Fourier transforms are computed with odd or
even functions and are thus real;

2. discrete Fourier transforms are often represented through the modulus com-
ponent and only occasionally accompanied with the phase component;

3. most theorems linking the signal regularity with the decreasing speed at in-
finity of the Fourier transform only involve its modulus.

But, since a translation of the signal is expressed in Fourier domain by the
addition of a linear function to the phase, it is clear that the phase component
will play a role in the spatial organization of the signal. As concerns regularity,
as illustrated in Fig. 1.6, shuffling the phases of a piecewise smooth function with
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Figure 1.6: Phase randomization of a bounded variation function. The
signal shown on the right has been obtained by randomizing the phase information
of the bounded variation signal shown on the left. Both these signals thus have the
same Fourier modulus, but the second one looks much more irregular.

discontinuities leads to a new signal having large oscillations everywhere; and still,
this does not modify the Fourier modulus! This means that the regularity expressed
by the decreasing speed of Fourier coefficients does not reflect the regularity in the
sense of bounded variation functions.

Beyond the context of texture modelling, several works confirmed the impor-
tance of Fourier phase in image processing and perception. The most famous
one is certainly the paper [Oppenheim & Lim 1981] whose authors bring several
arguments justifying the importance of phase, and in particular the one stating
that the geometry of an image persists if its phase component is being imposed
a completely different modulus information (a random one or one taken from an-
other image). Also, several perceptual studies (for example [Morrone & Burr 1988],
[Field et al. 2000] and [Hansen & Hess 2006]) confirm the HVS sensitivity to local
phase shifts (i.e. phase values of localized Fourier transforms). To precise the
results of [Oppenheim & Lim 1981], the authors of [Gegenfurtner et al. 2003] mea-
sure in a more quantitative manner the persistence of image perception when the
phase information is more and more corrupted. Inspired by the work of Morrone
and Burr, the author of [Kovesi 2000] (and of the technical report [Kovesi 1999])
suggests to address edge detection by exploiting a concept of local phase coherence.
Also, the authors of [Peters & Itti 2008] show that Fourier phase can be used to
produce saliency maps, or in other words, to predict the regions of an image that
will receive more visual attention from an observer.

Global phase coherence and image quality assessment

Therefore, by showing that the image geometry is mainly encoded in the Fourier
phase, these works suggest that the precision of the image geometry may be linked
to the coherence of the phase information. And indeed, there has been several at-
tempts to measure the image quality based on phase coherence. Before quoting the
corresponding articles, let us briefly discuss the stakes of image quality assessment.
We only propose here a very modest evocation of these difficult questions and refer
the reader to [Chandler 2013] for a largely more exhaustive review.
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Of course, measuring the intrinsic quality of an image is a quite ill-posed prob-
lem, since many observers may have different subjective methods and criteria to
precise why they are satisfied or not by a particular image. The problem is a bit
simpler if one has to assess the quality of an image by comparing it to a supposedly
ideal version; in this case, we would speak of full-reference image quality assessment.
The problem of full-reference automatic evaluation is already very wide and has led
to a large research effort. It is now commonly admitted that mean-square error
(MSE) and peak-signal-to-noise ratio (PSNR) are not sufficient to compare image
processing algorithms. Thus, new measures have been proposed for full-reference
evaluation, like the structural similarity (SSIM) in [Wang et al. 2004] and the vi-
sual signal-to-noise ratio (VSNR) in [Chandler & Hemami 2007], even though the
PSNR values are still widely trusted, in particular when it comes to decide if a
denoising or deblurring algorithm is worth publishing or not.

However, in many applications, the ideal version of the image is not available; we
then speak of no-reference image quality assessment. In articles about full-reference
or no-reference quality assessment, a largely shared goal is to obtain quality indices
that are correlated to perceptual scores measured on a group of subjects confronted
to a certain image database; this is a way to cope with the subjective nature of
image quality. Many questions can be asked, from the most to the least difficult:

e From these two images, which one do you prefer?
e From these two corrupted versions of the same image, which one do you prefer?

e From these two images with different levels of the same artifact, which one
do you prefer?

Several interesting no-reference quality measures have been proposed in the lit-
erature (see [Chandler 2013] for a detailed list). A standard approach is to evaluate
the overall quality by examining the geometric details on which human observers
may pay attention. For example, the authors of [Marziliano et al. 2004] propose a
direct analysis of image edges in order to detect blur and ringing artifacts (with
the intent to compare the quality of JPEG2000-compressed images). On the other
hand, the authors of [Zhu & Milanfar 2010] notice that blur or noise tend to de-
stroy the anisotropy of certain image patches (like edge patches), and thus they
suggest to measure image quality by exploiting the singular values of a matrix
containing local gradient values. Of course, if the goal is to correlate with per-
ceptual quality measurements, it also seems relevant to adjust certain parameters
of the method based on the mean opinion of human observers; for example, the
method of [Ferzli & Karam 2009] compares the edges width to a threshold value
called “Just Noticeable Blur” (JNB). The JNB computation is based on a percep-
tual experiment and represents the value under which blur becomes unnoticeable
to a human observer.

Returning to the importance of phase in image analysis, the authors
of [Wang & Simoncelli 2004] make the connection between the local phase coher-
ence defined by Kovesi, and the perception of blur. In this article, they translate
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the idea of Kovesi using the language of complex wavelet transforms, which allows
them to propose a natural two-dimensional analogue of phase coherence based on
coarse-to-fine predictions of the phase values. This link between local phase co-
herence and perceived blur was later exploited in [Hassen et al. 2010] to define a
no-reference image quality index which is able to penalize a remarkably large class
of artifacts (different kinds of blurs, noises, compression artifacts).

Meanwhile, another line of articles proposed to define a notion of global Fourier
phase coherence, and used it to address sharpness evaluation. More precisely, the
authors of [Blanchet et al. 2008] propose to define a notion of global phase coher-
ence (GPC) by measuring how much the regularity of an image is affected by the
randomization of the phase information. Given an image u, they define

GPC(u) = —logo P(TV(U) < TV(u)) ,

where U is the RPN associated to u, and where TV (u) is the discrete periodic total
variation (TV) of u. Since we have seen that the phase randomization turns a BV
signal into a much more oscillating one, the probability of the righ-hand side is very
small, thus motivating the logarithmic scale. Even if a computation of GPC relies on
an expensive Monte Carlo simulation, the authors of [Blanchet et al. 2008] are able
to give practical evidence that the GPC reflected some kind of image quality. This
approach is made viable by the heuristic (but non-trivial) remark that the corrup-
tion of the phase information is more destructive (with respect to the image geome-
try) in an image that has low levels of noise and blur. In [Blanchet & Moisan 2012],
a variant of GPC is proposed by replacing the RPN field U by its Gaussian analogue
(that is, ADSN). The major advantage of this new index, called sharpness index
(SI), is that it can be expressed with a closed-form formula (modulo a reasonable
Gaussian approximation of TV(U)), and thus can be easily computed (using only
four fast Fourier transforms). This considerable simplification made SI appropri-
ate for further applications, as illustrated by the parametric deblurring experiment
presented in [Blanchet & Moisan 2012].

In Chapter 4 of this thesis, we will pursue the work initiated by the authors
of [Blanchet et al. 2008] and [Blanchet & Moisan 2012] on global phase coherence
and no-reference image quality assessment. Accordingly, we will mainly consider
the concept of image quality? by opposition to certain well-identified artifacts that
corrupt a particular image. The choice of artifacts that will be considered is driven
by our applicative purposes which are mostly focused on image restoration. We will
take particular care to blur, noise, ringing and aliasing, which are the four major
stakes of image denoising and deblurring, whereas only marginal attention will be
paid to compression artifacts. In this chapter, we will first recall the definition of
GPC, SI, and present the index S as a further simplification of SI. We will give
many analytical and probabilistic properties of these indices, thus illustrating the
great advantage to dispose of relatively simple formulae (as opposed to most image
quality indices). After that, we provide a more practical study which first proposes
many experiments relating phase coherence indices with perceived sharpness, and

2or sharpness, which will be considered as synonym.
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next shows how the indices SI and S can be used in a blind deblurring algorithm
based on a simple stochastic optimization framework.

1.4 Non Random Phase Texture Models

How to account for the phase in a texture model?

Going back to texture modelling and inspired by these works which clarify the role
of phase in image perception, it seems that more expressive texture models could
be obtained by considering not only the first and second-order moments but also
the information contained in the Fourier phase. In particular, one would expect
from a phase-dependent synthesis algorithm to be able to reproduce the edge-like
structures (which is impossible with RPN and ADSN synthesis algorithms). Such
models could also have a significant impact in texture analysis because of the im-
portance of linear structures in medical images: fiber structures are visible all over
bone radiographs used for the diagnosis of osteoporosis [Benhamou et al. 1994], and
spiculated lesions (identified by convergence points of segments) play an important
role in the diagnosis of breast cancer [Sampat & Bovik 2003].

Unfortunately, as we observed in the first years of this thesis, the direct process-
ing of the global Fourier phase is a difficult problem. The first section of Chapter 5
summarizes our work in this direction. We show in particular that the phase con-
straints induced by stationarity are not rigid enough to inspire direct by-example
synthesis of the phase component.

How to account for edges in a texture model?

Putting aside the constraints of Fourier representation, one can wonder: which
texture models are truly sensitive to edge structures?

Of course, it is possible to design texture models whose corresponding syn-
thesis algorithms naturally produce sharp edges. Let us mention for exam-
ple the dead leaves model introduced in [Matheron 1968] and later studied
in [Bordenave et al. 2006], which consists in throwing on a given domain several
shapes with different colors that will progressively occlude each other. The oc-
clusion principle used in this model naturally produces sharp edges. If one re-
laxes this principle with a transparency factor, one gets another texture model
called transparent dead leaves [Galerne & Gousseau 2012] whose realizations also
exhibit sharp edges. Sharp edges can also be directly produced by random tessella-
tions [Lantuéjoul 2002]. These models have seldom been used to address by-example
texture synthesis: still, the method of [Gousseau 2002] indeed emulates dead leaves
(by throwing shapes defined as filled connected components of level sets) and thus
manages to reproduce sharp edges, but fails to grasp the complex inter-dependences
of geometric structures that exist in structured textures.

Actually, since edge structures can be seen as specific salient features, we can
formulate another question whose conceptual aspect will be more inspiring: does
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there exist a texture synthesis model/algorithm that precisely respect the local
conspicuous features and thus complies well with Julesz’s texton theory?

This question has been partially answered through the use of filter banks and
wavelet transforms. Indeed, since the atoms of certain wavelet transforms have
the aspect of local salient features, it seems convincing to address by-example tex-
ture synthesis via a method based on the first-order distribution of the wavelet
coefficients. The problem has been addressed in those terms by the authors
of [Heeger & Bergen 1995] who proposed a synthesis algorithm that matches the
histograms of sub-bands in a steerable pyramid. This work is justified by the per-
ceptual studies [Bergen & Adelson 1988] and [Malik & Perona 1990] which, in some
sense, takeover Julesz’s texton theory. In fact, the later article [Malik et al. 1999]
tends to bridge the gap between the two approaches: its authors propose an opera-
tive definition of texton, as frequently-occurring local filter responses (obtained by
K-means clustering performed over filter responses at many pixels). As concerns
texture synthesis, the algorithm of [Heeger & Bergen 1995] is quite successful for
by-example synthesis of microtextures, but for textures with more structured local
features the results are in general not convincing. As one can see in Fig. 1.7, Heeger-
Bergen algorithm is less precise than RPN or ADSN models in terms of frequency
content. But in a few number of cases, it (surprisingly!) allows to reproduce non
random phase features.

The main drawback of Heeger-Bergen algorithm is that it only enforces the
marginal distribution of each filter response, without respecting the correlations
between the filter responses. And, as the Fourier phase, these correlations are
crucial to produce edges or conspicuous features. A very satisfying answer to that
problem was brought in [Portilla & Simoncelli 2000]. Indeed, in this article, Portilla
and Simoncelli propose to define a statistical texture model parametrized by several
well-chosen second-order statistics computed in a complex wavelet transform. We
refer to the original article for the detailed list of the chosen statistics but let us
mention that among these, they capture local phase measurements through the
complex correlation between a wavelet coefficient and its parent coefficient at the
adjacent coarser scale. This certainly agrees with the importance of local phase
shifts in image perception. Also, to address synthesis, this statistical model is
sampled using an iterative procedure that alternately adjust all the chosen statistical
constraints.

Among many conceptual advances, Portilla and Simoncelli demonstrate the rich-
ness of this parametric texture model by showing an amazing variety of textures
(microtextures and also macrotextures) that are well-reproduced by their synthe-
sis algorithm. Besides, their work also show that a small set of parameters (710
in their experiments but that could be even less) suffices to describe a very wide
class of texture images. However, one of the weakness of Portilla-Simoncelli algo-
rithm, which is already mentioned in the final section of their article, is that the
output synthesis is not properly defined as a stationary random field (partly be-
cause they use a decimated wavelet transform, but also because the model is only
partially determined by the iterative synthesis algorithm whose convergence is not
proved). Also, since this iterative procedure is very slow, it is far from meeting the
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Original RPN Heeger-Bergen

Figure 1.7: Comparison between RPN and Heeger-Bergen synthesis algo-
rithms. In each row, from left to right, one can see an original texture, and the syn-
thesis results of RPN algorithm and Heeger-Bergen algorithm. These results have
been obtained with the online demos [Galerne et al. 2011a] and [Briand et al. 2014].
These algorithms perform well for microtexture synthesis, but as one can see in the
third row, RPN is actually more precise. However, for macrotexture synthesis,
both algorithms fail in general. Nevertheless, Heeger-Bergen algorithm sometimes
reproduces non random phase features on very peculiar exemplars (last row).
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requirements of real-time image synthesis.

Texture modelling with Markov random fields

Another weakness of Portilla-Simoncelli algorithm (mentioned in the “Discussion”
section of [Portilla & Simoncelli 2000]) is that it sets once and for all, among the
second-order distribution of filter responses, a subset of interesting statistical con-
straints whose choice is essentially motivated by empirical observations. Therefore,
the synthesis algorithm still has a few failure cases and thus one would mitigate
the first sentence of their abstract: their statistical model is just nearly universal
(which was still, of course, an incredible breakthrough in texture modelling).

A much less specific approach was proposed two years before by the authors
of [Zhu et al. 1998]. In this article, Zhu et al. completely identify the concept of
texture with the one of random field. Subsequently, they explain that if one has
access to several exemplars of the same texture, then texture analysis boils down to
inference on a probability distribution, and that, after this inference step, one can
perform texture synthesis by sampling according to that probability distribution.
Of course, apart from the Gaussian case where such an analysis/synthesis pipeline
is easily followed, these two steps are very hard to solve in a general setting. In
their FRAME algorithm, Zhu et al. suggest to infer a Gibbs distribution by se-
lecting automatically a few filters (among a large filter bank) that will capture the
important features of the considered texture.

The FRAME algorithm thus automatically recognizes the features that will play
a role in the perception of a specific texture. In terms of textons, this analysis step
is close to the one of [Malik et al. 1999] because in some sense, both articles go
against the search of a universal notion of texton. Indeed, since the concept of
texture is quite vague, we do not know a priori what kind of local details will
drive our perception, and thus it is natural to define the textons with respect to a
specific class of textures. In the example of Gaussian textures, this justifies again
the definition of texton that was given in [Desolneux et al. 2012]. This idea has also
been pursued in [Zhu et al. 2005] whose authors propose a more generative view of
textons.

One of the advantage of FRAME is that it is formulated in the framework of
Gibbs distributions, which are shown to be equivalent to Markov random fields by
the Hammersley-Clifford theorem [Besag 1974], [Winkler 2006]. Let us recall that
a Markov random field (MRF) is a probability distribution P on a set of images R®
such that (with obvious notations for the conditional distributions) for every pixel x,

Pu(x) [uly), y #x) = P(u(x) | uly), yeNu,y #x ),

where N is a neighborhood of x. The right-hand side of this equation is sometimes
called local specification of the MRF.

Therefore, Markov random fields form a clearly defined probabilistic model
which is very suited to texture analysis because it is completely determined by the
local specification. Even if MRF models are generally presented only in the case of



1.4. Non Random Phase Texture Models 31

a finite image domain?® €2, relying on a precise random model is still an apprecia-
ble theoretical asset (which does not have [Portilla & Simoncelli 2000] for example).
MRF have already been used for texture analysis and synthesis long before the arti-
cle of Zhu et al., for example in [Cross & Jain 1983], [Chellappa & Chatterjee 1985]
and [Geman & Graffigne 1986]. But these three articles use simple local specifica-
tions parametrized by a few number of coefficients which can be estimated on an
exemplar; hence the richness of these models is very limited.

Nonetheless, anyone who performs texture synthesis based on a MRF model is
confronted to the fact that in general, the sampling of MRF involves heavy numer-
ical simulations. Apart from very specific cases, the simulation of MRF relies on
Gibbs sampling, which is a very costly algorithm especially with large size neigh-
borhoods Ny, and whose convergence speed may depend on the model (because it
is already true for the “simple” case of Ising model). This practical problem is thus
the main limitation of FRAME synthesis algorithm.

The incredible success of non-parametric texture synthesis by example

Fortunately, a tremendous simplification was brought quasi-simultaneously by the
authors of [Efros & Leung 1999] and [Wei & Levoy 2000]. They showed that by-
example texture synthesis could be performed by progressive filling of the synthesis
domain with a kind of copy-paste technique: in order to synthesize a new pixel x, one
only has to look for exemplar pixels whose neighborhoods resemble the already syn-
thesized pixels in the neighborhood of x. Then, one can randomly sample from these
exemplar values as suggested in [Efros & Leung 1999] or simply copy the most re-
sembling exemplar value as in [Wei & Levoy 2000]. Apart from slight modifications
involved in the final algorithms (for example in [Wei & Levoy 2000], the multireso-
lution scheme, and the tree-structured vector quantization which greatly fastens the
execution), the simple “copy-paste” principle was established. In terms of MRF,
it means that one has access to a partial realization of the random field, sampling
according to the local conditional distribution can be approximated by this simple
copy-paste operation. This tremendous simplification certainly explains the success
of their method over the one proposed in [Paget & Longstaff 1998] which consists in
a precise non-parametric estimation and sampling of the local conditional distribu-
tions of the MRF. The algorithms of [Efros & Leung 1999] and [Wei & Levoy 2000]
exhibit good results even on structured textures. As one can try with the online
demo [Aguerrebere et al. 2013], these algorithms may be less precise for microtex-
ture synthesis than random phase algorithms, but they perform well on many more
structured textures.

The works of Efros-Leung and Wei-Levoy have inspired many further texture
synthesis articles and methods; here we will mention only a few ones that we judge
apropos with regards to the problematics of this thesis; the interested reader may
refer to [Wei et al. 2009] for a more exhaustive (though already outdated) review.
Several authors remarked that in Efros-Leung algorithm, only a few pixels have a

3 Several technical difficulties arise when considering Markov random fields defined over the
infinite lattice Z2, see for example [Prum 1997].
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truly random choice when sampled, so that the copy-paste principle could be acceler-
ated by processing patches instead of pixels. Thus, the method of [Liang et al. 2001]
accelerates the one of [Efros & Leung 1999] by using conditional sampling of patches
instead of pixels. The authors of [Efros & Freeman 2001] also exploit such a patch-
based sampling method but obtain much better results since they cautiously handle
the boundary between adjacent overlapping blocks: a minimum error boundary cut
is found with a dynamic programming method. The authors of [Kwatra et al. 2003]
bring a considerable algorithmic improvement to Efros-Freeman’ method by us-
ing graphcut optimization to stitch the texture blocks. Let us also mention the
work [Ashikhmin 2001] which modifies Wei-Levoy’ algorithm by encouraging ver-
batim copy; this modification is quite questionable in terms of random simula-
tion but undeniably fastens the method by avoiding exhaustive search in the ex-
emplar texture. The methods of [Wei & Levoy 2000] and [Ashikhmin 2001] have
inspired the concept of image analogies [Hertzmann et al. 2001] which has numer-
ous applications, although it brings only minor improvements as concerns texture
synthesis. The patch similarity in [Efros & Leung 1999] also inspired the “non-
local means” denoising algorithm [Buades et al. 2005]. Finally, the unpublished
work [Wei & Levoy 2002] achieves order-independence in the pixels filling; we would
like to highlight here that this feature is conceptually attractive because it guaran-
tees some kind of stationarity in the output random field.

Texture Optimization

The order-independence is inherently respected by synthesis algorithms
based on texture optimization [Kwatra et al. 2005] (and its surface ana-
logue [Han et al. 2006]). Given an exemplar texture u : €, — R? Kwatra et
al. suggested to synthesize a texture v : , — R% by finding a local minimum of
the “texture energy”
E(v)= ) min [jpy(x) = pu(y)|*,
ye, x€Ny

where p, (x) denotes the patch of u that is centered on pixel x. The authors propose
to minimize this energy, starting from a random initialization, by iterating simul-
taneous projections of all the pixel values to the exemplar values with the closest
resembling neighborhood. Here too, the final algorithm is a bit more complicated
(multiresolution framework, reweighted least-square for optimization, and K-means
acceleration for patch search in the exemplar) but this method is an inherently
stationary improvement of [Wei & Levoy 2000] and produces both impressive and
stable results on highly structured textures (the stability of the algorithms will
be discussed below). Texture optimization can also address constrained synthe-
sis [Kwatra et al. 2005, [Ramanarayanan & Bala 2007], [Kim et al. 2012]. Finally,
let us mention that similar functionals have been used to address video inpainting
problems [Wexler et al. 2004], [Newson et al. 2014] and also inspired the PATCH-
MATCH algorithm for image editing [Barnes et al. 2009].

Maybe one last drawback of texture optimization algorithms is that they do not
meet with the requirements of computer graphics. For this kind of applications,
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the algorithm is often asked to be procedural (meaning that the output texture
can be evaluated at any spatial position (in a continuous setting)), parallel (mean-
ing that the output pixel values can be computed separately), and must have low
memory storage (because of constraints involved in GPU execution). Nowadays,
many algorithms allow for real-time texture synthesis, but they are often limited
to a certain class of textures. Since the seminal paper [Perlin 1985], several pro-
cedural noises have been proposed [Cook & DeRose 2005], [Goldberg et al. 2008]
(see [Lagae et al. 2010a] for a detailed review), with recent progress in procedu-
ral noise by example [Lagae et al. 2009], [Lagae et al. 2010b], [Galerne et al. 2012],
[Gilet et al. 2014]; but all these methods essentially concentrate on random phase
textures. Closer to the aforementioned texture optimization models, lies the syn-
thesis algorithm of [Lefebvre & Hoppe 2005] which is parallel but not procedural,
and was followed by several variants like [Dong et al. 2008] or [Han et al. 2008]. In
this article, Lefebvre and Hoppe propose to generate, in a multiscale framework,
more and more detailed versions of the texture, by performing, at each scale, a
jittering step (that introduces some randomness) and a correction step (inspired
by [Ashikhmin 2001]). A main strength of this method is that it has been designed
to allow for parallel evaluation and thus benefits from fast GPU execution Besides,
since it combines many advantages of previous methods, it is able to handle a very
large class of textures. If we could here express some personal point of view, we
would say that this method is, up to date, the most impressive synthesis algorithm
with regards to its execution speed and the diversity of well-reproduced textures.

Towards texture models that combine the flexibility of the spot noise model and
the richness of patch-based models

Despite all these efforts directed towards texture synthesis, we believe that there is
still room for improvement in the research of texture models having certain math-
ematical guarantees. In particular, such guarantees could solve the stability prob-
lems encountered with methods inspired by the “copy-paste” principle. For exam-
ple, Efros-Leung algorithm is not stable for two reasons. On the one hand, two
output textures computed on the same exemplar may look different. And on the
other hand, on certain textures, the result is corrupted by the famous “growing-
garbage” effect (which is already mentioned by [Efros & Leung 1999] and illustrated
in Fig. 1.8). These stability problems can certainly be explained by the weakness
of mathematical guarantees provided by Efros-Leung algorithm. In fact, the au-
thors of [Levina & Bickel 2006] showed that Efros-Leung algorithm is a consistent
resampling method provided that the size of the exemplar tends to infinity. Such a
result is of course very welcomed but unfortunately not sufficient to ensure practical
stability of the synthesis algorithm®. In contrast, these stability problems do not
happen anymore with truly stationary schemes. For example, with natural texture
samples, several results of RPN or ADSN synthesis have similar appearance; also,

It would certainly be interesting to pursue the work of [Levina & Bickel 2006] by proving an
(approximate) consistency result based only on a finite observation, even if it requires very strong
assumptions of the random field.
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Figure 1.8: Growing-garbage effect. The synthesized texture on the
right has been obtained with FEfros-Leung algorithm (using the online
demo [Aguerrebere et al. 2013]) applied to the original texture shown on the left.
In the output image, one can clearly distinguish a spatial boundary beyond which
the synthesis fails (we say that the algorithm is “growing garbage”).

to the best of our knowledge, no stability problems have been encountered in the
stationary method of [Kwatra et al. 2005].

Hence the need of clear random texture models that are simple enough to allow
for mathematical analysis (and thus for theoretical guarantees and/or fast sam-
pling), and whose richness comes close to the one of recent patch-based models.
Such a model would certainly rely on the analysis of patch distributions. Con-
sidering the patch distribution of a texture is, to some extent, a way to reconcile
the approaches based on filter banks, and the approaches based on Markov ran-
dom fields (thereby avoiding the difficulties attached to conditional distributions).
This point of view is justified by the findings of [Varma & Zisserman 2003] whose
authors showed that better results could be obtained in texture classification by di-
rect analysis of the patch distribution, compared to the results obtained via a filter
bank (even if the filters support is larger than the patch domain). Therefore, this
suggests that textons could be directly defined through the analysis of the patch
distribution.

One successful way to analyze a patch distribution is to make use of vi-
sual dictionaries. Since the concept of dictionary originated in the need of
adaptive sparse representations of images, such approaches in texture synthe-
sis could be considered as the natural continuation of filter-based models and
in particular [Zhu et al. 2005]. The author of [Peyré 2009] successfully com-
bines texture optimization [Kwatra et al. 2005] and a dictionary learning tech-
nique [Mairal et al. 2008]; the corresponding synthesis algorithm is able to syn-
thesize structured textures in a slightly over-regularized manner. Later, this work
about sparse texture synthesis was pursued in [Tartavel et al. 2014]. The authors
of this article suggest to minimize a functional made of different terms. One
term constrains the dictionary atoms to be used with the same frequencies than
in the exemplar texture (which makes the output textures seem less regular than
in [Peyré 2009]). The other terms constrain the color distribution, and also the
global Fourier modulus (which, again, is the only extracted information in RPN
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and ADSN synthesis). The output randomness is obtained through stochastic ini-
tialization of the minimization process. Unfortunately the synthesized texture ob-
tained by the algorithm of [Tartavel et al. 2014] is still quite difficult to describe as
a stationary random field. Indeed, further research would be required to understand
more thoroughly the distribution of images obtained by applying a a global opti-
mization procedure to a random field. If the functional is considered to be a Gibbs
potential, this method seems more as a way to extract local maxima a posteriori
than a method to sample according to the Gibbs distribution.

In Chapter 5 of this thesis, we have followed a different path: we tried to find
simple random fields (inspired by the aforementioned synthesis algorithms) whose
simulation is straightforward and that are still able to reproduce a wide class of
textures. Inspired by the aforementioned works in texture synthesis, we tried to
design new texture models that combine the benefits of both spot noise models and
patch-based models.

In Section 5.2 we define localized variants of the ADSN model which allow to
resynthesize on the same domain non-stationary microtextures. The corresponding
simulation scheme is still very efficient because such a local ADSN can be approx-
imated by a low-intensity discrete spot noise (as for the ADSN associated to the
synthesis-oriented texton in Section 3.3). Besides, we can fully describe the dis-
tribution of the random field since it is Gaussian with easily computed first-order
and second-order moments. This algorithm is able to resynthesize non-stationary
microtextures (like the ones encountered in radiographic images) because it locally
respects the texture autocorrelation. Besides, experimental results show that this
synthesis commutes with the addition of a sufficiently smooth component; this
method can thus be understood as approximate resynthesis of a Gaussian texture
conditioned on a low-frequency component. The corresponding synthesis results
illustrate the potential of Gaussian models with relaxed stationarity constraint.

Finally, in Section 5.3 we propose to define bi-level texture models which consist
of a coarse-scale random phase field on which fine scale details are added through a
local function. Such a model agrees with the paradigm [Galerne et al. 2011b] that a
texture can be considered as random phase if it is seen from sufficiently far away. We
present one instance of bi-level models by using a patch-based local function whose
construction is inspired by [Kwatra et al. 2005]. It leads to a by-example synthesis
algorithm whose results are comparable to the ones of [Kwatra et al. 2005] but with
a simpler synthesis algorithm and with additional mathematical guarantees. One
main conceptual asset of this model is that it can be seen as a local function of a
stationary Gaussian random field. In particular, the stationarity and the long-range
independence obtained with this texture model are good guarantees for stability,
which is illustrated by the fact that it can be used to synthesize structured textures
on very large domains.
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1.5 Detailed Outline of the Thesis

We here give a detailed overview of the following chapters, with the main contribu-
tions written in bold characters.

Chapter 2

In Chapter 2, we propose a unified framework for stationary texture mod-
elling in which we define, study, and compare several well-known texture
models, like the spot noise model, the random phase noise, moving averages, au-
toregressions, and Gaussian Markov random fields (GMRF). For the sake of read-
ability, we distinguish between texture models that are defined over a periodic finite
domain © = Z/M7Z x Z/NZ called circular models, and texture models that are
defined over the whole plane Z2. In the first case, the spectral representation is
given by the DFT, whereas it is obtained with Herglotz theorem in the second case.

After recalling the construction and well-known properties of the spot noise
model, we discuss several questions related to ADSN random fields. In particular,
in the circular gray-level case, we recall that any stationary Gaussian random field
can be obtained as an ADSN, and in the circular color case, we propose a canonical
decomposition of a R%valued Gaussian stationary random field into a sum
of d independent ADSN fields. The notion of texton is recalled for circular Gaussian
models [Desolneux et al. 2012] and also introduced for Gaussian models on Z? (but
mainly used for simulation purpose)

Finally, we recall the definition of the optimal transport distance between circu-
lar random fields and recall (with a simplified proof) the result of [Xia et al. 2014]
that expresses the distance between two circular ADSN fields. We also extend this
definition and this result to the infinite lattice by defining an optimal transport
distance between stationary random fields on Z2.

Chapter 3

In Chapter 3, we explain how the random phase models introduced in Chapter 2
can be used to perform fast by-example synthesis of microtextures.

In Section 3.1, we show how to estimate a Gaussian model from an exemplar
texture u :  — R In particular, we compare periodic and non-periodic
estimators of the covariance function. Next, in Section 3.2 we present several
examples of random phase texture synthesis, with the underlying desire to precisely
highlight the limits of RPN and ADSN synthesis.

In Section 3.3 we present the main contribution of this chapter: we explain how
to derive from an exemplar texture a so-called synthesis-oriented texton (SOT).
This texton is designed to hold in a prescribed compact support, and to realize a
good approximation of the ADSN model associated to the exemplar. Besides, the
SOT spreads over all the available support, and thus the corresponding DSN real-
izes a good approximation of the Gaussian limit even for a reasonably low intensity.
We will thus show that many microtextures can be convincingly synthe-
sized with a DSN model associated to a very small SOT (31 x 31) and
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with less than 50 operations per pixel. We can thus take profit of the nu-
merous advantages of direct spot noise synthesis, in particular fast parallel local
evaluations. Motivated by a peculiar example of SOT, we also show that the raw
optimal transport distance is not sufficient to measure precisely the per-
ceptual proximity between two textures because of the equal contribution of
all frequencies of the Fourier domain. We thus propose an optimal transport dis-
tance including frequency weights which reflects more accurately our texture
perception and which is used to get a more robust SOT.

Finally, in Section 3.4, we apply random phase texture models to the prob-
lem of textural inpainting. Since textural inpainting can be clearly formulated as
conditional simulation, we obtain a satisfying textural inpainting algorithm
for microtextures by adapting the Gaussian conditional simulation scheme
based on kriging estimation [Lantuéjoul 2002].

Chapter 4

Chapter 4 is devoted to a thorough presentation of the global phase coherence
indices GPC, SI and S. In Section 4.3, we give basic properties of these indices
and also analyze the regularity of SI and S. We also show that the phase
coherence indices of random phase fields are expected to be low (we
actually compute the exact distribution of the GPC of a RPN). A related question
is to study the TV of a random phase field. In Appendix 4.A, we provide an
explicit approximation of the expected TV in the RPN model (which can
be plugged in the numerical computation of GPC). Also, in Appendix 4.B, in a
well-chosen asymptotic framework, we justify the Gaussian approximation of
the TV distribution of certain ADSN models (which underlies the operative
definition of SI).

In Section 4.4, we provide a practical study which relates these indices to the im-
age sharpness. We provide many experiments that illustrate their behavior on natu-
ral images, and in particular, with the same methodology than [Blanchet et al. 2008]
and [Blanchet & Moisan 2012] we confirm that these indices are sensitive to
blur, noise and ringing artifacts. However, we illustrate in the end of this
section that these indices have no reason to reflect perfectly the perceptual notion
of sharpness (in particular when facing phase-coherent artifacts). Nevertheless, the
index S can still be considered as a good prior for deblurring an image w. In
Section 4.5, we propose to find a restoration kernel k£ that maximizes the sharp-
ness S(k = u) of the restored image. Restricting to the class of kernels having
radial and unimodal DFT, then we can use a simple stochastic scheme to optimize
this functional. This method can thus treat isotropic blur by applying a
well-chosen deconvolution filter and compares well to other purely non-linear
methods while keeping the benefits of linear filtering.
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Chapter 5

In Section 5.1, we illustrate the difficulty of direct phase analysis/synthesis. We
first show that the stationary assumption imposes to consider the phase
modulo the linear functions (called ramp functions). We will see that the
bispectrum phase provides such a representation but does not seem appropriate
for by-example texture synthesis. To end this section, we illustrate that the phase
coherence indices of Chapter 4 are not sufficient to assess precisely the plausibility
of an exemplar texture in the random phase model.

The rest of this chapter is devoted to texture models which combine the benefits
of Gaussian models and patch-based sampling. In Section 5.2 we define a local
spot noise model which allows to resynthesize non-stationary microtextures. The
corresponding Gaussian limit can still be approximated by a low-intensity local spot
noise, which allows for fast simulation. Several examples of local spot noise show
that the Gaussian model gets much richer with a relaxed stationarity
constraint.

Finally, in Section 5.3 we propose to define bi-level models as local functions
of coarse-scale stationary Gaussian random fields. We formulate simple math-
ematical properties of such bi-level models, like stationarity or long-range
independence, which can be understood as strong guarantees of stability and
innovation. Using a patch-based local function inspired by [Kwatra et al. 2005],
we show that such a bi-level model can synthesize many macrotextures on
very large domains.

1.6 Publications

The content of Chapter 4 has been recently published as is in the journal article

No-reference image quality assessment and blind deblurring
with sharpness metrics exploiting Fourier phase information
(Arthur Leclaire, Lionel Moisan), Journal of Mathematical Imaging and
Vision, 2015.

A preliminar version of this work was presented in the conference paper

Blind Deblurring Using a Simplified Sharpness Index (Arthur
Leclaire, Lionel Moisan), proceedings of the fourth International Con-
ference on Scale Space and Variational Methods in Computer Vision,
Lecture Notes in Computer Science, vol. 7893, pp. 86-97, 2013.

The technical issue of border effects in the computation of SI was discussed in
Une Variante non Périodique du Sharpness Index (Arthur
Leclaire, Lionel Moisan), Actes du GRETSI, 2013.

Finally, the synthesis-oriented texton was presented in the conference paper

A Texton for Fast and Flexible Gaussian Texture Synthesis
(Bruno Galerne, Arthur Leclaire, Lionel Moisan), proceedings of the Eu-
ropean Signal Processing Conference, 2014.
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The objective of this chapter is to introduce the random phase fields that will
be used as texture models in Chapter 3 and for phase coherence evaluation in
Chapter 4. In particular, a wide part of this chapter is devoted to the study of
discrete Gaussian random fields.

The Gaussian random fields that were first proposed for texture modelling
consist of 2-D generalizations of the autoregressive and moving average fields
obtained with a Gaussian excitation function. Such models were used for tex-
ture synthesis in [Chellappa & Kashyap 1985] and [Cadzow et al. 1993], for texture
classification in [Chellappa & Chatterjee 1985], and also for texture segmentation
in [Chellappa 1985]. Notice that the term “autoregressive” is not adapted to the
two-dimensional case for which there is no natural definition of the past and future
of the process; this is why the corresponding texture model is called “noncausal
autoregressive”. The spectral density of these Gaussian processes is a trigonometric
polynomial (often with low degree) in the moving average case, and a trigonometric
rationale function in the autoregressive case.

The moving average fields are a particular case of filtered white noises. In the
computer graphics community, such models were proposed for texture synthesis
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in [Lewis 1984], [Lewis 1989] and [Van Wijk 1991]. In particular, the spot noise
model of [Van Wijk 1991] consists of the superposition of randomly-shifted copies of
a kernel h positioned according to a Poisson point process. In other words, the spot
noise is the convolution of a kernel h with a Poisson white noise. In [Van Wijk 1991],
the author notices that the Fourier transform of the spot noise is obtained by
multiplying the Fourier coefficients of h by a scale factor and a phase shift. He
clearly states the randomness of the phase shifts, but not the one of the scale factor,
leading to a confusion between the spot noise model and any other filtered white
noise model. However the experiments shown in his article clearly demonstrates the
richness of the spot noise model. In contrast to the moving average and noncausal
autoregressive models, the spectral density of the spot noise model is not restricted
to a parametric class.

The mathematical analysis of the spot noise model was presented
in [Galerne et al. 2011b]. In this article, is is shown that when the intensity of
the Poisson point process tends to infinity, the discrete spot noise converges to the
so-called asymptotic discrete spot noise (ADSN) which is the convolution of the
kernel with a Gaussian white noise. The authors also make a clear distinction be-
tween the ADSN and the random-phase noise (RPN) which is a process with fixed
Fourier modulus and with uniform random Fourier phase. However, they show that
both ADSN and RPN can model a wide class of microtextures composed of texture
images for which the phase does not convey any useful information.

The stationary Gaussian model (and in particular ADSN), besides from its
interest in texture synthesis demonstrated in [Galerne et al. 2011b], leads to fruitful
mathematical developments. For example it was used in [Grosjean & Moisan 2009]
to study the detectability of spots on textured background using the a-contrario
methodology. Also, an expression of the optimal transport distance between two
ADSN random fields was given in in [Xia et al. 2014] and [Desolneux et al. 2015]
(with an application to texture mixing in the former article).

The Gaussian random fields are characterized by their moments of order 1 and 2.
Even if this property is very convenient on a theoretical point of view (for example
when doing conditional simulation as in Section 3.4), it is also their main lim-
itation as texture models. Indeed, as shown in [Julesz 1981], the pre-attentive
perception of texture by the human visual system is not reduced to the statistics
of order 1 and 2 but also depends on local conspicuous features. More precisely,
since their Fourier phase is uniform, the ADSN and RPN fields cannot model tex-
tures with geometrical salient elements (like sharp edges), according to the obser-
vations of [Oppenheim & Lim 1981]. This property restricts their performance in
by-example texture synthesis, as will be seen in Chapter 3.

In this chapter, we present in a unified framework several random phase fields
that will be later used as texture models. In particular we study the RPN, ADSN,
and general Gaussian models, with particular attention on the spectral represen-
tation of the random fields. We explain the available simulation scheme for such
Gaussian models, and we take this opportunity to define the textons associated
to a Gaussian model. We also define and compute the optimal transport distance
between ADSN fields. For the sake of clarity, we prefer to distinguish between the
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models defined on a circular finite domain, and those defined on the infinite lat-
tice Z2. Indeed, the analysis and simulation of circular random fields is easy since
the discrete Fourier basis is an eigenvector basis of the corresponding covariance op-
erators. In contrast, the spectral representation of stationary random fields on Z?2
may not be sampled on a discrete grid in Fourier domain. Since we are interested in
color texture models, we consider random phase fields with values in R? where d de-
notes the number of channels (3 for an RGB image). The main contributions of this
chapter are the decomposition of a multi-channel Gaussian field as a sum of ADSN
fields (Subsection 2.1.4), a simpler proof of the expression giving the optimal trans-
port distance between circular ADSN fields (Subsection 2.1.6), and its extension to
the case of ADSN fields defined over the whole plane Z? (Subsection 2.2.7).

2.1 Circular Stationary Random Fields

Let © = Z/MZ x Z/NZ be a periodic rectangular discrete domain of size M x N.

2.1.1 General Definitions

In this subsection, we recall general definitions and properties of circular stationary
random fields and their spectral representation. Even if these general results are
well-known (see for example [Doob 1990], [Galerne et al. 2011b], [Xia et al. 2014]),
they are recalled with their proofs, for the sake of completeness.

Random Fields and Covariance Functions

Definition 2.1.1. A random field on © is a random process F on © with values
in R%, meaning that for all x € ©, F(x) is a random variable in R?. Omitting
to write the probability sample w, we will often denote F' as a random function
F:0 — R It is said to be of order p if for all x € ©, E(||F(x)||P) < co. If F is of
order one, its expectation (or mean field) is the function m : © — R? defined by

Vxe©®, m(x)=E(F(x)).

If F is of order two, its spatial covariance is the function I'p : © x @ — R4
defined by

¥x,y €0, Tr(x,y) = Cov(F(x), F(y)) = E(F(x) — m(x))(F(y) — m(y))") -

The random field F is said to be Gaussian if any linear combination of its values
is Gaussian. The distribution of a Gaussian random field F' with mean m and
covariance I will be denoted by N (m,T).

Notice that a covariance I' can also be seen as the covariance matrix of a random
vector in R®*? and thus inherits the property of such covariance matrices. But
since we are particularly interested in the spectral analysis, it is worth writing these
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properties with a clear distinction between the spatial index x € © and the channel
index j € {1,...,d}. The covariance satisfies the symmetry constraint

Te(y,x) =Tr(x,y)"

and the non-negativity constraint

Vie(Ch®, > fx)Tr(xy)f(y) =0

X,yeO©

where f(y) refers to the complex conjugate of f(x). The covariance is associated
to the non-negative Hermitian form on (C¢)%

(CH® x (CH)® — C
(f.9) — > ) Tre,y)9(y)

XeO,ye©

Conversely, given any function I' which satisfies these two properties, one can build
a random field on © with expectation 0 and covariance I.

Definition 2.1.2. A random field F' on © is said to be circular stationary (or
simply circular) if for every n > 1, x1,...,%x, € O, v € O, (F(x1),...,F(x,)) has
the same distribution as (F(x1 + V), ..., F(x, +V)).
If F' is a second-order stationary random field on O, its expected value
m = E(F(x)) € R?
does not depend on the location x, and the covariance between two samples
Cov(F(x), F(y)) = E((F(x) —m)(F(y) —m)") e R™
only depends on the shift y — x.

Definition 2.1.3. The covariance function of a second-order circular random
field F on © is the function Cp : © — R¥*? gych that

Vx,y e ©, Cov(F(x),F(y))=Cr(x—y).

By abuse of notation, we still denote by N (m,C) the distribution of a Gaussian
circular stationary random field with mean m and covariance function C.

If F'is a second-order circular random field on ©, we thus have
Vx,yeO,VveO, Tpx+v,y+v)=IpxYy).

This property is sometimes referred to as “I'g is circulant”.
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Spectral Representation

Let us recall that the discrete Fourier transform (DFT) of a (matrix-valued) function
f:© — RP*Y is the function f: O — CP*9 defined by

VEeO, f(&) =) flx)e & (2.1)
xeO©
where (€,x) = 2m (%8 + 2282 for ¢ = (£1,&) € © and x = (z1,22) € O. Since

f is real valued, we have f(—&) = f(£). Notice that, if f, g are two matrix-valued
functions on © such that the product fg is well defined, then we can define their
(circular) convolution by

Vxe B, fxg(x Zf

ye©

The DFT of the convolution is given by m = f g. Indeed, for all £ € ©, we have

S fg(x)e e

XEO

ST fy)glx —y)e 6

X,ye©

> fly)e Y g(x —y)e X

X,yeO©

> F)e oV g(z)e O = [(€)g(€) -

X,z€EO

—

fxg()

In particular, if we set f(x) = f(—x), then the (non-centered) autocorrelation
of a function f: ©® — RP defined by

YveO, f=x fT Zf V—X Zf X—V

x€O x€O

satisfies

f * f~T = fﬁ = ff* )
where f(£€)* = f(£€)T is the transposed conjugate of f(&).

Let F be a second-order circular random field on © with mean m and covariance
function C. One has for all v € ©,

E(F + FT(v =Y E(F(x)F(x— v)T) = 16[(C(v) + mmT) .
bE(C]

Taking the DFT of both sides, we get

1 - = 1

Ve OO}, Cl&) = (GE(F+FT(§) = GEFEOFE").
C(0) = 1 E(E(0)F(0)*) ~ [O]mm .

Kkl
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or equivalently,

m —mTV = V). .
Gl E((F = m) * (F —m)" (v)) = C(v) (2.2)

Besides, since E(F'(x)) = m for all x, we have

vEe O\{0}, E(F(£) =0,
E(F(0) = [©]m ,

so that we get the following proposition.

Proposition 2.1.1. If F is a circular random field on © with values in R? and
with covariance function C, then

vEeo, C(€)= |é)|COV( (&) = ‘(;E((F(E)—Eﬁ(ﬁ))(ﬁ(i)—EF(E))*)

In particular, C’(E) belongs to the set ”Hfo of Hermitian non-negative matrices of
size d x d, and we have C(—€) = C(€). The function C : © —> HZ is called the

power spectrum of F.

Notice that for all f,g € (Cd)@7

Zf ) Cx—y)gly) =

o \

»

Y

> flx
€
T
( ) C(&) " gly)eite”
f©r

\H @\

MM MM

©)37(€) - (2.3)

@

This property means that the operator associated to the Hermitian form defined
by the covariance is block-diagonal in the discrete Fourier basis.

Based on the spectral representation of the covariance function, we can give a
convenient definition of the terms “white noise” and “colored noise”.

Definition 2.1.4. A circular random field F : © — R? with covariance func-
tion C is said to be a white noise if its power spectrum is constant (or equivalently
if C'=C(0)d). A circular colored noise is a random field F : © — RY that can
be written F = m + h * W where m € R?, where h : © — R%*? is a matrix-valued
function and where W is a R%valued white noise on ©. A circular rank-one colored
noise is a random field F' : © — R? that can be written F = m + h = W where
m € R%, where h : © — R? and where W is a scalar white noise on ©.

Notice that if F = m + h* W with m € R%, h: © — R? and with W a scalar
white noise, then for each £ € ©\{0}, we have

C(€) = Var(W(0)) h(€)h(€)*

which is a matrix with rank < 1, which justifies the terminology.
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The reader must be warned that this definition only concerns the moments of
order 2, and is thus quite weak. In particular, this definition does not concern the
phase information (argument of the DFT), which has a particular importance in
image perception. The next paragraph will introduce some more terminology to re-
fer to random fields that have the least possible structure in the phase information.
Let us emphasize on the fact that a white noise has only uncorrelated samples. Fol-
lowing a remark on [Grenander & Rosenblatt 1953, p.2], we will use the expression
“pure white noise” (due to Tukey) to refer to a random field whose samples are
independent. Notice that in the Gaussian case, a white noise is always a pure white
noise.

Random Fields with Uniform Phase

Let us introduce two subsets O, 0 of © such that
O = @+ [ (_9+) Ll @0
is a partition of ©. Setting

an(—M/ZO) ny:(ov_N/2) nmy:(_M/27_N/2)a

the elements of ©g = ©n{0,n,,n,,n,, } are the frequencies £ € © such that —§ = &,
i.e. —(fl,fg) = (51,62) mod (M,N) )

Let us also write T = R/27Z. If u: © — R is a gray-level image, then a phase
function for u is any function ¢ : © — T such that @ = |a]e®. If 4(£) # 0, the
phase coefficient p(&) € T is uniquely defined as an argument of (&) € C* (denoted
by arg(@(£))), while any arbitrary value can be chosen if 4(§) = 0.

Definition 2.1.5 ([Galerne et al. 2011b]). A uniform random phase function is a
random function v : @ — T such that

- V€€ O, P(=§) = —(€),
- p(€) ~U(T) if € € ©\Op and (&) ~ U({0,7}) if &€ € Oy,
- (1(€))eco, o, are independent.

A random phase field on © is a random field F : © — R¢ whose DFT can be
written F' = Ge™ where 1 is a uniform random phase function, where G is a
random field on © and where ¢ and G are independent.

Actually, there is an abuse of terminology in Definition 2.1.5 because a random
phase function may not be uniform; in this case we would speak of a structured phase
function. In order to avoid ambiguity, one should use the more precise expression
“random field with uniform phase” instead of “random phase field”.

Proposition 2.1.2. A random field with uniform phase is circular stationary.
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Proof. Let F such that F = Ge® , where 1 is a uniform random phase function
and G a random field G. Let v € © and let us consider

~wF(x)=F(x—v).
The DFT of =, F is given by
V£ O, mF(E) = e MR = MG

Since 1 is a uniform random phase function, so is & — (&) — (&, v). Thus o F
has the same distribution as F', and therefore, 7, F" has the same distribution as F,
which proves that F' is circular stationary. O

Notice that the converse of Proposition 2.1.2 is clearly not true because a random
uniform translation of a fixed image is a circular stationary random field. Actually,
the phase constraints that are imposed by the stationarity assumption will be later
discussed in Subsection 5.1.1.

We will see in the sequel that interesting texture models are obtained as random
fields with uniform phase. However, since the geometry of an image is mostly
encoded in the phase of its Fourier transform [Oppenheim & Lim 1981], one cannot
expect to find any sharp geometrical detail in a random field with uniform phase.
This agrees with the next proposition which shows that a Gaussian white noise is
a random field with uniform phase.

Proposition 2.1.3 (DFT of a Gaussian white noise). If W is a Gaussian white
noise on O, then W is a Gaussian vector of C** ~ (R?) which satisfies

vEeO, W(-6)=W(F).
and such that the random variables (W(é))@+u@0 are independent. Besides, for each

€ € ©\Og, W(&) is a Gaussian vector of C ~ R? of covariance MN <1é2 1(/)2>

and for & € Oy, W(&) is a real Gaussian random variable of variance MN. In
particular, we have

vee®, E([W(EP])=MN.
In particular arg(W) is a uniform random phase function.

Proof. W is a Gaussian vector of (R2)? because it is a linear transform of W, and

the relation W(—¢) = W(£) is a well-known property of the DFT. Since W is a
Gaussian white noise, its characteristic function is given by

. 1
VoeR®, E [exp (z Z go(x)W(x))} = exp (—2 Z (,O(X)2> .
xe© xe©
Thanks to Parseval’s formula, we thus have for any ¢ € R,

E {exp (z s @(&)VV(&))] = exp (—QJ\L\,;@ r¢<£>|2) -

£e®
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Then, one has

STOWE) = 3 ¢@OW(E) + @)W () + 3. (&)W (&)

£€O £eco £€6p

and

D19 = > 2Ae@)P + D e -

£€O O, £y

Therefore

E

exp ( . (Z 2Re (2(©)W (&) + Y @(5)@5)))]

£eO0 £e6g

— exp (—M;N (Z 20 + 3 |¢><£>\2)) .

£eO 135S

Since the mapping ¢ — ¢ defines a map of R® onto CO+ x R®0, we get that for
all ¢ € CO+ x R,

E

exp (z > Re(p@W(©)+i > w(@W(s))]

£eO4 £e6g

~ exp (; (Z NP+ MN Y ¢<£)2)> .

¢eo, ¢e0y

The left-hand side is exactly the characteristic function of the Gaussian vector
(W(€))eeo, wo, of (C)9 x R, so that the last formula gives the desired indepen-
dence property and the marginal distributions. O

Remark 2.1.1. The last proof is based on the characteristic function of W,
Let us mention that a more common proof of this result (which is given
in [Desolneux et al. 2015]) amounts to compute the correlations between all the
components of the random vector

(Re(W(g), Im(W(&), €€O ),

2.1.2 Circular Discrete Spot Noise

Here again, the definitions and results that are gathered in this subsection are
quite standard [Papoulis 1971], [Van Wijk 1991], [Galerne et al. 2011b]. However,
since we focus on discrete random fields, several properties can be simplified (and
in particular, we provide an adapted proof for the Gaussian convergence of high-
intensity discrete spot noise).
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Definition, covariance

Let h: © — R? (which will be often referred to as the kernel function) and let us
denote Y h = > .o h(x). Let A > 0 and let II denote a Poisson point process on ©
with intensity A. In this case where O is finite, the Poisson point process Il can be
represented by a finite sequence (X;)1<i<n, of random points which are independent
and uniformly distributed over ©, and where the total number of points V) follows
the Poisson distribution P(A|©]). For x € ©, let us introduce

= ‘{ 7’ € {17 ’N)\} SuCh that XZ = X}‘
which follows the Poisson distribution P(\).

Definition 2.1.6. The circular discrete spot noise (DSN) (or circular discrete Pois-
son spot noise) of intensity A associated to h is the random field F,% 10 — R?
defined by

Vxe®, Fiy(x th— : (2.4)

Grouping the X;’s by their location, this rewrites

Vx € O, Fh)\ th v)P\(y) ,
ye®©

so that F ,% = h = Py. Notice that Py is a Poisson white noise, because the Py(x)
are independent and follow the distribution P (). In particular, F}% is a rank-one
colored noise in the sense of Definition 2.1.4.

The random field F; ,f ) is of second-order and circular stationary. Its expectation
is given by

=E(FR\(x) =AY h(x)
xEO

Also, one has
F2\—m=hx(Py—)\).

Since P, is a white noise, we get that the covariance function of F; ,?)\ is
_ 7T
CF}?,)\ =Ahxh
which is the autocorrelation of h multiplied by the intensity .

Gaussian convergence at high intensity

Definition 2.1.7. The renormalized circular discrete spot noise of intensity A as-
sociated to h is the random field Gg 1 © — R defined by

F2, —E(FP,) 1
e _ ThA hA Z

It is a circular stationary random field with mean 0 and covariance function h = A7 .
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Theorem 2.1.1 ([Papoulis 1971]). When A — oo, Gg)\ converges in distribution
to a Gaussian random field of mean 0 and covariance function h = hT.

Proof. If N follows the Poisson distribution P(A) with parameter A, then we first
show with Lévy’s theorem that

Nx—X (d
\/X E’N(Oal>a

meaning that Na—A converges in distribution to N'(0,1). Indeed, computing the

characteristic functions gives for all s € R,

lee (S5 )

exp | — ZS\/X> E [exp (1N)\\%)]

(
= exp ( - zsﬁ) exp (x\(eiﬁ - 1))

which converges to the characteristic function e=*/2 of N(0,1) when A\ — 0.
Subsequently, since the P)(x) are independent with distribution P()\), we get

Py =) (d)
\/X A—00 W

where W is a Gaussian white noise on © with mean 0 variance 1. Since the convo-
lution by A is a continuous function from R® to (R%)®, we get

Py—X ()
I o h=W .

Gg)\zh*

O]

Definition 2.1.8. The circular asymptotic discrete spot noise (circular ADSN)
on © associated to the kernel function h is A'(0,h = hT). Notice that this random
field can be obtained as

GO =h+=W
where W is a scalar Gaussian white noise on © with variance 1.

Notice that Gg is another example of rank-one colored noise. More precisely,
the circular ADSN fields are exactly the Gaussian rank-one colored noises with zero
mean.
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Simulation and first examples

The simulation of circular DSN and ADSN fields is straightforward. Indeed, it
amounts to convolve, respectively, a Poisson white noise or a Gaussian white noise
with the kernel function h. Such white noise processes can be drawn thanks
to standard sampling techniques and the convolution can be performed in the
Fourier domain with complexity O(M N log(M N)). Therefore, this scheme, called
spectral simulation, allows to draw circular DSN or ADSN fields with complex-
ity O(MN log(MN)).

When the intensity A is low, the circular DSN can be obtained by a direct
summation method. It amounts to draw the number P ~ P(\|©]) of points of
the Poisson process, to draw uniformly and independently P points in © and to
perform the convolution in the spatial domain using (2.4). This method, which has
a mean complexity of A|Supp(h)||©], is faster than the spectral method for a very
low intensity. We will discuss it more thoroughly in Section 3.3.

One can see in Fig. 2.1 some examples of DSN associated to two different kernel
functions, and with different intensities. The visual convergence of the DSN Gg N
to its Gaussian limit G? agrees with the result of Theorem 2.1.1. The aspect of
the limiting random field depends on the kernel function h since the covariance
function of the ADSN is h = hT. When h is a disc kernel, the ADSN is isotropic;
when h is an elongated blob, one can observe some linear correlations in the ADSN.
As shown in [Van Wijk 1991], one can imagine several shapes of kernels leading to
ADSN fields with very different aspects. This experiment gives a first insight in
the richness of the ADSN model. However, as one can see on Fig 2.1, the textures
obtained by ADSN synthesis do not have any salient features; in particular the
ADSN model is not able to synthesize textures with sharp edges. The study of the
Fourier transform of the ADSN field that is proposed below will help to understand
this limitation.

But before, let us add some comments about the visualization of DSN processes.
In this thesis, the renormalized DSN and ADSN have zero mean whereas the set
of RGB values which are traditionally used in the visualization process is included
in [0,255]%. Therefore, when we show examples of DSN and ADSN, a mean value
m will always be added (for example, in the first example of Fig. 2.1, the mean
value is gray, and in the second example, the mean value is purple). In other words,
we always show m + Gg)\ or m + G?. In general, next to the DSN or ADSN, we
show the underlying kernel h. Again the true image that is shown is hy;s = m + sh
where s > 0, so that the mean color m can be seen outside the support of the kernel
function. The choice of s is less obvious. If a synthesis domain © of size M x N is
fixed, we choose to set s = vV MN so that

1
MN xee(hviSU(X) — m)(hyisu(X) — m)T

equals the marginal covariance h * AT (0) of the DSN and ADSN associated to h.
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Figure 2.1: Examples of circular discrete spot noise. For each row, and from
left to right, one can see a compactly-supported kernel function h, realizations of the
renormalized circular DSN Gg \ associated to h with intensities A = 1074, 1072, 1,
and a realization of the corresponding ADSN Gg . At low intensity A, the translated
copies of the kernel function are clearly visible. When the intensity A increases, the
DSN Gg y begins to look like the uniform random phase field Gg which does not
present any salient feature.

Spectral representation

The discrete Fourier transform of the circular ADSN is
GO = hwW =hiv . (2.5)

In particular, for each &€ € ©, 5?(5) belongs to the plane Ch(£).

Equation (2.5) together with Proposition 2.1.3 give the distribution of G9. In
particular, the DFT coefficients of the circular ADSN Gg are independent modulo
the Hermitian symmetry, and

A

veeo, E(GP6)=0 and E(GPE)GT©)") = MNh(E)A(E)* .

Besides, Gg is a random field with uniform phase according to Definition 2.1.5.
This confirms that one cannot expect to perceive any salient element in a circular
ADSN field, as can be observed in Fig. 2.1.

Notice however that the phase of a Poisson white noise arg(FA’A) is not a uniform
random phase field. A fortiori, the circular DSN, whose DFT is given by

—

Fo\(€) = PA()A(€)

is not a random field with uniform phase. Indeed, for a DSN with low intensity,
the geometrical features of the kernel function are still clearly visible; this agrees
with the fact that a DSN is not a random field with uniform phase.
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Binomial spot noise model

We have chosen here to study the Poisson spot noise because it allows for a
straightforward generalization to Z? as will be seen in Section 2.2. But, as
in [Galerne et al. 2011b], one can also define a binomial spot noise model with
a non-random total number of spots. Indeed, for p > 1, one can consider

P
VxeO, Fy(x)=)Y h(x—X;),
i>1
where X,...,X,, are p random independent points which follow the uniform dis-
tribution on ©. We call it binomial spot noise because we still have F}, = B, * h
where
By(x) = [{¢ such that X; = x}|
follows the binomial distribution of parameters p and ﬁ Again it is clear that
F, is a circular stationary random field. Denoting h = ﬁ > h, we have,

E(h(x ~ X)) = e S h=h,

Covlh(x — X)) = 7= S (bl +8) — B)(h(z) — B = Lo (h— Ry » (= )T (8)
z€©

and since the x — h(x — X;) are i.i.d. random vectors of (R%)®, we get
p
E(Fp(x)) = MN Zh )

p — ~ —
Notice that taking h = d¢ in the last equality shows that B, is not a white noise.
Therefore, the classical central limit theorem shows that when p — o,

Fp_%zh
_b__
\V MN

which means that the binomial spot noise model converges to the circular ADSN

D N(0.(h— By« (- B)T)

associated to h — h.

Notice that the covariance of an (asymptotic) binomial spot noise always has
zero sum, which is not a natural constraint. This is another reason to prefer a priori
the Poisson spot noise.

Assuming that h = 0, one could think that F,, is the conditional version of the
Poisson spot noise given that the total number of spots is exactly p. Actually, there
is a slight difference in the normalization which makes this fact true only if the
intensity is properly set. Indeed, one can observe that the binomial spot noise F},
with p spots is the Poisson spot noise of intensity ﬁ conditioned by the fact that
the total number of spots is exactly p. However, if we draw P ~ P(AMN) and if
for each n > 1 we draw independently a binomial spot noise F;, with n spots, then
it is not true that the composition Fp is a Poisson spot noise of intensity A. Indeed,
the binomial and Poisson spot noises are not equally normalized: in the case of the
Poisson spot noise, the total number of spots does not appear in the normalization.
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2.1.3 Random Phase Noise

In the last paragraph we have seen that the spectral representation of the circular
ADSN writes -

GO = hW
where E(W (£€)) = 0 and E(|]W(£)[2) = MN. One can obtain a similar random field
by convolving h by a white noise whose DFT modulus is not random leading to the
following definition.

Definition 2.1.9 ([Galerne et al. 2011b]). If h : © — R? is a kernel function, the
random phase noise (RPN) Ry, : © — R? associated to h is defined in Fourier

domain by
Ry = VMN he

where 1 is a random phase function in the sense of Definition 2.1.5. Equivalently,
thanks to the inversion formula, we have

¥xe O, Ru(x > (&) eHEXTIvE) (2.6)

v 569

Notice that for each £ € O, ]/%\h(f) belongs to the circle
[VMNh(€)* ; peT}.

The random phase noise is another example of rank-one colored noise. Indeed,

by definition, one can write
Ry, = h = Ry,

with Eg = VMNe™. Since ]/%5\0 has a constant modulus, Rs, is a white noise.
More precisely, Ry, is by definition a random field with uniform phase. In particular,
Proposition 2.1.2 ensures that Ry, is circular stationary.

The Definition 2.1.9 that was adopted here differs from the one given
in [Galerne et al. 2011b] because of the factor v M N. In contrast, the factor v M N
appears in Theorem 2 of [Galerne et al. 2011b] about the simulation of the ADSN.
With Definition 2.1.9, we will see that, as for the ADSN field, the first-order mo-
ments of the RPN are equal to the (non-normalized) autocorrelation of h. Besides,
with the previous notation, the RPN field associated to an image u : © — R?
according to [Galerne et al. 2011b] is Ry, where

1 1

(u—u) and u=

AN m u(x) .

ty =

This choice will also be justified again in Chapter 3.

Let us also mention that the RPN model also appears in the physics commu-
nity under the name “surrogate” [Theiler et al. 1992], [Schreiber & Schmitz 2000],
[Borgnat et al. 2010].

Since E(e*@)) = 0, the random field Ry, has zero mean. Besides, we have

RyRy,” = MN h(€)h()*



54 Chapter 2. Random Phase Fields

h

Figure 2.2: Comparison between circular ADSN and RPN. From left to
right, one can see a kernel function h, the corresponding RPN Rj, and ADSN G?.
The RPN and ADSN which are two uniform random phase fields in the sense of 2.1.5
have perceptually similar realizations.

so that, by inverse DFT, we get
Ry« (Rp)T = MN h+ AT,
which shows that Ry, has a deterministic autocorrelation function. Recalling that
1 BT
Cr,(v) = 73 E (Rh * (Rp) (V)) ;
we get the following result.

Proposition 2.1.4 ([Galerne et al. 2011b]). The random phase noise Ry, is a cir-
cular stationary random field with zero mean and covariance function h = h.

Let us notice that for a circular stationary random field F : © — R?, it is
equivalent to impose that the autocorrelation F'% F7 is deterministic, and that FF*
is deterministic. In particular, for d = 1, the autocorrelation is deterministic if
and only if the DFT modulus is deterministic. Notice however that a circular
stationary random field F' with a deterministic autocorrelation is not necessarily
a RPN. Indeed, for example with d = 1, this only imposes that F = Me™ where M
is deterministic and v is a random phase function which is not necessarily uniform.
For example, if f: ® — R and if X is a uniform point of O, then the translation
7x f of vector X has the same autocorrelation as f, but is not a RPN in general.

The last proposition shows that the RPN and ADSN fields associated to a
kernel h have the same moments of order 1 and 2. Generally speaking, one can see
that the textures that are synthesized with these models are perceptually similar
(see Fig. 2.2 or the several comparisons of [Galerne et al. 2011b]). This empirical
observation is confirmed by the fact that both RPN and ADSN fields are uniform
random phase fields in the sense of Definition 2.1.5.

One can wonder if it is more interesting to work with RPN or ADSN fields. The
RPN field has a simpler DFT, but its major drawback is that its spatial distribu-
tion is not explicit. In particular, we will see in Chapter 4 that the study of the
total variation of uniform random phase fields is easier in the case of ADSN fields.
However, thanks to Equation (2.6), one can show that the marginal distribution of
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a RPN is approximately Gaussian, using central-limit theorems for non identically
distributed random variables. But the approximate Gaussianity of the whole RPN
process is a more difficult question.

Another strong reason to prefer ADSN fields is that they can also be defined
on the discrete plane Z?2, as we will see in Subsection 2.2.2. In contrast, as will be
discussed in Subsection 2.2.3, it is not straighforward to extend the RPN model as
a random field on Z?2.

2.1.4 Circular stationary Gaussian Models and ADSN

We have seen that a circular ADSN is a circular stationary Gaussian random field.
Conversely, one can wonder if every circular stationary Gaussian random field with
zero mean is a circular ADSN. It is well-known to be true in the gray-level case
d =1 [Xia et al. 2014] and we provide here a short proof. However, this property is
also known to be false in the color case d > 1. To cope with that, in this subsection

we propose to decompose any R%valued stationary Gaussian random field into a
sum of d independent ADSN.

Proposition 2.1.5. Let G : © — R be a real-valued circular stationary random
field. We suppose that G follows a Gaussian distribution with mean m. Then, there
exists h : © — R such that F has the same distribution as m + Gg.

Proof. Let us denote by C' the covariance function of G. Since G and m + Gg are
Gaussian random fields with mean m, we only have to prove that there exists h
such that C' = h = h. But, thanks to Proposition 2.1.1, we know that C > 0 so that
we can define a kernel function h : © — R by its DFT

vEe O, h()=1/C).
We thus have C' = |h|? which is equivalent to C' = h # h. O

Remark 2.1.2. The kernel built in the last proof is actually the canonical texton
associated to the Gaussian model N'(m, C), see Subsection 2.1.5.

For d > 1, we have seen that the circular ADSN Gg satisfies
VEe®, GP(E) e Chle)

almost surely. Also,
e, C€)=neEheE”* . (2.7)

and thus C'(€) is a matrix of rank 1 if (&) # 0 and 0 otherwise.

Therefore, it is not difficult to construct non-ADSN circular stationary Gaussian
fields. For example, let us consider a multi-channel white noise W : © — R%, which
means that the W(x) are independent Gaussian vectors of R? with covariance 1.
Equivalently, the components W7y, ..., Wy of W are d independent scalar Gaussian
white noises. Thus, 171\/1, cees Wd are d independent complex Gaussian white noises
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in the sense of Proposition 2.1.3. Consequently, for all £ € O, the distribution of
W(&) is not supported by a subspace of C-dimension 1, and also

- o E(|W1(8)[?) 0
Cw(§) =EW(EW(E)") = - MNI; (2.8)
0 E(|Wa(€)[?)

is not of rank one. This shows that W is not an ADSN.
However, the next proposition shows that a R%valued circular stationary Gaus-
sian random field can be written as a sum of d ADSN fields.

Theorem 2.1.2. Let G : © — R? be a circular stationary Gaussian random field
with mean m. Then there exists d kernel functions hy,...,hq such that

G~m+Gi+...+Gy
where G1,...,Gq are independent circular ADSN associated to hy, ..., hq.

Proof. Since G and m + G1 + ...+ G4 are Gaussian with mean m, we only have to
show that the covariance function C' of G can be written as

C=hy+hl +...+hgxhl . (2.9)

Let & € ©. Proposition 2.1.1 shows that C (&) is a Hermitian non-negative matrix.
Therefore its non-negative eigenvalues can be written af(€),...,a3(§), and there
exists a unitary matrix U(&) such that

If g;(§) denotes the j-th column of U(&) multiplied by a;(§), the last equality can
be written

C(€) = q(€)af (&) + ... + aa(€) g5 () .

) = C(&), we can make a global choice for (gj(§),€ € ©)
). Setting fzj = g; we obtain real-valued functions h; such

Since we have C(
such that ¢;(—§) = g;(
that

13

13
éIiLliLT-i-...—i-iLdiL; .

Then, taking the inverse DFT, we get (2.9) as expected. O

Corollary 2.1.3. A circular Gaussian model N'(m,C) is an ADSN if and only if
the rank of C'(&) is < 1 for all £ € O.

Proof. The direct statement has already been proved before (cf. Equation (2.7)).
For the converse, one can begin as in the proof of Theorem 2.1.2, but in this case
it is possible to write

C(&) = q(&)q()* .

Following the end of the proof, it is thus possible to write C' = hxhfor h: © — R%.
O



2.1. Circular Stationary Random Fields 57

Let us remark that the decomposition of Theorem 2.1.2 is not unique. But,
observing the proof, in the case where each matrix C (&) has d distinct eigenvalues,
one can give a canonical decomposition by requiring the eigenvalues a?, ... ,a?l to
be sorted in decreasing order

(of course, the h;(€) are uniquely defined up to a complex factor of modulus 1).
We will see another way to interpret this canonical decomposition at the end of
Subsection 2.1.6.

Let us give a last remark about this decomposition. In the proof of Theo-
rem 2.1.2, we introduced a unitary matrix U(&) whose columns are the eigenvectors
of C(£). In general, the eigenvectors of C (&) for different frequencies & will not
be related (except in the case of two opposite frequencies). But, if there exists a
common eigenvector basis corresponding to a unitary matrix U, then U gives also
an eigenvector basis for .

— > C=C(0

v 200 - €O
which is the marginal covariance of the random field. Thus, if U is the orthogonal
matrix whose columns are the eigenvectors of C(0), then U is a natural candidate
for the diagonalization of the matrices C (&). The practical interest of the diagonal-
ization of the matrices C (&) will be questioned in Subsection 3.2.3.

2.1.5 Texton of a circular Gaussian Model

A general Gaussian random vector of mean m and covariance I' can be sampled as
m + I'Y2V where V is a Gaussian white noise and where I''/2 is the matrix square
root of I' (seen as a symmetrical non-negative matrix). Therefore, the simulation
of a Gaussian random vector is simple as soon as the computation of the covariance
square root is tractable. In the case of R%-valued random fields on ©, the covariance
can be seen as a matrix of size d|©| x d|0O|, which is prohibitive if only because of
the storage limitation (for a gray-level image of size 1000 x 1000, the covariance
matrix would be of size 10° x 10°).

Hopefully, it is well-known [Wood & Chan 1994] that for circular stationary
Gaussian random fields, covariance square roots can be naturally replaced by con-
volution operators.

Proposition 2.1.6 ([Xia et al. 2014]). Let us consider a circular stationary Gaus-
sian random field with mean m and covariance function C. There exists a function
t: 0 — R sych that C =t = 1! . Besides, if W : © — R? is a multi-channel
Gaussian white noise (meaning that the W(x) are independent Gaussian vectors of
RY with covariance I;), then

m+txW~N(m,C) .

Such a function t is called a matrix texton of the model N'(m,C).
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Proof. Let us recall the decomposition (2.9) given in Theorem 2.1.2:
C:hl*ﬁ{-i-...-l-hd*ilg,

where hi,...,hq: © — R For each x € O, let us write t(x) = (h1(x);...; hq(x))
the matrix whose columns are hj(x),...,hq(x). Then

nT ) )
bef = (b o ha) x| | =k BT b RE = C
hy

For the last assertion, since £+ W = {W and recalling Equation (2.8), we get

—

Crom(€) = T B(T- WO W ()")
1 . DU

- mt
_ ﬁas)(wmﬂs)* = (&)i(e)* .

and thus, by inverse DFT, Cpy =t # 11 = C so that m +t * W ~ N(m, C). ]

Notice that in the case of a circular ADSN field with kernel function h, by
definition the covariance function is given by h % h” where the values h(x) are not
matrices but column vectors, leading to the following definition.

Definition 2.1.10 ([Desolneux et al. 2012], [Xia et al. 2014]). A texton associated
to a circular ADSN field with kernel function A is any function t : © — R?
generating the same circular ADSN field, which means t+t7 = hxh” or equivalently,
in Fourier domain, ££* = hh*.

Notice that if ¢ is any texton associated to a circular ADSN field and if o € R? is
a constant line vector with Euclidean norm 1, then t« is a matrix texton associated
to the same ADSN.

Among all the textons associated to a circular ADSN field, it is possible to
isolate some representatives satisfying an additional constraint.

Definition 2.1.11 ([Desolneux et al. 2012]). Let us consider a circular ADSN with
kernel function h : @ — R,

e If d = 1, then the canonical texton of the ADSN field A'(m,h * h) is the
function t.q, : © — R defined in Fourier domain by

—

fean = |h] .

e If d = 3, then the luminance texton of the ADSN field NV (m,h = hT) is the
function tjym : © — R? defined in Fourier domain by

tum = e "h )
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with ¢ = Arg(h/h;n) and where the luminance channel of h is defined by
hium = 0.299h; + 0.587hy + 0.114h3 .

This choice of coefficients for the definition of the luminance channel fol-
lows [ITU 2011] but other choices are possible.

As shown in [Desolneux et al. 2012], the canonical and luminance textons are in-
teresting because in general they provide a very concentrated summary of the covari-
ance function (and thus of a Gaussian texture). As shown in [Desolneux et al. 2012]
and [Desolneux et al. 2015], the canonical texton is, among all the textons associ-
ated to a model, the solution of different optimization problems linked to the con-
centration at the spatial point 0. We refer to these two articles for the description
and properties of the canonical and luminance textons, for several examples of tex-
tons associated to Gaussian textures, and also for a discussion about the definition
of textons in the multi-channel case.

However, we will see in Section 3.3 (dedicated to the so-called synthesis-oriented
texton) that if we seek a texton with a limited compact support, then cropping the
luminance texton is not the optimal solution in terms of model error. In order to
define such a model error, we need to explain how to measure the distance between
two ADSN fields, which is the object of the next subsection.

2.1.6 Optimal Transport Distance

In this subsection, we first recall the definition of the L? optimal transport dis-
tance [Villani 2003]. This distance has been used in [Xia et al. 2014] in order to
define barycenters of Gaussian texture models (with application to texture mix-
ing). In particular, [Xia et al. 2014] give an expression for the distance between
two ADSN models. In Theorem 2.1.4, we generalize this expression to the case of
two rank-one colored noises driven by the same white noise process; in this case, we
provide a simplified proof based only on the spectral representation of the random
field.

Let us denote by pg, g1 the probability distributions of two random fields on ©.
Let us recall that a coupling of (o, p1) is a couple (F, G) of random fields defined
on the same probability space and such that F' ~ pg and G ~ p.

We shall denote by || - [|e the normalized ¢/2-norm of a function f: © — C%,

> IFGEIP

XEO

1

713 -

Definition 2.1.12. The L?-optimal transport distance (OTD) between ug and i1
is defined by

dor (o, p1)? = inf E(|[F — GII3) . (2.10)
where the infimum is taken over couplings (F,G) of (po, p1)-

We begin by a simple proposition showing that the computation of such dis-
tances can be reduced to the case of random fields with zero mean.
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Proposition 2.1.7. If F,G are random fields of distributions pg, p1 with mean
fields mg,m1 : © — R? and if vy, vy refer to the distributions of F —mg, G — ma,
then

dor(po, 1) = dor(ve,11)” + Y [[mo(x) — ma(x)|1* .
xe©

Proof. A simple calculation gives

(Z 1£(x !2>

= ZE( |(F () = mo(x)) = (G(x) = m1(x)) + (mo(x) — m1 (x))]|?)
= ZE( mo(x)) = (G(x) = ma(x))[|) + [|mo(x) — ma(x)]?

+ 2(mo(x) — ma (%)) TE((F(x) — mo(x)) — (G(x) — mi1(x)))
= > E([[(F(x) = mo(x)) = (G(x) = ma(x))|[2) + [[mo(x) = ma ()|

and taking the infimum on (F, G) leads to the desired result. O

The next proposition is another simple result which allows to better understand
the optimal transport distance in the case of stationary random fields. The result
will not be used in the rest of the paragraph, but it will be helpful to generalize the
optimal transport distance to stationary random fields over Z2.

Proposition 2.1.8. Let ug, p1 be two circular stationary random fields on ©, then

dor(po, m)? = inf E(|[F(0) - GO)[?) ,
where the infimum is taken over all the stationary couplings (F,G) of po, p1-

Proof. Let us first show that, since pg, p1 are stationary, the infimum in (2.10) can
be restricted to stationary couplings (F,G) (F and G are stationary but (F, G) may
not be). Indeed, let F' ~ pg and G ~ pq. Let us introduce a uniform translation 7 of
the domain © which is independent of (F, G) and let us consider (F’,G") = (F, G)or.
Since pug is stationary, F/ = F o1 ~ pug, and also G’ ~ u;. Besides, we have
|F' — G'||> = ||F — G||*>. This shows that we can indeed restrict to stationary
couplings.
Furthermore, if (F, G) is a stationary coupling of (ug, 1) then

EIF - Gl3) = g LY E(IF) — 6eIP) = E(IF©0) - GO)P)

xeO

O]

The authors of [Xia et al. 2014] give an explicit formula for the optimal trans-
port distance between circular ADSN fields. Their proof is based upon the main
theorem of [Dowson & Landau 1982] which expresses the distance between two cen-
tered Gaussian random vectors in terms of their covariance functions. We show in
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the next theorem that this result can be obtained directly using the spectral repre-
sentation of the circular ADSN fields, and thus can be generalized to a wider class
of random fields.

Theorem 2.1.4. Let hg,h1 : © — R? be two kernel functions and let g, p1 be
the distributions of ho * W and hy « W where W 1is a white noise on © with mean 0,
variance 1. We assume that W has uniform phase. Then the L?-optimal transport
distance between pg and py is given by

dor(po, p1)? |@| > o€ + 1R (€)1 — 2|ho(€)*ha (€)] - (2.11)
£eO

Proof. Let us first prove that the right-hand side is a lower bound of the squared
distance. For that, let (F,G) be a coupling of (pg,u1). Thanks to Parseval’s
formula, one gets

(ZGHF H2> - (?;)”F ||2)
- = S E(IFE) - G)?)

569

= = S E(IF@I + IGE)I ~ 2Re(F(€)°C(e)))
569

= = S E(IF@I?) + E(IG@))°) - 2Re (E(F(©)C()
569

Since F' ~ ho = W,
E(1F(€)1?) = E(llho * W(©)I?) = E(IW(©)ho(&)]?) ,
and since W is a normalized white noise, we get
E(|F@)2) = MN|ho(€)]* -

Similarly,
E(|G(&)]?) = MN|hi(&)]? -

Moreover, we have almost surely F(£) € Cho(€). If ho(€) = 0, if follows that
E(ﬁ'(f)*é(ﬁ)) = 0. Otherwise, we have

F(¢ F(e
© 170 (&)1 ©
because the right-hand side is the orthogonal projection of F'(£) on Chy(&). Thus
~ N ~ ho(€)ho(€)* ~
P&y (e = ey & lel oy
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Therefore, using Cauchy-Schwarz inequality, we get

' * ' *B E }Al E * A
Re (E (F(e)*G(e)) )| < 'E (F(ﬁ) WG@))‘

F(&)*ho(¢) | ho(£)*G(€) ‘

Now, since G ~ hy = W, we have

. (|@<£>ho<£>'> . (‘W@)*z}l(s)*%(e)

)

1ho(€)]] 170 (&)l
170 (&)1 170 (€)1

and by a similar calculation

F(&)*ho(&) [ o
E\|\—p—a| | = MNI|A _
(‘ Iho(©)] ‘) Io(&)]

Therefore,
| Re (E[F(&)*G(&)])] < MN|h1(&)*ho(€)] -
It thus follows that

E(|F-G|?) = |@|Zuho &7 + 171 (&)1* — 2lho(€)*ha(&)]

£eO

which entails

dorr (o, 1) |@| Y 1ho(N + 1h(&)]1* = 2lho(&)*hn (€)] -
£eO

To end the proof, we will exhibit one coupling that achieves the lower bound.
For that, we first define a texton g; : © — R? associated to the model ;1 by

+ hll/&f%:o .

Notice that §(£) is a projection of ho(€) on the circle {e®hi(&) ; 6 € T} for
the ¢? distance, which is uniquely defined by

as soon as hi(€)*ho(€) # 0, that is, hi(€) not orthogonal to ho(€) (see the Re-
mark 2.1.3 below about this projection).
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Let us consider the coupling (hg * W, g1 * W) of (uo, 1). By construction,

E(Z\F@c) <u2>— < > E(IF(©) - G©IP)

x€O §e®
= ZE( &)12)llho(€) — a1 (&)
Eee
=Zuho &)

£€O
And finally, in either case h¥(€)ho(€) = 0 or h*(&)ho(€) # 0, one has
120(&) = a1(&)II = Ao (&)]1* + 1 (©)I* — 2l1(€)*ho(€)]
which completes the proof. O

We would like to emphasize that the last proof is truly a problem of geometry.
Its main ingredient is indeed the Cauchy-Schwarz inequality. Besides, the right-
hand side of Equation (2.11) admits a geometric interpretation given by the next
Remark.

Remark 2.1.3. For a € C%, let us denote C, = {e"a ; § € T}. If a,b e C?, then
lall + [1b* = 2|a”d| = d(Ca, Cp)* = inf ||z —w]*.
wEC(Z
Indeed, if a*b = 0 then the circles C, and C, are contained in two orthogonal
subspaces of C%, so that for all z € C, and w € Cp,

Iz = wl® = ll2[1* + lwl* = llall* + [IBl|* .

Let us now assume that a*b # 0. Let z € C, and w € Cp. Let us denote by p the
orthogonal projection of w on Ca = Cz, which is given by

*

ATV
= —— 2. 2.12
PR (2.12)
We thus have
Iz —w|? = ||z —p|* + |lp— w|* .

Next, as one can see in Fig. 2.3, in Cz (which can be seen as a plane), the projection
g of pon C, = C, is given by
2]

2l

(because it is the only point of Ry p which has norm ||z||). Since z € C, and since g

q= 0P (2.13)

is the projection of p on C,, we have

Iz =pl = lla—n»l -
Besides, grouping (2.12) and (2.13), we get

z*w
1= g ? (2.14)
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Figure 2.3: Projection on a circle. After the projection on Cz, it only amounts
to correct the norm, leading to Equation (2.14).

Hence, recalling that w — p is orthogonal to ¢ — p € Ca, we get
Iz = wl® = llg = pI* + llp — w|* = la — w]* .
Furthermore,
lg—wl[* = {la)l* + [[w]* =2 Re(g"w) = ||q|” +[|w][* = 22" w]| = a||*+ [[b]]* —2[a*D] .
where the last equality holds because z € C,, w € Cp, and g € C,. Therefore,
d(Ca, Cp)? = |la|l* + [[b]|* — 2[a™D] .

More precisely, we have shown that for each w € Cp, there exists a point ¢ € C, such
that
lg — wl? = d(Ca, w)? = d(Ca, Cp)* = ||al|* + [b]|* — 2a™b

and that this point ¢ can be obtained as é:%

Let us mention that the expression (2.14) of the projection of w on the circle C,
was proved in [Tartavel et al. 2014, Appendix A.1] with a method based on calculus.

z where z is any point in C,.

Corollary 2.1.5 ([Xia et al. 2014]). For i = 0,1, let u; = N(mi, h; # hI) where
m; € R and where h; : © — R% is a kernel function. Then

LS ()17 + 13 (€)1 — 20ho(€)*ha(€)] -

dor(po, )? = [lmo — ma|® + Gl
£€O

Proof. The proof follows from the last theorem, and from Proposition 2.1.7, noticing
that in this case, the mean fields of ug, 1 are constant. O

Corollary 2.1.6. Let us assume that d = 1 and let us consider two circular ADSN
fields po, p1 with kernel functions hg, hi. If tg,t1 denote the canonical textons of
the Gaussian models po, (b1, then

dor(mo, m1)* =) (to(x) — t1(x))*,
xe©

which means that the distance is exactly the non-normalized ¢* distance between the
corresponding canonical textons.
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Proof. Since d = 1, the result of Theorem 2.1.4 simply writes

dor(po, p)* = |@| S k(&)1 + [ha(€)1* — 2/ho(€) [ (8)]
£€O

- 57 2 (o)l = n(@)l)

€O

Besides, since t; is the canonical texton associated to h;, we have t; = ‘iLZ‘ which

entails )
dor(po, pn)? = |@| > (to ) ;
£e®
and the desired result follows from Parseval’s formula. O

Let us emphasize that Theorem 2.1.4 gives the optimal transport distance be-
tween rank-one colored noises generated with the same white noise process with uni-
form phase. It includes the circular ADSN case (already studied in [Xia et al. 2014])
and the RPN case (mentioned in [Desolneux et al. 2015]). Let us mention that an
analog result will be presented in Subsection 2.2.7 in the case of stationary random
fields over Z2.

Further generalizations of this theorem could be useful. For example, it would
be interesting to express the optimal transport distance between rank-one colored
noises generated with different white noise processes. This would give a way to
measure the global convergence speed of the DSN to its Gaussian limit. But in
contrast with the extension to Z? presented in Subsection 2.2.7, this new general-
ization would certainly be much more difficult (see [Huesmann & Sturm 2013] for
the case of a Poisson process and a uniform process).

To end this paragraph, let us mention the following generalization of Theo-
rem 2.1.4 with one ADSN and one general Gaussian random field.

Theorem 2.1.7. Let F' : © — R? be a circular stationary Gaussian field of mean 0
and covariance C, and let us denote by p the distribution of F. Let h: © — RY
be a kernel function and let v be the distribution of the circular ADSN with spot h.
The L?-optimal transport distance between p and v is given by

dor(p, v ‘@‘ > Tr(C(E)) + 1ME@)]” — 2y h(€)*C(&)h(€) . (2.15)
e

Besides, if C is fized, the optimal transport distance between p and v is minimized
as soon as

Ve, h(€)=e"®a(€)p(€)

where 0(€) € R and where p(€) is a normalized eigenvector associated to the largest
eigenvalue a(&) of C(€).

Proof. The formula (2.15) is a special case of [Dowson & Landau 1982] because
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Let us remark that we have found no simpler path than using the very general result
by Dowson and Landau. Indeed, the inequality > can still be shown by adapting
the proof of Theorem 2.1.4. However, exhibiting one optimal coupling seems more
difficult in this case.

For the second part of the theorem, the problem boils down to the minimization
of the function

(&) € © — LRI~ V&) C@)hie)

Using an eigenvector basis of CA'(S) and standard calculus, one can show that the
minimum of this function is —a(€) (where a(&) is the largest eigenvalue of C(&))
and that it is reached at any eigenvector of C'(£§) associated to a(§). O

This last result allows to interpret in terms of optimal transport distance the
canonical decomposition of a Gaussian model that was presented in Subsection 2.1.4.
Indeed, the decomposition amounts to progressively extract from the Gaussian
model the ADSN components that best approximate the residual Gaussian field
in terms of optimal transport distance.

Of course, in general the realizations of a Gaussian field and the realizations
of its principal ADSN component will not look alike. Indeed, since we extract
the principal component on each frequency, there will be in general a severe loss
of variance (it can be seen for example on the case of a Gaussian field obtained
by concatenation of three independent ADSN fields). However, a more interesting
question is to ask whether the realizations of a general color Gaussian field are
always visually similar to the realizations of well-chosen color ADSN field. We will
see in Section 3.1 how such an ADSN model can be estimated. So far we have found
no counter-example to that assertion.

2.2 Random Fields on Z2

In many applications (in particular texture modelling), the circular framework is not
natural. Here, we extend the tools presented in the last section to the case of random
fields defined on the whole discrete plane Z2. In this setting the Fourier transform
of a random field is not necessarily sampled on a discrete grid. It is one reason
that makes this setting more convenient for the comparison of the different texture
models (moving average, autoregressive, discrete spot noise, Gaussian, Markovian).

2.2.1 General Definitions
Random Fields and Covariance Functions

Definition 2.2.1. A random field on Z? is a random process F' on Z? with values
in R?. Again, omitting the random sample w, we will often denote F' as a random
function

F:7? —R%.

The random field F is said to be of order p if for all x € Z2, E(||F(x)||?) < oo.
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The basic definitions that we introduced in the circular case can be easily
adapted to the infinite-lattice case, by considering now the addition of Z? instead
of the addition on © = Z/MZ x Z/NZ. For that reason, we will not repeat all the
definitions.

Definition 2.2.2. A random field F : Z? — R¢ is said to be stationary if for
every n =1, x1,...,%x, € Z?, ve Z2, (F(x1),...,F(x,)) has the same distribution
as (F(x1+Vv),..., F(x, +V)). A second-order stationary random field on Z? has a
constant expected value

m = E(F(x)) e R?.

Besides, there exists a function Cp : Z2 — R%*9 called covariance function of F,
such that

vx,y € Z?, Cr(x—7y) = Cov(F(x),F(y)) = E(F(x) — m)(F(y) — m)T) )

We will write F' ~ N (m, C) if F is a stationary Gaussian random field with mean m
and covariance function C.

Spectral Representation

The spectral representation is now more difficult to obtain because the Fourier series
associated to a function f : Z2 — R? may not converge. Nevertheless, the Her-
glotz theorem ensures that the covariance function of a stationary process on Z? is
the inverse Fourier transform of a non-negative finite measure on T?. Based on this
theorem, one can build a spectral representation of the process: F' can be written as
the inverse Fourier transform of a random measure, understood as a stochastic inte-
gral. But in this thesis, we will not need the Fourier transform of F', so that we only
include here the Herglotz theorem that gives the Fourier transform of the covariance
function. A wider discussion about spectral representations can be found in the fol-
lowing references. The existence of the spectral representation is proved in a very
general framework in [Rozanov 1967] (see also the seminal paper [Cramer 1940]).
The case of one discrete variable is more simply discussed in [Brémaud 1993] and
[Cabral 2010]. Let us also mention that the spectral representation of continuous
generalized random fields is thoroughly studied in [Gelfand & Vilenkin 1967].

Theorem 2.2.1 (Herglotz). Let F : Z2 — R? be a second-order stationary random
field. Then there exists a unique finite measure pup on T? with values in the set Hfo
of non-negative Hermitian matrices, such that

(271r)2 /1r2 ei5~xduF(£) .

This measure pr is called spectral measure of F'.

vVxeZ? Cr(x)=

Since pr is matrix-valued, its components are real-valued finite Borelian mea-
sures on T2. We say that F admits a spectral density if ur admits a density ¢p
with respect to the Lebesgue measure on T2. This spectral density ¢ is a function
on T? such that for almost all x € T2, (x) € H;".



68 Chapter 2. Random Phase Fields

If F,G are two stationary random fields on Z?, one can consider the spectral
measure fi(p,) associated to (F;G). If F' and G have zero mean (for the sake of
simplicity), it satisfies

vxyez? E [(ZE’;D <F<y>TG<y>T>] - o [ O €

One can see that

[ BF  VFG
D = \ver  pe

where pr and pg are the spectral measures of F' and G. The measure vp g is called
the cross-spectral measure of F' and G.

Let us now assume that F' and G are real-valued, and that they admit spectral
densities ¢ and ¢g. Then pup, puq are finite non-negative measures. Besides, if A
is a Borelian set of T?, since p(r)(A) is a Hermitian matrix, we have

wea(A)f < pr(A)pa(A) . (2.16)

Therefore, if A(A) = 0, then vpg(A) = 0 which shows that vgq is absolutely
continuous with respect to the Lebesgue measure. Thus vpg admits a density
Yr € LY(T) with respect to Lebesgue measure on T?. This function is called the
cross-spectral density of F,G. From Equation (2.16), it follows that we have for
almost all & € T?,

[Wra(&))* < or(€)pa(t) . (2.17)

More generally, if F and G are R%valued and admit spectral densities ¢r, ¢q,
then vpg still admit a matrix-valued density called the cross spectral density
of F,G. Indeed, it is enough to show that each component of vr ¢ admits a spectral
density, which follows from the real-valued case: indeed, for k,l = 1,...,d, we still
have

|VFk7Gz (A)‘Q < MFk(A)MGL(A) .

Remark 2.2.1. A circular stationary random field F on © = Z/MZ x 7/ NZ can be
identified to a (M, N)-periodic stationary random field on Z?2, and its covariance
function C' : © — R¥*4 to a periodic covariance function on Z2. Besides, we have

1 A (€ 3
et 00 = iy SO0 (a7 + 57))

where the DFT of C satisfies C &) e ’Hfo. Therefore, the spectral measure of the
stationary process F : Z? — R% is

)2 ~
- (jﬂif 20(5)5%(51 &) -

M*'N

ur

As expected, the periodicity of F' entails that its spectral measure is sampled on
the discrete subgroup

{ 2w(%%) mod 2772 ; gez2}
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of T?. Such a measure is not absolutely continuous with respect to Lebesgue mea-
sure.

Definition 2.2.3. A stationary random field F : Z? — R? with covariance func-
tion C is said to be a white noise if it has a constant spectral density (or equivalently
if C = C(0)dy). We say that F is a pure white noise if (F(x))yez2 are independent.

Since the convolution of two functions f,g on Z? is not always defined, the
definition of colored noise processes is not as simple as in the case of circular ran-
dom fields on a finite domain. We end this paragraph by giving two classical re-
sults [Doob 1990] which ensure that the convolution h+W defines a second-order sta-
tionary process, modulo certain assumptions on the kernel function h : Z2 — R¢,
In the following, we denote by L?(P) the Banach space of R%-valued random vari-
ables V (defined on the probability space associated to P) such that E(||V[|?) < oo
Thus, by definition, V;, converges to V in L?(P) if

E(|Va — VIP) ——0.

n—o0

Proposition 2.2.1. If W is a scalar white noise on Z? with mean m and vari-
ance o2 and if h € £1(Z?,R?), then, for all x € Z2, the series

> hy)W(x—y) (2.18)

yEZ?

converges absolutely almost surely and in L*(P) and defines a second-order station-
ary process h+ W whose mean is mY. h and whose covariance function is o® h+h' .

Proof. Since W is stationary, a = E(|]I¥(x)|) does not depend on x, and thus

E(Z\Ih(Y)W(X ) D IROIEIW (x —y)) =a) |k <o

y€eZ? y€eZ?

In particular, we almost surely have

S lhy)Wx—y)| <o

y€eZ2

so that the series (2.18) is almost surely absolutely convergent.
Also, since b = ||W(x)||p2(p) is constant, we have similarly

> @)W (x = y)llz@) = b)_ |kl <o,

y€eZ2

and the series (2.18) is absolutely convergent in L?(IP). Thus we can define a second-
order random field A * W by setting

= > hyW(x-y).

y€eZ?
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The stationarity of h * W derives from the one of W. Besides, thanks to Fubini
theorem, we get

E(h+W(x))=mY_h.
Also, we can thus write
h«W(x)—E(h+W(x Zh W(x—z)—m),
z€Z?

and therefore,

E((h*W ~m Y h)(hxW(y)—mY h)")

Z h(z1)h(z2) TCOV(W(X —21),W(y — 22))

21722622
Z h(z1)h(22)" 0% 0x 21 —y—2s
21722622
— 0”3 h(z)h(y —x +2)"
z€72

= o?h+hl(x—y).
g

The next proposition ensures the existence of h#W (x) in L?(IP) under the weaker
assumption that h € £2 but requiring the noise W to have zero mean.

Proposition 2.2.2. Let W be a scalar white noise with mean 0 and variance o2,

and let h € (2(Z2?,R?). Then the series

> hy)W(x—y) (2.19)

yEZ?

converges in L?(P) (in the sense of summable families) and thus defines a second-
order stationary process h = W with mean zero and covariance function o h s hT.

Proof. Let x € Z2. Since L?(P) is a Banach space, to prove the convergence of
the series (2.19), we only have to show that it satisfies the Cauchy criterion for
summable families. But if A is a finite subset of Z?, using the orthogonality of the
random variables W (x), we have

= > IR IPEW (x —)*) = o > [h()II* -

yeA yeA

> h(y)W(x

yeA

Thus it suffices to check the Cauchy criterion for Y  [|h(y)||* which follows from
the fact that h € 2. The covariance function can be obtained as in the proof of
Proposition 2.2.1. U

Remark 2.2.2. In Proposition 2.2.2, we required W to be of mean zero. In the case
where W has a mean value m # 0, then the convergence of the series (2.19) in L?(P)
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(in the sense of summable families) implies that h € ¢!. Indeed, for a fixed x € Z2,
Proposition 2.2.2 shows that

h(y)(W(x —y) —m)

is a summable family. Therefore, the summability in L?(P) of y +— h(y)W (x —y)
is equivalent to the one of y + mh(y), which is also equivalent to h € ¢! since
y — mh(y) is deterministic. To sum up, in the case where W has a non-zero mean
value, the convergence in L?(P) cannot happen if £2\¢! and in the case where h € ¢!
there is a stronger convergence given by Proposition 2.2.1.

Remark 2.2.3. Studying the almost sure convergence of (2.19) in the case where
h e (*\¢! is a more difficult problem. Several results exist for the almost sure con-
vergence of a series 3 X,, of independent random variables X,, in L?(PP), and Kol-
mogorov’s three-series theorem gives a famous necessary and sufficient condition for
convergence (see [Billingsley 2012, Chap. 22]). We would like to mention in partic-
ular the following result based on a maximal inequality: if (X,,) is an independent
sequence of random variables with zero mean, and such that Y Var(X,,) < oo, then
> X, converges almost surely. But it is not clear that this result extends to the
case of random series with indices x € Z? because the convergence and the sum of
the series may now depend on the method of summation. See [Ronsin et al. 2013]
for the example of random Fourier series.

In view of the results of Proposition 2.2.1 and Proposition 2.2.2, we adopt the
following definition.

Definition 2.2.4. A stationary random field F' : Z?> — R? is called colored noise
on Z? if it can be written F = m + h * W where m € R%, where h : Z2 — R¥¥4,
where W is a R%valued white noise on Z?, and where

hxW(x) = > h(y)W(x—-y)
y€eZ?

is defined as a convergent series in L?(P) (in the sense of summable families). A
stationary random field F : Z2 — R is called rank-one colored noise on Z? if it
can be written F = m + h * W where m € R%, where h : Z2 — R%, where W is a
scalar white noise on Z2, and where

hsW(x) =Y h(y)W(x—y)
y€Z?

is defined as a convergent series in L?(P) (in the sense of summable families).

In order to obtain the spectral measure of the above-mentioned colored noises,
we need to recall a convolution lemma. In this lemma which focuses on a conver-
gence issue, we do not need to precise a specific norm || - || on RP*? (because they
are all equivalent).



72 Chapter 2. Random Phase Fields

Lemma 2.2.2. Let h : Z? — RP*? qnd k : Z?> — RI*" be two kernel functions
such that

1Bl = D> 1hE)IP <o and [k[7 = > [[k(x)]]* < o
x€Z2 x€Z2

Then the series

hxk(x)= Y h(y (2.20)

y€eZ2
is absolutely convergent for all x € 7% and defines a bounded function
hxk:7Z? — RPX". Besides, h = k is the inverse Fourier transform of hk in the

sense that 1

| ME)R(§)e>de . (2.21)
(2m)?
Proof. The first assertion is a direct apphcatlon of the Cauchy-Schwarz inequality:

Y Bk =) < Al ke -
yeZ?

VxeZ?, hxk(x)=

It remains to prove (2.21). Let us fix x € Z2. The beginning of the proof shows that
(h, k) —> hxk(x) is a continuous bilinear application from 2 x £? to RP*". Thanks to

the Cauchy-Schwarz inequality in L? (’]TQ, (%)2) and thanks to Plancherel’s formula,

5z L, Ik

= 1AllZIKIZ |

we also have
‘ 1
(2m)? Jrz

h(&)k(€)e’ (€)]|2d€ x

so that
(h, k;) —

oz [, MOME e

is also a continuous bilinear application. Since the compactly-supported sequences
are dense in £2(Z?), we only have to prove that (2.21) holds if 4 and k have compact
support. In this case, thanks to the orthogonality of the functions & — e** one
can write

y,z€Z?

> My)k(2)dx—y-+z

y,z€Z?

> h(y)k(x —y) = h*k(x),

yeZ?

where the sums on y and z contains only a finite number of terms. O

Therefore, under hypotheses of Proposition 2.2.1 or Proposition 2.2.2, h = W is
a rank-one colored noise with covariance function Var(W (0)) h* k. Since we have
h € ¢2 in both cases, Lemma 2.2.2 gives that the spectral measure of h % W is the
mtegrable function hh*. In the case of Proposition 2.2.1, notice that h € ¢! entails
that h is continuous on T2 so that h € ¢ for every p € [1 o], and that hh* is also
a continuous function.
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2.2.2 Discrete Spot Noise on Z?

In this subsection, we recall the definition and properties of discrete spot noise
processes [Papoulis 1971], [Rice 1977], [Van Wijk 1991].

Let h € ¢1(Z%,RY) denote a kernel function and let us denote 3" h = 3, 72 h(x).
Let A > 0 and let IT) denote a Poisson point process on Z? with intensity A. The
Poisson point process Il can be represented by an infinite sequence (X;);>1 of
random points of Z2. For x € O, let us introduce

P\(x) = [{i = 1 such that X; = x}|

which follows the Poisson distribution P(\). Notice that, in this case, the X;’s
cannot be supposed to be independent and identically distributed because there is
no uniform probability distribution on Z2.

Since h € ¢! and since P is a Poisson white noise, Proposition 2.2.2 shows that

> h(x —y)Pa(y)

y

is almost surely absolutely convergent. Thus we can give the following definition.

Definition 2.2.5. The discrete spot noise (DSN) (or discrete Poisson spot noise)
of intensity A associated to h is the random field F}, y : 7? — R? defined by

VxeZ?, Fua(x) =) h(x—X;). (2.22)

=1

or equivalently by

Vx € Z2, Fpa(x) = Zh(x —y)P\(y) = h = Py\(x) .

Notice that Fj, ) is a rank-one colored noise in the sense of Definition 2.2.4.
Thanks to Proposition 2.2.1, it has mean A > h and covariance function \h % hT
which is the autocorrelation of A multiplied by A.

Gaussian convergence at high intensity

Definition 2.2.6. The renormalized discrete spot noise of intensity A associated
to h is the random field Gy, y : 7? — R defined by

Fur—E(F,) 1 1
GhA:%:\TA(h*PA—AZh):ﬁh*(PA—)\).

It is a stationary random field with mean 0 and covariance function h A7 .

Theorem 2.2.3 ([Papoulis 1971]). When A — o, Gp \ converges in distribution
(in the sense of finite-dimensional marginal distributions) to the Gaussian random
field of mean 0 and covariance function h * h'.
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Proof. The proof follows the same sketch as the one given in [Rice 1977]. It amounts
to show that the marginal distribution of Gy x converges to the one of (0, h * ilT)
using Lévy’s theorem about characteristic functions, and then the convergence of all
the finite-dimensional marginal distributions follows from the linearity of the spot
noise process. But here, since we only deal with discrete spot noises, computing
the characteristic function of G, A(0) does not require Campbell’s theorem.

So, first, let us show that

Gan(0) — 2 A0, 1« RT(0)) .

A—+00

Thanks to Lévy’s theorem, we only have to show that for a fixed u € RY,

A—+00

1 .
E [exp (iuTGh)\(O))] @, exp ( - iuTh ¢ hT(O)u> .
Let us compute the characteristic function of G, x(0). By definition,

Gt = 32109 (FE5)

where the series converges almost surely absolutely. Let A be a finite subset of Z2.
Since the (P(x))xea are independent, we have

E [exp | iu hix) ——F—— = E [exp | v h(x) ——FZ——
[ p( XEEA (%) ey [] p (%) 5y

xEA

Moreover, since the characteristic function of a real random variable Q@ ~ P(}) is

A(eft—1)

given by ¢t — e , we have for all s € R,

o0 452 - 5z 5]

e (= /B e (A% 1)

= exp lA(eZ% —1—1’\%)] .

Applying this equality for each s = uTh(x and taking the product on x, we get
E[exp (zuTZh )]
XeA

U h(x)) ,uTh(X)>
=exp| A ex —1—1 . 2.23
p( > p( VX VX 22

We will let A — Z? in this equality. Since Y, 72 h(x) % is almost surely
absolutely convergent, the dominated convergence theorem ensures that the left-

hand side tends to
. Py(—x) — A
E |exp | iu’ h(x) )
[ < x%z \/X
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Moreover, using
2

: t
Vt e R, ]e”—l—it\<5,

we get that
u”'h(x) u”'h(x) 1 T 9
e 1 —1—3 < — u” h(x 2.24
gZ:Q Xp< 7 oy QA);Z:Q( (%)) (2.24)
1
< oyllull® Yo )P <o, (2:25)
2\
x€eZ?
so that
T T
Z exp (z u h(x)) 1l h(x)
x€Z2 \/X \/X

is absolutely convergent. Letting A — Z2? in (2.23), we obtain the characteristic
function of G, »(0) as

ul'h(x ulh(x
E[exp (iuTGh,A(O)ﬂ = exp ()\ Z (exp (2 \hfi\ )> —1—1 \hﬁ(\ )>) (2.26)

x€Z2

A Taylor-Young expansion ensures that for each x € Z2,

~ul'h(x) uTh(x) 1
A (exp <z i ) —1—3 5y ) —— —i(uTh(x))2 :

and with the domination given by (2.24), the dominated convergence theorem gives

E [exp (z’uTGhA(O))] Taw &P (; Z (uTh(x))2> = exp (;uTh*hT(O)u> ,
x€Z.2
and the right-hand side is exactly the characteristic function of N'(0, b * h(0)).

To show that all finite-dimensional marginal distributions converge, we only
need to show that for any compactly-supported kernel k : Z2 — R?, the random
variable kT % G}, \(0) converges in distribution to a Gaussian. But, thanks to the
linearity of the spot noise construction, we have

d
kT * G}h)\ (Z) GkT*h,)\

and therefore, the first part of the proof shows that k7 = Gp A (0) converges in
distribution to N'(0, k7« h+hT k(0)). In conclusion, when A\ — +o0, G, \ converges
in finite-dimensional marginal distributions to A'(0, h * hT). O

Definition 2.2.7. The asymptotic discrete spot noise (ADSN) on Z? associated to
the kernel function h € ¢! is the random field

Ghzh*W~N(0,h*i~zT),

where W is a scalar Gaussian white noise on Z? with mean 0 and variance 1.
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Notice that G}, is another example of rank-one colored noise. Notice also that,
thanks to Proposition 2.2.2, the random fields h = W is defined as soon as h € £2.
But if h € £2\¢! the discrete spot noise associated to h is not defined so that h + W
cannot be considered as an ADSN. That is why, in the case h € £2\¢!, h + W will
not be called ADSN, but only Gaussian random field with mean 0 and covariance
function h = AT

2.2.3 Can we define a Random Phase Noise on Z? ?

As we have seen, the construction of an ADSN field on Z? is nearly as easy as the
one of the circular ADSN on a finite domain ©. In contrast, the existence of a RPN
field on Z? is a more difficult question.

Let us observe that, in the simple case of a function h : Z?> — R which is
(M, N)-periodic, h identifies to a function h® defined on © = Z/MZ x Z/NZ and
the RPN associated to h® on © gives a natural definition of a (M, N)-periodic RPN
on Z?2. According to Remark 2.2.1, its spectral measure is

(2m)°
MN

Z@(E)Hé(g)*(s%r(&l 62) ) (2.27)

o MW

where h® is the DFT of h®.
More generally, let us assume that h is a Borelian measure v = > ¢z v(§)d¢
supported on a finite subset = of T?, which means that A is a sum of pure waves:

L[ dexane) = LS gt
e e (o) 22

Then one can still define a RPN associated to h over Z2?. Indeed, using a family
(¢(§))eez of uniform random variables on T which satisfies

B(E) ~ UT) i € # —€ and P(€) ~ U0, 7)) it € — —€,
- (¥(&))gea are independent as soon as A N (—A) = &,

VxeZ? h(x)=

we can define Ry, : Z2 — R< by

1 e
VxeZ? Rp(x) =Y v(€)ecxre) (2.28)
2m —~
£e=
One can show with a proof similar to the one of Proposition 2.1.2 that Ry is a
stationary random field on Z2. Since E(e®(€)) = 0, we get that E(R) = 0. Fur-

thermore, using that E(e®(©e= () = 0 as soon as £ # ¢, we get

E<Rh(X)Rh(Y)T) B (gjr)z V(f)V(C)*eig'xe_ic'yE(ew(g)e_w(o) .
£,CeE
1 * 1€ (Xx—y
- (2r)2 v(€v(&)*es )
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and thus, the covariance function of R}, is

ORh _ 2 * 'Lf.v

ge_

(which actually defines the autocorrelation h hT of h), and its spectral measure is

> v(€w(&)*o . (2.29)
Ee=

Notice that, again in this case, the random field R; was obtained by multiplying
the Fourier transform of h not only by e?*®) but by 27e¥€) where 27 is the square
root of the volume of T2. One must also be aware of the difference in normalization
of the spectral measures given by (2.27) and (2.29). They come from the different
normalizations adopted for the continuous and discrete Fourier transforms.

But is it possible to give a RPN definition for a wider class of kernel functions?
For now, we have not a clear answer to this question but the following of this
subsection shows, based on a result of [Desolneux et al. 2015], that a frequency-
sampling approach would result only in a globally Gaussian process.

Notice that if & is a continuous function on T2, it can be sampled on any discrete
subset of T?. Thus, if £ = =)/ x is the finite subgroup of T? of size M x N spanned
by (32,0) and (0, 2%), we can define a function gs : Z? — R? by

VXEZQa gE(

=5 \ﬁ gze: h(€)es> . (2.30)

Let us recall that g= can be seen as a (M, N)-periodic version of h. The above
discussion ensures that R, is a stationary random field on 72 with zero mean and
covariance function

CRy (v) =

Notice that the right-hand side is a Riemann sum, and thus, when M and N tends
to infinity, this covariance function tends to

CW) = oy [ HOME eEvdg = e RT(Y)
(2m)? Jrz '
Therefore, when the frequency sampling gets finer and finer, the second order mo-
ments of the corresponding RPN converge. The next theorem, whose proof can
be found in [Desolneux et al. 2015], shows that these RPN converge in a stronger
sense.

Theorem 2.2.4 ([Desolneux et al. 2015)). Let h : Z* — R? such that h is a
continuous function. Let us consider the finite subgroup Zy N of T2 spanned
by (3,2%). Recall that 9zan L — R% s defined by (2.30) and that the cor-
responding RPN is defined by (2.28). If M, N — oo, then the RPN associated to

g=ar.n CcOnverges in finite-dimensional marginal distributions to N(0, h ET)
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This theorem shows that a process over Z? obtained as a limit in distribution
of densely frequency-sampled RPN would necessarily be Gaussian. Indeed, let us
assume that for a certain class SR of random fields, we can build, for each finite
subset = of T2, an operator Lz : R — R that would perform frequency-sampling
on the grid = in such a manner that for each F' € ‘R, the random field L= F' converges
in distribution to F' when the sampling becomes denser and denser. Then, a natural
condition that could be required for a RPN process R associated to h over Z? would
be that its frequency-sampled version Ry n = Lz A ~ 2 over =, coincides with the
RPN associated with the frequency-sampled kernel function gz, . The last result
shows that in these conditions, we would necessarily have R ~ N (0, h * hT).

2.2.4 Gaussian Models on Z?

In this subsection, we present and discuss different stationary Gaussian models
that appear in the texture modelling literature. Since Gaussian random fields are
characterized by their covariance, the comparison only concerns the second-order
moments and the spectral measures.

Gaussian Moving Average Fields

The term “moving average” originally appeared in time series analysis [Yule 1921],
[Wold 1938, p.51]. It then referred to random sequences F' : Z —> R of the form

F(t) = h(O)W(t) + AW (t—1) + ... + h(@W({t —q) ,

where W : Z — R is such that the W (¢) are independent and where h(0), ..., h(q)
are deterministic real coeflicients. Such processes are thus particular cases of rank-
one colored noises h * W where h : Z — R is a causal compactly-supported filter
(meaning that Supp(h) is a finite subset of N).

But unfortunately, authors of later articles on this topic did not agree on
a universal definition of moving average processes. For example, the author
of [Doob 1949] and [Doob 1990] calls moving average process any random sequence
F : Z — R which can be written h*W where h € £2, and where W is a white noise.
This corresponds to the univariate case of the processes given by Proposition 2.2.2.
For the multivariate case, one can find in [Helson & Lowdenslager 1961, p.201] a
definition of vectorial moving average processes as h * W where h € £2(Z2 R4*4)
and where W is a multi-channel white noise. The author of [Eom 2000] also uses a
moving average model but only in a circular framework.

In the univariate case, the causality of the filter h has a simple chronolog-
ical interpretation. In the two-variable case, since there is no canonical order
on Z?, the causality assumption has no temporal interpretation and in particu-
lar is a priori not relevant in an image processing context. However, the arti-
cle [Francos & Friedlander 1998] still gives a definition of moving average fields
on Z? with a filter h that is causal for a particular order on Z?; these causal moving
average fields plays a crucial role in the prediction theory, in relation with the Wold
decomposition [Francos et al. 1993].
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In this thesis (and particularly in Section 3.3), we will frequently encounter
Gaussian random fields of the form h = W where h : Z?> — R? has a compact
support and where W is a Gaussian white noise of variance 1. Since it is a very
simple case of colored noise, such a moving average random field has mean zero,
covariance function h*h”, and spectral density hh*. Notice that h is a trigonometric
polynomial function whose degree depends on the size of the support of A. It would
be very convenient for this thesis to call these random fields Gaussian moving
average fields but since the term is already quite ambiguous and overloaded, we
prefer not to use it.

The following proposition (which is the Gaussian multivariate case of a result
given in [Doob 1949, p.327] and [Doob 1990, p.498]) characterizes the stationary
Gaussian random fields with spectral density.

Proposition 2.2.3 (Doob). A Gaussian random process F : 7Z? — R with mean
zero and covariance function C admits a spectral density if and only if it has the
same distribution as h + W where h € €2 and W is a Gaussian white noise.

Proof. The reciprocal implication was already shown in the end of Subsection 2.2.1.
For the direct one, let us assume that F' admits a spectral density ¢ (which is
necessarily a non-negative integrable function over T?), that is

oy L plEede.

Let us remark that ,/p € L?(T?) so that

o) = oz [, el€) et

defines h € ¢2 such that h > 0, h? = C. Thus, h = h and h = h = C. Since F is
Gaussian, we get that F' has the same distribution as h* W where W is a Gaussian
white noise on Z? with variance 1. O

YveZ? C(v)=

Gaussian Autoregressive Fields

Several authors suggest to model random fields with spatial interactions as autore-
gressive fields [Mead 1971], [Ord 1975]. These random fields have been studied for
example in [Doob 1944], [Whittle 1954] and [Besag & Kooperberg 1995]. These
models have been applied to texture synthesis in [Chellappa & Kashyap 1985].
Since these articles concentrate on real-valued random fields, in this paragraph
we will assume d = 1. We will see that the stationary autoregressive fields with
spectral density can be written in the form h % W where h € ¢ has a Fourier
transform given by an inverse trigonometric polynomial.

As for the moving average model, the literature seems a bit confuse about the
definition of autoregressive model. Let us only mention here that the authors
of [Chellappa & Kashyap 1985] define a (non-causal) autoregressive random field
to be a stationary random field F : Z? — R, which satisfies

vVxeZ? F(x)= Z Oy Fix—y) + W(x), (2.31)
y€eZ?2
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where 0 : Z?> — R has a finite support with #(0) = 0, and where W is a (non-
necessarily Gaussian) pure white noise with mean zero and 8 = E(W(0)?) > 0. In
other words,

F=0xF+W.

In particular, when W is a white Gaussian noise, we get a Gaussian autoregressive
field on Z2. Notice that in this case, F is not directly given by a convolution h % W'
of h with a Gaussian white noise W'.

Taking the covariance functions, we get

(60 — 0) * (69 — 0) = Cp = Bdo -
This implies that the spectral measure up satisfies
1= 0(8)Pr(dg) = Bdg .

If F has a spectral density o, we thus have for almost all & € T?,

_ b
[1-0(&?

so that ¢ is the inverse of the squared modulus of a trigonometric polynomial (in

©(&) : (2.32)

two variables).

Let us remark that the existence of such an autoregressive process with spectral
density imposes some constraints on € so that (2.32) actually defines an integrable
function. For example, if § = %(5(_170) +d(1,0)), then é(&) = cos(&1) so that when
E - 07

N &
1= 0@ = (1 - cos(r))? ~ °L,
and thus |1_1é\2 ¢ LY(T?).

As mentioned in [Woods 1972] a sufficient condition for the existence of a Gaus-
sian autoregressive process F satisfying (2.31) and which has a spectral density ¢
is that

A

VEeT?, 1-0(&) #0. (2.33)
Indeed, in that case, ﬁ is a continuous function on T? and in particular square-
integrable, so that we can define a kernel function h € ¢2 by its Fourier transform
1

h = i
1-6

Then, thanks to Proposition 2.2.2, if W is a Gaussian white noise with variance /3,
h = W is a well-defined Gaussian process with mean zero and its spectral density is
exactly the right-hand side of (2.32). Using Lemma 2.2.2, we get (1 — ) = h = dp,
and thus
(1-0)«F=(1-0)xh«W =06+W =W
so that F satisfies (2.31).
In conclusion, we see that a Gaussian autoregressive model (2.31) such that

é({) # 1 for all £ € T? is a particular case of Gaussian rank-one colored noise h * W
where h € 2.
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Gaussian Markov Random Fields

In this paragraph, we investigate, in the case of zero mean real-valued stationary
Gaussian random fields, the difference between autoregressive fields and Markov
random fields. The following argument was already suggested in [Chellappa 1985]
but was not used for comparison with the autoregressive model.

Let F : Z> — R be a stationary Gaussian random field with zero mean
and covariance function C. Assume that F' satisfies the Markov property which
means that there exists a finite N < Z2 such that 0 ¢ N and such that the dis-
tribution of F'(x) conditionally to (F(y))y¢x only depends on (F(y))yex—n. Since
(F(y),y € {x} u (x— N)) is a Gaussian vector, there exist coefficients (17x(y))yen
such that

E( F(x) | F(y),yex—N) = 3 ix(y)F(x—y) .
yeN
Besides, since F' is stationary, the coefficients 7 do not depend on x. Therefore,
there exists a function 1 : Z2 — R with support in N such that for all x € Z?,

E( F(x) | F(y),y #x) =E( F(x) | F(y),yex—N )= > ny)F(x-y).

yeZ?

In particular, for all x € Z? and v # 0,

E(F(x)F(x +v)) = E[E( F(x) | F(y),y #%)F(x +v)]

=E (| Y n(y)F(X—Y)>F(X+V)]
yeZ2
= ny)EF(x—-y)F(x+vV)),
yeZ2

so that
¥v#0, C(v)= Y ny)C(v+y)=7+C(v).
yeZ2
In other words, (dp —77) *C = C — 7% C = Xég where A = C(0) — 7= C(0). As in the
case of the autoregressive fields, this implies that the spectral measure up satisfies

(1= 9(&)")pr(d€) = AdE .
And therefore, if ' has a spectral density ¢, it is given by

A
IR GR

which is the inverse of a trigonometric polynomial. Again in this case, the integra-
bility of 1_177* is a necessary condition for the existence of such a Markov random
field with spectral density.

The last calculation showed that if A # 0, the covariance function C' admits a
convolution inverse given by %(60 —17) which has compact support. By analogy with

the term “precision matrix” that is sometimes used in the literature, the inverse

©(€)




82 Chapter 2. Random Phase Fields

(for the convolution) of the covariance function can be called precision function.
Therefore, we have seen that, except in the case A = 0 (which can be thought of as
a degenerate case), a stationary Gaussian random field on Z? which has the Markov
property admits a compactly-supported precision function which does not vanish
at 0.

To end this paragraph, we study the links between autoregressive models and
Markov models. With the same notations as above, let us now consider the sta-
tionary Gaussian random field

Ux)=F(x)— Y ny)F(x—-y) = (0—n) = Fx) .
yeZ?

Therefore, we have

VxeZ?, F(x)= Z ny)F(x—y)+U(x), (2.34)
yeZ?2

where U is a stationary Gaussian random field with covariance function
Cu = (00 — 1) * (0o —n) * C = A(do — 1) -

Besides, thanks to the definition of the conditional expectation, we know that for
every x € Z2, U(x) is orthogonal to

Span(F(y) , Y # x) c LA(P) .

Since (F,U(x)) is jointly Gaussian, we get that for all x, U(x) is independent
of (F(¥))yex.

Let us notice that Equation (2.34) looks like Equation (2.31) but is actually
very different. Indeed, as can be seen on the expression of its covariance, U is
never a white noise except in the trivial case n = 0 for which F' = U is also a
Gaussian white noise. Actually, if F' satisfies the autoregression equations (2.31),
then }° 72 0(y) F'(x—y) is not the expectation of F'(x) conditionally on (F(y))y-x;
because we cannot say that W (x) is independent of (F(y))yxx. Therefore, there is
no reason to have 6 and 7 equal. If it was the case, U = F —n«F = F -0« F =W
would be a white noise, and so would F' as we have just said. For the same reason,
it is unclear that an autoregressive field defined by (2.31) has the Markov property.

According to [Besag & Kooperberg 1995, Section 2|, defining a Gaussian ran-
dom vector (Xi,...,X,) by conditional autoregression (or auto-normal formula-
tion) amounts to suppose that for every 4, the conditional distribution of X; given
all the other values (Xj);x; is

Xi | (X)) ~ N(Mz‘ +25in]','%) ;
J

with k; > 0. Setting Q;; = i > 0 and for 7 # j, Q;j = —%,

Gaussian random vector has covariance matrix (). Actually, as mentioned at the

one can show that this

end of [Li 2009, Section 2.2], we can obtain with this construction any multivariate
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Gaussian random vector so that the conditional autoregression point of view is just
another way to describe the class of Gaussian random vectors. However, it may
not be the case for random fields defined on the infinite lattice Z?, and as we have
seen above, the Gaussian autoregressive model and Gaussian Markov random field
model must not be confused.

Additional remarks

In general, moving averages are adapted to the case of a smooth spectral density
(given by a trigonometric polynomial), whereas autoregressive or Markov random
fields have irregular spectral measures ((squared) inverse of a trigonometric poly-
nomial). For the case of real-valued Gaussian fields with spectral density, those
models can be represented as NV(0, h * h) for a well-chosen h € £2.

Notice that the terms “moving average” and “autoregressive” are not limited to
the case of Gaussian random fields. But for a general moving average or autore-
gressive random field, the final distribution not only depends on the corresponding
filters but also on the excitation function. So one cannot analyze clearly the model
limits until a proper form of excitation function is specified. Thus, for the sake of
simplicity, we chose to restrict here to Gaussian excitation functions which already
leads to a quite wide texture model. Notice that in [Chellappa & Kashyap 1985],
even if non-Gaussian excitation functions are mentioned in Subsection II.A, the
simulation in Subsection II.B is restricted to the Gaussian case.

Let wus also remark that the articles [Chellappa & Kashyap 1985],
[Cadzow et al. 1993], and [Eom 2000] restrict to the case of circular random
fields when it comes to practical aspects (simulation or estimation of the parame-
ters). We have seen that in this circular setting, every Gaussian random fields is a
sum of at most d circular ADSN, which are nothing more than a circular moving
average field. This remark has two consequences: first, it is not worth distinguish-
ing in the circular setting subclasses of Gaussian random fields (as autoregressive
or moving average fields) unless one specifies a small compact support for the
autoregressive or moving average filter (as will be done in Section 3.3); and second,
this proves that for circular gray-level random fields, the circular ADSN model
presented in [Galerne et al. 2011b] generalizes autoregressive and moving average
random fields with a much clearer (and non-parametric) analysis scheme.

Let us finally mention that autoregressive models are especially useful when
the recursion is based on the time variable. In particular, a wide class of dynamic
textures can be successfully synthesized by using a Gaussian chronologically causal
autoregressive model [Xia et al. 2014].

2.2.5 Compactly-Supported Textons

We have presented in Subsection 2.1.5 the definition of the textons associated to
a circular Gaussian model [Desolneux et al. 2012]. Here we propose to extend this
definition to the case of a stationary Gaussian random field on Z2.

Definition 2.2.8. A matrix texton associated to a stationary Gaussian random
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field NV'(m, C) on Z? is any function t € £2(Z2,R%*%) such that
txil =C .

Notice that, thanks to Lemma 2.2.2, the convolution ¢ * ¢ is well defined and
its Fourier transform is £#*. Thus, a Gaussian random field that admits a texton
necessarily has a spectral density.

Definition 2.2.9. Let wus consider a stationary Gaussian random
field u = N(m,h*hT) with h e ¢2(Z* R%). A texton associated to p is any
function ¢ € £2(Z?,R?) such that t + £/ = h + h”. Equivalently, in Fourier domain,
a texton satisfies

A A

hh* = it*  a.e. .
Besides,

e if d = 1, the canonical texton of p is the texton t € ¢? defined in Fourier
domain by
t=1hl.

e if d = 3, the luminance texton of u is the texton ¢ € ¢? defined in Fourier
domain by
f: e_i@lum i\l/ ,

where ¢ = Arg(h/h;n) and where the luminance channel of h is defined by

hlum = 0.299h1 + 0.587hg + 0.114h3 .

Again, the choice of coefficients is motivated by [ITU 2011].

As in the circular case, if ¢ is a texton of g = N'(m, h* hT) and if W is a scalar
Gaussian white noise with variance 1, then m+¢+W follows the distribution p. This
remark is particularly interesting in the case where ¢ has a compact support because,
as we will see in Subsection 2.2.6, we thus have at our disposal a simple simulation
scheme. Therefore, the question is raised to find necessary and sufficient conditions
of existence of a compactly-supported texton. In the rest of this subsection, we will
discuss this question in the simple case d = 1.

Let us first remark that in general, the canonical texton associated to a Gaussian
model has not a compact support. Indeed, in the real-valued case, if one can write
|h| = £ for a compactly-supported ¢, this implies that |h| is a €* function, which is
not always the case. For example, consider the real-valued filter i = 690y — d(1,0)
whose Fourier transform is given by

A~

h(€)=1-— e
When &€ — 0, we have |h(€)| ~ |€1] so that |A(€)| is not differentiable at 0. However,
there may well be a non-canonical texton with compact support.

It is clear that a necessary condition for the existence of a compactly-supported
texton h : Z2 — R? is that the covariance C' = h % hT has compact support. One
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can wonder if this condition is also sufficient. In Fourier domain, the problem is
to know if the non-negative trigonometric polynomial C' admits a factorization \lﬂz
where h is a trigonometric polynomial. If we were dealing with functions with
only one variable x € Z, the answer would be true: indeed, the Fejér-Riesz theo-
rem [Daubechies 1988] for the real-valued case (which admits a matrix extension
due to Rosenblum, see [Rosenblum & Rovnyak 1997] and [Dritschel 2004]) ensures
that any trigonometric polynomial

e(€) = > c(k)e™ (£eT)

|k|<n

such that for all £ € T, (&) = 0, can be written ¢ = |p|? where p is a trigonometric
polynomial

p(€) = 3 h(k)eHe
k=0

of same degree n. The proof relies on the fundamental theorem of algebra.

Unfortunately, the condition is not sufficient when we have more than one vari-
able. Hilbert indeed showed that there exist non-negative trigonometric polynomials
in several variables that cannot be written as sums of squared moduli of trigonomet-
ric polynomials. Nevertheless, if we consider only trigonometric polynomials that
are positive (instead of non-negative), then there always exist a decomposition in a
sum of |p;|?. One can refer to [Dritschel & Woerdeman 2005] or [Dumitrescu 2006]
for a large discussion on this issue. Notice also that [Dritschel 2004, Theorem 5.1]
indicates that there always exists a small perturbation of the non-negative trigono-
metric polynomial that can be factorized as a squared modulus of one trigono-
metric polynomial. In other words, for a compactly-supported covariance function
C : 77 — R?, there always exist an approximate compactly-supported texton t
such that t « 1 ~ C.

2.2.6 Simulation

In this subsection, we explain how to sample on a rectangle a Gaussian random
field that admits a compactly-supported texton.

Let h : Z? — R% be a kernel function with compact support S;. We will sample
the ADSN G}, = h = W associated to h (where W is a white Gaussian noise with
zero mean and variance 1) on a finite rectangle 2 = Z2. For the sake of clarity, we
can assume that 0 € .Sy,

Let us remark that

Vxe, Gpx)= Z h(y)W(x—y) .

Y€Sh

Thus, when A has a very small support, one only has to sample W on Q — S}, and
the convolution can be performed by direct summation. But when S, gets bigger,
it is well-known that the direct summation method becomes inefficient to compute
the convolution, and that it may be computed more quickly using the DFT.
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o, — |z

= —

Figure 2.4: Use of Circular Convolution. If 2 is augmented by —S}, then the
restriction on 2 of the convolution by h of a function on 2 is the restriction on €2
of the circular convolution performed on a rectangle R containing {2 — S},.

This method amounts to augment §2 by the size of the kernel function, so that
the restriction on 2 of the convolution by h is the same as the restriction of the
circular convolution by h on the augmented domain (see Fig. 2.4). For that, let us
introduce a rectangle R — Z? of size M x N such that Q — S, < R, and also the
circular domain © = Z/MZ x Z/NZ. Then Q and Sy, naturally identify to subsets
V' and S}, of ©. One can thus remark that the restriction of the ADSN G}, to
has the same distribution as the restriction of the circular ADSN G?, to . As we
said in Subsection 2.1.2, the simulation of G, can be done in €(|©|log|©|) using
a DFT, and therefore, we obtain a way to simulate the restriction of G on 2 in
O (klog k) where k = |Q — Sp,|. Let us also notice that this remark extends to DSN
with finite intensities (the only difference is that the white noise is Poisson and not
Gaussian).

To sum up, a restriction of the (asymptotic) DSN associated to a compactly-
supported h can be obtained by cropping a circular (asymptotic) DSN. Of course, as
one can see in Fig. 2.5 this implies that the resulting restrictions are not tileable, but
the advantage is that they can naturally be extended afterwards to a wider domain.
When S}, is relatively small and the intensity A relatively low, the DSN can be
simulated by direct summation. We will take profit of this remark in Section 3.3
where we will design compactly-supported textons associated to a Gaussian model
such that the ADSN can be approximated by a low intensity DSN. But let us
mention immediately that the direct summation method allows for very efficient
on-demand synthesis: indeed, it can be parallelized using a grid-based simulation
scheme for the Poisson point process explained in [Lagae et al. 2009] and illustrated
in Fig. 2.6

2.2.7 Optimal Transport Distance

In Subsection 2.1.6, we have recalled the expression for the optimal transport dis-
tance between two circular ADSN fields given in [Xia et al. 2014]. Here, we show
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Figure 2.5: ADSN versus circular ADSN. From left to right, one can see a
(2,2)-tiling of a circular ADSN of size 256 x 256, a (2,2)-tiling of a non-circular
ADSN of size 256 x 256, and a non-circular ADSN of size 512 x 512. The ADSN
are computed with the same kernel (indicator function of a disc of radius 30). As
expected, the circular ADSN is naturally tileable. But the advantage of the non-
circular ADSN model is that it can be extended to any domain without repetition
(right image).

Poisson Process:
(X;) -
Evaluation point:

+

Random Seeds:
w

Figure 2.6: Parallel local evaluation of a low-intensity DSN. We consider
here a DSN associated to a kernel h (with square support S;, shown in pink) and
with underlying Poisson process (X;). The synthesis domain is divided into square
cells having the same size as Sp,. If one wants to sample the DSN on a point of
the dark green cell, then one must compute the Poisson process in the nine green
cells. In each cell, the Poisson process can be sampled by using a random seed given
as a function of the up-left coordinate of the cell. With this precaution, multiple
evaluations of the Poisson process will be coherent. This method thus allows for
parallel local evaluation of the DSN.



88 Chapter 2. Random Phase Fields

that it is possible to define the optimal transport distance between two stationary
random fields on Z?, and we get an analog formula for the distance between two
ADSN fields defined over Z2.

Let pg and pq be the probability distributions of two stationary random fields
on Z2. Inspired by [Gray et al. 1975] and by the result of Proposition 2.1.8, we
adopt the following definition.

Definition 2.2.10. The L?-optimal transport distance between the stationary ran-
dom fields p9 and pq on Z? is defined by

dor (o, p1)? = inf E(|[F(0) = G(0)]1?) ,
where the infimum is taken over all the stationary couplings (F, G) such that F' ~ pg
and G ~

With this definition, we shall give an analog of Theorem 2.1.4 in the case of
random fields on Z2. This result was already given in [Gray et al. 1975] for the case
of real-valued Gaussian stationary random fields. For d > 1, we need the following
lemma.

Lemma 2.2.5. Let M € C¥*? and let a,be C%. We assume that
aa* M >0
H = (M* bb*> 6H2>d :
Then we have |Tr(M)| < |a*b].

Proof. The proof of this lemma relies on the following observation: if K is a non-
negative Hermitian matrix, then

Vi, |Ki? < KigKjj (2.35)

In the simple case a = 0, we have aa™ = 0, and since H is non-negative, we get
from (2.35) that M = 0 so that |Tr(M)| < |a*b|.

We can thus assume a # 0. In this case, there exists a unitary matrix P of
size d x d whose first column is II%H We thus have

[lal !
0 * a *
Pra=| and Pb=| | witha= (W) b
: : a
0 %

Let us consider
P 0
which is a unitary matrix of size 2d x 2d. Since H € ”Hfdo, we also have

P*aa*P P*MP
K = Q*HQ = (P*M*P P*bb*P) € /HZZdO :
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Let us remark that
||a”2 O --- 0 |O[|2 % e ¥
0 *
P*aa*P = . and P*bb*P =

0 *

Thanks to (2.35), we get
Vie{l,...d}, |Kii+a®<KiiKitdgira

which rewrites

Vie {1,...d}, |[(P*MP);|*> < (P*aa*P);;(P*bb*P);; ,

Besides, for 2 < i < d, we have (P*aaP);; = 0 so that (P*MP);; = 0. And

for i = 1, we get
a \*, |
(P MP)AE < alPlof = ol | (57) b | = la"bl

Finally,
d
Tr(M) = Te(P*MP) = > (P*MP);; = (P*MP)1,
=1
and thus
| Tr(M)] < |a™b] .

O

Theorem 2.2.6. Let hg, hy € (2(Z2,R?) be two kernel functions and let pg, py be the
distributions of ho * W and hy * W where W is a white noise on Z? with variance 1.
We suppose that for ¢ = 0,1, p; has uniform random phase in the following sense:

Vi€ 2, Gt = hiht = gixW Dhiew . (2.36)

Then the L?-optimal transport distance between pg and py is given by
d 2 L (i@ + (@) — 20ho(€) i (e)))de . (2.37
or(to; 1) 5 1o ()7 + [|R1(E)]I7 — 2[ho(§)*h1(€)])dE . (2.37)
(27)% Jr

Proof. The proof follows the same scheme as in the circular case. Let (F, G) be any
stationary coupling of (ug, pt1). Let us recall that F' has spectral density pp = fzgﬁ(’)"
and G has spectral density pg = lAzllAzT Therefore, as we have said in Subsec-
tion 2.2.1, F, G admit a cross-spectral density ¢ . The spectral density of (F'; G)

vr Yra\ _ (hohd Yre
1/’}5“,(; PG I/J}?,G hihy

is Hi?—valued so that, with Lemma 2.2.5 we get

Tr(dre) < |hgh| -
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By definition of the spectral densities, we thus have
E[|F(0) - GO)?] = E[IF(0)[?] + E[|G(0)[*] - 2E[G(0)TF(0)]
- Tr( [P (0)F(0) D + Tr(E [GO)G0)]) - 21x(E[F(0)G(0)"])

577 -, (Teor(€) + Teal€) = 2Tr(wrc(€)de
577 L, (Tl ©h0())+ Te(hn (€0 () — 203 (€)in ©) )¢
7 = (||h0 O + 17 (©)]1* — 2lho(€)*hn (€)])dé

Therefore,

dor(po.n)? > g [, (o€ + @) = 24io(€)*hn(©)]) e

Now let us exhibit a coupling that achieves the lower bound. For that, we de-
fine g1 € ¢? by its Fourier transform

_ habiho, g
 |ghg| Mo 1 hitho=0 -

Q>
ha

The function ¢ is measurable (because ho and hy are measurable), and we have
91l = ||h1]| so that g; € £2. We then define the coupling

F=hy«W and G=g=W.

of o, 1. We see that F—G = (hg—g1) * W has spectral density (ho— g1)(ho—§1)*
and

T ((ho = 1) (ho — §1)*) = (ho = §1)* (ho = g1) = [lho® + [[Fun|[* = 2/sha | -
We thus have

E(|[F(0) - G0)[*) =

7 [0 ((ho — 1) (ko — 30)") €1
L, (o )17 + () - 2lho(€) Ba(©)])de -

(27)?
1

~(2m)?
which concludes the proof. O

Remark 2.2.4. Tt was conjectured in [Gray et al. 1975, Remark after Corollary 3]
that the equality given by the last theorem is true only in the case of Gaussian
processes. Actually, the result of Theorem 2.2.6 shows that this conjecture is
false because the uniform random phase hypothesis (2.36) does not imply that W
(or h W) follows a Gaussian distribution. Indeed, let us consider two indepen-
dent white Gaussian noises Wy, Wi on Z? of variances a # § and an independent
Bernoulli variable B of parameter % Then let us consider

W = (1— B)W, + BW; .
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Then W is a stationary process which is non-Gaussian because the probability
density function of W(0) is the average of the Gaussian densities with mean 0 and
variances a and 3. Besides, W is a white noise on Z? because for all x,y € Z?2,

EW &)W (y)) = EWo(x)Wo(y))P(B = 0) + E(W1(x)W1(y))P(B = 1)

- (agﬁ)éo(x—y).

Besides, if hh* = §g*, then we have hx Wy ~ g = Wy and h* Wy ~ g = Wy (because
these processes are Gaussian with the same spectral density), and therefore
hsW = (1—B)hsWo+BhsWi D (1—B)gsWo+BgsWi=gxW .
Remark 2.2.5. If hg, hy are continuous, the integral (2.37) can be seen as the limit of
the Riemann sums (2.11). In particular, if hg and h; are two compactly-supported

functions on Z2, they define circular models 1§ uf on a domain © < Z? containing
their support, and we thus see that when © — Z2,

dor(ug, 17) o dor(po, i) -

Even if hg and hy may have large oscillations, we observe in practice that the
approximation by the Riemann sums is in general quite good (with a relative error of
order 1% as soon as O is 4 times larger than the support of the hy and h; as one can
see in Fig. 2.7). This remark a posteriori justifies the use of the optimal transport
distance on the circular models as a good approximation of the distance between
models defined on Z2. Let us also mention that the author of [Gray et al. 1975]
mentions another convergence result: the optimal transport distance between the
stationary models ji, 11 on Z? is also the limit of the optimal transport distance of
the restrictions of pg, u1 to a domain €2, when the dimensions of {2 tend to infinity.
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Figure 2.7: Limit of optimal transport distances of large circular models.
To obtain this graph, we fixed two compactly-supported textons tg,¢; (with a sup-
port of size 128 x 128) associated to two natural textures (see Subsection 3.1.1) and
we plotted the OTD between the circular models defined by t,t; on (Z/NZ)? as
a function of N (which is represented on the z-axis). One can see that the conver-
gence of the OTD values to the OTD of the models on Z? is quite fast: the relative
error is about 1% when the dimensions of © are 4 times larger than the ones of the
support of hg, hi.
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In this chapter, we explain how the random phase models presented in Chapter 2
can be used to perform fast and flexible by-example texture synthesis.

As we have already said, the articles [Lewis 1984], [Lewis 1989]
and [Van Wijk 1991] proposed to use random phase fields in texture synthe-
sis. One main contribution of these articles is to demonstrate the richness and
practical flexibility of random phase models; in particular, the wide possibilites
offered by the interactive design of the kernel function has largely and undoubtedly
contributed to the success of the spot noise model. But they did not propose a
clear framework for by-example synthesis. Let us recall the following sentence
of [Van Wijk 1991, §6.3 Further Work].

“An approach to gain more insight in the relation between the shape
of the spot and the resulting texture is to attempt to derive spots from
sampled real-world textures. This step is the inverse from spot to texture.
A spot h(x) has to be constructed such that its energy spectrum is the
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same as the power spectrum of the texture, and such that it corresponds
to the motion of the spot used here, i.e. satisfies some criterion such as
minimal size or minimal variance.”

By-example textures synthesis has been sucessfully addressed in many later ar-
ticles; we refer the reader to [Wei et al. 2009] for a detailed survey on this topic.
Since the steerable pyramid (and more generally a wavelet frame) is a way to extract
the spectral content, the method of [Heeger & Bergen 1995] can be understood as
spectrum approximation, but the distribution of the synthesized random field is
not clearly formulated. As regards models that are closer to random phase fields,
let us mention the articles [Ghazanfarpour & Dischler 1995], [Lagae et al. 2010b],
and [Galerne et al. 2012] whose authors explain the use of noise functions for by-
example texture synthesis. The methods proposed in these three articles rely on the
extraction of the more significant parts of the texture power spectrum. They are
limited to parametric estimation of the texture spectrum because their main objec-
tive is to perform procedural synthesis (which imposes a non-periodic, continuous,
and randomly-accessible model).

If one is not particularly interested in a procedural synthesis method, then
one can lead a non-parametric estimation of the texture spectrum based on one
single exemplar, as was done in [Galerne et al. 2011b]. In the Gaussian case, this
leads to a clear analysis-synthesis pipeline, and the synthesized random field has a
simple distribution because it is an asymptotic discrete spot noise. This method
outperforms those mentioned in the last paragraph because it preserves the whole
power spectrum of the input texture. Besides, the textures that are well-reproduced
by an ADSN are exactly the textures whose aspect is characterized by the power
spectrum, i.e. the ones for which the Fourier phase does not convey any relevant
information.

The estimation method of [Galerne et al. 2011b] allows to derive from an
exemplar texture a spot that can be used for synthesis of this texture.
But let us remark that the spot suggested in [Galerne et al. 2011b] does not
fit the “minimal size” constraint mentioned by van Wijk. The authors
of [Desolneux et al. 2012], [Xia et al. 2014] and [Desolneux et al. 2015] brought an
elegant solution to this problem, with the notion of texton associated to a Gaussian
texture model (which we already introduced in Chapter 2).

The word texton was actually introduced by Julesz in his seminal pa-
per [Julesz 1981] to refer to the features (statistical features or geometrical features)
that are involved in the perception of textures (and in particular which allow preat-
tentive texture discrimination). In the class of stationary Gaussian textures, the
second-order moments (or equivalently the Fourier spectrum) suffice to characterize
a texture, hence the idea to define a texton for a Gaussian texture as a particular
representative of the class of images having the same Fourier spectrum. There-
fore, the authors of [Desolneux et al. 2012] suggest to define the canonical texton
associated to a gray-level Gaussian texture by the only image with same Fourier
spectrum and zero phase. Beyond the characterization of a Gaussian texture, this
canonical texton has several interesting properties. For example, it is spatially con-
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centrated around zero in the sense that, among the images having the same Fourier
modulus, it is the unique solution of a class of optimization problems that translate
the concentration at zero by a spatially-weighted ¢?-norm [Desolneux et al. 2015].
Besides, in contrast with covariance functions, it becomes natural to approximate
a Gaussian model by cropping the texton'. This texton is thus closer to the idea
of a spot associated to a texture, with “minimal size”.

However, as we will see, given a prescribed compact support, it is not true that
the cropped canonical texton is the kernel function that realizes the best approxima-
tion of the corresponding Gaussian models (measured by the L? optimal transport
distance). Besides, the canonical texton is not adapted to spot noise synthesis with
finite intensity: indeed, the Gaussian convergence of the corresponding spot noise is
slow because the canonical texton is very spiky. The main contribution of this chap-
ter is the introduction of the so-called Synthesis-Oriented Texton which solves both
these issues. It is obtained by an algorithm of alternating projections on support
and spectral constraints, and can be used for very fast Gaussian texture synthesis.

As an application of Gaussian texture synthesis, we will see at the end of this
chapter that the Gaussian model can be used to address textural inpainting. In-
deed, the texture inpainting problem has a clear formulation in terms of conditional
simulation, and in the Gaussian case, the conditional simulation can be simply ad-
dressed with a method based on kriging estimation. We will see that this method
brings an elegant and efficient solution for microtexture inpainting.

The random phase and Gaussian models used in this chapter have already been
presented in Chapter 2. In Section 3.1, we present and discuss the estimation of the
Gaussian model suggested in [Galerne et al. 2011b], and in particular we question
the relevance of the periodic covariance estimator. In Section 3.2 we give examples of
Gaussian texture synthesis by example, and discuss the limitations of the Gaussian
model. Section 3.3 is devoted to the presentation of the Synthesis-Oriented Texton.
Finally, in Section 3.4 we will present the conditional simulation for stationary
Gaussian random fields and its application to the inpainting of Gaussian textures.

3.1 Model estimation

Some recent articles about Gaussian texture analysis and synthe-
sis [Galerne et al. 2011b], [Desolneux et al. 2012], [Xia et al. 2014] suggest to
estimate the covariance of a Gaussian model by the periodic autocorrelation of the
exemplar texture. If we observe a texture u : & — R? on a discrete domain

Q=1{0,... M 1} x {0,...,N —1} ,

this amounts to set

Vv eZ? o (v) = 1 Z(u(x) —a)(a(x+v)—a)T, (3.1)

‘Q| xeN

Yeven if a crop of a zero-phase texton may not be a zero-phase texton.
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where 4 refers to the (M, N)-periodic extension of u defined by
V(x,y) e Q, Y(k,1) e Z? (x+kM,y+IN)=u(z,y),

and where

u= 1 Z u(x) (3.2)
‘Q| xe)
refers to the empirical mean.

Because we have ¢,(§) = ﬁa(g)a* (&) for & # 0, this is equivalent (for d = 1)
to estimate the power spectrum by the squared modulus of the DFT. In the signal
processing community, it is well-known that the squared modulus of the DFT is
a very noisy information and that it may not be the best estimator of the power
spectrum.

When estimating the covariance of circular stationary random fields, the use of
the periodic autocorrelation is natural: amongst other reasons, the relation (2.2)
indicates that the estimator is asymptotically unbiased. Another reason, that was
mentioned in [Xia et al. 2014] and that we will prove in Subsection 3.1.1, is that
this estimator is indeed the one that maximizes the likelihood function.

But in practical cases of texture synthesis by example, there is no reason for
the exemplar texture to be periodic, so that the periodic autocorrelation is not
legitimate a priori. Actually, this is not natural to model a non-periodic texture by
a circular stationary random field. The author of [Moisan 2011] proposed an elegant
solution to extract from any image a “periodic component” whose geometry is very
similar in the domain interior and which has a very attenuated border-to-border
discontinuity. As we will see in Subsection 3.1.2, this periodic component makes
the circular modelling more legitimate but does not entirely solve the covariance
estimation.

Another approach is to use a purely non-periodic estimator of the covariance
given by

Vv e 72, uVI; w(x) — @) (u(x+v) —a)’, 3.3
RS vy IR U IR

with the convention that v, (v) = 0 as soon as Q n (2 — v) = &, and where u still
refers to the empirical mean. A variant is given by

Ve A(v) = |1 S () - @) ux+v) - @) (3.4)
XeQN(2—v)

Such non-periodic estimators will be studied in Subsection 3.1.3. On synthetic
cases, we will see that, contrary to what we hoped, they do not perform better than
the periodic autocorrelation. In turn, our discussion also explains a posteriori the
success of the traditionnaly used periodic estimator.

For the sake of simplicity, the discussion of this section will be re-
stricted to the gray-level case, that is, d = 1.
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3.1.1 Maximum Likelihood Estimation in the Circular case

We show in this subsection that, in the gray-level case, the traditional periodic
estimator ¢, defined by (3.1) can be seen as a maximum likelihood estimator.

Let us consider a stationary Gaussian random field U : © — R defined on a
circular domain

© = Z/MZ x Z/NZ.

with mean m € R? and covariance function C' : © — R.
As we have said in Subsection 2.1.1, the covariance

I': ©x60 —R
(x,y) +=— Cx-y)

induces a bilinear non-negative form on R® and thus a non-negative linear operator
from R® to R®, that we will still denote by T'. Tt is well known that the Gaussian
vector U has a probability density function if and only if the operator I is invertible,
and in that case, the probability density function writes

ueRer—>detl(27rF) exp ( ST )—m)(u(y)—m)) .
X,yeO

As we have seen on Equation (2.3), we have for all f: 0 — R,
1 A N
POFICONICHINERD Z F(=OPCE©) = 15 2o IF@PCE)
"l ol %

where f and C are the DFTs of f and C. This shows that the operator I' has an
eigenvector basis given by the (unitary) discrete Fourier basis and the corresponding
eigenvalues are C'(€), € € ©. Thus, the operator I' is invertible if and only if

C(&) # 0 for all £, and

1£(€)
xZ;f(X)f(y (x,y) @Z ot

13

Therefore, the Gaussian random field U has a probability density function if and
only if C'(§) # 0, and in this case, the density function writes

1 0(0) — 2 1 NP
uweR® —s ————exp (_(u(O) fn]@\) ) H —————¢xp (_\u(ﬁ)[ ) .
2710|C(0) 2101C(0) ) &io \/2x|©(C(8) 2(0[C (&)
More generally, if C takes the value 0, then U admits a probability density function
on the subspace

{ueR?|a(&) =0assoonas C(€)=01,

and the density function on that subset is the same than before except that the
product does not contain the frequencies & for which C'(§) = 0.
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Suppose that we oberve a texture u : ® — R that we want to model by a
Gaussian random field U ~ N (m, C). Then the likelihood function is

1 (2(0) —m|@|)2> 1 ( |a(€)? )
Lim(C)= ——=exp| ——F————— ——————exp | — A .
e 2(©|C/(0) ’ < 2|0|C(0) ge(g\[{()} or|0|C () " 210|C(§)

Thus, we have

_ L oe(c (@(0) —m|B]) o (C |a(€)[?
~log L(m, C) = est+ (1 g(C(0)) + 61C0) +g;01 g(C(€)) + |@|é(§)) .

We want now to compute the maximum likelihood (ML) estimator of (m,C),
which means that we want to maximize L(m,C) (or equivalently minimize
—log L(m,(C)) on the set of couples (m,C) where m € R and where C is a cir-
cular covariance function on ©. In the first place, we would like to restrict L(m,C')
to non-degenerate covariance functions C' (i.e. such that C'(€) > 0 for every &), but
then, as soon as there exists &, such that 4(&,) = 0, L(m, C) does not have a finite
minimum because

lim - log(C(&)) = —0 -
C(ﬁo)ﬁo

It is thus natural to restrict to covariance functions which satisfy C (&) = 0 as soon
as (&) = 0.

We have a similar problem for €'/(0). Indeed, for a fixed C, m — —log L(m, C)
always has a unique minimum at

_ 1 1
uzﬁu(O):@Zu(x),

and then, the function C' — —log(u,C) does not have a finite minimum (for the
same reason as above).

All in all, we will always estimate the mean m by the empirical mean u, and
then we will minimize the function

OO = Y logCie)) + O
Z elc(E)
a()#0

on the set
Cy = {C:@—HR‘VS, C€) =0, C(0)=0, and C(&) = 0as soon as 4(&) =0}.

For that, we noticed that the different terms of the sum can be minimized indepen-
dently, modulo the fact that the summand is an even function of €. Besides, one
can notice that for a fixed & > 0, the function

]07 +OO[ — R

c —> log(c) + %
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has a minimum value which is reached at the point ¢ = k. Therefore, L admits a
unique minimum on C, reached on the covariance function C' which satisfies

1

VE£0, C(€) = @m(sﬂz :

Finally, we get the following

Proposition 3.1.1. If we observe a gray-level texture u : © — R, then the maz-
imum likelihood estimator (in the sense explained above) for the circular Gaussian
model N'(m,C) is given by

mML:azﬁZu(x), and C’Mchu:W;(u—a)*(ﬂ—ﬂ),

where x refers to the circular convolution on ©.

Remark 3.1.1. Let us make three more comments about the ML estimator.

- If U ~ N(m,C) then U(£) # 0 almost surely as soon as C(€) # 0. For that
reason, it is natural to enforce C (&) = 0 for the estimation of C' as soon as we
observe 4(&) = 0.

- It is quite uncommon to estimate a random model from one single realization.
However, we have been able to derive a ML estimator thanks to the station-
arity assumption, modulo some constraints on m and C. Notice in particular
that the choice C'(0) = 0 is quite arbitrary: it means that the realizations of
N (m, C) have a mean value which is almost surely equal to m. If we had more
than one observation, we could compute a ML estimator without imposing

C(0) = 0.

- Let us remark that there exists a generic ML estimation method for a Gaussian
random vector. But it is different from the one presented here: indeed, the
above ML is restricted to a circular covariance function (i.e. the covariance
function of a circular stationary random field). In particular, the stationarity
assumption modifies the degeneracy condition (because the space of circular
covariance functions is much smaller than the space of all covariance matrices).

- The case of vector-valued random fields (i.e. d > 1) is a bit more difficult
because for each € € O, the matrix 4(£)u(€)* has rank one and is thus always
degenerate.

3.1.2 Coping with the periodicity assumption

In this subsection, we discuss the practical legitimacy of the periodic covariance
estimator ¢, defined by (3.1).

The ML estimation that we presented in Subsection 3.1.1 allows to learn a
circular stationary Gaussian model from one single realization. But in general, the
natural textures that we can observe have no reason to be plausible in a circular
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stationary Gaussian model (because they have no reason to be tileable). Therefore,
if we observe a natural texture u :  — R defined on a discrete rectangle Q c Z?2
(which can be identified to a circular domain © = Z/MZ x Z/NZ), and if we
consider the covariance ML estimator ¢,, then the terms in (3.1) corresponding to
positions x such that x € Q and x+ v ¢ 2 cannot be considered as valid samples for
the covariance estimation. One can thus wonder if these samples induce a strong
bias of the periodic covariance estimator ¢,. In Subsection 3.1.3, we will analyze
the precision of this estimator and compare it to the precision of another purely
non-periodic estimator.

But before that, let us mention a technique introduced in [Moisan 2011] that
allows to reduce the border-to-border discontinuity of a natural image without
affecting its inner geometry. If u : 2 — R is an image defined on

Q=1{0,...M—1}x{0,...,N—1},

then the periodic plus smooth decomposition of u is by definition the unique cou-
ple (p, s) of images defined on 2 which minimizes

Y. ) -3+ Y (s(x) - s(y))?

xeQ, yeZ?\Q X,y €Q
|x—y|=1 [x—y|=1

(where |x| is the [2-norm on Z?) under the constraints

u=p+s and Zs(x)zo.

xeN

The image p is called the periodic component of u, and is also written per(u).
Equivalently, one can express p as a solution of a Poisson equation. Indeed, let us
define the (periodic) Laplacian operator A : R? — R® by

Vx e, A(u)(x)=—4u(x)+ Z u(y) ,
yezZ?
Ix—y|=1

and let us capture the border-to-border discontinuities of u in the image v = v1 +vo
where for all (z,y) € Q we set

or(@,y) = (u(M =1 =2,y) = w(@,)) Lozo o 21

va(,y) = (ule, N = 1=y) = u(@,9))1y=0 or y=n-1 -
Then, one can show that the periodic component p satisfies

Ap=Au—wv.

Since the Laplacian operator is circulant with respect to the periodic translations
of € and invertible on the sets of images with zero sum, this equation can be solved in
Fourier domain, and thus the periodic component can be obtained in &'(|Q2]log [€|)
using the fast Fourier transform.
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U = p + S

Figure 3.1: Example of periodic plus smooth decomposition. Notice that the
in the interior of the image domain, the perceived geometrical features are almost
the same in v and in p. This experience confirms that s is a smooth image (and
actually, s is smoother in the domain interior than near the border).

Figure 3.2: Texture tiling using the periodic component. On the left, one
can see the 2 x 2 tiling of the texture shown in Fig. 3.1, and on the right, the tiling
of its periodic component. On the tiling of the raw texture, the image borders are
clearly visible between the tiles, whereas they are more difficult to perceive on the
tiling of the periodic component.

As one can see in Fig. 3.1 and Fig. 3.2, taking the periodic component reduces
the intensity gaps between two opposite image borders. In several cases (as in
Fig. 3.2), this suffices to make the texture tileable. However, let us remark that,
even if per can reduce the border to border intensity gaps, nothing ensures that the
correlations between values taken on both sides of the border of a tile are compatible
with the initial texture autocorrelation (in the interior of the domain). Therefore,
as concerns the covariance estimation, one can imagine that the periodic component
will reduce the bias induced by the border to border discontinuity, but it does not
make the periodic covariance estimator completely legitimate for a non-periodic
exemplar texture, as illustrated by the degenerate case given in Fig. 3.3. From
these observations, we can draw a simple rule: one can consider that taking the
periodic component overcomes the non-periodicity of the exemplar texture as soon
as there is no easily-perceptible discontinuity in the textural content in the 2 x 2
tiling of the exemplar.

Remark 3.1.2. The operator per can be extended to color images by computing the
periodic component seperately on each channel.
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D
L

Figure 3.3: Failure case of texture tiling using the periodic component.
On the left, one can see the 2 x 2 tiling of a pure wave texture, and on the right,
the tiling of its periodic component. In this case, the operator per indeed reduces
the intensity gaps, but the borders of the tiles are still clearly visible in the tiling.

3.1.3 Asymptotic performance

Suppose now that we observe u : 2 — R and that we want to model u by the
restriction to  of a stationary Gaussian field U : Z? — R with mean m and covari-
ance function C. Since we cannot write the density of the random field U (because
it has infinitely many components), we cannot follow the maximum likelihood pro-
cedure to derive a covariance estimator. Nevertheless, we can still consider the
natural (non-periodic) estimator defined by (3.3) and the periodic estimator given
by (3.1).

In this setting, we are allowed to study the convergence of the covariance estima-
tors when the size of the observation domain 2 grows to infinity. We will see that,
when we restrict to Gaussian models with compactly-supported covariance func-
tions, both the periodic and non-periodic estimators are asymptotically pointwise
consistent. After that, we will illustrate on a simple example that the performance
of these estimators are comparable.

A first step is to prove the consistency of the mean estimator.

Lemma 3.1.1. Let U : Z> — R be a stationary Gaussian field with mean m and
covariance function C. Let us assume that C has compact support K. Then the
empirical mean (3.2) is a consistent estimator of m, i.e. when the dimensions M
and N of the rectangle Q) tend to oo, we have almost surely

Ug — m, (3.5)
where Uq refers to the Q-restriction of U.

Proof. We will use an ergodicity argument that follows from the compactness of the
covariance support. For that, we introduce a rectangle R of size r x s containing K.
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We then consider the partition of €2 defined by the sets
L =Qn (@ +rZxsZ), (ieR).

Then,
€6 1

[ 1
Uo =12 2 V=2 T/ Ty

1€R xe; i€R

ZU(X).

xeQ;

Observe that for each ¢ € R, the random variables (U (x))xeq, are independent since
they are Gaussian with covariance 0, and also identically distributed because U is
stationary. Therefore the law of large numbers ensures that when |Q] — o0, we
have almost surely

1
Vie R, — Z Ux) —m,
|Q’L| XEQ,L'
which entails Ug — m, because
3 [l _y
€ER |Q|

d

Based on this result, we can show the consistency of the non-periodic and peri-
odic covariance estimators.

Theorem 3.1.2. Let U : Z? — R be a stationary Gaussian field with mean m
and covariance function C. Let us assume that C' has compact support K. Then
the covariance estimators defined by (3.1), (3.3) and (3.4) are pointwise consistent,
i.e. when the dimensions M and N of the rectangle € tend to oo, we have almost
surely for all v e 72,

VUq (V) - C(V) )

Mo (V) — C(v)

crp(v) — C(v) ,
where Uq refers to the Q-restriction of U.

Proof. We will first prove the convergence for the non-periodic estimators, by em-
ploying the same method than in the proof of Lemma 3.1.1. Let v € K. Expand-
ing (3.3), one gets

1 — 1
(V) = I =] XGQ%_V) UeUlx +v) = Ua (|Q A Q=) Xem%_v) U(X))
I 1 2
— UQ (MM ermZ(Q_v) U(X + V)) + UQ .

Splitting the sum into sums of independent terms as in the proof of Lemma 3.1.1,
we obtain that the sum of the three last terms converges almost surely to

—m2—m2+m2=—m2.
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The first term is the empirical mean on Q N (Q — v) of the process
x— Ux)U(x+vV).

Notice that this process also has a compactly-supported covariance function. More
precisely, the samples at pixels separated at least by the size of K — K +{—v,0,v}
are independent. Therefore, imitating again the proof of Lemma 3.1.1, one can
show that when M and N tend to oo, we have almost surely

1

aav) 2 UeUGty) — EUGUG+v)].

x€QN(Q—v)

so that vy, (v) — C(v) almost surely.
The convergence also holds for the renormalized VIUQ' Indeed, we have for each v,
Q2 (Q—v)| 1
€2

when M and N tend to oo, because of the relation

[A@ = V)| _ o] | o] [oave]
MN M " N MN

Now, let us prove the consistency of the periodic estimator. With the first part

(3.6)

of the proof, it is enough to show that the difference between ’ybﬂ and cy,, tends to
zero almost surely. Notice that

o) =)+ o Y (U6 - T)Ux+v) ~Ta) . (37)
| | xeQ\(2—v)

The last sum can be rewritten

Z U(X)U(X—FV)—UQ( Z U(X)) —UQ( Z U(X-I—V))

xeQ\(2—v) xeQ\(2—v) xeQ\(2—v)
HO@Q =T (38)

Notice that
[O\(Q = V)| = [v1|N + |v2| M — [v1]|vg]

so that |Q\(2—v)| — o when || — 0. Thanks to the consistency of the empirical
mean, we get that

o 2xe@m U Yeao-v) Ux+V) T2
V(2 — )] CTTION@Q V)] “

converges almost surely to —m?2. And for the first sum of (3.8), we will proceed
as in the proof of Lemma 3.1.1. Notice that as soon as  is large enough, U(x)
and U (x + v) are independent. Indeed, suppose for example that z; + v1 ¢ 2 and
T9 + v9 € 9, then

Ux+v)=U(x1 +v1 — M,x2 + v9) ,
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so that the covariance between U(x) and U(x + v) is C(v; — M, v2) which vanishes
as soon as M is large enough. Therefore, the sum 3"y o\ (—v) U(x)U(x + v) can
be split into several sums of i.i.d. terms, and thus the law of large numbers ensures

that when M and N tend to o0, we have almost surely

|Q\(Ql—v)| ( > U(X)U(x+v)> 2

x€Q\(2—v)
Grouping the two parts, we have shown that when M and N tend to oo,

1 Uo ’ TT a.s.
@ (V00T 4 v) ) 220,

Using (3.7) and (3.6), it follows that

cva¥) = fip(v) = o () — o (L4 1Y (3.9)

Using the consistency result for the non-periodic estimator we get the consistency
of the periodic estimator. Notice that we also showed

so that when M and N tend to co, we have almost surely

o (V) = e (v) =0 (1\14 + Ji,) : (3.10)
0

Let us add a comment about the last result. Not only have we shown the
consistency of the estimators, but we have given the upper bounds (3.9), (3.10)
on the difference between the periodic and non-periodic estimators. Unfortunately,
this upper bound is not small enough to conclude that both estimators perform
equally. Indeed, even if a central limit theorem cannot be applied immediately
(because of the dependencies between the terms of the sums defining ¢, or v,), it
could be expected that the estimation errors

YUq (V) - C(V) ) 7{19 (V) - C(V) y CUg (V) - C(V)

1

are of order = Therefore, thanks to the last theorem, we see that for example,
if M and N tend to infinity with the constraint M = N, then the upper bound
ﬁ + % has the same magnitude than the estimation error.

Let us now analyze in a practical asymptotic framework the performance of
these estimators. We performed numerical simulations with a Gaussian random
field U = k=W where k is a discrete disc of radius » and W a normalized Gaussian

white noise on Z2. We draw a realization u of U on a square of size N x N, estimated
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Figure 3.4: Comparison of the different covariance estimators. We plotted
the estimation errors with the periodic (¢, x), non-periodic (7, +), and non-
periodic non-normalized (), ©) estimators of the covariance. More precisely, for
each size N of the observation, the expectations of €(cy), €(y4), and e(v,,) (which
are defined by (3.11)) were estimated by averaging 100 realizations of these random
variables. The true covariance is the autocorrelation of a discrete disc of radius r,
with r = 5 for the left diagram, and r = 10 for the right diagram. One can see that
the three estimators have approximately equal precision. It is surprising to see that
the (natural) non-periodic normalized estimator 7, does not perform better.

the mean by @ and the covariance by ¢, 7, and /. The estimation error of the
estimator ¢ is measured by

e(e)? = Z (c(v) — C(v))?. (3.11)

veK

In Fig. 3.4, we plotted an estimation of the expectation of £(¢,,) and &(v,) and (7))
for several values of N (the observation size). This diagram shows that, surpris-
ingly, the non-periodic estimator 7, (which seemed a priori more natural) does not
perform better than the periodic one.

Let us remark that the choice of the ¢? norm over K for the comparison of
the estimators is quite arbitrary. In the statistical community (see for exam-
ple [Bickel & Levina 2008]), several articles use the £2 — 2 operator norm to study
the convergence of an empirical covariance matrix estimate to the true covariance
matrix of the model. In our context, the computation of this operator norm is
practically difficult because we deal with random models defined over Z2. However,
as in [Xiao & Wu 2012], one could consider the operator norm of the difference be-
tween the covariance matrix estimate and the true covariance matrix of the model
restricted on the observation domain. But in our case, this operator norm would be
difficult to compute (because the covariance matrices cannot be stored, and because
the covariance matrix of a restriction is not circulant but only Toeplitz).

Since the non-periodic and periodic estimators perform as well, we may use
either one, depending on the applicative context. For synthesis purpose, we will
prefer covariance estimators that are true covariance functions associated to a ran-
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dom model, because we want to sample the estimated model. Let us mention that
¢y is a periodic autocorrelation and thus has a very simple DFT which is a non-
negative function; in other words, ¢, is a true covariance function of a periodic
Gaussian random model, which can directly serve for synthesis. In contrast, the
Fourier transform of ~, is not non-negative so that -, is not a true covariance
function. Therefore, one additionnal step would be needed in order to estimate a
Gaussian model from ~,. Actually, the fact that -, is not a true covariance function
only comes from the normalization. On the other hand, the variant

W= Y ) - a) b v) —a). (312)

xeQN(Q—v)
is the non-periodic autocorrelation of the normalized spot
1
Vx e Z2 tu(x) = (u(x) — u)lxeq -

vVMN

Therefore, 7/, has a non-negative Fourier transform and is the covariance function
of the Z? ADSN field t,, * W which will be used for synthesis in the next section.

3.2 Synthesis examples

In this section, we summarize the method of [Galerne et al. 2011b] for by-example
synthesis of a microtexture on an arbitrarily large domain, using the ADSN model.
We give several synthesis examples that allow us to exhibit the limitations of the
ADSN (and RPN) models. Understanding these limitations is an important prereq-
uisite in the design of richer texture models. Finally, we discuss the color handling
and in particular compare the different possibilities that were exposed in the liter-
ature to synthesize color images with an ADSN or RPN model.

3.2.1 Synthesis Algorithm

Let us assume that we observe an exemplar texture u : @ — R? on a discrete
rectangle ) c Z? of size M x N. For the sake of simplicity, we assume that 0 € €.
As discussed in Section 3.1, we estimate the mean value by the empirical mean

LS,

|Q‘ x€e

ﬂ:

and the covariance function by ¢, * . where
1

Vx e Z?  ty(x) = \/W(u(x) —U)1xeq - (3.13)

Then, if W is a Gaussian white noise with variance 1 on Z? the Gaussian model

U+t x W

can be used for synthesis of the texture u. In order to perform synthesis on a
domain 25, one only has to sample the restriction of this Gaussian random field



108 Chapter 3. Random Phase Texture Synthesis by Example

to €)s. For that, as explained in Subsection 2.2.6, one can consider a rectangle R
containing Qs — ), embed ¢, at any position in R, perform on R the circular
convolution of ¢, with a normalized Gaussian white noise (by using a DFT), add u,
and then crop the result to .

As explained in [Galerne et al. 2011b, Subsection V.C], high-frequency artifacts
can occur when using the normalized spot t, because of the border discontinuity
induced by zero-padding. As suggested in [Galerne et al. 2011b], such artifacts can
be avoided by multiplying ¢, by a smooth window which attenuates this border
discontinuity.

If, for any reason, one wishes to synthesize a texture that is periodic on a
domain €2 with dimensions larger than €2, then one only has to embed ¢, in €,
and perform the circular convolution of t,, with a white noise on )5 by using a DFT
(the cropping step is not needed anymore). This corresponds to using a circular
ADSN model instead of a non-circular ADSN model. For such a circular synthesis,
one can also use the RPN model, which amounts to replace the convolution with
a white noise by the multiplication of the DFT with a uniform random phase field
(see Subsection 2.1.3). In the case Qs = €, then, as discussed in Subsection 3.1.2,
one can take the periodic component [Moisan 2011] in order to make the circular
model more legitimate.

3.2.2 Examples and Limitations of Uniform Random Phase Syn-
thesis

Let us now give some synthesis examples. In Fig. 3.5, one can observe eight satis-
fying examples of ADSN and RPN synthesis. These examples can be referred to as
microtextures because their perception is governed by non-salient details which are
concentrated in the fine scales. As suggested by [Galerne et al. 2011b], one can de-
fine a class of microtextures as the textures that are characterized by their discrete
Fourier spectrum. Such microtextures are exactly the ones for which the Fourier
phase does not bear any relevant information, and thus can be changed without
affecting the textural aspect. This is equivalent to say that such a microtexture is
characterized by its autocorrelation. Since the synthesis with ADSN or RPN mod-
els (averagely) preserve the autocorrelation, this explains why such microtextures
can be well reproduced through ADSN or RPN synthesis. One can also notice in
Fig. 3.5 that in terms of visual perception of the synthesized textures, the RPN and
ADSN models are very similar. More experiments would show that it is always the
case except for an original texture with a very sparse spectrum (composed of one
or two pure sine waves).

Let us now present other synthesis examples which highlight the limitations of
uniform random phase synthesis. First, as can be seen in Fig. 3.6, the RPN and
ADSN models fail to reproduce textures with large scale geometrical structures.
Indeed, as we have seen in Section 2.1 for the circular ADSN and for the RPN, the
Fourier coefficients of these random fields are independent modulo the Hermitian
symmetry. Therefore, the RPN and ADSN models cannot capture the correlations
between the phase coefficients that are needed to produce sharp edges (for example).
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u ADSN(u) RPN(u)

Figure 3.5: ADSN and RPN synthesis of microtextures. For each line and
from left to right, one can observe an original texture image u (of size 128 x 128) and
the results of ADSN and RPN synthesis (of size 256 x 128). On these microtextures,
the synthesis results are satisfactory.
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ADSN(u)

Figure 3.6: ADSN and RPN synthesis of non-random phase textures.
These uniform random phase models fail to reproduce the large-scale geometrical
features which are mainly encoded in the phase information of the original texture.

Measuring the coherence of the phase coefficients in an original image is a difficult
question for which we will bring a partial answer in Chapter 4. Let us also remark
that the first example of Fig 3.6 is not really homogeneous: the real problem of this
texture is the wood knots. A basic requirement for RPN or ADSN synthesis is the
spatial homogeneity of the exemplar.

The uniform phase constraint also leads to surprising results on nearly periodic
textures. Since the Fourier representation is compatible with periodic structures,
one could expect the RPN or ADSN models to be very well suited to periodic
textures. But in general, the natural textures that are called periodic are generally
not pure sine waves because the periodic patterns are often produced with several
harmonic frequencies. Therefore, as can be seen in Fig. 3.7, interference patterns
can appear on the random phase synthesis of a quasi-periodic texture. Let us also
mention a surprising example found by B. Coulange which is shown in Fig. 3.8. This
example highlights the fact that the RPN synthesis is very sensitive to the frequency
sampling induced by the DFT: a pure sine wave that is not (M, N)-periodic does
not have a sparse DFT on a domain of size M x N, and thus the RPN synthesis
may fail on such an example.

Another contraint of the RPN or ADSN model is the symmetry of the color
distribution. Indeed, if W is a Gaussian white noise, the random field h = W has
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Figure 3.7 ADSN and RPN synthesis examples with interference arti-
facts. A “periodic” natural texture in general does not have a sparse spectrum,
but is composed of several coherent harmonic frequencies. The uniform random
phase synthesis cannot keep this coherence and thus may lead to undesirable inter-

o

RPN(u)

i i

Figure 3.8: A surprising RPN example. The image u has a DFT supported by
{0,&, —&y} and the image v was obtained by cropping 7 rows and 7 columns of u.
Therefore, the DFT of v is not sparse anymore, which explains why the RPN of v
does not look like a pure sine wave.
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v=2u—1u ADSN(u RPN(u

Figure 3.9: ADSN and RPN synthesis of exemplars having a non-
symmetrical color distribution. From each row, and from left to right, the
exemplar texture wu, its symmetric v with respect to the empirical mean, and the
results of ADSN and RPN synthesis. Notice that the assymetry of the exemplar
color distribution is not preserved after uniform random phase synthesis; this can
be explained by the fact that in these two examples, the textures u and v can be
(preattentively) discriminated.

same distribution than (—h) = W. Therefore, if we replace the original texture u by
u—(u—u)=2u—u,

then we get exactly the same result of ADSN synthesis. A similar remark can
be expressed for the RPN model. As can be seen in Fig. 3.9, this implies that
an exemplar with a color distribution that is not symmetrical with respect to the
empirical mean may not be well reproduced by uniform random phase synthesis.
More generally, if T' is an image transformation such that h* W and T'(h) * W have
the same distribution (for example the spatial symmetry h — fNL), and if one can
find an exemplar u such that T'(u) does not look like u, then it is likely that the
ADSN fails to synthesize u.

We would like to remark that the random phase hypothesis depends on the
observation scale of the texture. About that, let us comment and illustrate the
following sentence of [Galerne et al. 2011b]:

“Nonetheless, each tertured object has a critical distance at which it
becomes a micro-texture.”

Starting from a high-resolution image of a texture, one can simulate the observation
at different distances by cropping (with the same number of pixels) subsampled
versions of the texture with different sampling rates. Next, one can perform uniform
random phase synthesis of the different versions. On the example shown in Fig. 3.10,
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Figure 3.10: ADSN synthesis through scale. In the first row, one can see
three exemplar textures of size 200 x 150; they have been extracted from three
subsampled versions of an image of size 800 x 600 at different sampling rates. In
the second row, one can see the corresponding results of ADSN synthesis. Notice
that the ADSN synthesis is satisfactory for the right image, nearly satisfactory for
the middle image, and not satisfactory at all for the left image. This illustrates that
a structured texture may be considered as a random phase texture if it is observed
from sufficiently far away.

we see that the ADSN synthesis is more suited to the texture seen from far away
because the geometrical details are not salient anymore; this example thus confirms
the quoted sentence. However, it is worth questioning this assertion because its
validity relies on the (non-clear) definition of “textured object”. Actually, one could
define an interesting class of textures by considering the homogeneous images that
can be considered as random phase as soon as they are seen from sufficiently far
away. Such a definition can be precised by using a mathematical operator that
emulates the loss of resolution due to the observation distance (a blurring operator
for example). The synthesis of such textures will be addressed in Section 5.3.

3.2.3 Handling the Color Distribution

In Subsection 3.2.1, it appeared natural to consider the normalized spot

and to synthesize the texture v with F' = u+1t, *W. This way, the expectation of F’
is exactly the empirical mean of u, and the color covariance Cr(0) of F' is exactly
the empirical color covariance

1

u(0) = 7ul0) = 7 S (u(x) — @) (u(x) — )T .

xe)
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However, in the texture synthesis literature, several other propositions have been
made in order to perform the synthesis of a RGB image

UR
v=|ug|:Q—R3,

up

and we shall discuss them in this subsection.

First, let us remark that performing independent ADSN synthesis of the three
color channels in general leads to incorrect results. Indeed, if Wr, W, Wy are three
independent normalized Gaussian white noises, the random field

hr* Wg
ha = Wga
hB*WB

has a marginal color covariance equal to

Ihr* 0
0 hal* 0 |,
0 0 [hsl?

which may not lead to a good approximation of the color distribution of the exem-
plar. This explains why unnatural colors appear when doing independent synthesis
of the color channels.

Another method consists in finding a linear transformation of the RGB space
which “decorrelate” the channels in a certain sense. For example, the authors
of [Heeger & Bergen 1995] suggest to use a transformation matrix P € O3(R) asso-
ciated to an eigenvector basis of the empirical color covariance ¢, (0). After applying
this transformation to the exemplar texture, one can perform independent synthe-
sis on each channel, and apply the inverse PT of P to get the synthesized texture
in the original RGB space. Writing p1, p2, p3 the columns of P, this amounts to
synthesize u with the Gaussian random field

3
F=m+ ij(pjrtu) x W;
j=1

where W7, Wy, W3 are three independent normalized Gaussian white noises. One
can see that the color covariance C'r(0) of F is equal to the empirical color covariance
of u so that the marginal color distribution is preserved; thus this method in general
does not lead to dramatic color artifacts. Notice that in Fourier domain, for & # 0,
the covariance of F(&) e C3 is given by

3
> pip tul©)E(E)pp] -
j=1

The last method allows to decorrelate the color channels in a marginal sense,
but one can also apply other color transformation matrices that decorrelate the
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color channels in a stronger sense. For example, the authors of [Galerne et al. 2012]
suggested to find a matrix P which leads to approximate joint diagonalization of all
the matrices ¢, (h). One could also look for a matrix P which allows approximate
joint diagonalization of all the matrices é,(€). Both these methods based on joint
diagonalization seem relevant.

In definitive, since the ADSN synthesis is defined naturally on color images
by using the normalized spot t,, there is no reason to look for a transformation
matrix P that authorizes independent synthesis on each channel. In fact since
convolution operators are diagonal in the Fourier basis, given an estimator of the
texture covariance ¢, it is relevant to extract, for each frequency &, the principal
components of ¢(€) and to work independently on these principal components, or
even to keep only the first principal component as suggested by the decomposition
of Theorem 2.1.2. But, with the periodic estimator ¢, of the covariance, for € # 0,
the matrix

has only one non-zero principal component, so that proceeding this way only
amounts to perform the convolution ¢, * W as was initially proposed.

In conclusion, we confirm that synthesizing v by the random Gaussian field
m + t, *+ W is very natural, very simple, and so far, we have found no better
way to perform the synthesis in the Gaussian framework. Finally, as was done
in [Galerne et al. 2011b], let us emphasize one more time that for ADSN synthesis,
it is important to convolve the three channels of ¢, with the same white noise; and
for RPN synthesis, it is important to multiply the DFTs of the three channels of ¢,
by € where 1 is the same uniform random phase.

3.3 A Texton for Fast and Flexible Synthesis

We have seen in Subsection 2.1.2 and Subsection 2.2.2 that a Gaussian texture can
be approximated by a high-intensity DSN. The direct simulation of the DSN is sim-
ple and allows parallel local evaluation using standard computer graphics techniques
for the Poisson process simulation [Lagae et al. 2009]. Still, the DSN approximation
of a Gaussian texture is satisfactory only for sufficiently high intensity A, so that
the DSN simulation is generally not faster than the spectral simulation. In particu-
lar, using the canonical texton introduced in [Desolneux et al. 2012] as a kernel for
DSN synthesis generally results in a very poor approximation for small values of A.

In this section we show that, given an exemplar texture image u, it is possible to
compute an approximate compactly-supported texton of N (0, ¢,) (Gaussian model
estimated from u) having a prescribed small support and for which the realizations
of the associated DSN are visually similar to the ones of N'(0, ¢, ), even for a low in-
tensity A (see Fig. 3.11). This so-called synthesis-oriented texton (SOT), which can
be considered as an inverse texture synthesis solution [Wei et al. 2008] for the Gaus-
sian model, is computed using the classical error reduction algorithm, introduced
in [Fienup 1982] for phase retrieval, with a uniform random phase initialization, see
Subsection 3.3.1. As will be shown in Subsection 3.3.2, for an average number of 30
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Figure 3.11: Spot noise synthesis at low intensity. The synthesized texture on the
right was obtained by the convolution of a synthesis-oriented texton with a sparse Poisson
process. The exemplar texture is shown on the left.

impacts per pixels, the DSN associated with the SOT produces visually satisfying
results, and is thus more competitive than the spectral simulation algorithm. In
Subsection 3.3.3, we present a failure case of SOT computation which allows us to
discuss one drawback of the optimal transport distance between Gaussian models:
its definition does not take into account our more important sensitivity to high
frequencies. Finally, in Subsection 3.3.4, we propose a modified algorithm which
computes a SOT whose associated ADSN restitutes the high-frequency components
of the exemplar texture in a more faithful way.

A part of our work on the synthesis-oriented texton has been published in the
conference paper [Galerne et al. 2014].

Let us mention that for technical convenience, the SOT computation will be
explained in the framework of circular Gaussian models.

3.3.1 Alternating Projections

Let us assume that we observe an exemplar texture u : @ — R on a domain § of
size M x N. We will assume that the convolution operations are performed with
periodic boundary conditions. Let us introduce a small subset S < € (which can
be understood as a memory budget). For the sake of clarity, we will assume that
S is symmetrical with respect to zero: S = —S. The goal of this subsection is to
compute a kernel ¢ : © — R with support S; — S, whose associated DSN realizes
a visually satisfying synthesis of u even for a low intensity A.

In order to measure the distance between two circular random fields on ., we
use the optimal transport distance defined in Subsection 2.1.6. Thus we would like
that, in terms of this optimal transport distance, the DSN associated to t realizes a
good approximation of the Gaussian model N (0, ¢, ), which is the ADSN associated
to the normalized spot

Unfortunately, as we have said in that subsection, we do not know how to com-
pute the optimal transport distance between a finite intensity DSN and an ADSN.
Therefore, we will rather require that the circular ADSN associated to t realizes a
good approximation of AV (0,¢,) and that the circular DSN associated to ¢ quickly
converges to its Gaussian limit.
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The approximation of the Gaussian models with a prescribed small support is
already not a trivial problem. A perfect solution would be a kernel ¢t with support
S; S and such that ¢, = t*{. Taking the Fourier transform, this equality rewrites

so that this problem is an analog of the phase retrieval problem [Hayes 1982],
[Fienup 1982], [Levi & Stark 1984], [Bauschke et al. 2002]. It may lead to multi-
ple solutions (if ¢ is a solution, so are —t, ¢ or —¢, and in particular cases there may
be other solutions, see [Hayes 1982]). Here, because of the constraint on Sy, there is
no exact solution in general, but we can look for an approximate solution by trying
to solve

Argmin  dor(put, pit,) (3.14)
t:Q—R?
StCS

where Mt is the circular ADSN on () associated to the kernel ¢. Let us recall that

u u—u) where u is the empirical mean of u, and that the optimal transport

\/ IQ\ vl
distance in the last formula is given by

dor (e, pu,)* ~ Z IEE)* + I (€)* — 21 (&) *2u(E)] -

£eq)

Since it is not a convex function of ¢, the problem (3.14) is not a convex optimiza-
tion problem. However, one can tackle this problem by alternating between the
projection on the support constraint

qs(t) =t1s (3.15)

(which is actually the orthogonal projection on a convex set), and the projection
on the model constraint which has been shown in Subsection 2.1.6 to be given in
Fourier domain by

— tut

. (h) = 7 ‘1t b0+ Fulprisg - (3.16)

This alternating projection algorithm was introduced and called “error reduction
algorithm” by the author of [Fienup 1982].

Now, a difficult task is to incorporate in this optimization problem the constraint
that the DSN associated to t realizes a good approximation of the corresponding
ADSN even for low intensity A. Actually, we do not even dispose of a perceptually-
compliant criterion to assess the convergence speed of the DSN towards the ADSN.
In the first place, one can think that this convergence speed can be analyzed through
the marginal distributions. As was done in [Galerne 2010, Theorem 3.4], one can
show (using a Berry-Esseen theorem on Poisson random sums) that the Kolmogorov
distance between the marginal distributions of the DSN with intensity A and the
ADSN (i.e. the uniform distance between the cumulative distribution functions) is
less than

a(t)*,

VA



118 Chapter 3. Random Phase Texture Synthesis by Example

where I' is a universal constant and where

Itlls 1/3 —1/2
o(t) = Tt~ (Z t(X)I3> <Z t(X)2>
xeS xeS
can be thought of a sparsity measure of t. Even if the exact convergence speed is
not known, this indicates that the convergence tends to be faster if the kernel ¢
exploits all the available support S.

However, the analysis of the marginal distributions is clearly not sufficient be-
cause the human visual system is more sensitive to local gradients than marginal
distributions. More intuitively, an observer will not be able to distinguish between
realizations of the DSN and the ADSN if the geometrical details of the kernel ¢
(in particular, the limitation of its support) are not easily perceptible in the DSN
with low intensity. This is why we will seek for a kernel ¢ which has as less salient
features as possible; in other words, the kernel ¢ must have a minimally structured
phase information.

Therefore, one possible way to incorporate the requirement of fast Gaussian
convergence in the algorithm is to use a uniform random phase initialization. This
choice is less satisfactory than the incorporation of a term that would soundly reflect
the visual convergence speed of the DSN in the objective function (3.14). But we
will see that it already leads to interesting textons (and in particular more efficient
for synthesis than the ones that we obtained by minimizing  dor(ue, i, ) + Ao (t)
for a certain constant A). We can now summarize the computation of the synthesis-
oriented texton associated to the texture wu.

Algorithm: SOT computation

- Initialization: < t,e™ where 1 is a uniform random phase

function, and t, = ——(u — ).

vl

- Repeat (n times) t < gs(py, (1)) .

Let us remark that the alternating projection algorithm with zero-phase initial-
ization was already proposed in [Cadzow et al. 1993] to compute a kernel associated
to a moving-average model. But the zero-phase initialization does not lead to ker-
nels that can be used for fast DSN synthesis.

The questions of the convergence and the influence of the random initialization
were raised by [Hayes 1982]. We will see that both these issues are negligible in
terms of the resulting Gaussian texture. Even if we can show that the value of the
objective function decreases along the iterations (which explains the name “error
reduction”), the convergence of the iterates is not ensured (recall that the objective
function is not convex). Indeed, we analyzed the behavior of the algorithm by
considering the (squared) relative model error

-~

R 1 = SO+ IHOI ~ @) e)] )

e £ (€)1
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Figure 3.12: Tterates of the alternating projections algorithm. Evolution of the
empirical mean (left) and standard deviation (right) of the RME computed after n iterations
of the alternating projection algorithm (estimated over 1000 samples). Observe that the
mean RME quickly decreases, which shows that most of the Gaussian model approximation
is done in the first iterations. Notice also that the standard deviation does not tend to zero;
this reflects that the algorithm does not have a unique convergence point.

The numerator is (up to the constant @1') the optimal transport distance between
the circular ADSN ¢, * W and ¢ * W, and the denominator is (up to the same
constant) the marginal variance of ¢, = W.

A direct observation of the iterates shows that for each random initialization,
they seem to stabilize after a small number of iterations, as already mentioned in
[Hayes 1982]. To be more precise, we computed the empirical mean d, and vari-
ance 62 of the random variable D,, = RME(t,, T,,), where T}, is the SOT obtained
after n iterations of the algorithm with random initialization. As one can see in
Fig. 3.12, d, and &, do not change much for n > 50, reflecting again the quick
stabilization of the iterates.

We also investigated the idea of running the algorithm several times with dif-
ferent random initializations and selecting the output with the smallest RME, but
numerical simulations showed that the improvement in RME (for a fixed computa-
tion time) was not significant (below 1%).

The SOTs presented in the next subsection were obtained by applying the alter-
nating projections algorithm with only one random initialization and 100 iterations.

3.3.2 Results

In each example of DSN synthesis, we precise the number of impacts per pixel
Nimp = A|S|,

which represents the expected number of points of the Poisson process that will
be involved in the computation of one value of the spot noise. It is the relevant
constant for computational comparison of DSN synthesis with different kernels.
Let us first show in Fig. 3.13 some examples of SOTs associated to synthetic
Gaussian textures. We can see that the DSN synthesis with the SOT is generally
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satisfactory in terms of frequency content, even for a low number of impacts per
pixel. Using the SOT, the direct summation method thus becomes a competitive
way of synthesizing Gaussian textures, with an expected number of operations per
pixel below 100.

A comparative diagram is shown in Fig. 3.14. They first confirm that the dis-
tinction between the DSN and the ADSN associated to the SOT is difficult, even for
a very low mean number of impacts per pixel (thirty). Next, it indicates that the
synthesis results are as good as Gabor noise by example [Galerne et al. 2012] which
requires at least ten times more operations per pixel. Remember though that the
Gabor noise was designed to perform procedural synthesis, which justifies its heav-
ier computational cost. Another remark that can be drawn from Fig. 3.14 is that
the SOT outperforms the canonical/luminance texton of [Desolneux et al. 2012] in
terms of Gaussian model approximation. This confirms that the cropped canon-
ical/luminance texton does not realize the minimal model error for a prescribed
compact support, even if it solves a similar optimization problem with another con-
centration criterion [Desolneux et al. 2015]. In terms of DSN synthesis, one can see
that the luminance texton is clearly not appropriate: since it presents a strong spike
located at zero, the Gaussian convergence of the DSN is very slow; this defect can
be observed through the simplistic analysis of marginal distributions as we will see
later.

Let us comment the number of operations per pixel. Again, the expected number
of operations per pixel for DSN synthesis equals the expected number of impacts
per pixel, that is Ny, = A|S|. Considering the Poisson process to be previously
drawn, the mean complexity of the DSN synthesis on a domain €2 is thus A|S||€2|. As
we have just seen, the SOT allows to obtain satisfying DSN synthesis results with
a mean number of impacts per pixel equal to 30; with this parameter, the mean
complexity of DSN synthesis on € is thus 30|Q2|. In comparison, the complexity
of the circular ADSN synthesis using the spectral method is the same than the
complexity of the FFT on 2, which is at most 4|Q|log(|Q2|) operations (and even
2|2 log(|€2|) when || is a power of two). Therefore, the DSN synthesis with the
SOT will be more efficient for very big images with a domain || satisfying

log,(|9) > 30/4 = 7.5

or even > 30/2 = 15 when |Q| is a power of two. But the real interest of the
DSN synthesis over spectral simulation is its flexibility. Indeed, using a coherent
evaluation procedure for the Poisson point process (explained in [Lagae et al. 2009]
or in Fig. 2.6), the DSN synthesis can be parallelized; in contrast, the parallelization
of the spectral simulation scheme is more difficult and certainly not adapted to the
requirements of GPU programming (in particular, very low memory storage).

As can be observed in Fig 3.13, one drawback of the raw SOT is that it does not
preserve the marginal color distribution of the exemplar. A similar observation was
drawn in [Desolneux et al. 2015] for the cropped luminance texton and we suggest
to apply the same color correction that is explained in the rest of the paragraph.
Let us only analyze what happens in the Gaussian case where the distribution is
characterized by first and second order moments. There is no problem on the mean
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Figure 3.13: Examples of DSN Synthesis with the SOT. One can see on the
left some synthetic Gaussian textures (of size 384 x 256), and on the right the results
of DSN synthesis (with 50 impacts per pixel) using the SOTs shown in the middle.
The SOT has square support of size 31 x 31 in the two first examples and 51 x 51 in
the two last examples. Notice that the texture grain is well preserved which means
that the SOT realizes a good approximation of the Gaussian model. However, one
can notice also a slight loss in color diversity.
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SOT ¢t
RME = 0.48
DSN(t), N(¢)

Cropped Cropped

Luminance RPN trpn

Texton tf,, RME = 0.68 :

RME = 0.51 AR [

DSN(tym), 30 imp./px DSN(trpn), 30 imp./px

Figure 3.14: DSN synthesis of a natural color texture, comparison. First row:
original texture (u), ADSN synthesis with the kernel ¢,,, and result of Gabor noise synthe-
sis [Galerne et al. 2012]. Second row: DSN and ADSN synthesis results obtained with a
31 x 31 SOT t. The DSN intensities were set in order to match a given average number
of impacts per pixel. Bottom row: DSN obtained with the cropped luminance texton t{
[Desolneux et al. 2012], DSN obtained with a texton t,,, that was cropped from a RPN
realization of u. Each DSN model is displayed with its corresponding kernel. Contrary to
other DSN models, the proposed SOT achieves a good visual proximity with the reference
model ADSN(¢,,) as the number of impacts per pixel attains 30. It also defines the most
accurate asymptotic model (smallest RME).
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value because our synthesis scheme imposes the expectation to be exactly equal to
the empirical mean of the exemplar texture. But for the second-order moments,
after the alternating projections algorithm, nothing ensures that

Craw (0) =t t7(0) = > t(x)t(x)"

x€eS

is equal to the marginal color covariance ¢,(0) of the exemplar texture.

However, one can apply a color transformation to the SOT in order to correct the
marginal color distribution of the resulting DSN. Indeed, the matrices A = ¢+t (0)
and B = ¢,(0) are symmetrical and non-negative and thus admits a unique non-
negative square root (which can be easily computed with an eigenvector basis);
then, as soon as A is invertible (which is always the case in practice), one can see
that for any P € O3(R), the kernel with color correction

tp = BY2PA™V? (3.18)
satisfies
tp % th(0) = BY2PA™Y 2 54T (0) (A~ YT PT(BY%)T = B = ¢,(0)

so that the DSN associated to tp has the correct marginal color distribu-
tion. The choice of P will not be thoroughly questioned here (as opposed
to [Desolneux et al. 2015]); the SOTs with color correction that we present in the
following experiments are obtained with P = Id; we thus use the notation t.. = t14.
Of course, correcting the marginal color covariance may increase the relative model
error measured by the optimal transport distance: we may have

RME(ty, tee) > RME(t, 1) .

In the experiments presented in the following figures, we always applied the color
correction of (3.18) with P = I3. As one can see in Fig. 3.15, the color correction in
general increases the perceived quality of DSN synthesis, even if it slightly increases
the relative model error. This indicates that the optimal transport distance (on
which relies the model error) may not reflect faithfully our texture perception; this
fact will be confirmed by other practical observations in Subsection 3.3.3.

Let us also mention that in a fews cases, we observed that this color correction
does not suffice to restitute the perceived colors of the original texture. On the
counter-example of Fig. 3.16, we see that the color correction leads to a synthesized
texture with perceived colors that are actually farer from the colors of the original
texture. The fact that such a counter-example can be found in the very specific
Gaussian case may be quite surprising at first sight; but it is easily explained by the
fact that our color perception does not depend only on the first order distribution
of the pixel values, but also on the spatial mixing of the pixel colors. As was kindly
suggested by J. Delon, a very elegant and simple way to confirm that is to shuffle
the pixel values in the images that we have to compare: the results can also be
observed in Fig. 3.16. Notice that for such a counter-example, the RME is greatly
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increased by the color correction. Notice also that this problem does not appear
anymore with a larger support for the SOT. This means that, with a too small
support, the SOT computation leads to an error (in terms of texture perception)
that cannot be rectified through the adjustment of the color distribution.

One can find in Fig. 3.17 several examples of DSN synthesis results with the
color corrected SOT associated to natural microtextures. These results confirm that
many microtextures can be synthesized using a DSN associated to a small kernel
(31 x 31) and with a very low number of impacts per pixel (30).

Let us now discuss the random phase initialization of the alternating projection
algorithm. We have said that this initialization is important to have a fast con-
vergence of the DSN associated to the SOT towards its Gaussian limit. Here we
will compare to the case where the alternating projections algorithm is initialized
with a zero-phase image. A detailed comparison would require a precise percep-
tual study of the visual convergence; here we only analyze the visual convergence
through the visual evaluation of the results and an analysis of the marginal distri-
butions. In Fig. 3.18, one can compare the results obtained with the zero-phase
and the random phase initialization. Let us denote the corresponding textons ?.,
and t,,. As we have said, the Gaussian convergence of the DSN is much slower
with ¢, than with ¢,,. Indeed, one can see in the upper part of Fig. 3.18 that
the convergence of the marginal distributions (in terms of the Kolmogorov-Smirnov
distance, that is, the L* distance between the cumulative distribution functions)
is much slower with ¢.,: it only needs around 20 impacts per pixel with ¢,, for the
error on marginal distributions to be of order 0.01, whereas for a similar intensity,
the error is ten times higher with ¢,,. This is confirmed by the visual inspection
of the DSN with low intensity: at 30 impacts per pixel, the central spike of t., is
still clearly visible in the DSN; this “white dots” effect also explains the error made
on marginal distributions. Notice that, in terms of the model error, the zero-phase
initialization leads to a slightly better value (which is not reflected by a percep-
tible difference in the corresponding ADSN). This confirms that the quality of a
synthesis-oriented texton must not be measured only through the model error.

Let us end this subsection by discussing the texton support. In the previous
experiments, we have only shown SOTs computed with a square support. We used
this simple choice because it complies well with the DSN computation based on
the parallel sampling of the Poisson point process illustrated in Fig. 2.6. However,
any shape is a priori possible; in particular, in terms of image, it would be more
natural to use a circular support because it does not favor any direction. In the
next subsection, we will see that horizontal and vertical artifacts may be sometimes
encountered on the synthesis results with a square SOT.

Once the shape has been chosen, one can also question the support size. The
size of the support constrains the dependency range in the corresponding ADSN
because the covariance of the ADSN associated to the SOT is supported by S — S.
Therefore, in a sense, replacing a Gaussian texture by the ADSN associated to the
SOT amounts to approximate the covariance function by a compactly-supported
one. Another way to perform such a compact approximation of the covariance
function is to replace the Gaussian texture by the ADSN associated to the cropped
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t (31 x 31)
RME = 0.51

tee (31 x 31)
RME = 0.54

t (51 x 51)
RME = 0.51

tee (51 % 51)
RME = 0.54

Figure 3.15: Color correction of the SOT. The upper and lower part of the
figure is composed as follows. Left : Original texture. Middle : SOT ¢, and SOT ¢,
with color correction. Right : DSN synthesis results with ¢ (top) and ¢.. (bottom)
with 50 impacts per pixel. Even if the RME increases after color correction, the
texture grain is still well preserved, with a more faithful color distribution.
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t (51 x 51) tee (51 x 51)
RME = 0.48 RME = 0.75

ADSN(t) ADSN(t..)

t' (81 x 81) t. (81 x 81)
RME = 0.36 RME = 0.38

ADSN(t') ADSN(t.,)

Figure 3.16: Counter-example of color correction. In the second row, one can
see an original texture u and two ADSN synthesis results ADSN(¢) and ADSN(¢..)
obtained with the SOT ¢ and the color corrected SOT ¢.. shown in the first row. The
images of the third row are shuffled versions of the ones of the second row (meaning
that we applied on these three image the same random permutation of the pixels).
In the fourth row, we also show a larger-support SOT with the color corrected
version, and in the last row, we show the corresponding ADSN realizations. On this
example, the color correction (explained in Equation (3.18)) applied to the SOT
does not suffice to get back the perceived colors of the original texture. Even in the
Gaussian case, the equality of the marginal color distributions of v and ADSN(¢..)
is not sufficient to ensure that a human will perceive the same colors. One can also
observe that this problem of the color correction does not appear anymore with a
larger SOT support.
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U t DSN, 10 imp./px  DSN, 30 imp./px ADSN

Figure 3.17: Examples of DSN texture synthesis with the SOT. For each
row and from left to right : natural texture u, SOT with square support of size
31 x 31, results of DSN synthesis using ¢ with respectively 10 and 30 impacts per
pixel, and ADSN synthesis with ¢. The SOTs presented here were computed with
the color correction. As one can see, many natural microtextures can be efficiently
and faithfully reproduced with a DSN synthesis associated to a small SOT and with
a very low number of impacts per pixel.



128 Chapter 3. Random Phase Texture Synthesis by Example

0.16 T T T T T
® + Random Phase Initialization
0.141 O Zero Phase Initialization
Estimation Error
2 o
O
© o 012 1
==} 000
&3 0059,
2 0000,
= (Oade) OOOO O
o L 000 S
S 2 0.1 o 0000ooooooooooOoOoOooOoOoo
T
[0}
< £ 0.08F ]
=92
o=
o
o= 0.06F b
ﬁ Q +
ES
» © 0.041 b
w o
n
+
0.021 +++ N b
+H +
S AR g NSO T TP

0 5 10 15 20 25 30 35 40 45 50
Number of impacts per pixel

trp (51 x 51) t.p (51 x 51)
RME = 0.467 RME = 0.456

u (384 x 256) ADSN(t,,) ADSN(L.,,)

DSN(t,p), 30 imp./px DSN(t.p), 30 imp./px

Figure 3.18: Importance of the random-phase initialization. This figure allows
to compare the random-phase and zero-phase initializations of the alternating projections
algorithm; the corresponding output textons are denoted by ¢,, and t.,. The upper part of
the figure contains a diagram plotting the Kolmogorov-Smirnov (KS) distance between the
marginal distribution of the DSN with intensity A and the ADSN associated to ¢, and ¢,
(the z-axis refers to the number of impacts per pixel, which is proportional to the intensity).
Precisely, since this KS distance is not explicitely computable, we estimated it by the KS
distance between the empirical cumulative disribution function of 10° marginal samples of
the DSN and its Gaussian limit. The minimal estimation error (that is, the KS distance
between a normal distribution and its empirical counterpart computed with 10° samples)
is plotted as a green line on the diagram. On the second part of the figure, one can see the
original texture v and DSN and ADSN synthesis results obtained with ¢,, and ¢,,. See the
text for additional comments.
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canonical /luminance texton. In Fig. 3.19 one can see the resulting ADSN obtained
with several sizes of SOTs; this figure also shows that in terms of the resulting
textures, the ADSN obtained with the SOT of support S or the canonical /luminance
texton cropped on S are comparable. In order to find the support size that is suited
to an exemplar texture, we suggest to compute the SOT with different sizes and
to chose the smallest one that allows to retrieve in the synthesis the perceptucal
characteristics of the original texture. It may be possible to set the support size
automatically using a threshold on the RME, or using a more precise analysis of
the dependency range in the exemplar texture (see [Costantini et al. 2004] for such
a measure of spatial dependency).

3.3.3 Comments on the optimal transport distance

In the last subsection, we have seen that after the color correction of the SOT, the
relative model error (measured by the optimal transport distance) increases while
the visual approximation of the original texture by the ADSN gets better. This
illustrates that the optimal transport distance does not suffice to measure precisely
the visual proximity between two texture models. In this subsection, we show that
this fact is supported by another argument: the equal contribution of all Fourier
frequencies in the raw optimal transport distance does not comply well with our
texture perception.

For that, let us comment the peculiar example of SOT presented in Fig. 3.20.
The exemplar texture is a synthetic “sky” texture with an isotropic aspect. We
computed the SOTs associated to this texture for rectangular and circular supports
of different sizes. In order to assess the quality of the Gaussian model approximation
realized by each SOT, one has to compare the corresponding ADSN synthesis result
with the initial texture.

Since the original texture of Fig. 3.20 has a slowly-decreasing spatial covariance,
the SOT must be relatively large in order to get a satisfying synthesis. However,
for a square SOT of size 61 x 61 (that is, for » = 30), the synthesis seems satis-
factory, but on closer inspection, one can observe horizontal and vertical artifacts.
These artifacts are due to the discontinuity of the SOT along the boundary of its
support. Indeed, since the original texture has more long-range variations than
small scale details (grain), the alternating projection algorithm fills the available
support with a cloudy pattern which has a priori no reason to go to zero at the
support boundary. These horizontal and vertical artifacts are in fact comparable to
the patterns encountered in the ADSN associated to the indicator function of the
square support, which confirms the previous analysis. Notice that these artifacts
are less visible when r is further increased.

An interesting comment can be drawn from the observation of the corresponding
relative model errors. Notice that in Fig. 3.20, the RME obtained with ¢ is less
than the one obtained with ¢5,. This can be easily explained in terms of optimization
problem: these two textons minimize the same objective function, but t5j is less
constrained than ¢35, because the circular support of radius r is included in the
square support of size (2r + 1) x (2r + 1). But this becomes counter-intuitive
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Figure 3.19: Influence of the support size. A Gaussian texture u of size 768 x 512 is
displayed in the first row. The following rows correspond to the values r = 10, 30, 50, 70
and are organized as follows: the left column contains the SOT ¢, computed with a circular
support of radius 7, the right column contains the luminance texton #!"™ cropped with the
same support, and the two middle columns contain samples of the ADSN models associated
to the adjacent textons. As expected, increasing r allows larger range dependencies in the
resulting ADSN field. Notice that the resulting textures associated to the SOT or the
cropped luminance texton with same support are comparable.
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Figure 3.20: Possible high-frequency artifacts with the raw SOT. A Gaussian
texture u of size 512 x 512 is displayed in the first row. The following rows correspond
respectively to the values r = 10, 30, 50 and are organized as follows: the left column
contains the SOT ¢; computed with a circular support of radius r, the right column contains
the SOT t1J computed with a square support of size (2r + 1) x (2r + 1), and the two middle
columns contain samples of the ADSN models associated to the adjacent textons. Notice
that in the case of the square SOT t5), horizontal and vertical artifacts appear in the
resulting ADSN which make the synthesis not satisfactory. In contrast, these artifacts do
not appear in the circular SOT with same radius, even if the corresponding RME is lower.
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when observing the corresponding ADSN realizations: the ADSN associated to t3,
indeed realizes a better approximation of the original texture (because the ADSN
associated to t5), suffers from the uppermentioned horizontal and vertical artifacts).

This example shows that the model error (and thus the optimal transport dis-
tance on which it is based) does not suffice to faithfully measure the visual proximity
between two Gaussian textures. A major drawback of this optimal transport dis-
tance is that its computation does not take into account the fact that the human
textural perception is more sensitive to high frequencies than low frequencies. In-
deed, in the expression (2.11) of the optimal transport distance between circular
ADSN fields, all the frequencies appear with the same weight. This explains why
the optimal transport distance is not able to discriminate the directional artifacts
that can be encountered with the SOT of square support. In Subsection 3.3.4, we
propose a variant of the optimal transport distance that includes frequency weights.

To confirm that the optimal transport distance is not a perfect reflection of the
perceptual similarity between two textures, we suggest to study the variation of
the relative model error between a fixed Gaussian texture u, and a realization of
the ADSN associated to u. More precisely, let us fix a gray-level Gaussian texture
u : ) —> R of size M x N and recall the notation ¢, = \/ﬁ
the circular Gaussian random field U = u+t, W associated to u (W is a normalized

(u—1u). Let us consider

. . . . . . 1 _ .
Gaussian white noise on §2) and its normalized version T = W(U — u) (notice

that U = @ because t, has zero mean). Then, we propose to study the random
variable
- ~ 2
> (&) - 1))
3
>t
3

RME(T),t,)? = (3.19)

It can be rewritten

- GRS
g;) £, (€)]? (1 - \/W>
RG]k '

£#0

RME(T, t,)? =

)]

Since the % follow the exponential distribution of parameter 1, one has
E(RME(T, tu)2> — 2 Jn~023.

Therefore, in some sense, this value corresponds to the best we can hope when
approximating the Gaussian model associated to t,. It has to be compared with
the RME? values obtained when approximating a Gaussian texture by the ADSN
associated to the SOT. For example, in Fig. 3.20, the approximation of the sky
texture by the ADSN associated to t5 leads to a RME? value of ~ 0.3; and in
Fig. 3.16 the approximation leads to a RME? value of ~ 0.26. These values are just
slightly over 2 — /7 even if the approximated textures are not perfectly similar to
the original in both these cases.
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In conclusion, the relative model error (3.17) (which is based on the optimal
transport distance (2.11)) does not suffice to precisely assess the perceptual simi-
larity between two texture samples.

3.3.4 Optimal transport distance with frequency weights

In this subsection, we propose to incorporate in the optimal transport distance given
by (2.11) a frequency weight that will give more importance to high frequencies, thus
reflecting the human textural sensitivity in a more faithful manner. We validate
this approach by showing that, at the cost of extra parameters, this variant leads to
a more precise SOT, and in particular avoids the horizontal and vertical synthesis
artifacts presented in Subsection 3.3.3.

Definition 3.3.1. Let hg,h; : © — R? be two kernel functions defined on a
circular domain © and let pg, u1 be the distributions of the circular ADSN hg = W
and h; * W where W is a Gaussian white noise on © of variance 1. Let also
w: ©® — ]0,+0[ be a weighting function defined in the frequency domain. The
weighted L2-optimal transport distance between g and p is defined by

(10, 1)? ,@,z &) (Iho(&)1? + 1h1(&) 1> — 21ho(€)*ha(€)]) . (3.20)
£e©

The corresponding weighted relative model error is then defined by

—_—" )2_z£w<s>2(uﬁo<s>u2+ufn(z)u?—|Bo<s>*fu<e>\) o
e e w(€)2[ho(€)]? B

If k is the inverse DFT of w, computing d§; amounts to compute the usual
optimal transport distance between the ADSN associated to k * hg and k * hy; thus
the weighted optimal transport distance can be understood as an optimal transport

distance on a filtered version of the random fields.

Of course, one has to make a choice for the function w that is compliant with
the human texture perception. We suggest to take a weight that is proportional to
the power of the normalized frequency

w(&1,&) = (2(]5\})2 + 2(?\27)2)04/2 |

where «, 8 > 0. The parameter 5 has no importance for now, and it is only
useful to normalize the values of w between 0 and 1. The parameter a must be
set in order to reflect the human sensitivity to high-frequency; thus, a very precise
setting of o would require a thorough perceptual study of our frequency-dependent
perception of textures. Here, to keep things simple, we suggest to take a = 0.9
in order to counterbalance the power-law encountered in the spectrum of natural
images [Ruderman 1994].

Now that this frequency-weighted optimal transport distance is defined, the
question is: “how can it be embedded” in the SOT computation to make it more
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precise. This question is not trivial because the integration of the frequency weight
does not change the model projection. Indeed, whatever be the weighting func-
tion w, one solution of

Argmin  dir(pe, pe,) (3:22)
t:Q—> R4
(where i is the circular ADSN on 2 associated to the kernel t) is still given in
Fourier domain by
Dt (h) = Tlf*i;ﬁo + tulf*f=0 . (323)
it ‘
The integration of the frequency weights thus does not change the alternating pro-
jections algorithm.
One possibility to take account of the weights in the algorithm is to replace the
alternating projections by a gradient descent on the functional

F(1) = Fy(t) + Ba(t) = 5 () + 5 GO
x¢S

Notice that we do not include a Lagrange multiplier because a multiplicative con-
stant [ is already included in the function w. One can see that F' is differentiable
almost everywhere. For almost every ¢ (precisely, for each ¢ such that (3.22) admits
a unique solution), the gradient of the first part is given in Fourier domain by

VE(®) =w (i~ p.(0) (3.24)
The gradient of the second part is simply given by
VFy)(t) =t —tlg . (3.25)

Notice that for the ¢2-norm, V F is always 1-Lipschitz, and that V Fy is 1-Lipschitz
as soon as (3 is chosen to have ||w||4 < 1.

The gradient descent on F' leads to the computation of a texton depending on
the frequency weight w, and denoted by SOTY. The corresponding algorithm is
summarized below. In practice, we oberve the convergence of the algorithm as soon
as the gradient step v is less than 1. In constrast with the alternating projection
algorithm, the weighting function w appears in this new algorithm through the
gradient of F}.

Algorithm: SOTY computation

- Initialization: t <« t,e™ where 1 is a uniform random phase
function, and ¢, = \/ﬁ(u — ).

- Repeat (n times) t «— t — v(VFy(t) + VFy(t))
(where VI and VF; are given by (3.24) and (3.25)) .
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In Fig. 3.21, we give an example of frequency-weighted SOT for the sky texture
presented in Subsection 3.3.3. In this figure, one can see that the SOTY is more
precise than the raw SOT because the corresponding ADSN does not suffer from
the directional artifacts encountered in Fig. 3.20. However, the approximation of
the marginal distribution becomes worse with SOT", and thus it is very recom-
mended to apply to SOTY the color correction step explained in Subsection 3.3.2.
Notice in particular that, in contrast to the original RME, the frequency-weighted
RME penalizes the bad approximation of the high frequencies, even after the color
correction step. In Fig. 3.22 we show several other examples of frequency-weighted
SOT. These results confirm that the frequency-weighted SOT is in general better,
even for more complex microtextures.

An interesting perspective to pursue this work would be to integrate in the
objective function a distance between the color distribution of the DSN and the
estimated color distribution of the exemplar. The setting of Lagrange parameters
in this new optimization problem may be interesting because they would reflect the
balance realized by human texture perception between sensitivity to the frequency
content and sensitivity to the color distributions.

3.4 Conditional Simulation and Inpainting

In this section, we address the inpainting problem for images composed of one
homogeneous microtexture using conditional sampling of an ADSN model.

The inpainting problem consists in filling unknown areas of an image based
on the surrounding content. The general problem is very difficult and obviously
ill-posed. Still, it has been addressed in the literature by a wide variety of meth-
ods. Here, we will not give an exhaustive overview on this subject, but let us still
mention [Masnou & Morel 1998], [Bertalmio et al. 2000] (which both perform in-
painting by level line completion), [Criminisi et al. 2004] (whose algorithm is based
on a fastened version of the texture synthesis scheme of [Efros & Leung 1999]) and
[Mairal et al. 2008] (which exploits patch sparsity in a learned dictionary). How-
ever, as observed in [Criminisi et al. 2004] and [Newson 2014, §6.6.2], many existing
inpainting techniques are not able to restore the textural content in a faithful way
because the filled content is already regularized in some way.

The inpainting problem becomes less difficult if one has prior knowledge
on the type of content that has to be filled. For example, the authors
of [Bertalmio et al. 2003] propose to separate the structural content and the tex-
tural content and to inpaint them with two different techniques. One can further
simplify this problem by trying to inpaint an image that is composed only of a sin-
gle homogeneous texture. This is still a chalenging problem which can be elegantly
formulated in terms of conditional simulation. Indeed, since we are dealing with
a texture image, it is natural to assume that the image is modelled by a station-
ary random field U on €2 with probability distribution P. Then, if one wants to
inpaint U on the domain €, (of missing values) from the known values g, on
Q, = Q\Qyp, then one can draw Uq,, by sampling from the probability distribution
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Figure 3.21: SOT" computed with frequency weight w. An original texture
u is shown in the upper part of the figure. The rest is divided in four parts showing
a texton and a realization of the corresponding ADSN model together with the
values of RME and RMEY. We first show the results with ¢ (original SOT), ¥
(SOT computed with frequency weights) and below, we show the results with the
textons t.., tw. obtained after the color correction explained in Subsection 3.3.2. See
the text for further comments.
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u £ ADSN(t%)  tee  ADSN(fe)

Figure 3.22: Examples of weighted SOT. In each row from left to right: orig-
inal texture u, SOT obtained with frequency weights and color correction ¢, the

corresponding ADSN, SOT with color correction t.. and the corresponding ADSN.
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of U conditionally to Ujq, = u|q,. Therefore, the global simulation scheme is con-
sistent because, if Ujq, is already drawn from the marginal distribution, then the
inpainted image U will indeed follow the distribution P, and thus be a valid sample
of the texture model.

So we are led to the problem of finding interesting texture models for which
the conditional simulation can be performed in practice. Let us first notice that
the random fields that are a priori more adapted to the conditional simulation are
Markov random fields. Indeed, the distribution of a stationary Markov random
field is constrained by the “local specification”, which is the distribution of a pixel
conditionned by the neighbooring values. For such a Markov random field, the
distribution of U, conditionally to the rest only depends on the values Usq,, on
the pixels that are neighboors of pixels of 2. However, the conditional distribution

LU, | Usa,.) ;

may not be easy to explicit or sample. Still, one major contribution of the authors
of [Efros & Leung 1999] was to show that the conditional simulation for one pixel
could be performed with a patch-based sampling method (that is, sampling one
pixel in the set of the exemplar values that have a similar neighborhood). Using
this method, they obtained a textural inpainting result presented under the name
“constrained texture synthesis” [Efros & Leung 1999, Fig.4]. In their example, one
can notice that the inpainted region is quite small; indeed, the patch-based approx-
imation of the conditional simulation is less precise on a wider domain (because
the progressive filling algorithm will struggle to comply with the long-range con-
straints). To sum up, we mention that, even with a Markov random field model, it
is not clear that the conditional simulation of a whole region can be done exactly
and efficiently.

In this section, we present a conditional simulation scheme for Gaussian ran-
dom fields, which can be used to address inpainting of Gaussian textures. As
in [Lantuéjoul 2002], we present the Gaussian conditional simulation by relying on
kriging estimates of the unknown values (which are the conditional expectations of
the unknown values based on the unmasked pixels). This sampling algorithm is a
perfect conditional simulation scheme and we demonstrate here that it is able to fill
large holes in a Gaussian texture. When the set of conditioning points or the set of
masked pixels becomes too large, the computational cost becomes prohibitive. How-
ever, a further assumption on the Gaussian field (respectively a Markov property
or covariance compactness) allows to cope with this problem.

Let us also mention that the article [Jassim 2013] also proposes a texture inpaint-
ing technique based on kriging interpolation but there is no conditional sampling
in their algorithm because the inpainted values are exactly given by the kriging
estimates (which are deterministic functions of the unmasked values). This is why
their algorithm only works for very thin masked regions of the exemplar, in contrast
of ours that is able to inpaint very holes.
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3.4.1 Kiriging Estimates and Conditional Simulation

For the sake of simplicity, let us explain the conditional simulation for the case of
gray-level images as in [Lantuéjoul 2002].

Let U : Z2> — R be a stationary Gaussian random field with mean m. We
can assume that m = 0. We introduce a finite domain  — Z? and also the subset
C < Q of conditioning points (i.e. the pixels whose values are initially available).
We will denote by I' the restriction to 2 x € of the covariance:

Vx,y e Q, T'(z,y) =EU(x)U(y)) .

We will derive the distribution of U conditionally to U. Since U is globally
Gaussian, the conditional expectation

U*(x)=E(U(x) |U(c), ceC)

is the L2-orthogonal projection of U(x) on the subspace spanned by the random
variables U(c), ¢ € C. So, for each x € , there exists (A¢(X))cec € RC such that

U*(x) = > Ac(x)U(c) - (3.26)

ceC

This value U*(x) is sometimes called the kriging estimate of U(x), and the values
(Ac(x))cec are called the kriging coefficients.

Let us fix x € Q. The coefficients (Ac¢(X))cec can be computed by solving a linear
system. Indeed, by definition of the conditional expectation, we have

vdecC, E(U*x)U(d))=EUUQ)),

and thus
vdeC, > Ac(x)(c,d)=T(x,d). (3.27)
ceC

Notice that this is a linear system of |C| equations and with |C| unknown variables
whose matrix is exactly (I'(c,d))(c,d)ecxc- We have just shown that this system has
indeed a solution given by (Ac(X))cec. Let us remark that its matrix is symmetrical
and nonnegative (because I' is a covariance). In particular cases (for example, if
there exists c1, cg € C such that U(cy) = U(cz), which may be the case for perfectly
periodic patterns), this matrix may be noninvertible, and in that case, there may
be more than one solution.

The next proposition explains why the conditional simulation is very simple
with Gaussian random fields.

Proposition 3.4.1 ([Lantuéjoul 2002]). The random vectors U* and U — U* are
independent.

Proof. Since the random vector (U, U —U*) is Gaussian, it is enough to show that U
and U — U™ are uncorrelated, that is for every x,y € €,

E(U*(x)(U(y) = U*(y))) = 0.



140 Chapter 3. Random Phase Texture Synthesis by Example

But this derives from the definition of the conditional expectation: U*(x) belongs
to the subspace
Span({ U(c) , ceC })

and U(y) — U*(y) is orthogonal to that same subspace. O

Let us emphasize that U* only depends on the values U(c),c € C, and that
U — U* vanishes on every point of C. Therefore, if V' follows the same distribution
as U and is independent of U, then

Us+VvV-v*

follows the same distribution as U and takes the same values than U on C. Another
way to put this is to say that if we have prescribed values )¢ on C, then conditionally
to Ujc = uc , U follows the same distribution as

ut+ V-V

where
u*(x) = Z Ae(x)u(c) , (3.28)
ceC
and where V follows the same distribution as U. This gives a straightforward sim-
ulation scheme for U with conditioning points in C, once the coefficients (A¢(X))xec
have been computed.

Let us give a brief comment about the computation of the kriging coefficients.
Notice that the matrix M = (I'(c, d)) c,a)ecxc associated to the linear system (3.27)
does not depend on x. Therefore, it is interesting to invert the matrix M once and
for all. The inversion of the matrix M of size |C| x |C| can be done with standard
numerical techniques in O(|C|?). Then, in order to obtain the kriging coefficients
for all x in a subset w < €2, one must compute |w| products of M with a column
vector, so the complexity of this step is O(|w||C|?). For that reason, the number of
conditioning points must stay low for the conditional simulation to be feasible.

Notice also that when the covariance function of U has compact support K,
then we will have I'(x,d) = 0 as soon as x —d ¢ K. Therefore, for x ¢ K + C,
the right-hand side of the linear system (3.27) is zero and thus we can choose
Ac(x) = 0 for all ¢ € C. In other words, for such a point x, the kriging component
is zero and the pixel value can be drawn independently (which agrees with the
fact that U(x) and U(d) are independent). This case happens in particular when
the Gaussian model derives from a compactly-supported texton (like the synthesis-
oriented texton presented in Section 3.3). Therefore, if the Gaussian model has a
covariance function with compact support K, then the kriging coefficients (A¢(x))
must only be computed for the neighborhood K + C of the conditioning points C.

3.4.2 Inpainting Results

In this subsection, we provide some experimental results which confirm that Gaus-
sian conditional sampling can be used to perform microtexture inpainting.
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As a proof of concept, we first suggest to inpaint a Gaussian texture with a
previously learnt Gaussian model. Let us recall the notation €2, (resp. Q = Q\Qy,)
which refers to the masked pixels (resp. to the initially known pixels). For a
Gaussian model p on the domain 2 learnt on an exemplar texture, we propose to
draw a realization u of p on the domain €2, to lose the values of the pixels of Q,,,
and to complete the lost values by conditional simulation leading to a new image v
which coincides with v on €, (actually, the process is equivalent to resynthesize the
texture on €2,,,). In order to get a perfect global simulation scheme, we would have to
perform the simulation on €2, with all the conditional points in ;. But as we have
said, the method becomes computationnally infeasible when there are too many
conditioning points. Therefore, we suppose that €2, is a rectangular subdomain of
), and that the set C of conditioning points consists only of the bordering pixels
of ,, (in the experiments, the thickness of the border was set to 5 pixels). Notice
that if the random field has the Markov property, then the simulation is still perfect
even if we restrict the conditioning points to be on the border of €2,,.

The results of this validation experiment are shown in Fig. 3.23 and Fig. 3.24.
One can see on both these examples that the inpainted version is a texture that is
as plausible as the original one and that the border of the masked region is difficult
to distinguish after the inpainting process.

The previous experiments show that the conditional simulation can be used to
inpaint Gaussian textures. But we still have to explain how to learn a Gaussian
model on a masked texture. The estimation of the mean value is easily restricted to
the unmasked values. However, it is less trivial to adapt the covariance estimator.
One possible way to do it is to modify the covariance estimator (3.1) so that it only
takes account of the values of u on . At first, one can thus think of the estimator

1

V —
QU (e — V)|

> (ulx+v) —a)(u(x) —a),

XEQkﬁ(Qk—V)

but it has the same drawback than the renormalized nonperiodic estimator of the
covariance: its DFT is not nonnegative and thus it is not the true covariance func-
tion of a Gaussian model (see the discussion at the end of Subsection 3.1.3). Instead,
we propose to consider the very simple

Cury = ’Qi‘Q S (u(x+v) - @) (u(x) — @) (3.29)

x€Q N (Qp—Vv)

The normalizing factor is adjusted so that ¢, q, (0) is the natural estimator of the
marginal variance. This adaptation appears quite brutal at first, but we oberved
in practice that for simple masks €),,, it defines a Gaussian model that will not
be too far from the Gaussian model associated to the whole texture. It would be
interesting to seek some conditions on the domain 2 that would entail a statistical
validation in some sense.

We can now illustrate the Gaussian texture inpainting by using a covariance
estimation based only on wq,. The results are shown in Fig. 3.25 and Fig. 3.26.
On both these results we have inpainted a texture image of size 256 x 256 with
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Original Inpainted Copy-paste result
Masked version Kriging component

Figure 3.23: Conditional simulation. First column: original texture u (of size
128 x 128) and the masked version with the conditioning points colored in red (the
mask has size 41 x41). Second column: inpainted texture v with conditional simula-
tion (obtained in 0.2 second), and kriging component u*. Third column: inpainted
texture obtained with a copy-paste method inspired by [Wei & Levoy 2000] (with
a nearest-neighbor search in an ADSN realization of u). Notice that the algorithm
is able to restore the linear structures that must be continued through the masked
region. Actually, these structures are already visible in the kriging component;
the conditional sampling adds the texture grain in a way that respects the texture
covariance (which is not the case with the copy-paste method).
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Original Masked version
Inpainted Kriging component

Figure 3.24: Conditional simulation. First row: original texture u (of size 512 x
512) and the masked version with the conditioning points colored in red (the mask
has size 151 x 151). Second row: inpainted texture v (obtained in 18 seconds), and
kriging component u*.
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a square hole of size 201 x 201. Notice that in Fig. 3.25, the inpainting result is
satisfactory: one can see on the ADSN samples (associated to the usual covariance
estimator, and to the one obtained on the masked version of u) that the estimation
procedure produces a satisfying result, even if the mask is very large compared to
the whole domain. However, in Fig. 3.26, the estimation procedure fails because the
available pixels are located on a border of the domain that is too thin to represent
the relevant features of this texture.

In Fig. 3.23 and Fig. 3.25, we propose to compare the conditional simulation with
a copy-paste method inspired by [Efros & Leung 1999] and [Wei & Levoy 2000].
Precisely, in a raster scan order, we sample each unknown value with a nearest-
neighbor search in an ADSN realization of the non-masked original texture u. We
copy the value of the pixel that has the best patch similarity based on the available
neighboring pixels. One can see that the copy-paste result is not satisfactory for
the example of Fig. 3.23 since one can clearly distinguish the inpainted zone. For
the example of Fig. 3.25, the result is quite convincing but on closer inspection, one
can see that the texture grain is not well preserved (because it is noisier). Since the
copy-paste method is very dependent on the pixel scan order, it may not be able
to reconstruct linear strutures crossing the masked zone, unless it is applied in a
multi-pass manner (as suggested by [Wei & Levoy 2000, Fig.12]). Actually, these
copy-paste methods are certainly more adapted to texture extrapolation than to
texture inpainting.

Of course, the success of the patch-based methods for texture synthesis cannot
be denied, and in particular they are more relevant than random phase models
for a wide variety of structured textures. Still, the inpainting algorithm obtained
by Gaussian conditional simulation illustrates once again that the mathematical
flexibility of the Gaussian model has undeniable practical applications.

In conclusion, we have seen in this section that Gaussian conditional simulation
can be used to inpaint large holes in image regions which are composed of one
single microtexture. Since this algorithm inherently respects the textural content,
the inpainted area does not suffer from over-regularization. Beyond the limitations
of the stationary Gaussian model, the main limitation of this algorithm is that
the computation time grows quickly with the number of conditioning points. One
possible way to cope with this problem would be to restrict the texture model to
Gaussian Markov random fields, for which the kriging estimation can be done more
efficiently, as shown in [Hartman & Hossjer 2008].
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Copy-paste res
T .

&

ADSN of the masked version

ADSN of u
Figure 3.25: Textural Inpainting. First row: original texture u (of size 256 x 256)
and the masked version with the conditioning points colored in red (the mask has
size 201 x201). Second row: inpainted texture v (obtained in 55 seconds), and result
of the copy-paste method inspired by [Wei & Levoy 2000] (with a nearest-neighbor
search in an ADSN realization of u). Third row: ADSN samples obtained with the
usual covariance estimator (left), and with the covariance estimator (3.29) adapted
for the masked version of w (right). Notice that in this example, the Gaussian
model estimated on the masked version of u is still a convincing approximation of
the texture u even if only less than 40% of the pixels are available.
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Original Masked version
Inpainted Kriging component

ADSN of u ADSN of the masked version

Figure 3.26: Textural Inpainting. First row: original texture u (of size 512 x
512) and the masked version with the conditioning points colored in red (the mask
has size 151 x 151). Second row: inpainted texture v (obtained in 20 seconds),
and kriging component u*. Third row : ADSN samples with the usual covariance
estimator (left), and with the covariance estimator (3.29) adapted for the masked
version of u (right). In this example, the set of available pixels is to thin to allow
for a correct estimation of the Gaussian model, thus making the inpainting result
not satisfactory.
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4.1 Introduction

In the two previous chapters, we studied random fields with uniform phase and
saw how they could be used to perform by-example texture synthesis. Across some
examples of texture synthesis, we were able to highlight the limits of the Gaussian
model and in particular we saw that the uniform random phase models are not
adapted to the case of images with sharp edges or salient features. Let us recall
again that the authors of [Oppenheim & Lim 1981] already showed that the loss of
the phase information of an image entails the destruction of the image geometry.
This suggests that the precision of the image geometry (and thus, in some sense,
the image quality) could be assessed through the coherence of the Fourier phase
information.

Quality indices divide into three categories : full-reference, reduced-reference,
and no-reference, depending on whether a supposedly ideal version of the image is
assumed to be fully or partially known. As concerns the no-reference case (which is
the one we are interested in), the introduction of Chapter 4 of [Wang & Bovik 2006]
points out the difficulty to design generic image quality measures, concluding
(in 2006) that “the design of application-specific no-reference quality assessment
systems appears to be much more approachable than the general, assumption-free
no-reference image quality assessment problem.” Nevertheless, several interesting
no-reference quality measures have been proposed in the literature (see the recent
review [Chandler 2013]). Some of them try to assess the quality through the direct
analysis of edges [Marziliano et al. 2004] or through the gradient singular values
[Zhu & Milanfar 2010]. Others use a perceptual analysis of certain image features,
like in [Ferzli & Karam 2009]. The concept of local phase coherence, originally in-
troduced and developed in [Morrone & Burr 1988, Kovesi 2000, Kovesi 1999] for
edge detection purposes, was later linked to the perception of blur by Wang and
Simoncelli [Wang & Simoncelli 2004], which ultimately led to the definition of a no-
reference image quality index [Hassen et al. 2010]. Closer to our work lies the index
[Vu & Chandler 2009] which combines some spectral and spatial characteristics.

In 2008, a notion of global phase coherence was proposed [Blanchet et al. 2008],
and related to image sharpness. The idea was to use a kind of a contrario
framework! [Desolneux et al. 2008] to quantize how much the regularity of the
image (more precisely, its total variation) was affected by the destruction of the
phase information. This led to the definition of three phase coherence measures,

!The principle of a contrario methods is to detect structures as the cause of measurements that
could not be observed in random data.
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namely the Global Phase Coherence [Blanchet et al. 2008], the Sharpness Index
[Blanchet & Moisan 2012], and the index S [Leclaire & Moisan 2013a]. It has been
shown that these measures could be interpreted as quality indices because of the re-
lation existing between the image geometry and the phase information (for example,
degradation by blur or noise tends to reduce the coherence of the Fourier phase).
The present chapter gives a more detailed and merged discussion about these global
phase coherence indices. Starting from their construction in Section 4.2, we estab-
lish some of their mathematical properties in Section 4.3. Section 4.4 discusses
several practical aspects of these indices, including their validation as no-reference
quality measures, and finally Section 4.5 describes a way to use these indices to
address the blind deblurring problem.

The content of this chapter is to appear in the Journal of Mathematical Imaging
and Vision.

4.2 Three Phase Coherence Indices

This section presents the detailed construction of the phase coherence indices intro-
duced in [Blanchet et al. 2008, Blanchet & Moisan 2012, Leclaire & Moisan 2013a].

4.2.1 Main notations

o-zn((44)<[4.2)

be a rectangular discrete domain of size M x N. Let u : 2 — R be a discrete image,

Let

the real number u(x) referring to the gray level at pixel x. The Q-periodization of
w is the image u : Z2 — R defined by

V(k,1) € Z2, Y(x,y) € Q, u(z + kM, y + IN) = u(z,y) .

In the following, we will use a gradient scheme computed with periodic boundary

Vu(z,y) = (axu(x’?/)) - <“($+ Ly) —ﬂ(w,y)> ’

ayll(J},y) ﬂ(%,y—i— 1) —iL(Q:,y)

conditions,

and the corresponding (periodic) Total Variation (TV) of u

TV(u) = Y |0sa(x)| + [0,u(x)] ,

xeNQ

which measures in some sense how much the function @ oscillates. Precisely, the
TV (u) is the I'-norm of the gradient of v, and thus it assigns small values (relatively
to the [2-norm) to images whose gradient is sparse (in particular cartoon images).
Algorithms based on TV minimization have been used for a long time to address
image processing tasks, for example, denoising [Rudin et al. 1992, Chambolle 2004].

Let us recall that the DFT is defined by (2.1), that the function |a| will be called
modulus of u and that a phase function for u is any function ¢ : Z? — R such that
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(a) House (b) Lena phase of (a) with modulus of (b)

Figure 4.1: Phase and perceived geometric content. When an image is built
(in Fourier domain) with the phase of an image (a) and the modulus of an image (b),
the perceived geometry is that of (a). This famous experiment of Oppenheim and
Lim [Oppenheim & Lim 1981] shows that the geometry of an image is mostly en-
coded in the phase component.

for all £ € Z2, 4(€) = |0(€)|e*?©). If 4(€) # 0, the phase coefficient p(£) is uniquely
defined modulo 27 while any arbitrary value can be chosen if 4(&) = 0. The term
'random phase function" was defined in Definition 2.1.5.

We shall also need the (non-necessarily integer) Nyquist frequencies denoted by
n, = (—%,0), n, = 0,—%), Nyy = (=4, —%) . When integer, these are (with
zero) the only points & € 2 which are equal to —& modulo (M, N).

Finally, we will also use the Gaussian tail distribution defined by

R T Ay
VieR, ®(t) = oz e ds . (4.1)
mJt

4.2.2 Global Phase Coherence

As noticed in [Oppenheim & Lim 1981], most of the geometry of an image is en-
coded in its phase coefficients. In Fig. 4.1, we reproduce the experiment which
consists in exchanging the moduli of two images: as can be seen, the geometry of
the image whose phase was kept persists. From there, in an a contrario framework,
the authors of [Blanchet et al. 2008] define the global phase coherence (GPC) by
measuring how much the geometry is affected when the phase information is lost.

More precisely, given u and a random phase function ¢ (in the sense of Defini-
tion 2.1.5), one can define a random real-valued image u, by

VEEQ, wy(f) = |a(€)[e® .

or equivalently, using the reconstruction formula, by

1 ~ i(x i
vx e, uy(x) = 3+ > Ja(g)|etO i) (4.2)
£eq)
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Step function: TV = 2 After phase randomization: TV = 17.4

Figure 4.2: Phase randomization of a step function. Notice the large increase
of TV caused by phase randomization.

Up to the mean value, the random image u, is the random-phase noise (RPN)
associated with u [Van Wijk 1991, Galerne et al. 2011b], and using the notation of

.. _ . 1
Definition 2.1.9, we have uy, = R 1y Notice that TN

\/ﬁ (u—u) only differs from a constant image but this has no importance regarding
the following phase coherence indices because they only involve the derivatives of u,.

u and the normalized spot

Equation (4.2) can also be written with cosine functions only. For example, if M
and N are odd integers (to get rid of Nyquist frequencies), one has

VxeQ, wuy(x)=|a0)|(—1) + — Z 2|a(€)| cos(v(€) + (x,&)) ,
$€Q+

where g9 = 1y)=x, and Q is a subset of Q\{0} that contains one point from each
pair of symmetrical points of €2, so that Q@ = {0} U Q1 U (=) is a partition of €.
This formula shows that the phase randomization shifts the placement of the cosine
components of the signal so that some oscillations will appear in the regions where
the original image was flat. Thus, it becomes natural to expect the TV to increase
greatly after phase randomization. This effect is striking on the one-dimensional
example given in Fig. 4.2. The authors of [Blanchet et al. 2008] derive from this
observation the following

Definition 4.2.1 (Global Phase Coherence [Blanchet et al. 2008]).
The global phase coherence of an image u is the number

GPC(u) = —log;o P(TV(uy) < TV(u)) . (4.3)

In other words, the higher the GPC, the smaller the probability for TV to
decrease by phase randomization. Notice that this probability can be very small
(107109 and even less), and thus out of reach of most computer representations
of floating point numbers (arithmetic underflow). This is why the log;, function
is introduced in the definition (another reason is the nice interpretation of (minus)
the logarithm of a probability in Information Theory).

Experimentally, it has been observed that corrupting an image with blur or
noise tend to decrease its GPC. Intuitively, when an image u is blurred, its high-
frequency components are attenuated, so that the oscillations of the RPN realiza-
tions are smoother; therefore, the TV increase entailed by the phase randomization
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is expected to be less dramatic than in the sharp case. Now, in a noisy image, the
flat regions are corrupted (by the noise) with high frequency variations leading to
a TV value which is already high, so that the TV increase produced by the phase
randomization is smaller than in a clean image. For now, we have no theoretical
justification that goes beyond these heuristic remarks, but they will be confirmed
by a practical study in Subsection 4.4.4.

The major drawback of Definition 4.2.1 is that no closed-form formula is avail-
able to compute GPC(u) as an explicit function of u, so that one has to use a compu-
tationally heavy Monte-Carlo procedure to estimate it. Assuming the distribution
of TV (uy) to be approximately Gaussian, the authors of [Blanchet et al. 2008] sug-
gested to approximate GPC(u) by (“ga” stands for Gaussian approximation)

GPCyq(u) = —log;y @ <“°_JTOV(“)> : (4.4)
where g = E(TV(uy)), og = Var(TV(uy)), (4.5)

d o)== [ e 4.6
an ()—mt e s (4.6)

is the Gaussian tail function (“ga” stands for Gaussian approximation). The values
of g and og can be estimated through N Monte-Carlo samples

TV (uf)), TV (), TV ()

of the r.v. TV (uy), which leads to a numerical approximation GPCy(u) of GPC(u).
Unfortunately, due to the fact that each Monte Carlo sample requires the computa-
tion of a Fourier transform, the resulting algorithm is quite slow (even with a good
C implementation, it takes about one minute to obtain a merely decent estimate of
the GPC of a 512 x 512 image on a standard 3Ghz laptop). Let us mention that
the Gaussian approximation of TV (uy) is analyzed theoretically in Appendix 4.A
and Appendix 4.B. From a numerical point of view, the quality of the Gaussian
approximation can be evaluated by a Monte-Carlo approach. Using N samples of
Uy, one can compute Fy, the empirical estimate of the tail distribution of TV (uy),
and compare it to its Gaussian counterpart ®. We checked for N = 10,000 and
several different images that ||Fy — @[/, < 0.01 .

4.2.3 Sharpness Index

In a later work [Blanchet & Moisan 2012], a new measure of phase coherence was
introduced. It was noticed that when replacing the random model u,, by u * W,
that is, the convolution of u with a Gaussian white noise W, the expectation and
variance of TV (u = W) could be computed explicitly as a function of u. Thus, with
the same framework as above, one can define

SZ(u) = —log o P(TV(u W) < TV(u)) (4.7

and, assuming as in [Blanchet & Moisan 2012] that the r.v. TV (u W) is approxi-
mately Gaussian,
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Definition 4.2.2 (Sharpness Index [Blanchet & Moisan 2012]).
The Sharpness Index (SI) of an image w is

SI(u) = —log,, @ (“‘TIV(“)> (4.8)
where @ is defined by (4.6),
p=ETV(wusW)), o?=Var(TV(usW)), (4.9)

and W is a Gaussian white noise with standard deviation |Q2]='/2 (i.e. the r.v.
W (x),x € Q are independent with distribution A(0, |Q|71)).

There are several reasons to expect GPC and SI to behave in the same way.
First, the corresponding random image models (RPN for GPC, Gaussian for SI)
are known to be close, both mathematically (they only differ by a Rayleigh noise
on the Fourier modulus) and perceptually (see [Galerne et al. 2011b]). Second, it
has been noticed experimentally in [Blanchet & Moisan 2012] that the values of g
(Equation (4.5)) and p (Equation (4.9)) were very close in general (a relative error
below 1%). In Appendix 4.A, we confirm this experimental observation by a precise
asymptotic result (Theorem 4.A.2) based on Berry-Esseen theorem.

The fact that TV(u * W) is nearly Gaussian (which is used without formal
justification in [Blanchet & Moisan 2012]) can again be confirmed by a Monte-Carlo
estimation of the distribution of TV (u * W). We also give an asymptotic proof in
Appendix 4.B using a particular central limit theorem devoted to sums of non-
independent random variables controlled by a dependency graph.

The great interest of SI over GPC is that it can be computed with explicit
formulae instead of a costly Monte-Carlo simulation, as shown in

Theorem 4.2.1 ([Blanchet & Moisan 2012]). Let u :  — R be an image, and let
W : Q — R be a Gaussian white noise with mean 0 and standard deviation |Q]~1/2.

Then
2
p=ETV(uxW))= (ozx—i—ay)\/;\/\m , (4.10)
2 e (2)
2 _ _ 2. T
0 = Var(TV(u=W)) w%ai w( o2 )
+ 20,00y - W (ny(z)> + ai W <Fyy§z)> , (4.11)
g0y aZ
where
op = l0all3 = Y iz +1,y) —alz,y)l*
(z,y)eR
ay = lloyall3 = > Jale,y+1) —alz,y)?,
(z,y)eQ
Vie[-1,1], w(t)=tarcsin(t)+V1—t2—-1, (4.12)

)
Ei;) =3 Valy) - Vi(y +2)" .

yeQ
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Proof. A short proof was given in [Blanchet & Moisan 2012]. In order not to break
the discussion about the different definitions of phase coherence, we postpone the
complete proof to Appendix 4.C. O

Remark: What happens if we replace the TV (I'-norm of gradient) by the H'-
norm (I?-norm of gradient) in the definition of SI? With Parseval’s formula, one
can see that the H'-norm only depends on the Fourier modulus, so that it is not
affected by the phase randomization. Hence, the corresponding indices obtained
with the H!-norm are trivial. Considering another W!P-norm (that is, the /P-norm
of gradient) could be interesting, but it is likely that the easiest calculations are
obtained with TV (p = 1).

4.2.4 A Simplified Version of SI

In [Leclaire & Moisan 2013a], we suggested to approximate the denominator of the
fraction appearing in (4.8), which led us to a new index (written S) that is analyti-
cally close to SI but can be computed much faster. We will see empirically later in
Section 4.3 and Section 4.4 that S also behaves like ST with respect to basic image
transformations.

4.2.4.1 Definition of S
Lemme 4.2.1. The function w defined by (4.12) satisfies

1 1
vte [-1,1], 5t? <w(t) < §t2 + et (4.13)

where ¢ = T3 ~ 0.0708 is the optimal (that is, minimal) constant in (4.13).

Proof. One has for all t € [-1,1],

/ ) 2n)! 1 et
w'(t) = arcsin(t) = Z 22(11(73!)2 <2n n 1) Al

n=0

(notice that the series is absolutely convergent for |t| = 1 thanks to Stirling’s for-
mula). After term-by-term integration, one can write

wit) = 2 22(333!!)2 (2n1+ 1) (2n1—|— 2) BT

n=0

Noticing that ¢ — % (w(t) — 3t%) is an even function which is increasing on [0, 1],
the result follows by taking

c= Z 22(,12(”73!!)2 <2n1~|- 1> <2n1~|- 2>

n=1

w(t) — L2 1 7-3
=lim —2—2 = (1) - = = )
s B wld) =5 2
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The term (4.11) can thus be approximated by replacing w(t) by % This leads to

1 Tyyll3
T Ozx a;EQy ay

and to

Definition 4.2.3 (S index [Leclaire & Moisan 2013a]). The simplified sharpness
index associated to an image u is

"= TV(U)) 7

Oq

S(u) = —log;p @ <
where o, is given by (4.14), ® by (4.6), and p by (4.10).

4.2.4.2 Fast calculation

Since the last formula is now free of w, the index S is, compared to SI, simpler
to understand (it only depends on the autocorrelation gradient matrix through
its energy) and faster to compute. In Algorithm 1, we can notice that the most
costly step is the FFT computation (2.a): once @ is computed, the FFTs of the two
derivatives follow immediately (step 2.b), and the FFTs of the cross-correlation of
the derivatives (step 2.c) follow from, e.g.,

Dup = Optt# 0pt = |Dyg| = |00, (4.15)

with the convention that w(x) = w(—x). In the end, the computation of S(u)
requires only 1 FFT, whereas 3 more FFTs are required for SI(u). In both cases,
however, the complexity is the same, O(M N log M N) .

4.2.4.3 Theoretical comparison with SI

We here investigate the quality of the approximation of SI by S, showing that the
fraction

- TV
Volu) = 1= "TV(u)
Oq
is a good approximation of
uw—TV(u
(u) = (u)
o

<1——— ~0.064. (4.16)

<2c=7-3~0.142. (4.17)
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Algorithm 1 : Computation of S(u)

1. Compute the derivatives 0,1, 0,7 and deduce their I' and [? norms

TV(u), az=|[dillz, oy =[dyil2-

2. Compute (in Fourier domain) the components of the autocorrelation gra-
dient matrix I":
2.a Compute the FFT @ of u.
2.b Deduce the FFTs of the derivatives using
2 o (T |
— 2 (251 2
"= s (T (o)

- u(€)

N
2.c Compute the moduli of the FFTs of I'y,, I';, and I'y, using

)] = asi® (T2) jace) .

|Fm| = |8xa|2, |F$y‘ = |8x11\|8yu|, |Fyy‘ = |ayi‘|2‘
3. Compute p and o, with

2
p=(ay +aoy)y/—VMN and
T

o =
a 2 2
TMN o Oz Oy Q

,_ 1 (wm%+2www@+nuwa.
Yy

4. Finally compute

M—TVWU

S(u) = —log;o @ (

using, if required, the logerf function detailed in [Louchet & Moisan 2014,
Algorithm 1].
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With the expressions of o and o,, one can write

o %Zai [w <Fx;g2(cx)) B (Fz;éX)Y]

XeN

Using Lemma 4.2.1, we thus obtain
1
vie[-1,1], 0<w(t)— §t2 <ctt <et?
which implies

0<02—02

2 2 9
<27TCZ(J¢§.(F$;§:X)) +2%Oéy(n,;y(x)) mi.(%(,()) |

2
< Qg Oy (Xy

and the right-hand term equals 2co2, which proves (4.17). Now, since

v(u) _ <1 N o? O'Z>_1/2

2
Oq

we get (4.16) as expected. O

Notice that (4.16) provides a simple universal bound on the relative error

%{u‘;(u). Using the same technique, it could be possible to derive a sharper bound

depending on u.

To end this section, let us recall the definitions of SZ, SI, and S.
SZ(u) = —logg P(TV (u = W)
SI(u) = ~logjo @ (F— )

<
p—TV(u )
TV
S(u) = —logye ® (“ )

where ® is given by (4.6), u by (4.10), o by (4.11), and o, by (4.14).

TV(u))

4.3 Mathematical Properties

4.3.1 First properties

Proposition 4.3.1. The functions GPC, SZ, SI, S are non-negative and invariant
with respect to affine contrast changes, that is, for f € {GPC,SZ,SI, S}, one has

Va,beR,a #0, f(a-u+0b)=f(u).
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Proof. These properties directly result from the definitions. O

Let us now explore the Fourier representation of the random field u « W. Its
DFT is aW. Since W is a Gaussian white noise, W is a complex Gaussian white
noise. In particular, one can write

W (&) = [W(€)[e™®

where 1 is a random phase function in the sense of Definition 2.1.5. Denoting by
T the random image such that 7' = |W/|, one has

ux W =g,y xT

where p+1 is also a random phase. Therefore, in comparison to the phase random-
ization model, the operation u — w = W also includes a convolution by an image T'
whose Fourier transform is [IW|. Following [Desolneux et al. 2012], we can say that
T is the white noise texton. Proposition 1 of [Desolneux et al. 2012] shows that,
statistically, T looks like a Dirac mass in zero (up to a factor /7/2). Hence, one can
expect that this convolution will not drastically modify the statistical properties of
the model, and, subsequently, that SI(u) behaves like GPC(u). Incidentally, the
discussion above brings an interesting remark, formulated by the following

Proposition 4.3.2. GPC(u), SZ(u), SI(u), and S(u) only depend on the modulus
and the TV of u.

Proof. For GPC(u) and SZ(u), this is because the distributions of uy and u * W
only depend on |@]. For SI(u) and S(u) this is because the gradient autocorrelation
and energy only depend on |4]. O

Thus, all these indices measure the global phase coherence of an image u only
by its impact on the TV, in a way (a “scale”) that is determined by the modulus of
u. As we shall see later in Section 4.4, when an image is filtered by a symmetrical
kernel that has a positive Fourier Transform (e.g., a Gaussian kernel), its phase is
not changed but the indices above tend to decrease (with the exception of the Dirac
image that will be discussed in Subsection 4.4.5).

Notice also that since we are using a periodic scheme for TV, these indices take
the same values on u and on the periodic translation 7, ;) u defined by

V(l’, y) € 227 7_(a,b)u(xa y) = u(m -4,y — b) :

4.3.2 Regularity, Analytical Difficulties

The expression for SI(u) in Theorem 4.2.1 is not defined when wu is a constant image.
In that case, Equation (4.7) implies that SZ(u) is zero. It is not a big issue because
natural images are never really constant. Apart from these singular points, one can
state the following
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Figure 4.3: A one-dimensional profile of SI. This graph of the function
A — SI(Aug + (1 — X)ua) (where u; and ug refer to the images Lena and Barbara
respectively) shows that SI is neither convex nor concave.

Proposition 4.3.3. Let us introduce
D = {ueR?, ||0yill2 # 0 and ||d |2 # 0} and

D' = {ueR% VxeQ, d,u(x)# 0and d,u(x) # 0} .

The functions SI and S are defined and continuous on D and infinitely differentiable
on D'.

Proof. Let us consider an image v € D. Thanks to (4.15) we have ||[I'zz||2 # 0,
and similarly ||I'zyll2 # 0 and ||I'yyll2 # 0. Consequently, o and o, are non-zero,
and SI(u) and S(u) are well-defined. Moreover, the continuity of SI and S follows
from the one of a,, oy, I and TV. For the second part, we simply notice that the
functions oy, oy, o and o, are smooth on D, so the singular points of SI and S are
those of TV, that is, the images that do not belong to D’. ]

The fact that SI have some singular points would not be very embarrassing in
an optimization perspective. Indeed, several techniques are available to optimize
non-smooth quantities, in particular for convex functions [Ekeland & Témam 1999].
Unfortunately, the function SI is neither convex nor concave, as shown in Fig. 4.3.
For those reasons, applying classical optimization techniques (like gradient or sub-
gradient descent schemes) on SI may not be efficient. We will overcome this diffi-
culty in Section 4.5 by considering simple generic algorithms relying on stochastic
optimization.

4.3.3 Distribution of GPC on a random phase field

We continue with an explicit statement that generalizes a property mentioned (with-
out proof) in [Blanchet et al. 2008].
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Proposition 4.3.4. If U is a random image such that its phase is uniform (in the
sense of Definition 2.1.5) and independent of its modulus, then

vt>0, P(GPC(U)=t)<107". (4.18)

Furthermore, if conditionally on |U|, the r.v. TV(U) admits a probability density
function, then

vt >0, P(GPC(U)=t)=10"", (4.19)
that is, 10~SPCW) s uniform on [0, 1].

A consequence of (4.18) is that a texture obtained as the realization of a RPN
model or a stationary Gaussian model is expected to have a small GPC value (that
is, below 3 or 4 in general), which is in accordance with the fact that such texture
models do not carry any phase information. As concerns the hypothesis required
for the second part of Proposition 4.3.4, it may be satisfied as soon as U is not
constant almost surely, but we did not find the proof of such a statement yet.

Proposition 4.3.4 can be obtained from the following two Lemmas by consid-
ering conditional distributions given |[7 |. Lemma 4.3.5 is a general result about
cumulative distribution functions that is the key of the proof of Lemma 4.3.6.

Lemme 4.3.5. IfY is a r.v. and F(v) = P(Y <), then

Vse[0,1], P(F(Y)<s)<s,
and the equality holds for all s as soon as'Y admits a probability density function.
Proof. This is a reformulation of Lemma 1 of [Grosjean & Moisan 2009]. O]

Lemme 4.3.6. If u is an image and if 1 is a random phase function (in the sense
of Definition 2.1.5), then

vVt >0, P(GPC(uy)=>t) <107".
Furthermore, if the r.v. TV (uy) admits a probability density function, then
vt >0, P(GPC(uy)>t)=10"".

Proof. Let us denote by F, the cuamulative distribution function of the r.v. TV (uy),
defined by
VteR, Fu(t) =P(TV(uy) <t).

The definition of GPC implies that for any image u,
GPC(u) = —log;g Fu(TV(u)) .

Since the distribution of TV (u,) only depends on the modulus of u, we have F, =
Fy, for any phase function x. In particular, if 4 is a random phase function, one
can write

GPC(uy) = —logyg Fuw (TV(uy)) = —logyg Fu(TV(uy))
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so that for all £ > 0,
P(GPC(uy) > t) = P (Fu(TV(uy)) <1071) .

Because F, is the cumulative distribution function of TV (u,), Lemma 4.3.5 allows
us to conclude that this probability is smaller than 107t. The equality case is
obtained similarly from the equality case of Lemma 4.3.5. O

Now we provide a similar result for the approximation of GPC defined in (4.4).

Proposition 4.3.7. Let u be an image and ¥ a random phase function (in the
sense of Definition 2.1.5). Write po = E(TV(uy)), 08 = Var(TV(uy)), and denote
by F,, the tail distribution of the normalized r.v.
_ Mo — TV(’U,w)

0o

T

Y

and by G, the cumulative distribution function of the r.v. 10~GPCsaluw) — f
TV (uy) admits a probability density function then

sup |Gy(s) — s| < sup |F,(t) — ®(t)] (4.20)
s€[0,1] teR

Proposition 4.3.7 shows that, in terms of the L™ distance between the cumu-
lative distribution functions, the approximation of 10~GPCsa(uy) by the uniform
distribution on [0, 1] is at least as good as the Gaussian approximation of TV (uy).

Proof. One can remark that

10-CPCw) _ p (Mo — TV(uy) S Mo TV(U))

a0 a0

- F, (MO - TV(U)) .

g0

Moreover, we have by definition

10—GPCga(u) — (D </’L0 - TV(U)> .

00
Since ﬁ‘u, o and og depend on u only through its modulus, we also have

10-GPCluy) _ . <Mo — TV(W))

g0

and 107 GPCoalw) — (“0 - TV(W’)) .

00
In particular,
‘1O—GPC(“¢J) — 1O—GPCga(u¢)‘ <e,

where € = sup;eg | Fu(t) —®(t)|. Since we assumed that TV (uy,) admits a probability
density function, Lemma 4.3.6 ensures that the r.v. X = 10~6PC) follows the
uniform distribution on (0,1). So we have almost surely

‘X . 107GPCga(uw)‘ <e,
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Figure 4.4: Phase coherence indices of random phase fields. Each graph
represents the estimated distributions (using the same 10,000 samples) of the r.v.
GPC(U), SI(U) and S(U). The size of the random image U is, respectively, 32 x 32
for the left column, 128 x 128 for the middle column and 512 x 512 for the right
column. For the first line, U is the random phase noise (RPN) associated to the
image Lena. For the second line, U is the asymptotic discrete spot noise (ADSN)
u* W where u is again the image Lena. And for the third line, U is simply a white
Gaussian noise (WGN). First, we observe as predicted by Proposition 4.3.4 that
the distribution of GPC(U) has density t — log(10)10~*1;~(. Furthermore, we can
also observe that the distributions of SI(U) and S(U) appear similar but that they
do not coincide with the one of GPC(U). Last, we can see that on the RPN and
ADSN models, the distributions of SI and .S depend on the size of the random field,
whereas they apparently do not for the WGN model. However, the mean values of
SI(U) and S(U) remain close to 0.3.
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where X is uniform on (0, 1), which implies the inequality (4.20) for the cumulative
distribution functions. d

Notice that the result of Proposition 4.3.4 does not extend to SZ. Actually, one
can see empirically in Fig. 4.4 that it neither extends to SI or S. Let us try to
understand this by considering the distribution of

= TV(%))

where = E(TV(u « W)) and o = Var(TV(u = W)). Once more, one can assume
that TV(uy) is nearly Gaussian. Concerning the first moment, it has been ob-
served numerically in [Blanchet & Moisan 2012] that E(TV (uy)) ~ E(TV(u* W))
(this approximation is mathematically investigated in Appendix A). Concerning the
variance of TV (uy), however, numerical simulations indicate that it significantly dif-
fers (by a factor 7-8 in general [Blanchet & Moisan 2012]) from that of TV (u « W).
%\W has a distribution close to N(0, s?)
for some s that is not close to 1. Therefore, one cannot expect the distribution of
®(G) = 10751%) to be close to the uniform distribution on (0,1). However, one
can see in Fig. 4.4 that the sharpness values of random phase fields is in general
concentrated around 0.3.

A consequence is that the r.v. G =

To end this subsection, we mention (without proof) another result concerning
the RPN model.

Proposition 4.3.8. If u is an image and ¢ a discrete random phase field (in the
sense of Definition 2.1.5), then

P(SI(uy) = SI(u)) = P(SZ(uy) = ST(u))
= P(TV(uy) < TV(u)) = 107FCW) (4.21)

4.4 Phase Coherence Indices and No-Reference Quality
Assessment

This section is devoted to the practical study of the phase coherence indices. Since
the computation of S is the fastest of all, we led the experiments on it, but the
major part of what follows extends to GPC and SI.

4.4.1 Periodization

The index S deals more with the periodized image 4 than with u itself. Actually,
since a periodic translation of u has no effect on S(u), a discontinuity of u on the
boundary has the same effect as if it were positioned in the middle of the image.
So the index S is affected, and actually biased, by the discontinuities that gener-
ally occur between two opposite boundaries of an image. In [Blanchet et al. 2008],
the authors suggest to compute the phase coherence index not on wu, but on its
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periodic component [Moisan 2011]. This operation subtracts from the original im-
age a smooth component that cancels border-to-border discontinuities, see Subsec-
tion 3.1.2 for more details.

Let us also mention that it is possible to replace in Equation (4.2.1) the gradient,
the TV, and the autocorrelation by their non-periodic counterparts. It leads to
a “Local Sharpness Index” [Leclaire & Moisan 2013b] which is a little slower to
compute but naturally insensitive to border effects.

4.4.2 Quantization

Another classical operation that can bias the phase coherence is quantization. The
gray levels of 8-bits natural images are generally quantized on {0, 1,...,255}, and
this quantization process creates artificially flat regions.

The contribution of those regions to the TV is exactly zero, whereas it should be
a small (but non-zero) number. To avoid that undesirable effect of quantization, as
suggested in [Blanchet et al. 2008], before computing these indices, one can apply
a sub-pixel translation of vector (1/2,1/2), with the following definition for the
sub-pixel translation of vector («, ),

_— —9im (21 4 BE2
veeQ, magul€) = e 2R ) . (4.22)
More generally, one could consider the sub-pixel-translation-invariant sharpness in-
dex
inf § . 4.23
- (T(ap)) (4.23)

Since 7(45u and u have the same modulus, the vector («, 3) corresponding to the
minimum value of S(7(,,3)u) is actually the one that realizes the maximum value of
TV(T(m B)fu). In practice, one can observe that, for most natural images, this vector
is usually near (1/2,1/2), which justifies the use of 7 = 7(; /9 1/2) alone.

Another way to avoid the quantization bias on the sharpness indices would be
to consider

min ~ S(v), (4.24)
lv—ullo<q/2
where ¢ is the quantization step (¢ = 1 for integer-valued images). Unfortunately,
S may have a lot of local minima in the neighborhood {||v — ul|» < ¢/2} of u, and
it seems difficult to solve (4.24) by standard optimization techniques.

To end this subsection, we would like to mention that it makes sense to penalize
the quantization through the aliasing it produces in the image. The ideal solution
to that would be to replace in our construction the simple discrete TV by another
TV operator which is invariant by sub-pixel translation. Integrating such an oper-
ator (for example, the one suggested in [Moisan 2007]) in our model would be an
interesting development. Considering (4.23) gives an alternative solution which, if
u is a natural image, can be approximated by S(7(u)). Ultimately, the (1/2,1/2)-
sub-pixel translation is a precise and efficient solution to avoid the quantization
bias.
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In the experiments that are presented in the following sections, before
computing the indices SI and S, we extracted the periodic component
[Moisan 2011] of the image and applied to it a sub-pixel translation of
vector (1/2,1/2). Since the DFT of the periodic component of u can be computed
with one FFT (see [Moisan 2011]), including these two preprocessing steps yields
an overall computation cost of 5 FFTs for SI and 2 FFTs for S.

4.4.3 Variations of S on natural images

Before we explore the links between the S index and the perceived sharpness of an
image, we give in Fig. 4.5 some examples of the values obtained for typical natural
images. Several observations can be made from these examples, which are confirmed
on larger image sets:

e the S index attains higher values for images that present sharp edges and
smooth regions at the same time; conversely, out-of-focus images tend to
produce relatively low values of S

e spectrally concentrated textures (in particular, periodic patterns like stripes)
lead to surprisingly low values of .S, even if the texture patterns are made of
sharp edges;

e in general, S rapidly increases with the size of images, but since it is very
content-dependent, counterexamples (image parts whose S-value is greater
than the S-value of the whole image) can be found.

4.4.4 Influence of blur and noise

In [Blanchet et al. 2008] and [Blanchet & Moisan 2012], experiments show that
even if the values assigned to an image by GPC and SI can be quite different,
both indices decrease when an image is degraded with noise and/or blur. We here
check that the same property holds for the S index. Given an initial image u, we
computed S(k, * u + on) for several values of p (the level of blur) and o (the level
of noise), where the Gaussian blur kernel &, is defined in Fourier domain by
2 2

VEEQ, Fp(€) = exp (—2772/)2(]\312 + f@) : (4.25)
and n is a realization of a white Gaussian noise with unit variance. The obtained
values were then averaged over 10 noise realizations, yielding an estimate of the
expectation map

(o,p) — E (S(/@p * U+ Jn)) :

The resulting blur-noise diagrams are displayed in Fig. 4.6 for the images Barbara
and Lighthouse using a representation by level curves (isovalues of S). We can
observe that the S index, like GPC and SI, smoothly decreases with blur and
noise, These diagrams are also interesting because they show that S induces an
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(a) ST = 943, S = 955

W .

i ,
(d) SI =155, 8 =156 (e) SI=31.0, S =31.3 (f) SI =709, S = 722
B i

(g) SI=4.80, S = 4.85 (h) SI =333, S = 340

Figure 4.5: Examples of values of SI and S for some natural images. One
can observe that the values of SI and S are very close, and tend to be small for
out-of-focus images like (e) and in the case of a strong high-frequency spectral
component (g). Also, the order of magnitude of SI and S grows with the image
size (compare the values for the 512 x 512 images of the first row to those of the
256 x 256 images of the second row), but it may happen that a sub-part of an image
has a larger value of S (or SI) than the whole image, as in (c) and (h).
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Figure 4.6: Blur-noise diagrams. Each diagram displays the isolevel curves of
S obtained when a given image (Barbara on the left, Lighthouse on the right) is
degraded with a certain amount of blur (vertical coordinate) and noise (horizontal
coordinate). As expected, the largest value of S is obtained in each case at the
origin (no blur, no noise), and decreases smoothly (in a rather similar way) as the
levels of blur and noise increase.

(image-dependent) equivalence between blur and noise. In the case of Barbara for
example, we can see that a Gaussian blur of 1.5 pixel is, according to S, equivalent
to a Gaussian noise with standard deviation 12.6.

4.4.5 The Dirac paradox

Although it seems that for all natural images the value of S decreases when the
image is blurred, we found an exceptional case where the opposite phenomenon
happens for a very small level of blur. Indeed, if we consider a Dirac image (a single
bright pixel on a constant background) and examine the evolution of S when it is
blurred by a Gaussian kernel with parameter p (as defined in Equation (4.25)), it
happens that S first increases as p departs from 0, then decreases when p increases
further (Fig. 4.7). So far, we have not found a theoretical explanation of this
phenomenon. We can remark, however, that it is not really incompatible with the
idea that S is linked to image quality and our perception of sharpness: since a
Dirac image is aliased, one could consider that a slightly smoother (and hence less
aliased) version is sharper (in the sense: more geometrically accurate).

This kind of paradox raises interesting questions linked to the aliasing-
ringing-blur trade-off that must face any image reduction (zoom out) algorithm
[Blanchet et al. 2005]. What is, among the images that represent a single light
source (in a sense to be defined), the one that maximizes the value of S7 (the
experiment reported in Fig. 4.7 proves that this is not a Dirac image). What is the
unimodal (increasing, then decreasing) one-dimensional signal that maximizes the
value of S7 Notice that these questions may be addressed numerically by using the
stochastic optimization framework that we describe in Section 4.5.
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Figure 4.7: The Dirac paradox. Evolution of S and SI (vertical axis) for a
discrete Dirac image convolved with a Gaussian kernel of width p (horizontal axis).
Surprisingly, S and SI only decrease after a certain critical value of p, which shows
that the Gaussian kernel that reaches the maximum value of S is not the Dirac,
but a slightly blurrier kernel (p ~ 0.4 pixels).

4.4.6 Sensitivity to ringing, parametric deconvolution

Suppose that we observe a blurry image v that is the result of the convolution of a
clean (unobserved) image ug with a Gaussian kernel (4.25), plus some (unknown)
noise. We can try to invert this blurring process by using the special case of the
Wiener filter obtained with H' regularization in a variational setting. Indeed, there
is a unique image u) , that minimizes the convex energy

kp # w —wl3 + AllulF (4.26)
and it is explicitly given (thanks to Parseval’s formula) in Fourier domain by
s
veeq e =) —— e & (4.27)
[Fol?(€) + M (5 + 3%)

This deconvolution method has two parameters A and p. The first one A, sets the
importance of the regularization term |lu||%, of (4.26) in comparison to the fidelity
term ||, *u—v||3, so that if A increases, the image is more regularized. The balance
between fidelity and regularization is an interesting problem which is encountered
in several image processing tasks, but we will not discuss it here. We decided to set
A = 0.01 which, in our simulations, always gave satisfying results.

The second parameter p, however, is critical. If p is underestimated, some blur
remains; if it is overestimated, spurious oscillations (called ringing) appear. As
we can see in Fig. 4.8, SI and S can be used in a very simple way to design an
automatic procedure that selects an optimal value of p (in the sense of the quality
of the deconvolved image), because SI(uy ,) and S(uy ,) are maximal for a value of p
that corresponds very well to the transition between blur and ringing (see Fig. 4.9).
This is quite a remarkable property, for classical image quality indices (including
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Figure 4.8: Blur-ringing trade-offs. These diagrams plot the values of SI (in
green) and S (in red) of the H' regularization uy , defined by (4.27) with A = 0.01,
as functions of the parameter p (in pixels) for images Yale (left) and Barbara (right).
SI and S attain their maximum value for a very similar value of p, which corresponds
in each case to a good trade-off between blur and ringing for these images (see
Fig. 4.9).

the metric @) presented below) are not sensitive to ringing artifacts in general (see
[Moreno & Calderero 2013)).

4.4.7 Comparison with Zhu and Milanfar’s () metric

In [Zhu & Milanfar 2010], Zhu and Milanfar proposed a sharpness metric @) based
on the singular values of the local gradient field of the image. Given a patch
p of the image, they consider the two eigenvalues s; > so = 0 of the gradient
covariance matrix? of p, and define from it the coherence R(p) = % (linked
to the anisotropy of the patch p) and the image content metric Q(p) = s1R(p)
(which represents the energy in the local dominant orientation). Then, from a
set of nonoverlapping patches, a subset P of anisotropic patches is extracted by
thresholding the coherence R, and the metric @) of the whole image is defined as
the mean value of Q(p) for p € P. Notice that when comparing the values of @
on different (possibly noisy, blurred or restored) versions of a particular image, the
same set of anisotropic patches must be used. Since P is extracted from a set of
nonoverlapping patches, the computation time for @ is O(MN).

In particular, Zhu and Milanfar used () to select an optimal number of itera-
tions in the steering kernel regression (SKR) denoising algorithm of Takeda et al.
[Takeda et al. 2007]. We reproduced the same experiment and compared the effects
of the @ and the S indices in Fig. 4.10. Interestingly enough, the global behavior of
both indices is the same: as the level of denoising (that is, the number of iterations
in [Takeda et al. 2007]) increases, both indices grow, attain a maximal value, then

decrease. However, it can be observed that the S index attains its maximum value

2The gradient covariance matrix of an image u is the value at z = 0 of the gradient autocorre-
lation matrix I' defined in Theorem 4.2.1.
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Original Wiener deconvolution (p = 0.7) Wiener deconvolution (p = 1)

Figure 4.9: Parametric blind deconvolution using sharpness indices. On the
first row, we can see the original Yale image (left), and two Wiener- H' deconvolution
results obtained with a kernel width of p = 0.7 (middle) and p = 1 (right). Close-up
views of these three images are shown on the second row. The value p = 0.7, which
maximizes the sharpness indices SI and S (see Fig. 4.8), corresponds surprisingly
well to the desired critical value that rules the transition between blur and ringing.

for a smaller number of iterations (8, versus 14 for @). This effect is confirmed
on other experiments (not displayed here): the S index seems to consider that at
some point, the denoising structures left by the SKR algorithm are sharp details
and leads to a lower denoising level. This general behavior will be discussed further
in Subsection 4.4.8: an image process that creates phase-coherent artifacts may
increase the S index.

As the sharpness metrics SI and S, the Q metric is sensitive to blur and noise.
However, it is not sensitive to ringing, so that the parametric deconvolution process
described in Subsection 4.4.6 cannot be achieved with the @ index, as shown in
Fig. 4.11. This is a crucial difference between these two indices.

4.4.8 Perceptual sharpness and Visual Summation

Even if GPC, SI and S are sensitive to noise, blur and ringing, we should not forget
that they were initially designed to measure phase coherence, and that it only ap-
pears that they can be interpreted as image quality indices. Thus, contrary to image
quality metrics designed on purpose, there is no reason a priori that these indices
reflect accurately our visual perception of sharpness. An interesting illustration of
this is brought by image compression. For example, JPEG compression is known
to produce artificial edges (in particular along the boundaries of the 8 x 8 blocks
used for DCT), and as these edges require global phase coherence, one can logically
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Evolution of S S optimized, 8 iterations

Figure 4.10: Parameter selection in SKR denoising: ) versus S. The plots
on the left report the evolution of @ and S as functions of the number of iterations in
the SKR denoising. The input is the image Cheetah corrupted by a white Gaussian
noise with standard deviation 18. Both indices are able to select an optimal number
of iterations, and the resulting images are shown in the middle column (with some
close-up views on the right). Note that the residual phase-coherent artifacts left
by the SKR algorithm are considered as sharp by the S index, which thus selects
a number of iterations that is significantly smaller. In that particular application,
the @ metric is best suited to denoise uniform zones, while the S index leads to
better texture preservation.
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Figure 4.11: S versus Q. These diagrams represent the values of S (left) and the
values of the metric @ of Zhu and Milanfar (right) computed on the H! regular-
ization uy , defined by (4.27) with fixed A = 0.01 and varying p (horizontal axis),
for Lena image. One can see that S admits an optimal value whereas @ does not.
Therefore, contrary to S, the metric ¢ cannot be used for parametric blind de-
blurring, as it does not consider that ringing artifacts decrease image quality. This
limitation of @ is studied more deeply in [Liu et al. 2013].

expect them to produce high values of GPC, SI and S. Fig. 4.12 confirms this
analysis. Note, however, that one could probably adapt the sharpness indices we
defined to reflect more accurately the quality of compressed images. One possible
solution would be to define the sharpness Sc(a) of a compressed image a = C(u)
(here C denotes the compression operator) by the minimum sharpness found among
all possible uncompressed versions of a, that is

Sc(a) = vg(lzi;?:a S(v).

Such a definition could reflect more accurately our perception of image quality,
and would in particular satisfy the desirable property Sco(C(u)) < S(u) (that is,
compression cannot increase image quality).

If we follow the idea of relating the sharpness indices GPC, SI and S to per-
ceptual sharpness, the issue of normalization with respect to image size must be
addressed. As we saw in Subsection 4.4.3, these indices tend to grow rapidly with
the size of an image, which does not really correspond to our visual perception.
One possibility to deal with this problem could be to use a “visual summation”
principle [Vu & Chandler 2009], and define the overall sharpness of an image as
the maximal sharpness of all its fixed-size (say, 32 x 32) sub-parts. A less extreme
variant could be to weight the sharpness of each sub-part by some sort of saliency
measure. These solutions would solve the size-dependence issue, and thus proba-
bly increase the similarity between the proposed indices and our visual perception
of sharpness. However, the obtained indices would be analytically more compli-
cated and probably less stable when addressing restoration problems like the blind
deblurring application we consider in the next section.
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Figure 4.12: Sharpness indices and JPEG compression. These diagrams
show the evolution of SI (in green) and S (in red) when an image (respectively,
Barbara on the left, and House on the right) is compressed using the JPEG standard.
The horizontal scale refers to the JPEG quality parameter. One can see that S
and SI do not reflect our perception of image quality in this case: they increase
as the image compression rate increases. This phenomenon, due to the artificial
phase coherence brought by the image uncompression scheme, could be avoided by
considering instead, for a given compressed image, the minimum sharpness of all
possible original images.

4.5 An Application to Blind Deblurring

In Subsection 4.4.6, we saw that the S index could be used to select a parameter
in a deconvolution process. In this section, we will show that it can drive much
more general blind deblurring algorithms. Blind deblurring consists in sharpening
an image without knowing precisely the blurring process involved in the image
acquisition. We here focus on linear and spatially-invariant blur, which can be
modeled by a convolution operator. There is an abundant literature on that subject,
and regular advances. We will compare the results we obtain with the method
recently proposed by Levin et al. [Levin et al. 2011], which can produce impressive
results.

To design blind deblurring algorithms based on the S index, we will follow the
general scheme proposed in [Blanchet & Moisan 2012]. Let us denote by ug the
image to recover, by ¢ an unknown convolution kernel and by n an additive noise.
Instead of trying to recover the kernel ¢ and then invert the image formation process
u = @ * ug + n, we will select a restoration kernel k£ that maximizes S(k * u), the
sharpness of the restored image k # u. In this framework, k can be interpreted as
a regularized inverse of ¢ that is supposed to mitigate the effects of the noise. Of
course, the linearity of the deblurring process is a limitation of this approach, but
as we shall see, a well-chosen linear filter may perform surprisingly well compared
to more sophisticated non-linear image transforms. Moreover, linearity has several
advantages like stability, computational efficiency, and the fact that deconvolution
artifacts (and in particular the effect on noise) are much better understood in the
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linear case.

4.5.1 Remarks on k+— S(k=u)

As mentioned above, the idea underlying the algorithms that will follow is the
maximization of the function

Fy:k— S(kx*u) (4.28)

on a given set K of deconvolution kernels. Since the function S is quite singular, it
is worth discussing the existence of maxima. First, Proposition 4.3.3 ensures that,
as soon as the set {k*u , k € K} does not contain any image which is constant in
the = or y direction, F, is continuous on K. Moreover, since S(Ak * u) = S(k * u)
for any A # 0, the maximization of F, can be equivalently realized on the bounded
set

K = k/llklz b € K}.

Thus, if K’ is closed (which is an easily achievable condition), F,, has to be maxi-
mized on a compact set and we can thus guarantee the existence of a solution. It
seems difficult to obtain any guarantee of uniqueness in general (recall that the func-
tion S is not concave), but we can at least hope to design algorithms that converge
to an interesting local maximum of F,,. Among them, Algorithm 2 below (a direct
adaptation of the algorithm proposed in [Blanchet & Moisan 2012]) is very flexible
since it can handle various types of kernels, as we will see in the next subsections.

Algorithm 2
e Begin with k£ = g

e Repeat n times

> Define £’ from a random perturbation of k

> If S(K' «u) > S(k = u) then k «— £

e Return k and k * u

4.5.2 Kernels with compact support

A first interesting case is the set of symmetric kernels with a fixed support, e.g.
a 11 x 11 square. One possible perturbation strategy at each iteration consists
in adding a random number uniformly distributed in [—«, o] (say, a = 0.05) to a
randomly chosen coefficient of the kernel (see [Blanchet & Moisan 2012]). As shown
in Fig. 4.13, this simple stochastic algorithm already gives interesting sharpening
results. However, it may also lead to failure cases, in particular when the image
contains some high-frequency structured textures [Leclaire & Moisan 2013a]. We
believe that these failure cases are mostly due to the fact that this set of kernels
contains candidates which are not plausible as deconvolution kernels.
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Figure 4.13: Blind deblurring results obtained by running Algorithm 2 on the
set of 11 x 11 kernels. The original (unprocessed) images are shown on the left
column (from top to bottom: Yale, Caps (cropped), Room), and the sharpened
images are displayed on the right column. In the first two cases, the output image
is sharper than the original one and presents a limited quantity of ringing artifacts.
However, the result is not satisfactory for the Room image.



176 Chapter 4. Phase Coherence Indices

4.5.3 Kernel with a radial-unimodal Fourier transform
To cope with the failure cases of fixed support kernels, we suggested in

[Leclaire & Moisan 2013a] to consider another class of kernels, whose shape is built
in Fourier domain by rotating a radial profile defined by d values

r(0) =1,7(1),r(2),...,r(d—2),r(d—1) =0.

More precisely, we consider the deconvolution kernel k, defined in Fourier domain
by

Ri6n6) - L, <(d— 1>\/2 (G + (%)) ) ,

where L, : [0,d — 1] — R denotes the piecewise affine interpolation of r. We also
suggested to constrain the discrete profile r to be unimodal, which means that there
exists a value m such that

Vi<m, r(i+1)=r(), and Vi=m, r(i+1) <r(3) .

The set U of unimodal profiles is rich enough to provide interesting deblurring
kernels, and constrained enough to limit distortions in Fourier domain (as large
differences in the amplification factor applied to neighboring frequencies tend to
produce ringing artifacts). In practice, enforcing the unimodality constraint (by
performing a projection on U for example) appeared to be rather inefficient in
terms of convergence, and we chose to relax the constraint by incorporating the
Euclidean distance® d(r, U) between r and the set U in the objective function. We
also decided to constrain the profile r to be smooth with the additional term

d—2

2 =" (r(i + 1) —r(0)*.

i=0
Finally, the function to optimize is
Fu(r) = S(ky % w) — Augm d(r,U) = Mg 7)1, (4.29)

where Ay, and Arey are two weighting parameters. The maximization of F, is
realized with Algorithm 3.

3See Appendix 4.D for the numerical computation of d(r,U).
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Algorithm 3

e Initialize r with the piecewise affine profile defined by

r(0) =1, r(mipi) =2, andr(d—1) =0 .

e Repeat n times

> Pick a random index i € {1,2,...d — 2}

> Draw a uniform random value ¢ € [—a/2, a/2]
> Set 7' «— r, and then 7/(i) «— r(i) + ¢

> If Fu(r') > Fu(r) then r « ¢/

e Return r, k. and k, * u

We observed in practice that Algorithm 3 reached a stable state in less than
10000 iterations (which, on a 512 x 512 image takes about 4 minutes with a parallel
C implementation using a dual-core processor). Although F,, may have several local
maxima, several realizations of the algorithm would always return approximately
the same profile r, which demonstrates its stability.

Algorithm 3 involves several constants (Aum, Areg, d, Minit, n, @), but in practice
only Areq is a real parameter. The value d can be set to 20, which achieves a goof
trade-off between the dimension of the parameter space and the accuracy of the
radial profile. The setup a = 0.1 led to an efficient proposition strategy in all cases.
As mentioned before, the value n = 10000 seems to be sufficient for convergence,
in the sense that the average rate of convergence ‘

Told
than 1072 after 10000 iterations. To force r to be as close to unimodal as possible,

MH was in general less
e}

we affected to Ay, a high value (10000 in our experiments); we could have made
it grow to +o0 in the last iterations. As concerns m;p;; (the initial mode index),
we observed that the different possibilities of initialization (any integer between 1
and d — 2) could lead to two (or three in a few cases) different radial profiles. A
systematic strategy would be to try all these indices and select the one leading to
the maximum value of F,. In practice, we observed that this maximum value was
obtained for an index mip;t € [d/4,3d/4]. Besides, in the case where 2 or 3 different
radial profiles were obtained (depending on the initialization), we observed that they
lead to similar deblurring results. For the sake of simplicity, all the experiments
shown in this paper were run with m;,;; = d/4 (that is, 5).

In Fig. 4.14, we show some results obtained with Algorithm 3 (for \..q = 0)
on the original images Yale and Barbara (no blur or noise added). In both cases,
the resulting image is clearly sharper than the original one and the edges are nicely
enhanced, even on the image Barbara which is a difficult case for it contains high-
frequency textures.

To assess more precisely the performances of Algorithm 3, we also ran it on
artificially degraded images. We transformed each original image ug into a blurry
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Figure 4.14: Blind deblurring of unprocessed images. Algorithm 3 is applied
(with Areg = 0, and n = 10000 iterations) to the images Yale (top 2 rows) and
Barbara (bottom rows). In each case, the obtained radial profile r is displayed, as
well as the Fourier transform of the corresponding deconvolution kernel k.. It is
interesting to observe the stability of the proposed algorithm: the deblurred images
are much sharper than the original ones, but do not present ringing artifacts or
excessive noise amplification. Notice also how the deconvolution kernel adapts itself
to each image, leading, in the case of Barbara, to a quite irregular profile.
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and noisy image
U=K|*uUy+ N, (4.30)

where k; is the Gaussian kernel (4.25) obtained for p = 1 and n is a realization of a
Gaussian white noise with standard deviation ¢ = 1. This setup allowed us to build
two oracle deblurring filters: the Wiener filter (4.27) associated to the (supposedly
unknown) kernel 1, and the oracle radial filter minimizing the expected [? risk,
defined by

ko = arg rrll€in E (Huo — k% (K1 *up + W)HQ) , (4.31)

where W is a white Gaussian noise with variance 02 = 1 and the arg min is taken
over all kernels k, obtained from an arbitrary radial profile r with d points®.

A comparison of the effect of these filters (including Algorithm 3 with several
values of the A, parameter) is shown on Parrotsimage in Fig. 4.15. We can see that
Algorithm 3 manages to find a kernel that is close to the Wiener filter associated
to the true level of blur (p = 1). The oracle output reveals slightly more details,
but also leaves on the image some undesirable structured noise (which is not costly
for the I2 risk function that it optimizes). The comparison with [Levin et al. 2011]
is also interesting: compared to Algorithm 3, it manages to clean uniform zones
better, but tends to reveal less details in more complex areas (geometric structures
or textures). In terms of PSNR (which use is questionable since the original image
itself could be noisy and blurry), Algorithm 3 performs better (for A.., = 10)
that [Levin et al. 2011] and the Wiener oracle, but does not attain the ultimate
performance given by the oracle radial filter.

To end this section, we now discuss the influence of the regularity parameter
Areg- As expected, increasing \,q4 tends to smooth the radial profile r (see Fig. 4.15
and 4.16). One can also see that this regularity prior constrains the overall energy
of the kernel, so that when ), increases, the kernel values tend to decrease. The
Room image (see Fig. 4.16) is difficult to process because it contains different high-
frequency textures that are likely to produce ringing artifacts. In this particular
case, the regularity constraint is mandatory: the disappointing result obtained for
Areg = 0 is greatly improved for A,y = 100. For the other images we considered
(and that are not displayed here), we noticed that the choice A, = 100 always led
to visually satisfying results, and A,c4 € [0, 25] gave even better results with images
that were not too prone to ringing artifacts.

4.6 Perspectives

In this chapter, we discussed and compared the phase coherence indices GPC, SI
and S, and provided some mathematical results as well as several experiments de-
monstrating their usefulness for no-reference image quality assessment and blind
deblurring. The more explicit and simple variants SI and S are clearly an improve-
ment over the original GPC, but many questions remain. The decrease of these

4The computation of this oracle kernel is detailed in Appendix 4.E.



180 Chapter 4. Phase Coherence Indices

Blurred and noisy input Close-up Levin et al.
PSNR = 30.5, S = 140 PSNR = 27.9, S = 605

Deblurred (Areg = 0) Close-up Radial profile Final 1;;
PSNR = 24.5, S = 440

Deblurred (Areg = 10) Close-up Radial profile Final kAT
PSNR = 34.2, S = 394

Deblurred (Areg = 100) Close-up Radial profile Final la
PSNR = 33.8, S = 300

Wiener oracle Close-up Wiener radial profile Wiener oracle filter
PSNR = 33.7, S = 316

Radial oracle Close-up Oracle radial profile Oracle radial filter
PSNR = 35.6, S = 370

Figure 4.15: Blind deblurring of a blurry and noisy version of Parrots. The first row
displays the degraded image (used as input), and the deblurred image obtained with Levin et al.
algorithm [Levin et al. 2011]. Each other row is devoted to a different linear algorithm based on a
radial kernel (in each case, the radial profile and the Fourier transform of the kernel are displayed).
The PSNR values are computed with respect to the original Parrots image. The result obtained
with Levin et al. algorithm is cleaner in uniform regions, but slightly less detailed than the one
obtained with Algorithm 3 when A..y = 10. Notice also the similarity between the filter obtained
with Areg = 10 and the Wiener oracle filter. Algorithm 3 was used with 10000 iterations.
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Figure 4.16: Blind deblurring of the original Room image for three different
levels of regularization of the Fourier profile. On the top row, we display a close-up of
the result of the blind deblurring Algorithm 3, which selects (and applies) an optimal
radial convolution filter (the corresponding radial profile is shown on the bottom
row in each case). The strong ringing artifacts that appear for A, = 0 (left column)
are greatly attenuated for A,y = 25 (middle) and disappear almost completely for
Areg = 100. On this kind of images presenting a strong high-frequency content
(here, the stripes of the piece of clothing in particular), the parameter A,y plays a
crucial role. Algorithm 3 was used with 10000 iterations.
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indices with respect to noise and blur is easy to check numerically, but a mathe-
matical proof is still to be established. Also, it would be interesting to understand,
from an analytical (non-probabilistic) point of view, why the formulae obtained for
SI and S are efficient for image quality assessment and blind deblurring. This could
be a way to design non-probabilistic variants, very different from classical analytical
regularizers like TV or more generally sparsity-promoting priors. The optimization
of S also brings interesting issues, and it seems very likely that the simple itera-
tive stochastic optimization we proposed could be greatly improved, which should
increase even further the attractiveness of these indices.

Software resources

Source codes to compute the GPC, SI and S metrics and images files used in the
experiments are freely available on the web page

http://www.mi.parisdescartes.fr/~moisan/sharpness/

Appendices

4.A Estimation of the mean TV of a RPN

We saw in Theorem 4.2.1 (Equation (4.10)) that

E(TV(uxW)) = (an + ay)\/z\/MN . (4.32)

The right-hand term of (4.32) appears to be a good approximation of E(TV (uy)),
that is, the mean TV in the RPN model. As noticed in [Blanchet & Moisan 2012],
for most images the relative error is around 1% or below. In this Appendix, we will
exhibit an upper bound of the absolute difference.

With the definition of TV, one can write

E(TV (uy)) ZE[@ Uy (X)] + E| 0yt (x)]

xeN

so that it is sufficient to show that E|0yiy(x)| ~ agy/ =25 for each x € Q. This
will follow from a Gaussian approximation of 0, (x) which implies

(‘5 Uw \/7 & U¢ (4.33)

(notice that the equality holds for a zero-mean Gaussian r.v., as shown by
Lemma 4.C.1 of Appendix 4.C).
With the Fourier reconstruction formula, one can write that for all x € €2,

Ozl (x Z a(€)]eP (el ’5>(62i17;1%1 -1). (4.34)
§eQ
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For any x € , the set (eV(&)e™€))q is a random phase field. It follows that
the r.v. 0.ty (x)| are identically distributed, but they are not independent a pri-
ori. This is why we cannot use the central limit theorem directly on the sum
> xeq |0zt (x)| . Instead we will use a Gaussian approximation of each 0,1, (x) in
order to derive a bound for the Gaussian approximation of Y, o |0zt (x)|.

The Gaussian approximation of 0, (x) will be precised with a Berry-Esseen
theorem. First, to cope with the Hermitian dependence, we have to introduce a
subset 2, of £ that contains exactly one point in each pair of symmetrical points,
that is, such that

Q\{Oanxanyanxy} =04 v (_QJr)
and the union is disjoint. To make the following proof lighter, we will assume that

if they exist, the Nyquist coefficients (n,), i(n,,), and i(n,) are equal to zero (in
general, in natural images these coefficients are very small). Then we can write

1
Uy (x) = [4(0)|(=1)%° + —— 2|a(&)] cos(¥(§) + (x,8)) ,
¥ MN %1
and therefore )
Uw(l'l + 1,$2) — Uw($1,$2) = m Z XE ,

£efdy
where we set for all £ € Q4
N 2m&y
Xe = 20al€)| (cos (4(€) + (x.€) + 1) — cos (6(6) + (x.8)))
= —4fa(®)|sin (v(&) + (x.&) + ") sin (7).

Since the X¢ are independent and centered r.v., we can apply the following gener-
alization of Berry-Esseen Theorem (for non identically distributed r.v.):

Theorem 4.A.1 (Berry-Esseen, 1942). Let X1, ..., X,, be independent and centered
r.v. in L3. Let us denote o2 = E(X?) and p; = E(|X;|?). Let F,, be the cumulative

distribution function of
Xi+...+ X,

(02 + ...+ 02)1/2"°

Then there exists a positive universal constant Cy such that

VieR, |F,(t)—P(Y <t)] <Coty

where Y ~ N(0,1) and ¢ = <Z af) (Z pi>.
i=1

i=1
Concerning the value of Cp, some recent papers (e.g. [Shevtsova 2010]) have
shown that the best constant C is below 0.56.
Let us apply this theorem to the r.v. X¢, £ € Q. Remark that if the r.v. U
is uniformly distributed on [0, 2], then E(sin?(U)) = 3 and E(|sin(U)[*) = 4.
Thus, we have for all £ € Q,

o2 = E(X?) = 8[a(€)|? sin? (T}) ,
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44 s
pe = E(|X§‘3) = 3?‘@(5”3 sin (Z\il)
Consequently,
> 02 = > 8la(¢ 2 gin (ﬁ)
£€Q+ £€Q+
w1
= Z4|u Zsin < >
£eq) M
2 =2
— Z |a(€) @ M -1 = H@zuHQ = MNHazuH% ,
£eQ)
and

Zpe‘*E:W

£eQy €€Q+

Hence, noticing that

1 MN
oA Z Xe = Q Oz (X)
VMN||0yi]2 (£ 102112
and setting
K (u) 280,
= —— " ith K = 3 1%U]l3
Yo (MN)3/2 wi () XA
Theorem 4.A.1 ensures that for all t € R,
vVMN CoK (u)
P Oyt >t|-PY 21| < ol
| (H&cqu o) ¥'=9] < Gy

Now, we write

W vo [ JMN

+00
mdmmz/ P(Y > t)dt,
0

(4.35)

and we split the integral into two parts: [, = fOA + [1%. Inequality (4.35) can
be integrated between 0 and A to give an upper bound of fOA , whereas the tail f;oo

can be treated using Bienaymé-Tchebitchev inequality:

2
vMN
P(naz [ 1O ””) < ST (Z Xﬁ)

ﬂMquggg
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Putting the two terms together, we have for all A > 0,

’E<m Oty (x >I> E(y )| < 208w, 2

(MN32" T A

and then, choosing the best A,

B (LR oo | — /2| < )

il T (NP
Therefore, for all x,

—— . 2 Cy(u)

foal
where C(u) = 4/Coy| 222 —3
[0z ]|2

Recalling that a, = ||0,1||2, one has

‘E(H(%%Hl) —ay

™

E (VAN |osiy () — o 2’
er
u)

Ca(
\/7 Z MN)3/4 ’

and thus,

E(|[0zty]l1) — az (4.36)

2l < 7(MN) 7k
Finally, we obtain the following

Theorem 4.A.2. If v is a discrete random phase field, then

u) + Cy(u)
MN1/4 )

20, |§au
h a(u) = 32 ‘
where Ya € {x,y}, C =3 \/377'(' ||aau |2

Theorem 4.A.2 provides an explicit bound on the absolute error between the
mean TV of a RPN and the exact formula (4.32) obtained for the associated Gaus-
sian field, but this error bound depends on the considered image and all terms tend

F@Ww»<%+%

to increase with the image size. We can write a normalized inequality by dividing

(4.36) by agz\/2M N /7, so that

E(Haxuszl) m
m\/g —1| < cp(u), (4.37)
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where the relative error bound is now

en(u) i C'0 ||8u Co
e MN3/4 H(9u|2

(of course, one would obtain a similar inequality for the y component).

Taking Cy = 0.56, one can compute values of ¢, for different natural images.
For example, ¢, (u) ~ 1.025 for the 512 x 512 Lena image, while ¢, (u) ~ 0.337 for
the 13 Mpixels Lotriver image®. The bound is quite useless for Lena, and still far
from sharp for Lotriver (numerical computations seem to indicate that the true
values of the left-hand term of (4.37) are below 10~ for these two images).

Even if it does not provide an accurate error bound, Theorem 4.A.2 remains in-
teresting because it indicates that (4.32) provides the correct asymptotical estimate
of the mean TV of a RPN when the image size tends to infinity. Indeed, it has been
known for a long time that natural images statistically exhibit a power-law Fourier
spectrum (see [Deriugin 1956] and other references in [Ruderman 1994]), that is,

|[a(&)]ocl€] (4.38)

in average, where « is a bit larger than 1 in general. Using (4.38) in the expression
of ¢, above, one easily obtains that for a R x R image, czocR™Y2% as R —> oo,
provided that a < 5/3. This suggests that the bound ¢, tends to decrease to 0
when the size of the considered image increases.

4.B Gaussian approximation of TV (W)

We would like to prove that TV(uy) and TV (u * W) approximately (or asymp-
totically) follow Gaussian distributions. Unfortunately, as we already said in the
previous Appendix, we cannot apply a classical central limit theorem because the
r.v. appearing in the TV formula are not independent. These dependencies in-
troduce a lot of difficulties and this is why we shall here focus on a much simpler
problem, that is, the asymptotical distribution of TV (W) (which is the TV of the
Gaussian model in the particular case u = dy).

Proposition 4.B.1. Let (Q,)n>0 be a sequence of rectangular domains of Z* such
that |Q,| — 0 when n tends to 0, and let (W, (X))xeq, be a set of i.i.d. r.v. with
distribution N (0, |Qn|_1/2). Then one has

TV(W,) — E(TV(W,)) -5 N(0,02%) , where

s

E(TV(W,)) = W and o? = > (w(l) + 6w(;)> .

To prove this result, we will use the central limit theorem given in [Janson 198§],
which applies to a set of r.v. whose dependencies are controlled through their
dependency graph.

This image is available on the web site http://www.mi.parisdescartes.fr/~moisan/sharpness/
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Definition 4.B.1 ([Janson 1988]). A graph I' is a dependency graph for a set of
r.v. if the following two conditions are satisfied:

1. There exists a one-to-one correspondence between the r.v. and the vertices of
the graph.

2. If V1 and V5 are two disjoint sets of vertices of I' such that no edge of I' has
one endpoint in V7 and the other in V5, then the corresponding sets of r.v.
are independent.

Now we can recall the

Theorem 4.B.1 (Janson [Janson 1988]). Suppose, for each integer n, that
(Xn,i)i=1,...N, is a set of r.v. satisfying | Xn ;| < An a.s. for alli. Suppose further
that Ty, is a dependency graph for this set and let M, be the mazimal degree® of T,
(unless Ty, has no edges at all, in which case we set M,, = 1). Let S, = Zfi"l Xnji
and 02 = Var(S,). If there exists an integer m such that

N, \ Y™ M, A
(]\4:) ;n "0 as n— oo, (4.39)
Sn —E(S
then Sn = E(Sn) — N(0,1) in distribution as n — oo.

On

First, we will clarify the remark following this theorem in [Janson 1988]. It
states that we can replace the boundedness hypothesis

Vn, Vi, |X,i <A, as.

My, &
by — > E(X?1x,,>4,) 0 asn— . (4.40)
noj=1
Indeed, assume that (4.40) is true. We use the truncation argument suggested in
[Janson 1988] and set

X%:Z = ani 1|Xn,z|<An ?
Ny,
ST — ZX;{Z . and (012 = Var(ST) .
i=1

It is clear that the variables ng ; have the same dependency degree than the X, ;.
We will see that (4.39) is still true for ¢! so that Janson’s Theorem will give

S —E(sT

Sa “B0) 4, xro,1).

on
But first let us explain how we control the residual sum. One can write

Sn_ESn SE_ES;; 1 &
(Sn) _ (i) = — Z (Xn,i Lix, >4, — E(Xn, 1|Xn,z'|>An)) :

On On on

5We recall that the maximal degree of a graph is the maximal number of edges incident to a
single vertex.
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For a fixed n, setting
Ti = Xni Lix, >4, — E(Xni 1ix, ,>4,)

(which again have a dependency degree smaller than M,,) and writing i ~ j if T;
and 7} are not independent, one can write

E ((ZT)2> - S E(IT)
=iZE<m>

i i

<—ZZE (T?) + E(T7)
i g~

-5 XX+ E R
i g~ ji~]

< (My + 1)) E(TP)
<2M, Y E(T7) ,
which gives

2
E <02 <ZXM Lix, 540 — E(Xni 1x, > A0 )) )

i=1

M,
<2 —ZVar ni 11X, A,)

nog=1
<2 —' ) E(XR1x, 4,) -

Therefore, (4.40) gives that
Sn —E(Sn) ST —E(ST) 2 0

On On

(4.41)

To conclude, it remains to show that *TL — 1 as n tends to c0. Indeed, it is
thus equivalent to check condition (4.39) for o, or ol so that we are able to apply
Janson’s theorem to obtain

SE—E(SI) 4

— N(0,1) . 4.42
N ) (1.42)
. o Sp —E(Sp) . .
Moreover it implies that the distributional convergence of ————-+ is equivalent
Un
» —E(Sh)
to the one of . To show that o,, and o} are equivalent, notice that (4.41)
On
and the reverse Minkowski inequality (in L?) give
|l sT-ESD|
On 12 On 1o ’
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which is exactly

T
1-7 0. (4.43)
On
Finally, putting together (4.41), (4.42), (4.43), we obtain that
Sn —E(Sn) 4, O
On

Let us now get into the details of the application to the TV of a white Gaussian
noise. For x € ,,, we will set

Zn,x = ‘Wn(x + ]-ay) - Wn(x7y)| + |Wn(x,y + 1) - Wn(xay” )

so that TV(W,) = > icq, Znx - With these notations, we will be able to apply
Janson’s theorem on this sum with M,, = 6. Indeed, for a fixed x = (z,y) € Q,,
the variables W, (z + 1,9), Wy (z,y + 1) and W,,(z,y) appear in Znx. These two
variables also appear in Zn,(rfl,y)u Zn,(acfl,y+1)7 Zn,(:r,yfl)v Zn,(m+1,y71)’ Zn,(:erl,y)v
Zp (zy+1), and do not appear in any other Z, x, x € ;. That is why we can set
M, = 6.

Next, to apply the theorem, we also need to know the variance of the sum. It
is actually independent of n and given by Theorem 4.2.1:

o2 — 62 — Var(TV(W,)) = %(w(l) +6-w(1/2)).

Notice that the theorem also gives

1/2

4
= —|Q, .
T2

Now, it remains to find a sequence A, which satisfies both (4.39) and (4.40).
Since in our case M, and o,, are constant, we must find A, and an m such that

E(TV(Wx))

10,4, -0 and > E(Z2, 17, . =4,) — O

xeNn

as n — o0. Since all the Z, x follow the Gaussian distribution with standard
deviation 2|Q,|~/2, the second condition is equivalent to

E <Z21|Z|>An|9n‘) g 0 .
Hence, it suffices to find A,, and an m such that
10,4, -0 and  A,|Q,| — .

We can take m = 3 and A,, = \Qn|*1/ 2. The two conditions are satisfied, and with
Janson’s theorem we obtain the result of Proposition 4.B.1.

Remark: One can point out that we applied a powerful central limit theorem
in order to prove a very specific case. In fact, one can adapt the preceding proof to
show that, as soon as u has compact support in Q,, with |£2,,| — oo, we have normal
convergence of E(TV(u « W)) after centralization and normalization.
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4.C Proof of Theorem 4.2.1

Before proving Theorem 4.2.1, let us give two lemmas about Gaussian random
vectors.

Lemme 4.C.1. Let X be a Gaussian r.v. with zero mean and variance 0. Then

E(|X]) = a\/z

Proof. Since X ~ N(0,0?), one can write

22

re 202dx

2
\x|e_;7dx =

B o L o

2 =2 +00 2
|:—02€_%2:| =04/ —.
oV 2T 0 ™

Lemme 4.C.2. Let Z = (X,Y)T be a Gaussian random vector with zero mean and
covariance matrix

O]

2 .
Ty a absin 0
E(2Z7) = (absin9 b? ) ’

with 0 € [~5,5]. Then, one has

E(|XY]) = M(0089 +6sind) .
s

Proof. If a =0 or b =0, then E(XY') = 0 so there is nothing more to prove. Hence
we can assume that ab # 0 and set X' = X/a, Y’ =Y /b, so that

E|XY]| = |ab| - E|X'Y7| , (4.44)

where the covariance of Z/ = (X', Y") is

1 sin 0
_ 1l TY
C=EZZ7) (gine 1 ) '

If |sinf] = 1, then Y/ = X’sinf almost surely, so that E|X'Y’| = EX"? = 1 and
E|XY| = |ab| by (4.44). Hence, we assume in the following that [0| < §. Now we

have
1 1 —sin @
_1 _
¢ " cos26 (—sin& 1 ) ’

so that E|X'Y”| equals

1 >+ y? — 2zysin b
|zy| exp (—m Ty Ty > dxdy .
2

2w cosf Jr 2cos2 6

Using symmetry considerations, this formula can be rewritten under the form

1(0) + I(—0)

E|X'Y'| =
| | 7 cos 6

(4.45)
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+00  p+00 2 2_9 in6
with 1(0) =/ / Y exp Tty Ly dzdy.
0 0 2cos? 0

Using polar coordinates, we then get

+oo 3
1(0) =/ / 72 cos psin ¢
0 0

2
exp <_2(3(:s20(1 — 2cos psin psin 9)) r drdy

—/5 (COS i /+OO 3e—alo)r? g )d
= psin @ r’e r)de,
0 0

_ 1 —2cospsinpsinf S0,
2cos? 0

with a(p)

Integrating by part the inside integral yields

+00
/ realr? gy
0

1 2] T® 1 + 2
— 2. ~a(e)r ] N S / ore—a(@r?
r e re T
[ —2a(p) o —2a(p) o
1

2a(p)?

Thus we have

2 (2 cos? 0)?
I1(0) = inp - d
©) /0 cospRmy 2(1 — 2 cos psin @ sin #)? v
jus t d
=2cos49-/2 id . 4
0 (cos™2¢ —2tansinf)? cos? ¢
49 +00 t J
=2 : t (=t
eos /0 (1+ {2 — 2tsin6)? (t = tanp)
+o0 t
=2 49~/ dt
o8 0o ((t—sinf)? + cos?6)?
+00 ind
= 2cos? @ - _uEsmb g, (u=1t—sinb) .

—sing (u? + cos? 0)?

Now usual integration formulae give (for a > 0),

/ U du — -1
(u? + a?)? “= 2(u? + a?)

d / - tan -+ g
an ————du = ——arctan — + —————,
(u? + a?)? 2a? a  2a2%(u? + a?)
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so that I(0) equals

( ) A ( -1 +00
I1(0) =2cos™ 0 [}
2(u? +cos?0)2]_ o
s 0{ 1 ¢ U n U ]+oo
sinf | ———— arctan
2 cos3 @ cos  2cos?(u? +cos?0)]_ .

=200s49<1+sin9( T + i + sin 0 )>
2 2cos30  2cos?0  2cos26

=cos*0 + wsinfcosf + Osin 6 cosd + sin H cos® 0

= cos0 + wsinfcosf + Osind cos b .

Then, I(0) + I(—0) = 2cosf(cosf + 0sinf) and we conclude by (4.44) and (4.45)

that olab
E|XY| = M(0059 + 0sin) .
T

Proof of Theorem 4.2.1

Writing U = u = W, we have by linearity
.U = (0,0) « W,
so that the discrete random field 8,U is a stationary Gaussian field whose marginal
distributions have zero mean and variance
1 049%

B0 = 3 2 (Geidx =) = 3

From Lemma 4.C.1, we hence get that for any x € 2,

B0 () = 2y 2.

and by using a similar reasoning on 6yU , we obtain (4.10).

We now consider the variance of TV(U). We have

E(TV(U)?) = ) El0:U(x)0:U(y)| +E|0.U(x)d,U(y)|
x,y€ef)

+ E|0,U (x)2:U (y)| + E|0,U(x)0,U (y)| -

Writing z = y — x and using the stationarity of VU, the quantity E(TV(U)?) can
be rewritten

MN S E|0.U(0)0,0(z)] + E|0.0(0)0,U ()|
xeN,yeQd

+E|6,U(0)0,U(2)] + E|2,U(0)0,U (2)] . (4.46)
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Each term of this sum can be written under the form E|XY| where (X,Y) is a
zero-mean 2-dimensional Gaussian vector with covariance matrix

E(X?) E(XY)
E(XY) E(Y?) )"

For the second term of (4.46) for example, we have X = 0,U(0) and Y = 0,U(z),
thus

E(XY) =E ( > Owi(—x)0yu(z — Y)W(X)W(Y))

xeN,yeN

Z&u )Oyt(z + x) =

xGQ

1
MN me (Z)
and the covariance matrix of (X,Y") is
1 a2 Tyy(z)
MN \Tyy(z) o2 ’

so that thanks to Lemma 4.C.2 we obtain

20, [ Tyy(z)
EXY|="2X. Y
| | MN Y ( gy > ’

with @(t) = tarcsint ++v1 —t? = w(t) + 1. Combining all terms arising from (4.46),
we finally obtain that

IE(TV(U)Q):% ) ( ) (4.47)

VAS]
r
+ 20,00y 0 < ( )> + oz;@ <yygz)>
Qi 0y a

and the announced result follows from

,1

Var(TV(U)) = E(TV(U)?) — (E(TV(U)))?,

which simply amounts to change @ into w in (4.47).

4.D Unimodal regression

In this appendix, we detail an algorithm to compute the distance from a signal
s=(s(1),s(2),...,s(n)) € R" to the set U of unimodal signals of size n, defined by

U= U CiﬁDi,

1<i<n
where C; ={peR", p(1) <p(2) <...<p(0)}
and D; ={peR", p(i) = p(i+1) > ... > p(n)}

N
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(with the natural convention Cy = D,, = R"). The algorithm we use is due to
Frisen [Frisen 1986]. It is based on the fact that U can also be written

U= U CinDiyr,

1<is<n—1

which entails d(s,U) = min;<;<,—1 d; with

2 _ ‘ a2
d; = pecrg;ggmllp sl
7 n
= mi k) — s(k))? + mi k) — s(k))? .
gggjk:l(p( ) —s(k)) Ao k;H(Q( ) —s(k))

These two monotone regression problems are independent, and can be solved
in time O(n) using the simple Pool Adjacent Violators algorithm described in
[Ayer et al. 1955] (see Algorithm 4). Thus, the computation of d(s,U) can be real-
ized in time O(n?) (Algorithm 5). Note that in fact the unimodal regression problem
can be solved in time O(n) with a more sophisticated algorithm (see [Stout 2008]),
but considering the small value of n we use in Subsection 4.5.3 (n = 20), the gain
obtained with this algorithm would be negligible compared to other steps (e.g.,
Fourier transforms) of the deblurring process.

4.E Oracle deconvolution filter

Consider a blurry and noisy image v = k * ug + n, obtained from an image ug
after a convolution by a kernel x and the addition of a Gaussian white noise n with
standard deviation 2. In this appendix, we show how to compute the oracle kernel
ko which provides, in average with respect to n, the best linear estimate of uy that
can be computed from v. This oracle kernel is defined by

ko = argmkin E (HUO — k(K *up+ W)H%) , (4.48)

where W is a Gaussian white noise with variance o2

. The argmin can be taken
over various kernel spaces, here we consider the set of kernels obtained by rotating

a radial linearly interpolated profile, that is

vEeQ, k(&) = r(LIENIEN — 1) + r(TIEM) (1€ — LIEN)

where (r(0),...,7(d — 1)) € RY,

€ = 2a- 12 ((53) + (3)) .

and [t| and [t] denote respectively the lower and upper integer part of t € R (we
also set k(€) = 0 when |€] > d — 1). This interpolation formula naturally involves
the disjoint subsets

QG ={tecQl<|¢<l+1}. (4.49)
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Algorithm 4: Monotone regression [Ayer et al. 1955]
e Inputs: se R", e e {-1,1}

e Output : non-decreasing (case € = 1) or non-increasing (case

e = —1) regression p of s.
o k1
e Foreachi=1,...,n

> o <« s(1)
> ng<— 1
> While & > 1 and (M—%)sﬂ)

Nk—1 ng
© Okg—1 < Og—1 + O

CNp—1 < Np—1 + N

cke—k—-1
> k—k+1
o — 1
e Forl =1,... k, repeat n; times the steps
> p(i) < oy
>i—i+1

Algorithm 5: Unimodal regression distance [Frisen 1986]
e Input: s e R"”
e Output: d(s,U)
e Foreachi=1,...,n

> p < non-decreasing regression of (s(k))1<k<i

> ¢ < non-increasing regression of (s(k))i+1<k<n
n—k—1

e S (s - k)’ + S (s + 1+ ) — q(k)?
k=1

k=1

e return mind;.
7
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Since W is a white Gaussian noise, the cost function of (4.48) can be written
luo — k= s x w3 + o* MN|[K|[3

1 . o .
= S 1G@ ()11~ HERE)P + 2 MNIEE)? (4.50)

£eq)
which, when k is radial and when & is supposed to be symmetrical, transforms into

2

d—1
DS ()P (1 ~ K(E)r(D(I + 1~ [€]) — s(E)r(l + 1] - z>>

=0 geﬁl
2
+ 02MN<T(Z)(Z +1— &) +r+1)(& - 1)> .

This is a quadratic function in r, and its unique minimum is characterized by
the vanishing-gradient condition, which can be written Ar = b, where A =
((aki))oski<a—1 and b = (b)o<i<d—1 are defined by

ag =Y (1+1—[ED2(|@©P[as @) + o> MN) + > (1€l =1+ 1)2(|6(&)*aa(€)]* + o> MN)

5651 566171
atirr = S (L+1— [€)(I&] - D(R(E)P@ ()P + o> MN)
Seaz
a1 = Y (1€l =1+ 1) = €D (&) |ao(€)* + o> MN)
566171

ajm =0 for [l—m|>1

b= (t+1—[€D* (K@ (€)*) + > (&l — 1+ 1*(Ix(€)

geﬁ, £€§z—1

@0 (&)%) -

This linear system associated to the tridiagonal matrix A can be solved with
standard numerical techniques. The solution is the oracle radial profile rg, from
which the DFT of the oracle kernel kg can be defined by

VILYE €y, ko(€) = ro(1)(1 + 1 — |€]) + ro(l + 1)(1€] 1) .

Remark: One can also consider the minimization problem (4.48) on the set of
all kernels k. It is easy to deduce from (4.50) that the corresponding oracle kernel
is given in Fourier domain by

VEeQ, k(€)=

A(&)* [uo (&)l
|£()P[uo(§)* + o> MN -

. . . NP o & | &\ !
One can notice that, making the assumption |a(§)]* = ¢ (47r (M—lg + ]\%z)) (see
the discussion at the end of Appendix A), and setting A = 02M N/c, the corre-
sponding filter is exactly the one that optimizes the criterion (4.26).
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The objective of this chapter is to discuss the possibility of direct phase analysis
or synthesis. After illustrating that direct phase synthesis is not an appropriate way
to tackle macrotexture synthesis, we propose two extensions of the random phase
texture models of Chapter 2 which can deal with more structured textures.

One important goal of this thesis was to design new models of random fields
which can be easily simulated and which are richer than the uniform random phase
models RPN and ADSN (which are unable to reproduce sharp edges). Of course,
several texture synthesis algorithms are able to deal with structured textures,
for example [Efros & Leung 1999], [Efros & Freeman 2001], [Kwatra et al. 2005], or
[Lefebvre & Hoppe 2005]. Even if these algorithms are very efficient and allow to
reproduce a large variety of textures, one common drawback is that the output
distribution of these algorithms is difficult to describe. More precisely, these algo-
rithms are motivated by a Markov model, but the properties of the output ran-
dom field are hardly examined: for example, the output of [Efros & Leung 1999]
is clearly not stationary, and even if it is sampled by a scheme that respects the
Markov assumption, the local specification cannot be made explicit (due to the ap-
proximation of the Gibbs sampling). Notice however that the authors of the later
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article [Levina & Bickel 2006] proved the consistency of this algorithm in a resam-
pling framework (based on some assumptions on the input texture and provided
that the size of the observation grows to infinity).

It is actually a difficult (and still open) problem to design a texture synthe-
sis algorithm that truly respects a random model, and still allows for macrotex-
ture synthesis. In this chapter, we will tackle this problem by pursuing the works
of [Van Wijk 1991], [Kwatra et al. 2005] and [Galerne et al. 2011b]. Let us recall
that the RPN model is based on a very transparent analysis/synthesis pipeline: the
Fourier modulus is extracted, and the phase component is replaced by a uniform
random phase. In other words, we sample according to the maximum entropy dis-
tribution for a fixed Fourier modulus. Therefore, one can hope to improve the RPN
model by preserving more than the Fourier modulus. But the questions are then:
which additional relevant features can be extracted? and is it possible to sample a
texture which preserves these new features?

A naive approach is to search for these features directly in the phase information.
But, because of its link to spatial translations, the direct analysis of the phase
information is difficult. In particular, in the circular framework, we will show in
Subsection 5.1.1 that no relevant phase constraint can be drawn only from the
stationarity assumption. A way to represent the phase up to the spatial translations
is to consider the phase of the bispectrum, as mentioned in Subsection 5.1.2, but
we will see that the bispectrum data are too large (which makes it very difficult
to handle in practice), and that the preservation of the whole bispectrum does
not leave any room for innovation in the textural content. Finally, we also show
in Subsection 5.1.3 that the phase coherence indices introduced in Chapter 4 do
not suffice to measure precisely the plausibility of a texture image in the uniform
random phase model.

Therefore, in the lack of a simple richer extension of the RPN algorithm, we
explored variants of the ADSN model. The advantage of this approach is that it can
rely on several results given for Poisson spot noises in [Galerne 2010], and that it
allows for easy experiments. In Section 5.2 we derive a local spot noise model which
allows to resynthesize a given exemplar texture by preserving its local aspect. This
model is not stationary, but is able to reproduce non random phase features, thus
demonstrating the benefit of relaxing the stationarity constraint in the Gaussian
model.

In Section 5.3, we also propose a general methodology for macrotexture synthe-
sis, by defining bi-level models which consist in a stationary low-resolution compo-
nent on which textural details are added. According to the observation that any
texture, seen from sufficiently far away, can be considered as a microtexture, the
low-resolution component can be synthesized with an ADSN field. Then, based
on this coarse synthesis, fine-scale details may be added using a kind of texture
refinement [Lefebvre & Hoppe 2005], [Chainais et al. 2011]. Here, this refinement
step is emulated with a local patch-based operator inspired by [Kwatra et al. 2005].
The resulting algorithm (which corresponds only to a single instance of the bi-
level model) is able to synthesize macrotextures and still has clear mathematical
guarantees.
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5.1 Phase Sensitive Texture Analysis

The main objective of this section is to illustrate the difficulty of incorporating the
phase information in by-example texture synthesis. Our original idea was to seek
simple extensions of the RPN model that can preserve something more than the
modulus information. A first step, that is exposed in Subsection 5.1.1 was to un-
derstand more precisely the phase constraints that are imposed by the stationarity
assumption. We will show in particular that these phase constraints are actually
very weak and cannot inspire us to address direct synthesis of the phase informa-
tion. Seeking other phase analysis tools, we turned to the bispectrum phase, which
is exposed in Subsection 5.1.2. We will see that it is indeed more relevant in the
phase analysis of texture images (because it is invariant to spatial translations),
but also that it is much more redundant than the DFT phase so that its practical
use is made even more intricate. In Subsection 5.1.3, we illustrate that the phase
coherence indices of Chapter 4 do not suffice to measure the plausibility of a texture
image in the RPN model.
In this section,
©=7Z/MZ x7Z/NZ

will denote a periodic rectangular discrete domain of size M x N.

5.1.1 Phase Information and Stationarity

In this subsection, we justify the difficulty of direct phase analysis, and clarify the
impact of stationarity in the phase constraints of circular stationary random fields.

We recall again that the phase of an image u : © — R is the argument ¢ of
its discrete Fourier transform @ = |ae’. It is thus an angular function ¢ : © — T
(where T = R/277Z) which satisfies p(—&) = —p(&). If 4(&) # 0, the corresponding
phase coefficient ¢(€) is uniquely defined modulo 27 whereas any value can be
chosen if 4(&) = 0.

A first naive difficulty is that the visualization of the phase information suffers
from the fact that the angular values are wrapped onto R/27Z. Indeed, in practice,
when visualizing the phase information of a natural image, one usually computes
the phase values p(€) € [—m,7[. Actually, algorithms exist for unwrapping the
phase information [Ghiglia & Pritt 1998] but they become inefficient when dealing
with too irregular phase functions.

But the main difficulty of the phase information is that it is indeed very ir-
regular because of its link with spatial translations: a translation of the image in
spatial domain corresponds in Fourier domain to the addition of a linear function
(sometimes called ramp function) & — (v, €) to the phase function (where v is the
translation vector). If the vector v is large, the addition of the ramp function com-
pletely changes the behavior of the phase function, even in the case of a very simple
image (for example an elementary shape like a disc or an elongated blob). If one
considers images obtained as addition of several elementary shapes, the situation is
even worse because the computation of the phase information does not respect the
addition.
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This link between phase and translations has some consequences on the structure
of the phase component of circular stationary random fields. For example, the
following result was proved in [Matsubara 2007]: if the random field F' : @ — R
with phase ¥ has a distribution that is invariant to the subpixel translations of ©
(defined by (4.22)), and if &, ¢ are two linearly independent frequencies such that
F(¢) and F(¢) are almost surely non zero, then the corresponding phase coefficients
P(€), ¥(¢) are necessarily independent and uniform on T.

With the underlying desire to synthesize plausible texture phase functions, it
may seem interesting to precise this result by looking for necessary and sufficient
phase constraints that ensure the stationarity of the random field. Actually, the
following theorem brings a disappointing answer to that question.

Theorem 5.1.1. Let F : © — R? be a random field. Then F is circular stationary
if and only if F' has the same distribution as F(V + ) where V follows the uniform
distribution on © and is independent of F.

Proof. Let us assume that F' and F(V + -) have the same distribution, where V
is independent of F' and follows the uniform distribution on ©. The random field
F(V + ) is circular stationary because for each v € O, (V, F) has the same distri-
bution as (V + v, F) and thus F(V + -) has the same distribution as F'(V + v + -).
Therefore, F' is also circular stationary.

Conversely, assume that F' is circular stationary and that V is a random vector
which is independent of F' and has uniform distribution on ©. Since F and V are
independent, the distribution of (F, V) is the tensor product between the distribu-
tion of F' and the distribution ﬁ > veo Ov of V. Thus Fubini’s theorem gives that

for each measurable function h : R® — R,

E[A(F(V + )] = ‘g‘ SR W(F+ )] = ,;, S"E[1(F)] = E[h(F)] |

ve® ve®

so that F'(V + ) has the same distribution as F. O

The last theorem states that any random field can be made circular stationary
by applying a random translation of this domain, and also that, in distribution,
any circular stationary random field can be obtained in this way. In other words,
the phase of a circular stationary random field F' can always be understood as
the addition of itself and an independent ramp function whose gradient is chosen
uniformly in ©. This shows that the phase constraints induced by the stationarity
assumption are somehow independent with the phase constraints that are needed
to produce salient features in the spatial domain.

5.1.2 Bispectrum

One possibility to extend texture analysis to higher-order statistics is to
consider higher-order spectra, and in particular the bispectrum. We re-
fer to [Picinbono 1998], [Nikias & Mendel 1993], [Hall & Giannakis 1995] or
[Collis et al. 1998] for a detailed presentation of the higher-order spectra. Here,
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we only present basic properties of the bispectrum, and explain why it has not
proven to be useful in designing non random phase texture models.

Definition 5.1.1. Given a gray-level image u : @ — R, one can define the bicor-
relation C? : © x © — R of u by

C*(v,w) = > u(x)u(x + v)u(x + w) . (5.1)
xe©
Then, the bispectrum B : © x ©® — C of u is defined as the discrete Fourier
transform of C? with respect to both variables v, w, that is

B&,¢) = Y C*v,w)e &v—ilew) | (5.2)

v,we®

A simple calculation gives the useful formula

B(¢,¢) = a(§)u(Q)a(§ +¢) (5.3)
which establishes a link between the bispectrum and the usual DFT of .

One can first draw several remarks on this definition. First, we see that the
bispectrum indeed encodes a third-order information and in particular, in con-
trast with the Fourier modulus (or autocorrelation), it is sensitive to the symmetry
u — —u. Furthermore, the bispectrum of a real image satisfies several constraints,
for example

B(&,¢) = B((,€) ,
B(=£-¢,¢) = B(£,(),
B(§,-€—-¢) = B(&.(Q),

B(=¢§,-¢) = B(§,¢) -

Subsequently, the bispectrum is a very redundant information (much more than
the DFT which is only constrained by @(—€&) = 4(€) for real images u). Notice
that it is possible to derive subdomains of ©® x © on which the bispectrum is not
redundant [Chandran & Elgar 1994], but these so-called principal domains still oc-
cupies a considerable volume of © x ©, making the bispectrum not easy to store or
interpret.

Notice also that the modulus of the bispectrum |B| depends only on |a| so that
the real benefit of the bispectrum lies in its phase. More precisely, if ¢ is a phase

function for u, a phase function for the bispectrum is obtained as

arg(B(&,;¢)) = (&) + () — (€ +¢) - (5:4)

One can observe that if one adds a linear function to ¢, the bispectrum phase is
unchanged, which is equivalent to assert that the bispectrum is not affected by a
translation of the spatial domain. Therefore, the bispectrum phase (5.4) allows to
represent the phase in a way that is insensitive to the addition of the ramp function,
as suggested in Subsection 5.1.1, at the cost of one additional frequency variable.
The following theorem (which is a discrete version of [Jaming & Kolountzakis 2003,
Lemma 2.3]) actually shows that, up to the translation invariance, there is no loss
of information between the phase and the phase of the bispectrum.



202 Chapter 5. Random Fields with Structured Phase

Theorem 5.1.2. Let uj,us : © — R be two images having the same mean and
same Fourier modulus and such that for each frequency &, |u;(&€)| # 0. We assume
that w1 and us have the same bispectrum. Then ui and us only differ by a subpizel
translation (defined in Fourier domain by (4.22)).

Proof. Since uq, us have the same Fourier modulus, by definition (4.22) of the sub-
pixel translations, it is enough to show that the phase functions 1, @2 of uy,us
differ from a linear function on the domain

o-zn(44)<[45)

From the equality of the bispectra, setting § = p1 — 9, and from (5.4) we get that
VECe®, 0(E+C) = 0(€)+0(C) mod 2.

From this, we get that for each couple of integers & € 2,

0(€) = €16(1,0) + 20(0,1) = 27 (25 + 22} — (v,g)
where we chose M N
v = %0(1,0) s Vo = §0<0, 1) .

O]

From the result of this theorem, we see that the bispectrum does not seem to
be adapted to texture synthesis by example. Indeed, it shows that if a synthesis
algorithm preserves all the bispectrum, then it can only apply a subpixel translation
to the texture. In other words, preserving the whole bispectrum information does
not leave any room for innovation in the textural content. However, one may
still want to explore the possibilities of preserving only a part of the bispectrum.
But extracting a relevant part of the bispectrum seems at least as complicated as
extracting a relevant part of the DFT.

5.1.3 Phase Coherence of Textures

We have seen in Chapter 3 how we could perform texture synthesis using random
phase models. In this paragraph, we address the following question: is it possible
to measure a priori the performance of these synthesis algorithms on a particular
exemplar? It amounts to measure the plausibility of the exemplar in a random
phase model, or in other words, to give some justification (other than visual) of
the statement “the texture I am observing is a random phase texture”. About
the expression “random phase texture”, let us mention that one should make a
clear distinction between random phase models (which are random images whose
Fourier transform has uniform random phase) and random phase textures (which
are natural texture images that appear plausible in a uniform random phase model).

One naive approach (which will be quickly proved wrong) is to measure the
plausibility of a particular element in a fixed random model by computing the cor-
responding likelihood value. One may wonder if the plausibility of a texture in
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the ADSN model can be measured by the likelihood value obtained after the maxi-
mization of the likelihood function with respect to the model parameters (explained
in Subsection 3.1.1). Actually, one can see from the calculation given in Subsec-
tion 3.1.1 that for an observation u whose DFT does not vanish at any frequency,
the maximum value of the likelihood function in the ADSN model is equal to

H 1

£€0\{0} ‘u(é) ’

up to some multiplicative constant that does not depend on wu. It is clear that
this value does not reflect the plausibility in the random phase model, should it be
only for the reason of homogeneity (if u is multiplied by A, this value is multiplied
by )\1_|®‘), and especially because it does not depend on the phase of u. In fact, the
maximum likelihood procedure, which was designed for estimation purpose, does
not allow to measure the adequation of the fitted model to the observation. This is
confirmed by another simple remark: one would not say that 0 is a plausible sample
of N(0,1) even if it realizes the maximum likelihood of the corresponding model.

Actually, the intuitive notion of plausibility cannot be assessed only through the
random model but must rely on geometric measures that are somehow linked to
our texture perception. If one relies on the total variation to measure the texture
regularity, then one can question the plausibility of a texture in the random phase
model by using the phase coherence indices introduced in Chapter 4. Indeed, we
analyzed in Subsection 4.3.3 the values obtained with the phase coherence indices
GPC, SI and S computed over random phase fields. Precisely, we observe numeri-
cally that the distribution of the S value of a random phase field was concentrated
around the value 0.3. Therefore, an image that is plausible in the random phase
model is expected to have a low value of S. This is confirmed by the examples
of Fig 5.1 in which we gave some examples of RPN results, each time with the
corresponding value for S and TV. Notice that in contrast, the TV value does not
indicate anything about the plausibility of the texture in the random phase model.

But is the converse true?: if an image has a small value of .S, can it be considered
to be a random phase texture? Unfortunately, this is not so simple, as illustrated in
Fig. 5.2. In this figure, we propose the same experiment as in Fig. 5.1, but with non
random phase textures. Of course, textures with large scale geometry and sharp
edges (like in the first and fourth row of Fig. 5.2) will have a large value of S. But
not all the non random phase textures have such cartoon elements.

For example, the second row of Fig 5.2 exhibits a fabric texture on which the
random phase synthesis fails (because of the complicated mixtures of directions and
because this texture has a quasi-periodic salient pattern), and yet, this image has a
small value of S. This small value of S is explained by the severe oscillations of this
texture which are reflected by the high value of TV. So there exist oscillating non
random phase textures having a small value of S. One could wonder why we cannot
apply this argument on the vegetation texture of the third row of Fig 5.2. In this
case, one can observe that the phase randomization makes the TV increase more
than in the second row, so that the TV of the vegetation image is still low amongst
the TV of its phase randomizations. We can give the following explanation: in the
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S(RPN)) = 0.321
TV(RPN(u)) = 5.04 - 10°

S(RPN(u)) = 0.315
TV(RPN(u))= 2.57- 106 B

| S(RPN(u) = .209
TV(RPN(u)) = 2.88 - 10°

TV(u) = 2.77 - 10°

S(u) =1.13 S(RPN(u)) = 0.313
TV(u) = 1.24 - 10° TV(RPN(u)) = 1.28 - 10°

Figure 5.1: Some examples of random phase textures. For each row, the
original texture is shown on the left, together with a realization of the associated
random phase noise. One can see that the corresponding values of phase coherence
are quite low. Let us add that in the second example, the lighter stains on the
bottom-right is unlikely to happen in a RPN realization; but except this detail, we
can say that it is a random phase texture.
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S(u) =111 S(RPN(u)) = 0.312
TV(u) =1.99 - 10° TV(RPN(u)) = 2.17 - 106

s W T W

" e g,

1.05 S(RPN(u)) = 0.320
TV(RPN(u)) = 3.30 - 10°

S(u) =104 S(RPN(u)) = 0.303
TV(u) = 3.22 - 10° TV(RPN(u)) = 3.60 - 10°

S(u) = 311 S(RPN(u)) = 0.390
TV(u) = 0.86 - 10° TV(RPN(u)) = 1.15 - 10°

Figure 5.2: Some examples of non random phase textures. For each row,
the original texture is shown on the left, together with a realization of the associated
random phase noise. One can see that the corresponding values of S are high except
for the fabric case (second row).
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vegetation image, the TV is high because the image exhibits in several regions a
lot of small oscillations; but also, the gradient energy (in £2-norm) is higher than in
the fabric image, because large gradients are observed at the boundary of the dark
regions at the top-middle and bottom-left of the image. All in all, one must keep
in mind that the index S is related to the TV, but also to the gradient energy.

To sum up, on these examples we see that these sharpness indices affect small
values to random phase textures. But they are not sufficient to discriminate random
phase textures from the others, because a non random phase texture can have a TV
that is already large (amongst its phase randomizations) and thus a small S value.
Hence, these phase coherence indices can be used as a non random phase test for
textures, but not as a precise plausibility measure in the random phase model.

5.2 Local Spot Noise Synthesis

In the last section, we illustrated the difficulty to design simple extensions of the
RPN model that deals directly with the phase information. In this section, we will
design and study an extension of the ADSN model, benefiting on the fact that ADSN
offers larger experimental possibilities (because of the convolutive expression of spot
noise models). Since we have seen in Subsection 2.1.4 that no phase coherence can
be expected in stationary Gaussian random fields, our extension will consist of a
non-stationary Gaussian random field. It will demonstrate that non random phase
features can be better reproduced by relaxing the stationarity constraint in the
Gaussian model.

More precisely, we propose to define a local spot noise model based on the ob-
servation of a texture u : © — R?. This model allows to resynthesize the texture u
on the same domain and respects local second-order properties of the texture. The
synthesized image is a non-stationary Gaussian random field U : Q — R¢ built as
a limit when A\ — +0 of a localized discrete spot noise Uy : © — R?. In this spot
noise, the patches thrown at the position X of the Poisson process are chosen in a
spatial neighborhood of X. This local spot noise synthesis can be understood as
resynthesis of the texture conditionally to a low-frequency component.

Notice that this local ADSN lies close to the “patch Gaussian model”
of [Raad et al. 2014] but here, the patches are chosen in a spatial neighborhood
of X and not according to a patch similarity criterion. The local ADSN can also
be compared to the non-stationary Gaussian model of [Boussidi et al. 2014]; apart
from the fact that we work in a discrete framework (for rather practical reasons),
the main difference is that the spot noise kernels are directly extracted from the
exemplar, and do not belong to a parametric family.

In this section, Q < Z? is a discrete domain of size M x N and u: Q — R% is
an exemplar texture image. Let us recall that if A, B < Z?, we denote by |A| the
cardinal of A, and we set

A+B={x+y,xeAyeB},

A-B={x—-y,xecAyeB}.
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5.2.1 Local Spot Noise Model

In this subsection, we define and study the local spot noise which is obtained by
summing renormalized patches of the exemplar image found around each point of
the synthesis.

Let w < Z? be the finite domain on which patches are defined. Let D — Z? a
neighborhood of 0, which represent the research zone of the patches. This domain
w and D can have a general form, but in the following experiments we consider w to
be a disc with center 0 and radius r, and D to be a disc with center 0 and radius p.

First, let us consider the image @ :  — RY that represents the local mean value

of u, defined by
1

W=y reaa

Z u(z) . (5.5)

z€(y+w)nQ

In other words, u(y) is the average color value in the vicinity of pixel y. Next, for
each y € Z2, let us extract from u the normalized patch p,(-,y) centered on y which
is defined by

1

YN L
pu(hy) = [(y +w) n Q2
0 otherwise

(uly +h) —i(y)) ifhewandy+heQ
. (5.6)

Let us introduce a marked Poisson process (X;,T;), (i = 1) with intensity
Al - | x U(D) where | - | refers to the counting measure on Z2 and U(D) to the
uniform distribution on D. In other words, (X;) is a uniform Poisson process on Z?
with intensity A, and with independent marks T; which are uniformly distributed
on D. We can now introduce the Poisson sum defined for all x € 2 by

Sa(X) = pulx — X4, X + Ty) . (5.7)

121

It means that around each point X; we add a patch p,(-,X; + T;) taken at the
position X; + T;. Notice that the Poisson Process (X;) can be restricted to

Q=Q—-w)n(Q2—-D).

Definition 5.2.1. Given the exemplar image u :  — R?, the patch domain w,
the research domain D, and the intensity A, the local discrete spot noise (LDSN) is
defined for all x € Q by

Ur(x) — a(x) + \})\(S)\(x) —m(x)) . (5.8)

where m(x) = E(S\(x)).

We will show later that when A\ tends to 400, the random field Uy converges
towards a Gaussian random field U : Q — R, that is called local asymptotic
discrete spot noise.
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First-order moments

Grouping the points of the marked Poisson process (X;, T;) that fall on each point
of Q x D, we can write

Si(x) = Z Ni(z,t)py(x — 2,z + t) (5.9)
(z,t)eQx D

where (Nyx(z,t)),.q. p is a collection of independent random variables with distri-
bution P(i) We can thus obtain the expectation m of Sy, as

m(x) = E(S\ ZZPU —z,z+t).

ZEQ teD
Using the notation
— L o ifyeQ-w
q(y) = { lrw)nQfz : (5.10)
0 otherwise

we can give a little more explicit formula:

Z > qlz+t)(u(x +t) —u(z +t))

2EX—w te D (Q—x)

A
= i > (luxqx+t) ulx+t) — L, (qu)(x+t).
| | teDN(Q—x)
In other words,
A _
m = ﬁlp* (19((1w*q)u—1w*(qu))> , (5.11)

where the convolutions are computed on € with null boundary conditions (which
amounts to extend u, 4 and q by zero-padding to Z?). This shows in particular
that the expectation m can be computed in O(|€2|log |©2|) thanks to the DFT.

From Equation (5.9), we also get the spatial covariance of Sy, which leads to
the following result.

Proposition 5.2.1. The LDSN process defined by (5.8) has expectation u and its
covariance is given for all X,y € € by

1
I'(x,y) = Cov(Ux(x),Ux(y)) = D] > pux-zz+t)puly —2z,z+1t)"
(z,t)eQx D

- 2 i > - (u(x +t) —a(z +t)(uly + t) —a(z +t))"

| D] teD(T I O—) (z+t+w) Q|

z€(x—w)N(y—w)

This result can be rephrased by saying that the covariance is obtained as a
local average of patches cross-correlations. It also justifies the adopted patch nor-
malization (which was inspired by Subsection 3.1) at least through the marginal
covariance. Indeed, let us assume that x = y and that

(x+2w+D)u(y+2w+D)cQ.
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Then we obtain the marginal covariance of Uy(x) as

D> (ulx+t)—a(x—h+t))(u(x+t) —u(x —h+1t)"

’DH ‘ hew teD

It is an unusual estimate of the color covariance of u on x + w. But still, it indi-
cates that the normalization that was adopted for Uy is not absurd in terms of the
marginal distributions.

Gaussian limit

Theorem 5.2.1. When A — 400, Uy converges in distribution to the non-
stationary Gaussian random field U ~ N (u,T) whose first-order moments are

1

uly) = ———— u(z) ,
= orana, 2
1
I(x,y) = ]D| Z pu(x — 2,2+ t)pu(y —z,2 + t)T
(z,£)eQx D

This Gaussian random field U is called the local asymptotic discrete spot noise
(LADSN) associated to u.

Proof. One can immediately adapt the proof of Theorem 2.1.1 to the non-stationary
case (because the Poisson point process can be restricted to a finite set). O

Simulation

Now we will see that the LADSN can be directly sampled (without requiring the
heavy simulation of a high-intensity LDSN). For that, let us introduce a family
(Wi)tep of independent Gaussian white noise processes defined on €2, with mean 0
and variance 1. For each t € D, let us consider

ZWt z)pu(x — 2,z +t) .

zeQ
Notice that V4 is a Gaussian random field with mean 0 and covariance given by

Cov(Vi(x => pulx—zz+t)pu(y —z,2z+t)"

zeQ

Besides, the random fields x — V;(x) are independent. Therefore,
V(x) = u(x Z (5.12)
VIDI

is a Gaussian random field with mean @ and covariance function

Cov(Vi(x), Vi(y)) = ul)| S pulx -2z Opuly — 2,24+ 67 = T(x,y).

(z,t)eQx D
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Since the distribution of a Gaussian random field is characterized by its second-order
moments, it follows that V' is the LADSN associated to u.

We will derive from that a simple algorithm for the simulation of the LADSN.
Using the definition of the patches p,, one has

Vi (x) = Z q(z + t)Wi(z)(ulg(x + t) —ulg(z + t))
ze(x—w)N(Q—t)

— ulo(x + t) (Lo * (7e(g1a) - WA)(%)) = Lo * (m4(qitla) - W) () Ta(x + ) ,

where we use the notation m,v(x) = v(x —h) (and each time, we also precised v1lq
when we need to consider the zero-padding extension of v outside 2) . This allows
to compute V¢ through two convolutions with null-boundary conditions. And after,
one can obtain the LADSN using Equation (5.12). Notice that this last operation
certainly is the most expansive one: it is not a convolution because the white noise
processes W; are not related.

Circular analog

Notice that one can also define a circular local discrete spot noise model. When

referring to the circular model, we will use analog notations except that we add a

dot on the letters. In particular, @ will refer to the (M, N)-periodic extension of w.

Besides, the notation ® will refer to the circular convolution over the domain Q.
In the circular case, the local mean can be computed by

- 1
u=—1,0u.

|w]
Then, one can consider the normalized patches
——(aly +h) —i(y)) ifhew

VyeQ, pulhy) = Vvl
0 otherwise

(5.13)

extracted from the (M, N)-periodic extension % of u. And we can define the circular
LDSN by
Uy (x) = a(x) + L > (hulx = Xi, X + Ty) — 1in(x)) (5.14)
2 i>1
where (X;) is a Poisson process on € with intensity A and independent marks (T;)
which are uniform on D, and where the expectation of the Poisson sum is given by

AR

Dl

1D®<u—11w®u> )

@l

The covariance of Uy, is given for all x,y € Q by

F(X,Y):azzpu(xZ,Z+t)pu(yzvz+t)
teD zeQ
s O Y

teD ze(x—w)N(y—w)
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Again we can show that when A\ — 400, Uy converges to the Gaussian random field
U ~ N(4,T") called the circular LADSN associated to u.

With the same computation as above, we show that the circular LADSN can be
directly obtained by setting

5

= 3 Wa(@)pu(x—2, 2+t) = L}|(u(x+t)(1w@Wt(x))—1w®(Wt7‘_tﬁ)(x)),

zeQ)
(5.15)
where x — Wi(x), t € D are independent white Gaussian noise processes on 2 of
mean 0 and variance 1, and where 73, refers to the periodic translation of vector h.

5.2.2 Results and comments

In this subsection, we use the LADSN model to perform resynthesis of given ex-
emplar textures. We also investigate the influence of the synthesis parameters, and
discuss the invariance to the addition of a smooth component.

We only consider discrete disc domains

w={xeZ? 2+13<(r+057?}

D={xeZ ai+23<(p+05?}

where r and p are two parameters (adding 0.5 to r and p is a way to obtain discrete
discs with a more satisfying circular aspect).

Synthesis examples

Let us first consider in Fig. 5.3 and Fig. 5.4 the result of LADSN synthesis on
stationary Gaussian textures. One can notice in Fig. 5.3 that this method allows
to resynthesize a Gaussian texture in a faithful manner and also preserves a low-
frequency component. This is confirmed by the low values of the relative model
error (defined by (3.17)) obtained between the LADSN synthesis and the original
Gaussian texture. This shows that, in terms of resynthesis, the local spot noise
model is at least as rich as the stationary spot noise model that we studied in
Chapter 2. However, as for the spot noise associated to the synthesis-oriented
texton (see Section 3.3), the correlations length in the LADSN is constrained by
twice the size of the patch domain w because the LADSN covariance I'(x, y) vanishes
as soon as X —y ¢ 2w. Thus, the patch domain must be tuned as the support size
of the SOT.

In Fig. 5.5, we show examples of local spot noise associated to four real non-
stationary textures. Surprisingly enough, even if the model is only based on second-
order statistics, it still allows to reproduce local features of the texture to a certain
extent. Indeed, this model is able to preserve local orientations, and also certain
fiber structures like the ones of the radiographic image in the third row of Fig. 5.5.
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Local mean u Local mean U

Figure 5.3: Resynthesis of a homogeneous random phase texture using a
local spot noise. In this figure, we synthesized a circular Gaussian texture using
a circular LADSN (with » = p = 30), and we also computed the local mean images
corresponding to u and the realization U. Notice that U and u have similar aspect
which is confirmed by a small relative model error (RME) between the Gaussian
models associated to u and U. Besides, as one can see on the local mean images
@ and U, the LADSN preserved in a certain sense the low frequency component of
the texture.
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Original u (512 x 384) LADSN U, RME = 0.12

Original u (768 x 512) LADSN U, RME = 0.18

P

e e o a

Original u (576 x 576) LADSN U, RME = 0.18
Figure 5.4: Resynthesis of random phase textures using a local spot noise.
In this figure, one can observe three other examples of Gaussian texture resynthesis
using a circular local spot noise model. This confirms that Gaussian textures can
be resynthesized using the LADSN. Notice however that on the first and second
line, one can observe slight interference patterns in the synthesis. These patterns
disappear with a fine tuning of the parameters r and p (see Fig. 5.6 and Fig. 5.7).
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However, strongly non-Gaussian features (like very sharp edges) cannot be resyn-
thesized properly (due to the spatial mixing of patches). Besides, one can observe
in this figure that the approximation of the LADSN by the LDSN is visually satis-
factory when, for a patch domain w of radius r = 20, the mean number of impacts
per pixel exceeds 100. Therefore, even if the asymptotic simulation is more difficult
in the non-stationary case, the finite-intensity spot noise can still be considered as
a very efficient way to perform approximate simulation (as it was the case with the
DSN associated to the SOT in Section 3.3).

Influence of the parameters

In Fig. 5.6, one can observe the result of ADSN synthesis for varying size p of the
research zone D. One can see that when D increases, the local covariances are more
and more mixed so that the local orientations are less and less preserved. On the
other hand, when D is too small, the synthesis result is troubled with interference
patterns. We have not yet come to a satisfying explanation for this artefact. Let us
mention that is is also visible in certain Gabor noise textures (see auxiliary material
of [Lagae et al. 2009]).

In Fig. 5.7, one can also see the influence of the size r of the patch domain w.
Again, one can see on the covariance expression that we have I'(x,y) = 0 as soon
as X —y ¢ 2w. Since the LADSN is a Gaussian field, this entails that the samples
U(x) and U(y) are independent. In other words, the long-range interactions are
only reproduced if they are included in the local mean image u. This is confirmed
by visual inspection of the results shown in Fig. 5.7.

Concerning the parameter w, we will see that one extreme case is quite easy to
interpret. In the circular case, if w = Q, then in Equation (5.15) the local mean
image @ is constant and so are the noise images 1, ® W. Thus, we get in this case

V(x) = > (a(x +t) — u)Gy

v QHD teD

where (Gt)tep is a Gaussian white noise with mean 0 and variance 1. Therefore,
we get that V is a circular convolution of the normalized spot t, = \/ﬁ(u — )

with a spatially localized white noise, which makes this particular case very easy
to understand. In particular, if w = D = 2, then the circular LADSN matches the
classical circular ADSN.

Invariance to the addition of a smooth component

Since the patches are normalized by the local mean image u, the local spot noise
model is robust to the addition of a very smooth component, which can be observed
in Fig. 5.8. This is true provided that the patch domain w is sufficiently large so
that the smooth component will, in a certain sense be absorbed by the local mean
image u. It means that the model is able to capture local variations of the textures,
independently of local illumination changes. If the smooth component is not regular
enough, then the local autocorrelations are not preserved, as one can see in Fig. 5.9.
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u (512 x 512)

Figure 5.5: Resynthesis of non-homogeneous textures using a local spot
noise. This figure shows local spot noise synthesis results for natural texture im-
ages. From left to right, one can see the original texture u, the corresponding
LADSN U, LDSN Uy, and the local mean image u. The parameters were set to
r = p = 20, and A was chosen in order to set the mean number of impacts per pixels
to 100. Notice that the synthesis of the three first examples is quite convincing. The
model is indeed able to preserve the local orientation of the fur in the first example
and of the fiber structures of the third example. However, strongly non-Gaussian
features (such as the asymmetry of the distribution in the second case or the fiber
structures of the fourth example (mammogram image)) are not preserved.
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p =20 p =30 p =60

Figure 5.6: Influence of the size p of the research zone. In this figure, one can
see different LADSN synthesis results with a fixed patch radius » = 20 and varying
the research zone radius p. Notice that for low values of p, ringing-link patterns
appear. When p increases, the local characteristics of the texture are less and less
preserved.

(384 x 384)

r =20 r =25

Figure 5.7: Influence of the size of the patches. In this figure, one can see
different LADSN synthesis results with a fixed research zone radius p = 10 and
varying patch radius r. Notice that » must be large enough in order to preserve the
fiber structures and local orientations of the texture.
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Since the local mean image is not extracted using an orthogonal decomposition, it
may be difficult to go further and write a formal statement about the invariance to a
smooth component. However, these experiments raise an interesting question about
the invariance of our texture perception up to the addition of a smooth component.
More precisely, it would be interesting to investigate the constraints on the smooth
component s that make the images v and ' = u + s to be perceived as the same
texture (for example, in Fig. 5.9, it does not seem plausible to say that the images
u and v really represent the same texture).

Conclusion

We showed in this section that the local spot noise model could be used for resyn-
thesis of a certain class of non random phase textures. The main interest of that
preliminary work is that it allows us to better understand the limitations of non-
stationary discrete Gaussian models. The experiments of this section indeed showed
that the Gaussian model gets much richer when one relaxes the stationarity con-
straint, and in particular is able to respect non random phase features like certain
fiber structures. The main drawback of the local spot noise model is that it is not
defined as a texture model on Z2. However, in the future, extensions on Z? could
be designed by adopting the methodology presented in the next section.

5.3 Bi-Level Synthesis

In this section, we propose a methodology for texture synthesis that consists in first
synthesizing a low-resolution version of the texture, and next add the details with a
local function. We will see that this methodology allows to combine the flexibility of
the Gaussian model (for coarse scale synthesis) and the richness of non-parametric
sampling (for the refinement step).

5.3.1 Related Works

Before reviewing earlier works about multiscale texture synthesis, let us mention
that there is some kind of ambiguity in the words “multilevel”, “multiscale” or
“multiresolution”. They can refer to the progressive synthesis of textures either on
finer and finer grids (with different sampling rates) or on finer and finer levels of a
wavelet transform (with possibly different sampling rates if the wavelet transform is
decimated). In the following, we will try to make a clear distinction between these
two possible meanings.

Early attempts of multiscale texture synthesis were inspired by the recursive sub-
division algorithm for the simulation of fractional Brownian motions, which amounts
to sample the process on finer and finer grids. The one-dimensional method of
stochastic interpolation presented in [Mandelbrot & Van Ness 1968] has been used
in [Fournier et al. 1982] for rendering of stochastic surfaces, and later generalized
in [Lewis 1987] to Gaussian processes with more general covariance functions. An
undeniable advantage of these stochastic interpolation methods relies in their speed.
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U —s U u

Figure 5.8: Invariance to the addition of a smooth component. The image u’
was obtained by addition of a smooth component s to the original image u. Then,
using the exemplars u and u’, we carried LADSN synthesis with the same random
seed to obtain the images U and U’ (with » = p = 15). Notice that in this case,
the images U and U’ — s are very similar. The image s is smooth enough so that
the local autocorrelations are not affected by s.
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U —s u u’

Figure 5.9: Non-invariance to the addition of a less regular component.
The image u’ was obtained by addition of a smooth component s to the original
image u. Then, using the exemplars u and v/, we carried LADSN synthesis with
the same random seed to obtain the images U and U’ (with r = p = 15). The
corresponding results U and U’ are shown in the second row. Notice that this time,
the images U and U’ — s do not appear similar. In this case, the smooth component
is not regular enough and thus changes the local autocorrelations.
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However, these methods are only adapted to parametric covariance functions and
thus not adapted a priori to by-example synthesis.

The  authors  of  [De Bonet 1997], [Popat & Picard 1993], and
[Paget & Longstaff 1998] proposed multiscale algorithms that allow for by-example
synthesis. The author of [De Bonet 1997] uses a coarse-to-fine sampling scheme of
the Laplacian pyramid associated to the output texture; each new level obtained by
sampling the values of the exemplar pyramid that agrees at the parent coarser level.
The algorithms [Popat & Picard 1993] and [Paget & Longstaff 1998] are closer
to the subdivision methods mentioned above, because they amount to sample the
output texture on finer and finer grids, each new pixel being sampled according to
an estimated local conditional probability density function; in other words, these
algorithms amount to perform multiresolution non-parametric Markov simulation.
Unfortunately, these algorithms are much slower than [Fournier et al. 1982]
and [Lewis 1987] because the estimation of the conditional distribution based on
the coarser level is costly.

This conditional simulation step was simplified by the celebrated discovery
made by [Efros & Leung 1999] who showed that, instead of estimating those dis-
tributions, one could directly perform approximate Markov sampling by drawing
values in the exemplar texture at locations that agree with the previously sam-
pled neighboring pixels. The single-resolution algorithm of [Efros & Leung 1999]
was followed by multiresolution variants, for example in [Wei & Levoy 2000]. Sev-
eral later articles presented multiresolution texture synthesis [Wei & Levoy 2002],
[Lefebvre & Hoppe 2005], [Kwatra et al. 2005], [Han et al. 2008] but despite their
impressive efficiency for reproducing structured textures, the complexity of these
algorithms makes them hardly suited to mathematical analysis. In particular, it
may be difficult to see if the output random field truly is a stationary random
field. Wavelet representations suffer either from dependence on a grid in the case
of decimated transforms (recall our stationarity constraint) or from non-trivial in-
verse calculation (for undecimated transforms). Let us mention however that the
“texture optimization” method proposed in [Kwatra et al. 2005] is non-stationary
only because of the grid-dependent interpolation procedure chosen by the authors.
The following paragraphs build on the method of [Kwatra et al. 2005] to produce a
truly stationary texture model.

5.3.2 Bi-level Models

Here, we propose to define bi-level models in a general framework, and we will study
an instance of such models in the next subsection.

Given a blurring operator B, the associated bi-level model consists of the tex-
tures e such that the low-resolution image e, = Be is plausible in the Gaussian
model and such that the details of e can be retrieved from e;, by a well-chosen local
correction operation.

It is clear that such bi-level models encompass the Gaussian model for which we
can take B = Id. In order to illustrate that these bi-level models are richer than the
Gaussian model, recall that a texture, seen from sufficiently far away can be con-
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sidered to be a random phase texture [Galerne et al. 2011b]. This is corroborated
by the fact that the plausibility in the Gaussian model tends to increase after a
blurring operation, see Fig. 5.10. In this figure, one can see that several structured
textures can be well synthesized at low-resolution by an ADSN model. Considering
the work of Chapter 4, this can also be related to the fact that phase coherence
indices decrease with blur.

As we have seen in Chapter 3, modelling and synthesizing the low-resolution
component e, can be done in a clear and efficient way using an ADSN random
field. The main issue is thus to add the texture details in a way that respects
the low-resolution content and that allows for mathematical analysis. Certainly,
the better way to do this is to perform conditional sampling based on the low-
resolution, as mentioned in [Chainais et al. 2011] or [Boussidi et al. 2014]. The
difficulty of this approach in the example-based context is that it may be difficult
to estimate and sample this conditional distribution. Instead of that, inspired by
the work of [Efros & Leung 1999] and [Kwatra et al. 2005], we propose to emulate
texture refinement by applying a local correction operator.

Definition 5.3.1. We say that a random field V : Z?> — R? is a local function of
a random field U : Z? — R? if there exists a finite neighborhood w < Z2 of 0 and
a (deterministic) function f : (R%)* — RY such that

Vx € Z27 V(X) = f(U|x+w) :
In the following, we will write V' = f(U), with a slight abuse of notation.

In other words, f modifies the value at pixel x by taking into account the local
neighborhood of pixel x. To sum up, a bi-level model is a random field V' obtained
as a local function f of a low-resolution stationary Gaussian random field U.

The minimal case w = {0} amounts to apply a univariate function f to U, which
can be used to prescribe the marginal distribution of the random field. But more
interesting local functions are obtained by taking w to be a patch domain; in this
case f is able to apply geometric local corrections of U. We will see in the next
subsection how to derive from an exemplar a patch-based local function.

But before that, keeping with this general setting, let us give simple properties
of bi-level models. The most important one is a mathematical guarantee of textural
innovation. Let us assume that U is a stationary Gaussian random field on Z? whose
covariance function C' has a finite support S¢ (which is always the case in ADSN
synthesis as we have seen in 3). Assume also that V' is obtained by applying a local
function f to U. If x,y € Z? are sufficiently far away so that y —x does not belong
to the Minkowski sum S¢ + (w — w), then the Gaussian vectors Uy, and U}y,
are independent, and thus, so are the values V(x), V(y). More generally if A, B
are two subdomains of Z? such that

(B=A)n(Sc+w-w) =0,

then V4 and V|p are independent. This long-range independence property is a
strong guarantee of innovation in the output random field V.
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e ADSN(e ADSN(ep)

Figure 5.10: Blur and random phase textures. For each row and from left
to right, we show an exemplar texture, a realization of the corresponding circular
ADSN model, a blurred version of the exemplar (using the Gaussian kernel £, with
p = 2) and a realization of the corresponding ADSN model. One can observe that
the plausibility in the ADSN model increases when blur is added on the texture.
In the three last cases, strongly non Gaussian features that are still visible in the
blurred exemplar could be absorbed by a larger blur kernel.
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Notice also that the distribution of V' (x) is exactly the push-forward distribution
induced by the patch distribution U, and the local function f. Depending on
the local function f, this push-forward distribution can be quite complicated, but
it still connects the marginal distribution of V' with the patch distribution of U.
For example, thanks to this property, a univariate function f based on histogram
modification can be used to prescribe the marginal distribution of V.

5.3.3 A Bi-level Synthesis Algorithm

In this subsection, we give an instance of bi-level model by precising the local
function. In particular, we propose to derive from the exemplar image a patch-
based function f that can be used for the refinement step.

Let us first mention that in the following bi-level model, B represent the con-
volution by a Gaussian kernel k., of width o pixels. In general, the parameter o
should be adjusted to the exemplar texture, but, for the sake of simplicity, in the
following experiments, we always take o = 2.

As explained in the last subsection, starting from an exemplar texture
e : Q —> R? defined on a finite rectangular domain €, we first compute the low-
resolution image e, = B(e). At low-resolution, the image e, can be synthesized
using a stationary Gaussian random field

Uy : 7? — R?

as explained in Chapter 3. Next we will apply a local function to U, in order to
retrieve the textural details of the exemplar.

The local function will be obtained by composition of a few elementary patch-
based operations inspired by [Kwatra et al. 2005]. So let w = Z? be a finite neigh-
borhood of zero (the patch domain), and let

Q={xeQ|x+wcQ}

be the set of pixels having a full neighborhood in the exemplar texture. Let us
denote by px(u) = Ujx 4+ the patch of the image u that is centered on pixel x. In
order to compare patches, we will need a reference image e,y (which will be either
the exemplar e or the blurred exemplar ey).

Let us now explain the elementary local functions. If u : Z?> — R? is the
current synthesis, e is the exemplar texture, and e,y is the reference image, then
we define the “correspondence map” m : Z? — QO by

VX €72, m(x) = m(xlu, erep,w) i= Argmin [pe(w) - py(eres)| . (5.16)
yefd

In other words, m(x) is the location in £ whose neighborhood in ey ¢ has the best
patch similarity with the neighborhood of x in w. In the case where this minimum is
attained for several values y, one can choose one particular value in a deterministic
way, for example the first one in raster order. Notice that m(x) only depends on u
through the values of px(u).
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Based on this correspondence map, we can set
U(X) = e(m(x|u, efrefaw)) . (5.17)

Since v(x) only depends of the values of u in the neighborhood of x, this defines a
local function

v = fe»eref»w (u)

(we will write (v, m) = fee,.;w(w) if we want to recall also the underlying map m).
Let us emphasize (as in [Kwatra et al. 2005]) that this local function fe,,w pro-
cesses all the pixels independently which allows for parallel computation.

The overall local function will be obtained as a composition of a few elementary
local functions with decreasing patch size. These steps perform geometric correc-
tions of the texture in a more and more local manner, as illustrated in Fig. 5.11.
In the following, we will use the square patch domain of size (2s + 1) x (2s + 1),
denoted by

wast1 = {—58,...,8 x {—s,...,s}.

We will use only five local correction steps with patch domains w17, wi7, we, ws,
and ws. In order to apply the first local function to a low-resolution image, we need
to compare patches in the low-resolution exemplar ep; thus the first local function
will be fee, . Let us mention that this choice of successive corrections may seem
arbitrary but this choice must be related to the level of blur. Indeed, for the exem-
plars that we propose in the following, by observing the low-resolution version ey,
it seems reasonable to reinforce the geometry by using patches of dimensions < 17.

To summarize, after synthesizing U, from e, with a Gaussian model, we first
compute

(vaMO) = fe,eb,wn(Ub) ’

where the patch comparisons are performed at low-resolution. Then, we apply
successive local corrections at high-resolution with decreasing patch size.

(Vir, Mi7) = feewir(Vo) ,
(Vo, Mg) = fe e (Vi7) ,
(Vs, M5) = feews(Vo) ,
(Va, M3) = feews(V5) -

The output random field is then V' = V3. Eventually, all these local corrections can
be written as a composition

J = Jeews © feews © feeqws © feseqons © feepunr -

One can see that f is still a local function for the larger patch domain ws7. This
bi-level synthesis algorithm is summarized below and illustrated in Fig. 5.11.
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Algorithm: Bi-Level Synthesis

Input: Exemplar texture e.

e Get the low-resolution image: e, = kK, * €.

Synthesis at low-resolution:

up = ADSN(eyp) .

Texture refinement: apply the local function

v = f(up)

given by

= feews © feews © feews © feewnr © feepwr -

Output: Synthesized texture v.

5.3.4 Results

In Fig. 5.11, one can observe a success of bi-level synthesis on a texture that is not a
random phase texture (because of the asymmetric shady parts). At low-resolution,
the random phase synthesis is satisfactory but not perfect (because of the asym-
metry of the marginal distribution). But, as concerns the texture refinement, it is
remarkable that a few number of local functions are able to transfer the texture
details of the exemplar onto the low-resolution synthesis. Let us remark also that
the pixel maps can be more irregular than the corresponding textures, which refutes
that it is necessary to copy large portions of the exemplar to produce a convincing
texture. In Fig. 5.11, we also illustrate the importance to initialize the refinement
process with a low-resolution ADSN. Indeed, if it is initialized with a white noise
image (whose marginal distribution is the same than e), then the large-scale struc-
tures of the exemplar are lost. In other words, the geometric structures of the
synthesis are indeed prescribed by the low-frequency component.

One can observe in Fig. 5.12 and Fig. 5.13 several other results of bi-level synthe-
sis. These examples confirm that the simple patch-based operator f greatly extends
the random phase model, and is able to produce perceptually convincing results on
a wide class of non random phase textures. Unfortunately, the local function f that
we apply is still too complex to give the explicit distribution of the output random
field v;. However, some heuristics can be drawn (which corroborate the last remarks
of Subsection 5.3.2): for example, if the patches of e, are approximately uniformly
represented in the synthesis uy, then the marginal distribution of vy will be close to
the empirical marginal distribution of e.

Nevertheless, as we have seen in Subsection 5.3.2, the bi-level model has two
important assets given by the stationarity of the random field and the long-



226 Chapter 5. Random Fields with Structured Phase

v ms

Figure 5.11: Bi-Level synthesis. In the upper left, one can see the exemplar tex-
ture e (of size 108 x 99), the reference map m,.y, and the low-resolution exemplar e,
(obtained with a Gaussian kernel x, with p = 2). Just below, one can see the low
resolution synthesis u,. In the second column, one can see the progressive results of
texture refinement. In the bottom left, we also show the result v’ of the refinement
step applied on a white noise image. The correspondence maps are shown on the
third column. The output texture v is a convincing synthesis of the non random
phase texture e. Comments are given in the text.
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Successful examples of bi-level synthesis. Each row displays one
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Figure 5.13: Unsuccessful examples of bi-level synthesis. Each row displays
one failure case of bi-level synthesis. For each row, from left to right, one can see
the exemplar texture e, its low-resolution version e, the low-resolution synthesis uy,
the image vg = fee,ws(up), and the image v obtained after the successive local
corrections. In the two first cases, the output texture is more regular than the
exemplar. In the third and fourth row, the patch distribution of the exemplar
is not respected. And in the two last rows, the exemplar textures have complex
geometrical structures that cannot be represented by this model (in the last case,
the random phase hypothesis is clearly not satisfied for ep).
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Original Bi-Level Synthesis Efros-Leung

Figure 5.14: Growing garbage. From left to right, the original texture, the result
of bi-level synthesis, and the result of Efros-Leung algorithm (produced with the
online demo of [Aguerrebere et al. 2013] with patches of size 7 x 7 and a tolerance
value of 0.2). One can notice that in the result of Efros-Leung algorithm, there is a
clear spatial boundary between a subdomain where the synthesis is satisfactory and
another subdomain where the synthesis fails. Beyond this boundary, we say that
the algorithm is “growing garbage”. In contrast, the stationarity ensures that this
effect will not appear with the bi-level synthesis algorithm proposed in this section.

range independence, which are good guarantees of stability. Indeed, in contrast
to the method of [Efros & Leung 1999] (which can be tested with the online
demo [Aguerrebere et al. 2013]), bi-level synthesis is unlikely to produce a satis-
fying texture that degenerates beyond a spatial boundary. In some way, the result
with bi-level synthesis is more predictable: either the synthesis completely fails
(even on a small domain), either it works on a very large domain. We have shown
an example of this “growing garbage effect” in Fig. 5.14. As a result of this stability,
the bi-level algorithm can be used to synthesize textures on very large domains, as
one can see in Fig. 5.15. With this model, the synthesis on very large domains does
not face any theoretical obstacle but is only limited by the available computational
time.

Let us now highlight the limitations of this synthesis algorithm. Since the refine-
ment step was not built to solve a well-defined inverse problem, we are not ensured
that the patch distribution of the output texture precisely respects the one of the
exemplar. In particular, in some cases (for example in the third and fourth row
of Fig. 5.13), the algorithm will tend to over-regularize the texture. One reason is
that the comparison of noisy patches tends to favor smooth patches: for example,
as was discussed in [Newson et al. 2014], if P; and P, are two independent Gaussian
white noise processes on the same patch domain, then the expected square distance
| PL — P2||% between Py and P, is twice the expected square distance || P;||3 between
Py and 0). Another source of failure concerns textures with a complex local geome-
try as the fifth example of Fig. 5.13. The flower shapes of the exemplar (each shape
occupying approximately 32 x 32 pixel) are not retrieved by the local function f.
For such examples, it is likely that precise (multi-pass) Markov sampling would be
required to better reproduce this complex textural unit.
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Figure 5.15: Bi-level synthesis on very large domains. First and third row:
exemplar textures (of size 128 x 128). Second and fourth row: bi-level synthesis (of
size 1024 x 1024) on the right. These examples illustrate the stability of bi-level
synthesis (which comes from the model stationarity and the long-range indepen-
dence).
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Figure 5.16: Texturization. For each row, from left to right, one can see the
exemplar texture e, its low-resolution version ey, the image v = fe ¢, w7 (Up), and
the image v obtained after the successive local corrections.

Of course, this algorithm is expected to fail on textures that do not agree with
the bi-level model; for example, in the last example of Fig. 5.13, the low-resolution
exemplar is clearly not a random phase texture and thus the refinement step creates
unrealistic shapes (about that, let us mention that stochastic texture models are cer-
tainly not the best tool to deal with textures having strong physical constraints, like
images of stacked objects). Similarly, the algorithm will fail on non-homogeneous
textures like the examples presented in Fig. 5.16. In particular, one can question the
fact that the second exemplar image of Fig. 5.16 can be called texture; apart from
the completion of the circular shapes, what we expect of such an image synthesis is
not clear at all. However, the first example is more interesting because it modifies
the exemplar in such a way to obtain a homogeneous texture; this “texturization”
process raises interesting questions about the patch distribution of stationary pro-
cesses that will be discussed in the end of this thesis.

In conclusion, the purpose of this section was not to propose a universal texture
synthesis algorithm, but more to show that by simple extensions of random phase
models, one can design richer texture models that allow for a minimal mathematical
analysis. It demonstrated once again how texture modelling can benefit from the
combination of random phase models and patch-based operations. We used patch-
based local functions in the texture refinement. Future research may lead to other
ways to solve that step, which could improve the bi-level synthesis algorithm, and
also increase the mathematical understanding of such bi-level models.






CHAPTER 6

Conclusion

The following paragraphs give an overview of the main contributions of this thesis
accompanied with perspectives for future research.

6.1 Random Phase Models

In Chapter 2, we presented a unified framework for texture modelling with a par-
ticular attention given to spectral representations. In this setting, we were able to
compare several well-known stationary random models (discrete spot noise, moving-
average, autoregressive, and Markovian models). We emphasized that presenting
texture synthesis as sampling of stationary random fields defined on Z? imposes
an interesting constraint whose practical impact is a guarantee of stability for the
synthesis algorithms (thus avoiding the famous growing garbage effect encountered
with the non-stationary method of [Efros & Leung 1999]).

In this framework, we recalled the main properties of DSN models, and pursued
the works of [Van Wijk 1991], [Galerne et al. 2011b], [Desolneux et al. 2012], and
[Xia et al. 2014]. Borrowing the last and informal conclusion of [Van Wijk 1991],
we would say that "Spot noise is a hot noise" and we hope that the multiple devel-
opments given in the two first chapters of this dissertation suffice to illustrate that
it has not cooled down yet.

With the synthesis-oriented texton, we realized one of the perspective suggested
in [Van Wijk 1991]. Indeed, the SOT realizes a compact summary of a Gaussian
texture, which holds in a prescribed spatial support, and can be used for direct
spot noise synthesis. In terms of Gaussian model approximation (measured by the
optimal transport distance), the SOT outperforms the canonical (or luminance)
texton of [Desolneux et al. 2012]. We showed that, using a SOT with small support
(31 x 31), a large class of microtextures can be synthesized with a low complexity
(less than 50 operations per pixel) and with the usual benefits of spot noise synthesis
(for example the possibility of local parallel evaluations).

The main weakness of the SOT is certainly that we do not properly measure
the DSN visual convergence towards its Gaussian limit. Indeed, the efficiency of
the SOT in DSN synthesis is mainly due to the random phase initialization of the
alternating projections algorithm. If we were able to express the DSN convergence
speed as a function f(h) of the kernel h, then we could compute a SOT by opti-
mizing a functional taking into account both f(h) and the distance to the reference
Gaussian model. Some work has already be done in this direction by considering
the Kolmogorov distance between the marginal distributions. Even if it was more
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satisfactory on a mathematical point of view, it did not lead to significant improve-
ment in comparison with the original SOT, because marginal distributions do not
suffice to reflect visual convergence. The difficult question of visual convergence is
linked to the precise assessment of the plausibility in the RPN or ADSN models,
which will be discussed later.

This work on the SOT also triggered many questions about the optimal trans-
port distance between ADSN models [Xia et al. 2014], [Desolneux et al. 2015]. Our
theoretical advances were presented in Chapter 2 where, for example, we extended
this optimal transport distance to the case of stationary random fields on Z2. This
extension has not found its applicative context yet. One possible application would
be to realize a proper ADSN approximation of general Gaussian random fields de-
fined on Z2. In the gray-level case, this amounts to approximate a general covariance
function by a compactly-supported one, and thus can be seen as a generalization
of the SOT with a continuous frequency domain. Also, it could be interesting to
explore the dual approach, that is, to perform compact approximation of the con-
volution inverse of the covariance function; as shown in Subsection 2.2.4, this is
equivalent to realize a Markov approximation of the random field. The practical
impact of such a Markov approximation is not clear (because sampling a GMRF
is not easy); however, the comparison of these dual approaches may help to clarify
the concept of texture scale at least in the case of Gaussian textures.

On a more practical point of view, as explained in Subsection 3.3.3, the usual
optimal transport distance has no reason to precisely reflect our texture perception.
On the one hand, it does not reflect enough the importance of color distribution in
texture perception, as illustrated by the color correction needed in the SOT com-
putation and presented in Subsection 3.3.2. And more importantly, it does not take
into account that the human visual system is more sensitive to high frequencies,
as shown in Subsection 3.3.3. In Subsection 3.3.4, we proposed to integrate fre-
quency weights in the optimal transport distance to get a frequency balance that
complies better with our texture perception. This modified distance led to a more
robust version of the SOT. It is likely that the SOT methodology could be further
improved by minimizing functionals that could deal with the color distribution (us-
ing a Wasserstein term as in [Tartavel et al. 2014]), and even more complex terms
(related to the DSN visual convergence speed, as mentioned above).

Another promising perspective to pursue this work would be to define a con-
tinuous SOT in order to address procedural texture synthesis. This would require
adapting the SOT methodology to a continuous synthesis domain using interpola-
tion functions. This work would thus be a natural and non-parametric extension of
the methods presented in [Lagae et al. 2009] and [Galerne et al. 2012]. Considering
the very low number of impacts per pixel involved in the SOT-based spot noise
synthesis, a procedual synthesis algorithm based on a continuous SOT is expected
to perform at least 10 times faster than these two former procedural methods. One
challenge in this continuous framework is to realize a balance between the irregular
aspect of textures and the regularity of interpolation functions.

Finally, we would like to emphasize again that the mathematical benefits of the
Gaussian texture model have not been drained out yet. Beyond the availability of
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fast exact simulation scheme, the possibility of conditional simulation is certainly
under-used as regards image synthesis. In Section 3.4 we proposed a textural in-
painting algorithm based on Gaussian conditional simulation. We have seen that
this algorithm is able to fill very large holes in microtextures, with a reasonable
computation time. Adopting a texture model for the inpainted content is a good
way to prevent over-regularization of textures, which is a common drawback of
many inpainting algorithms as mentioned in [Newson 2014]. The work reported
in Section 3.4 about textural inpainting is still unachieved. Indeed, it remains to
adapt the kriging methodology to color textures, and besides, we have to explore
the algorithmic improvements that could be drawn from Markov approximations of
the model [Hartman & Hossjer 2008]. To end this paragraph, let us mention that,
considering the recent work [Raad et al. 2015], it seems that conditional Gaussian
simulation can also be used to address synthesis of more structured textures, as will
be discussed below.

6.2 Phase Coherence Indices

One main goal of this thesis was to design non random phase texture models that
would be adapted to macrotextures or at least textures presenting edge-like struc-
tures. In the beginning of this PhD, we were forced to observe that the direct
analysis or synthesis of the global Fourier phase information is a difficult problem,
as illustrated by the experiments reported in Section 5.1.

However, in Chapter 4, we have seen that the a contrario methodology al-
lows to tackle this difficult question, by comparing the TV of a given image
with the generic TV in an associated random phase model. Following the works
of [Blanchet et al. 2008] and [Blanchet & Moisan 2012], we provided a thorough
study of the phase coherence indices GPC, SI and S, with both theoretical and
practical aspects. In particular, we presented several experiments that clarify the
link between phase coherence and image quality, and confirmed that these indices
can be interpreted as sharpness indices because they are sensitive to blur, noise and
ringing artifacts. Also, in Section 4.5, we have shown that these indices could be
used to address blind deblurring based on a simple stochastic optimization scheme.
The resulting algorithm is able to deal with isotropic blur by choosing an interesting
deblurring kernel that enhances the image while keeping a limited amount of noise
and ringing.

This work on global phase coherence may be pursued in several ways. On the
probabilistic side lies the possibility to study more precisely the TV of random phase
fields. We have seen that the construction of the phase coherence indices GPC and
SI is based on the random variables TV (u,) and TV (u# W) which represent the TV
of the RPN and ADSN models, respectively. In the appendices of Chapter 4, we
proposed some significant advances on these random variables, showing in particular
that the expectation of TV(uy) can be approximated by the one of TV (uxW). The
bound given in Appendix 4.A is too rough and does not reflect the quality of the
approximation that has been observed through Monte-Carlo simulations. Since it
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has been obtained by aggregating approximations given by a Berry-Esseen theorem,
this bound could certainly be improved using more evolved results from probabilistic
ergodic theory.

Not only a further study of TV(uy) and TV(u * W) would allow to better
understand GPC and SI, but it would especially help to clarify the link between
the RPN and ADSN models. In particular, it is a major question to know if there
exists an infinite analog of RPN defined on the whole discrete plane Z2. As explained
in Subsection 2.2.3, we conjecture that the answer is no because of the Gaussian
asymptotic behavior of RPN fields [Desolneux et al. 2015] (in terms of the finite-
dimensional marginal distributions). However, since the asymptotic behavior of
TV (uy) cannot be inferred only from finite-dimensional marginal distributions, its
study could shed a new light on that question. In particular, as mentioned in
Subsection 4.3.3, the second-order moment of TV (u,) was observed in practice to
be much less than the one of TV(u = W); if we prove that this property persists
in an asymptotic framework, then we would claim a crucial asymptotic difference
between the RPN and ADSN fields.

Closer to imaging applications, the link between phase coherence and image
quality and the success obtained in blind deblurring seem to indicate that these
indices can certainly be used to address other image processing tasks. For example,
designing phase coherence measures that are localized in the frequency domain
would allow to identify the most relevant parts of the image DFT. Such localized
measures could be used to define a notion of effective resolution. Considering that
the cameras are now able to acquire images with many mega-pixels, it becomes
more and more useful to identify and extract the truly relevant content of an image.
Beyond data compression, a long-term objective on this topic is to devise innovative
adaptive reduction algorithms based on phase coherence measures. The need of
a robust and automatic algorithm to reduce an image to its significant content
is justified by the consumer need of an efficient storage and faithful printing of
pictures.

Another practical avenue of research is to design new variants of SI and S that
can be more easily interpreted and optimized. Indeed, SI and S can be computed
with closed-form formulae, and experiments show that they are somehow linked
to the image quality. But we do not fully understand why these formulae reflect
some kind of sharpness. On the contrary, when considering the TV operator, the
continuous analysis of the bounded variation functions (and in particular, the coaera
formula) helps to understand which images have a small total variation (leading to
the widely adopted denomination of “cartoon images”). It would be interesting
to derive from the indices SI or S a new simplified index which would still be
correlated to the image quality and which would have a more readable link to the
geometrical content of the image (as the one we have for TV). In this simplification,
one can also hope to gain some more analytical properties, which would allow to
integrate this new index as an efficient prior in optimization problems addressing
image restoration tasks. Notice by the way that we may not necessarily require
both convexity or smoothness since some important progress is currently made in
non-convex non-smooth optimization (as in [Bolte et al. 2013] for example).
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Finally, further research would be needed to extend the a contrario method-
ology adopted for GPC in order to measure more precisely the plausibility of a
texture image in the RPN/ADSN model. This would improve the analysis avail-
able through the GPC index because, as we have seen in Subsection 4.3.3 and
Subsection 5.1.3, a low GPC value only provides a necessary condition to be a
realization of a random phase field. To deal with this problem, we would have
to identify more precisely which geometrical details of a texture makes it non-
plausible in the Gaussian model. This question is thus related to texture percep-
tion, and stochastic geometry. Inspired by [Julesz 1981] and [Malik et al. 1999], it
seems relevant to adopt an a contrario framework based on several simultaneous
filter responses, which could profit from recent advances in extended a contrario ap-
proaches [Myaskouvskey et al. 2013]. Answering this question would define a kind
of distance to the ADSN model and thus allow for a priori evaluation of the per-
formance of ADSN synthesis. Besides, if the corresponding methodology could be
adapted to other texture models (possibly patch-based models), the corresponding
distances could be used to choose a synthesis algorithm for a particular texture sam-
ple, and could also be aggregated to compute a measure reflecting the complexity
of the texture sample.

6.3 Non Random Phase Texture Models

The phase coherence indices presented in Chapter 4 represent a significant step in
the analysis of the phase information. As concerns phase-sensitive texture synthesis,
the explorative work presented in Chapter 5 must be pursued. In other words,
it is still a widely open question to design clear texture models that allow for
efficient macrotexture synthesis while keeping strong mathematical guarantees. In
Section 5.1, we discussed the phase constraints due to stationarity, and concluded
that direct phase synthesis is not an appropriate way to tackle the problem.

Considering their success in texture synthesis, we thus tried to design texture
models that combine the benefits of spot noise models and patch-based models. In
Section 5.2, we proposed a local spot noise model that can be used for resynthesis of
non-stationary microtextures. We illustrated that this model is able to reproduce
certain non random phase features, thus showing that Gaussian models with relaxed
stationarity constraints can outperform the ADSN model. This corroborates the
findings of [Raad et al. 2014]. This work opens three perspectives.

The first perspective is to use this model in order to tackle texture analysis.
Indeed, the synthesis results show that this model is sensitive to certain local char-
acteristics of the texture that are accessible through the patches autocorrelation.
Finding a way to extract and represent these local characteristics would define local
textons that could be used for example in segmentation [Malik et al. 1999].

The second perspective is to derive from the local spot noise an extended station-
ary model on Z? that enters the framework of Chapter 2. One possibility would be
to perform synthesis of the low-frequency component, and then to add a local spot
noise with a choice of spots driven by the low-frequency component. This would
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constitute another instance of bi-level model. Again, this bi-level model inherits
the stationarity from the one of its low-frequency component.

The third perspective is to design other variants of the spot noise process that
are able to produce strongly non-Gaussian features. Of course, since a general
central-limit theorem holds for high-intensity Poisson spot noise, one must modify
the way to throw the kernel functions. One possibility is to consider a Markovian
variant in which kernels are progressively thrown onto the texture with, at each
step, a choice of kernel that depends on the previous texture state. We already have
experimented simple examples of such models (for example throwing segments in
order to reinforce the gradient magnitude) and we observed that they are undeni-
ably able to produce non-Gaussian features. However, for now, the mathematical
analysis of such Markovian spot noise processes seems difficult (for example, the
model renormalization that is required to ensure convergence in distribution is not
clear).

In Section 5.3, we also proposed to address macrotexture synthesis with a
methodology that we called bi-level synthesis. This methodology amounts to first
synthesize a low-frequency component of the texture and then add the textural de-
tails with a local refinement. In Section 5.3 we proposed an instance of bi-level model
by adopting a Gaussian model for the low-frequency component, and by applying lo-
cal corrections with a simple patch-based operation inspired by [Kwatra et al. 2005].
This bi-level model is naturally defined as a stationary texture model on Z?, and
is able to synthesize structured textures on a very large domain with a guaranteed
stability.

One could imagine several improvements of the bi-level algorithm proposed in
Subsection 5.3.3. The main weakness of this algorithm is that the local functions
were not chosen to answer a clear mathematical problem. A way to alleviate this
problem would be to allow for non-deterministic local functions, for example by
relying again on conditional simulation. Here it would be required to perform
random sampling conditioned on the low-frequency component. Not only this would
help to get an even clearer model, but this would also increase the innovation
capacity of the algorithm. Indeed, for now, the randomness only comes from the
low-resolution synthesis, and the output values are restricted to the pixel values
of the exemplar, which drasticly constrains the possibility of innovation. Besides,
this conditional step could rely on non-stationary operations, which are a relevant
way to produce geometric features, even in the Gaussian case as demonstrated by
Subsection 5.2 and [Raad et al. 2015].

Returning to the algorithm of Subsection 5.3.3, it is important (and actually
quite surprising) to notice that so few applications of the patch-based local func-
tions suffice to reproduce complex local geometric structures in a very convincing
way (despite that all the pixels are processed independently by these local func-
tions!). It confirms that the patch distribution is certainly a crucial information in
texture modelling, certainly more important than the autocorrelation, and prob-
ably as important as the responses in a filter bank. Recall that the authors of
[Varma & Zisserman 2003] and [Varma & Zisserman 2005] were led to a similar con-
clusion in texture classification. Despite the impressive synthesis results obtained
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in [Portilla & Simoncelli 2000] (which is based on an overcomplete filter bank), we
think that filter banks responses are just another way to represent the textural in-
formation, perhaps in a quite compact manner, but not very adapted to fast texture
synthesis (because analyzing and synthesizing the subband correlations is a quite
expensive operation).

We think that a promising avenue of research lies in the design of mathematical
tools to handle patch distributions. Many questions can be addressed in this sense,
for example:

1. How to compare two patch distributions? Can we build a distance on patch
distributions that complies with texture perception?

2. Do we want to respect exactly the patch distribution of the exemplar?

3. Can the patch distribution be summarized only by a few representatives?

The tree-structured vector quantization of [Wei & Levoy 2000] is a first attempt
to structure the patch space in a way that is relevant with respect to a particular
exemplar texture. Structuring the patch space can also be addressed by using adap-
tive dictionary approaches [Elad & Aharon 2006]; such approaches have already
come up on a successful synthesis algorithm in [Tartavel et al. 2014] which lies in
the “texture optimization” framework. The algorithm of [Tartavel et al. 2014] is
of particular interest because it constrains (among other things) the frequency of
use of each atom of the dictionary. This dictionary constraint may certainly be
translated into a constraint on the patch distribution.

The recent advances in the theory of optimal transportation may bring several
clues to investigate the first question above. The second question is actually easier.
Indeed, the patch distribution of a stationary random field is submitted to some
simple constraints which have no reason to be satisfied by the empirical patch distri-
bution of an exemplar (except for artificial tileable exemplar textures). Therefore,
even if we want every part of the exemplar texture to be well represented in the
synthesis, it is unreasonable to ask for exact matching of the patch distributions.
An interesting question is thus: how can we modify the target patch distribution in
order to allow for stationary synthesis? As concerns circular models, this question
is equivalent to: how much are we prepared to modify the exemplar texture in order
to make it tileable? It is clear that these questions are not well posed and may need
additional information to be answered properly.

Once the target patch distribution is modified in order to agree for stationary
synthesis, it remains to investigate how to randomly sample in the patch space. The
ideal goal would be to design a random local function that is able to sample patches
according to a prescribed distribution and conditioned by a low-resolution compo-
nent. We would like such a local function to allow very fast computations, which
seems possible at least in the case of Gaussian conditional simulation. However a
non-trivial point would be to respect the compatibilities between adjacent patches
in the synthesized texture. But, considering the successful results of bi-level synthe-
sis obtained in Subsection 5.3.4 with quite simple local functions, one could hope
for compatibilities to be partially inherited from low-resolution to high-resolution.
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RESUME

Dans cette these, on étudie la structuration des phases de la transformée
de Fourier d’images naturelles, ce qui, du point de vue applicatif, débouche sur
plusieurs mesures de netteté ainsi que sur des algorithmes rapides pour la synthese
de texture par I'exemple.

Le Chapitre 2 présente dans un cadre unifié plusieurs modeles de champs aléa-
toires, notamment les champs spot noise et champs gaussiens, en prétant une at-
tention particuliére aux représentations fréquentielles de ces champs aléatoires.

Le Chapitre 3 détaille 'utilisation des champs a phase aléatoire a la synthese
de textures peu structurées (microtextures). On montre qu’une microtexture peut
étre résumée en une image de petite taille s’intégrant a un algorithme de synthese
trés rapide et flexible via le modele spot noise. Aussi on propose un algorithme
de désocclusion de zones texturales uniformes basé sur la simulation gaussienne
conditionnelle.

Le Chapitre 4 présente trois mesures de cohérence globale des phases de la
transformée de Fourier. Apres une étude théorique et pratique établissant leur lien
avec la netteté d’image, on propose un algorithme de déflouage aveugle basé sur
I'optimisation stochastique de ces indices.

Enfin, dans le Chapitre 5, apres une discussion sur ’analyse et la synthese directe
de 'information de phase, on propose deux modeles de textures a phases cohérentes
qui permettent la synthese de textures plus structurées tout en conservant quelques
garanties mathématiques simples.

ABSTRACT

This thesis deals with the Fourier phase structure of natural images, and ad-
dresses no-reference sharpness assessment and fast texture synthesis by example.

In Chapter 2, we present several models of random fields in a unified framework,
like the spot noise model and the Gaussian model, with particular attention to the
spectral representation of these random fields.

In Chapter 3, random phase models are used to perform by-example synthesis
of microtextures (textures with no salient features). We show that a microtexture
can be summarized by a small image that can be used for fast and flexible synthesis
based on the spot noise model. Besides, we address microtexture inpainting through
the use of Gaussian conditional simulation.

In Chapter 4, we present three measures of the global Fourier phase coherence.
Their link with the image sharpness is established based on a theoretical and practi-
cal study. We then derive a stochastic optimization scheme for these indices, which
leads to a blind deblurring algorithm.

Finally, in Chapter 5, after discussing the possibility of direct phase analysis
or synthesis, we propose two non random phase texture models which allow for
synthesis of more structured textures and still have simple mathematical guarantees.
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