Role of RhoA/ROCK pathway in angiogenesis and their potential values in prostate cancer treatment

Abstract : Prostate cancer remains a major cause of mortality among males in western countries. Treatment options for metastatic castration-resistant disease remain limited. There is a continuing unmet need for new systemic interventions in patients with progressive prostate cancer. RhoA/Rho-associated protein kinases (ROCK) are key regulators of the cytoskeleton and have been implicated in PCa angiogenesis and tumour invasion. In the first study (Part I), we investigated the anti-angiogenic effects of fasudil, a ROCK inhibitor, on PCa-induced angiogenesis in vitro. Proliferation of PCa-conditioned human umbilical vein endothelial cells (HUVECs) was assessed using a bromodeoxyuridine (BrdU) assay, and migration was assessed with a wound healing assay. In vitro angiogenesis of PCa-conditioned HUVECs was evaluated by tube formation and a spheroid sprouting assay. Fasudil inhibited PCa-induced endothelial cell proliferation, and also decreased PCa-induced endothelial cell migration. In the in vitro angiogenesis assay, tube formation and spheroid sprouts were significantly inhibited at fasudil in a dose dependent manner. Western blotting results showed that expression of phosphorylated myosin phosphatase target subunit 1 (MYPT-1) was significantly lower after fasudil treatment, confirming that fasudil inhibited ROCK activity in these model systems. In the second study (Part II & III), we evaluated RhoA expression and activity in a total of 34 paraffin embedded and 20 frozen prostate specimens, respectively, obtained from 45 patients treated with radical prostatectomy for clinically localized cancer. The expression patterns of RhoA were tested by immunohistochemical staining and Western blotting, and further compared between the tumour centre, tumour front and distant peritumoral tissue. RhoA activity was assessed by G-LISA. Our results showed an increasing gradient of expression from the centre to the periphery of index tumour foci. RhoA expression was indeed significantly higher at the tumour front as compared to tumour centre, using immunohistochemistry (p=0.001). Gleason score was significantly higher in the patients with higher RhoA expression in both the tumour front and tumour centre (p=0.044 and 0.039, respectively). After a median follow-up of 52 months, the rate of PSA relapse was higher in patients with a higher RhoA expression at the tumour front (62.5% vs 35%), although the difference was not significant (p=0.089). There was no association between RhoA expression and PSA, pathological stage. We also found ROCK2 expression, but not ROCK1 expression, was significantly higher in the prostate cancer tumor front. In conclusion, we found fasudil significantly inhibits the key steps of endothelial cell angiogenesis, including proliferation, migration, capillary tube formation and spheroid sprouting, in a dose-dependent manner. These effects may due to inhibition of ROCK activity induced by PCa cell secretions. We also identified higher RhoA and ROCK2 expression in human prostate tumour front. The correlation of higher RhoA expression with higher Gleason score and higher rate of cancer relapse. This indicated the association of RhoA/ROCK2 pathway with aggressiveness of prostate cancer. The insights described here may provide the foundation for novel therapeutic approaches targeting RhoA/ROCK pathway to inhibit angiogenesis and clinically aggressiveness of PCa. Fasudil may be a useful anti-angiogenic agent and should be investigated further for its potential role in PCa treatment.
Complete list of metadatas

Cited literature [224 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01195989
Contributor : Abes Star <>
Submitted on : Wednesday, September 9, 2015 - 3:58:06 PM
Last modification on : Tuesday, October 15, 2019 - 1:06:33 AM
Long-term archiving on : Monday, December 28, 2015 - 10:54:03 PM

File

va_Chen_Weihua.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01195989, version 1

Collections

Citation

Weihua Chen. Role of RhoA/ROCK pathway in angiogenesis and their potential values in prostate cancer treatment. Tissues and Organs [q-bio.TO]. Université René Descartes - Paris V, 2014. English. ⟨NNT : 2014PA05T047⟩. ⟨tel-01195989⟩

Share

Metrics

Record views

328

Files downloads

624