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Abstract/Résumé

English:

We experimentally study the �uctuations of Brownian micro-particles trapped with optical
tweezers arranged in various spatial con�gurations. We give a general description of the experi-
mental set-up and detail four di�erent experiments we conducted. We �rst use a single particle
in a double-well potential to model a two-state memory system. We verify the Landauer prin-
ciple on the minimal energetic cost to erase one bit of information at the quasi-static limit,
and we use a detailed version of a �uctuation theorem to retrieve the expected energetic bound
at any speed of the memory erasure procedure. We then use two particles in two di�erent
traps to study the hydrodynamic interactions between two systems kept at di�erent e�ective
temperatures. Contrary to what was previously observed, we show that the sol-gel transition of
gelatine does not provide any anomalous �uctuations for the trapped particle when the sample
is quenched below geli�cation temperature. Therefore, this system is not a good candidate
to study e�ective temperatures. We show however that an e�ective temperature is created
when a well chosen random noise is added on one trap position. We demonstrate that the
random forcing on one particle induces an instantaneous correlation between the two particles
motions, and an energy exchange from the virtually hot particle to the cold one, which is in
equilibrium with the thermal bath. We show a good agreement between the experimental data
and the predictions from an hydrodynamic coupling model. Finally, we describe the use of
micro�uidic channels to create a shear �ow at the micron size, and we discuss the possibility
to interpret the force due to the shear �ow in terms of an e�ective temperature by testing a
�uctuation-dissipation relation.
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Résumé

Français :

Nous avons étudié expérimentalement les �uctuations de micro-particules browniennes piégées
à l'aide de pinces optiques dans un réseau de puits de potentiels voisins. Nous donnons un
descriptif général du montage expérimental, puis détaillons quatre utilisations di�érentes du
système. Nous avons d'abord utilisé une unique particule dans un double puits de potentiel
pour modéliser un système mémoire à deux niveaux, avec lequel nous avons véri�é le principe
de Landauer sur le coût minimal en énergie pour l'e�acement d'un bit d'information, dans la
limite quasi-statique. Nous avons également appliqué une version détaillée d'un théorème de
�uctuation à la procédure d'e�acement de l'information pour retrouver la limite énergétique
attendue, quelle que soit la vitesse de la procédure d'e�acement de l'information. Nous avons
ensuite étudié l'interaction hydrodynamique entre deux particules dont l'une est soumise à une
température e�ective. Nous avons montré qu'il n'y a pas de �uctuations anormales lors de
la transition sol-gel de la gélatine, contrairement à ce qui avait été observé précédemment, et
que ce système ne pouvait donc pas être utilisé pour étudier des températures e�ectives. En
revanche, nous avons montré que l'ajout d'un forçage aléatoire bien choisi sur la position d'un
piège créait une température e�ective pour la particule piégée. Nous avons montré qu'un tel
forçage d'une des particules était à l'origine d'une corrélation instantanée des mouvements des
deux particules, et s'accompagnait d'un échange de chaleur de la particule virtuellement chaude
à la particule froide en équilibre avec le bain thermique. Nous avons obtenu un bon accord
entre les données expérimentales et les prédictions d'un modèle de couplage hydrodynamique.
En�n, nous décrivons l'utilisation de canaux micro�uidiques pour réaliser un écoulement cisaillé
à l'échelle micrométrique, et nous discutons de la possibilité d'interpréter un cisaillement en
terme de température e�ective en testant une relation de �uctuation-dissipation.
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Introduction

At the micro-scale, thermal agitation plays an important role. Even when a �uid is at rest
from the macroscopic point of view, its microscopic molecules are constantly moving in random
directions. For example, in a still glass of water at room temperature the water molecules have
an average instantaneous speed of� 500 m� s� 1. This e�ect is visible on bigger scales as any
object immersed in a �uid may be shifted by the collisions with the �uid's molecules. As a
consequence, any immersed particle will randomly di�use in the �uid, if its size is not too big
compared to that of the �uid's molecules (typically a few Å). An example of such a di�usion is
shown in �gure 1. It represents the 2D positions of the center of mass of a1µm-radius sphere
in water at room temperature, recorded for10 s.

-1 0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

X (µm)

Y
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µm
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Figure 1: Example of the 2D displacement of a spherical particle (radiusR = 1 µm), in water
at room temperature. The trajectory is10 slong, with an aquisition rate of1000 Hz.

This e�ect has been known for a very long time: in �De rerum natura�, the Roman poet
Lucretius already noted that tiny dust particles suspended in air move in multiple directions
in the absence of macroscopic �ow [1]. In 1828, Robert Brown observed with a microscope
the random motion of pollen grains suspended in water [2]. At the beginning of the twentieth
century, what is now called �Brownian motion�, was studied by physicists like Einstein [3],
Smoluchowski [4], Langevin [5] and Perrin [6]. They have shown (among other things) that the

1



Introduction

motion of a free Brownian particle can be characterised by a di�usion coe�cientD:

hx(t)2i = 2Dt (1)

wherex is one position coordinate of the particle,t is the time (at t = 0 the position is chosen
to be x = 0), and h:i is an ensemble average (i.e. an average over several realisations of the
same di�usion process).
Moreover, this di�usion coe�cient is directly linked to the thermal �uctuations of the �uid:

D =
kBT

6�R�
(2)

where kB is the Boltzmann constant,T the temperature (in kelvins), R the particle's radius,
and � the viscosity of the �uid. Even today, more than a century after these works, Brownian
motion is still an active �eld of theoretical and experimental research. In particular, new
experimental tools as optical tweezers or atomic-force microscopes now allow for controlling
devices at the micro or nano-scale, and have meet an increasing interest in the past twenty
years. Simultaneously, important theoretical results have been achieved in the �eld of out-
of-equilibrium statistical physics and have opened the way to a thermodynamic approach in
micro-systems where thermal �uctuations cannot be neglected.

In this thesis, we have studied the �uctuations and interactions of1µm silica particles
manipulated with optical traps. We were motivated by the experimental possibility to use
�multiple traps�. It allows us to trap several particles in various con�gurations, that can be
linked to various theoretical questions. The manuscript is organised as follow:

1. In the �rst chapter we introduce some useful experimental and theoretical background.
We describe the physics of optical trapping, and our experimental set-up. We recall the
Langevin equation used to describe the Brownian motion of a trapped particle, de�nitions
of work and heat from the stochastic energetics framework, the Fluctuation-Dissipation
Theorem and some formulations of Fluctuation Theorems.

2. In the second chapter we test the Landauer's principle that predicts the minimal energetic
cost of erasing one bit of information. We use a single particle in a double trap to mimic
a 1-bit memory system. By applying an external force, we realise a memory-erasure
procedure, and we measure the heat dissipation associated with this logically irreversible
process. We also use a Fluctuation Theorem to directly extract the free-energy change
associated with the procedure.

3. In the third chapter, we explain why gelatin is not a good candidate to trap two nearby
particles with di�erent e�ective temperatures. We trap a single particle in gelatin that
is undergoing sol-gel transition. We show that the previously observed anomalous high
�uctuations, that could be interpreted as an e�ective temperature, are not reproducible.
In particular, we verify that the Fluctuation-Dissipation Theorem is not violated in such
a system.

4. In the fourth chapter we study the hydrodynamic interactions of two particles trapped
nearby, when one of them is randomly forced so that it shows an e�ective temperature.
We measure the particles positions correlation functions and �nd a good agreement with
predictions from an analytic model. We also measure the distributions of heat and work
exchanged between the particles and try to interpret them with an exchange Fluctuation
Theorem.
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5. Finally, in the �fth chapter, we try to use a shear-�ow to create an e�ective temperature
on one trapped particle. We describe the micro�uidic set-up used to create a shear-�ow
at the micro-scale as well as a way to mimic an �e�ective� shear-�ow with controlled
optical traps. We present some preliminary results that show a clear violation of the
Fluctuation-Dissipation Theorem for this system.
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Chapter 1
Experimental and Theoretical Background

La notion de passoire est indépendante
de la notion de trou.

Pr. Shadoko

In this chapter we give a brief overview of the physics of optical tweezers, we describe our
experimental set-up, we present the framework of stochastic thermodynamics and we recall
several results from (out-of) equilibrium statistical physics that will be useful throughout the
Thesis.

1.1 Optical tweezers

1.1.1 Theory

Optical traps (also called optical tweezers) allow for trapping and manipulating dielectric par-
ticles, with sizes from� 10µm to � 10 nm, thanks to the radiation pressure exerted by light on
matter. The �rst experimental realisation was done by Ashkin in 1969 [7], using two counter-
propagating laser beams to trap micron-sized particles. Then the technology evolved rapidly
and successfully, and optical tweezers are nowadays widely used scienti�c tools, especially in
�elds like biology, colloids physics and micro�uidic [8,9].

When a laser beam with wavelength� goes through a transparent particle, with a refractive
index nb greater than that of the surrounding mediumna, the particle senses two forces:

ˆ The scattering force, which is proportional to the beam intensity, pushes the particle in
the direction of light propagation.

ˆ The gradient force, which is proportional to the gradient of intensity, pushes the particles
toward the regions of high intensity.

In the limit case where the particle is big compared to the wavelength (Mie regime), this
e�ect can simply be understood using geometrical optics. The refraction and re�ection of the
rays directly indicate the momentum transferred to the particle. A schematic representation
is shown in �gure 1.1. The light propagates along thez direction. The orange pro�le is the
distribution of light intensity in the x direction. The black lines (� , � and 
 ) are directions

5



Chapter 1. Experimental and Theoretical Background

of propagation of light rays refracted at the interfaces between the sphere and the surrounding
medium. For the � ray the black dashed-lines indicate directions of the light rays re�ected
at the interfaces, the red arrows (FD1 and FD2

1) are forces due to the refracted rays, and the
green arrows (FR1 and FR2) are forces due to the re�ected rays. For the
 ray, the forces (not
represented) are simply obtained by symmetry, but have a smaller amplitude than for the�
ray, because the intensity is smaller in the lower half than in the upper half of the bead. In
the end, the bead senses a force in the direction of light propagationz and a force in thex
direction toward the region of maximal intensity.
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Figure 1.1: Schematic representation of the forces acting on a Mie dielectric sphere lit by a
laser beam (image reproduced from [7]). The refractive index of the beadnb is greater than
the one of the surrounding mediumna.

In the limit where the particle is small compared to the wavelength (Rayleigh regime), the
forces can be computed by treating the particle as a point dipole [10]:

Fscattering =
I 0

C
128� 5R6

3� 4

 
m2 � 1
m2 + 2

! 2

na (1.1)

whereI 0 is the intensity of the laser beam,R is the particle radius,m = nb=na is the �e�ective
index�, and C the speed of light,

Fgradient =
2��
Cna

2
r I 0 =

2�R 3

C

 
m2 � 1
m2 + 2

!

r I 0 (1.2)

where� is the particle's polarizability.
The early set-ups used mostly the scattering force to trap one particle, by pushing it against

another laser [7], against a wall, or against gravity [11]. In 1986 Ashkin and co-workers used
a highly focused beam (with a high numerical aperture microscope objective), so that the
gradient force exceeds the scattering force and the particle could be trapped with a single laser
beam [12]. In this con�guration, near the focal point, the intensity gradient counterbalances
the radiation pressure pushing the particle in the direction of light propagation, and the particle
is trapped. A schematic representation with geometrical optics is shown in �gure 1.2. We use
the same principle in our optical trap set-up.

1�D� stands for �de�ection�.
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Figure 1.2: Schematic representation of Mie dielectric sphere trapped with a highly focused
laser beam (image reproduced from [12]). The refractive index of the beadnb is greater than
the one of the surrounding mediumna. The bead is attracted toward the focal point, even
though the radiation pressure tends to push it in the direction of light propagationz.

For small displacements, the trap imposes a harmonic restoring force to the particle:

~F (x; y; z) = � kx x~ex � ky y~ey � kz z~ez (1.3)

where ~r = ( x; y; z) is the displacement of the particle with respect to the position of the
trap (which is the equilibrium position of the particle), and the ki (i 2 f x; y; zg) are the
trap's sti�nesses in di�erent directions. The force is typically in the piconewton range and
is proportional to the beam's intensity I 0. Its exact value depends on the beam and particle
shapes. Usually, the sti�nesses in the transverse directionsx and y are equal, but the sti�ness
in the direction of light propagation z is smaller. Due to the scattering force or external forces
like gravity, the position of the trap may not be exactly the focal point.

In the Mie regime the force does not depend on theR radius of the bead, but in the
Rayleigh regime the force is proportional toR3 [13]. Some experimental forces measurements
are presented in [14]. Calculations of the gradient force for any size of particle are presented
in [15]. For example, for a symmetric Gaussian beamI (r ) = I 0exp(� r 2=2w2

0), the gradient
force is given by:

F (r ) = 4 ��I 0w2
0exp

 

�
R2 + r 2

2w2
0

! "
Rr
w2

0
cosh

 
Rr
w2

0

!

� sinh

 
Rr
w2

0

!#

(1.4)

wherew0 is the beam waist, andr =
p

x2 + y2 + z2. When the displacement is small enough,
it can be rewritten F (r ) = � kr with the sti�ness:

k =
4��I 0

3w2
0

R3exp

 

�
R2

2w2
0

!

: (1.5)
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Chapter 1. Experimental and Theoretical Background

In practice, it is often easier to calibrate the optical trap by measuring directly the force or trap-
ping potential than measuring the values necessary to compute the theoretical expression. In
the following sections we describe our experimental set-up, including the calibration techniques.

1.1.2 Sample preparation

The particles we use arePolyscience Inc. silica micro-spheres of radiusR = 1:00� 0:05µm.
The commercial aqueous solution has a concentration of1010 particle � mL� 1. We usually dilute
it in bidistilled water to reduce the concentration down to� 106 particle � mL� 1 before using it.

The particle solution is contained inside a disk shaped glass cell which is designed to be
used in our custom-built optical tweezers set-up (described in the next subsection). The cell,
schematically represented in �gure 1.3, is made from a microscope slide and a glass coverslip of
thickness No. 1 (0.13 to0:16 mm). Two holes, used to �ll the cell, are drilled in the microscope
slide.
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Figure 1.3: Schematic representation of disk-shape cells used to contain the micro-particles
solution.

The cell is built using the following protocol:

ˆ Two holes separated by� 1:5 cm are drilled in a microscope slide.

ˆ A circular plastic spacer is glued on the surface of the slide using UV-curingNorland
Optical Adhesive 81(NOA-81).

ˆ The open cell is cleaned in an ultrasonic cleaner, using bidistilled water with Micro-90r

cleaning solution as a solvent. The cell is carefully rinsed with bidistilled water and dried
with a compressed air �ow.

8



1.1. Optical tweezers

ˆ A coverslip is cleaned using isopropyl alcohol (IPA) and glued to the plastic spacer using
NOA-81.

ˆ The cell is �lled with micro-spheres solutions introduced by a micropipette in one of
the holes. To avoid sedimentation of the particles, the solution is agitated before being
introduced in the cell.

ˆ The holes are sealed using Para�lm Mr . A small piece of para�lm is put over each hole,
and attached to the glass surface with the use of a soldering iron.

Usually the cells are put under a UV-lamp for a few hours after being sealed, to avoid the
presence of bacteria inside. Once the cell is sealed, it can be kept for a few weeks before the
�uid starts to evaporate signi�cantly. The cells are reusable: it is easy to remove the para�lm
sealing and the coverslip to recover an empty open cell.

The particles have a greater density than water and rapidly fall to the bottom of the cell.
They usually do not sediment completely because their surface is slightly charged negatively
and is repulsed by the negative charge of the cell's glass surfaces. The particles are small enough
to acts like Brownian particles [2] and show a random motion resulting from their collision with
the molecules of water. Hence, in the absence of trapping, the particles freely di�use in the
bottom plane of the cell.

If we want a region with a small depth where the fraction of particles will be very low, we
can add a glass step in the central region of the cell, as described in chapter 2. If we want
to work with a thermoreversible gel, we can use a microscope slide coated with Indium Tin
Oxide (ITO). The ITO coating is electrically conductive and allows us to heat the cell thanks
to Ohm's law, as described in chapter 3.

1.1.3 Experimental set-up

During the Thesis, we used di�erent variations of the same experimental set-up. We describe
here their common base that is used to create several optical traps with a chosen con�guration,
and the details of each variation are given in the following chapters.

Trap controlled by an acousto-optic de�ector

To create an optical trap, we use a Gaussian laser beam that is enlarged with the use of a
telescope and sent in a microscope objective with a high numerical aperture. The microscope
objective is an oil-immersionLeica HCX PL. APO � 63 with numerical aperture 1.4. The cell
is placed on a translational stage (in three directionsxyz) and is approached to the microscope
objective with a droplet of immersion oil (Leica �type F�). The particles are trapped near the
focal point, where the intensity of the laser is maximal. Note that the particles have a size
comparable to typical laser wavelengths, and cannot be considered to be in the Mie or Rayleigh
approximation when they are trapped.

To control the position of the trap, the laser beam goes through an acousto-optic de�ector
(AOD) from AA Opto-Electronic. The physical principle is the following: a radio frequency
signal is applied to a piezo-electric transducer, bonded to a suitable crystal. It generates an
acoustic wave that travels through the crystal at the acoustic velocity of the material and with
an acoustic wavelength dependent on the frequency of the signal. This acoustic wave acts as a
�phase grating� and the incident laser beam is di�racted by this grating. Thus, by controlling

9



Chapter 1. Experimental and Theoretical Background

the frequency of the signal sent to the AOD, we control the de�ection angle of the �rst order
di�racted beam. For a parallel beam, an angle of incidence corresponds to a position in the
focal plane of the microscope objective. Hence, controlling the frequency of the driving signal
sent to the AOD allows us to shift the position of the trap in the focal plane. Note that to shift
the trap in both transverse directionsx and y, one needs to use two orthogonal AODs.

We have three AOD devices, two to be used with a� = 1064 nm laser, and one to be used
with a � = 532 nm laser. Both AODs work with driving signals of frequencies around80 MHz.
Their e�ciency 2 is about 80 % for the central frequency and do not evolve rapidly with the
drive frequency. They enable us to rapidly change the position of the trap in the focal plane
(up to 1 MHz). The driving signal is created by a100 MHz arbitrary function generator from
Tektronix r , and its frequency is controlled by a computer generated signal.

To create multiple independent optical traps, we switch rapidly the laser between several
focal positions, thanks to the AOD. If the switching is fast enough, each trapped particle does
not have enough time to di�use away from its trap's position during the time when the laser is in
others trap's positions. This technique allows us to trap up to� 8 particles with the possibility
to change the traps con�guration at a high speed. The other usual method to create multiple
traps is the use of holographic tweezers [16�18], which allow for more complex geometries but
are limited by a refreshing rate of a few tens ofHz.
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Figure 1.4: Schematic representation of the optical traps set-up used to trap one or several silica
micro-beads. The acousto-optic de�ector (AOD) allows to change very rapidly the position of
the laser focal point where the particle is trapped. The half-wave plate (�= 2) is used to tune
the beam's direction of polarisation. �DM� is a dichroïc mirror.

A schematic representation of the set-up is shown in �gure 1.4. The particles are usually
trapped at a distanceh � 20µm from the bottom of the cell. Since the particles are trapped

2The e�ciency is the ratio of intensity in �rst di�racted order and intensity in the zero th order without
applied frequency.
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1.1. Optical tweezers

near the focal point of the microscope objective, we can use the same microscope objective to
visualise their motion.

Particle tracking

The particle's motion can be tracked directly using the image of the focal plane seen through
the microscope objective. For this purpose, we use a fastDALSA camera able to record small
images at rate of1600 Hz. To avoid storing huge �lm �les, we made a Labviewr program with
an implementation in C++ of the tracking algorithm from Daniel Blair and Eric Dufresne [19].
The algorithm is an adaptation of the IDL Particle Tracking software developed by David Grier,
John Crocker and Eric Weeks [20] which is described in article [21]. With this program we can
do �real-time� tracking and save only the coordinatesx and y of several particles over the time.

Another way to track one particle's motion, is to use a Position Sensing Diode (PS diode)
DL100-7-PCBA3. The principle is the following: for a laser beam, the trapped micro-bead
of radius R acts as a lens of focalf 1 = mR=2(m � 1)2, with m the e�ective index (m =
nbead=nmedium ). Hence, if the particle moves, it will change the direction in which the beam is
de�ected after the bead. Experimentally, we add a second laser beam, which is aligned with
the trapping laser and focused close to its focal point, and we detect the position of this laser
on the PS diode after an array of lenses. A schematic representation is shown in �gure 1.5.
The PS diode measures the relative displacement of the laser spot's centroid with respect to
its own centroid. The optical system is aligned so that in the absence of bead, the laser spot is
centred on the PS diode. When a bead is trapped, its �uctuations in thexy plane are recorded
by the de�ections of the beam on the PS diode at a rate up to20 kHz.
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Figure 1.5: Schematic representation of the optical path of the laser beam going through the
bead and detected by the position sensing diode (PS diode). For the experimental set-up,
f 2 = 23 mm and f 3 = 35 mm. Only the detection laser in represented, the bead is trapped by
another laser, which is �ltered by a dichroïc mirror before reaching the PS diode.

Even if the PS diode allows for higher acquisition frequencies, we mostly used the camera
tracking. The advantages of using a camera are the following:

ˆ It is easy to convert pixels to micrometers by using a calibration target and the beads
displacements can directly be measured inµm. Conversely, the PS diode only gives a
signal in volts which requires a more complex calibration that needs to be done for each
particle trapped.
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Chapter 1. Experimental and Theoretical Background

ˆ It is easy to track several particles with the camera, whereas it requires complex optical
set-ups with the PS diode.

1.1.4 Calibration techniques

In this section we describe the calibration used to measure the trap's sti�nessk. For simplicity
reasons, we consider only the displacement in the directionx, but the analysis can easily be
extended to a motion in the planexy.

Potential measurement

If the coordinates of the particles are measured directly in physical units (µm), one simple way
to visualise the trapping potentialU(x), is to compute the equilibrium distribution of positions
P(x). Indeed, at equilibrium P(x) veri�es the Boltzmann distribution:

P(x) / exp

 

�
U(x)
kBT

!

(1.6)

wherekB is the Boltzmann constant, andT the equilibrium temperature of the �uid in kelvins.
Then a polynomial �tting of the distribution logarithm, directly gives the potential in kBT
units.

An example of potential, compared with a quadratic �t (U(x) = kx2=2) is shown in �g-
ure 1.6a. When the set-up is correctly adjusted3, the agreement is excellent.
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(a) A single trap
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(b) One of two traps created by an AOD

Figure 1.6: Potentials measured by equilibrium position distribution estimation, for particles
trapped in water at room temperature (� 23� C). a) For a single trap. The quadratic �t has a
very good agreement with the data (herek = 12:5 pN=µm). b) For one of the two traps created
by a single laser beam switched between two positions thanks to an acousto-optic de�ector
(AOD). The potential is a bit asymmetric and the agreement with the quadratic �t is not very
good (herek = 2:31 pN=µm).

Note that when the position of the trap is switched between several positions by the acousto-
optic de�ector (AOD), the shape of the potentials is always a bit asymmetric, as shown in

3The laser beam must be parallel and well centred with regard to the microscope objective.
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1.1. Optical tweezers

�gure 1.6b. It can be understood as an e�ect of the �nite time needed to displace the beam
between the two positions: there is a residual laser intensity between the two traps, which
modi�es the trapping potentials.

There are more complicated methods to directly measure the trapping potential (for example
the one described in [22]), but this one is su�cient for simple potential shapes and only requires
a long (i.e. a few � 100000points) equilibrium measurement.

Spectral analysis

An usual method of calibration consists in measuring the Power Spectral Density (PSD) of the
bead's x-displacement [23]. The particle's motion is described by an over-damped Langevin
equation4, and at equilibrium its PSD is Lorentzian:

Sx (f ) =
4
k BT=k2

1 + f 2=f 2
c

(1.7)

with the cut-o� frequency f c (also called �corner frequency�) that veri�es f c = k=(2�
 ) where

 = 6�R� is the Stokes friction coe�cient, R is the radius of the particle, and� is the dynamic
viscosity of the �uid (which is supposed Newtonian here). The integral of the PSD (which is
equal to the variance of the signal) veri�es:

Z 1

0
Sx (f ) df = � 2

x =
kBT

k
: (1.8)

If the coordinates x are measured in physical units that can be converted to meters (for
exampleµm from the camera), the integral of the PSD allows for computing the sti�nessk
directly. Then the Stokes term
 can be derived from the value of the cut-o� frequencyf c.
Thus it is possible to work with �uids of unknown viscosity5.

If the coordinatesX are measured in arbitrary units (for example volts from the position
sensing diode), the measured PSD is given by :

SX (f ) = C 2 4
k BT=k2

1 + f 2=f 2
c

(1.9)

with C the conversion factor from arbitrary units to meters (usually for usC is in V � m� 1).
Then we need to know the Stokes term
 to be able to compute the sti�nessk and the conversion
factor C from the PSD measurement. Thus, it is not possible to work with �uids of unknown
viscosity without another calibration technique, which usually requires an active driving [24].

Experimentally, we numerically high-pass �lter the data to eliminate low-frequency noise
(we usually use �rst order Butterworth �lter with cut-o� frequency 0:1 Hz or below). Then
we compute the Power Spectral Density (PSD) using Welch's overlapped segment averaging
estimator (�pwelch� function from Matlab r ). When the system is well adjusted, the PSD is
very well �tted by a Lorentzian over a wide frequency range, as shown in �gure 1.7.

We usually use this method to calibrate the sti�nessk. The measurement of the Power
Spectral Density is also a good way to check that the system is not perturbed with external
noises (mechanical or electronic noises will typically be responsible for some peaks in the PSD).
Typical sti�nesses are in the range0:5 pN=µm � k � 50 pN=µm.

4The Langevin equation is described in the following section.
5If the viscosity is known, the cut-o� frequency gives a second independent measurement ofk that can be

compared with the one from the PSD's integral.
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Figure 1.7: Measured Power Spectral Density (PSD) of one bead'sx-displacement in water
at room temperature (� 23� C), acquired at 20 kHz with the position sensing diode. The
Lorentzian �t is in good agreement with data for frequencies� 5000 Hz(here f c = 56:0 Hz).

Corrections due to �nal distance between the bead and the bottom surface

One must be careful with the distanceh between the bead and the bottom surface of the cell.
Indeed, the Stokes friction coe�cient 
 acting on a sphere is modi�ed by the presence of

a neighbouring wall, following the Faxén corrections [25]. For the motion parallel to the wall
(which is the xy plane for us), the �rst order correction is given by [26]:


 k =
6�R�

1 � (9=16)(R=h)
: (1.10)

It means that when the particle is close to the bottom surface of the cell, the friction term
acting on it is bigger than the bulk one. For example, ifh = 10 µm and R = 1 µm, 
 k is 6 %
bigger than the bulk friction coe�cient 
 = 6�R� . In particular, in the case where we need
the value of
 to calibrate k, this correction might become important. More information about
rotational and translational Faxén corrections can be found in [27].

The oil-immersion microscope objective is also responsible for spherical aberrations de-
pending onh. It follows that the sti�ness k is lowered when the distance between the bottom
surface and the bead is increased [28]. This e�ect means thath must remain constant during
experiments (ork must be calibrated for each value ofh).

Note that the exact value of k also depends on the bead trapped (because the size and
shape can be a little bit di�erent between two beads) and the position of trapping (because of
defects of the glass or small impurities in the cell). These corrections are often small (� 5 %
on the value ofk), but can become important if the potential needs to be very well calibrated.
Conversely, the conversion factorC for measurements with the position sensing diode is very
dependent of the trapped bead and the position of trapping, and needs to be calibrated before
each measurement.
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1.2. Stochastic thermodynamics

1.2 Stochastic thermodynamics

In this section, we give a brief presentation of stochastic dynamics used to describe Brownian
motion, and its links with thermodynamics. A more complete description can be found in
Sekimoto's book �Stochastic energetics� [29]. We also summarise some results from (out-of)
equilibrium statistical physics theorems, that will be useful for us.

1.2.1 Langevin equation

The one-dimensional motion of a free Brownian particle in a �uid at equilibrium can be de-
scribed by the Langevin equation [5]:

m•x = � 
 _x + � (t) (1.11)

with x the position of the particle, _x = dx
dt its velocity, m its mass, 
 = 6�R� the Stokes

friction coe�cient ( R is the particle's radius and� is the viscosity of the �uid), and � (t) the
thermal random force due to the collisions with microscopic molecules of �uid. The motion of
the Brownian particle is described on a time much larger than the characteristic time of the
�uid molecules movements. The thermal random force is modelled by a Gaussian white noise
which veri�es:

h� (t)i = 0
h� (t)� (t0)i = 2
k BT � (t � t0)

(1.12)

where kB is the Boltzmann constant, T is the temperature of the �uid, h:i stands for the
ensemble average, and� is the Dirac delta function.

The Langevin equation can also be used to describe the Brownian motion of particles sub-
mitted to external forces in addition to the thermal random force. In this case, we assume that
even if the Brownian particle behaves in a non-equilibrium manner under an external forcing,
the environment remains in equilibrium. For example, a Brownian particle trapped by optical
tweezers will be described by the equation:

m•x = � 
 _x � kx + � (t) (1.13)

wherek is the trap sti�ness.
Finally, in the case where the characteristic time� inertia = m=
 is small compared to the

time resolution, we can neglect the inertia term and use an over-damped Langevin equation:


 _x = � kx + � (t) (1.14)

Experimentally, with silica beads of radiusR = 1 µm in water at room temperature, we have
m � 1 � 10� 14 kilogram and 
 � 2 � 10� 8 kg � s� 1. It follows that the characteristic inertia
time is � inertia � 5 � 10� 7 s which is very short compared to our acquisition times.
Moreover, for our usual sti�nesses (0:5 � k � 50 pN=µm) the resonance period of the harmonic
oscillator 10� 3 � 2�

q
m=k � 10� 4 s is always smaller than the characteristic trapping time

� trap = 2�
=k , which is in the range10� 1 � � trap � 10� 3 s.
Throughout the Thesis, we always describe our trapped Brownian particles motions with

over-damped Langevin equations, and add external forces when necessary.
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Chapter 1. Experimental and Theoretical Background

1.2.2 Stochastic work and heat

We consider a Brownian particle in a potentialU(x), described by the over-damped Langevin
equation:


 _x = �
dU
dx

+ � (t) (1.15)

Following Sekimoto [30], this equation can be seen as the �rst law of thermodynamics for
stochastic dynamics. For a small change of positiondx we can write:

0 = � (� 
 _x + � (t)) dx +
dU
dx

dx (1.16)

The term (� 
 _x + � (t)) is the force exerted by the heat bath on the system, and the termdU
dx dx

is a change of internal energy of the systemdU. Then the equation can be rewritten:

0 = �Q + d U (1.17)

where:
�Q � � (� 
 _x + � (t)) dx (1.18)

is identi�ed as the stochastic heat dissipated by the system into the heat bath.6

If we now suppose that the potential also depends on an external parameter� (controlled
by an external agent). The equation will be slightly modi�ed:

0 = � (� 
 _x + � (t)) dx +
@U
@x

(x; � )dx (1.19)

and, sincedU = ( @U=@x)dx + ( @U=@�)d� , we get:

@U
@�

d� = �Q + d U: (1.20)

The left-hand side term is then identi�ed with the work done by the external agent to the
system through the change of the variable� :

�W �
@U
@�

d�: (1.21)

Finally, in the formalism of the stochastic energetics, if we consider a system described by
an over-damped Langevin equation:


 _x = �
@U
@x

(x; � ) + � (t) (1.22)

The stochastic heat dissipated by the system into the heat bath along the trajectoryx(t)
between timet = 0 and t is:

Q0;t =
Z t

0
� (� � 
 _x) _x dt0: (1.23)

The stochastic work received by the system along the trajectoryx(t) between timet = 0 and t
is:

W0;t =
Z t

0

@U
@�

_� dt0: (1.24)

Note that is it also possible to de�ne a stochastic (trajectory dependent) entropy, but this
will not be discussed in this Thesis (see [31] for more information).

6From the equation of motion, �Q is the work done by the reaction force from the system to the heat bath.
It is identi�ed as a heat term because in classical thermodynamics a heat bath can only exchange heat with a
system.

16



1.2. Stochastic thermodynamics

1.2.3 Fluctuation-Dissipation Theorem

The Fluctuation-Dissipation Theorem (FDT) was developed in the framework of the linear
response theory. It links the linear response of a given system to a small external perturba-
tion with the �uctuation properties of the system in thermal equilibrium. A more complete
description can be found in Kubo's review [32].

The �rst example was the Einstein's relation [3], which links the di�usion coe�cient of a
free Brownian particleD to its Stokes friction term 
 = 6�R� :

D =
kBT



: (1.25)

The di�usion coe�cient is characteristic of the �uctuations of the system at equilibrium, and
the friction term is the inverse of the particle's mobility which gives the change of velocity in
response to an applied force (i.e. a perturbation). Note that the value of the auto-correlation
of the thermal random force in the Langevin equation (second line of equation 1.12) is chosen
to verify the Einstein's relation.

In the general case, one considers a physical quantityB(t) of a dynamical system, described
by an Hamiltonian H0, and one looks for the response ofB to an external perturbation f (t).
Then, the average perturbed quantityhB(t)i pert can be written at the �rst order in the pertur-
bation expansion as:

hB(t)i pert = hB(t)i unpert +
Z t

�1
R(t � s)f (s) ds (1.26)

whereh:i unpert is the average in the equilibrium system (when no perturbation is applied), and
R(t � s) is called the linear response function. Note that if the perturbation is a pulse (i.e.
f (t) is a Dirac � function), hB(t)i pert � h B(t)i unpert is directly equal to R(t).
Formally the perturbation can be written in the form of a change in the system's Hamiltonian:

� H = � f (t)A (1.27)

whereA is another physical quantity of the system (which might be equal toB).
Then, the Fluctuation-Dissipation Theorem (FDT) links the response functionR to the corre-
lation function betweenA and B:

R(t) = �
1

kBT
dCBA (t)

dt
(1.28)

where the correlation functionCBA is de�ned by:

CBA = hB(t)A(0)i unpert : (1.29)

In this thesis, the FDT will be used in situations whereB = A = x, with x the position of
the particle, and we will thus look for the response ofx to an applied forcef (t). In this case,
the FDT states:

R(t) = �
1

kBT
dCxx (t)

dt
(1.30)

Since it is often easier to measure the response to a step perturbation (i.e. f (t) is an Heaviside
function) than to an impulse perturbation, we can de�ne an integrated response function:

� (t) =
Z t

0
R(s) ds (1.31)
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Chapter 1. Experimental and Theoretical Background

which is directly given by the measuredhx(t)i pert � h x(t)i unpert when f (t) is an Heaviside step
function.
And �nally, the FDT gives:

� (t) =
1

kBT
(Cxx (0) � Cxx (t)) (1.32)

which is the expression that will be tested in chapters 3 and 5.

1.2.4 Fluctuation Theorems

Fluctuation Theorems (FT) are important non-equilibrium theorems that predict some prop-
erties of the Probability Distribution Functions (PDF) of stochastic quantities like work, heat
or entropy change, evaluated along �uctuating trajectories. There exist several formulations of
them and we only give two examples here. A more general description of Fluctuations Theorems
can be found in Seifert's review [31].

The Jarzynski Equality for the work

The Jarzynski Equality is an integral Fluctuation Theorem which was �rst introduced by
Jarzynski in the framework of Hamiltonian dynamics [33]. It was later shown to hold also
for stochastic dynamics [34�36]. It links the stochastic work received when a system is driven
from an equilibrium state to another state with the equilibrium free energy di�erence between
the two states.

If we consider a system driven by a control parameter from an equilibrium stateA to a
state B (which is not necessarily at equilibrium), the stochastic work received by the system
Wst during the procedure (which is a �uctuating quantity) veri�es:

�

exp
�

�
Wst

kBT

��

= exp

 

�
� F
kBT

!

(1.33)

whereh:i denotes the ensemble average over all possible trajectories, and the free energy di�er-
ence� F = FB � FA is the di�erence between the free energy of the system in the equilibrium
state A and the free energy that the system would have if it was at equilibrium in the stateB .

This equality is interesting because it allows for measuring an equilibrium quantity� F
by applying a non-equilibrium driving procedure to the system. It will be used (as well as a
detailed version) in chapter 2.

A detailed Stationary State Fluctuation Theorem for the heat

A detailed version of the Stationary State Fluctuation Theorem for the heat can be found
in [37]. It states that the probability to observe a given amount of heatQ� being dissipated
during the time � in a non-equilibrium steady state satis�es:

P(Q� )
P(� Q� )

= exp
� Q�

kBT

�

(1.34)

in the limit where � is large.
A modi�ed version of this detailed Fluctuation Theorem will be used in chapter 4.
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Chapter 2
Landauer's Principle

Et puis les Shadoks les plus doués pour
les mathématiques enfourchent leur
ordinateur à pédales [...] car [ils]
avaient entendu dire que plus un
ordinateur va vite, plus il donne de bons
résultats...

Jacques Rouxel

2.1 A link between information theory and thermody-
namics

The Landauer's principle was �rst introduced by Rolf Landauer in 1961 [38]. It states that any
logically irreversible transformation of classical information is necessarily accompanied by the
dissipation of at leastkBT ln 2 of heat per lost bit, wherekB is the Boltzmann constant andT
is the temperature. This quantity represents only� 3 � 10� 21 J at room temperature (300 K)
but is a general lower bound, independent of the speci�c kind of memory system used.

An operation is said to be logically irreversible if its input cannot be uniquely determined
from its output. Any Boolean function that maps several input states onto the same output
state, such as AND, NAND, OR and XOR, is therefore logically irreversible. In particular, the
erasure of information, the RESET TO ZERO operation, is logically irreversible and leads to
an entropy increase of at leastkB ln 2 per erased bit.

A simple example can be done with a 1-bit memory system (i.e. a systems with two states,
called 0 and 1) modelled by a physical double well potential in contact with a single heat bath.
In the initial state, the bistable potential is considered to be at equilibrium with the heat bath,
and each state (0 and 1) have same probability to occur. Thus, the entropy of the system
is S = kB ln 2, because there are two states with probability1=2. If a RESET TO ZERO
operation is applied, the system is forced into state 0. Hence, there is only one accessible state
with probability 1, and the entropy vanishesS = 0. Since the Second Law of Thermodynamics
states that the entropy of a closed system cannot decrease on average, the entropy of the heat
bath must increase of at leastkB ln 2 to compensate the memory system's loss of entropy. This
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Chapter 2. Landauer's Principle

increase of entropy can only be done by an heating e�ect: the system must release in the heat
bath at least kBT ln 2 of heat per bit erased1.

For a reset operation with e�ciency smaller than 1 (i.e. if the operation only erase the
information with a probability p < 1), the Landauer's bound is generalised:

hQi � kBT [ln 2 + pln(p) + (1 � p) ln(1 � p)] (2.1)

The Landauer's principle was widely discussed as it could solve the paradox of Maxwell's
�demon� [39�41]. The demon is an intelligent creature able to monitor individual molecules
of a gas contained in two neighbouring chambers initially at the same temperature. Some of
the molecules will be going faster than average and some will be going slower. By opening and
closing a molecular-sized trap door in the partitioning wall, the demon collects the faster (hot)
molecules in one of the chambers and the slower (cold) ones in the other. The temperature
di�erence thus created can be used to run a heat engine, and produce useful work. By converting
information (about the position and velocity of each particle) into energy, the demon is therefore
able to decrease the entropy of the system without performing any work himself, in apparent
violation of the Second Law of Thermodynamics. A simpler version with a single particle, called
Szilard Engine [42] has recently been realised experimentally [22], showing that information can
indeed be used to extract work from a single heat bath. The paradox can be resolved by noting
that during a full thermodynamic cycle, the memory of the demon, which is used to record
the coordinates of each molecule, has to be reset to its initial state. Thus, the energy cost to
manipulate the demon's memory compensate the energy gain done by sorting the gas molecules,
and the Second Law of Thermodynamics is not violated any more.

More information can be found in the two books [43,44], and in the very recent review [45]
about thermodynamics of information based on stochastic thermodynamics and �uctuation
theorems.

In this chapter, we describe an experimental realisation of the Landauer's information era-
sure procedure, using a Brownian particle trapped with optical tweezers in a time-dependent
double well potential. This kind of system was theoretically [46] and numerically [47] proved
to show the Landauer's boundkBT ln 2 for the mean dissipated heat when an information era-
sure operation is applied. The results described in this chapter were partially presented in two
articles [48,49], and were later con�rmed by two independent experimental works [50,51].

1It it sometimes stated that the cost is kB T ln 2 per bit written. It is actually the same operation as the
RESET TO ZERO can also be seen to store one given state (here state 0), starting with an unknown state.
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2.2. Experimental set-up

2.2 Experimental set-up

2.2.1 The one-bit memory system

The one-bit memory system is made of a double well potential where one particle is trapped by
optical tweezers. If the particle is in the left-well the system is in the state �0�, if the particle
is in the right-well the system in the state �1� (see �gure 2.1).
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Figure 2.1: Schematic representation of the one-bit memory system, made of one particle
trapped in a double well potential.

The particles are silica beads (radiusR = 1:00� 0:05µm), diluted at a low concentration
in bidistilled water. The solution is contained in a disk-shape cell, already described in sec-
tion 1.1.2. The center of the cell has a smaller depth (� 80µm) compared to the rest of the cell
(� 1 mm), see �gure 2.2. This central area contains less particles than the rest of the cell and
provides us a clean region where one particle can be trapped for a long time without interacting
with other particles.
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Figure 2.2: Schematic representation of the cell used to trap particles dispersed in water (view
from the side). The central part has a smaller gap than the rest of the cell.

The double well potential is created using an Acousto-Optic De�ector which allows us to
switch very rapidly (at a rate of 10 kHz) a laser beam (wavelength� = 1064 nm) between two
positions (separated by a �xed distanced � 1µm), as explained in section 1.1.3. These two
positions become for the particle the two wells of the double well potential. The intensity of
the laser I can be controlled from10 mW to more than 100 mW, which enables us to change
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Chapter 2. Landauer's Principle

the height of the double well potential's central barrier2. A NanoMax closed-loop piezoelectric
stage from Thorlabsr with high resolution (5 nm) can move the cell with regard to the position
of the laser. Thus it allows us to create a �uid �ow around the trapped particle. The position
of the bead is tracked using a fast camera with a resolution of108 nm per pixel, which after
treatment gives the position with a precision greater than5 nm. The trajectories of the bead
are sampled at 502 Hz. See �gure 2.3.
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Figure 2.3: Schematic representation of optical tweezers set-up used to trap one particle in a
double well potential. The Acousto-Optic De�ector (AOD) is used to switch rapidly the trap
between two positions. The NanoMax piezo stage can move the cell with regard to the laser,
which creates a �ow around the trapped particle. �M� are mirrors and �DM� is a dichroic
mirror.

The beads are trapped at a distanceh = 25 µm from the bottom of the cell. The double
well potential must be tuned for each particle, in order to be as symmetrical as possible and
to have the desired central barrier. The tuning is done by adjusting the distance between the
two traps and the time that the laser spend on each trap. The asymmetry can be reduced to
� 0:1 kBT. The double well potentialU0(x; I ) (with x the position and I the intensity of the
laser) can simply be measured by computing the equilibrium distribution of the position for
one particle in the potential:

P(x; I ) / exp

 

�
U(x; I )

kBT

!

: (2.2)

One typical double well potential is shown in �gure 2.4.

2The values are the power measured on the beam before the microscope objective, so the �real� power at
the focal point should be smaller, due to the loss in the objective.
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Figure 2.4: Double well potential measured by computing the equilibrium distribution of one
particle's positions, with I laser = 15 mW. Here the distribution is computed on1:5 � 106 points
sampled at502 Hz(i.e. a 50 min long measurement). The double well potential is well �tted
by a 6th degeree polynom.

2.2.2 The information erasure procedure

We perform the erasure procedure as a logically irreversible operation. This procedure brings
the system initially in one unknown state (0 or 1 with same probability) to one chosen state (we
choose 0 here). It is done experimentally in the following way (and summarised in �gure 2.5a):

ˆ At the beginning the bead must be trapped in one well-de�ned state (0 or 1). For this
reason, we start with a high laser intensity (I high = 48 mW) so that the central barrier is
more than 8 kBT. In this situation, the characteristic jumping time (Kramers Time [52])
is about 3000 s, which is long compared to the time of the experiment, and the equivalent
sti�ness of each well is about1:5 pN=µm. The system is left4 swith high laser intensity so
that the bead is at equilibrium in the well where it is trapped3. The potential U0(x; I high )
is represented in �gure 2.5b1.

ˆ The laser intensity is �rst lowered (in a time Tlow = 1 s) to a low value (I low = 15 mW)
so that the barrier is about 2:2 kBT. In this situation the jumping time falls to � 10 s,
and the equivalent sti�ness of each well is about0:3 pN=µm. The potential U0(x; I low ) is
represented �gure 2.5b2.

ˆ A viscous drag force linear in time is induced by displacing the cell with respect to the
laser using the piezoelectric stage. The force is given byf = 
v where 
 = 6�R� (� is
the viscosity of water) andv the speed of displacement. The bead is pushed byf and
ends always in the same well (state 0 here) independently of the initial state. Since the
force does not depend on the particle's position, we can introduce an additional potential
term � fx that tilts the double well. The tilted potential V(x; t ) = U0(x; I low ) � f (t)x is
represented in �gures 2.5b3 to 5.

3The characteristic time for the particle trapped in one well when the barrier is high is 0:08 s.
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Chapter 2. Landauer's Principle

ˆ At the end, the force is stopped and the central barrier is raised again to its maximal
value (in a time Thigh = 1 s). See �gure 2.5b6.
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(a) Laser intensity and external drag force.

�������� �� ������
��

��

����

�������� �� ������
��

��

����

�������� �� ������
��

��

����

�� ��

��

�� ��

��

��

����

�������� �� ������

��

��

����

�������� �� ������

��

��

����

�������� �� ������

��

���������������������	�
�� ���������������������	�
��

(b) Potential felt by the particle.

Figure 2.5: Schematical representation of the erasure procedure. The potential felt by the
trapped particle is represented at di�erent stages of the procedure (1 to 6). For 1 and 2 the
potential U0(x; I ) is measured. For3 to 5 the potential is constructed fromU0(x; I low ) knowing
the value of the applied drag force.

The total duration of the erasure procedure isTlow + � + Thigh . Since we keptTlow = Thigh =
1 s, a procedure is fully characterised by the duration� and the maximum value of the force
applied f max . Its e�ciency is characterized by the �proportion of success�PS, which is the
proportion of trajectories where the bead ends in the chosen well (state 0), independently of
where it started.

Note that for the theoretical procedure, the system must be prepared in an equilibrium
state with same probability to be in state 1 than in state 0. However, it is more convenient
experimentally to have a procedure always starting in the same position. Therefore we separate
the procedure in two sub-procedures: one where the bead starts in state 1 and is erased in state
0, and one where the bead starts in state 0 and is erased in state 0. The fact that the position
of the bead at the beginning of each procedure is actually known is not a problem because
this knowledge is not used by the erasure procedure. The important points are that there
are as many procedures starting in state 0 than in state 1, and that the procedure is always
the same regardless of the initial position of the bead. Examples of trajectories for the two
sub-procedures1 ! 0 and 0 ! 0 are shown in �gure 2.6.
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Figure 2.6: Examples of trajectories for the erasure procedure.t = 0 corresponds to the time
where the barrier starts to be lowered. The two possibilities of initial state are shown.
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Chapter 2. Landauer's Principle

2.3 Landauer's bound for dissipated heat

2.3.1 Computing the dissipated heat

The system can be described by an over-damped Langevin equation:


 _x = �
@U0
@x

(x; I ) + f (t) + � (t) (2.3)

with x the position of the particle4, _x = dx
dt its velocity, 
 = 6�R� the friction coe�cient ( � is

the viscosity of water),U0(x; I ) the double well potential created by the optical tweezers,f (t)
the external drag force exerted by displacing the cell, and� (t) the thermal noise which veri�es
h� (t)i = 0 and h� (t)� (t0)i = 2
k BT � (t � t0), whereh:i stands for the ensemble average.

Following the formalism of the stochastic energetics [30], the heat dissipated by the system
into the heat bath along the trajectory x(t) between timet = 0 and t is:

Q0;t =
Z t

0
� (� (t0) � 
 _x(t0)) _x(t0) dt0: (2.4)

Using equation 2.3, we get:

Q0;t =
Z t

0

 

�
@U0
@x

(x; I ) + f (t0)

!

_x(t0) dt0: (2.5)

For the erasure procedure described in 2.2.2 the dissipated heat can be decomposed in three
terms:

Qerasure = Qbarrier + Qoptical + Qdrag (2.6)

Where:

ˆ Qbarrier is the heat dissipated when the central barrier is lowered and risen (f = 0 during
these stages of the procedure):

Qbarrier =
Z Tlow

0

 

�
@U0
@x

(x; I )

!

_x dt0+
Z Tlow + � + Thigh

Tlow + �

 

�
@U0
@x

(x; I )

!

_x dt0 (2.7)

ˆ Qoptical is the heat dissipated due to the force of the potentialU0 created by the optical
traps, during the time � where the external drag force is applied (the laser intensity is
constant during this stage of the procedure):

Qoptical =
Z Tlow + �

Tlow

 

�
@U0
@x

(x; I )

!

_x dt0 (2.8)

ˆ Qdrag is the heat dissipated due to the external drag force applied during the time� (the
laser intensity is constant during this stage of the procedure):

Qdrag =
Z Tlow + �

Tlow

f _x dt0 (2.9)

4We take the referencex = 0 as the middle position between the two traps.
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2.3. Landauer's bound for dissipated heat

The duration of the barrier's height change is much longer than the relaxation time of the
particle in the trap ( � 0:1 s). So, the lowering and rising of the barrier can be considered
as a quasi-static cyclic process, and do not contribute to the dissipated heat in average. The
complete calculation can also be done if we assume that the particle do not jump out of the
well where it is during the change of barrier height. In this case, we can do a quadratic
approximation: U0(x; I ) = 1

2k(I )x2 where k is the sti�ness of the trap, which evolves in time
because it depends linearly on the intensity of the laser. Then:

hQlowering i =

* Z Tlow

0
� kx _x dt0

+

=
Z Tlow

0
�

k
2

d
�
hx2i

�
: (2.10)

Using the equipartition theorem (which is possible because the change of sti�ness is assumed
to be quasi-static), we get:

hQlowering i =
Z Tlow

0
� k

kBT
2

d
� 1

k

�

=
kB T

2
ln

 
klow

khigh

!

: (2.11)

The same calculation giveshQrising i = kB T
2 ln

�
khigh

k low

�
, and it follows directly that hQbarrier i =

hQlowering i + hQrising i = 0.
The heat dissipated due to the potential when the force is applied is also zero in average.

Indeed, the intensity is constant andU0 becomes a function depending only onx. It follows
that:

hQoptical i =
Z Tlow + �

Tlow

�
dU0

dx
dx =

�

U0(x)
� x(Tlow )

x(Tlow + � )
: (2.12)

Since the potential is symmetrical, there is no change inU0 when the bead goes from one state
to another, andhU0(x(Tlow )) � U0(x(Tlow + � )) i = 0.

Finally, since we are interested in the mean dissipated heat, the only relevant term to
calculate is the heat dissipated by the external drag force:

Qdrag =
Z Tlow + �

Tlow


v (t0) _x dt0: (2.13)

Where 
 is the known friction coe�cient, v(t) is the imposed displacement of the cell (which is
not a �uctuating quantity) and _x can be estimated simply:

_x(t + �t= 2) =
x(t + �t ) � x(t)

�t
: (2.14)

We measuredQdrag for several erasure procedures with di�erent parameters� and f max . For
each set of parameters, we repeated the procedure a few hundred times in order to compute
the average dissipated heat.

We didn't measureQlowering and Qrising because it requires to know the exact shape of the
potential at any time during lowering and rising of the central barrier. The potentials could
have been measured by computing the equilibrium distribution of one particle's positions for
di�erent values of I . But these measurements would have been very long since they require to
be done on times much longer than the Kramers time to give a good estimation of the double
well potential. Nevertheless, we estimated on numerical simulations with parameters close to
our experimental ones thathQlowering + Qoptical + Qrising i � 0:07 kBT which is only 10 % of the
Landauer's bound.
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Chapter 2. Landauer's Principle

2.3.2 Results

We �rst measured PS the proportion of success for di�erent set of� and f max . Qualitatively,
the bead is more likely to jump from one state to another thanks to thermal �uctuations if
the waiting time is longer. Of course it also has fewer chances to escape from state 0 if the
force pushing it toward this state is stronger. We did some measurements keeping the product
� � f max constant. The results are shown in �gure 2.7 (blue points).
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Figure 2.7: Proportion of success for di�erent values of� and f max , keeping constant the
product � � f max � 0:4 pN � s (which corresponds to� � vmax = 20 µm). PS quanti�es the ratio
of procedures which ends in state 0 after the barrier is risen.PS force quanti�es the ratio of
procedures which ends in state 0 before the barrier is risen.

The proportion of success is clearly not constant when the product� � f max is kept constant,
but, as expected, the higher the force, the higherPS. One must also note that the experimental
procedure never reaches aPS higher than � 95 %. This e�ect is due to the last part of the
procedure: since the force is stopped when the barrier is low, the bead can always escape from
state 0 during the time needed to rise the barrier. This problem can be overcome with a higher
barrier or a faster rising time Thigh . It was tested numerically by Raoul Dillenscheider and
Éric Lutz, using a protocol adapted from [47] to be close to our experimental procedure. They
showed that for a high barrier of8 kBT the proportion of success approaches only� 94 %,
whereas for a barrier of15 kBT it reaches� 99 %. Experimentally we de�ne a proportion of
successPS force by counting the number of procedures where the particle ends in state 0 when the
force is stopped (beforethe rising of the barrier). It quanti�es the e�ciency of the pushing force,
which is the relevant one since we have shown that the pushing force is the only contribution
to the mean dissipated heat. MeasuredPS force are shown in �gure 2.7 (red points). PS force is
roughly always5 % bigger than PS and it reaches100 %of success for high forces.

To reach the Landauer's bound, the force necessary to erase information must be as low
as possible, because it is clear that a higher force will always produce more heat for the same
proportion of success. Moreover, the bound is only reachable for a quasi-static (i.e. � ! 1 )
erasure procedure, and the irreversible heat dissipation associated with a �nite time procedure
should decrease as1=� [53]. Thus we decided to work with a chosen� and to manually5 optimise
the applied force. The idea was to choose the lowest value off max which gives aPS force � 95 %.

5The term �manually� refers to the fact that the optimisation was only empirical and that we did not
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2.3. Landauer's bound for dissipated heat

The Landauer's boundkBT ln 2 is only valid for totally e�cient procedures. Thus one should
theoretically look for a Landauer's bound corresponding to each experimental proportion of
success (see equation 2.1). Unfortunately the functionln 2 + pln(p) + (1 � p) ln(1 � p) quickly
decreases whenp is lower than 1. To avoid this problem, we made an approximation by
computing hQi ! 0 the mean dissipated heat for the trajectories where the memory is erased (i.e
the ones ending in state 0). We consider thathQi ! 0 mimics the mean dissipated heat for a
procedure with 100 %of success. This approximation is reasonable as long asPS force is close
enough to100 %, because the negative contributions which reduce the average dissipated heat
are mostly due to the rare trajectories going against the force (i.e ending in state 1). Of course,
at the limit where the force is equal to zero, one should �ndPS force = 50 % and hQi ! 0 = 0
which is di�erent from kBT ln 2. The mean dissipated heat for several procedures are shown in
�gure 2.8.
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Figure 2.8: Mean dissipated heat for several procedures, with �xed� and di�erent values of
f max . The red points have a force too high, and aPS force � 99 %. The blue points have a force
too low and 91 %� PS force < 95 %(except the last point which hasPS force � 80 %). The black
points are considered to be optimised and have95 % � PS force < 99 %. The error bars are
� 0:15 kBT estimated from the reproductibility of measurement with same parameters. The �t
hQi ! 0 = ln 2 + B=� is done only by considering the optimised procedures.

The mean dissipated heat decreases with the duration of the erasure procedure� and ap-
proaches the Landauer's boundkBT ln 2 for long times. Of course, if we compute the average
on all trajectories (and not only on the ones ending in state 0) the values of the mean dis-
sipated heat are smaller, but remain greater than the generalised Landauer's bound for the
corresponding proportion of successp:

hQi ! 0 � h Qi � kBT [ln 2 + pln(p) + (1 � p) ln(1 � p)] (2.15)

For example, the last point (� = 40 s) has a proportion of successPS force � 80 %, which corre-
sponds to a Landauer's bound of only� 0:19 kBT, and we measurehQi ! 0 = 0:59 kBT greater
than hQi = 0:26 kBT. The manually optimised procedures also seem to verify a decreasing
of hQi ! 0 proportional to 1=� . A numerical least square �t hQi ! 0 = ln 2 + B=� is plotted

computed the theoretical best f max for a given value of � .
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Chapter 2. Landauer's Principle

in �gure 2.8 and gives a value ofB = 8:15 kBT � s. If we do a �t with two free parameters
hQi ! 0 = A + B=� , we �nd A = 0:72 kBT which is close tokBT ln 2 � 0:693 kBT.

One can also look at the distribution ofQdrag ! 0. Histograms for procedures going from 1
to 0 and from 0 to 0 are shown in �gure 2.9. The statistics are not su�cient to conclude on the
exact shape of the distribution, but as expected, there is more heat dissipated when the particle
has to jump from state 1 to state 0 than when it stays in state 0. It is also noticeable that
a fraction of the trajectories always dissipate less heat than the Landauer's bound, and that
some of them even have a negative dissipated heat. We are able to approach the Landauer's
bound in average thanks to those trajectories where the thermal �uctuations help us to erase
the information without dissipating heat.
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Figure 2.9: Histograms of the dissipated heatQdrag ! 0. (a) For one procedure going from 1 to
0 (� = 10 s and f max = 3:8 � 10� 14 N). (b) For one procedure going from 0 to 0 (� = 5 s and
f max = 3:8 � 10� 14 N). The black vertical lines indicateQ = 0 and the green ones indicate the
Landauer's boundkBT ln 2.
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2.4. Integrated Fluctuation Theorem applied on information erasure procedure

2.4 Integrated Fluctuation Theorem applied on informa-
tion erasure procedure

We have shown that the mean dissipated heat for an information erasure procedure applied on
a 1 bit memory system approaches the Landauer's bound for quasi-static transformations. One
may wonder if we can have direct access to the variation of free-energy between the initial and
the �nal state of the system, which is directly linked to the variation of the system's entropy.

2.4.1 Computing the stochastic work

To answer this question it seems natural to use the Integrated Fluctuation Theorem called
the Jarzinsky equality [33] which allows one to compute the free energy di�erence between
two states of a system, in contact with a heat bath at temperatureT. When such a system
is driven from an equilibrium state A to a state B through any continuous procedure, the
Jarzynski equality links the stochastic workWst received by the system during the procedure
to the free energy di�erence� F = FB � FA between the two states:

D
e� �W st

E
= e � � � F (2.16)

Where h:i denotes the ensemble average over all possible trajectories, and� = 1
kB T .

For a colloidal particle con�ned in one spatial dimension and submitted to a conservative
potential V(x; � ), where� = � (t) is a time-dependent external parameter, the stochastic work
received by the system is de�ned by [31]:

Wst[x(t)] =
Z t

0

@V
@�

_� dt0 (2.17)

Here the potential is made by the double-well and the tilting drag force6

V(x; � ) = U0(x; I (t)) � f (t)x (2.18)

and we have two control parameters:I (t) the intensity of the laser andf (t) the amplitude of
the drag force.

Once again, we can separate two contributions: one coming from the lowering and rising of
the barrier, and one coming from the applied external drag force. We again consider that the
lowering and rising of the barrier should not modify the free-energy of the system, and that the
main contribution is due to the drag force. Thus:

Wst =
Z Tlow + �

Tlow

� _fx dt0 (2.19)

Noting that f (t = Tlow ) = 0 = f (t = Tlow + � ), it follows from an integration by parts that the
stochastic work is equal to the heat dissipated by the drag force:

Wst =
Z Tlow + �

Tlow

� _fx dt0 =
Z Tlow + �

Tlow

f _x dt0 = Qdrag (2.20)

The two integrals have been calculated experimentally for all the trajectories of all the pro-
cedures tested and it was veri�ed that the di�erence between the two quantity is completely
negligible. In the following parts, we writeWst for theoretic calculations, andQdrag when we
apply the calculations to our experimental data.

6As already mentioned, f is independent of x and can be seen as an extra potential term� fx . More
generally, for a system in one dimension, any external force can be written as the gradient of a global potential.
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2.4.2 Interpreting the free-energy di�erence

Since the memory erasure procedure is made in a cyclic way (which implies� U = 0) and
� S = � kB ln 2 it is natural to await � F = kBT ln 2. But the � F that appears in the Jarsynski
equality is the di�erence between the free energy of the system in the initial state (which is at
equilibrium) and the equilibrium state corresponding to the �nal value of the control parameter:

� FJarzynski = F (� (t �nal )) � F (� (t initial )) (2.21)

Because the height of the barrier is always �nite there is no change in the equilibrium free energy
of the system between the beginning and the end of our procedure. Then� FJarzynski = 0, and
we await

D
e� �W st

E
= 1, which is not very interesting.

Nevertheless it has been shown [54] that, when there is a di�erence between the actual state
of the system (described by the phase-space density� t ) and the equilibrium state (described
by � eq

t ), the Jarzynski equality can be modi�ed:

D
e� �W st (t )

E

(x;t )
=

� eq(x; � (t))
� (x; t )

e� � � FJarzynski (t ) (2.22)

Where h:i (x;t ) is the mean on all the trajectories that pass throughx at t.
In our procedure, selecting the trajectories where the information is actually erased is equi-

valent to �x the position x to the chosen �nal well (state 0 corresponds tox < 0) at the time
t = Tlow + � . It follows that � (x < 0; Tlow + � ) is directly PS force, the proportion of success
of the procedure, and� eq(x < 0; � (Tlow + � )) = 1 =2 since both wells have same probability at
equilibrium7. Then:

D
e� �W st (Tlow + � )

E

! 0
=

1=2
PS force

(2.23)

Similarly for the trajectories that end the procedure in the wrong well (state 1) we have:

D
e� �W st (Tlow + � )

E

! 1
=

1=2
1 � PS force

(2.24)

Taking into account the Jensen's inequality, i.e.he� x i � e�h xi , we �nd that equations 2.23
and 2.24 imply:

hWst i ! 0 � kBT [ln(2) + ln( PS force)]
hWst i ! 1 � kBT [ln(2) + ln(1 � PS force)]

(2.25)

Given that the mean stochastic work dissipated to realise the procedure is simply:

hWst i = PS force hWst i ! 0 + (1 � PS force) hWst i ! 1 (2.26)

it follows:

hWst i � kBT [ln(2) + PS force ln(PS force) + (1 � PS force) ln(1 � PS force)] (2.27)

which is the generalization of the Landauer's bound forPS force < 100 %. Hence, the Jarzynski
equality applied to the information erasure procedure allows one to �nd the complete Landauer's
bound for the stochastic work received by the system.

7A more detailed demonstration is given in Appendix 2.6.
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Figure 2.10: Mean dissipated heat (� ) and e�ective free energy di�erence (� ) for several pro-
cedures, with �xed � and di�erent values of f max . The red points have a force too high, and
a PS force � 99 %. The blue points have a force too low and91 %� PS force < 95 %(except the
last point which hasPS force � 80 %). The black points are considered to be optimised and have
95 %� PS force < 99 %.

Finally we experimentally compute� Fe� which is the logarithm of the exponential average
of the dissipated heat for trajectories ending in state 0:

� Fe� = � ln
�D

e� �Q drag
E

! 0

�
: (2.28)

Data are shown in �gure 2.10. The error bars are estimated by computing the average on the
data set with 10%of the points randomly excluded, and taking the maximal di�erence in the
values observed by repeating this operation1000times. Except for the �rst points8 (� = 5 s),
the values are very close tokBT ln 2, which is in agreement with equation 2.23, sincePS force is
close to100 %. Hence, we retrieve the Landauer's bound for the free-energy di�erence, for any
duration of the information erasure procedure.

Note that this result is not in contradiction with the classical Jarzynski equality, because
if we average over all the trajectories (and not only the ones where the information is erased),
we should �nd:

D
e� �W st

E
= PS force

D
e� �W st

E

! 0
+ (1 � PS force)

D
e� �W st

E

! 1
= 1: (2.29)

However, the veri�cation of this equality is hard to do experimentally since we have very few
trajectories ending in state 1, which gives us not enough statistics to estimate

D
e� �W st

E

! 1
properly.

2.4.3 Separating sub-procedures

To go further, we can also look at the two sub-procedures1 ! 0 and 0 ! 0 separately. To
simplify calculations, we make here the approximation thatPS force = 100 %.

8We believe that the discrepancy can be explained by the fact that the values ofQdrag ! 0 are bigger and
that it is more di�cult to estimate correctly the exponential average in this case.
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We can compute the exponential average of each sub-procedure:

M 1! 0 =
D
e� �W st

E

1! 0
and M 0! 0 =

D
e� �W st

E

0! 0
(2.30)

For each sub-procedure taken independently the classical Jarzynski equality does not hold
because the initial conditions are not correctly tested. Indeed selecting trajectories by their
initial condition induces a bias in the initial equilibrium distribution. But it has been shown [55]
that for a partition of the phase-space into non-overlapping subsets� j (j = 1; :::; K ) there is a
detailed Jarzynski Equality :

D
e� �W st

E

j
=

~� j

� j

D
e� �W st

E
(2.31)

with:
� j =

Z

� j

� (ta) dxdp and ~� j =
Z

~� j

~� (ta) dxdp (2.32)

where� (ta) and ~� (ta) are the phase-space densities of the system measured at the same interme-
diate but otherwise arbitrary point in time, in the forward and backward protocol, respectively.
The backward protocol is simply the time-reverse of the forward protocol.

0 10 20 30 40
0

0.5

1

1.5

2

E
xp

on
en

tia
l m

ea
ns

 (
di

m
en

si
on

le
ss

)

t  (s)

 

 
M

0 ®  0

M
1 ®  0

M
0 ®  0

 + M
1 ®  0

Figure 2.11: Exponential means computed on the sub-procedures, for several parameters, with
�xed � and manually optimised values off max . The error bars are estimated by computing
the exponential mean on the data set with10% of randomly excluded points, and taking the
maximal di�erence in the values observed by repeating this operation1000times.

Here, we take only two subsetsj = f 0 ! 0; 1 ! 0g, de�ned by the position where the bead
starts, and we chooseta = Tlow the starting point of the applied force. Then we have:

M i ! 0 =
~� i ! 0

� i ! 0
e� � � Fe� =

~P0! i

1=2
1
2

(2.33)

wherei = f 0; 1g and ~P0! i is the probability that the system returns to its initial state i under
the time-reversed procedure (which always starts in state 0). Finally:

M 1! 0 = ~P0! 1 and M 0! 0 = ~P0! 0 (2.34)
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2.4. Integrated Fluctuation Theorem applied on information erasure procedure

Experimental data are shown in �gure 2.11.M 1! 0 is an increasing function of� whereas
M 0! 0 is decreasing with� . Their sum is always close to 1 (which is the same result that gives
� Fe� � kBT ln 2), and M 1! 0 is always smaller thanM 0! 0. These observations are intuitive
because the work is higher when the bead jumps from state 1 to 0 than when it stays in state
0, and the work is higher when� is smaller. The interpretation of eq. 2.34 gives a little more
information. It is indeed reasonable to think that for time-reversed procedures the probability
of returning to state 1 is small for fast procedures and increases when� is bigger, whereas the
probability of returning to state 0 increases when� is smaller9.

To be more quantitative one has to measure~P0! 1 and ~P0! 0, but the time-reversed procedure
cannot be realised experimentally, because it starts with a very fast rising of the force, which
cannot be reached in our experiment. Thus, we performed numerical simulations, where it
is possible to realise the corresponding time-reversed procedure and to compute~P0! 1 and
~P0! 0. We simply integrate eq. 2.3 with Euler's method, for di�erent set of parameters as
close as possible to the experimental ones. The Gaussian white noise is generated by the
�randn� function from Matlab r (normally distributed pseudorandom numbers). For each set
of parameters we repeat the numerical procedure a few thousand times. Some results are shown
in table 2.1 (values are estimated with error bar� 0:02):

� (s) f max (fN) M 1! 0
~P0! 1 M 0! 0

~P0! 0 PS (%) PS force (%)

5 37.7 0.17 0.16 0.86 0.84 97.3 99.8
10 28.3 0.29 0.28 0.74 0.72 96.6 99.3
20 18.9 0.42 0.41 0.63 0.59 94 97.1
30 18.9 0.45 0.43 0.59 0.57 94.4 97.7

Table 2.1: Results for simple numerical simulations of the experimental procedure.

All the qualitative behaviours observed in the experimental data are retrieved, and the
agreement betweenM i ! 0 and ~P0! i is correct. It was also veri�ed that for proportions of
success< 100 %, if one takes all the trajectories, and not only the ones where the bead ends in
the state 0, the classical Jarzynski equality is veri�ed:

D
e� �W st

E
= 1. This result means that the

small fraction of trajectories where the bead ends the erasure procedure where it shouldn't is
enough to retrieve the fact that� FJarzynski = 0. And it is veri�ed even if this fraction represent
less than1 % of all the trajectories.

9Of course ~P0! 1 + ~P0! 0 = 1 :
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2.5 Conclusion

In conclusion, we have realised an experimental information erasure procedure with a 1-bit mem-
ory system, made of a micro-particle trapped in a double well potential with optical tweezers.
The procedure uses an external drag force to reset the memory of the system in one state,i.e.
erase the knowledge of previous state and lose information. We measured the proportion of
success of erasure procedures with di�erent durations� and amplitudes of the forcef max . These
data were used to manually optimise the procedure,i.e. for a �xed � we found the lowest force
which gives a good erasure of information. By varying the duration of the information erasure
procedure� , we were able to approach the Landauer's boundkBT ln 2 for the mean dissipated
heat by the systemhQi . We have also shown thathQi seems to decrease as1=� , which is in
agreement with the theoretical prediction for an optimal information erasure procedure [56],
and was later con�rmed experimentally with a more controlled experimental system [51].

We have computed the stochastic work received by the system during the procedure, which
is in our particular case equal to the heat dissipated by the action of the external force. We
used a modi�ed version of the Jarzynski equality [54] for systems ending in a non-equilibrium
state to retrieve the generalised Landauer's bound for any proportion of success on the mean
stochastic work received by the system. This relation has been tested experimentally, and
we have shown that the exponential average of the stochastic work, computed only on the
trajectories where the information is actually erased, reaches the Landauer's bound for any
duration of the procedure.

We also used a detailed version of the Jarzynski equality [55] to independently consider each
sub-procedure where the information is erased (1 ! 0 and 0 ! 0). This relation allowed us to
link the exponential average of stochastic work, computed only on a subset of the trajectories
(corresponding to one of the sub-procedures), to the probability that the system returns to its
initial state under a time-reversed procedure. We have shown that the experimental data are
qualitatively in agreement with this interpretation. Finally, we used some very simple numerical
simulations of our experimental procedure to compare quantitatively the partial exponential
averages to the probabilities that the system returns to its initial state under time-reversed
procedures.
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2.6 Appendix

Equation 2.23 is obtained directly if the system is considered as a two state system, but it also
holds if we consider a bead that can take any position in a continuous 1D double potential
along thex-axis. We place the referencex = 0 at the center of the double potential.
Equation 2.22 states:

D
e� �W st (t )

E

(x;t )
=

� eq(x; � (t))
� (x; t )

e� � � FJarzynski (t ) (2.35)

whereh:i (x;t ) is the mean on all the trajectories that pass throughx at t.
We chooset = Tlow + � the ending time of the procedure, and we will not anymore write the
explicit dependence upont since it's always the same chosen time. We recall that� FJarzynski = 0
at t = Tlow + � for our procedure.
We de�ne the proportion of success, which is the probability that the bead ends its trajectory
in the left half-spacex < 0:

PS force = � (x < 0) =
Z 0

�1
dx � (x) (2.36)

The conditional mean is given by:

D
e� �W st

E

x
=

Z
dWst � (Wst jx)e� �W st (2.37)

where � (Wst jx) is the conditional density of probability of having the valueWst for the work,
knowing that the trajectory goes throughx at the chosen timeTlow + � .
We recall from probability properties that:

� (Wst jx) =
� (Wst; x)

� (x)
(2.38)

where� (Wst; x) is the joint density of probability of the value Wst of the work and the position
x through which the trajectory goes at the chosen timeTlow + � .
We also recall:

� (Wst jx < 0) =
R0

�1 dx � (Wst; x)
R0

�1 dx � (x)
=

R0
�1 dx � (Wst; x)

PS force
(2.39)

Then by multiplying equation 2.35 by � (x) and integrating over the left half-spacex < 0 we
have: Z 0

�1
dx � (x)

D
e� �W st

E

x
=

Z 0

�1
dx � eq(x) (2.40)

Since the double potential is symmetric:

Z 0

�1
dx � eq(x) =

1
2

: (2.41)

By applying de�nition 2.37 and equality 2.38, it follows:

Z 0

�1
dx

Z
dWst � (Wst; x)e� �W st =

1
2

(2.42)
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Then using equality 2.39:

PS force

Z
dWst � (Wst jx < 0)e� �W st =

1
2

(2.43)

Finally we obtain:
D
e� �W st

E

x(Tlow + � )< 0
=

1=2
PS force

(2.44)

which is equation 2.23 of the main text.
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Chapter 3
(Absence of) E�ective Temperature in Gelatin
after a Fast Quench

En essayant continuellement on �nit
par réussir. Donc : plus ça rate, plus on
a de chances que ça marche.

Devise Shadok

3.1 Introduction and Motivations

3.1.1 Gelatin and the sol-gel transition

Gelatin is a thermoreversible gel [57]. It is a heterogeneous mixture of water-soluble denatured
collagen protein chains, extracted by boiling animal by-products (skin, tendons, ligaments,
bones, etc.) in water. Collagen molecules are rods of300 nmlength, made of three strands, with
high average molecular weights. This triple-helix structure is stabilised by hydrogen bonds and
has a diameter of� 1:4 nm. The chemical treatment used to produce gelatin breaks crosslinks
between strands, but can also hydrolyse strands into fragments. Thus a broad molecular weight
distribution is obtained for gelatin [58,59].

Above a temperatureTmelt � 40� C, the gelatin chains are in coil conformation. The gelatin
solution is in a viscous liquid phase, called �sol� phase. Below a temperatureTgel � 30� C
renaturation of the native triple helix structure occurs, and chains form a percolating three-
dimensional network of helical segments connected by single strand coils. The gelatin solution
is in an arrested state with elastic behaviour, called �gel� phase. The coil-helix transition is
completely reversible and the transition from one phase to the other is called the �sol-gel�
transition [57].

Physical properties of the sol phase, and of the sol-gel transition are studied in [60,61] for
di�erent gelatin concentrations above4 wt%. In particular, it was seen that there are at least
three successive steps in the transition: monomer to aggregate formation, random-coil-single-
helix transition (disorder-order transition), and single-helix-triple-helix transition (order-order
transition). It is then possible to identify di�erent phase states in the sol domain: the sol state
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I where the chains have random coil conformations and the sol state II where single and triple
helices begin to form (without reaching gelation).

The gel phase was also shown to share properties with glassy materials, which are out-
of-equilibrium metastable systems. After a quench atT < Tgel the system is frustrated by
topological constraints because each gelatin chain is involved in at least two helices, and neigh-
bouring helices are competing for the shared portions of non-helical chain. Therefore, the sys-
tem displays physical aging: its physical properties slowly evolve with time, through a process
known as structural recovery. For example, the small-strain shear modulus of a5 wt% gelatin
solution quenched at20� C increases logarithmically as a function of the ageing time [62]. And
the elasticity of gelatin gels during slow cool and heat cycles exhibits memory and rejuvenation
e�ects similar to the ones found in spin glasses [63].

Although it is known that mechanical properties of gelatin gels are very sensitive to temper-
ature variations, previous thermal history of the gel, and time, this system has some interesting
experimental features:

ˆ The fact that the transition is thermoreversible allows us to do melting/gelation cycles
simply by controlling the temperature of the sample.

ˆ The ageing rate can in theory be controlled by changing the quench depth.

ˆ The length-scale of the collagen chains (300 nm) is big enough to be sensed by a micro-
particle of 2µm.

This particular sol-gel transition was chosen for previous works done in the laboratory about
�uctuations of Brownian particles in quenched gelatin samples [64�66].

A summary of the previous works results and our motivations are presented in the next
section.

3.1.2 Previous work: anomalous variance, heat �ux and Fluctuation
Dissipation Theorem violation in an ageing bath

Previous works [64�66] showed that a particle trapped with optical tweezers in a liquid droplet
of gelatin solution, quenched at a temperature belowTgel exhibits anomalously high position
�uctuations right after the quench. These anomalous �uctuations can be interpreted as an
e�ective temperature, which motivated us to look at the interactions of two particles trapped
in the same gelatin droplet, undergoing sol-gel transition after a quench. Indeed if two particles
are trapped at two di�erent positions in the same gelatin droplet, they could sense di�erent
e�ective temperatures. Our aim was therefore to see the e�ect of these di�erent temperatures
on two particles interacting through the surrounding �uid.

We reproduce here some �gures from [64�66] and recall the associated key results:

ˆ The variance of the position exhibits anomalously high value for short times (� 5 s) right
after the quench, then stabilises at the equipartition valuekBT=k for � 200 s, and �nally
decreases logarithmically for long times after the quench. See �gure 3.1a.

ˆ The Probability Distribution Functions of position �uctuations are Gaussian at any time
after the quench, but their variances decreases with time (in agreement with previous
result). See �gure 3.1b.
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ˆ The Probability Distribution Function of the heat exchanged between the particle and
the bath during short times after the quench is asymmetrical. See �gure 3.2.

ˆ The Fluctuation Dissipation Theorem is violated only for short times after the quench,
and this violation can be linked with the amount of heat exchanged between the particle
and the bath during the same time. See �gure 3.3.

(a) (b)

Figure 3.1: (a) Evolution of the normalised variance of the position �uctuations of one particle
trapped in gelatin solution (10 wt%) or glycreol, quenched at26� C, for di�erent times t after
the quench. (b) Evolution of the Probability Distribution Function of the position �uctuations
of the particle trapped in gelatin solution.

Figure 3.2: Probability Density Function of the normalised heatq exchanged during� = 30 s
computed at di�erent times t after the quench in gelatin.
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Figure 3.3: Passive Power Spectral Densities of the position �uctuations (color points) and
Fourier transform of the active response function (black dashed-lines) computed at di�erent
times after the quench. (a) For0 s< t < 15 s. (b) For 30 s< t < 45 s. (c) For 75 s< t < 90 s.
(d) For 1200 s< t < 1215 s. If the Fluctuations Dissipation Theorem is veri�ed, the two
quantities should be equal, which is not the case for low-frequency in (a).

Unfortunately, none of those key results was found to be reproducible, and we believe that
they were only due to an artefact in the data and/or in the analysis method. Therefore, we
present in this chapter a detailed and careful analysis of trajectories of particles trapped in a
droplet of gelatin solution quenched at a temperature belowTgel. We show that there is indeed
no e�ective temperature for this system.
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3.2 Experimental set-up

3.2.1 Gelatin sample preparation

We use gelatin powder from porcine skin, produced by Sigma-Aldrichr : gel strength � 300 g
Bloom, Type A, BioReagent, suitable for cell culture. This gelatin is derived from acid-cured
tissue, whereas type B is derived from lime-cured tissue.

We work with gelatin at a weight concentration of5 wt%. The samples are prepared fol-
lowing a standard protocol [67]: the wanted amount of powder is dissolved in bidistilled wa-
ter, which is then heated for� 30 min at � 60� C while slowly stirred until the solution is
transparent and homogeneous. While the solution is still liquid,� 2 mL are �ltered using a
Millex r syringe driven �lter unit with 0:45µm pore size mixed cellulose esters membrane. Then
15µL of an aqueous solution of silica beads (radiusR = 1:00� 0:05µm) with concentration
107 particle � mL� 1 are added, and the solution is strongly agitated. The non-�ltered and �nal
solutions are then let gelify at room temperature and kept in the refrigerator for later use.

We use the disk-shape glass cell, already described in 1.1.2, with an Indium Tin Oxyde
(ITO) coated microscope slide, a free-volume to avoid problems if the volume of solution changes
during gelation, and aWavelength ElectronicsTCS10K5 thermal sensor for temperature mea-
surement (see �gure 3.4). To �ll the cell, the gelatin solution with dispersed silica particles is
taken from the refrigerator and heated at� 50� C until it is in the sol phase.
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Figure 3.4: Schematic representation of the cell used to trap particles in gelatin solution (view
from the side). The microscope slide is ITO-coated, which enables us to heat the cell by sending
an electrical current through the glass surface.

3.2.2 Optical trapping and controlled gelation

For di�erent purposes we used two variations of the optical tweezers set-ups described in 1.1.3:
The �rst set-up uses a laser beam (� = 532 nm) separated in two cross-polarised beams which

enables us to have two traps with no interference between them. A laser diode (� = 980 nm)
is aligned with the green laser and used to heat locally the sample. The tracking is done
using a fast camera which is able to track two particles at600 Hz. By previously using a
calibration target, we can directly convert the displacement of the particles from pixels toµm.
See �gure 3.5.
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Figure 3.5: Schematic representation of optical tweezers set-up used to trap two particles in
gelatin solution with a green laser. An infrared laser diode is used to melt the gelatin. �BS�
are beam-splitters, �M� are mirrors and �DM� are dichroic mirrors.

The second set-up uses a single laser diode (� = 980 nm) to trap the particle and to heat
locally the sample. A He-Ne laser (� = 632:8 nm) is aligned with the laser diode and de�ected
by the particle. This de�ection is measured using a position sensing diode which is able to track
one particle at more than10 kHz. The position signal is in arbitrary unit and a supplementary
calibration is needed for each measurement to convert the trajectory of the particle in physical
units. See �gure 3.6.

For both set-ups, the microscope objective is an oil-immersionLeica HCX PL. APO � 63
with high numerical aperture N:A: = 1:4. The microscope objective is surrounded with a
custom-made heating ring, made with aMinco �exible resistor and a Wavelength Electronics
TCS10K5 thermal sensor for temperature measurement. A feedback control is managed by the
temperature control module (TCM-39032) of a modular laser diode controller (ILX Lightwave
LDC-3900). As already mentionned, another thermal sensor is inserted directly inside the cell
(see �gure 3.4) and another feedback control is done by mastering the current going through
the ITO-coated microscope slide, with anInstec MK1 Board and a PID software. These two
temperature devices ensure that the temperature of both the microscope objective and the cell
are well controlled. The precision achieved on the temperature control is about� 0:05� C.

To trap particles, the temperature of both the microscope objective and the cell are set to
38� C so that the gelatin is in the sol phase. Then, one or two (depending on the set-up used)
particles are found and trapped at a given distance from the bottom surface of the cell (typically
h = 15 µm). Then, the temperature controls are set to a value below the gel transition (typically
Tfb = 27 � C) and the sample is let gelify for a few hours (typically between 6 and 10 hours).
Since the gelatin shows a lot of hysteretic behaviour [58,59], this gelation procedure appears to
be important and the rheology of the gel can vary if the gelifying time is very di�erent (e.g. a
few days). Moreover, one must pay attention to regularly check the distance between the bead
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Figure 3.6: Schematic representation of optical tweezers set-up to trap one particle in gelatin
solution. An infrared laser diode is used to trap and to melt the gelatin. The de�ection of
a He-Ne laser induced by the trapped bead is measured by the position sensing diode (PSD).
The white light source and camera are only used for direct visualisation but not for the mea-
surements. �BS� is a beam-splitter, �IF� and interferencial �lter to suppress the infrared beam
and �DM� are dichroic mirrors.

and the bottom surface of the cell, since the focal distance of the microscope objective always
drifts slowly when its temperature is changing.

The refractive index of the liquid gelatine solution was measuredngel = 1:3415, which is
close to value in waternwater = 1:3335. It follows that the trapping sti�nesses in gelatin solution
should be close to the ones in water with same experimental parameters.

3.2.3 Local heating and fast quenching method

When the particles are trapped and the sample is properly geli�ed at a given controlled temper-
ature Tfb < T gel, the local quenches are done in a similar way than the one presented in [64�66]:
The power of the980 nmlaser diode is risen to a high value (typically1 230 mW) during a given
time (typically � melt = 200 s). Because of the light absorption of the water molecules in the
solution, the temperature of the gelatin around the particle (which is at the focal point of the

1This is the power measured on the beam before the microscope objective, so the �real� power at the focal
point should be smaller, due to the loss in the objective.
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microscope objective) increases by a small amount�T . Following the formula in reference [68]:

�T =
P �

2�K

"

ln

 
2�h
�

!

� 1

#

(3.1)

where � = 50 m� 1 is the attenuation coe�cient of water at 27� C for wavelength980 nm [69],
and K = 0:61 Wm� 1K � 1 is the thermal conductivity of water. Here, we await:

�T ' 11� C: (3.2)

This increase in temperature is only roughly estimated. Especially because we don't really
know what is the absorption of the microscope objective for the near infrared, and because it
is impossible to measure the temperature with a usual probe on this very small scale. But it is
seen that the increase is strong enough to melt a small droplet of gelatin (radiusRd � 10µm)
around the bead. Then, the power is quickly decreased to a low value (in the case where the
same laser diode is used to trap and heat) or to zero (in the case where another laser is used to
trap the particles), and the sample is let gelify for a given time (typically� rest = 500 s). Since
the thermal di�usivity of water is � = 0:143� 10� 6 m2 � s� 1 at 25� C, the time � � needed to
dissipate the heat from the droplet to the bulk is short:

� � �
R2

d

�
� 2 � 10� 4 s: (3.3)

Hence, the gelatin is believed to experience a fast quench at temperatureTfb < T gel and should
start ageing2. After the resting time � rest at low temperatureTfb , the power of the laser diode is
risen again, and another quench is done. Note that the exact duration of� rest was not considered
as important, because it was believed that the melting �resets� the gelatin sample and that all
the anomalous behaviour occurs right after the quench.

The position(s) of the particle(s) trapped in the center of the melted droplet are continu-
ously measured during a succession of several melting and ageing. For each measurement the
quenching is repeated a few hundred times in order to perform proper ensemble averages.

An example of trajectory obtained with the second set-up is presented in �gure 3.7. When
the intensity of the laser is high, the gelatin droplet is in the �sol� phase and the particle is
�uctuating in an optical trap with a high sti�ness. When the intensity of the laser is low, the
gelation is occurring and the sti�ness of the trap is low (which is the reason why the position
�uctuations are bigger).

2Actually, in the case where the same laser diode is used for trapping and melting the droplet, the temperature
of the quench is a little bit above Tfb because of the absorption of the laser. Since the power of the laser is low,
this increase is less than1 � C and can easily be compensated by loweringTfb accordingly.
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Figure 3.7: Trajectory of one particle trapped in gelatin sample kept atTfb = 27:5 � C, around
the quench. On the red part of the trajectory, the intensity of the laser is high and the gelatin
droplet is liquid. On the blue part, the intensity of the laser is low and the gelation is occuring.
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3.3 Results

In this section we present some results showing that there is no anomalous �uctuation occurring
in the ageing of gelatin solution right after a fast quench. We also discuss why this e�ect that
was previously observed is likely to actually be an artefact due to data analysis. Since our
aim was to see the e�ect of the anomalous �uctuations on two coupled particles, some of the
measurements were made with two particles, even though it might seema posteriori that a
single particle would have been enough.

3.3.1 Time evolution of bulk properties and hysteresis

We �rst did preliminary measurement of gelatin gelation in bulk (i.e. without the local heating
method). We prepare a cell with gelatin solution as described in 3.2.1. We set the temperature
controls of both the objective and of the cell at37� C for 30 min to melt the gelatin. We trap
two particles and we switch both temperature controls to a given temperatureTfb . We wait
a few tens of minutes (typically� 30 min) and we set the distance between the particles and
the bottom of the cell when there is no more drift due to thermal expansion of the microscope
objective. After that, we measure the positions of the two trapped beads for a long time (e.g.
8 h) at 400 Hzto see the bulk gelation of the sample.

For all these measurements, the distance between the bead and the surface ish = 15 µm.
The liquid gelatin solution at 37� C is a Newtonian �uid, and the sti�ness k of the trap can be
computed directly from the variance of the positionx of the bead3:

� 2
x =

D
x2

E
=

kBT
k

(3.4)

For all these measurement the sti�ness of the trap wask = 0:46� 0:01 pN=µm.
Since theTgel is expected to be around29� C, we varied Tfb from 31� C to 27:5 � C. It was

found that above 28:5 � C, the gelation does not occur on the time of the experiment and the
solution stays liquid, even if its viscosity increases continuously. Below28:3 � C, the gelation
occurs before the end of the experiment. It was estimated that the bulk gelation of the cell
volume takes� 260 min at 28:3 � C and � 120 min at 27:5 � C.

Estimating the state (�sol� or �gel�) of the gelatin solution, is not trivial, since the �uid can
be really viscous without being completely geli�ed. Qualitatively, the trajectory of the trapped
bead starts to be heckled, and the bead sometimes escapes the trapping (see �gure 3.8). Ana
posteriori test consists in switching o� the laser (resulting in switching o� the trapping) and
letting the sample atTfb for a few more hours (typically over night) to see if the particle slowly
fall to the bottom of the cell. If the particle does not fall, the gelatin solution is considered to
be fully geli�ed.

To estimate the evolution of the viscosity during the gelation process, we used passive micro-
rheology techniques [71]. The trajectories were divided in portions of� 1 h, and the Power
Spectral Density (PSD) was computed for each portion. A long trajectory is required because
we need low frequencies to correctly estimate the PSD. We explicitly assume that the bulk
ageing is slow enough for not perturbing too much the estimation of the PSD when a long
trajectory is taken. Or at least, that taking a long time window will only smooth the rheology
result.

3The hydrodynamical coupling between two bead in a Newtonian �uid at thermal equilibrium is known to
let the variance unmodi�ed. [70]
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Figure 3.8: Evolution of the position of one trapped particle, in gelatin solution kept at28:3 � C
(after being melt at 37� C for 20 min). At the end of the trajectory, gelation occurs and the
particle is moved away from the optical trap.

As seen in �gure 3.9a, shortly after the decrease of temperature, the PSD is still Lorentzian,
as awaited for a particle trapped in a Newtonian �uid at equilibrium [23]. The mean viscosity
term 
 = 6�R� (with � the dynamical viscosity of the solution) can be estimated from the
value of the cut-o� frequency f c = k=(2�
 ). Here we �nd: � = 21 � 1 � 10� 3 Pa � s. As the
gelation occurs, the PSD is less and less Lorentzian (see �gure 3.9b), which is the sign that the
gelatin solution starts to behave as a visco-elastic �uid [72].
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(a) 70 min after the temperature change.
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(b) 320 min after the temperature change.

Figure 3.9: Power Spectral Density of the position of one particle trapped in gelatin solution
kept at 28:5 � C (after being melt at 37� C for 30 min). The PSD is estimated over a time window
of 1 h. Shortly after switching the temperature the gelatin solution is still a Newtonian �uid
and the PSD is Lorentzian. After some time, visco-elastic e�ects appear and the PSD is no
longer Lorentzian.

We plot in �gure 3.10 the evolution of the �tted cut-o� frequency at di�erent time after the
gelatin solution was set atTfb = 28:5 � C. Even if the spectrum is no longer Lorentzian near the
end of the measurement, it seems that the cut-o� frequency decreases exponentially. Therefore,
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the apparent viscosity increase is exponential.

100 150 200 250 300 350 400
10

-2

10
-1

Time after quench (min)

C
ut

-o
ff 

fr
eq

ue
nc

y 
(H

z)

Evolution of cut-off frequency for T = 28.5°C

Figure 3.10: Evolution of the �tted cut-o� frequency f c, in gelatin solution kept at 28:5 � C
(after being melt at 37� C for 30 min).

From these preliminary measurements, we estimate that theTgel is about 28:3 � C for our
gelatin solution at 5 wt%. We chose to work withTfb < 28:3 � C for all the following quenching
experiments. As mentioned earlier, gelatin solutions have big hysteretic behaviour [58, 59].
It follows that the visco-elastic properties of the solution in an important temperature range
around Tgel cannot be known independently of the sample's history.
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(a) First cycles.
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(b) 3 h after starting the cycles.

Figure 3.11: Examples of trajectories for melting/regelifying cycles with a gelatine sample
geli�ed at Troom = 24 � C for a long time. The red dashed-lines indicate when the heating laser
is switched ON, and the blue ones when it is switched OFF. At the beginning, the melting is
more di�cult to reach, after a given time, the cycles look �reproducible�.

Another consequence of the hysteretic behaviour is that the �rst bulk gelation of the sample
must be done in a controlled and reproducible manner. If the sample is let gelify for a too long
time, or at a too low temperature, the �rst melting/regelifying cycles used for the quenching
experiment will be di�erent from the following ones (where a �reproducible� state is reached).
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Especially, in this case the �rst melting is more di�cult to reach. Examples of trajectories are
shown in �gure 3.11. One can clearly see some position drifts occurring when the temperature
is increased, before reaching a �sol� state where the particle �uctuates in the optical trap. Note
that, contrary to �gure 3.7, we use here the �rst set-up where the trapping laser is di�erent
from the heating laser. Hence, there is no change of the trap sti�ness when the intensity of
the heating laser is changed. The change of �uctuations amplitude when the heating laser is
switched OFF is mostly due to the rapidly increase of gelatin viscosity when gelation occurs.

3.3.2 Di�erence between ensemble variance and temporal variance
in the presence of a drift

We now consider quenching experiment as described in 3.2.3. We obtain several temporal tra-
jectories of the particles positions for a given quenching temperatureTfb < T gel. The important
point is to estimate correctly the statistical properties from this set of data. In particular,
we are interested in the variance of the position, which has been seen to have an anomalous
increase right after the quench [64�66].

The correct ensemble variance should be estimated instantaneously at a given timet, by
considering theN di�erent trajectories at this time t. If one wants to increase the statistics by
taking a small time windows�t , there are at least 3 ways to compute the variance from the set
of trajectories. These di�erent ways are schematically represented on �gure 3.12. We callx i (t)
the position of the particle for the i th quench at the timet:

ˆ The temporal variance� 2
time is obtained by estimating the variance over the time�t for

each quench, and then averaging over the N quenches:

� 2
time (t) =

1
N

NX

i =1

"
1
�t

Z t+ �t

t
(x i (t0) � �x i (t))

2 dt0

#

(3.5)

where �x i (t) = 1
�t

Rt+ �t
t x i (t0) dt0 is the temporal mean ofx for the i th quench, betweent

and t + �t .

ˆ The ensemble variance� 2
ensemble is obtained by estimating the variance over the N quenches

at a time t and then averaging over the time window�t :

� 2
ensemble(t) =

1
�t

Z t+ �t

t

"
1

N � 1

NX

i =1

(x i (t0) � h x(t0)i )2
#

dt0 (3.6)

wherehx(t0)i = 1
N

P N
i =1 x i (t0) is the ensemble mean of the N trajectoriesx i (t0) at time t0.

ˆ The boxed variance� 2
box is obtained by taking the N segments of trajectory fromx i (t) to

x i (t + �t ), and then estimating the variance of the whole set of data:

� 2
box(t) =

1
N�t

NX

i =1

Z t+ �t

t
(x i (t0) � x (t))2 dt0 (3.7)

where x (t) = 1
N�t

P N
i =1

Rt+ �t
t x i (t0) dt0 is the mean computed on the set of data made of

the N segments fromx i (t) to x i (t + �t ). It is the variance used in references [64�66].
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Nota Bene: Here to clearly distinguish the role of the time and the ensemble averages we have
considered the time as a continuous variable and the number of trajectories as discrete. But
experimentally the time is of course also a discrete variable, since we take measurements with
a �nite sampling frequency.
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Figure 3.12: Schematic representation of the di�erent ways to estimate the variance for a set of
N trajectories with a time window �t . The temporal variance� 2

time is computed by estimating
the variance of the points in the fuschia box, and then averaging over the trajectories. The
ensemble variance� 2

ensemble is computed by estimating the variance of the points in the green
box, and then averaging over the time window�t . The boxed variance� 2

box is computed directly
by estimating the variance of all the points in the orange box.

If the system is at equilibrium and�t is big enough to correctly take account of the low-
frequency of the motion, all these values should be equal to the equipartition valuekBT=k, with
kB the Boltzmann constant,T the temperature andk the trap's sti�ness.

Unfortunately, when the system is non-stationary (which is the case for an ageing system),
these 3 de�nitions of the variance are not equivalent. Especially, if there's a slow drift existing
on each trajectory, the estimations that average over time (i.e. temporal and boxed variances)
are likely to show a strong artefact.

To illustrate this e�ect, we have taken a set of 178 quenches done with the �rst set-up
described in 3.2.2 at28� C, sampled at400 Hz. The parameters were: melting time� melt = 250 s,
melting intensity I melt = 235 W, resting time � rest = 305 s and trap sti�ness4 k = 3:7 pN=µm.
One can clearly see on the trajectories that there is a small drift of� 40 nm which occurs right
after the quench (see �gure 3.13). Such a drift is often seen for this kind of measurement. We
interpret it as a slow relaxation of the gel network, which occurs on a time much smaller than
the gelation, but much greater than the heat dissipation. In other words, when the gelation

4The trap sti�ness is measured when the gelatin sample is completely melt and kept at constant temperature
T = 37 � C, before the �rst bulk gelation.
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occurs, the particle is trapped in the gel network at a given position. And even if we melt a
small droplet, the gelatin network will somehow �remind� this position and pull the particle
back to its place when it re-geli�es. Here the drift is very visible because the position of the
trapping laser is not the same as the position of the locally heating laser. Thus the position
where the particle was during the �rst bulk gelation is not the position where the particle is
attracted to when the gelatin is melted. But even when there is only one laser used for both
trapping and heating, this drift can occur. It is indeed impossible to verify that the position
where the particle geli�es is exactly the position of the laser, and a drift of only a fewnm can
be visible.

Figure 3.13: 20 �rst trajectories for a quench atTfb = 28 � C, sampled at400 Hz. A slow drift
of � 40 nm is clearly visible during the �rst � 1 s. After that, the position only oscillates
randomly around a mean value.

We then have three characteristic times :

ˆ � gel the time needed for the gelatin solution to regelify completely. It goes from a few
hundreds to more than1000 sdepending on the quench temperatureTfb .

ˆ � dynamics the typical time of the particle motion, which is directly 1
f c

and evolves from� 5
to � 100 sduring the gelation process.

ˆ � drift the time where the drift is visible, which is typically 1 s for our experiment.

If we take a �t su�ciently small compared to � drift , the boxed and ensemble variances will
give more or less the same result. Whereas, since� drift < � dynamics , it is clear that the temporal
variance will dramatically underestimate the variance due to the lack of low frequencies signal.
Indeed, the temporal variance would require a�t of the order of magnitude of� dynamics for a
correct estimation, which cannot be used because of the drift and the ageing. Data are shown
on �gure 3.14 for �t = 0:1 s.

Now, if the chosen�t is too big compared to the characteristic time of the drift, the boxed
variances will start to show an anomalous increase. Data are shown on �gure 3.15 for�t = 1 s.
This increase is not a real non-equilibrium e�ect due to the sol-gel transition, but only an
artefact due to data analysis in presence of a slow drift. However, this slow drift is due to the
fact that the sample is a gelatin solution, where an elastic network is created in the �gel� phase.
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(a) Ensemble and boxed variances. (b) Temporal variance.

Figure 3.14: Di�erent variances computed for�t = 0:1 s and normalised by the equilibrium
value kBT=k. The ensemble and boxed values are nearly equal and seem to be close to the
equilibrium value at any time after the quench. Whereas the temporal value is clearly below
the equilibrium value and decreases logarithmically with time after the quench.

Figure 3.15: Ensemble and boxed variances computed for a�t = 1 s and normalised by the
equilibrium value kBT=k. The boxed variance clearly shows an anomalous increase at small
times after the quench, which is the e�ect rapported in previous works.

It is nevertheless interesting to see that the correct ensemble variance seems to satisfy the
equilibrium equipartition relation at any time after the fast quench, even though there is a clear
evolution of the visco-elastic properties with time, and even in the presence of a slow drift at
the beginning of the quench:

8t : � 2
ensemble(t) =

kBT
k

: (3.8)

Similar results were seen for di�erent quenches temperatures from28� C to 26� C.
In [64�66] it is stated that for longer times after the quench, the variance should decrease

because of the elasticity of the gelatin network (as seen �gure 3.1a). This result is not clear. Of
course, the dynamics of the particle will be slowed down by the gelation, and in the limit where
the sample is completely geli�ed, the movement of the particle will be arrested. Therefore it is
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clear that the temporal variance should go to zero. But there is no reason why the distribution
of positions where the particle will stop for di�erent quenches should shrink. It was veri�ed
that for � rest up to 900 sthere is no such e�ect: the correct ensemble variance remains constant.
Thus, the fact that the variance decreases for long time in previous works is a sign that the
ensemble analysis is mixed with some temporal analysis.

3.3.3 Correct Position Distribution Function estimation

We now want to study not only the variance of the position �uctuations but also their complete
Probability Distribution Function (PDF). In order to minimize the risk of slow drifts and to
increase the sample frequency, we did new measurements with the second experimental set-
up described in 3.2.2. With this set-up, the trapping and heating laser are the same, and the
sample frequency can go up to10 kHz. However, the calibration of the measured de�ection from
V to µm requires a supplementary assumption (for example, that the Fluctuation-Dissipation
Theorem is veri�ed, as it is done in [24]). We will start by doing no assumption and plot the
results only in arbitrary units.

One must pay attention at which �position �uctuation� is considered, as people often look
at the distribution of �x = x � h xi . The hxi is the mean of the positionx, which can be de�ned
in several ways when the system is not a classic stationary ergodic system. Especially, when
one considers a small time-windows�t , the correct mean should be the ensemble averagehx(t)i
estimated for each timet (as de�ned in equation 3.6). But if one takes instead the temporal
average�x i (t), estimated for each trajectory betweent and �t (as de�ned in equation 3.5), the
results will di�er.

(a) When one subtracts the ensemble average. (b) When one subtracts the temporal average.

Figure 3.16: Evolution of the Probability Distribution Function of the position �uctuation �x
depending on the de�nition taken for the subtracted average. The PDFs are computed on a
time-window �t = 0:5 s for di�erent times after the quench, going fromt = 0 s (blue curves) to
t = 540 s (red curves).

As an example, we take the data of 132 quenches at27:5 � C, sampled at8 kHz. The parame-
ters are: melting time� melt = 200 s, melting intensity I melt = 245 W, resting time � rest = 570 s,
and trapping intensity I trap =26 W which corresponds to trap sti�ness5 k � 5 pN=µm. We com-

5The trap sti�ness was measured in water (where viscosity is known) for the same laser intensity.
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pare the Probability Distribution Function of the positions with a �t = 0:5 s at di�erent times
after the quench, when we subtract either the ensemble average (�gure 3.16a) or the temporal
average (�gure 3.16b). In the �rst case, the PDFs are nearly always Gaussian and do not
evolve in time. In the second case, the PDFs are always nice gaussians, but with a variance
that decreases in time. This is consistent with the previous results showing that the ensemble
variance is constant at any time after the quench, whereas the temporal variance decreases log-
arithmically with the time after the quench. And the variances estimated by doing a Gaussian
�t on the PDFs clearly shows the same behaviour (see �gure 3.17).

This e�ect is simple to understand: the trajectories evolve on a time� gel. This time is much
bigger than � �uc , the typical time of the �uctuations, and �t . On the time window �t , each
portion of trajectory x i (t) can be written x i (t) = �x i + �x i (t), where �x i is the time average of the
i th trajectory over the time-window. When one considers the N trajectory fragments betweent
and t + �t , the di�erence between them is mostly due to the averaged value�x i of each trajectory
fragment, and not to the fast �uctuations �x i (t). Which means that the distribution of all the
x i (t) betweent and t + �t is nearly the same as the ensemble distribution of the�x i . Whereas,
the distribution of all the �x i (t) is nothing more than the distribution of the fast temporal
�uctuations of one single trajectory.

Figure 3.17: Evolution of the variance estimated by �tting the PDFs with a Gaussian, at
di�erent times after the fast quench. When subtracting the correct ensemble average the
variance is constant. When subtracting the temporal average, the variance decreases almost
logarithmically with the time after the quench.

This di�erence is very important, as any kind of high-pass �ltering (for example a �detrend�
function which is often used to suppress slow drifts) done to the trajectories will result in
subtracting the temporal average, and thus distort the PDFs estimation.

The experimental results show that the correct estimated PDFs do not evolve in time after a
fast quench. Since we have already shown that the correct ensemble variance always veri�es the
equilibrium equipartition relation, we can conclude that the variance of these PDFs is simply
kBT=k. It is again interesting to see that, even if the gelatin solution is ageing, its ensemble
statistical properties seem to verify relations that are normally veri�ed at equilibrium.

It was also veri�ed with some available data from [64�66] that the correct ensemble PDFs
are not evolving with time after the quench.
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3.3.4 What about heat and Fluctuation Dissipation Theorem?

In previous works [64�66] the anomalous �uctuations observed right after the quench were
interpreted in terms of heat exchanges between the bath and the particle. Indeed, the heat
exchanged betweent and t + � is equal to the variation of the particle's energy� Ut;� =
� Ut+ � � � Ut :

Qt;� = � Ut;� =
k
2

�
x2(t + � ) � x2(t)

�
: (3.9)

In particular, the fact that the variance was decreasing after the quench was the sign of a heat
transfer from the particle to the bath :

hQt;� i =
k
2

�
� 2(t + � ) � � 2(t)

�
� 0: (3.10)

The Probability Distribution Functions (PDF) of the Qt;� were shown to be asymmetrical for
values of t and � chosen right after the quench (i.e. where the anomalous �uctuations were
observed).

A violation of Fluctuation-Dissipation Relation was also observed for times right after the
fast quench. It was linked to the non-zero heat exchange by a modi�cation of the Harada-Sasa
equality [73,74] for non-stationary systems:

Z 1

1=� t

"

Sx (t; f ) �
2kBT
�f

Imf R̂(t; f )g

#

df =
2jhQt; � t ij

k
(3.11)

Where Sx (t; f ) is the Power Spectral Density ofx and R̂(t; f ) is the Fourier transform of the
linear response function of the positionx to a perturbative time-dependent force (these two
quanti�es are function of the frequencyf , but also of the time t since the system is ageing).

All these interpretations comes from the fact that the variance was seen anomalously high
right after the quench, and then reduces to the equipartition value after a given time. In partic-
ular, the asymmetry and the shape of the PDFs ofQt;� are simply mathematical consequences
of the fact that x(t + � ) and x(t) have Gaussian PDFs with di�erent variances� 2(t + � ) > � 2(t).
Since we have already shown that, if estimated correctly, the PDFs ofx show no anomalous
behaviour and have a constant variance equal tokBT=k, if follows directly that the PDFs of
Qt;� are symmetrical. Consequently, in average there is no heat exchange between the particle
and the bath, for any t and t + � .

Considering the Fluctuation-Dissipation Theorem, one must remind that it isa priori not
a good idea to test it in Fourier space. Indeed it is necessary to assume that the system
is stationary and ergodic to link the correlation function to the power spectrum with the
Wiener�Khinchine theorem [75, 76]. Therefore, when the system is not stationary, one should
in theory look at the proper ensemble correlation function:

EnsCorrxx (t; � ) =
1
N

NX

i =1

[x i (t) � h x(t)i ] � [x i (t + � ) � h x(t + � )i ] (3.12)

instead of the Power Spectral Density (PSD), which is a temporal quantity. Of course, one can
always de�ne a PSD ofx i on a given time-window�t for each trajectory Sx i (t; f ). And this
PSD would be equal to the Fourier Transform (FT) of the temporal correlation ofx i computed
on the same time-window:

TimeCorrxx (t; � ) =
1
�t

Z t+ �t

t
[x i (t0) � �x i ] � [x i (t0+ � ) � �x i ] dt0 = FT f Sx i (t; f )g: (3.13)
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But the system needs to be considered stationary and ergodic on the time-window�t , so that
the ensemble and temporal correlations should be equal.

Here, the assumption of local stationarity is reasonable since the PSD were computed on
15 slong time windows (which is short compared to the� 900 snecessary to gelify). However,
it seems probable that the observed violation of Fluctuation-Dissipation Theorem was only due
to the same kind of artefact already responsible for anomalous variance increase (for example:
slow drifts for times right after the fast quench), because PSDs are sensible to low-frequency
noises. Thus, there is no reason that this apparent violation is linked to an heat exchange,
which does not exist anyway.

Figure 3.18: Normalised ensemble correlation function for a quench at27� C. Here we keept
�xed and we vary � from � 10 sto 0 s. The normalisation is done by dividing EnsCorrxx (t; � )
by the value ofkBT=k extracted from the variance of the position PDFs.

Some ensemble correlation functions of the particle's position are shown in �gure 3.18 for a
set of 40 quenches at27� C, sampled at8 kHz. The parameters are: melting time� melt = 200 s,
melting intensity I melt = 270 W, resting time � rest = 570 s, and trapping intensity I trap =26 W

which corresponds to trap sti�ness6 k � 5 pN=µm. The data are very noisy, but there is a
tendency: the characteristic time increases after the quench, which is reasonable since the
gelatin viscosity is also increasing during the gelation. The correlation functions are not simply
exponential relaxations, which is consistent with the fact that the PSD are not Lorentzian (as
shown in �gure 3.9b).

We also made some experimental tests of Fluctuation Dissipation Theorem (FDT), by look-
ing at the ensemble correlation ofx and the response to an Heaviside change of the position
of the trap. For these measurements, the position of the trap is changed fromX 1 to X 2 at a
time tR after the �rst quench, and the sample is let gelify inX 2. Then, for the second quench,
the position of the trap is moved back toX 1 at time tR after the quench, and the sample is
let gelify in X 1. The procedure is then repeated alternatively. The perturbation introduced by
the change of trapping position allows us to compute a normalised response function, averaged
over the trajectories:

� (tR ; � ) =
hx(tR + � ) � X initial i

X �nal � X initial
(3.14)

6The trap sti�ness was measured in water (where viscosity is known) for the same laser intensity.
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where [X initial ; X �nal ] = [ X 1; X 2] or [X 2; X 1]. It corresponds to the usual de�nition of the
response function:

� (t) =
hx(t)perturbed � x(t)unperturbed i

perturbation amplitude
: (3.15)

We useX �nal � X initial which is proportional to the perturbation amplitude. And we simply
take X initial as the average value of the unperturbed trajectory, because the mean position of
the bead is constant and equal to the position of the trap if there is no perturbation7.
If the FDT is veri�ed, the response function should verify:

� (tR ; � ) = 1 �
k

kBT
EnsCorrxx (tR ; � ) (3.16)

Some data are presented in �gure 3.19 for 50 quenches at26� C, sampled at8 kHz. The parame-
ters are: melting time� melt = 200 s, melting intensity I melt = 270 W, resting time � rest = 570 s,
and trapping intensity I trap =26 W which corresponds to trap sti�ness8 k � 5 pN=µm. The values
of X 1 and X 2 are estimated by computing the mean position of the bead when the gelatin is
melted (which gives alternativelyX 1 and X 2). The exact value ofkBT=k was extracted from
the variance of the position PDFs computed before changing the position of the trap. These
measurements are a bit noisy because it requires a lot of statistics to compute a proper ensemble
correlation function, but no apparent violation of the FDT was found for the times tested.

Figure 3.19: Normalised response function� (tR ; � ) and ensemble correlation function for
tR = 100 s after the quench, and� going from 0 to 10 s.

We didn't test the Fluctuation Dissipation Theorem for times tR taken shortly after the
quench, because the ensemble correlation shows a characteristic time which is very short at this
time (see �gure 3.18). It is then more di�cult to compute a proper ensemble correlation right
after the quench, than when the viscosity of gelatin has already started to increase. We also
didn't compute the response function by varyingtR for a �xed tR + � , because it would require
a lot of time to do the experiments. Indeed, each set oftR requires one day of measurement to
compute � (tR ; � ), and the sample cannot be kept a lot of days without degrading.

7One could also takehx(tR )i to guarantee that � (tR ; 0) = 0 , but it wasn't necessary here.
8The trap sti�ness was measured in water (where viscosity is known) for the same laser intensity.
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3.4 Conclusion and Perspectives

In conclusion, we were unable to reproduce the results of previous works [64�66], but we have
identi�ed some experimental and data analysis artefacts which may explain the e�ects previ-
ously observed. We have locally studied the gel transition of gelatin solution, and analysed
the e�ect of time windows on proper ensemble averages, which are important to study ageing
systems.

It was shown that in the hysteresis range of temperature (28:3 � C < T < 36� C), bulk gelation
can occur on very long times, and visco-eslatic properties gradually appear. The characteristic
time of the particle trapped in the bulk-gelifying sample was seen to decrease exponentially
before the gelation (whereas the viscosity evolves logarithmically after the gelation).

For fast quenches of a small droplet of gelatin solution, it was found that the Probability
Distribution Functions of the position of the trapped particle do not evolve with time after
the quench, even if the gelatin sample is undergoing ageing and the visco-elastic properties
are clearly evolving. Moreover, these PDFs show equilibrium-like properties, being Gaussian
with a variance equal to the equipartition valuekBT=k. These results seem not so surprisinga
posteriori, since it was already observed in the previous works that, after� 15 sthe Brownian
motion of the trapped particle behaves like in equilibrium with the thermal motion of the gelatin
chains. Only the very �rst seconds after the quench showed anomalous behaviour, which was
strange, because the complete gelation occurs on much larger scales (� 900 s). In agreement
with the absence of anomalous behaviour, no violation of the Fluctuation Dissipation Theorem
was seen, as it would be expected in an equilibrium medium.

For systems which are not ergodic or stationary, time properties can be very di�erent from
ensemble properties. And it was also shown that some artefacts (like slow drifts) or analysis
bias (like high-pass �lter) can greatly modify the results if ensemble properties are estimated
on time-windows. Therefore, one must be very careful when studying statistical properties of
an ageing system. This kind of problems had already arisen for other ageing systems. For
example, it was already shown in [77] that increase in e�ective temperature previously seen in
suspension of Laponite [78] were in fact artefacts due to analysis methods.

Finally, since it seems that there is no anomalous variance increase in gelatin after a fast
quench, there is no reason to introduce an e�ective temperature in studying such systems. It
follows that this system is not appropriate to study the interactions of two particles trapped at
di�erent e�ective temperatures.
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Chapter 4
E�ective Temperature by External Random
Forcing

Il vaut mieux pomper même s'il ne se
passe rien que risquer qu'il se passe
quelque chose de pire en ne pompant
pas.

Devise Shadok

4.1 Introduction and Motivations

We have convinced ourselves that the sol-gel transition of gelatin solutions is not a good choice
to study the e�ect of two di�erent e�ective temperatures on trapped beads. Thus we started
to look for another system where one can achieve high e�ective temperatures. A very simple
set-up is presented in [79]: by adding an external random force to the trapped sphere, the
amplitude of its Brownian �uctuations is increased and the e�ective kinetic temperature of the
particle can reach� 3000 K. In this study, the random forcing is done with random electric
�elds applied to optically trapped dielectric spheres which electric charges remain constant.
We chose to use the same kind of technique, but instead of using an external electric �eld, the
random force is created by modulating the position of one trap. This allows us to have di�erent
e�ective temperatures on di�erent particles, which is not possible with a non-local electric �eld.
The idea is then to trap two particles nearby, and to create an arti�cial temperature gradient
by forcing one of them.

This system is interesting because the energy �ux between two micro-systems kept at dif-
ferent temperatures and coupled only by thermal �uctuations plays an important role in out
of equilibrium thermodynamics. It has been widely studied theoretically for classical [80�85]
and quantum [81,86�88] systems, but only a few experiments have analysed this problem. For
example by measuring the heat �ux between two electrical conductors kept in di�erent heat
baths and coupled by a capacitor [89], or within a single-electron box consisting of two islands,
coupled to separate heat baths, with a tunnel junction [90]. The experimental set-ups are not
numerous because of the intrinsic di�culty to produce a large temperature di�erence on small
scales. Moreover, most of the studies consider only systems coupled by conservative forces.
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The dissipative coupling is however a very important case because the coupling of two close
Brownian particles is dominated by their hydrodynamic interactions in low Reynold-number
regimes.

Hydrodynamic interactions between colloidal particles in low Reynold-number �uids have
been widely studied starting from the theoretical hydrodynamic calculation [91�94]. Several
recent experimental set-ups, made possible by tools like holographic optical tweezers [16, 17],
have shown that these indirect interactions mediated by the solvent play an important role in
various physical situations. For example, they modify the Brownian di�usion of two nearby
particles [95,96]. The displacement cross-correlations between two trapped particles also show
an anti-correlation at �nite time, which has been studied both experimentally and numeri-
cally [97�100]. Systems with arrays of more than two trapped particles coupled by hydrody-
namic interactions show complex dynamics [101�103] and can behave as an elastic medium [104].
The hydrodynamic coupling is also responsible for the synchronisation of colloidal oscillators
which can be linked to collective motions of biological systems like cilia or �agella [105�108],
and for the pair-attractions of particles driven on a circular ring [109,110].

In this chapter, we use an analytical model based on classical hydrodynamic coupling tensor
to study how the equilibrium statistical properties of two coupled trapped particles are modi�ed
when one particle is randomly forced. The connection to stochastic thermodynamics is done
by assimilating the random forcing to a �kinetic e�ective temperature� [79,111]. We are then
able to identify stochastic heat exchanges between the two particles kept at di�erent e�ective
temperatures, and to compare our experimental data to the model's predictions. The results
described in this chapter were partially presented in the publication [112].
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4.2 Experimental set-up

4.2.1 Trapping two particles

The experimental set-up requires two independent traps, with the ability to modulate the
position of at least one of them. We use another con�guration of our optical tweezers set-up:
a laser beam (wavelength532 nm) is separated in two beams with crossed polarisations so that
there is no interference between them. A custom-built vertical optical tweezers with an oil-
immersion objective (HCX PL. APO 63� / 0:6-1:4) is used to focus both beams. Thus each of
them creates a quadratic potential well where a silica bead (radiusR = 1 µm � 5%) is trapped.
One of the beams goes through an acousto-optic de�ector (AOD) that allows to switch the
position of the trap very rapidly (up to 1 MHz). See �gure 4.1.

Figure 4.1: Schematic representation of optical tweezers set-up used to trap two particles
nearby in crossed polarised double well potentials. The Acousto-Optic De�ector (AOD) is used
to modulate rapidly the position of one of the two traps. �M� are mirrors and �DM� is a
dichroic mirror.

The beads are dispersed in bidistilled water at low concentration to avoid interactions with
multiple other beads. The beads solution is contained in a disk-shaped cell (18 mmin diameter,
1 mm in depth), already described in section 1.1.2. The beads are trapped ath = 15 µm above
the bottom surface of the cell. The positions of the beads are tracked by a fast camera with
a resolution of 119 nm per pixel, which after treatment gives the position with an accuracy
better than 5 nm. The camera's speed can go up to1600 frame=s for small image sizes but the
trajectories are usually sampled at800 Hz. The sti�ness of the traps k is proportional to the
laser intensity and is typically4 pN=µm. It can be modi�ed by turning an half-wave plate placed
before the polarization separation or by adding neutral density �lters on the beams trajectory.
The two particles are trapped on a line (called �x axis�) and separated by a distanced which is
tunable. For all the distances used (between2:8 and 6µm) the Coulombian interaction between
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the particle surfaces is negligible. Thus they only interact through the surrounding �uid. A
schematic representation of the two trapped particles is shown in �gure 4.2.

Figure 4.2: Schematic representation of the two trapped particles separated by a distanced
alongx axis. The particle are immersed in bidistilled water. The camera (not represented here)
records the displacements of the beads in directionsx and y, at a rate of 800 Hz.

The sti�ness of one trap at equilibrium can be measured by calculating the variance of
the x-displacement of the bead� 2

x or by �tting the Power Spectral Density (PSD) of the x-
displacement. Indeed, because of the energy equipartition theorem we expect:

� 2
x =

kBT
k

(4.1)

where kB is the Boltzmann constant andT the temperature. Because the particles are over-
damped, the PSD is Lorentzian:

Sx (f ) =
4
k BT=k2

1 + f 2=f 2
c

: (4.2)

with the cut-o� frequency f c that veri�es f c = k=(2�
 ) where
 = 6�R� and � is the dynamic
viscosity of water. The two methods give compatible results, assuming that the viscosity of
water and then Faxén corrections, due to the �nite distanceh between the particle and the
bottom of the cell, are known. Nevertheless, big distancesd can only be achieved experimentally
by moving the laser beam away from the center of the microscope objective. It was observed
that when the beam is not well centred, the shape of the potential is always a bit impaired,
which gives a lower value ofk as well as some noise at low frequency in the bead's displacement.
Hence, we prefer to estimate the sti�ness values from the PSD, where we can easily see low
frequency noise which may alter the measured value of� 2

x .

4.2.2 E�ective temperature on one particle

To add an external force on one of the particles, we modulate the position of the corresponding
trap (here we call 1 the particle in the movable trap, and 2 the particle in the �xed trap
nearby). The force exerted by the trap is :� k(x � x0), wherex0 is the position of the trap,
and x the particle's position. Then, an instantaneous trap displacement of�x 0 will create an
instantaneous force equal tok�x 0, given that the displacement is small enough to remain in the
linear regime.
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To create an e�ective temperature we need an external force with the same statistical
properties as the thermal noise. Thus we send a numerically generated Gaussian white noise to
the AOD so that the position of the corresponding trap is moved randomly in thex direction.
The noise is created by a Labviewr program and is sampled at100 kHzwith a tunable amplitude
A (typically of � 1 V). It is generated by the analog output of aNI PXIe-6366 card. The
conversion factor for the displacement due to the AOD is2:8µm=V. We have experimentally
observed that directly using this noise results in a change of sti�ness rather than an e�ective
temperature. We believe this e�ect is due to the fact that the position of the trap is moved
too fast with respect to the typical relaxation time of the trapped particle1. Thus we added a
numerical low-pass �lter at 1 kHz to the generated noise. The typical voltage of the noise after
�ltration is between � 0:25 V. Then, when the random force is switched on, the bead quickly
reaches a stationary state with an �e�ective temperature� for the randomly forced degree of
freedom.

The Power Spectral Densities of one bead's displacement in the x-direction with di�erent
noise amplitude (between0 and 1:8 V) are shown in �gure 4.3. The displacement in the y-
direction is not modi�ed by the added noise.

Figure 4.3: Power Spectral Densities of the x-displacement of one bead of radiusR = 1 µm
trapped with sti�ness k = 3:4 pN=µm in water at room temperature, at equilibrium (lowest
blue curve), and for noise amplitudeA from 0:6 to 1:8 V (A is incremented of0:4 V between
each curve). The black dashed line is a Lorentzian �t of the spectrum withA = 1:8 V. The indi-
cated e�ective temperatures are calculated from the variances, assuming that the equipartition
theorem remains valid.

As in [79], the PSDs when the bead is randomly forced are just vertical translations of
the equilibrium ones. The PSDs remain Lorentzian, and the cut-o� frequencyf c = k=(2�
 )
obtained by �tting them is not modi�ed by more than a few hertz when the amplitude of the
forcing is lower than1:5 V. Since the viscosity term
 is not modi�ed by the forcing, it means
that the sti�ness k of the trap is let unchanged by the random force. Then, only a change of
e�ective temperature can explain the observed PSDs (see equation 4.2).

For forcing amplitudes higher than1:5 V, f c starts to be modi�ed and the spectrum starts
to be slightly less accurate at high frequency. This happens because the forced random dis-

1The typical cut-o� frequency f c is 30 Hz.
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placement of the trap is too big compared to the size of the harmonic interval of the trapping
potential. However, with an amplitude of1:5 V, the e�ective temperature is already1500 K,
which gives us a wide range to work with.

Finally, our set-up allows us to trap two particles nearby and to add a random force with
chosen properties to one of them.
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4.3. Hydrodynamic coupling model

4.3 Hydrodynamic coupling model

We use a classical hydrodynamic coupling model to describe the system of the two interacting
trapped particles.

4.3.1 Coupled Langevin equations

In low Reynolds-number �ow, the motion of two particles free to rotate (with no external
torque) can be described by the following equations [97,113]:

d~ri

dt
=

2X

j =1

H ij
~Fj (4.3)

where ~ri is the position of the particle i , H ij is the hydrodynamic coupling tensor (also often
called the mobility matrix) which depends on(~ri � ~rj ), and ~Fi is the force acting on the particle
i .

Following [97�99], if we consider only the longitudinal motion of two thermally excited
trapped particles (as shown in �gure 4.2), we can use the two coupled Langevin equations:

 
_x1

_x2

!

= H �

 
F1

F2

!

(4.4)

where x i is the position of the particle i relative to its trapping position (the particles are
trapped along thex-axis), and _x i is the time derivative of x i .
At equilibrium the forces acting on the particles are:

Fi = � ki � x i + f i (4.5)

whereki is the sti�ness of the trap i and f i are the Brownian random forces which verify:

hf i (t)i = 0
hf i (t)f j (t0)i = 2kBT (H � 1) ij � (t � t0)

(4.6)

wherekB is the Boltzmann constant andT the temperature of the surrounding �uid.
For two identical particles of radius R trapped at positions separated by a distanced, as-
suming that their displacements are small compared to the mean distance between them, the
hydrodynamic coupling tensor reads:

H =

 
1=
 �=

�=
 1=


!

(4.7)

where
 is the Stokes friction coe�cient (
 = 6�R� where� is the viscosity of water) and� is the

coupling coe�cient ( � = 3R
2d if one takes the �rst order of the Oseen tensor [113],� = 3R

2d �
�

R
d

� 3

if one takes the Rotne-Prager di�usion tensor [103]).
To describe the e�ective temperature, we simply add an external random forcef � on the

�rst particle. This force is completely decorrelated with the Brownian random forces and
characterised by an additional e�ective temperature� T (the particle 1 is then at an e�ective
temperature T � = T + � T):

hf � (t)i = 0
hf � (t)f i (t0)i = 0
hf � (t)f � (t0)i = 2kB � T 
� (t � t0)

(4.8)
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It follows that our system of equations is:
(


 _x1 = � k1x1 + � (� k2x2 + f 2) + f 1 + f �


 _x2 = � k2x2 + � (� k1x1 + f 1 + f � ) + f 2
(4.9)

It can be rewritten: (
_x1 = g1(x1; x2) + � 1

_x2 = g2(x1; x2) + � 2
(4.10)

with:
gi (x i ; x j ) = �

1



ki x i �
�



kj x j (4.11)

and:
� 1 = 1


 (f 1 + �f 2 + f � )
� 2 = 1


 (f 2 + �f 1 + �f � )
(4.12)

which are the equivalent Brownian random forces (normalised by
 ).

4.3.2 Variances and cross-variances

The system is stationary2, and the �rst quantities we can easily compute are the variances and
cross-variance:

� 2
11 = hx1x1i

� 2
22 = hx2x2i (4.13)

� 2
12 = hx1x2i = � 2

21:

The equations 4.10 are close to those describing the energy exchanged between two heat
baths coupled by thermal �uctuations [89] and it can be proved that the time evolution of the
joint Probability Distribution Function (PDF) P(x1; x2; t) is governed by the Fokker-Planck
equation [114]:

@P
@t

= �
@(g1P)

@x1
�

@(g2P)
@x2

+ 2� 12
@2P

@x1@x2
+ � 11

@2P
@x21

+ � 22
@2P
@x22

(4.14)

where� ij is de�ned by:
h� i (t)� j (t0)i = 2� ij � (t � t0): (4.15)

Here we have:

� 11 = kB(T + � T)=


� 12 = kB � (T + � T)=
 (4.16)

� 22 = kB(T + � 2� T)=
:

The stationary solution of equation 4.14 can be written:

Ps(x1; x2) =

p
ac� b2

�
e� (ax2

1+2 bx1x2+ cx2
2 ) (4.17)

2We did not look at the transient regime when the random force is added or when it's amplitude is changed.
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where:

a =
k1(k1 + k2) (( k1 + k2)T + � 2k2� T)

�

b=
� �k 1k2(k1 + k2)� T

�
(4.18)

c =
k2(k1 + k2) (( k1 + k2)T + ( k1 + k2(1 � � 2))� T))

�

with:
� = 2 kB

�
(T2 + T� T)(k1 + k2)2 � � 2(� 2 � 1)k2

2� T2)
�

: (4.19)

Then, one can compute the variances of each position and the cross-variance between the
two particles:

� 2
ij =

ZZ + 1

�1
x i x j Ps(x1; x2) dx1dx2 (4.20)

We �nd:

� 2
11 =

kB(T + � T)
k1

�
k2

k1

� 2kB � T
k1 + k2

� 2
12 =

�k B � T
k1 + k2

(4.21)

� 2
22 =

kBT
k2

+
� 2kB � T
k1 + k2

This result shows several expected behaviours, like the increase of� 2
11 due to the random

forcing, or the increase of� 2
22 due to the coupling between the two particles. But it also shows

the appearance of a non-zero cross-variance� 2
12 which does not exist in the equilibrium case

(when � T = 0). The random forcing done on only one particle induces an instantaneous cross-
correlation of the particle'sx-displacements. One can also identify an energy exchange between
the two particles. Indeed the variances can be rewritten:

� 2
11 = � 2

1 n.c. �
k2

k1

� 2kB � T
k1 + k2

� 2
22 = � 2

2 n.c. +
� 2kB � T
k1 + k2

where� 2
i n.c. is the variance of the particlei with no coupling, i.e. the variance that the particle

i would have if it was alone (i.e. � = 0).
It follows that the variance of the �hot� particle (the forced one) is decreased by the presence
of the �cold� particle, and reciprocally the variance of the cold one is increased by the presence
of the hot one.

This behaviour is well veri�ed experimentally and presented in �gure 4.4. For a �xed
distance d (�gure 4.4a), when the �rst bead is forced we observe that the variance of itsx-
displacement � 2

11 and the variance of the second particle's displacement� 2
22 increase. The

cross-variance� 2
12 also ceases to be zero and increases with the amplitude of the random noise.

For a �xed noise amplitudeA (�gure 4.4b), the values of� 2
22 and � 2

12 slightly decrease with the
distanced between the particles, which is normal since� decreases whend is increased.
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(a) (b)

Figure 4.4: Variance of the displacement of each bead (� 2
22 and � 2

11) and cross-variance between
the two displacement (� 2

12). (a) When the random forcing amplitudeA is increased on the �rst
bead and the distance between the traps is kept constant,d = 3:2µm, the variances and the
cross-variance increase. The dashed-lines are the values of� 2

22 and � 2
12 measured when there

is no random forcing. (b) Zoom on� 2
22 and � 2

12 for a �xed forcing amplitude A = 1:5 V, both
values decrease withd the mean distance between the two particles (� 2

11 which is not shown
remains nearly constant and equal to5:7 � 10� 3 µm2). The dashed-lines are the values of� 2

22
and � 2

12 averaged overd when there is no random forcing.

To be more quantitative, one can measure� 2
11,�

2
12 and � 2

22, and solve the system 4.21 to �nd
the values ofT, � T and � (given that k1 and k2 are measured separately). One �nds:

T =
k1� 2

11 + 3k2� 2
22 � �

4kB

� T =
k1� 2

11 � k2� 2
22 + �

2kB
(4.22)

� =
� k1� 2

11 + k2� 2
22 + �

4k2� 2
12

with:
� =

q
8k2(k1 + k2)� 4

12 + ( k1� 2
11 � k2� 2

22)2: (4.23)

Some experimental values for a given distanced and di�erent amplitudes of forcingA applied on
particle 1 are shown in �gure 4.5. Values for a given forcing amplitude and di�erent distances
are shown in �gure 4.6. For these data, the values of� 2

12 used for computation are corrected by
subtracting the value of the cross-variance when the system is at equilibrium (this value should
theoretically be zero and gives an estimation of the incertitude on� 2

12). As expected:

ˆ T is always nearly constant and equal to room temperature (all values are compatible
with room temperature of297 K with a precision of10%)

ˆ � depends only on the distance between the particles (in �gure 4.5b all values are between
0:37 and 0:42)

ˆ � T depends only on the forcing amplitude applied on the �rst particle.
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(a) (b)

Figure 4.5: Coupling coe�cient (� ), temperature of the bath (T) and e�ective temperature
(� T), measured from the values of� 2

11,�
2
12 and � 2

22, for two particles trapped at distanced =
3:2µm as a function of the amplitudeA of the forcing done on one particle. The theoretical
coupling coe�cient from the Rotne-Prager di�usion tensor (� RP ) is computed for particles of
radius R = 1 µm � 5%.

(a) (b)

Figure 4.6: Coupling coe�cient (� ), temperature of the bath (T) and e�ective temperature
(� T), measured from the values of� 2

11,�
2
12 and � 2

22, for two particles at di�erent e�ective
temperature as a function of the distanced between the particles. The theoretical coupling
coe�cient from the Rotne-Prager di�usion tensor (� RP ) is computed for particles of radius
R = 1 µm � 5%.

In �gures 4.5b and 4.6b we notice that the measured value of� is always slightly lower than
the theoretical one (estimated by the Rotne-Prager di�usion tensor). However it also shows
the expected dependence in the distanced between the two particles (� / 1=d). We do not
have a de�nitive explanation for this discrepancy, but we have veri�ed that it is not due to
the �nite distance to the bottom surfaceh by changing it to 10µm or 20µm without observing
signi�cant change of� . It might simply be a problem of calibration in the trap sti�nesses, or in
the particles radiusR from the manufacturer. There also are at least two experimental problems
with the estimation of � : for very low forcing (i.e. low� T), the errorbars are big because they
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Chapter 4. E�ective Temperature by External Random Forcing

are estimated considering that the main source of incertitude is the value of� 2
12, which is very

low when forcing is low. When the forcing is very high, the estimation of� starts to be less
precise because, as already mentioned, the added random force begins to be less accurate for
high displacements of the trap position. This e�ect is also noticeable in �gure 4.5a, where one
can see that� T is not perfectly linear in A. In �gure 4.6a the e�ective temperature � T is not
perfectly constant but slightly decreases when the distanced is increased. This e�ect is due to
the less accurate response of the AOD far from the center of the apparatus: the shape of the
trap is always altered when the beam is not well centred, which lowers the sti�ness of the trap
and consequently the� T corresponding to a given noise amplitude3.

4.3.3 Position cross-correlations

The position cross-correlation functions were �rst measured for two trapped particles interacting
in a thermal bath at equilibrium in [97]. If the two sti�nesses are equalk1 = k2 = k, the cross-
correlations verify:

hx1(t)x2(0)i = hx1(0)x2(t)i =
kBT
2k

h
e� k(1+ � )t=
 � e� k(1� � )t=


i
: (4.24)

Nota Bene: the usual cross-correlation ish(x1 � h x1i )(x2 � h x2i )i but here we havehx1i = 0
and hx2i = 0 because the average position of the particlei is the position of its trap.
The shape of the curve is plotted in �gure 4.7, for sti�nessk = 3:5 pN=µm, particle radius
R = 1 µm, viscosity � = 9:67 Pa� s (which is the viscosity of water at23� C, with the Faxén
corrections for a distance to the bottom surfaceh = 15 µm) and distance between the beads
d = 4 µm. The cross-correlation function is zero att = 0, and shows an anti-correlation with a
maximum at a �nite time tmin = ( 
= 2k� ) ln ((1 + � )=(1 � � )) � (
=k ).

Figure 4.7: Theoretical position cross-correlation functionhx1(t)x2(0)i , for parameters close to
the experimental ones.

Since the system is stationary, we havehx1(� t)x2(0)i = hx1(0)x2(t)i . Then we can ex-
perimentally compute onlyhx1(0)x2(t)i for positive and negative times to have access to both
hx1(0)x2(t)i and hx1(t)x2(0)i . Some cross-correlation functions with no random force are shown

3� T should be proportional to A and k1.
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in �gure 4.8. The agreement with the theoretical formula is not perfect, in particular we do not
have exactlyhx1(0)x2(0)i = 0 for small distancesd between the beads. But the functions are
quite symmetrical, which is normal because the two beads play the same role, and the global
shape is corresponding to the expected one.

Figure 4.8: Experimental position cross-correlation functionshx1(0)x2(t)i , for two particles
trapped at di�erent distances d, in a thermal bath at equilibrium at room temperature.

To compute the cross-correlation functions in the case where the random forcing is done
on particle 1, we can use the method described in [99]. We compute the Laplace transform of
equations 4.9:


 (x̂1(s) � x1(0)) = � k1x̂1(s) � �k 2x̂2(s) + 
 �̂ 1(s)

 (x̂2(s) � x2(0)) = � k2x̂2(s) � �k 1x̂1(s) + 
 �̂ 2(s)

(4.25)

where x̂(s) =
R1

0 x(t)e� st dt. If we multiply the equations 4.25 byx2(0) and compute the
ensemble average, we get a system of equations with the cross-correlationĥx1(s)x2(0)i and the
auto-correlation of the second particleĥx2(s)x2(0)i :


 (ĥx1(s)x2(0)i � � 2
12) = � k1ĥx1(s)x2(0)i � �k 2ĥx2(s)x2(0)i


 (ĥx2(s)x2(0)i � � 2
22) = � k2ĥx2(s)x2(0)i � �k 1ĥx1(s)x2(0)i

(4.26)

If we multiply the equations 4.25 byx1(0) and compute the ensemble average, we get a system
of equations with the cross-correlationĥx2(s)x1(0)i and the auto-correlation of the �rst particle
ĥx1(s)x1(0)i .


 (ĥx1(s)x1(0)i � � 2
11) = � k1ĥx1(s)x1(0)i � �k 2ĥx2(s)x1(0)i


 (ĥx2(s)x1(0)i � � 2
21) = � k2ĥx2(s)x1(0)i � �k 1ĥx1(s)x1(0)i

(4.27)

We were interested by the cross-correlation functions4 so we solved the two systems, using
equations 4.21, and we get:

ĥx1(s)x2(0)i =
kB 
� [(k1 + k2)T + � T(k2(� 2 � 1) � s
 )]
(k1 + k2)(k1k2� 2 � (k1 + s
 )(k2 + s
 ))

ĥx2(s)x1(0)i =
kB 
� [(k1 + k2)T + � T(k2(1 � � 2) � s
 )]
(k1 + k2)(k1k2� 2 � (k1 + s
 )(k2 + s
 ))

4The auto-correlation functions can easily be computed following the same method.
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Then, by taking the inverse Laplace Transform:

hx1(t)x2(0)i =
�k B

2(k1 + k2)�

h�
� T(� + k1 + k2(2� 2 � 1)) + 2 T(k1 + k2)

�
e� (k1+ k2 � � )t=2


+
�
� T(� � k1 � k2(2� 2 � 1)) � 2T(k1 + k2)

�
e� (k1+ k2+ � )t=2


i
(4.28)

hx1(0)x2(t)i =
�k B

2(k1 + k2)�

h�
� T(� + k1 + k2(3 � 2� 2)) + 2 T(k1 + k2)

�
e� (k1+ k2 � � )t=2


+
�
� T(� � k1 � k2(3 � 2� 2)) � 2T(k1 + k2)

�
e� (k1+ k2+ � )t=2


i
(4.29)

with :
� =

q
k2

1 � 2k1k2 + k2
2 + 4� 2k1k2: (4.30)

Finally, we can simplify these equations by considering thatk1 = k2 = k, and we get:

hx1(t)x2(0)i =
kB

4k

h
(� 2T + � T � (1 � � )) e� k(1� � )t=
 + (2 T + � T � (1 + � )) e� k(1+ � )t=


i
(4.31)

hx1(0)x2(t)i =
kB

4k

h�
� 2T + � T(� 2 + � + � 2)

�
e� k(1� � )t=
 +

�
2T + � T(2 + � � � 2)

�
e� k(1+ � )t=


i

(4.32)

A few physical comments can be made about these results:

ˆ If � T = 0, we retrieve the cross-correlation function for two particles interacting in a
thermal bath at equilibrium already calculated in [97�99] (see equation 4.24).

ˆ In our casehx1(t)x2(0)i 6= hx1(0)x2(t)i because we introduce an asymmetry by forcing
only one bead.

ˆ Of course, we retrieve the fact thathx1(0)x2(0)i 6= 0 when � T 6= 0, contrary to the
equilibrium case.

ˆ hx1(0)x2(t)i always shows a time-delayed anti-correlations more pronounced than in the
equilibrium case whereashx1(t)x2(0)i doesn't show any anti-correlation as soon as� T �
2T=[� (1 � � )]. This behaviour can be understood in the following way:hx i (0)x j (t)i is
linked to how x j at a time t > 0 is in�uenced by x i at the time t = 0. Sincex1 is forced,
it is less sensitive to the motion ofx2. On the contrary, x2 is more sensitive to the motion
of x1 which is bigger than its own motion.

Since every parameter can be measured (k1 and k2 are estimated independently,
 is known
for water, and � , � T and T are estimated from the values of the variances), we can directly
test equations 4.31 and 4.32 on our data. Some experimental cross-correlationshx1(0)x2(t)i are
shown in �gure 4.9 and compared to the theoretical predictions with the measured values of
the parameters. For those measurements, the distance isd = 3:2 pN=µm and the sti�nesses are
k1 = 3:3 pN=µm and k2 = 3:7 pN=µm. Here we have takenk = ( k1 + k2)=2 and we do not show
the predictions from equations 4.28 and 4.29, because they are very close to the ones where we
assumek1 = k2 = k. The predictions are not perfectly veri�ed on the experimental data, but
since we took no free parameter to adjust the data and the theoretical curves, the agreement
is still very satisfactory. In particular, the strong asymmetry and the increase of instantaneous
cross-correlation when� T is increased are very clear.

74



4.3. Hydrodynamic coupling model

Figure 4.9: Experimental position cross-correlation functionshx1(0)x2(t)i , for two particles
trapped at a �xed distance d = 3:2µm, with di�erent e�ective temperatures � T applied on
particle 1. The black curve is a measurement for� T = 0, the function is not 0 at t = 0
because the distance between the particles is too small, as in �gure 4.8. The red curves are the
predictions from equations 4.31 and 4.32.
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4.4 An experimental set-up with one single laser beam

We used the set-up described in �gure 4.1 because we wanted two real physical traps, but
it requires a very good precision in the alignment of the two laser beams to avoid optical
aberrations. We also tested a simpler set-up, where the two traps are created by only one beam
which is switched very rapidly between two positions thanks to the acousto-optic de�ector
(AOD) 5. To create the same situation as before, we simply switch the laser beam between one
�xed position (which will be the trap at equilibrium temperature T) and a position which is
randomly modulated (which will be the trap at e�ective temperatureT + � T). In this case,
we have two control frequencies: a very high frequency (10 kHz) which is the frequency of
switching positions between the two traps, and a lower frequency (1 kHz) which is the cut-
o� frequency of the white noise sent to modulate the position where we want to create the
e�ective temperature. An example of the control signal that can be sent to the AOD is shown
in �gure 4.10: the lower position is �xed and the upper position is modulated by a numerically
low-pass �ltered Gaussian white noise.

(a) Small time scale (b) Larger time scale

Figure 4.10: Example of control signal that can be sent to the acousto-optical de�ector to create
two independent traps by switching rapidly the position of one single laser beam. One trap has
a �xed position (� 0:5 in arbitrary units) and is at equilibrium with the �uid. The other trap
is randomly modulated around its mean position (+0:5 in arbitrary unit) so that the trapped
particle will have a higher e�ective temperature.

This set-up is easier to use than the one presented in the previous section and gives similar
results. The data presented in the following section were done using this simpler set-up.

5The set-up is then the same as the one presented in chapter 2.
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4.5 Stochastic heat dissipated by the particles

Once the hydrodynamic model has been validated, we can look at some stochastic thermody-
namics quantities. For example we can compute the heat �ux between the two particles, to see
if it respects the Second Law of Thermodynamics and if it veri�es a Fluctuation Theorem for
two sources at di�erent temperatures.

4.5.1 Average heat and work exchanges

We consider that � 1 and � 2 are the normalised e�ective Brownian random forces acting on
particles 1 and 2,i.e. the forces due to their respective heat bath. Following [30], the heat
dissipated by the particlei during the time � is given by:

Qi (� ) =
Z �

0
(
 _x i � 
� i ) _x i dt: (4.33)

Using equations 4.10 it can be decomposed in two terms:

Qi (� ) = Qii + Qij (4.34)

Where:
Qii = � ki

R�
0 x i _x i dt

Qij = � �k j
R�

0 x j _x i dt
(4.35)

with j 6= i (i.e. j = 2 if i = 1 and reciprocally). We experimentally measured the fourQij (with
f i; j g 2 f 1; 2g) for di�erent parameters and computed their average6. We plot in �gure 4.11a
the four hQij (� )i for � = 0:2 s. The quantities are expressed inkBT units, where T is the
room temperature, which is the real equilibrium temperature of the bath (T � 300 K). The
quantities hQ11i and hQ22i are equal to zero. This is normal since:

Z �

0
� x i _x i dt = �

� 1
2

x2
i

� �

0
: (4.36)

We also see thathQ12i = �h Q21i . Here this e�ect is due to the fact that k1 � k2, otherwise we
would simply have: � Z �

0
x1 _x2 dt

�

= �
� Z �

0
x2 _x1 dt

�

(4.37)

because the boundary term in the integration by parts vanishes in average:

h[x1x2]�0i = � 2
12 � � 2

12 = 0: (4.38)

In �gure 4.11b we show that hQij i is linear in � , which is expected because the system is
stationary. A least squares numerical �t gives�h Q12i = A� + B with A = 21:7 kBT � s� 1 and
B = � 0:03 kBT which is very close to 0.

Finally, the average heat dissipated by the particlei during a time � is hQi (� )i = hQij (� )i
and depends linearly in� and in � T, as it would be observed for a normal stationary heat �ux
between two real heat baths at di�erent temperatures. One could �nd strange thatQ12 < 0
and Q21 > 0, because it means that the particle 1, which is in the hot bath, is receiving positive

6Since the system is stationary, the average is simply estimated by computingQ(� ) on di�erent segments of
trajectories that are considered independent.
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(a) (b)

Figure 4.11: Heat dissipated by the particles, withd = 4:1µm, k1 = 3:6 pN=µm and k2 =
3:7 pN=µm. a) For � = 0:2 s and di�erent � T. b) For � T = 1000 K and di�erent � .

heat, whereas the particle 2, which is in the cold bath, is dissipating positive heat. Actually
this is normal, since the two baths can only exchange heat through the interactions of the two
particles. The mean heat �ux has to go from the hot bath to the cold bath, then the particle in
the hot bath must receive heat from its bath, whereas the particle in the cold bath must give
heat to its bath. Of course, none of the particles can store energy, so we must verify that in
average the work that they receive is equal to the heat that they dissipate.

Figure 4.12: Schematic representation of energy exchanges in the system of two beads kept at
di�erent e�ective temperatures and coupled by hydrodynamic interactions, ifk1 = k2. Q is
positive heat and W positive work.

We consider that for particle 1, the particle 2 is an external agent (and reciprocally).
Then [31], the heat received by the particlei during the time � is given by:

Wi (� ) =
Z �

0

@Vi
@xj

(x i ; x j ; t) _x j dt (4.39)

whereVi (x i ; x j ; t) = 1
2ki x2

i + �k j x j x i (and as beforej = 2 if i = 1). Then:

Wi (� ) = �k j

Z �

0
x i _x j dt: (4.40)
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Using equation 4.37, it follows directly that:

hQi (� )i = hWi (� )i : (4.41)

This is the behaviour expected: the average heat dissipated by the particlei is equal to the
average work received by this particle.

Finally, if k1 = k2, we can have a very simple picture of the energy exchanges in the system:
the hot heat bath transfers heat to particle 1, which transfers work to particle 2, which transfers
heat to the cold heat bath. A schematic representation is shown in �gure 4.12. In the following
part, we keepk1 = 3:6 pN=µm � k2 = 3:7 pN=µm.

4.5.2 Fluctuation Theorem for two sources at di�erent temperatures

We can go further by looking not only at the average of the stochastic heat and work, but also
at their �uctuations. In particular, the exchange Fluctuation Theorem (xFT) [81] states that
the heat Q exchanged in a time� between two systems previously kept in equilibrium at two
di�erent temperatures T1 and T2 veri�es in the limit of large � :

ln

 
P(Q)

P(� Q)

!

=
� 1

kBT2
�

1
kBT1

�

Q (4.42)

whereP(Q) is the probability of observing the amount of heatQ going from system 1 to system
2 during the time � .

In our case, we can look at the heat that leaves the hot bathQ1 or the heat that is received
by the cold bath Q2. The experimental Probability Distribution Functions (PDF) of the four
Qij are shown in �gure 4.13 for� = 0:2 s. The PDF of Q11 is wider when� T is higher, but
it always remains symmetrical with zero mean. The PDF ofQ22 is nearly not modi�ed by
the increase of� T and remains symmetrical with zero mean. The PDFs ofQ12 and Q21 are
nearly the opposite one of the other and are evolving signi�cantly when� T is increased. When
� T = 0 they are Gaussian with zero mean, but as soon as� T > 0 they have a non-zero average
and their shape become asymmetrical with regard to their mean value. Since we compute the
Qij in kBT units, we can expect an exchange Fluctuation Theorem of the form:

ln

 
P(Q21)

P(� Q21)

!

=
�

1 �
T

T + � T

�

Q21 (4.43)

We call the symmetry function �( Q) = ln ( P(Q)=P(� Q)).
The experimental symmetry function�( Q21) for � = 0:2 s and � T � 1000 K is shown in

�gure 4.14a. It is well veri�ed that �( Q21) depends linearly inQ21. However, to be more
quantitative, we have to check that the slope of�( Q21) does not depend on� , and is equal to
1 � T=(T + � T). We show in �gure 4.14b that the slope does not vary with� , except for very
short values (i.e. � shorter than the relaxation time of the particles in the optical traps). We
also show that the slope of�( Q21) is very close to the slope of�( � Q12), which is normal since
the PDF of Q12 is nearly the opposite of the PDF ofQ21. Experimentally we have to choose
a value of� small enough to have a good statistic in the PDF near zero7, and high enough to
have a slope independent of� . This is the reason why we chose� = 0:2 s.

7sincehQ21 i increase linearly with � , the PDF shifts far from Q21 = 0 when � is increased
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Figure 4.13: Experimental Probability Distribution Functions of the four heat termsQij , com-
puted with � = 0:2 s for di�erent � T.

(a) Symmetry function (b) Slope of the symmetry function

Figure 4.14: a) Symmetry function�( Q21) computed for � T � 1000 K and � = 0:2 s (� T
is estimated from the hydrodynamic model). b) Slope of the symmetry function with� T �
1000 K, computed for di�erent � .

Unfortunately, as seen in �gure 4.15, the� T which is given by the slope of the symmetry
functions is not in really good agreement with the one from the hydrodynamic model, as soon
as � T > 300 K.

This discrepancy can be explained by the di�culty to correctly estimate the slope of the
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Figure 4.15: � T computed from hydrodynamic model (black) and the slope of the symmetry
function, assuming that the exchange Fluctuation Theorem (equation 4.43) is veri�ed.

symmetry function for high values of� T (because the slope should be in1 � T=(T + � T)).
In particular, the slope of the symmetry function can be greatly modi�ed if the value of the
sti�nesses k1 and k2 are not well estimated. For example, for a �xed forcing amplitudeA, a
change of only5 % done to the sti�nesses taken in the calculation can vary the value of� T
derived from the slope from1200 K to 2300 K. In comparison the values of� T given by the
hydrodynamic model varies only from1280 K to 1430 K, for the same change of5 % in k1 and
k2. Given that we also need to estimate� , the errorbars in �gure 4.15 should be very big (at
least 50 %). We nevertheless did some longer measurements (to increase the statistic in the
PDF) with various forcing amplitudes. The � T measured from the hydrodynamic model and
from the slope of the symmetry functions are presented in table 4.1.

Hydrodynamic model (K) xFT with Q12 (K) xFT with Q21 (K)
� 10 % � 50 % � 50 %

613 675 675
1065 1574 1372
1429 1353 1293

Table 4.1: � T computed from hydrodynamic model and the slope of the symmetry function,
assuming that the exchange Fluctuation Theorem (equation 4.43) is veri�ed. The values are
estimated for measurements of� 6 h continuously sampled at800 Hz. The errorbars are esti-
mated by taking into account the uncertainties ofk1, k2 and � .

Finally, it seems very di�cult to conclude on the validity of the exchange Fluctuation The-
orem for our experimental set-up. It seems well veri�ed for values of� T which are reasonably
small (� T . 300 K), but the agreement for higher values of� T is not clear. It would how-
ever be interesting to study this point more deeply. Indeed it has been previously shown that
when a random forcing term becomes larger than the thermal noise the Fluctuation Theorem
fails [111, 115]. One can wonder whether we have here the same phenomenon, even if the
accuracy of the experimental results does not allow us to check this hypothesis at the moment.
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4.6 A note on e�ective temperature by random forcing

With the simpler set-up presented in section 4.4, it is possible to set the same e�ective tem-
perature to both particles 1 and 2. We only need to generate two independent Gaussian white
noises with same amplitude and �ltered at a same given frequency, and to send one on each
trap position controlled by the AOD. In this case, we have two particles trapped at the same
e�ective temperature T + � T.

Interestingly, the results are not exactly the ones expected for two particles in equilib-
rium in the same heat bath. For example, the variances� 2

1 and � 2
2 are nearly equal, but the

cross-variancehx1x2i is not equal to zero. It is very visible in the position cross-correlation
hx1(0)x2(t)i shown in �gure 4.16: the cross-correlation is symmetrical in time because the
beads play an equivalent role, but it shows a non-zero value att = 0.

Figure 4.16: Position cross-correlation functionhx1(0)x2(t)i , computed for two particles trapped
at distanced = 3:6µm with the same e�ective temperatureT + � T. The curve for � T = 0 is
simply a measurement at equilibrium, with no noise added on any particle.

This e�ect is however normal, given that the noises added on each particle are independent.
Indeed, in the equilibrium case, the Brownian random forcesf 1 and f 2, which are due to the
collisions with the �uid molecules, verify the properties:

hf i (t)i = 0
hf i (t)f j (t0)i = 2kBT (H � 1) ij � (t � t0):

(4.44)

These properties are necessary to retrieve the fact thathx1x2i = 0. Yet, the random forcesf �
1

and f �
2 that we create only verify:

hf �
i (t)i = 0

hf �
i (t)f �

j (t0)i = � ij 2kB � T 
� (t � t0)
(4.45)

where � ij is the Kronecker delta. Thus, it is normal that we do not retrieve completely equi-
librium properties if the noises added on each particle are not chosen to satisfy particular
relations.

This e�ect might remind us that we are dealing only with �e�ective� temperatures, and not
�real� temperatures.
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4.7 Perspectives and Conclusion

4.7.1 Perspectives

In this section, we brie�y present some possible ways to extend our work on e�ective tempera-
tures.

ˆ It should be possible to compute the theoretical Probability Distribution Function of the
dissipated heat with a Fokker-Planck equation as in [89]. It would be interesting to see if
the theoretical results predict the validity of the suggested exchange Fluctuation Theorem
(equation 4.43).

ˆ One may wonder whether the presence of a randomly forced particle will modify the
Kramers time [52] of another particle trapped nearby in a double well potential in the
�uid at equilibrium, as represented in �gure 4.17. We have tried to realise such an
experiment, but it was really di�cult to create a well calibrated double well potential
nearby a forced trap with only one AOD, and we observed no signi�cant e�ect in our
preliminary measurements.

Figure 4.17: Schematic representation of one particle trapped at e�ective temperature, nearby
a particle trapped in a double well potential at equilibrium. The Kramers time is the typical
time needed by the particle in the double well potential to jump from one well to the other.

ˆ One may study the cross-coupling between displacements in directionx and y. This
requires two AODs but should not be much more complicated than what we have already
done.

ˆ One may study some conservative coupling between the particles, for example if they are
charged, or if they are attached with a spring (or a spring-like tie). The di�culty will
then be to separate the contribution due to the hydrodynamic coupling (which cannot
be removed) from the contribution due to the conservative force between the particles.
However, the results could then be compared with some other experiments with real
temperature sources.

ˆ One may try to achieve a negative� T using a feedback control on the position of one of
the two traps, as in [116,117].

ˆ One may study interactions of more than two particles, as suggested in [103].

ˆ One may look for di�erent sources of e�ective temperatures, like shear �ows, as it would
be discussed in chapter 5.
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4.7.2 Conclusion

In conclusion, we have studied the e�ect of hydrodynamic interactions between two particles
trapped with optical tweezers in a �uid at temperatureT, when one of them is randomly forced
to have an e�ective temperatureT + � T.

We �rst have shown that the random forcing of the position of one trapped bead does not
modify the trap sti�ness and can be interpreted as an e�ective temperature for the bead. This
result was previously shown in [79] by forcing the particle with an electric �eld, and we only
changed the set-up used to create the external random force. Our set-up allows us to add
di�erent e�ective temperatures on di�erent beads trapped nearby. Conversely the use of an
electric �eld o�ers a bigger range of temperatures but cannot be applied locally to only one
particle among others.

We have shown that the random forcing of one particle gives rise to an unusual instantaneous
cross-correlation between the motions of the particles and an e�ective energy exchange from the
�hot� bead to the �cold� bead. This behaviour was explained by using a classical hydrodynamic
coupling model, and by resolving the two coupled Langevin equations with the equivalent
Fokker-Planck equation. The hydrodynamic model allows us to compute the variances and
cross-variances of particles positions, and to link them with both the e�ective temperature
� T and the hydrodynamic coupling coe�cient � . It also predicts the position cross-correlation
functions of the two particles, which are in good agreement with experimental observations.

We have also looked at stochastic thermodynamic quantities such as the stochastic heat or
the work received by the particles. We have shown that the particle in the (e�ective) �hot�
heat bath receives heat at a constant rate proportional to� T, whereas the particle in the
(real) �cold� heat bath dissipates heat at a constant rate, also proportional to� T. We have
also shown that for each particle the work received is equal to the heat dissipated in average.
We have experimentally measured the Probability Distribution Functions of stochastic heat
dissipated by the particles and we have tried to look for an exchange Fluctuation Theorem.
Unfortunately, even if the experimental observations are not in total disagreement with the
theoretical formula, the errorbars due to uncertainties on our experimental parameters do not
allow us to clearly conclude on the validity of this exchange Fluctuation Theorem.

Finally, we have presented a few possible ways to extend our work on interactions between
particles submitted to e�ective temperatures.

84



Chapter 5
External Noise due to a Shear-Flow

Pourquoi faire simple quand on peut
faire compliqué ?

Devise Shadok

5.1 Introduction and Motivation

We have shown in chapter 4 that randomly modulating the position of one optical trap creates
an e�ective temperature for the trapped particle. We then wanted to look for a more �physical�
source of e�ective temperature for our trapped particle, that could be encountered in other
experimental systems.

We chose to study the noise created by a shear-�ow. Indeed, if a particle is trapped in a
simple shear-�ow, as represented in �gure 5.1, its over-damped movement in thexy-plane will
be described by the 2D Langevin equations [118]:

(

 _x = � kx x + 
 _� y + f x


 _y = � ky y + f y
(5.1)

wherex and y are the coordinates of the particle relative to the trap position,
 is the Stokes
friction coe�cient ( 
 = 6�R� with R the radius of the particle and� the viscosity of the �uid),
kx and ky are the trap sti�nesses inx and y directions, _� is the shear-rate, andf x and f y are
the Brownian random forces due to the collisions with the molecules of �uid. The stochastic
forces are supposed to be Gaussian white noise and verify:

hf x (t)i = 0 = hf y(t)i
hf i (t)f j (t0)i = � ij 2kBT 
 � (t � t0)

(5.2)

where i; j 2 f x; yg, � ij is the Kronecker delta,kB is the Boltzmann constant, andT the room
temperature. With this description the y coordinate acts on the dynamics of thex coordinate
due to the shear-�ow, and it is simple to identify the term
 _� y as a coloured noise acting onx.

The use of a shear-�ow seems to be a good candidate to study the e�ect of a coloured noise
acting on one particle, and to see if it can be described as an e�ective temperature. Moreover,
this kind of system has already be widely studied in the past decades. For example the e�ects
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Figure 5.1: Schematic representation of one particle trapped in a shear-�ow.

of a shear-�ow on the di�usion of Brownian particles were studied both theoretically [119�121]
and experimentally, using a rheometer placed on a confocal microscope [122]. Violations of the
Fluctuations Dissipation Theorem (FDT) were numerically observed in a �ow sheared beyond
the linear response regime [123]. These e�ects are similar to those observed in glassy systems
and allow for de�ning an e�ective temperature for the slow modes of the �uid [123,124]. The
hydrodynamic interactions of two particles trapped in a shear-�ow were studied experimentally
with a micro�uidic system [125]. The shear-�ow was shown to induce a non-zero instantaneous
cross-correlation between displacements in perpendicular directionsx and y, and to modify the
Probability Distribution Functions (PDF) of particles positions [125, 126]. The Kramers rate
for crossing the central barrier of a double-well potential was also numerically shown to be
enhanced by a well chosen shear-�ow applied to the �uid [127]. The di�usion and mobility of
a single tagged particle in a sheared colloidal suspension was studied numerically [128,129]. It
was shown that the particle in the sheared suspension behaves like a trapped particle. And
the relation between its response function and its velocity auto-correlation function can also be
interpreted in terms of an e�ective temperature.

In this chapter our aim was to realise an experimental micro�uidic system, that would allow
us to trap one or several particles in a shear-�ow. We were mostly inspired by the experimental
set-up from [125]. We then wanted to test the Fluctuation Dissipation Theorem (FDT) for
one particle trapped in the shear-�ow. Since the system is out of equilibrium we await a clear
violation of the FDT. We then tried to see if this violation could be interpreted in terms of
an e�ective temperature, and if it could be linked to the amount of energy dissipated by the
system using a Harada-Sasa equality [73]. Unfortunately, the micro�uidic techniques required
a lot of time to be mastered, and the �nal results were not obtained before the writing of this
Thesis. This is the reason why we only present here a detailed description of the experimental
set-up and some preliminary results.
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5.2 Experimental set-up

In this section we describe the experimental micro�uidic set-up used to create a shear-�ow at
the micro-scale. The set-up was mostly inspired by [125]. Denis Bartolo and Céleste Odier
helped us in its realisation. The principle is the following: to create a shear-�ow with zero
mean velocity, two counter-propagating �ows are sent in a micro�uidic cell and meet in a
central region. A schematic representation of the micro�uidic cell's central region is shown in
�gure 5.2.

Figure 5.2: Schematic representation of the micro�uidic cell with two counter-propagating �ows
that create a shear-�ow with zero mean velocity in the central region.

5.2.1 Micro�uidic cell

To create the micro�uidic cell with two micro-channels joining in a central region, we have tried
two di�erent methods: one based on the UV-Curing Optical Adhesives �stickers� developed by
Denis Bartolo and co-workers [130, 131], and one based on the standard PDMS1 elastomer
devices [132�134]. The main di�erence between them is their ability to resist to imposed
pressure: the �stickers� are sti�er and do not deform themselves under high pressure �ows. For
us however, this point is not crucial since we are not going to work with rapid �ows that would
require high pressures to go through the micro-channels.

Shared steps

In both cases the �rst step is to realise a mould with the desired pattern for the cell. A magni�ed
example of pattern is presented in �gure 5.3. The di�culty is to make a mould with a good
micro-scale resolution. People usually uses high-resolution printers (� 5000dpi) to create a
transparency that will be used as a photomask in contact photolithography. Instead, we chose
to use a micro-milling machine fromMinitech Machinery Corporation to create plexiglas or
aluminium moulds. The micro-milling machine can create patterns with a radius of curvature
down to � 10µm (depending on the end mill used), it achieves really smooth vertical surfaces
and a precision of a few microns in depth. As an example, we show on �gure 5.4 two pictures
of the central part of a double-channel micro�uidic cell, made in plexiglas.

Depending on the method, the mould needs to be a positive or a negative image (in depth)
of the desired pattern:

1Poly(dimethylsiloxane).
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ˆ In the case of the �stickers� technique, the mould must be a positive image of the mi-
cro�uidic cell. It will be used to realise a negative mould in PDMS, that will itself be
used to create the cell inNorland Optical Adhesive 81(NOA-81).

ˆ In the case of the PDMS elastomer technique, the mould must be a negative image of the
micro�uidic cell. It will be used to directly create the cell in PDMS elastomer.

Depending on the exact shape of the micro�uidic cell, it is not always possible to realise both a
positive and negative image of it with the micro-milling machine, due to geometrical constraints.
This is a reason why both techniques can be useful for us.

Figure 5.3: Example of pattern that needs to be engraved in a �at material to create the mould
used to create micro�uidic cells. The depth of engravement must be of� 100µm and the design
needs to have a good resolution at the micro-scale.

(a) Focus on the middle of the channel (b) Focus on the bottom of the channel

Figure 5.4: Microscope pictures of a channel engraved in plexiglas with the use of the micro-
milling machine, with an end mill of diameter 100µm. On the bottom of the channel, the
grooves of the mill are visible, but have a very small depth (. 1µm.)

The second step is to realise a negative replica of the mould in PDMS elastomer. The PDMS
is a silicon-based organic polymer which is cured by an organometallic cross-linking reaction to
become an elastomer. The fabrication process is described below and summarised in �gure 5.5:
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ˆ The mould is cleaned with an ultrasonic cleaner. If the mould is in plexiglas we use
water with Micro-90r cleaning solution as a solvent. If the mould is in aluminium we use
ethanol as a solvent. Then the mould is dried with a compressed air �ow.

ˆ The mould is surrounded with adhesive tape to create a small border that will allow us
to pour a liquid solution inside. We use 3M— o�ce adhesive tape that we carefully press
against the mould's edges. One should not use TimeMedr label tape, even if it is easier
to stick, because it somehow reacts with PDMS when put at high temperature.

ˆ A solution of liquid PDMS base (90 wt%) and curing agent (10 wt%) is prepared2. We
use the commercialDow Corning Sylgardr 184 silicone elastomer kit. The solution is
very viscous and requires careful mixing. Then the solution is poured into the mould.

ˆ The mould with the solution is placed in a vacuum bell jar connected to a vacuum
pump. It stays under partial vacuum until all the air bubbles in the PDMS solution have
disappeared. This usually takes� 1 h.

ˆ The mould with the solution is placed in a laboratory oven to speed up curing. At room
temperature the curing takes� 48 h. At 60� C it takes � 4 h. It is faster at higher
temperatures but the limitation is the maximal temperature that the mould (if it's in
plexiglas) or the adhesive tape can tolerate without degrading.

ˆ After curing, the PDMS is a solid elastomer, which is colorless and transparent. It is
carefully removed from the mould to be used in the following steps of the micro�uic cell
fabrication.

Figure 5.5: Schematic representation of steps to create a negative replica of a mould in PDMS
elastomer.

The next steps depend on the technique used and are detailed in the following subsections.

NOA-81 stickers technique

For the �stickers� technique, we use the UV-Curing NOA-81 to create a negative replica of
the PDMS elastomer mould previously made. The process has to be done in a clean-room

2To make a harder elastomer, one can put more than10 wt% of curing agent.
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to avoid dust being trapped into the micro�uidic cell. We use a microscope slide previously
drilled so that its holes correspond to the inlets/outlets of the micro�uidic cell. The fabrication
is described below and summarised in �gure 5.6:

ˆ The drilled microscope slide, a cover slip and the PDMS mould are carefully cleaned with
isopropyl alcohol (IPA) and dried with a compressed air �ow.

ˆ The microscope slide is put on a �at surface (usually done in PDMS elastomer) and a
droplet of NOA-81 is poured on it. To avoid injecting air in the NOA-81 it is better not
to press too much its container.

ˆ The PDMS mould is carefully pressed against the slide, squeezing the droplet. This step
is rather di�cult because one must take real care to avoid air bubbles being trapped in
the NOA-81. It is recommended to keep the PDMS in partial vacuum before using it, so
that it will spontaneously absorb some of the air bubbles. We use a stereo microscope to
verify that there is no air bubble trapped in the NOA-81.

ˆ The NOA-81 is submitted to UV for a controlled time to achieve a partial curing. PDMS
is permeable to O2 which inhibits the curing reaction. Thus the NOA-81 in the bulk is
cured and becomes rigid, but the thin upper layer in direct contact with the PDMS mould
remains liquid. It can then be glued to the cover slip to seal the micro�uidic cell.

ˆ The PDMS mould is removed, and holes are made in the NOA-81 with a needle.

ˆ Finally, the cover slip is placed on the open side of the cell to seal it, and carefully pressed
against the NOA-81. The cell is then put for a long time under a UV lamp to end the
curing, which hardens the NOA-81 and closes the cell. For this step, it is easier to have
a cover slip smaller than the PDMS mould, so that it will not go over the edges of the
partially cured NOA-81.

Figure 5.6: Schematic representation of steps to create a micro�uidic cell from a PDMS mould
with the NOA-81 �stickers� technique.
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PDMS elastomer technique

The PDMS elastomer technique is simpler: the PDMS replicate of the initial mould will directly
be used as the micro�uidic cell. To close the cell, we do a plasma treatment of the PDMS so
that it will bond on an oxidized glass surface. Other e�ects of plasma treatment on PDMS
surfaces were recently studied in [135,136]. The fabrication process is the following:

ˆ Holes are extruded in the PDMS open cell with a biopsy punch of known diameter.

ˆ The PDMS open cell and a cover slip are cleaned with isopropyl alcohol and dried with
a compressed air �ow.

ˆ The PDMS open cell and the cover slip are put in a Harrick Plasma cleaner (PDC-002)
for 1 min. The plasma does an oxidation of the PDMS so that it will covalently bond on
the oxidized cover slip by the creation of a Si-O-Si bond.

ˆ The cell is closed by carefully putting the oxidized surface of the cover slip on top of the
oxidized PDMS.

ˆ The closed cell is put on a hot plate at40� C for 20 min to ensure an homogeneous sealing.

Figure 5.7: Summary of the two methods to make a micro�uidic cell. Left: �stickers� technique.
Right: PDMS elastomer technique.
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The �nal step of both methods, is to add small metal tubes that will allow us to connect
inlets/outlets to a water circuit. The tubes are chosen to exactly match the size of the holes
(this is especially important for the PDMS technique). Then they are glued to the microscope
slide using NOA-81. The two complete processes are summarised on �gure 5.7.

The �nal cell

As already mentioned, mastering the di�erent micro�uidic techniques required some time and,
at the moment when this Thesis is written, we only ended up with improvable prototypes. One
of them is shown in �gure 5.8. It was made with the PDMS elastomer technique, from an
aluminium mould. The central region is simpler that the one presented in �gure 5.2 but has
nice edge and bottom shape. The depth of the channel is100µm. We have put large circles at
the end of each micro-channel to simplify the connection with the metal tubes. Retrospectively,
we should not have put these circles because small air bubbles tend to get stuck in these large
areas. One should rather use a design without circles, as presented in �gure 5.3.

(a) Large view (b) Microscope view of the central part

Figure 5.8: Pictures of a PDMS elastomer cell with two channels meeting in the central region.
This cell can be directly used on our custom-made optical tweezers.

The micro�uidic cell we made is designed to be directly compatible with our custom-made
optical tweezers set-up. Hence, we can easily trap particles in the central region of the cell and
follow their Brownian motion with the usual method.

5.2.2 Fluid �ow

To create the two counter-propagating �uid �ows, we need to inject water in the two micro-
channels, as represented in �gure 5.9.

We �rst used a syringe pump (Harvard Apparatus PHD 2000) to impose the �uid �ow. We
connected each inlet to a syringe, and both syringes were controlled by the same syringe pump.
Hence, both micro-channels should have the same �uid �ow, whatever the small di�erences that
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may exist between them3. Unfortunately, the use of the syringe pump was not very compatible
with the optical tweezers measurements. We saw a lot of noise on the motions of particles
trapped in the micro�uidic cell, even when there was no �ow induced by the pump. We believe
that the stepper motor of the pump was inducing vibrations in the whole system. Moreover
the plastic syringes we used were too deformable and a �uid �ow was still observed in the
micro-channels several minutes after switching o� the syringe pump. Finally, it was not easy to
introduce micro-particles in the cell because the syringes were placed horizontally in the pump
and the silica particles tend to sediment inside them.

Figure 5.9: Schematic representation of the micro�uidic cell with water inlets and outlets.

For these reasons, we �nally chose to use �ows driven by gravitational potential di�erence.
The set-up is the following: a water tank �lled with bidistilled water is connected to a 4 ways
switching valve, with a �T� port (allowing to connect together 3 of the 4 ways). Two ways
are connected to the inlets of the micro�uidic cell. The fourth way of the switching valve is
connected to a syringe with a solution of silica micro-particles (radiusR = 1:00� 0:05µm)
dispersed in bidistilled water. This syringe allows us to manually inject particles in the cell
when needed, and can be easily deconnected thanks to the switching valve. Each outlet of the
cell is connected to a small beaker with a tunable water height inside. We use �exible Tygonr

S-54-H tubing. We callh the vertical distance between the water tank and the beakers, and
� h the di�erence of water level between the two beakers. When the tank is connected to
the two inlets, the water �ows through the cell thanks to the pressure di�erence� P = �gh
(with g the gravitational acceleration and� the density of water). Since we want really small
�uid velocities, we need a very small �ow rate (typically � 1µL � min� 1). Thus about 10 cm
of PEEKr polymer tubing with 100µm inside diameter are added at the end of the outlet
tubing to increase the hydraulic resistance of the complete micro�uidic device. It allows us to
have reasonable heighth � 10 cm for the desired �ow rate. The tunable height� h between
the beakers' water levels allows us to equilibrate the counter-propagating �ows in the two
micro-channels if their hydraulic resistances are not equal. Since the �ow rates are really small
compared to the volume of the beakers and of the water tank, we can consider that the water
level does not signi�cantly change during the experimental times (e.g. a few hours). All the
connections between tubing are done with standard connectors (for example �ttings with a
ferrule). The set-up is schematically represented in �gure 5.10.

3Even though the micro�uidic cell is built to be symmetrical, we cannot be sure that both micro-channels
have the same exact hydraulic resistance.
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Figure 5.10: Schematic representation of the tubing set-up used to connect the micro�uidic cell
to a water tank. The �uid �ow is driven by the gravitational potential di�erence � P = �gh .

5.2.3 A word on �e�ective� shear-�ows

Before building the micro�uidic set-up, we tried di�erent approaches to achieve an �e�ective�
shear-�ow, without really shearing the �uid. The simplest one is to use our usual optical
tweezers set-up with a single laser beam and an acousto-optic de�ector (AOD) that allows us
to modulate the position of the trap in thex-direction. The set-up is schematically represented
in �gure 5.11 and is equivalent to the one used in chapter 2. Our camera is able to track one
particle at a maximum speed of1600 Hz.

With this set-up, we can change the position of the trapx0 to add a force acting on the
trapped particle f AOD , as described in chapter 4. Then thex-displacement of the particle
veri�es the over-damped Langevin equation:


 _x = � kx + f AOD + f x (5.3)

and we can choosef AOD to have the same statistical properties as they-displacement of the
particle4. Then, f AOD becomes equivalent to the force due to a �ow with a shear-rate_� / A,
whereA is the amplitude of f AOD . Of course, in this casef AOD is only a numerically generated
coloured noise and is not really equal to
 _� y.

One could really apply an external force proportional to they-displacement by using a
feedback loop. This is easy to do in principle but requires a fast enough acquisition and
processing rate, so that the positiony measured at timet can be applied on the position of the
trap at a time t0 close enough tot.

We also thought about another way to create an e�ective shear-�ow by rotating the trap in
the xy-plane at a speed slow enough so that the particle can follow the trap displacement. The

4The y-displacement can be previously measured with the same particle trapped at equilibrium.
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Figure 5.11: Schematic representation of our optical tweezers set-up with one acousto-optic
de�ector (AOD) to modulate the position of the trap in one direction (calledx-direction).

rotation is schematically presented in �gure 5.12: the trap is rotating at a constant speed! 0 on
a circle of radiusr0 and we callr and � the polar coordinates of the trapped particle. Naively,
one may think that because the particle's speed in the angular direction isr _� with _� � ! 0, a
�uctuation in the radial coordinate r will change the speed in the angular coordinate. Hence,
the particle should experience a shear-�ow.

Figure 5.12: Schematic representation of one trap rotated at constant speed! 0 on a circle of
radius r0. The polar coordinates of the trap particle are calledr and � .

Unfortunately, complete calculations show that this argument is a bit too simplistic. Indeed
the equations of motion for the trapped particle are:

(

 _x = � k(x � r0 cos! 0t) + f x


 _y = � k(y � r0 sin! 0t) + f y:
(5.4)
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By solving the averaged equation, we �nd:

hx(t)i = hr i cos(h� (t)i ) (5.5)

with:

hr i =
r0q

1 + ! 2
0
 2=k2

h� (t)i = ! 0t � � (5.6)

� = arctan
� ! 0


k

�

:

Which means that on average, the particle is rotating at a constant speed! 0 on a circle of
radius hr i < r 0, with a phase change of� with regard to the trap's rotation.
Then the system of equations 5.4 can be rewritten in the polar coordinates:

(

 _r = � k (r � r0 cos(! 0t � � )) + f r


r _� = kr 0 sin(! 0t � � ) + f �
(5.7)

with:
f r = f x cos� + f y sin�
f � = � f x sin� + f y cos�

(5.8)

Finally, by looking at the �rst order in small �uctuations �r = r � h r i and �� = � � h � i , we
�nd: (


 _�r = � k�r + 
! 0hr i �� + f r


 hr i _�� = � khr i �� � 
! 0�r + f � :
(5.9)

Thus we �nd two coupled Langevin equations that are not equivalent to the equations in the
case of a real shear-�ow (equations 5.1).
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5.3 Preliminary results

Since a fully operational micro�uidic cell was not realised before the writing of this Thesis, we
only present here some preliminary results that were obtained with �e�ective� shear-�ows and
with cell prototypes.

5.3.1 Simulating a shear-�ow using an AOD

By applying a random coloured noise on thex-displacement of one trapped particle, we achieve
a situation similar to an �e�ective� shear-�ow. The particle's motion is described by the over-
damped Langevin equations:

(

 _x = � kx x + f AOD + f x


 _y = � ky y + f y
(5.10)

wherex and y are the coordinates relative to the trap position,
 is the Stokes friction coe�cient
(
 = 6�R� with R the radius of the particle and� the viscosity of the �uid), kx and ky are the
trap sti�nesses in x and y directions (herekx � ky � 3:1 pN=µm), f AOD is the external noise
creating by displacing the AOD, andf x and f y are the Brownian random forces. The external
force f AOD is a Gaussian white noise with an amplitudeA (in volts), low-pass �ltered with a
cut-o� frequency chosen to bef c = ky=(2�
 ) � 30 Hz. When A 6= 0 the system quickly reaches
an non-equilibrium steady-state.

The experimental Power Spectral Densities (PSD) ofx and y are shown in �gure 5.13 for
di�erent values of A. As expected, they-displacement of the particle is not modi�ed by the
noise added tox: the PSDs are Lorentzians. The PSD of thex-displacement shows an increase
at low-frequencies for increasing values ofA but always matches with the equilibrium PSD
at high-frequencies. By comparison with numerical simulations, we found thatA = 0:5 V
corresponds to_� � 180 s� 1 and A = 1 V to _� � 360 s� 1.

(a) y-displacement PSD (b) x-displacement PSD

Figure 5.13: Measured Power Spectral Densities (PSD) of the particle's motion for di�erent
random forcing amplitude.

To test the Fluctuation-Dissipation Theorem (FDT) we measured the response to an Heavi-
side change of the trap's position. For these measurements, the position of the trap is changed
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from X 1 to X 2 at a given time calledt = 0. The system is then let return to its new (non-
equilibrium) stationary state during a time � . After this time 5, the trap's position is again
changed fromX 2 to X 1, and the procedure is repeated alternatively. Since the system is
supposed to be stationary and ergodic, each change of trap's position can be considered as
and independent realisation of the same Heaviside perturbation, and we can average them to
compute a response function:

� (t) =
hx(t)perturbed � x(t)unperturbed i

perturbation amplitude

=
hx(t)i � X initial

kx (X �nal � X initial )
(5.11)

where[X initial ; X �nal ] = [ X 1; X 2] or [X 2; X 1].
If the FDT is veri�ed, the response function should verify:

� (t) =
1

kBT
(Cxx (0) � Cxx (t)) (5.12)

where Cxx (t) is the auto-correlation function of thex-displacement computed when no Heaviside
perturbation is applied:

Cxx (t) = h(x(0) � h xi )(x(t) � h xi )i : (5.13)

Nota Bene: since we take the trap's position as the origin of thex-axis, we directly havehxi = 0
and Cxx (t) = hx(0)x(t)i .

The experimental response and auto-correlation functions are shown in �gure 5.14. The
response function is not modi�ed by the external random force, whereas the auto-correlation
function is modi�ed (which was expected, because the auto-correlation function is theoretically
the Fourier Transform of the Power Spectral Density). Thus, we have a clear violation of the
FDT (equation 5.12) whenA 6= 0, which was also expected because we are not at equilibrium.

(a) Response functions (b) Auto-correlation functions

Figure 5.14: Measured response functionskBT � (t) and auto-correlation functions Cxx (0) �
Cxx (t) of the particle's x-displacement, for di�erent random forcing amplitudes.

5For the experiment � = 5 s which is long compared to the typical relaxation time of the particle: 1=f c �
0:03 s.
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An usual way to see if this violation can be interpreted as an e�ective temperature is to
plot the response function with respect to the correlation function. We chose to plot� norm (t)
with respect to Cnorm (t), which are normalised response and correlation functions:

� norm (t) =
kBT � (t)
Cxx (0)

(5.14)

Cnorm (t) =
Cxx (t)
Cxx (0)

(5.15)

If the FDT is veri�ed � norm (t) = 1 � Cnorm (t), and we have an linear function with a slope
of � 1. If the FDT is veri�ed with an e�ective temperature Te� > T , we should have a linear
function with a slope < 1. The experimental data are presented in �gure 5.15. We see that
the FDT is veri�ed at equilibrium, but when A 6= 0 the FDT is violated. This violation cannot
be interpreted as an e�ective temperature because we do not have a linear relation between
� norm (t) and Cnorm (t).

Figure 5.15: Measured normalised response functions� norm (t) plotted with regard to the mea-
sured normalised correlation functions Cnorm (t).

This result is not very surprising, since the random noisef AOD was not chosen to verify the
statistical properties awaited for a heat bath (contrary to what we have done in chapter 4). It
was already visible in the PSDs (�gure 5.13) that the external force could not be interpreted
as an e�ective temperature, because the PSDs were not translations one of the others. These
results are however a good basis and could be compared with results obtained in a real shear-
�ow.

5.3.2 First glimpse of micro�uidic results

We also made some measurements with the micro�uidic cell's prototypes. We had some expe-
rimental problems:

ˆ The micro�uidic cell was not perfectly symmetrical and it was di�cult to equilibrate the
�ow speeds in the two micro-channels.
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ˆ We lacked reproducibility because air bubbles tend to get stuck in the tubing and change
the hydraulic resistance of the micro�uidic cell.

ˆ We had no small tracers to visualise the �uid's �ow and we used the silica beads to see the
streamlines. We then had di�culties to trap only one particle, without being perturbed
by the others' displacements.

ˆ To achieve reasonable shear-�ows, we had to increase the trap sti�ness (k � 10 pN=µm)
to be able to keep the particle trapped6.

ˆ Because all the valves and height control were manually operated, it was very di�cult to
change the �ow speed without losing the trapped particle7.

ˆ It was di�cult to control the �ows so that the measured directions x and y correspond
to the actual axes of the shear-�ow.

We nevertheless had some encouraging results that are presented in �gure 5.16. We trapped
one particle in the region that was supposed to have zero-mean velocity, and we measured its
x and y displacements. The PSD ofx is bigger than the PSD ofy at low-frequencies, but
the two PSDs are equal at high frequencies. This corresponds to what is expected if they
displacement is acting onx through the coupling induced by the shear-�ow. We also estimated
the trapping potential shapeU(x; y) by computing the distribution of the particle's positions
(P(x; y) / exp(� U(x;y )

kB T )). As expected, the potential is skewed in the shear direction, even
if it shows a rather strange shape. However, these preliminary measurements were hardly
reproducible, and are clearly not su�cient to conclude yet on the validity of the results.

(a) x and y PSDs (b) Trapping potential

Figure 5.16: a) Measured Power Spectral Densities ofx and y-displacement of the trapped
particle in the �uid �ow. b) Trapping potential estimated by the distribution of particle's
positions.

6The increase of the sti�ness results in an increase of the characteristic frequency of the trapped particle
f c = k=(2�
 ), which may be a problem if the tracking speed is too low.

7When a valve is manually closed or opened, the vibrations induced in the system are big enough for the
bead to escape the optical trap.
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5.4 Conclusion and perspectives

In conclusion, we built micro�uidic cells to create a shear-�ow with a zero-mean velocity at the
micro-scale, and we developed a way to simulate a shear-�ow on a trapped particle with the
use of an acousto-optic de�ector (AOD).

All the �nal goals of this experiment were not achieved before the writing of this Thesis, but
we have already shown that a shear-�ow can be seen as an external coloured noise acting on
the trapped particle in one direction (calledx in this chapter). The coloured noise has a cut-o�
frequency equal to the typical cut-o� frequency of the particle's motion, which is very visible in
the Power Spectral Density (PSD) ofx. This non-equilibrium steady-state situation results in a
clear violation of the Fluctuation Dissipation Theorem (FDT). However, this violation cannot
be interpreted as an e�ective temperature because the relation between the response function
and the auto-correlation function is not linear.

The shear-�ow can also be a good candidate to test the Harada-Sasa equality [73] linking
the violation of the FDT to the amount of energy dissipated by the system. Indeed, to measure
the energy dissipated, one has to know the forces that are acting on the particle. Conveniently,
in a �real� shear-�ow, the external force acting on thex-displacement is only proportional to
the y-displacement and can then easily be measured. In the case of the �e�ective� shear-�ow,
it would of course also be easy to measure the random signal sent to the AOD.

Finally, if we design and construct a micro�uidic cell with the good hydrodynamic properties,
we will then be able to compare the analytical results from the coupling model (which is
solvable), the results from the �e�ective� shear-�ow, and the results from the real shear-�ow,
which should be interesting.

101





Conclusion

In conclusion, we have used di�erent con�gurations of multiple optical traps as a tool to address
some basic research questions in statistical physics of small systems. This kind of set-up opens
a lot of experimental possibilities: the ability to control the position of one trap on a wide
range of frequencies allows for creating complex trap shapes, as a double well potential or a
toroidal trap. It also allows for trapping several micro-particles at the same time, and for
adding external noises on particles positions. Even in simple Newtonian �uids like water, the
physics of the created situations can be very rich, and we only tested a small number of them:

ˆ In chapter 2 we created a 1-bit memory system with a single particle in a double well
potential. By adding an external drag force, which is created by displacing the �uid with
respect to the trap position, we realised a memory erasure procedure. This procedure
resets the system to a chosen state (state 0), regardless of its initial state (0 or 1), and is
characterised by a proportion of success. We measured the stochastic heat associated to
this logically irreversible procedure, and we have shown that it approaches the Landauer's
bound kBT ln 2 in average for long procedure durations. We also used a detailed version
of the Jarzynski equality to retrieve the Landauer's bound for any procedure duration.
Finally we have linked the stochastic work received during each sub-procedure (1 ! 0 and
0 ! 0) to the probability that the system returns to its initial state under a time-reversed
procedure.

ˆ In chapter 3 we were interested in studying the interactions between two particles trapped
nearby at di�erent e�ective temperatures. We used the sol-gel transition of a gelatine so-
lution because it was previously shown that a bead trapped in gelatine exhibits anomalous
high �uctuations when the sample is locally quenched below the gelation temperature. In
the end, we have shown that there is no anomalous e�ect observed when a small droplet
of gelatine is quenched. The Probability Distribution Function (PDF) of the trapped
particle's positions shows equilibrium-like properties along the sol-gel transition and the
Fluctuation Dissipation Theorem (FDT) seems, within experimental errors, to remain
valid during this transient dynamics. We have provided some possible explanations for
the e�ects previously seen, and we used another system to study particles at di�erent
e�ective temperatures.

ˆ In chapter 4 we used an Acousto-Optic De�ector (AOD) to modulate the position of one
trap to add an external white noise on the trapped particle, which creates an e�ective
temperature. We then studied the hydrodynamic interactions of two particles trapped
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nearby, when one is at the �uid equilibrium temperature whereas the other is forced at
a high e�ective temperature. We computed the variances, cross-variances and position
cross-correlation functions with an analytic model, and have found a good agreement with
the measurements. We also computed the heat exchanged between the two particles, and
have shown that the mean heat �ux is proportional to the e�ective temperature di�erence
between the two particles, as it would be in a system with a real temperature gradient. We
measured the Probability Distribution Functions (PDF) of the heat to see if an exchange
Fluctuation Theorem (xFT) could be applied, but the experimental data have not yet
allowed us to conclude on its validity.

ˆ In chapter 5 we constructed micro�uidic cells designed to create a shear-�ow with zero-
mean velocity. The idea was to use the shear-�ow as a physical source of coloured noise
for the trapped particle. We have not yet achieved a fully functional micro�uidic cell, but
we built some encouraging prototypes. We have also shown that we can mimic a shear-
�ow with the use of an Acousto-Optic De�ector (AOD) in the same way that we created
an e�ective temperature in chapter 4. With this �e�ective� shear-�ow, we have observed
a very clear violation of the Fluctuation-Dissipation Theorem (FDT) that cannot be
interpreted as an e�ective temperature because the relation between the response function
and the auto-correlation function is not linear.

We believe that our work can easily be extended and that some questions remain unanswered.
For example, the e�ect of an e�ective temperature acting on one particle can be experimentally
tested in more complex geometries, as arrays or lines of particles. It would also be interesting
to compute the theoretical Probability Distributions (PDF) of the heat and work exchanged
between two hydrodynamically coupled particles kept at di�erent temperatures, to see if the
exchange Fluctuation Theorem (xFT) is veri�ed when the forcing becomes larger than the
thermal �uctuations. Our work on the shear-�ow could also give interesting results if we manage
to build a cell without defects that could be use to e�ectively create a controllable shear-�ow.
For example, we could test in this system the application of the Harada-Sasa relation, that links
the violation of the Fluctuation-Dissipation Theorem to the energy dissipated by the system.
Finally, we are convinced that a lot of other con�gurations can be created by using multiple
optical traps to study (out-of) equilibrium statistical physics of small systems.
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