F. Abramovich and C. Angelini, Testing in mixed-effects FANOVA models, Journal of Statistical Planning and Inference, vol.136, issue.12, pp.4326-4348, 2006.
DOI : 10.1016/j.jspi.2005.06.002

E. Acar, G. E. Plopper, and B. Yener, Coupled Analysis of In Vitro and Histology Tissue Samples to Quantify Structure-Function Relationship, PLoS ONE, vol.2, issue.5, pp.32227-52, 2012.
DOI : 10.1371/journal.pone.0032227.s001

U. Acharya, S. Dua, X. Du, S. Vinitha-sree, and C. K. Chua, Automated Diagnosis of Glaucoma Using Texture and Higher Order Spectra Features, IEEE Transactions on Information Technology in Biomedicine, vol.15, issue.3, pp.449-455, 2011.
DOI : 10.1109/TITB.2011.2119322

T. Ahonen, J. Matas, C. He, and M. Pietikäinen, Rotation Invariant Image Description with Local Binary Pattern Histogram Fourier Features, pp.61-70, 2009.
DOI : 10.1109/TPAMI.2006.244

O. S. Al-kadi, Texture measures combination for improved meningioma classification of histopathological images, Pattern Recognition, vol.43, issue.6, pp.2043-2053, 2010.
DOI : 10.1016/j.patcog.2010.01.005

Y. Al-kofahi, W. Lassoued, K. Grama, S. K. Nath, J. Zhu et al., Cell-based quantification of molecular biomarkers in histopathology specimens, Histopathology, vol.242, issue.Pt 3, pp.40-54, 2011.
DOI : 10.1111/j.1365-2559.2011.03878.x

Y. Al-kofahi, W. Lassoued, W. Lee, and B. Roysam, Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images, IEEE Transactions on Biomedical Engineering, vol.57, issue.4, pp.841-852, 2010.
DOI : 10.1109/TBME.2009.2035102

A. Ali, M. Seguin, J. Fischer, A. Mignet, N. Wendling et al., Comparison of the spatial organization in colorectal tumors using second-order statistics and functional ANOVA, 2013 8th International Symposium on Image and Signal Processing and Analysis (ISPA), pp.257-261, 2013.
DOI : 10.1109/ISPA.2013.6703749

URL : https://hal.archives-ouvertes.fr/hal-00992369

C. Angelini, D. De-canditiis, and F. Leblanc, Wavelet regression estimation in nonparametric mixed effect models, Journal of Multivariate Analysis, vol.85, issue.2, pp.267-291, 2003.
DOI : 10.1016/S0047-259X(02)00055-6

R. A. Armstrong, Measuring the degree of spatial correlation between histological features in thin sections of brain tissue, Neuropathology, vol.80, issue.4, pp.245-253, 2003.
DOI : 10.1046/j.1365-2818.1999.00592.x

R. A. Armstrong, Quantitative microscopic analysis of histological sections of brain tissue. Modern Research and Educational Topics in Microscopy, pp.442-452, 2007.

A. J. Baddeley, J. Møller, and R. Waagepetersen, Non- and semi-parametric estimation of interaction in inhomogeneous point patterns, Statistica Neerlandica, vol.54, issue.3, pp.329-350, 2000.
DOI : 10.1111/1467-9574.00144

C. Balsat, S. Blacher, N. Signolle, A. Beliard, C. Munaut et al., Whole Slide Quantification of Stromal Lymphatic Vessel Distribution and Peritumoral Lymphatic Vessel Density in Early Invasive Cervical Cancer: A Method Description, ISRN Obstetrics and Gynecology, vol.29, issue.3, p.53, 2011.
DOI : 10.1038/modpathol.3800269

S. Barot, J. Gignoux, and J. Menaut, DEMOGRAPHY OF A SAVANNA PALM TREE: PREDICTIONS FROM COMPREHENSIVE SPATIAL PATTERN ANALYSES, Ecology, vol.80, issue.6, pp.1987-2005, 1999.
DOI : 10.2307/3236357

A. Basavanhally, S. Ganesan, M. Feldman, N. Shih, C. Mies et al., Multi-Field-of-View Framework for Distinguishing Tumor Grade in ER+ Breast Cancer From Entire Histopathology Slides, IEEE Transactions on Biomedical Engineering, vol.60, issue.8, pp.2089-2099, 2013.
DOI : 10.1109/TBME.2013.2245129

T. Bedford and J. Van-den-berg, A remark on the Van Lieshout and Baddeley J-function for point processes, Advances in Applied Probability, pp.19-25, 1997.

R. E. Bellman, Dynamic Programming. Rand Corporation Research Study, p.131, 1957.

Y. Benjamini and Y. Hochberg, Controlling the false discovery rate : A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society. Series B (Methodological), pp.289-300, 1995.

Y. Benjamini and D. Yekutieli, The control of the false discovery rate in multiple testing under dependency, Annals of Statistics, pp.1165-1188, 2001.

H. J. Bernsen, P. F. Rijken, N. E. Hagemeier, and A. J. Van-der-kogel, A Quantitative Analysis of Vascularization and Perfusion of Human Glioma Xenografts at Different Implantation Sites, Microvascular Research, vol.57, issue.3, pp.244-257, 1999.
DOI : 10.1006/mvre.1999.2143

A. C. Berry, The accuracy of the Gaussian approximation to the sum of independent variates, Transactions of the American Mathematical Society, vol.49, issue.1, pp.122-136, 1941.
DOI : 10.1090/S0002-9947-1941-0003498-3

J. Besag and P. J. Diggle, Simple Monte Carlo Tests for Spatial Pattern, Applied Statistics, vol.26, issue.3, pp.327-333, 1977.
DOI : 10.2307/2346974

J. E. Besag, Comments on Ripley's paper, Journal of the Royal Statistical Society B39, pp.193-195, 1977.

C. Bilgin, P. Bullough, G. E. Plopper, and B. Yener, ECM-aware cell-graph mining for bone tissue modeling and classification, Data Mining and Knowledge Discovery, vol.24, issue.1, pp.416-438, 2010.
DOI : 10.1007/s10618-009-0153-2

C. Bilgin, C. Demir, C. Nagi, and B. Yener, Cell-Graph Mining for Breast Tissue Modeling and Classification, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.5311-5314, 2007.
DOI : 10.1109/IEMBS.2007.4353540

R. Bock, J. Meier, L. G. Nyúl, J. Hornegger, and G. Michelson, Glaucoma risk index:Automated glaucoma detection from color fundus images, Medical Image Analysis, vol.14, issue.3, pp.471-481, 2010.
DOI : 10.1016/j.media.2009.12.006

L. E. Boucheron, Object-and Spatial-level Quantitative Analysis of Multispectral Histopathology Images for Detection and Characterization of Cancer, Thèse de Doctorat, pp.16-52, 2008.

Y. Boykov and G. Funka-lea, Graph Cuts and Efficient N-D Image Segmentation, International Journal of Computer Vision, vol.18, issue.9, pp.109-131, 2006.
DOI : 10.1007/s11263-006-7934-5

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. J. Breward, H. M. Byrne, and C. E. Lewis, Modelling the interactions between tumour cells and a blood vessel in a microenvironment within a vascular tumour, European Journal of Applied Mathematics, vol.12, issue.05, pp.529-556, 2001.
DOI : 10.1017/S095679250100448X

E. M. Brey, Z. Lalani, C. Johnston, M. Wong, L. V. Mcintire et al., Automated Selection of DAB-labeled Tissue for Immunohistochemical Quantification, Journal of Histochemistry & Cytochemistry, vol.15, issue.2, pp.575-584, 2003.
DOI : 10.1177/36.1.3275709

M. Brülhart and R. Traeger, An account of geographic concentration patterns in Europe, Regional Science and Urban Economics, vol.35, issue.6, pp.597-624, 2005.
DOI : 10.1016/j.regsciurbeco.2004.09.002

E. Brunner, H. Dette, and A. Munk, Box-Type Approximations in Nonparametric Factorial Designs, Journal of the American Statistical Association, vol.38, issue.440, pp.1494-1502, 1997.
DOI : 10.1080/01621459.1997.10473671

J. C. Caicedo, F. A. González, and E. Romero, Content-based histopathology image retrieval using a kernel-based semantic annotation framework, Journal of Biomedical Informatics, vol.44, issue.4, pp.519-528, 2011.
DOI : 10.1016/j.jbi.2011.01.011

V. Caselles and J. M. Morel, Topographic maps and local contrast changes in natural images, International Journal of Computer Vision, vol.33, issue.1, pp.5-27, 1999.
DOI : 10.1023/A:1008144113494

M. E. Celebi, H. A. Kingravi, B. Uddin, H. Iyatomi, Y. A. Aslandogan et al., A methodological approach to the classification of dermoscopy images, Computerized Medical Imaging and Graphics, vol.31, issue.6, pp.362-373, 2007.
DOI : 10.1016/j.compmedimag.2007.01.003

T. F. Chan and L. A. Vese, Active contours without edges, IEEE Transactions on Image Processing, vol.10, issue.2, pp.266-277, 2001.
DOI : 10.1109/83.902291

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

C. Chen, W. Wang, J. A. Ozolek, and G. K. Rohde, A flexible and robust approach for segmenting cell nuclei from 2D microscopy images using supervised learning and template matching, Cytometry Part A, vol.6, issue.5, pp.495-507, 2013.
DOI : 10.1002/cyto.a.22280

J. C. Chen, Testing for no effect in nonparametric regression via spline smoothing techniques, Annals of the Institute of Statistical Mathematics, vol.12, issue.2, pp.251-265, 1994.
DOI : 10.1007/BF01720583

H. Chouaib, Sélection de caractéristiques : méthodes et applications, Thèse de Doctorat, p.132, 2011.

A. Chu, C. M. Sehgal, and J. F. Greenleaf, Use of gray value distribution of run lengths for texture analysis, Pattern Recognition Letters, vol.11, issue.6, pp.415-419, 1990.
DOI : 10.1016/0167-8655(90)90112-F

J. Cohen, Statistical power analysis for the behavioral sciences, 1988.

J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied multiple regression/correlation analysis for the behavioral sciences, 2013.

T. H. Corbett, D. P. Griswold, B. J. Roberts, J. C. Peckham, and F. M. Schabel, Tumor induction relationships in development of transplantable cancers of the colon in mice for chemotherapy assays, with a note on carcinogen structure, Cancer Research, vol.35, issue.9, pp.2434-2439, 1975.

E. A. Cornish and R. A. Fisher, Moments and Cumulants in the Specification of Distributions, Revue de l'Institut International de Statistique / Review of the International Statistical Institute, vol.5, issue.4, pp.307-320, 1938.
DOI : 10.2307/1400905

E. Cosatto, M. Miller, H. P. Graf, and J. S. Meyer, Grading nuclear pleomorphism on histological micrographs, 2008 19th International Conference on Pattern Recognition, pp.1-4, 2008.
DOI : 10.1109/ICPR.2008.4761112

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

A. F. Costa, G. Humpire-mamani, and A. J. Traina, An Efficient Algorithm for Fractal Analysis of Textures, 2012 25th SIBGRAPI Conference on Graphics, Patterns and Images, pp.39-46, 2012.
DOI : 10.1109/SIBGRAPI.2012.15

A. Cruz-roa, J. C. Caicedo, and F. A. González, Visual pattern mining in histology image collections using bag of features, Artificial Intelligence in Medicine, vol.52, issue.2, pp.91-106, 2011.
DOI : 10.1016/j.artmed.2011.04.010

J. A. Cuesta-albertos and M. Febrero-bande, A simple multiway ANOVA for functional data, TEST, vol.98, issue.3, pp.537-557, 2010.
DOI : 10.1007/s11749-010-0185-3

J. Dalle, H. Li, C. Huang, W. K. Leow, D. Racoceanu et al., Nuclear pleomorphism scoring by selective cell nuclei detection, Proc. WACV. IEEE, p.32, 2009.

B. V. Dasarathy and E. B. Holder, Image characterizations based on joint gray level???run length distributions, Pattern Recognition Letters, vol.12, issue.8, pp.497-502, 1991.
DOI : 10.1016/0167-8655(91)80014-2

J. G. Daugman, Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters, Journal of the Optical Society of America A, vol.2, issue.7, pp.1160-1169, 1985.
DOI : 10.1364/JOSAA.2.001160

C. Demir, S. H. Gultekin, and B. Yener, Learning the Topological Properties of Brain Tumors, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol.2, issue.3, pp.262-270, 2005.
DOI : 10.1109/TCBB.2005.42

D. Cataldo, S. Ficarra, E. Acquaviva, A. Macii, and E. , Automated segmentation of tissue images for computerized IHC analysis, Computer Methods and Programs in Biomedicine, vol.100, issue.1, pp.1-15, 2010.
DOI : 10.1016/j.cmpb.2010.02.002

D. Cataldo, S. Ficarra, E. Macii, and E. , Computer-aided techniques for chromogenic immunohistochemistry: Status and directions, Computers in Biology and Medicine, vol.42, issue.10, pp.1012-1025, 2012.
DOI : 10.1016/j.compbiomed.2012.08.004

P. J. Diggle, On Parameter Estimation and Goodness-of-Fit Testing for Spatial Point Patterns, Biometrics, vol.35, issue.1, pp.87-101, 1979.
DOI : 10.2307/2529938

P. J. Diggle, Statistical analysis of spatial point patterns, 1983.

P. J. Diggle and A. G. Chetwynd, Second-Order Analysis of Spatial Clustering for Inhomogeneous Populations, Biometrics, vol.47, issue.3, pp.1155-1163, 1991.
DOI : 10.2307/2532668

P. J. Diggle, V. Gómez-rubio, P. E. Brown, A. G. Chetwynd, and S. Gooding, Second-Order Analysis of Inhomogeneous Spatial Point Processes Using Case-Control Data, Biometrics, vol.65, issue.2, pp.550-557, 2007.
DOI : 10.1111/j.1541-0420.2006.00683.x

C. Diniz, Microscopic image analysis using computer-assisted methodology to quantify immunostained receptors, Microscopy : Science, Technology, Applications and Education, vol.2, issue.4, pp.1516-1525, 2010.

S. Doyle, A. Madabhushi, M. Feldman, and J. Tomaszeweski, A Boosting Cascade for Automated Detection of Prostate Cancer from Digitized Histology, pp.504-511, 2006.
DOI : 10.1007/11866763_62

J. B. Du-prel, B. Röhrig, G. Hommel, and M. Blettner, Choosing statistical tests : Part 12 of a series on evaluation of scientific publications, Deutsches Ärzteblatt International, vol.107, pp.343-130, 2010.

S. Dua, U. Acharya, P. Chowriappa, and S. Sree, Wavelet-Based Energy Features for Glaucomatous Image Classification, IEEE Transactions on Information Technology in Biomedicine, vol.16, issue.1, pp.80-87, 2012.
DOI : 10.1109/TITB.2011.2176540

R. O. Duda, P. E. Hart, and D. G. Stork, Pattern classification, p.133, 2012.

O. Dzyubachyk, W. A. Van-cappellen, J. Essers, W. J. Niessen, and E. Meijering, Advanced Level-Set-Based Cell Tracking in Time-Lapse Fluorescence Microscopy, IEEE Transactions on Medical Imaging, vol.29, issue.3, pp.852-867, 2010.
DOI : 10.1109/TMI.2009.2038693

C. W. Elston and I. O. Ellis, pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up, Histopathology, vol.9, issue.5, pp.403-410, 1991.
DOI : 10.1016/0277-5379(88)90171-X

F. Fleischer, M. Beil, M. Kazda, and V. Schmidt, Analysis of Spatial Point Patterns in Microscopic and Macroscopic Biological Image Data, Case Studies in Spatial Point Process Modeling, pp.235-260, 2006.
DOI : 10.1007/0-387-31144-0_13

T. J. Fuchs, T. Lange, P. J. Wild, H. Moch, and J. M. Buhmann, Weakly Supervised Cell Nuclei Detection and Segmentation on Tissue Microarrays of Renal Clear Cell Carcinoma, In : Pattern Recognition, pp.173-182, 2008.
DOI : 10.1007/978-3-540-69321-5_18

M. M. Galloway, Texture analysis using gray level run lengths, Computer Graphics and Image Processing, vol.4, issue.2, pp.172-179, 1975.
DOI : 10.1016/S0146-664X(75)80008-6

M. Garnier, A. Ali, M. Seguin, J. Mignet, N. Hurtut et al., Grading Cancer from Liver Histology Images Using Inter and Intra Region Spatial Relations, Image Analysis and Recognition, vol.8815, pp.247-254, 2014.
DOI : 10.1007/978-3-319-11755-3_28

URL : https://hal.archives-ouvertes.fr/hal-01063797

M. Gavrilovic, J. C. Azar, J. Lindblad, C. Wahlby, E. Bengtsson et al., Blind Color Decomposition of Histological Images, IEEE Transactions on Medical Imaging, vol.32, issue.6, pp.983-994, 2013.
DOI : 10.1109/TMI.2013.2239655

T. Gevers and A. W. Smeulders, Color-based object recognition, Pattern Recognition, vol.32, issue.3, pp.453-464, 1999.
DOI : 10.1016/S0031-3203(98)00036-3

E. González-rufino, P. Carrión, E. Cernadas, M. Fernández-delgado, and R. Domínguez-petit, Exhaustive comparison of colour texture features and classification methods to discriminate cells categories in histological images of fish ovary, Pattern Recognition, vol.46, issue.9, pp.2391-2407, 2013.
DOI : 10.1016/j.patcog.2013.02.009

F. Goreaud and R. Pélissier, Avoiding misinterpretation of biotic interactions with the intertype K12-function: population independence vs. random labelling hypotheses, Journal of Vegetation Science, vol.26, issue.5, pp.681-692, 2003.
DOI : 10.1658/1100-9233(2003)014[0681:AMOBIW]2.0.CO;2

M. J. Greaney, D. C. Hoffman, D. F. Garway-heath, M. Nakla, A. L. Coleman et al., Comparison of optic nerve imaging methods to Ddistinguish normal eyes from those with glaucoma, Investigative Ophthalmology & Visual Science, vol.43, issue.1, pp.140-145, 2002.

W. H. Greene, Econometric analysis 4th edition, p.126, 2000.

C. Gunduz, B. Yener, and S. H. Gultekin, The cell graphs of cancer, Bioinformatics, vol.20, issue.Suppl 1, pp.145-151, 2004.
DOI : 10.1093/bioinformatics/bth933

Z. Guo, L. Zhang, and D. Zhang, A Completed modeling of local binary pattern operator for texture classification, IEEE Transactions on Image Processing, vol.19, pp.1657-1663, 2010.

M. N. Gurcan, L. E. Boucheron, A. Can, A. Madabhushi, N. M. Rajpoot et al., Histopathological Image Analysis: A Review, IEEE Reviews in Biomedical Engineering, vol.2, pp.147-171, 2009.
DOI : 10.1109/RBME.2009.2034865

I. Guyon and A. Elisseeff, An introduction to variable and feature selection, The Journal of Machine Learning Research, vol.3, pp.1157-1182, 2003.

M. Haghighat, S. Zonouz, and M. Abdel-mottaleb, Identification Using Encrypted Biometrics, Computer Analysis of Images and Patterns, pp.440-448, 2013.
DOI : 10.1007/978-3-642-40246-3_55

P. W. Hamilton, P. H. Bartels, D. Thompson, N. H. Anderson, R. Montironi et al., AUTOMATED LOCATION OF DYSPLASTIC FIELDS IN COLORECTAL HISTOLOGY USING IMAGE TEXTURE ANALYSIS, The Journal of Pathology, vol.10, issue.1, pp.68-75, 1997.
DOI : 10.1002/(SICI)1096-9896(199705)182:1<68::AID-PATH811>3.0.CO;2-N

R. M. Haralick, K. Shanmugam, and I. Dinstein, Textural Features for Image Classification, IEEE Transactions on Systems, Man, and Cybernetics, vol.3, issue.6, pp.610-621, 1973.
DOI : 10.1109/TSMC.1973.4309314

D. Harwood, T. Ojala, M. Pietikäinen, S. Kelman, and L. Davis, Texture classification by center-symmetric auto-correlation, using Kullback discrimination of distributions, Pattern Recognition Letters, vol.16, issue.1, 1993.
DOI : 10.1016/0167-8655(94)00061-7

Y. Hayashi, T. Nakagawa, Y. Hatanaka, A. Aoyama, M. Kakogawa et al., Detection of retinal nerve fiber layer defects in retinal fundus images using Gabor filtering, Medical Imaging 2007: Computer-Aided Diagnosis, pp.65142-65142, 2007.
DOI : 10.1117/12.710181

L. He, L. R. Long, S. Antani, and G. R. Thoma, Computer assisted diagnosis in histopathology. Sequence and Genome Analysis : Methods and Applications, pp.271-287, 2010.

L. He, L. R. Long, S. Antani, and G. R. Thoma, Histology image analysis for carcinoma detection and grading, Computer Methods and Programs in Biomedicine, vol.107, issue.3, pp.538-556, 2012.
DOI : 10.1016/j.cmpb.2011.12.007

L. O. Heldmuth, In vivo monitoring of elastic changes during cancer development and therapeutic treatment, Thèse de Doctorat, p.19, 2012.

N. Hervé, A. Servais, E. Thervet, J. Olivo-marin, and V. Meas-yedid, Statistical color texture descriptors for histological images analysis, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.724-727, 2011.
DOI : 10.1109/ISBI.2011.5872508

K. S. Ho, P. C. Poon, S. C. Owen, and M. S. Shoichet, Blood vessel hyperpermeability and pathophysiology in human tumour xenograft models of breast cancer: a comparison of ectopic and orthotopic tumours, BMC Cancer, vol.2, issue.4, pp.1-10, 2012.
DOI : 10.1177/1358863X9700200408

T. J. Holmes and P. C. Cheng, Basic principles of imaging. Multi- Modality Microscopy, pp.1-74, 2006.

J. Illian, P. A. Penttinen, H. Stoyan, and P. D. Stoyan, Statistical Analysis and Modelling of Spatial Point Patterns Statistics in Practice, pp.58-72, 2008.

H. Irshad, A. Veillard, L. Roux, and D. Racoceanu, Methods for Nuclei Detection, Segmentation, and Classification in Digital Histopathology: A Review&#x2014;Current Status and Future Potential, IEEE Reviews in Biomedical Engineering, vol.7, pp.97-114, 2014.
DOI : 10.1109/RBME.2013.2295804

J. Jaccard, M. A. Becker, and G. Wood, Pairwise multiple comparison procedures: A review., Psychological Bulletin, vol.96, issue.3, pp.589-130, 1984.
DOI : 10.1037/0033-2909.96.3.589

K. Jafari-khouzani and H. Soltanian-zadeh, Multiwavelet grading of pathological images of prostate, IEEE Transactions on Biomedical Engineering, vol.50, issue.6, pp.697-704, 2003.
DOI : 10.1109/TBME.2003.812194

R. K. Jain, R. Mehta, R. Dimitrov, L. G. Larsson, P. M. Musto et al., Atypical ductal hyperplasia: interobserver and intraobserver variability, Modern Pathology, vol.62, issue.7, pp.917-923, 2011.
DOI : 10.1002/1097-0142(19941101)74:9+<2638::AID-CNCR2820741809>3.0.CO;2-8

Y. Jiao, H. Berman, T. R. Kiehl, and S. Torquato, Spatial Organization and Correlations of Cell Nuclei in Brain Tumors, PLoS ONE, vol.6, issue.11, pp.27323-27353, 2011.
DOI : 10.1371/journal.pone.0027323.s003

G. Joshi, J. Sivaswamy, and S. R. Krishnadas, Optic Disk and Cup Segmentation From Monocular Color Retinal Images for Glaucoma Assessment, IEEE Transactions on Medical Imaging, vol.30, issue.6, pp.1192-1205, 2011.
DOI : 10.1109/TMI.2011.2106509

B. Julesz, Textons, the elements of texture perception, and their interactions, Nature, vol.32, issue.5802, pp.91-97, 1981.
DOI : 10.1038/290091a0

C. Jung and C. Kim, Segmenting Clustered Nuclei Using H-minima Transform-Based Marker Extraction and Contour Parameterization, IEEE Transactions on Biomedical Engineering, vol.57, issue.10, pp.2600-2604, 2010.
DOI : 10.1109/TBME.2010.2060336

A. Karperien, H. F. Jelinek, and N. T. Milosevic, Reviewing lacunarity analysis and classification of microglia in neuroscience. Fractals and complexity, pp.888-893, 2013.

A. Kårsnäs, Image Analysis Methods and Tools for Digital Histopathology Applications Relevant to Breast Cancer Diagnosis, Thèse de Doctorat, 2014.

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1988.
DOI : 10.1007/BF00133570

R. Kawasaki, J. J. Wang, E. Rochtchina, A. J. Lee, T. Y. Wong et al., Retinal Vessel Caliber Is Associated with the 10-year Incidence of Glaucoma, Ophthalmology, vol.120, issue.1, pp.84-90, 2013.
DOI : 10.1016/j.ophtha.2012.07.007

K. Kayser, J. Görtler, K. Metze, T. Goldmann, E. Vollmer et al., How to measure image quality in tissue-based diagnosis (diagnostic surgical pathology), Diagnostic Pathology, vol.3, issue.Suppl 1, pp.1-7, 2008.
DOI : 10.1186/1746-1596-3-S1-S11

S. J. Keenan, J. Diamond, G. W. Mccluggage, H. Bharucha, D. Thompson et al., An automated machine vision system for the histological grading of cervical intraepithelial neoplasia (CIN), The Journal of Pathology, vol.33, issue.3, pp.351-362, 2000.
DOI : 10.1002/1096-9896(2000)9999:9999<::AID-PATH708>3.0.CO;2-I

C. Kent, Automated glaucoma diagnosis : Any time soon ?, Review of Ophtalmology, vol.15, issue.6, 2008.

A. Khan, N. Rajpoot, D. Treanor, and D. Magee, A Nonlinear Mapping Approach to Stain Normalization in Digital Histopathology Images Using Image-Specific Color Deconvolution, IEEE Transactions on Biomedical Engineering, vol.61, issue.6, pp.1729-1738, 2014.
DOI : 10.1109/TBME.2014.2303294

T. W. King, E. M. Brey, A. A. Youssef, C. Johnston, P. Jr et al., Quantification of vascular density using a semiautomated technique for immunostained specimens, Analytical and Quantitative Cytology and Histology, vol.24, issue.1, pp.39-48, 2002.

T. Kohler, A. Budai, M. Kraus, J. Odstrcilik, G. Michelson et al., Automatic no-reference quality assessment for retinal fundus images using vessel segmentation, Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems, pp.95-100, 2013.
DOI : 10.1109/CBMS.2013.6627771

A. Korzynska, L. Roszkowiak, C. Lopez, R. Bosch, L. Witkowski et al., Validation of various adaptive threshold methods of segmentation applied to follicular lymphoma digital images stained with 3,3???-Diaminobenzidine&Haematoxylin, Diagnostic Pathology, vol.24, issue.34, pp.48-78, 2013.
DOI : 10.1186/1746-1596-8-48

S. Kothari, J. H. Phan, T. H. Stokes, and M. D. Wang, Pathology imaging informatics for quantitative analysis of whole-slide images, Journal of the American Medical Informatics Association, vol.20, issue.6, pp.1099-1108, 2013.
DOI : 10.1136/amiajnl-2012-001540

S. Kothari, J. H. Phan, A. N. Young, and M. D. Wang, Histological image classification using biologically interpretable shape-based features, BMC Medical Imaging, vol.22, issue.6, pp.16-47, 2013.
DOI : 10.1016/j.urolonc.2004.03.015

M. M. Krishnan, M. Pal, R. R. Paul, C. Chakraborty, J. Chatterjee et al., Computer Vision Approach to Morphometric Feature Analysis of Basal Cell Nuclei for Evaluating Malignant Potentiality of Oral Submucous Fibrosis, Journal of Medical Systems, vol.43, issue.4, pp.1745-1756, 2012.
DOI : 10.1007/s10916-010-9634-5

T. Lagache, G. Lang, N. Sauvonnet, and J. Olivo-marin, Analysis of the Spatial Organization of Molecules with Robust Statistics, PLoS ONE, vol.62, issue.12, pp.80914-66, 2013.
DOI : 10.1371/journal.pone.0080914.s003

URL : https://hal.archives-ouvertes.fr/hal-01197614

T. Lagache, V. Meas-yedid, and J. Olivo-marin, A statistical analysis of spatial colocalization using Ripley's K function, 2013 IEEE 10th International Symposium on Biomedical Imaging, pp.896-901, 2013.
DOI : 10.1109/ISBI.2013.6556620

G. Landini, Applications of fractal geometry in pathology. Fractal Geometry in Biological Systems : An Analytical Approach, pp.205-246, 1996.

G. Lang and E. Marcon, Testing randomness of spatial point patterns with the Ripley statistic, ESAIM: Probability and Statistics, vol.17, pp.767-788, 2013.
DOI : 10.1051/ps/2012027

URL : https://hal.archives-ouvertes.fr/hal-01502640

Y. Lin, Tensor product space ANOVA models, The Annals of Statistics, vol.28, issue.3, pp.734-755, 2000.
DOI : 10.1214/aos/1015951996

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. Linder, J. Konsti, R. Turkki, E. Rahtu, M. Lundin et al., Identification of tumor epithelium and stroma in tissue microarrays using texture analysis, Diagnostic Pathology, vol.7, issue.1, p.22, 2012.
DOI : 10.1016/j.patcog.2011.03.005

H. W. Lotwick and B. W. Silverman, Methods for analysing spatial processes of several types of points, Journal of the Royal Statistical Society. Series B (Methodological), pp.406-413, 1982.

C. Loukas, S. Kostopoulos, A. Tanoglidi, D. Glotsos, C. Sfikas et al., Breast cancer characterization based on image classification of tissue sections visualized under low magnification. Computational and mathematical methods in medicine 2013, 2013.

C. G. Loukas and A. Linney, A survey on histological image analysis-based assessment of three major biological factors influencing radiotherapy: proliferation, hypoxia and vasculature, Computer Methods and Programs in Biomedicine, vol.74, issue.3, pp.183-199, 2004.
DOI : 10.1016/j.cmpb.2003.07.001

N. Lu, Fractal imaging, p.94, 1997.

B. L. Luck, K. D. Carlson, A. C. Bovik, and R. R. Richards-kortum, An image model and segmentation algorithm for reflectance confocal images of in vivo cervical tissue, IEEE Transactions on Image Processing, vol.14, issue.9, pp.1265-1276, 2005.
DOI : 10.1109/TIP.2005.852460

H. Lyon, A. De-leenheer, R. Horobin, W. Lambert, E. Schulte et al., Standardization of reagents and methods used in cytological and histological practice with emphasis on dyes, stains and chromogenic reagents, The Histochemical Journal, vol.81, issue.7, pp.533-544, 1994.
DOI : 10.1007/BF00158587

W. Ma and S. Lozanoff, A Full Color System for Quantitative Assessment of Histochemical and Immunohistochemical Staining Patterns, Biotechnic & Histochemistry, vol.12, issue.1, pp.1-9, 1999.
DOI : 10.3109/10520299909066470

M. Macenko, M. Niethammer, J. S. Marron, D. Borland, J. T. Woosley et al., A method for normalizing histology slides for quantitative analysis, 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.1107-1110, 2009.
DOI : 10.1109/ISBI.2009.5193250

T. Mäenpää, T. Ojala, M. Pietikäinen, and M. Soriano, Robust texture classification by subsets of local binary patterns, Proc. ICPR, pp.935-938, 2000.

T. Mäenpää and M. Pietikäinen, Multi-scale binary patterns for texture analysis. In : Image Analysis, pp.885-892, 2003.

T. Mäenpää and M. Pietikäinen, Classification with color and texture: jointly or separately?, Pattern Recognition, vol.37, issue.8, pp.1629-1640, 2004.
DOI : 10.1016/j.patcog.2003.11.011

D. Mahmoud-ghoneim, Optimizing automated characterization of liver fibrosis histological images by investigating color spaces at different resolutions, Theoretical Biology and Medical Modelling, vol.8, issue.1, pp.25-41, 2011.
DOI : 10.1186/1746-1596-3-17

S. G. Mallat, A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.11, pp.674-693, 1989.
DOI : 10.1515/9781400827268.494

N. Malpica, C. Ortiz-de-solorzano, J. J. Vaquero, A. Santos, I. Vallcorba et al., Applying watershed algorithms to the segmentation of clustered nuclei, Cytometry, vol.1660, issue.4, pp.289-297, 1997.
DOI : 10.1002/(SICI)1097-0320(19970801)28:4<289::AID-CYTO3>3.0.CO;2-7

E. Marcon and F. Puech, Measures of the geographic concentration of industries: improving distance-based methods, Journal of Economic Geography, vol.10, issue.5, pp.745-762, 2010.
DOI : 10.1093/jeg/lbp056

URL : https://hal.archives-ouvertes.fr/halshs-00372617

T. Mattfeldt, S. Eckel, F. Fleischer, and V. Schmidt, Statistical analysis of reduced pair correlation functions of capillaries in the prostate gland, Journal of Microscopy, vol.26, issue.6, pp.107-119, 2006.
DOI : 10.1103/PhysRevE.57.495

T. Mattfeldt, S. Eckel, F. Fleischer, and V. Schmidt, Statistical modelling of the geometry of planar sections of prostatic capillaries on the basis of stationary Strauss hard-core processes, Journal of Microscopy, vol.39, issue.6, pp.272-281, 2007.
DOI : 10.1002/bimj.4710280820

T. Mattfeldt, S. Eckel, F. Fleischer, and V. Schmidt, Statistical analysis of labelling patterns of mammary carcinoma cell nuclei on histological sections, Journal of Microscopy, vol.185, issue.6, pp.106-118, 2009.
DOI : 10.1111/j.1365-2818.2009.03187.x

J. Miedema, J. S. Marron, M. Niethammer, D. Borland, J. Woosley et al., Image and statistical analysis of melanocytic histology, Histopathology, vol.22, issue.Suppl. 2, pp.436-444, 2012.
DOI : 10.1111/j.1365-2559.2012.04229.x

P. Monasse and F. Guichard, Fast computation of a contrast-invariant image representation, IEEE Transactions on Image Processing, vol.9, issue.5, pp.860-872, 2000.
DOI : 10.1109/83.841532

W. H. Nailon, Texture analysis methods for medical image characterisation, Biomedical Imaging InTech, pp.75-100, 2010.

J. Nayak, R. Acharya, P. S. Bhat, N. Shetty, and T. Lim, Automated Diagnosis of Glaucoma Using Digital Fundus Images, Journal of Medical Systems, vol.21, issue.2, pp.337-346, 2009.
DOI : 10.1007/s10916-008-9195-z

J. Newberg and R. F. Murphy, A Framework for the Automated Analysis of Subcellular Patterns in Human Protein Atlas Images, Journal of Proteome Research, vol.7, issue.6, pp.2300-2308, 2008.
DOI : 10.1021/pr7007626

J. Neyman and E. L. Scott, A Theory of the Spatial Distribution of Galaxies., The Astrophysical Journal, vol.116, pp.144-85, 1952.
DOI : 10.1086/145599

J. Odstrcilik, R. Kolar, J. Jan, J. Gazarek, Z. Kuna et al., Analysis of retinal nerve fiber layer via Markov random fields in color fundus images, Proc. IWSSIP. IEEE, pp.504-507, 2012.

T. Ojala, M. Pietikäinen, and D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recognition, vol.29, issue.1, pp.51-59, 1996.
DOI : 10.1016/0031-3203(95)00067-4

T. Ojala, M. Pietikainen, and T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.7, pp.971-987, 2002.
DOI : 10.1109/TPAMI.2002.1017623

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

D. L. Oliveira, M. Z. Nascimento, L. A. Neves, V. R. Batista, M. F. Godoy et al., Automatic classification of prostate stromal tissue in histological images using Haralick descriptors and Local Binary Patterns, Journal of Physics: Conference Series, vol.490, pp.12151-123, 2014.
DOI : 10.1088/1742-6596/490/1/012151

A. Olowoyeye, M. Tuceryan, and S. Fang, Medical volume segmentation using bank of Gabor filters, Proceedings of the 2009 ACM symposium on Applied Computing, SAC '09, pp.826-829, 2009.
DOI : 10.1145/1529282.1529458

B. Oztan, H. Kong, M. N. Gürcan, and B. Yener, Follicular lymphoma grading using cell-graphs and multi-scale feature analysis, Medical Imaging 2012: Computer-Aided Diagnosis, pp.831516-831534, 2012.
DOI : 10.1117/12.911360

H. M. Park, Hypothesis testing and statistical power of a test. The Trustees of Indiana University, p.127, 2010.

Y. Peng, Y. Jiang, L. Eisengart, M. A. Healy, F. H. Straus et al., Segmentation of prostatic glands in histology images, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.2091-2094, 2011.
DOI : 10.1109/ISBI.2011.5872824

A. Pinidiyaarachchi and C. Wählby, Seeded Watersheds for Combined Segmentation and Tracking of Cells, Image Analysis and Processing, pp.336-343, 2005.
DOI : 10.1007/11553595_41

X. Qi, F. Xing, D. J. Foran, and L. Yang, Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set, IEEE Transactions on Biomedical Engineering, vol.59, issue.3, pp.754-765, 2012.

H. Qureshi, O. Sertel, N. Rajpoot, R. Wilson, and M. Gurcan, Adaptive Discriminant Wavelet Packet Transform and Local Binary Patterns for Meningioma Subtype Classification, Proc. MICCAI. Springer, pp.196-204, 2008.
DOI : 10.1007/978-3-540-85990-1_24

A. Rabinovich, C. A. Laris, Q. Inc, S. Agarwal, J. H. Price et al., Unsupervised color decomposition of histologically stained tissue samples, Advances in Neural Information Processing Systems, pp.667-674, 2003.

J. A. Ramos-vara, Technical Aspects of Immunohistochemistry, Veterinary Pathology, vol.98, issue.4, pp.405-426, 2005.
DOI : 10.1146/annurev.bi.50.070181.003301

J. O. Ramsay, G. Hooker, and S. Graves, Functional Data Analysis with R and MATLAB, p.141, 2009.
DOI : 10.1007/978-0-387-98185-7

S. W. Raudenbush and A. S. Bryk, Hierarchical linear models : Applications and data analysis methods. Sage, p.129, 2002.

B. D. Ripley, The second-order analysis of stationary point processes, Journal of Applied Probability, pp.255-266, 1976.

B. D. Ripley, Modelling spatial patterns, Journal of the Royal Statistical Society. Series B (Methodological), pp.172-212, 1977.

B. D. Ripley, Statistical inference for spatial processes, 1991.
DOI : 10.1017/CBO9780511624131

A. E. Rizzardi, A. T. Johnson, R. I. Vogel, S. E. Pambuccian, J. Henriksen et al., Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring, Diagnostic Pathology, vol.7, issue.1, pp.42-53, 2012.
DOI : 10.1371/journal.pone.0033520

G. Rolls, An Introduction to Specimen Preparation URL http://www.leicabiosystems.com/pathologyleaders/ an-introduction-to-specimen-preparation, Leica Biosystems, issue.5, 2011.

A. C. Ruifrok, Quantification of immunohistochemical staining by color translation and automated thresholding, Analytical and quantitative cytology and histology, vol.19, issue.2, pp.107-113, 1997.

A. C. Ruifrok and D. A. Johnston, Quantification of histochemical staining by color deconvolution, Analytical and quantitative cytology and histology, vol.23, issue.4, pp.291-299, 2001.

A. C. Ruifrok, R. L. Katz, and D. A. Johnston, Comparison of Quantification of Histochemical Staining By Hue-Saturation-Intensity (HSI) Transformation and Color-Deconvolution, Applied Immunohistochemistry & Molecular Morphology, vol.11, issue.1, pp.85-91, 2003.
DOI : 10.1097/00129039-200303000-00014

B. E. Ruttenberg, G. Luna, G. P. Lewis, S. K. Fisher, and A. K. Singh, Quantifying spatial relationships from whole retinal images, Bioinformatics, vol.29, issue.7, pp.940-946, 2013.
DOI : 10.1093/bioinformatics/btt052

URL : http://bioinformatics.oxfordjournals.org/cgi/content/short/29/7/940

Y. Saeys, I. Inza, and P. Larrañaga, A review of feature selection techniques in bioinformatics, Bioinformatics, vol.23, issue.19, pp.2507-2517, 2007.
DOI : 10.1093/bioinformatics/btm344

M. E. Salama, H. Lange, S. R. Tripp, J. Kohan, N. D. Landis et al., AngioMap is a Novel Image Analysis Algorithm for Assessment of Plasma Cell Distribution Within Bone Marrow Vascular Niche, Applied Immunohistochemistry & Molecular Morphology, vol.22, issue.7, p.68, 2013.
DOI : 10.1097/PAI.0b013e318294cb61

O. Sertel, J. Kong, U. V. Catalyurek, G. Lozanski, J. H. Saltz et al., Histopathological image analysis using modelbased intermediate representations and color texture : Follicular lymphoma grading, Journal of Signal Processing Systems, vol.55, pp.1-3, 2009.

A. F. Setiadi, N. C. Ray, H. E. Kohrt, A. Kapelner, V. Carcamo-cavazos et al., Quantitative, Architectural Analysis of Immune Cell Subsets in Tumor-Draining Lymph Nodes from Breast Cancer Patients and Healthy Lymph Nodes, PLoS ONE, vol.12, issue.8, pp.30-53, 2010.
DOI : 10.1371/journal.pone.0012420.s004

M. Sezgin and B. Sankur, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic Imaging, vol.13, issue.1, pp.146-168, 2004.

N. Signolle, M. Revenu, B. Plancoulaine, and P. Herlin, Wavelet-based multiscale texture segmentation: Application to stromal compartment characterization on virtual slides, Signal Processing, vol.90, issue.8, pp.2412-2422, 2010.
DOI : 10.1016/j.sigpro.2009.11.008

URL : https://hal.archives-ouvertes.fr/hal-00805756

S. Jr, T. G. Lange, G. D. Marks, and W. B. , Fractal methods and results in cellular morphology-dimensions, lacunarity and multifractals, Journal of Neuroscience Methods, vol.69, issue.2, pp.123-136, 1996.

B. Stenkvist, E. Bengtsson, O. Eriksson, T. Jarkrans, B. Nordin et al., Histopathological systems of breast cancer classification: reproducibility and clinical significance., Journal of Clinical Pathology, vol.36, issue.4, pp.392-398, 1983.
DOI : 10.1136/jcp.36.4.392

D. J. Strauss, A model for clustering, Biometrika, vol.62, issue.2, pp.467-475, 1975.
DOI : 10.1093/biomet/62.2.467

I. N. Swamidoss, A. Kårsnäs, V. Uhlmann, P. Ponnusamy, C. Kampf et al., Automated classification of immunostaining patterns in breast tissue from the human protein Atlas, Journal of Pathology Informatics, vol.4, issue.2, 2013.
DOI : 10.4103/2153-3539.109881

A. Tabesh, M. Teverovskiy, H. Pang, V. P. Kumar, D. Verbel et al., Multifeature Prostate Cancer Diagnosis and Gleason Grading of Histological Images, IEEE Transactions on Medical Imaging, vol.26, issue.10, pp.1366-1378, 2007.
DOI : 10.1109/TMI.2007.898536

P. J. Tadrous, Digital stain separation for histological images, Journal of Microscopy, vol.23, issue.2, pp.164-172, 2010.
DOI : 10.1111/j.1365-2818.2010.03390.x

M. Tavakol and R. R. Wilcox, Medical education research: the application of robust statistical methods, International Journal of Medical Education, vol.4, pp.93-95, 2013.
DOI : 10.5116/ijme.5181.5fe8

G. Taverna, P. Colombo, F. Grizzi, B. Franceschini, G. Ceva-grimaldi et al., Fractal analysis of two-dimensional vascularity in primary prostate cancer and surrounding non-tumoral parenchyma, Pathology - Research and Practice, vol.205, issue.7, pp.438-444, 2009.
DOI : 10.1016/j.prp.2008.12.019

A. B. Tosun and C. Gunduz-demir, Graph Run-Length Matrices for Histopathological Image Segmentation, IEEE Transactions on Medical Imaging, vol.30, issue.3, pp.721-732, 2011.
DOI : 10.1109/TMI.2010.2094200

H. V. Tuczek, P. Fritz, P. Schwarzmann, X. Wu, and G. Mähner, Breast carcinoma. Correlations between visual diagnostic criteria for histologic grading and features of image analysis, Analytical and Quantitative Cytology and Histology, vol.18, issue.6, pp.481-493, 1996.

M. Unser, Sum and Difference Histograms for Texture Classification, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, issue.1, pp.118-125, 1986.
DOI : 10.1109/TPAMI.1986.4767760

M. N. Van-lieshout and A. J. Baddeley, A nonparametric measure of spatial interaction in point patterns, Statistica Neerlandica, vol.52, issue.3, pp.344-361, 1996.
DOI : 10.1080/02331888608801956

M. Veta, P. J. Van-diest, R. Kornegoor, A. Huisman, M. A. Viergever et al., Automatic Nuclei Segmentation in H&E Stained Breast Cancer Histopathology Images, PLoS ONE, vol.25, issue.7, pp.70221-70253, 2013.
DOI : 10.1371/journal.pone.0070221.s003

L. A. Waller, A. Särkkä, V. Olsbo, M. Myllymäki, I. G. Panoutsopoulou et al., Second-order spatial analysis of epidermal nerve fibers, Statistics in Medicine, vol.242, issue.4, pp.2827-2841, 2011.
DOI : 10.1002/sim.4315

D. Wang, L. Shi, Y. J. Wang, G. C. Man, P. A. Heng et al., Color quantification for evaluation of stained tissues, Cytometry Part A, vol.6, issue.6C, pp.311-316, 2011.
DOI : 10.1002/cyto.a.21037

N. Weidner, Tumour vascularity and proliferation: clear evidence of a close relationship, The Journal of Pathology, vol.1, issue.3, pp.297-299, 1999.
DOI : 10.1002/(SICI)1096-9896(199911)189:3<297::AID-PATH434>3.0.CO;2-O

B. Weyn, W. A. Tjalma, P. Vermeylen, A. Van-daele, E. Van-marck et al., Determination of Tumour Prognosis Based on Angiogenesis-related Vascular Patterns Measured by Fractal and Syntactic Structure Analysis, Clinical Oncology, vol.16, issue.4, pp.307-316, 2004.
DOI : 10.1016/j.clon.2004.01.013

R. R. Wilcox, Introduction to robust estimation and hypothesis testing, p.130, 2012.

R. R. Wilcox, Modern robust statistical methods can provide substantially higher power and a deeper understanding of data, Annals of Phytomedicine, vol.3, issue.1, pp.25-30, 2014.

R. Wild, S. Ramakrishnan, J. Sedgewick, and A. W. Griffioen, Quantitative Assessment of Angiogenesis and Tumor Vessel Architecture by Computer-Assisted Digital Image Analysis: Effects of VEGF???Toxin Conjugate on Tumor Microvessel Density, Microvascular Research, vol.59, issue.3, pp.368-376, 2000.
DOI : 10.1006/mvre.1999.2233

L. Winsor, Tissue processing. Laboratory Histopathology, pp.2-3, 1994.

G. S. Xia, J. Delon, and Y. Gousseau, Shape-based Invariant Texture Indexing, International Journal of Computer Vision, vol.73, issue.2, pp.382-403, 2010.
DOI : 10.1007/s11263-009-0312-3

URL : https://hal.archives-ouvertes.fr/hal-00355070

I. Yamada and P. Rogerson, An Empirical Comparison of Edge Effect Correction Methods Applied to K-function Analysis, Geographical Analysis, vol.19, issue.3, pp.97-109, 2003.
DOI : 10.1111/j.1538-4632.2003.tb01103.x

X. Yang, H. Li, and X. Zhou, Nuclei Segmentation Using Marker-Controlled Watershed, Tracking Using Mean-Shift, and Kalman Filter in Time-Lapse Microscopy, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.53, issue.11, pp.2405-2414, 2006.
DOI : 10.1109/TCSI.2006.884469

J. Yu, S. S. Abidi, P. Artes, A. Mcintyre, and M. Heywood, Diagnostic support for glaucoma using retinal images : A hybrid image analysis and data mining approach, Studies in Health Technology and Informatics, vol.116, pp.187-105, 2005.

Z. Zeng, H. Strange, C. Han, and R. Zwiggelaar, Unsupervised Cell Nuclei Segmentation Based on Morphology and Adaptive Active Contour Modelling, In : Image Analysis and Recognition, vol.7950, pp.605-612, 2013.
DOI : 10.1007/978-3-642-39094-4_69

J. T. Zhang, Analysis of variance for functional data, p.131, 2013.

Z. Zhang, F. S. Yin, J. Liu, W. K. Wong, N. M. Tan et al., ORIGA<sup>-light</sup>: An online retinal fundus image database for glaucoma analysis and research, 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp.3065-3068, 2010.
DOI : 10.1109/IEMBS.2010.5626137