Skip to Main content Skip to Navigation

Role of vascular plasticity in muscle remodeling in the child

Abstract : Skeletal muscle is highly vascularised. Beyond oxygen and nutriment supply, new functions for vessels have been recently identified, through the interactions that vessel cells (endothelial cells) establish with muscle cells, particularly with muscle stem cells (satellite cells). These latter closely interact with endothelial cells for their expansion and their differentiation, then with periendothelial cells for their self-renewal and return to quiescence. During skeletal muscle regeneration endothelial cells reciprocally interact with myogenic cells by direct contact or by releasing soluble factors to promote both myogenesis and angiogenesis processes. Skeletal muscle regeneration typically occurs as a result of a trauma or disease, such as congenital or myopathies. To better understand the role of vessel plasticity in tissue remodeling, we took advantage of two muscular disorders that could be considered as paradigmatic situations of regenerating skeletal muscle in the child: Juvenile Dermatomyositis (JDM), the most frequent inflammatory myopathy and Duchenne Muscular Dystrophy (DMD), the most common type of muscular dystrophy. Although these two muscular disorders share, at the tissue level, similar mechanisms of necrosis-inflammation, they differ regarding the vessel domain. In JDM patients, microvascular changes consist in a destruction of endothelial cells assessed by focal capillary loss. This capillary bed destruction is transient. The tissue remodeling is efficient and muscle may progressively recover its function. By contrast, in DMD, despite an increase of vessels density in an attempt to improve the muscle perfusion, the muscle function progressively alters with age. We identified clinical and pathological markers of severity and predictive factors for poor clinical outcome in JDM by computing a comprehensive initial and follow-up clinical data set with deltoid muscle biopsy alterations controlled by age-based analysis of the deltoid muscle capillarization. We demonstrated that JDM can be divided into two distinctive clinical subgroups. The severe clinical presentation and outcome are linked to vasculopathy. Furthermore, a set of simple predictors (CMAS<34, gastrointestinal involvement, muscle endomysial fibrosis at disease onset) allow early recognition of patients needing rapid therapeutic escalation with more potent drugs. We studied in vitro the specific cell interactions between myogenic cells issued from JDM and DMD patients and normal endothelial cells to explore whether myogenic cells participate to the vessel remodeling observed in the two pathologies. We demonstrated that MPCs possessed angiogenic properties depending on the pathological environment. In DMD, MPCs promoted the development of establishment of an anarchic, although strong, EC stimulation, leading to the formation of weakly functional vessels. In JDM, MPCs enhanced the vessel reconstruction via the secretion of proangiogenic factors. This functional analysis was supported by the transcriptomic analysis consistent with a central vasculopathy in JDM including a strong and specific response to an inflammatory environment. On the contrary, DMD cells presented an unbalanced homeostasis with deregulation of several processes including muscle and vessel development with attempts to recover neuromuscular system by MPCs. To summarize, our data should allow the definition of new functions of vessel cells in skeletal muscle remodelling during muscle pathologies of the child that will open the way to explore new therapeutic options and to gain further insights in the pathogenesis of these diseases.
Complete list of metadata
Contributor : Abes Star :  Contact
Submitted on : Friday, September 4, 2015 - 9:52:09 AM
Last modification on : Wednesday, October 27, 2021 - 2:51:38 PM
Long-term archiving on: : Saturday, December 5, 2015 - 10:44:34 AM


Version validated by the jury (STAR)


  • HAL Id : tel-01191476, version 1


Cyril Gitiaux. Role of vascular plasticity in muscle remodeling in the child. Molecular biology. Université Sorbonne Paris Cité, 2015. English. ⟨NNT : 2015USPCB029⟩. ⟨tel-01191476⟩



Record views


Files downloads