M. Abramowitz and I. A. Stegun, Handbook of mathematical functions with formulas, graphs, and mathematical tables For sale by the Superintendent of Documents, U.S. Government Printing Office Ballot theorems, old and new, Horizons of combinatorics, pp.9-35, 1964.

E. Aïdékon, Convergence in law of the minimum of a branching random walk, The Annals of Probability, vol.41, issue.3A, pp.1362-1426, 2013.
DOI : 10.1214/12-AOP750

E. Aïdékon, Speed of the biased random walk on a Galton-Watson tree. Probab. Theory Related Fields, pp.597-617, 2014.

E. Aïdékon and B. Jaffuel, Survival of branching random walks with absorption. Stochastic Process, Appl, vol.121, issue.9, pp.1901-1937, 2011.

E. Aïdékon and Z. Shi, Weak convergence for the minimal position in a branching random walk: A simple proof, Periodica Mathematica Hungarica, vol.143, issue.17, pp.43-54, 2010.
DOI : 10.1007/s10998-010-3043-x

P. [. Athreya and . Ney, Branching processes, 2004.
DOI : 10.1007/978-3-642-65371-1

D. Barbato, FKG Inequality for Brownian Motion and Stochastic Differential Equations, 2005. [BBS13] Julien Berestycki, Nathanaël Berestycki, and Jason Schweinsberg, pp.7-16527, 2013.
DOI : 10.1214/ECP.v10-1127

J. Bérard and J. Gouéré, Brunet-Derrida Behavior of Branching-Selection Particle Systems on the Line, Communications in Mathematical Physics, vol.131, issue.2, pp.323-342, 2010.
DOI : 10.1007/s00220-010-1067-y

J. Bérard and P. Maillard, The limiting process of $N$-particle branching random walk with polynomial tails, Electronic Journal of Probability, vol.19, issue.0, 2014.
DOI : 10.1214/EJP.v19-3111

]. I. Bibliographie-[-bie76 and . Bienaymé, De la loi de multiplication et de la durée des familles, Soc. Philomat. Paris Extraits, Ser, vol.5, issue.3, pp.37-39, 1976.

J. D. Biggins, The first- and last-birth problems for a multitype age-dependent branching process, Big77a] J. D. Biggins, pp.446-459, 1976.
DOI : 10.1214/aoms/1177704865

J. D. Biggins, Martingale convergence in the branching random walk, Journal of Applied Probability, vol.8, issue.01, pp.25-37, 1977.
DOI : 10.2307/3212827

]. J. Big78 and . Biggins, The asymptotic shape of the branching random walk Advances in Appl, Probability, vol.10, issue.1, pp.62-84, 1978.

]. J. Big97 and . Biggins, How fast does a general branching random walk spread ? In Classical and modern branching processes, Probability and mathematical genetics, pp.19-39, 1994.

A. [. Biggins and . Kyprianou, Seneta-Heyde norming in the branching random walk, Ann. Probab, vol.25, issue.1, pp.337-360, 1997.

A. [. Biggins and . Kyprianou, Measure change in multitype branching

J. D. Biggins and A. E. Kyprianou, Fixed Points of the Smoothing Transform: the Boundary Case, Electronic Journal of Probability, vol.10, issue.0, pp.609-631, 2005.
DOI : 10.1214/EJP.v10-255

B. [. Biggins, A. Lubachevsky, A. Shwartz, and . Weiss, A Branching Random Walk with a Barrier, The Annals of Applied Probability, vol.1, issue.4, pp.573-581, 1991.
DOI : 10.1214/aoap/1177005839

A. Bovier and I. Kurkova, Much ado about Derrida's GREM. In Spin glasses, Lecture Notes in Math, pp.81-115, 1900.

M. D. Bramson, Maximal displacement of branching brownian motion, Communications on Pure and Applied Mathematics, vol.8, issue.5, pp.531-581, 1978.
DOI : 10.1002/cpa.3160310502

H. Brezis, Analyse fonctionnelle Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master's Degree], Théorie et applications. [Theory and applications], 1983.

E. Broman and R. Meester, Survival of inhomogeneous Galton-Watson processes, Advances in Applied Probability, vol.40, issue.03, pp.798-814, 2008.
DOI : 10.2307/3212405

E. Brunet and B. Derrida, Shift in the velocity of a front due to a cutoff, Physical Review E, vol.56, issue.3, pp.2597-2604, 1997.
DOI : 10.1103/PhysRevE.56.2597

É. Brunet, B. Derrida, A. H. Mueller, and S. Munier, Effect of selection on ancestry: An exactly soluble case and its phenomenological generalization, Physical Review E, vol.76, issue.4, p.41104, 2007.
DOI : 10.1103/PhysRevE.76.041104

F. Caravenna and L. Chaumont, An invariance principle for random walk bridges conditioned to stay positive, Electronic Journal of Probability, vol.18, issue.0, 2013.
DOI : 10.1214/EJP.v18-2362

URL : https://hal.archives-ouvertes.fr/hal-00691962

X. Chen, A necessary and sufficient condition for the non-trivial limit of the derivative martingale in a branching random walk, 2014.

O. Couronné and L. Gerin, A branching-selection process related to censored Galton???Walton processes, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.50, issue.1, pp.84-94, 2014.
DOI : 10.1214/12-AIHP504

]. D. Dar83 and . Darling, On the supremum of a certain Gaussian process, Ann. Probab, vol.11, issue.3, pp.803-806, 1983.

]. B. Der85, H. Derrida-derrida, and . Spohn, A generalization of the random energy model which includes correlation between energies Polymers on disordered trees, spin glasses, and traveling waves, New directions in statistical mechanics, pp.401-407817, 1985.

]. R. Done85 and . Doney, Conditional limit theorems for asymptotically stable random walks, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.11, issue.3, pp.351-360, 1985.
DOI : 10.1007/BF00534868

M. D. Donsker, An invariance principle for certain probability limit theorems, Mem. Amer. Math. Soc, issue.6, p.195112, 1951.

[. Fang, Tightness for Maxima of Generalized Branching Random Walks, Journal of Applied Probability, vol.49, issue.03, pp.652-670, 2012.
DOI : 10.1214/08-AOP428

M. Fang and O. Zeitouni, Consistent Minimal Displacement of Branching Random Walks, Electronic Communications in Probability, vol.15, issue.0, pp.106-118, 2010.
DOI : 10.1214/ECP.v15-1533

M. Fang and O. Zeitouni, Branching random walks in time inhomogeneous environments, Electronic Journal of Probability, vol.17, issue.0, 2012.
DOI : 10.1214/EJP.v17-2253

M. Fang and O. Zeitouni, Slowdown for Time Inhomogeneous Branching Brownian Motion, Journal of Statistical Physics, vol.125, issue.1, pp.1-9, 2012.
DOI : 10.1007/s10955-012-0581-z

[. Faraud, Y. Hu, and Z. Shi, Almost sure convergence for stochastically biased random walks on trees. Probab. Theory Related Fields, pp.3-4621, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00767694

W. Fellerfil88 and ]. A. Filippov, An introduction to probability theory and its applications Differential equations with discontinuous righthand sides, of Mathematics and its Applications (Soviet Series, 1971.

]. R. Fis37 and . Fisher, The wave of advance of an advantageous gene, Ann. Eugenics, vol.7, pp.353-369, 1937.

K. Fleischmann and V. Wachtel, Lower deviation probabilities for supercritical Galton???Watson processes???, Annales de l'Institut Henri Poincare (B) Probability and Statistics, vol.43, issue.2, pp.233-255, 2007.
DOI : 10.1016/j.anihpb.2006.03.001

F. Galton and H. W. Watson, On the Probability of the Extinction of Families, J. Roy. Anthropol. Inst, vol.4, pp.138-144, 1874.
DOI : 10.1007/978-3-642-81046-6_44

[. Gantert, Y. Hu, and Z. Shi, Asymptotics for the survival probability in a killed branching random walk, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.47, issue.1, pp.111-129, 2011.
DOI : 10.1214/10-AIHP362

URL : https://hal.archives-ouvertes.fr/hal-00579979

]. J. Ham74 and . Hammersley, Postulates for subadditive processes, Ann. Probability, vol.2, pp.652-680, 1974.

C. Simon, M. I. Harris, and . Roberts, The many-to-few lemma and multiple spines, 2011.

P. Hartman, Ordinary differential equations Corrected reprint of the second (1982) edition, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol.38, p.658490, 2002.

H. [. Hsu and . Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U. S. A, pp.25-31, 1947.

Y. Hu and Z. Shi, Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees, The Annals of Probability, vol.37, issue.2
DOI : 10.1214/08-AOP419

URL : https://hal.archives-ouvertes.fr/hal-00414685

K. Itô, H. P. Mckean, and J. , Diffusion processes and their sample paths, 1974.

B. Jaffuel, The critical barrier for the survival of branching random walk with absorption, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.48, issue.4, pp.989-1009, 2012.
DOI : 10.1214/11-AIHP453

URL : https://hal.archives-ouvertes.fr/hal-00430791

J. Kahane, Sur le modèle de turbulence de Benoît Mandelbrot, C. R. Acad. Sci. Paris Sér. A, vol.278, pp.621-623, 1974.

J. Kahane, Le chaos multiplicatif, C. R. Acad. Sci. Paris Sér. I Math, vol.301, issue.6, pp.329-332, 1985.

J. Kahane, Sur le chaos multiplicatif, Ann. Sci. Math. Québec, vol.9, issue.2, pp.105-150, 1985.

J. Kahane and J. Peyrière, Sur certaines martingales de Benoit Mandelbrot, Advances in Mathematics, vol.22, issue.2, pp.131-145, 1976.
DOI : 10.1016/0001-8708(76)90151-1

[. Steven and E. Shreve, Foundations of modern probability Probability and its Applications Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113, 1991.

G. David and . Kendall, The genealogy of genealogy : branching processes before (and after) 1873, Bull. London Math. Soc, vol.7, issue.3, pp.225-253, 1975.

]. J. Kin75 and . Kingman, The first birth problem for an age-dependent branching process, Ann. Probability, vol.3, issue.5, pp.790-801, 1975.

]. A. Kol91a and . Kolmogorov, Dissipation of energy in the locally isotropic turbulence Translated from the Russian by V. Levin, Turbulence and stochastic processes : Kolmogorov's ideas 50 years on, Proc. Roy. Soc. London Ser. A, vol.434, pp.15-17, 1890.

]. A. Kol91b and . Kolmogorov, The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers, Proc. Roy. Soc. London Ser. A, pp.4349-4362, 1890.

I. [. Kolmogorov, N. Petrowski, and . Piscounov, Étude de l'équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique, Mosc. Univ. Bull. Math, vol.1, pp.1-25, 1937.

J. Komlós, P. Major, and G. Tusnády, An approximation of partial sums of independent RV's, and the sample DF. II, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.3, issue.1, pp.33-58, 1976.
DOI : 10.1007/BF00532688

]. M. Koz76 and . Kozlov, The asymptotic behavior of the probability of non-extinction of critical branching processes in a random environment, Teor. Verojatnost. i Primenen, vol.21, issue.4, pp.813-825, 1976.

]. S. Kur76 and . Kurcyusz, On the existence and non-existence of Lagrange multipliers in Banach spaces, J. Optimization Theory Appl, vol.20, issue.1, pp.81-110, 1976.

]. G. Lou84 and . Louchard, The Brownian excursion area : a numerical analysis, Comput. Math. Appl, vol.10, issue.6, pp.413-417, 1984.

R. Lyons, Random Walks, Capacity and Percolation on Trees, The Annals of Probability, vol.20, issue.4, pp.2043-2088, 1992.
DOI : 10.1214/aop/1176989540

R. Lyons, Equivalence of boundary measures on covering trees of finite graphs. Ergodic Theory Dynam, Systems, vol.14, issue.3, pp.575-597, 1994.

R. Lyons, A Simple Path to Biggins??? Martingale Convergence for Branching Random Walk, Classical and modern branching processes, pp.217-221, 1994.
DOI : 10.1007/978-1-4612-1862-3_17

R. Lyons and R. Pemantle, Random Walk in a Random Environment and First-Passage Percolation on Trees, The Annals of Probability, vol.20, issue.1, pp.125-136, 1992.
DOI : 10.1214/aop/1176989920

R. Lyons, R. Pemantle, and Y. Peres, Conceptual Proofs of $L$ Log $L$ Criteria for Mean Behavior of Branching Processes, The Annals of Probability, vol.23, issue.3, pp.1125-1138, 1995.
DOI : 10.1214/aop/1176988176

]. H. Mck75 and . Mckean, Application of Brownian motion to the equation of Kolmogorov-Petrovskii-Piskunov, McK76] H.P. McKean. Correction to the above, pp.323-331323, 1975.

P. Maillard, Branching Brownian motion with selection of the N rightmost particles : An approximate model, 2013.

P. Maillard and O. Zeitouni, Slowdown in branching Brownian motion with inhomogeneous variance, Annales de l'Institut Henri Poincar??, Probabilit??s et Statistiques, vol.52, issue.3, 2014.
DOI : 10.1214/15-AIHP675

B. Mallein, Position of the rightmost individual in a branching random walk through a series of interfaces, 2014.

B. Mallein, Maximal displacement in a branching random walk in timeinhomogeneous environment, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01322464

B. Mallein, Branching random walk with selection at critical rate. 2015. [Mal15b] Bastien Mallein. N -Branching random walk with ?-stable spine, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01322449

B. Mallein, Maximal displacement in the $d$-dimensional branching Brownian motion, Electronic Communications in Probability, vol.20, issue.0, 2015.
DOI : 10.1214/ECP.v20-4216

URL : https://hal.archives-ouvertes.fr/hal-01322443

B. Mandelbrot, Intermittent turbulence in self-similar cascades: divergence of high moments and dimension of the carrier, Journal of Fluid Mechanics, vol.15, issue.02, pp.331-358, 1974.
DOI : 10.1063/1.1693226

B. Mandelbrot, Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire, C. R. Acad. Sci. Paris Sér. A, vol.278, pp.289-292, 1974.

B. Mandelbrot, Multiplications aléatoires itérées et distributions invariantes par moyenne pondérée aléatoire : quelques extensions, C. R. Acad. Sci. Paris Sér. A, vol.278, pp.355-358, 1974.

]. J. Nev88, E. Neveu, K. L. Çinlar, R. K. Chung, J. Getoor et al., Multiplicative martingales for spatial branching processes, Seminar on Stochastic Processes of Progress in Probability and Statistics, pp.223-242, 1987.

J. [. Nolen, L. Roquejoffre, and . Ryzhik, Power-Like Delay in Time Inhomogeneous Fisher-KPP Equations, Communications in Partial Differential Equations, vol.18, issue.3, 2014.
DOI : 10.1214/12-AOP753

R. Pemantle and Y. Peres, Critical Random Walk in Random Environment on Trees, The Annals of Probability, vol.23, issue.1, pp.105-140, 1995.
DOI : 10.1214/aop/1176988379

J. Peyrière, Turbulence et dimension de Hausdorff, C. R. Acad. Sci. Paris Sér. A, vol.278, pp.567-569, 1974.

]. Pro56, . V. Yu, and . Prohorov, Convergence of random processes and limit theorems in probability theory, Teor. Veroyatnost. i Primenen, vol.1, pp.177-238, 1956.

R. Rhodes and V. Vargas, Gaussian multiplicative chaos and applications: A review, Probability Surveys, vol.11, issue.0, pp.315-392, 2014.
DOI : 10.1214/13-PS218

I. Matthew and . Roberts, Fine asymptotics for the consistent maximal displacement of branching Brownian motion, 2012.

]. A. Sak84 and . Sakhanenko, Rate of convergence in the invariance principle for variables with exponential moments that are not identically distributed, Limit theorems for sums of random variables, pp.4-49, 1984.

C. Stone, A Local Limit Theorem for Nonlattice Multi-Dimensional Distribution Functions, The Annals of Mathematical Statistics, vol.36, issue.2, pp.546-551, 1965.
DOI : 10.1214/aoms/1177700165

[. Takács, Random Walk Processes and their Applications in Order Statistics, The Annals of Applied Probability, vol.2, issue.2, pp.435-459, 1992.
DOI : 10.1214/aoap/1177005710

O. Vallée and M. Soares, Airy functions and applications to physics, 2010.

A. Zettl, Sturm-Liouville theory, volume 121 of Mathematical Surveys and Monographs, 2005.