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Résumé

Grâce aux progrès récents en photogrammétrie, il est désormais possible de recons-
truire automatiquement un modèle d’une scène 3D à partir de photographies ou d’une
vidéo. La reconstruction est réalisée en plusieurs étapes. Tout d’abord, on détecte des
traits saillants (features) dans chaque image, souvent des points mais plus générale-
ment des régions. Puis on cherche à les mettre en correspondance entre images. On
utilise ensuite les traits communs à deux images pour déterminer la pose (positions et
orientations) relative des images. Puis les poses sont mises dans un même repère global
et la position des traits saillants dans l’espace est reconstruite (structure from motion).
Enfin, un modèle 3D dense de la scène peut être estimé.

La détection de traits saillants, leur appariement, ainsi que l’estimation de la po-
sition des caméras, jouent des rôles primordiaux dans la chaîne de reconstruction 3D.
Des imprécisions ou des erreurs dans ces étapes ont un impact majeur sur la précision
et la robustesse de la reconstruction de la scène entière. Dans cette thèse, nous nous
intéressons à l’amélioration des méthodes pour établir la correspondance entre régions
caractéristiques et pour les sélectionner lors de l’estimation des poses de caméras, afin
de rendre les résultats de reconstruction plus robustes et plus précis.

Nous introduisons tout d’abord une contrainte photométrique pour une paire de
correspondances (VLD) au sein d’une même image, qui est plus fiable que les contraintes
purement géométriques. Puis, nous proposons une méthode semi-locale (K-VLD) pour
la mise en correspondance, basée sur cette contrainte photométrique. Nous démontrons
que notre méthode est très robuste pour des scènes rigides, mais aussi non-rigides ou
répétitives, et qu’elle permet d’améliorer la robustesse et la précision de méthodes d’es-
timation de poses, notamment basées sur RANSAC.

Puis, pour améliorer l’estimation de la position des caméras, nous analysons la pré-
cision des reconstructions et des estimations de pose en fonction du nombre et de la
qualité des correspondances. Nous en dérivons une formule expérimentale caractéri-
sant la relation “qualité contre quantité”. Sur cette base, nous proposons une méthode
pour sélectionner un sous-ensemble des correspondances de meilleure qualité de façon
à obtenir une très haute précision en estimation de poses.

Nous cherchons aussi à raffiner la précision de localisation des points en correspon-
dance. Pour cela, nous développons une extension de la méthode de mise en corres-
pondance aux moindres carrés (LSM) en introduisant un échantillonnage irrégulier et
une exploration des échelles d’images. Nous montrons que le raffinement et la sélec-
tion de correspondances agissent indépendamment pour améliorer la reconstruction.
Combinées, les deux méthodes produisent des résultats encore meilleurs.

Mots-clefs

vision par ordinateur ; stéréovision ; estimation robuste ; contrainte photométrique ; ligne
virtuelle ; descripteur de ligne virtuelle ; méthode semi-locale de mise en correspon-
dance ; sélection de correspondances ; raffinement de correspondances.
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Abstract

With the recent progress in photogrammetry, it is now possible to automatically recon-
struct a model of a 3D scene from pictures or videos. The model is reconstructed in
several stages. First, salient features (often points, but more generally regions) are de-
tected in each image. Second, features that are common in images pairs are matched.
Third, matched features are used to estimate the relative pose (position and orienta-
tion) of images. The global poses are then computed as well as the 3D location of these
features (structure from motion). Finally, a dense 3D model can be estimated.

The detection of salient features, their matching as well as the estimation of camera
poses play a crucial role in the reconstruction process. Inaccuracies or errors in these
stages have a major impact on the accuracy and robustness of reconstruction for the
entire scene. In this thesis, we propose better methods for feature matching and feature
selection, which improve the robustness and accuracy of existing methods for camera
position estimation.

We first introduce a photometric pairwise constraint for feature matches (VLD),
which is more reliable than geometric constraints. Then we propose a semi-local match-
ing approach (K-VLD) using this photometric match constraint. We show that our
method is very robust, not only for rigid scenes but also for non-rigid and repetitive
scenes, which can improve the robustness and accuracy of pose estimation methods,
such as based on RANSAC.

To improve the accuracy in camera position estimation, we study the accuracy of re-
construction and pose estimation in function of the number and quality of matches. We
experimentally derive a “quantity vs. quality” relation. Using this relation, we propose
a method to select a subset of good matches to produce highly accurate pose estima-
tions.

We also aim at refining match position. For this, we propose an improvement of
least square matching (LSM) using an irregular sampling grid and image scale explo-
ration. We show that match refinement and match selection independently improve the
reconstruction results, and when combined together, the results are further improved.

Keywords

computer vision; structure from motion; stereovision; robust estimation; photometric
constraint; virtual line descriptor; semi-local matching; match selection; match refine-
ment.
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Chapter 1

Preamble

The first digital camera was built in 1975 by Steven Sasson. Since then, this technology
has been expanding, spreading everywhere from satellites to watches. The birth of dig-
ital cameras transformed photos to a flow of digital numbers that can be manipulated
via computers. Today’s cameras are able to take photos or videos with much higher
quality, raising up many applications and researches in computer vision. As photos
capture the real world, a natural question is whether we can reconstruct the 3D world
with captured photos. Several technologies have been developed to achieve the 3D re-
construction. The most popular one is stereo-vision. With a collection of photos taken
from different view points, the idea of stereo-vision is to recover the spatial informa-
tion of cameras as well as observed objects. Successful approaches such as Structure
from Motion give the possibility to reconstruct a 3D world using a simple camera. These
technologies have been applied in various domains: medical imaging, robotic vision,
movie post-production, video game industry, planet exploration, etc. Many applica-
tions have specific requirements. Some put the stress on reconstruction accuracy, some
need methods that can be applied under difficult conditions, others require real-time
processing speed, etc, which leads to many active research area in stereo-vision.

This thesis aims at identifying and improving weak steps in 3D reconstruction pipelines,
in terms of accuracy and robustness. Our work mainly focuses on the critical early
stages of Structure from Motion for 3D reconstruction.
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1.1 Methods for 3D reconstruction.

There exists many ways to reconstruct the 3D world, such as using a laser scanner, pho-
tometric stereo, structural pattern and structure from motion. We briefly go through
these methods.

1.1.1 Laser scanner

When reconstructing a 3D scene, a laser scanner emits laser rays and receives their re-
flection in order to measure object positions. The most widely used scanners follow the
LIDAR technology. It has many applications and its wavelengths is variable from about
10 micrometers to the UV to suit the material of the target. These scanners produce very
accurate point clouds of the scanned scene. However, the price of these scanners is high
and requires specific skills to be properly manipulated; moreover, the scanning times
can be up to several minutes, depending on the required density of the point cloud.
Thus, this method is mostly used for specific professional tasks.

Figure 1.1: Images from http://fr.wikipedia.org/wiki/Lidar and http://www.
uav-lidar.com.

1.1.2 Photometric stereo

Figure 1.2: image from Wu et
al. [85]

In an interior scene with a controlled light source
and a camera at a fixed position, it is possible to es-
timate surface normals of an object. By taking sev-
eral photos with different lighting conditions (with
changes of light position), the surface normals at
various points on the object are estimated by ana-
lyzing the reflected lights. The global surface struc-
ture is reconstructed by integrating the local surface
normals. This method has a high requirement on
the control of the light sources. Besides, any uncal-
ibrated extra light source may degrade the result.
This technique thus has a limited field of applica-
tion.

http://fr.wikipedia.org/wiki/Lidar
http://www.uav-lidar.com
http://www.uav-lidar.com
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1.1.3 Structured light scanner

There exists another kind of controlled light system for 3D reconstruction called “struc-
tured light scanner”. It starts by projecting a light pattern containing specific structure
such as lines, points or any other patterns to the scene. Then a camera observes the
deformation of the projected pattern to reconstruct the depth map of the scene. The
Kinect, developed and commercialized by Microsoft, uses this structured light scan-
ner system, and is capable of reconstructing the depth map in real-time, using an in-
frared light pattern. As the camera captures specific patterns, it has a certain robustness
against external light. However, the range of mapping depends on the reception of the
pattern, and a too strong external light still erases the patterns. By consequence, struc-
tured light applies mostly to indoor scenes for the 3D reconstruction of small areas.

Figure 1.3: Kinect and its structured light patterns.

1.1.4 Structure from Motion

The 3D scene can also be reconstructed by digital photographs. By taking several im-
ages from different positions around an object, we can recover both the camera posi-
tions and the 3D scene (Figure 1.4). This method is called structure from motion (SfM)
as the scene is reconstructed from moving camera positions. A more detailed descrip-
tion is available in Chapter 3. A variation to SfM is the Simultaneous localization and
mapping (SLAM) method, which reconstructs 3D scene and maps the camera position
at real time (e.g., on a video flow). Compared to the other methods, SfM has several
advantages, making it the most explored approach in stereo vision for reconstruction:

• Low accessible price: Compared to LIDAR system, a camera for SfM is much
cheaper.

• Mobility: Only a camera is needed for SfM photo acquisition. A camera can be of
very small size and mounted on a UAV.

• Simple manipulation: No special skill is needed.

• Adapted to various conditions: SfM is suitable for both indoor and outdoor envi-
ronments, and no special light condition is required.

• Large datasets available: With the fast growing availability of photo datasets on
the internet such as Flickr, Facebook and Google images. A large quantity of
photos are already present. People can reconstruct a popular scene even without
taking photos by themselves.

• In practice, methods with projected light are limited to interior scene. In con-
trast, SfM doesn’t need any projected light nor specific settings. Besides, it is less
affected by the lighting condition and may recover the real color of the objects.
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C
C'

Figure 1.4: Structure from motion approaches reconstruct the 3D object from photos
taken from different view points.

1.2 Applications of 3D reconstruction

The 3D reconstruction technologies have various applications in many areas. Some are
very close to our everyday life.

Products such as Google Maps allow people to have an aerial view of the Earth, and
its street-view function is able to provide a virtual visit by calibrating and adapting in
real time the landscape images to the view point. Though the technology does not
really reconstruct the 3D scene, but provides only discrete available view points, the
result of virtual visits shows a very promising future. Projects that virtually reconstruct
entire cities are also available from companies such as Acute3D1.

The 3D reconstruction technology is also closely linked to robotics. The visual sys-
tem in robots can help to provide location information based either on reconstructed
scenes or on an external database [51]. The spread of unmanned vehicles with mounted
cameras expands and requires better reconstruction technologies in terms of speed, ac-
curacy and scale. The Google Car is able to drive and park alone, without human
intervention. The micro aerial vehicles (MAV) as Black Hornet nano air vehicles carry-
ing a camera are a fast growing area. Home cleaning robots with visual systems also
show their advantages in trajectory planning.

Figure 1.5: Left: Google auto-drive car. Middle: Black Hornet nano air vehicle. Right:
Hauzen VC-RE70V SLAM based vacuum robot.

1http://www.acute3d.com
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In the movie and game industries, modeling realistic scene via stereo vision can
reduce the costs. Actually, the 3D reconstruction technology still faces some limitations
and is only used as an initial base on which manual scene refinements are required. But
partial/semi-automatic reconstruction techniques are already commercialized (such as
Kinect).
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Chapter 2

Introduction

3D reconstruction by stereo-vision has been actively explored for years. The method
“Structure from motion” is particularly efficient, and has been widely studied. The idea
of SfM is as follows. First, images from different view-points of the object are captured.
Second, specific features such as remarkable points or lines are extracted from images.
Third, we establish correspondences between the features from different images point-
ing to the same space location. Fourth, in an either incremental or global manner, both
approximate camera positions and actual feature location in 3D are estimated. Finally,
in a multi-view case, an optimization taking into account all images is performed.

It is possible to reconstruct the scene from two images (2-view SfM) or more (N-
view SfM). The 2-view SfM is a fundamental step in any case. Two steps play a very
important role in SfM results:

• The feature correspondence has very important impact on the reconstruction qual-
ity, as it participates both in the camera position estimation and scene reconstruc-
tion.

• In 2-view and N-view SfM, the position estimation of cameras also have an im-
portant impact on the reconstruction result.

Many techniques have been proposed to produce high quality correspondences and
camera positions. The standard pipeline is as follows: the program produces descrip-
tors for detected features, and matches the features according to descriptor similarity.
The initial matches are then filtered by RANSAC-like methods to separate inliers and
outliers. Finally, the camera position is estimated by an optimization algorithm using
as input all inliers.

This approach works correctly in general, but still faces problems:

• feature localization accuracy,

• robustness of feature matching,

• model optimization accuracy given inliers.

In this thesis, we try to identify problems occurring while establishing the point cor-
respondences and estimating the camera positions. We propose solutions to overcome
the present limitations, which have been tested under the 2-view SfM case and could be
extended to the N-view SfM case in the future. Besides, our work in feature matching
is not limited to SfM.
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2.1 Thesis contribution

This thesis focuses on exploring new methods to increase the 2-view structure from
motion performance in terms of robustness and accuracy.

The main contributions of the thesis are the following:

• A pairwise photometric constraint between feature correspondences: Most con-
straints between matches are based only on a geometric relation. We show that
photometric information between matches can be used as a robust pairwise sig-
nature. We encode the photometric information between features using a virtual
line descriptor (VLD), and use the similarity of VLDs to evaluate the photometric
consistency between matches. The boost of using VLDs in pairwise match con-
straints is proved by our experiments.

• A semi-local matching method using VLD constraint: We introduce a semi-local
approach in feature correspondence filtering. Using VLDs, our method outper-
forms the state-of-the-art algorithms in terms of accuracy, robustness and scala-
bility. It is robust even for non-rigid scene.

• The “quantity vs. quality” trade-off in reconstruction accuracy: A study of recon-
struction accuracy in the 2-view SfM case is carried out with a theoretical motiva-
tion and extended based on experimental observations, while varying the number
of matches and the inaccuracy.

• A new match-selection approach for camera position estimation: The “quantity
vs. quality” study shows the possibility of using fewer matches with higher accu-
racy to have a more accurate camera pose estimation. Different from traditional
approaches that use all inliers to estimate the camera pose, our match-selection
approach tests a series of match subsets of different sizes and their corresponding
estimation candidates, and chooses a subset which better optimizes the “quantity
vs. quality” trade-off.

• Extension of least square matching (LSM) for match localization refinement: We
extend the LSM methods for match refinement with an image scale exploration
and a focused grid.

2.1.1 Publications

• Match Selection and Refinement for Highly Accurate Two-View Structure from Motion.
Z. Liu , P. Monasse and R. Marlet. European Conference on Computer Vision
(ECCV), 2014, Oral.

• Virtual Line Descriptor and Semi-Local Graph Matching Method for Reliable Feature
Correspondence. Z. Liu and R. Marlet. British Machine Vision Conference (BMVC),
2012, Poster.

2.1.2 Software contributions

K-VLD

We built an open source C++ library implementing our semi-local matching method us-
ing photometric pairwise constraint. Matching tests for rigid scenes and deformable ob-
jects are provided (cf. Figure 2.1). Link: https://github.com/Zhe-LIU-Imagine/KVLD

https://github.com/Zhe-LIU-Imagine/KVLD
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Figure 2.1: Illustration of matching result by our online code of K-VLD method.

MRMS_online

We developed a C++ library implementing the match refinement and match selection
methods. The refinement method adjusts the feature locations for existing matches and
selects the matches for an optimal “quality vs. quantity” trade-off. The two methods
can be applied independently or combined to achieve more accurate 2-view structure
from motion results (Figure 2.2). https://github.com/Zhe-LIU-Imagine/MRMS_online

Subset Subset Subset Subset 

Feature 
matching

KVLD filter

Match 
refinement

Match 
ordering

RANSAC

Images

Accurate model 

Model selection

Figure 2.2: Pipeline of the combined method of match refinement and match selection.

Groti 2.0

We are the co-author of a visual assistant for studying feature detection, description,
matching and calibration. It has various functions and provides information to help
the analysis of every step of 2-view structure from motion.

2.1.3 Teaching and supervision

Teaching

I taught an introduction to C++ programming course for first year students at École des
Ponts ParisTech (64 hours) for 3 years.

Supervised internship - Groti 2.0 bases

I supervised the internships in the IMAGINE group of two freshmen from École des
Ponts ParisTech. The work was to setup the basic structure of the Groti project, using

https://github.com/Zhe-LIU-Imagine/MRMS_online
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the Qt platform.

2.2 Manuscript organization

The manuscript is organized in the following way. In Chapter 3, we start by describing
the basics of structure from motion, including the feature matching process. Then we
explain in Chapter 4 the semi-local matching approach with photometric pairwise con-
straint, followed in Chapter 5 by its various applications including a robust matching
method for segments. In Chapter 6, we present our match refinement work. Finally, we
introduce in Chapter 7 the match selection strategy for a better “quality vs. quantity”
balance and a more accurate camera pose estimation .
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Chapter 3

Overview of Structure from Motion

Before we go into the details of our work, this chapter gives a synoptic view of each
step of the Structure from Motion approach (SfM).

Contents
3.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Projective geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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3.1 Notations

Rn Euclidean space
Pn Projective space

X 3D point observed in world coordinate frame, X =
(
X Y Z

)T

Xc 3D point observed in camera coordinate frame, Xc =
(
Xc Yc Zc

)T

X̃ 3D point in homogeneous form X̃ =
(
X Y Z 1

)T

x̃c Projection of Xc to the focal plan of camera C in homogeneous form, x̃c =
(

Xc f
Zc

Yc f
Zc

f
)T
∼ Xc

x̃ 2D point in homogeneous form in pixel dimensions, x̃ =
(
u v 1

)T

x 2D point in pixel dimensions in the image, x =
(
u v

)T

R Rotation matrix
t Translation vector
C Camera center in world coordinate frame
K Calibration matrix, intrinsic parameters of a camera
P Camera central projection matrix

π f focal plane of a camera
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3.2 Introduction

In order to reconstruct a 3D scene, an SfM approach usually goes through the follow-
ing steps. Interest points (features) are detected, and a specific signature (descriptor) is
assigned to every feature. A matching strategy is then applied to establish feature cor-
respondences. Given the feature matches between two images, we recover the epipolar
geometry by estimating a fundamental matrix F relating them. If the internal calibra-
tion parameters are known (the calibration matrix K), this also provides an estimation
of the camera motion (rotation R, translation t) and the 3D positions of matched points
(cf. Figure 3.1).

Feature detection
& matching

RANSAC for
F estimation

Camera R & t
estimation

Point cloud

3D reconstruction

Figure 3.1: A classical two-view SfM pipeline

Organization

In this chapter, we recall some elements of projective geometry and the pinhole camera
model, with an emphasis on two-view camera geometry. We then go through the fea-
ture detection, description and matching methods. Finally, we explain how the camera
poses are estimated (external calibration phase).

3.3 Projective geometry

In all the following sections, we work in the Euclidean space and/or the projective
space. More detailed notions about projective geometry can be found in [34]. A projec-
tive space has the following properties:

1. A point X = (X1,X2, . . .Xn) ∈ Rn of dimension n in Euclidean space is represented
by a vector of dimension n+1 in projective space as (X1,X2, . . .Xn,1) ∈ Pn, which is
also called the homogeneous form of the point X. It is also written X̃ = (X,1) ∈ Pn

for short.

2. For any c∈R\{0}, and point X̃=(X1,X2, . . .Xn,w)∈Pn, the point cX̃=(cX1,cX2, . . .cXn,cw)
is considered as equivalent to X̃, noted as cX̃∼ X̃.
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3. Points at infinity are noted as (X1,X2, . . .Xn,0). Note that (0,0, . . . ,0) /∈ Pn.

We go through two concrete examples to illustrate how projective geometry simplifies
algebraic formulations.

Projection of 3D points to a plane

In the coordinate frame of the camera, where the center C of the camera is the coordi-
nate origin, we suppose a 3D point Xc = (Xc,Yc,Zc) is projected to the image plane z = f
to point x̃c = (Xc f

Zc
, Yc f

Zc
, f ) in 2D space through a ray passing by the center of the camera

and Xc. All points on this ray {X′ = cXc|c ∈ R\{0}} project to the same x̃c on the image
plane. This becomes obvious with the 2D projective space P2 as all points in the ray
{(cXc,cYc,cZc),c∈R\{0}} ∈ P2 are similar to x̃c = (Xc f

Zc
, Yc f

Zc
, f ). That is to say, considering

P2 = R3\{0}, we have x̃c ∼ Xc.

Reference change in 3D space

In a Euclidean space, if the camera is not centered at the origin, a point observed at
Xc = (Xc,Yc,Zc) in the camera coordinate, is expressed as X = (X ,Y,Z) in the absolute
coordinate frame. Then we have Xc = R(X−C), where R is the rotation of the world
coordinate from the camera coordinate. We define the camera translation as:

t =−RC. (3.1)

The relation between Xc and X can be expressed in terms of a rotation and a translation,
i.e., with R the rotation of world coordinate axes observed in the camera coordinates,
and t the translation of the origin of the world coordinate observed in the camera coor-
dinate, we write Xc = RX+ t. Under homogeneous forms, this expression becomes:[

Xc

1

]
=

[
R t
0 1

][
X
1

]
(3.2)

The rotation matrix R and the translation vector t are also called the extrinsic pa-
rameters of a camera.

3.4 Pinhole camera model

A digital camera is equipped with a grid of optical sensors that can capture light in-
tensity. When we take a photo, light enters the camera and goes through a series of
lenses before it finally hits an optical sensor during a short exposure time. If the cap-
tured image is very near to a projection of the 3D scene to a 2D plan through a pinhole,
we obtain a simple projection model that is called pinhole camera model. This model is
also equivalent to the projection of 3D scenes through a very fine convex lens. The prin-
cipal property of the pinhole camera model involved here is that all light rays passing
through the center of the camera do not change direction, thus all points are projected
on the intersections of the image plane and the rays passing through the camera center
from the 3D points. By convention, we define the z direction as the direction where the
camera is pointed, see Figure 3.2.
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Figure 3.2: Pinhole camera illustration. A 3D point X observed in world coordinate
has coordinate Xc in camera coordinate; it is projected to x̃ on the focal plane by a per-
spective projection of the camera center. The rotation matrix and the translation vector
between the camera orientation and position C and the world coordinate of origin O
are called the camera extrinsic parameters. The focal plane is usually situated behind
the camera center C at z =− f ; however, it is equivalent and simpler to consider a focal
plane in front of the center.

Image coordinate and Camera coordinate

We want to establish a relation between the projection of a 3D point on the focal plane
and its pixel position captured in the image. Supposing a 3D point observed in camera
coordinate Xc = (Xc,Yc,Zc) is projected on a 2D point xc = (Xc f

Zc
, Yc f

Zc
) of the focal plane,

with an associated homogeneous form x̃c = (Xc f
Zc

, Y v f
Zc

, f ), and this point is captured in an
image at position (u,v). We associate an homogeneous form for this position x̃ = (u,v,1)
in image. The point (0,0, f ), origin of the plane z = f is not necessarily the origin of the
image, we note its position in the image as (x0,y0) in terms of pixel dimensions and call
it the principal point, see Figure 3.3. For a unit distance in the world coordinate frame,
we note the number of pixels in x and y directions as mx and my. The relation between
x̃c and x̃ is thus expressed by (3.3):

x̃ =

u
v
1

∼Kx̃c, where K =

αx s x0
0 αy y0
0 0 1


with αx = mx f and αy = my f

(3.3)

The matrix K is called the camera calibration matrix, mx and my are usually close
but not necessarily equal. s is the shearing parameter. The matrix K is also called the
intrinsic parameters of a camera. Here the common defect known as image distortion
is not taken into account.
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c=(x0 , y0)

ycam

Image

v

u

xcam

Figure 3.3: Image coordinate and camera coordinate, c is the principal point. By con-
vention, the origin of the image is on the top left corner with v direction pointing down.

Intrinsic and extrinsic parameters of a pinhole camera

Finally, we can put the world coordinates, the camera coordinates and the image coor-
dinates together in an equation and write:

x̃∼Kx̃c ∼KXc = K
[
R t

][X
1

]
. (3.4)

The matrix P = K
[
R t

]
is called the camera projection matrix, with K the internal pa-

rameters describing camera intrinsic properties, and
[
R t

]
the external parameters de-

scribing camera orientation and position.

3.5 Two-view camera geometry

This section presents the relationship between observations from different cameras of a
common 3D point X. We discuss only the two-view case, as it is similar for the general
N-view case. In this section we suppose there is a 3D point X in world coordinates, and
there are two cameras located at position C and C′ with rotation R and R′, and intrinsic
calibration matrix K and K′. For convenience reason, we set R=1 and C= 0. According
to the previous section, we have:

x̃∼Kx̃c and x̃c ∼
[
R t

][X
1

]
,

x̃′ ∼K′x̃′c and x̃′c ∼
[
R′ t ′

][X
1

]
.

Epipolar geometry

The epipolar geometry describes basically the relationship linking x̃c and x̃′c between
two cameras. We know that C, C′ and X define a plane noted as πp = (CXC′). x̃c and
x̃′c lay on πp as

−→
CX and

−−→
C′X pass through them, which means x̃c (respectively x̃′c) must

be on the intersection of image plane π f (respectively π′f ) and πp. By consequence,
knowing the camera positions and x̃c without knowing X, x̃′c must lay on the line l′e
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Figure 3.4: Illustration of epipolar geometry: C and C′ are camera centers. For a 3D
point X, we observe point x̃c on the focal plane of the left camera, and x̃′c on the right
camera. The epipolar geometry expresses the following constraint: knowing x̃c, point x̃′c
lays on the intersection line l′e of plane (CXC′) and the focal plane π′f . l′e is the epipolar

line for x̃′c. Different positions on l′e correspond to different 3D points on the ray
−−→
Cx̃c.

e′ is the perspective projection of C on π′f , all epipolar lines l′e pass through e′, and
vise-versa for e.

defined by C, x̃c and C′ as described on Figure 3.4 called the epipolar line. However,
there is no way to determine the exact location of X or x̃′c, as different positions of x̃′c on
the epipolar line correspond to 3D points at different distances to the camera center C
on the ray

−−→
Cx̃c.

Essential matrix

More formally, we can write this constraint as:

(X−C′)T [(C′−C)]×(X−C) = 0 (3.5)

where [v]× denotes the matrix of the cross-product with vector v on the left.
We have supposed that R = 1 and C = 0, thus Xc = X. Besides, we apply (3.1), then

C′−C =−R′−1t. Using the right part of (3.4) and R′−1 = R′T , we get X′c = R′(X−C′), i.e.,
X′Tc R′ = (X−C′)T . Finally, we can simplify (3.5) to:

X′Tc R′[R′T t′]×Xc = 0 ⇔ x̃′Tc R′[R′T t′]×x̃c = 0

or:

x̃′Tc Ex̃c = 0 (3.6)

with E = R′[R′T t′]×

The term R′[R′T t′]× is defined as the essential matrix E of the second camera to the
first one according to [34]. It is not unique for a given pair of cameras, since cE with
c ∈ R also encodes the same constraints as (3.6). The essential matrix has 5 degrees of
freedom, namely 3 angles for the rotation and 2 for the translation direction.
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Fundamental matrix

Equation (3.6) can be further transformed to the following:

x̃′T K′−T R′[R′T t′]×K−1x̃ = 0,

or

x̃′T Fx̃ = 0 (3.7)

F = K′−T EK−1 = K′−T R′[R′T t′]×K−1.

Here F is called the fundamental matrix of the second camera to the first one. The main
reason of using the fundamental matrix rather than the essential matrix is that it estab-
lishes a relationship between different observations in image positions, which is more
straightforward. For instance, we observe x̃ in the image, but to calculate x̃c, we also
need to know K which is not always available. The difficulty of dealing with F comes
from its 7 degrees of freedom, since detF = 0 and the scale of F is insignificant.

We have formulated the epipolar constraint using either the fundamental or the
essential matrix. As explained before, it is not possible to determine the exact location
of x̃′ or x̃′c on the epipolar line without more information about X.

Homography transformation

One pertinent extra information could be that X lays on a plane πh = {n,d} of equation
nT X+ d = 0, which is a common case for planar scenes, see Figure 3.5. We suppose πh
doesn’t pass through C. Since R = 1 and t = 0, we have x̃c ∼Xc = X, supposing λx̃c = X
we have λnT x̃c + d = 0, which leads to λ = −d/(nT x̃c). So we have X = −dx̃c/(nT x̃c).
Now, according to Equation (3.4) for the second camera, the extra constraint can be
expressed as following:

x̃′c ∼ X′c = R′λx̃c + t′,

which leads to
x̃′c ∼ R′x̃c + t/λ = (R′− tnT/d)x̃c.

We rewrite the equation using x̃ and x̃′, and finally get:

x̃′ ∼K′(R′− tnT/d)K−1x̃. (3.8)

Here, H = K′(R′− tnT/d)K−1 is called a homography matrix, and the transformation of
a planar scene between two viewpoints is defined as a homography transformation. The
homography matrix has 8 degrees of freedom, for scaling is insignificant.

Conclusion

We have established relationships for observations of a same 3D point from two differ-
ent view points in the general case and in the particular case of a homography trans-
formation case. Knowing the essential matrix, or the fundamental/homograph matrix
with intrinsic parameters, we can recover camera positions, which is not available in
general case. To solve this inverse problem, we need 3D points captured from differ-
ent images, or more exactly, several observations (x,x′) of the same 3D points. This
is the point correspondence problem. The next section explains techniques to establish
correspondences, especially for points.
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Figure 3.5: Illustration of homography transformation.

3.6 Feature detection and description

As explained before, we will need to retrieve observations of a same point in differ-
ent images. This raises several issues. First, given an observation in one image, the
question is how to efficiently and robustly find in the other images the corresponding
observation. Second, how to localize as accurately as possible different observations of
a same object? Even with the best techniques, a digital image is produced by a grid of
optical sensors and thus only a discrete sampling of the real world’s projection, which
causes imprecision of location.

To overcome these difficulties, practitioners rely on feature matching techniques,
which form a fundamental research area in computer vision. In images, features are
specific structures that are more or less stable from different view points. They can be
points, edges or any other object satisfying certain stability properties.

To solve the inverse problem of camera position recovery, people first detect features
in images, then describe each feature with either geometric or photometric information
over an appropriate zone around the detected feature, and finally try to establish the
correct correspondences between features. This pipeline involves three important top-
ics as feature detection, feature description, and feature matching. In this section and
in the following one, we will give an overview of these topics.

• Feature detection: Extracting specific structures from images.

• Feature description: Assigning a more or less view-point invariant signature to
each feature, so that observations of the same object in the other images have a
similar signature, and different features have different signatures.

• Feature matching: Assigning correspondences to features from different images
using various methods, based on feature descriptor comparison, and possibly,
geometric and/or photometric consistency.
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3.6.1 Feature detection

It is beyond hope to try to find correspondences for every point in an image directly,
as some textureless positions in the images are hard to be correctly located in the other
images. In stereo vision, people look for specific features in the images, and work only
with these detected features. There are many criteria to evaluate the performance of
features detection.

• Location accuracy: Features should be distinctive with respect to their neighbor-
hood to be accurately located.

• Robustness/repeatability: Features should be robust under moderate view point
changes. Precisely, since photos could be taken from any position (rotation and
translation in space) and distance, features should still be detected under transla-
tion, orientation and scale changes. Some more advanced features detectors are
designed to be invariant under an affine transformation.

• Scale and orientation: Features do not necessarily have a specific size nor ori-
entation. However, the feature descriptor needs to choose an area to produce a
signature, and knowing an orientation largely reduces the description space. In
order to always describe the feature based on a similar area in different images,
feature detection is usually coupled with a detection scale and orientation.

• Density and distribution: A good feature detector should detect a sufficient
number of features. Ideally, detected features should also be evenly distributed
in the whole image as opposed to being concentrated in a small area. Detectors
should also avoid the overlap of similar features (with similar coordinate, orien-
tation and scale) to avoid the ambiguity in feature description.

Some aspects restrain others, such as increasing accuracy and robustness may re-
duce feature numbers. There are several categories of features known in computer
vision, such as corners, segments and regions. We will focus on features describing
corners and regions as they are quite similar in presentation and application.

Image I Image I′

Figure 3.6: Feature detection: specific structures of images are detected, along with a
scale (circle radius length) and an orientation (displayed radius).

Corners and regions

Corners were used relatively early as features. The first corner features that have been
largely used were Harris corners [33] in 1988, which are invariant to orientation and do
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not take scale into account. The work of Lindeberg [46] analyzed the rescaling effect on
images and characterized the properties of scale-invariant features. Then, the Harris-
Laplace detector [56] extended the Harris detector with image scale exploration. The
image scale exploration has also been applied to Hessian-affine region detectors [55]
and led to the famous SIFT detector, defined by D.G. Lowe [50] in 1999. SIFT uses an
image pyramid to present image scales and the differences of Gaussian-convolved im-
ages to efficiently compute scale invariant blob-like features. It has been further refined
by Brown and Lowe [12] to achieve sub-pixel precision. The work of Morel and Yu [59]
in 2009 introduces various synthetic images with different view points to increase ro-
bustness against perspective transformation. The KAZE feature by Alcantarilla et al.
[4] in 2012 introduced non-linear image scale space to increase the robustness.

Matas et al. [52] have developed the MSER feature detector, which detects con-
trasted regions in the images. Later work by Forssen and Lowe [28] also incorporated
the scale exploration.

Most of the above features have the problem of a computational burden. Thus peo-
ple have also looked at the speed in detection. SURF [74] uses integral images to effi-
ciently (in memory and speed) interpret images of different scales. FAST [69] applies a
learning approach to detect corner features.

Comparison of feature categories

Usually, corner detectors are more accurate in localization than region detectors; how-
ever, corners often lay on the border of objects and are less reliable in scale, making
their surroundings unstable under view-point change. Thus it adds extra difficulties to
create reliable signature for corners. Blob-like feature detectors discover stable regions
under view-point change with a reliable scale, and for the reason explained before, it
is easier to describe these features. In our experiments, MSER detects much fewer fea-
tures than blob-like features.

3.6.2 Feature description

Once features are detected, we want to locate observations from different images of
a same object and link them together. For this, detected features are assigned with
a signature called a descriptor. A descriptor efficiently characterizes the information
of an area around the feature, it is usually a vector of numbers. A good descriptor
should produces similar signatures for different observations of a same point X and
different-enough signatures for different points (cf. Figure 3.7). Besides, a descriptor
should deal with several challenging situations for realistic images, and be robust to
these situations:

• Invariant to light conditions: as photos are taken at different times, the light con-
ditions may be different, including shading.

• Invariant to translation, rotation and scale: as photos are taken from different
positions, features from different images of a same object are translated, rotated
and re-scaled. (More complex transformations may occur.)

Besides, descriptors must deal with a dilemma between distinctiveness and repeata-
bility. Signatures need to be distinctive enough to differentiate from each others and
should be repeated from different images under different challenging situation. Dis-
tinctive descriptors tend to be less repeatable and vise-versa.
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Figure 3.7: Feature description: a signature characterizing a feature neighborhood is
computed for every detected feature.

The SIFT descriptor by Lowe [50] in 1999 has been widely used for its performance
facing these criteria. The SIFT descriptor, a 128 float-size vector, consists of 16 his-
tograms of gradients discretized into 8 bins. It encodes a form of spatial information
around the feature. The gradients are produced at the detected image scale. The use
of gradients is more robust than the direct use of image intensity against light changes.
With the help of feature orientation, the 16 histograms characterize the area around the
feature and the use of histograms allows small shift of gradients due to perspective
transformation. This descriptor has been applied to various detectors such as MSER,
Harris-Laplace and Hessian-affine features... The work by Mikolajczyk and Schmid [53]
shows that the SIFT descriptor has good performance under various situations.

The SIFT descriptor is a vector of length 128 for every feature, while there could be
thousands of features in one image. This limits the applications for a large quantity of
images. To reduce the memory consumed by SIFT, various approaches have been pro-
posed. In matching learning, discrete SIFT features are used in the bag of words model;
some also reduce descriptor size. Alternatively, Calonder et al. [14] calculate a binary
descriptor based on intensity comparison between samples, and use a learning method
to train a more performing descriptor with much smaller memory requirements.

A feature descriptor characterizes the local information around features by a signa-
ture, which is used to establish feature correspondences. Due to limited local informa-
tion and challenging changing situations, pairing features with most similar descriptors
is not sufficient.
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3.7 Feature matching

Features correspondences (cf. Figure 3.8), also called matches, are difficult to establish
but are very important for SfM. Here we focus on the two-view case. We suppose we
have images I and I′ with extracted features {xi, i ∈ {1, . . . ,n}} and {x′i′ , i′ ∈ {1, . . . ,n′}}.
We note descriptors for features as {desc(xi)} and {desc(x′i′)}. It is much more efficient
to match only features instead of matching every pixel, but there still exists n×n′ pos-
sibilities. In order to produce reliable correspondences, several strategies at local and
global scales can be applied.

Image I Image I′
x1

x3x2

x′1
x′3

x′2

x4

x′4

Figure 3.8: Feature matching.

3.7.1 Local descriptor matching

Locally, we can pair features according to the similarity of signatures. In order to pro-
duce correct matches, various strategies can be applied for different purposes.

First nearest neighbor (FNN)

The most basic approach is to match with the first nearest neighbor (FNN) in the signa-
ture space. In other words, for each feature xi, we look for x′i′ satisfying

x′i′ = argmin
x′j′

d
(
desc(xi),desc(x′j′)

)
where desc(x) is the signature of x and d (s,s′) is the distance between signatures s and
s′.

Note that this approach is not symmetric. Thus if x′i′ is the FNN for xi, conversely xi

may not be the FNN of x′i′ .

Symmetric matching

The next approach adds the symmetric property to FNN. A pair of features (xi,x′i′)
construct a match if and only if they are FNN of each other.

x′i′ = argmin
x′j′

d
(
desc(xi),desc(x′j′)

)
xi = argmin

x j

d
(
desc(x j),desc(x′i′)

)
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Lowe ratio

In natural scenes, and even more so in urban scenes, it is very common to have repet-
itive features, which creates ambiguity as descriptors of different features can be very
similar. To partly get around ambiguous choices, Lowe [50] introduced a threshold
ratio. Given xi, let x′i′ be its FNN and x′j′ be its second nearest neighbor. The Lowe ratio
is defined as:

ratio(xi) =
d
(

desc(xi),desc(x′j′)
)

d
(
desc(xi),desc(x′i′)

) .
To reduce the sensitivity to repetitive patterns, only features with a Lowe ratio smaller
than a threshold (typically 60%, or up to 80% to have more matches) are considered as
matches.

Upper bound criterion

An upper bound value for descriptor differences can also be used: only matches with
dissimilarity smaller than this upper bound value will be considered.

Fast approximate nearest neighbors

The FNN approach requires a comparisons with every possible candidate, which means
n×n′ descriptor comparisons, which is computationally burdensome. Muja and Lowe
[64] apply a kD-tree structure to efficiently identify approximate nearest neighbors. The
partition on binary tree decreases the number of comparisons at the cost of matching
accuracy.

3.7.2 Global matching strategy

Matches obtained from local methods often contain numerous false correspondences
(mismatches), due to the limited use of local information only. In fact, too strict criteria
would lead to too few selected matches (still with mismatches), and too loose criteria
includes a lot of mismatches, see Figure 3.9. In challenging conditions, a local matching
strategy itself cannot produce satisfying matches, a global matching strategy is thus
needed. Still it is possible to apply a loose local matching strategy in order to accept
more correct correspondences, and leave the task of remove mismatches to a global
matching strategy.

Being aware of the limitation of local matching strategies, researchers have looked
for global constraints that may help improving the correspondences. Typically, the
question addressed is: given an initial group of matches produced by local matching,
how to remove as many false matches to outliers as possible while keeping as many
correct ones in inliers as possible? Two main approaches have been developed to solve
this problem. If the scene has a rigid structure, then the epipolar constraint can be
applied. Thus one solution is to try to fit 3D camera position hypotheses to the scene
with epipolar constraint (or homography constraint in planar situation).

If there is no obvious rigid structure, people try to consider the constraints between
matches, which leads to a graph matching problem. Though graph matching methods
are more complex and have a reduced usage compared to model fitting in the case of
SfM, these two approaches can compensate their defects and have better results when
combined.
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Figure 3.9: Result of local SIFT matching: The symmetric first nearest neighbor (FNN)
strategy is applied in each case. Left: Lowe ratio=0.6, middle: Lowe ratio=0.8, right:
Lowe ratio=0.98. Due to local matching and descriptor performance, applying a too
strict threshold ratio removes many correct matches, applying a too loose strategy leads
to many mismatches. In any case, it is difficult to get rid of all mismatches while keep-
ing a sufficient number of correct matches.

3.7.3 Model fitting methods—the RANSAC family

If there is a rigid structure between both images, a possibility to remove false matches
consists in trying to fit a camera position hypothesis to the scene; if the hypothesis is
correct, then correct matches should satisfy the constraint. However, matches selected
by local matching are contaminated by mismatches; in order to provide a good hypoth-
esis, we will need uncontaminated match samples.

One of the first widely used algorithms to solve this chicken-and-egg dilemma is
the RANdom SAmple Consensus algorithm, abbreviated RANSAC, by Fischler and
Bolles [27]. Given a group of contaminated data samples, where correct samples satisfy
a geometric model constraint, and false samples are randomly distributed in space, the
RANSAC method randomly retrieves a small set of samples from the data, and esti-
mates a hypothesis of the model. If all samples in this set are correct, the hypothesis
should be close enough to the solution and thus many other correct samples should
also support this hypothesis (with an error tolerance δ). By iteratively renewing sets of
samples a large number of times, RANSAC probabilistically finishes by getting a close-
enough hypothesis, as well as the samples supporting this hypothesis. Example of line
fitting with contaminated data are shown in Figure 3.10.

The error tolerance threshold and the number of iterations are two important pa-
rameters for RANSAC methods. The error tolerance threshold should depend on the
variance of inliers imprecision; a too small value leads to fewer inliers and produces an
unstable/biased result; a too big value accepts many mismatches thus degrades the fi-
nal results. The probability P (level of confidence) to return a right hypothesis depends
on the number of iterations K, the number n of samples to generate an hypothesis, and
the ratio ρ of inliers in the contaminated data. Since RANSAC is a random process,
the more iterations we perform, the better chance it has of returning a good result. The
relation between P, K, n and ρ can be expressed as:

1−P = (1−ρ
n)K .

In this simple setting, the required number of iterations w.r.t. to an expected confi-
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Figure 3.10: RANSAC method for line fitting: Inliers are in red, outliers are in black.
Two hypotheses have been generated based on points in green. Left: the hypothesis
based on two inliers is close enough to the right solution, and thus has many supporting
points in the tolerance range. Right: the hypothesis generated by contaminated data
has fewer supporting point in the tolerance range.

dence P is thus:

K =
log(1−P)
log(1−ρn)

(3.9)

P is usually a number close to 1 (not equal) and n is fixed by the nature of the ge-
ometric model required to generate an hypothesis. Only δ and ρ require extra knowl-
edge about the data samples, although some RANSAC variants try to estimate them.
The basic RANSAC algorithm is depicted in Figure 3.11.

Application to fundamental matrix estimation

We leave the model hypothesis refinement step to Section 3.8. RANSAC has been
widely used in stereo vision for Structure from Motion. Data samples are input matches
mi = (xi,x′i), the hypothesis can be a fundamental matrix, an essential matrix or a ho-
mography matrix. (Here feature x′i′ matching features xi are re-indexed as x′i to simplify
notations.) We give details here for the fundamental matrix estimation as it is the most
common case in SfM. First, a hypothesis of the fundamental matrix is represented in
vector form as:

H =



f1
f2
.
.
.
f9

 , where F =

 f1 f2 f3ζ

f4 f5 f6ζ

f7ζ f8ζ f9ζ2

 , (3.10)

with ζ a conditioning parameter. (Note that H represents here a hypothesis, not a ho-
mography.) If the match mi satisfies the epopolar constraint defined by F, then we have

x̃′Ti Fx̃i = 0.

with x̃i =

 ui

vi

1

 and x̃′i =

 u′i
v′i
1

; we can expand this to the scalar equation

f1u′iui + f2u′ivi + f3u′iζ+ f4v′iui + f5v′ivi + f6v′iζ+ f7uiζ+ f8viζ+ f9ζ
2 = 0. (3.11)
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Draw n samples, generate 
hypothesis H,

In = { m∈M | H(m)< δ }
If |In | > |In* |, 
then In* = In, H*=H

RANSAC

If the number of
iterations< Kmax

M = (mi ) 1≤ i ≤ n: Data sample 
Kmax: iteration number
δ : error tolerance

H*: Best hypothesis
In* : supporting samples 

Initialization: In* = {}

NoYes

Figure 3.11: Basic RANSAC algorithm. Note that H represents here a hypothesis, not a
homography. H(m) represent the fitting error of the match m with H.

We note the vector form of match mi as:

wT
i =

[
u′iui u′ivi u′iζ v′iui v′ivi v′iζ uiζ viζ ζ2

]
(3.12)

As the fundamental matrix is non-null and invariant to re-scaling, we constrain the
equation by HT H = 1.

Either 7 or 8 random matches are used to generate a hypothesis H according to
different methods for solving the equation. For example, for the 7-point algorithm:

wT
i1

wT
i2
...

wT
i7

H =


0
0
...
0

 where (i1, i2 . . . i7) are random indices. (3.13)

(This leaves one degree of freedom in H, which can be solved using the contraint detF =
0.) If a match mi supports the hypothesis H, then we have:

wT
i H ≤ δ. (3.14)

Variants

There exists a very rich family of RANSAC variants aiming at different purposes. We
just list a few examples here. More details can be found in [19, 67].

• Fast convergence: Without additional information, the retrieval of small n data is
uniform among all input data, thus every generated hypothesis is independent
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from the others. Several methods have been proposed to accelerate the genera-
tion of a correct hypothesis. Moisan and Stival [57] propose to retrieve samples
from supporting points of the last valid hypothesis, which quickly leads to a cor-
rect result. Chum and Matas propose the Prosac method [52], which ranks data
samples according to a confidence function, and generates hypotheses with most
confident samples as a priority. The confidence function determines the gain in
convergence. Parameters as the descriptor differences can be used as the confi-
dence function.

• Robustness: There are many variants to increase the robustness of RANSAC meth-
ods. MLESAC, by Torr et Zisserman [77], introduces a probabilistic measure for
hypothesis quality supposing the mismatch distribution is uniform and the cor-
rect matches are Gaussian distributed. ORSA, by Moisan and Stival [57], applies
an ”a contrario” approach to the measure of hypothesis quality, supposing that
feature distribution in images is uniform. This method automatically selects ρ

during iterations.

• Accuracy: LO-RANSAC by Chum et al. [21] proposes to refine the generated hy-
pothesis during iterations, which is also the case for ORSA method.

Limitation of RANSAC methods

There are two major limitations for RANSAC-like methods. The first one is the number
of iterations. Since the RANSAC iteration number depends on the ratio of inliers ρ,
the required iteration number K increases dramatically when ρ drops below 50%. The
second limitation is related to the epipolar geometry. As mentioned before, knowing
the camera position and a point x in image I, any point on the corresponding epipolar
line in image I′ can satisfy the constraint. Thus, if H∗ is a correct hypothesis and x′i′ is a
false match of xi on the epipolar line, m = (xi,x′i′) still satisfies the condition H∗(mi)< δ.
RANSAC-like methods are unable to remove this type of outliers. In Chapter 4, we will
address this problem with our K-VLD method.

3.7.4 Graph matching methods

Graph matching methods are other tools to generate feature correspondences, which
globally optimize a match consistency. They can be used even with non rigid scenes.
The idea is to construct a graph for each image where vertices are features and edges are
pairwise relations between features. Graph matching methods try to establish a vertex
correspondence between two graphs, satisfying matching constraints or optimizing a
global score. The feature descriptor similarity is expressed via vertex similarity, and
higher order constraints are represented via hyper-edges. More details can be found
in the review [22]. For graph matching methods, the nature of constraints between
features has a direct impact on the result. However, this issue has little been addressed.

Pairwise constraints

Second-order graph matching methods, such as [18, 44], use point distances. Alexander
et al. [9] combine the distance with the orientation information. Albarelli et al. [3] use
both feature orientation and scale to predict the projection of neighbor features, which
is a more elaborate and fruitful constraint.
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Higher order constraints

Some methods look for higher order constraints (involving more than two vertices)
to gain accuracy and robustness to noise. A usual approach is to express the triangle
similarity as a 3rd-order constraint [43, 68, 16]. A 4th-order constraint can be used to
model a local affine transformation [24]. Even higher order constraints can express
projective-invariant potentials [24].

Limitation of graph matching methods

As far as we know, most practical constraints are purely based on geometric relations,
which are brittle under perspective transformation. It supposes that the structure in the
two images remains rigid. We believe that a combination with photometric information
can boost the performance of any graph matching methods, to the point that a simple
2nd-order matching method could yield very good results.

For high-order graph matching, the running time and memory consumption are a
major issue, especially for large datasets (images with hundreds or thousands of fea-
tures): the complexity is at least O(Nd) where N is the number of points and d the order.

Besides, graph matching methods are not well suited to remove numerous mis-
matches; the inlier rate is assumed to be relatively large. For instance, Lee et al. [43] only
describe experiments with at least 50% of inliers (and at most 60 points), and Duchenne
et al. [24] show a severe drop of performance when the inlier rate falls below 30% (with
less than 100 points). In Chapter 4, we will discuss our solution to these limitations.

For these reasons, SfM uses essentially a model fitting approach to remove mis-
matches, and graph matching methods are used more as an optional intermediate step.

3.8 Two-view camera calibration

3.8.1 Model refinement

RANSAC-like methods remove mismatches and propose a rough model hypothesis,
which can be used to recover camera positions. A more accurate model can then be
computed based on all the inliers. We keep using here the previous example of fun-
damental matrix. Torr and Murray [78] have presented various existing solutions to
refine the fundamental matrix with accuracy in mind. Kanatani and Sugaya [36] look
for an optimal solution with a more complex form. We only present the naive method
and the iterative re-weighted least square method (IRLS), which presents a close to op-
timal performance with a simple implementation. We suppose a preceding RANSAC
method produces an inlier set {mi|i ∈ {1,2 . . . ,n}}.

Naive method: minimization of an algebraic error

The naive method minimizes the sum of the square algebraic error for inliers

Hopt = argmin
H,‖H‖=1

n

∑
i=1

(wT
i H)2,
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or in matrix form

Hopt = argmin
H,‖H‖=1

HT (W TW )H (3.15)

with W =

wT
1
...

wT
n

 .
Equation (3.15) is a classic optimization problem that admits as solution an eigenvector
of W TW (9×9 matrix) associated to its smallest eigenvalue.

Iterative re-weighted least square method: minimization of the geometric error

The naive method is fast, but produces a sub-optimal estimate of F. It is better to mini-
mize the sum of square distances to epipolar lines (the geometric error), see Figure 3.12.
To do that, we first calculate the epipolar line equations for both images:

li = FT x̃′i =

ai

bi

ci

 and l′i = Fx̃i =

a′i
b′i
c′i

 . (3.16)

Given that the formula of the distance from a point (x0,y0) to a line ax+by+ c = 0 is

|ax0 +by0 + c|√
a2 +b2

,

we compute the square distance from the point x̃i to line li by

d(li, x̃i)
2 =

(x̃T
i li)2

a2
i +b2

i
=

(x̃T
i FT x̃′i)2

a2
i +b2

i
=

HT (wiwT
i )H

a2
i +b2

i
.

Thus for mi, the sum of the square epipolar distances in the two images is

HT (∑
i

c2
i wiwT

i )H, with ci =

√
1

(a2
i +b2

i )
+

1
(a′2i +b′2i )

.

We note

We =

c1wT
1

...
cnwT

n

 . (3.17)

Then Hopt is an eigenvector of W T
e We associated to its smallest eigenvalue. However, the

coefficients ci depend on H. We thus iterate several times the optimization process; at
every iteration, ci are updated with the latest Hopt. Other similar definition for ci have
been proposed. For more details, we refer to Torr and Murray’s work [78].

3.8.2 Essential matrix decomposition

Once the fundamental matrix is refined, it is used to compute the essential matrix. The
SVD decomposition of an essential matrix gives:

E = UΣVT with Σ =

s 0 0
0 s 0
0 0 0

 . (3.18)
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Figure 3.12: At each iteration, the IRLS method tries to approximate the sum of the
square geometric error with the estimated model by re-weighting input samples before
generating the next model.

The camera’s rotation and translation can be expressed as follows:

[t]× =±VGΣVT

R =±UG−1VT .

with G =

0 −1 0
1 0 0
0 0 1

 (3.19)

The sign of the rotation matrix is determined by detR = 1 and only one solution of t will
project features in front of both cameras.

3.8.3 Bundle adjustment

An alternative to determine the camera positions and reconstruct the 3D points is the
bundle adjustment, first introduced by Triggs et al. [79]. It can be applied to the two-
view SfM problem as well as in the N-view case. The idea is to consider as variables the
camera projection matrices {P j| j ∈ {1 . . .nc}} and 3D point positions {Xi|i ∈ {1 . . .np}},
and iteratively refine these variables via a Levenberg-Marquardt process. We note x j

i
the observation of feature Xi by the jth camera, x j

i the projection of Xi to the jth image
so that x j

i ∼ P jXi, and δi, j is defined as:

δi, j =

{
1 if Xi is seen by the jth camera;
0 otherwise.

(3.20)

The minimized function in bundle adjustment is the sum of squared reprojection
errors:

argmin
{P j},{Xi}

np

∑
i=1

nc

∑
j=1

δi, j(x
j
i −x j

i )
2 with x j

i ∼ P jXi. (3.21)

This algorithm requires an initialization that is close enough to the optimum, other-
wise it could return a sub-optimal result.
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3.9 N-view camera calibration

The calibration of the camera positions for multiple images usually goes through the
following steps: first, a two-view camera calibration process is performed for every
possible image pair. If the two-view calibration succeeds, it tries to establish the pair-
wise spatial relationship with the feature correspondences. Second, the matches that
potentially point to a same 3D point are grouped together to form feature tracks and
initial global positions are computed for each image according to some algorithm. Last,
a pose refinement process is performed. For this, their exist two approaches: incremen-
tal or global refinement.

3.9.1 Incremental methods

The incremental approach tries to add images one after another, refining the position
of already-calibrated cameras as new images are added. Bundler [72] is a well-known
method and system following this schema. This approach may suffer from drift errors.

3.9.2 Global methods

The global approach tries to deal with all images at the same time to avoid drift errors
and better deal with image mismatches. The global method proposed by Moulon et
al. [62] shows its advantage in accuracy. It is however more demanding in terms of
computing power and memory. It is thus better suited to a smaller number of images.

As our work does not focus on N-view SfM, a more complete study of N-view
camera calibration is out of the scope of this thesis.
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Chapter 4

Feature correspondence

In the early stage of Structure From Motion, finding reliable correspondences between
sets of features in two images has an important impact on the quality of output re-
construction. Despite extensive work in this domain, difficult but common cases like
repetitive patterns or poor texture are still persistent problems for feature correspon-
dence. In this chapter, we present our contribution in improving the robustness of
feature matching, and its application in various domains, other than structure from
motion.
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4.1 Introduction

Finding reliable correspondences between sets of feature points in two images is a
key step in a number of computer vision problems, e.g., camera calibration and object
recognition. To achieve this task, feature detectors such as SIFT [49], SURF [8], Harris-
affine [54] or MSER [52] identify interest points or areas in images robustly. By design,
the detected points or areas are salient enough to be likely also salient in other views
of the same scene, under different imaging conditions (viewpoint, lighting, orientation,
scale, etc.).

Besides, these points or areas can be individually described based on their scale,
if any, as well as on an abstraction of their photometric neighborhood, e.g., based on
the distribution of local gradients. Such feature descriptors include SIFT [49], SURF [8]
and MSER shape descriptor [28]. Like detectors, these descriptors are designed to be
robust, to some extent, to variations such as noise or change of viewpoint, orientation
or illumination.

Matching detected features in two images based on the similarity of their descriptor
often provides good correspondences . However, it also includes false matches. Elimi-
nating those false matches while preserving true correspondences remains challenging
for images with ambiguities or strong transformations. Ambiguity usually arises from
repetitive patterns (e.g., facade windows) or lack of texture. In this case, the descriptors
are not discriminative enough to safely differentiate feature points. There actually is
a balance to find as repeatable descriptors tend to be less distinctive, and vice versa.
As for strong transformations, they can sometimes be avoided by carefully controlling
imaging conditions. Yet some sharp transformations cannot be avoided, e.g., due to
strong occlusions, when a foreground object obstructs very different background areas.
To get both a high number of correct matches and a low mismatch ratio, just compar-
ing individual feature descriptors is not enough. Global methods are required, such as
RANSAC or graph matching.

4.1.1 Feature matching by RANSAC

For rigid transformations, RANSAC-like methods [27] can accurately separate inliers
from outliers. They randomly sample subsets of correspondences to build a putative
model of the transformation (fundamental/homography matrix) and count the number
of matches that are compatible with the model. The largest consensus set defines what
is to be considered as inliers, other matches being regarded as outliers.

This works well if the inlier rate ρ is high, not if it is low. The reason is that the
number of required sampling iterations is on the order of 1/ρn, where n is the num-
ber of correspondences to draw to define a model, cf. Section 3.7.3. (In general, for the
fundamental matrix, n = 7 or 8 [34].) Better drawing strategies such as MLESAC [77]
or PROSAC [20] can greatly reduce the number of models to sample, but they are
nonetheless not well suited for inlier rates lower than 50%. Only a few methods such as
ORSA [57] can treat an inlier rate of 10%. Yet in any case, all RANSAC-like methods in-
herently suffer from a limitation when estimating the fundamental matrix: they cannot
eliminate mismatches corresponding to points that have matches near their epipolar
line but far from the correct location, which may degrade precision.

4.1.2 Graph matching methods

Graph matching is also a tool to determine feature point correspondences, with a global
consistency criterion. It applies not only to rigid scenes but also to deformable objects.
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The idea is to construct a graph where vertices are feature points and edges are pairwise
relations. Higher-order constraints, involving more than two vertices, can be modeled
as hyperedges. Graph matching methods try to establish a vertex correspondence be-
tween two graphs, satisfying matching constraints or optimizing a global score. Some
can also handle inexact matching, allowing different structures to some extent [22].

For 2nd-order graph matching, many methods use the relative distance between
points as constraint [18, 44], possibly in combination with angles [9]. Feature orien-
tation and scale are used too, e.g., to define an affine transformation predicting the pro-
jection of neighboring points [3]. Some robust pairwise descriptors combine individual
feature descriptors too [30].

A better matching accuracy or robustness to noise can be achieved with higher order
graph matching [43, 68, 16]. A common 3rd-order constraint expresses triangle similar-
ity [43]. 4th-order constraints typically include consistency w.r.t. a local affine transfor-
mation [88, 24]. Graph matchers supporting edges of even higher-order can for instance
also express projective-invariant potentials [24]. However, despite recent advances in
higher-order graph matching, the running time and memory consumption remain an
issue, especially for large datasets (images with hundreds or thousands of features):
the complexity is at least O(Nd) where N is the number of points and d the order of the
constraints. Besides, although some methods explicitly include a treatment of outliers,
e.g., using absorbing nodes [43], the inlier rate is still assumed to be relatively large.
For instance, Lee et al. [43] only describe experiments with at least 50% inliers (and at
most 60 points), and Duchenne et al. [24] show a severe drop of performance when the
inlier rate falls below 30% (with less than 100 points).

Last but not least, without a strong consistency criterion, graph matching methods
follow either the “match until conflict” strategy, i.e., they search the maximum number
of no-conflicting matches, or “match ordering” strategy, i.e., consistent matches have a
higher ranking without a clear and explicit separation of inlier/outlier. Both strategies
may work for small number of matches but are prone to overlook outliers at larger
scales.

4.1.3 Region growing methods

Match propagation is an approach to deal with ambiguous feature correspondences [42,
17, 26, 65]. It propagates matches from seeds to their neighbors according to the local
transformation consistency. The performance of these algorithms depends on the dis-
tinctiveness of pairwise or higher-order constraints. Ok et al. [65] mention that the ge-
ometric pairwise constraints based on a local feature transformation is experimentally
very noisy; this is why they use 4-th order constraints.

4.2 Our contributions in matching

4.2.1 Robust 2nd-order photometric criterion

Feature descriptors provide 1st-order photometric information to estimate correspon-
dence likelihood and identify potential matches. All other information used for match-
ing is generally restricted to geometric information, i.e., relative point location in the
image. This is the case for RANSAC methods and for most existing graph matchers.
Although some authors mention possible extensions of graph matching potentials to
photometric information [24], such uses are scarce and tend to translate into quasi-
dense matching [26]. For instance, experiments in [88, 44, 3, 23, 43, 68, 16] are limited to
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m(xj , x′j′)
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l(xi , xj) l′(x′i′ , x′j′)

Figure 4.1: General idea of 2nd-order photometric criterion: information along oriented
segments (xi,x j) and (x′i′ ,x

′
j′) is unlikely to be similar unless both matches (xi,x′i′) and

(x j,x′j′) are correct.

geometric relations as triangle similarity, arc length, descriptor’s scale and orientation.
Photometric information between features is ignored.

We propose here a novel, simple and efficient, 2nd-order photometric criterion. It
is based on the fact that for points xi,x j in image I and x′i′ ,x

′
j′ in image I′, it is unlikely

to find similar photometric information around lines (xi,x j) and (x′i′ ,x
′
j′) unless both

(xi,x′i′) and (x j,x′j′) are correct matches, see Figure 4.1. Photometric similarity between
lines is stronger when the 2D lines actually lie on a 3D plane which is not occluded, but
some similarity still remains under moderate surface curvature and occlusion.

To express this property, we define a virtual line descriptor (VLD) that captures pho-
tometric information between two points. The distance between two such descriptors
measures the dissimilarity between the corresponding two virtual lines. It can be used
in the 2nd-order term of graph matchers to improve their accuracy.

4.2.2 Light semi-local matching strategy

Thanks to the robustness of our VLD used as 2nd-order photometric criterion, we also
define a semi-local matching strategy based on VLD which is a light version of graph
matching using photometric information. It can be used as a preprocessor to RANSAC
methods to improve the quality of match selection by considerably increasing the inlier
rate before RANSAC. As it can eliminate false matches near epipolar lines, it greatly
improves precision. As the inlier rate is improved, the needed number of iterations in
RANSAC can be considerably reduced.

4.3 Virtual line descriptor (VLD)

As far as we know, when it comes to studying the consistency of a pair of matches,
existing pairwise constraints are mostly based on geometry only. However the pure
geometric constraint lacks distinctiveness. A pair of features (xi,x j) in I is unstable un-
der perspective transformation in image I′ and could have several occurrences (x′i′ ,x

′
j′)

having a high consistency score. The use of pairwise photometric information along
the path (xi,x j) avoids spurious matching and thus is more robust.

The general idea of our descriptor for a virtual line between points xi and x j is to
describe its photometric information by a number of SIFT-like gradient histograms. To
ensure the robustness of this description, we consider a regular covering, with some
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overlap, of an image strip between xi and x j, and use a SIFT-like descriptor to char-
acterize each element of the covering. The global line descriptor is the concatenation
of the descriptors of each covering element. It inherits SIFT descriptor’s robustness to
noise and changes of scale, orientation and illumination.

4.3.1 Geometric consistency

Before describing a line, we actually first check a geometric constraint, extending that
of Albarelli et al. [3].

Given matches mi,i′ = (xi,x′i′) and m j, j′ = (x j,x′j′), and assuming that the local trans-
formation around x′i′ is close to a similarity, we define the point p′j′ in image I′ as the
expected position of x′j′ (cf. Figure 4.2):

p′j′ = x′i′+
s(x′i′)
s(xi)

R(a(x′i′)−a(xi))
−−→xix j, (4.1)

where s(x) is the scale of feature point x, a(x) is the angle of the main orientation at x,
and R(α) is the rotation of angle α. Permuting I and I′ defines a point p j in image I as
the expected position of x j. The transformation error of (x j,x′j′) by (xi,x′i′) is measured
in I based on distances di, j = dist(xi,x j), ti, j = dist(xi,p j), ei, j = dist(x j,p j), and likewise
in I′.

The normalized and symmetrized score of geometric consistency (smaller means
more consistent) for matches mi,i′ and m j, j′ is defined as:

χ(mi,i′ ,m j, j′) = min(ηi,i′, j, j′ ,η j, j′,i,i′) (4.2)

where ηi,i′, j, j′ =
e′i′, j′

min(d′i′, j′ , t
′
i′, j′).

= ηi′,i, j′, j =
ei, j

min(di, j, ti, j)

Matches mi,i′ and m j, j′ are considered as consistent w.r.t. geometry iff χ(mi,i′ ,m j, j′) < χmax.
In all our experiments, we use a threshold value χmax = 0.5. This fast prefiltering step
eliminates many false matches before photometric comparison while preserving most
good matches.

Comparison with other geometric constraints

Our pairwise geometric constraint improves over other existing ones. [88] uses a func-
tion of the difference of distance between (xi,x j) and (x′i′ ,x

′
j′) such as e−|dist(xi,x j)−dist(x′i′ ,x

′
j′ )|,

[44] uses 4.5−
(dist(xi,x j)−dist(x′i′ ,x

′
j′ ))

2

2σ2 for some σ. Albarelli et al. [3] propose in their work a
better constraint as e−λmax(e′i, j,e

′
j,i) (c.f. Figure 4.2 for e′i, j), but it is neither symmetric nor

invariant to scale. Our geometric constraint χ(mi,i′ ,m j, j′) is a better one, with invariance
to scale, and symmetry.

4.3.2 Line covering

For two points xi and x j in image I at distance d one from another, we consider U inter-
point disks (Du) of radius r = d

U+1 centered on points xi +
u

U+1
−−→xix j for u ∈ {1, . . . ,U} (see

Figure 4.3). Each disk is then described at image scale s = max(r/rmin,1) where rmin is
a minimum description radius. In our experiments, we use U = 10 and rmin = 5 pixels,
which provides a good balance between discrimination and repeatability.

In practice, scales can be discretized and precomputed, to avoid rescaling the im-
age for each new pair of points. As for SIFT [49], we construct a pyramid of scaled
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Figure 4.2: Distances used for the computation of the transformation error ηi,i′, j, j′ . It is
understood as the following: according to the transformation from xi to x′i′ , the error
ratio from the projected point p′j′ to x′j′ .

images. In our experiments, a geometric progression with ratio
√

2 proved enough for
repeatability. For any disk radius r in the original image I, we thus use scale s∗ = 2q/2

for q natural integer such that 2q/2 ≤ s < 2(q+1)/2, i.e., q = b2 logs
log2c. In the scaled image,

the disk radius is r∗ = r/s∗ (see Figure 4.4).

4.3.3 Inter-point gradient histogram

The descriptor for disk Du is a single SIFT-like local gradient histogram [49]. (SIFT ac-
tually defines a grid of 4×4 such histograms.) We use V bins (hu,v)v∈{1,...,V} to represent
the distribution: each pixel in the disk votes in the orientation bin corresponding to its
gradient (relatively to the line direction), weighted by the gradient magnitude and by
a Gaussian-weighted circular window with σ = 3

2 r∗ like SIFT. In our experiments, like
SIFT, we use V = 8. The line histograms are then normalized so that ∑

U
u=1 ∑

V
v=1 hu,v = 1.

(Contrary to SIFT, we use the L1-norm rather than the L2-norm for better discrimina-
tion.)

4.3.4 Inter-point orientation

Inter-point orientation is computed as SIFT too, with some adaptation. We construct an
orientation histogram for Du using W bins (Ou,w)w∈{0,...,W−1}. As slightly more variations
can be expected on the line between two points than on the feature point themselves,
we recommend W >V (as in SIFT). In all our experiments we use W = 24 (whereas SIFT
uses 36 bins), which intuitively improves robustnes and empirically seems to preserve
enough discrimination. In addition, we treat opposite directions together and actually
consider the derived histogram (Ôu,w)w∈{0,...,W−1} defined as Ôu,w =Ou,w−Ou,(w+W/2)modW

(i.e, Ôu,w = −Ôu,(w+W/2)modW ). This also happens to preserve enough discrimination
while enhancing robustness. The main orientation w∗u is finally defined as the bin of
the derived histogram with the highest value.

w∗u = argmax
w∈{0,...,W−1}

Ôu,w (4.3)

Note that maxw∈{0,...,W−1} Ôu,w = maxw∈{0,...,W/2−1} |Ôu,w| ≥ 0. The reason why we use
maxw∈{0,...,W−1} Ôu,w instead of maxw∈{0,...,W−1}Ou,w is that, we believe the first one is more
robust, as it has the biggest gap compared to its opposite side, which is more difficult
to be replaced.
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Figure 4.3: Top: disk covering of line (xi,x j). Bottom: 8-bin histogram of gradient
orientation for disk Du, and main orientation w∗u.

r*
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Figure 4.4: For r ≥ rmin, the VLD is computed on the qth image scale on r∗-radius disks,
where rmin ≤ r∗ = r/2q/2 < rmin

√
2.
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We also define normalizing factors γu to weigh each orientation over the whole line:

w∗u = argmax
w∈{0,...,W−1}

Ôu,w γu =
Ôu,w∗u

∑
U
u=1 Ôu,w∗u

≥ 0 (4.4)

Each disk Du is represented by the histogram (hu,v)v∈{1,...,V}, the orientation w∗u and
the normalizing factor γu. The size of the overall line descriptor is thus U (V +2).

4.3.5 Distance between two VLDs

Given lines li, j = (xi,x j) in I and l′i′, j′ = (x′i′ ,x
′
j′) in I′, we now define the distance between

their descriptors. For each inter-point disk Du in I and corresponding inter-point disk
D′u in I′, we compute both the difference of the gradient histograms and the difference
of the main orientations. Orientations w∗u and w′∗u are compared modulo W/2 (most dis-
similar orientation), normalized to 1, and weighted by the average of the orientation
normalizing factors γu and γ′u, resulting in a value in [0,1]. The differences of the gradi-
ent histograms and the main orientations are then linearly combined with a weighting
factor β ∈ [0,1]:

τ(l, l′) = β

U

∑
u=1

V

∑
v=1
|hu,v−h′u,v|+(1−β)

U

∑
u=1

(
γu + γ′u

2
.
min(|w∗u−w′∗u |,W−|w∗u−w′∗u |)

W/2

)
. (4.5)

Experimentally (see Section 4.6), we use β = 0.36, The value of β is coupled with the
value of τmax (section below) to best separate consistent/inconsistent VLDs (cf. Fig-
ure 4.15).

4.3.6 VLD-consistency

The VLD-distance between matches mi,i′=(xi,x′i′) and m j, j′=(x j,x′j′) is the VLD-distance
between the corresponding lines: τ(mi,i′ ,m j, j′) = τ(li, j, li′, j′)∈ [0,1] where li, j = (xi,x j) and
l′i′, j′ = (x′i′ ,x

′
j′). The lower τ, the more similar the virtual lines.

It can be used in the pairwise score of a graph matcher (cf. Section 3.7.4), e.g., with
a contribution of the form exp(−λτ2). Experimentally (see Section 4.6), we use λ = 100.

When a binary choice (consistent or not) is required, matches mi,i′ and m j, j′ are said
VLD-consistent iff their virtual lines satisfy τ(mi,i′ ,m j, j′) ≤ τmax. Experimentally (see
Section 4.6), we use τmax = 0.35. The matches are said gVLD-consistent iff they are
both geometry- and VLD-consistent.

4.3.7 High contrast suppression

VLDs are discriminative when they contain a variety of gradient directions. If the gra-
dient pattern is mostly the same on all VLD disks, then the virtual line is likely not to be
discriminative because its descriptor will not vary if we shift (translate) the line along
its direction. This typically occurs when the virtual line follows a highly contrasted
image edge. Such an example is illustrated in Figure 4.5 where the putative matches
(x′i) i ∈ {1, . . . ,3} in I′ of points (xi) i ∈ {1, . . . ,3} in I are shifted up while staying gVLD-
consistent as a group. We want to detect such a situation to prevent corresponding
virtual lines from being taken into account in matching decisions.

For this reason, we define a line contrast indicator:

κ =
s∗

U d

U

∑
u=1

Ôu,w∗u (4.6)
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x1
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x4

x′1

x′2

x′3

x′4

x2

Image I Image I′

Figure 4.5: Example to illustrate the necessity of high contrast suppression: Four
matches (xi,x′i), i ∈ {1,2,3,4} are detected. Among them, (xi,x′i), i ∈ {1,2,3} are along
an image edge and correspond to points (x′i) that are globally shifted up, only (x4,x′4) is
correct. However, VLDs between (xi,x′i), i ∈ 1 . . .3 in red are gVLD-consistent between
themselves, still we do not want to use them for match validation. Note however that
VLDs outside the edges with (x4,x′4) in green are still discriminative. Thus, we penalize
VLDs along edges, using a form of high contrast suppression.

In equation (4.6), s∗ is the re-scaling factor of the current image scale from which the
VLD is computed. The gradient of a point in the image is computed based on its neigh-
boring pixels; its intensity is inversely proportional to the observed scale, i.e., for a same
region, the gradients appear sharper if the region appears smaller and vice-versa. For
this reason, equation (4.6) contains a normalizing factor s∗/d.

VLDs with contrast κ above given threshold κmax are considered unreliable and
discarded. Experimentally (see Section 4.6), assuming image intensity in the range
0, . . . ,255, we use κmax = 30.

4.4 K-VLD: a K-connected VLD-based matching method

VLD can be directly used as a pairwise constraint in 2nd or higher-order graph matching
methods. Yet, existing graph matching methods do not scale well to large numbers of
matches and, as shown in the experiment section, they may perform poorly when the
foreground creates background occlusions. Besides, some of them are not well suited
for large outlier elimination.

In this section, we introduce K-VLD, a novel matching method that overcomes these
limitations. It is semi-local in the sense that the score of a match depends on its consis-
tency with neighboring matches. The consistency is both geometric and photometric,
using our VLD criterion.

The basic idea is that, given a potential match (xi,x′i′), if there are in the neighbor-
hood of xi and x′i′ at least K other matches (x jk ,x′j′k)k∈{1,...,K} that are gVLD-consistent
with (xi,x′i′), then (xi,x′i′) is likely to be a correct match, see Figure 4.6. The method can
be seen as a simplified 2nd-order graph matcher specialized for image features. It pro-
vides a binary assessment for each match (correct or not) as well as a consistency score
for further filtering.
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Figure 4.6: K-VLD’s idea: Five matches as mi,i = (xi,x′i), i ∈ [1 . . .5] are detected, (x5,x′5)
is a mismatch. We suppose they are all neighbors. (x1,x′1) are likely to be gVLD-
consistent with its neighbors if the neighbors are correct matches, i.e., having several
gVLD-consistent neighbors mi,i, i ∈ [2 . . .4] makes m1,1 very credible as a correct match.

4.4.1 Neighborhoods

Having more than K gVLD-consistent matches makes the considered match very likely
to be a correct match. It is inefficient and unnecessary to check gVLD-consistency
with all other matches. In fact, the more distant the matches (i.e., the longer the vir-
tual lines), the more likely the virtual lines are to differ. It is thus enough in practice
to check K-connected gVLD-consistency only within a neighborhood of the points, to
avoid quadratic complexity. We actually adapt the size of the neighborhoods to the
density ρ of feature points. Neighborhoods are defined as disks centered on xi and x′i′ ,
with respective radius B and B′. Given a set M of potential matches between I and I′,
with minimum inlier rate ρmin, and assuming a more or less uniform distribution, then
the average number of correct matches KB in a B-neighborhood is:

KB =
πB2

area(I)
ρmin |M |. (4.7)

As B should be chosen such that KB ≥K, we get a definition for the minimum radius BK

of the neighborhood from (4.7). Moreover, for stability reason, we exclude neighboring
points x j that are too close to xi, within Bmin pixels. Wrapping up, we say that a match
(x j,x′j′) is a neighbor of (xi,x′i′) iff x j is in the (Bmin,BK)-annulus centered on xi in I, or
x′j′ is in the (Bmin,B′K)-annulus centered on x′i′ in I′. This provides a relation between
the minimum radius B and the minimum number of agreeing neighbors K; one can be
computed from the other one, as follows:

KB =
π(B2−B2

min)

area(I)
ρmin |M | BK =

√
K area(I)

πρmin |M |
+B2

min (4.8)

In case we discover a posteriori that ρ < ρmin, BK has to be expanded (e.g., ρmin =
ρmin/2) and the algorithm has to be rerun (possibly reusing information about already-
found gVLD-consistent match pairs). If we still get ρ < ρmin after 5 reruns (ρmin is 32
times smaller than its original value), we consider there are no more matches and stop
the algorithm. In all our experiments, we set ρmin = 3% and Bmin = 10 pixels. Then, given
a set of matches M ⊂M and a match m ∈M, we define the following neighborhoods:

• NM(m) = {m′ ∈M | m and m′are neighbors}

• NM,geom(m) = {m′ ∈M | m and m′are geometry-consistent neighbors} ⊂ NM(m)

• NM,gvld(m) = {m′ ∈M | m and m′are gVLD-consistent neighbors} ⊂ NM,geom(m)
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Input: images I and I′, detected features in I and I′, and set of potential matches M
Output: selected subset of matches in M
1. Compute pyramid of scaled images for I and I′

2. Set up tables t|M|×|M|, T|M|×1, C|M|×1 and initially mark all matches as inliers
3. Do
4. Set T and C to zero values
5. For every inlier match mi

6. For every inlier match m j, a neighbor of mi

7. If t[mi,m j] is undefined
8. If (mi,m j) are gVLD-consistent
9. then t[mi,m j]← τ(mi,m j) and t[m j,mi]← τ(m j,mi)

10. else t[mi,m j]← discard and t[m j,mi]← discard
11. If t[mi,m j] 6= discard
12. T [mi]← T [mi]+ t[mi,m j]
13. C[mi]←C[mi]+1
14. If C[mi]≥ Nmax then consider next mi (line 5)
15. T [mi]← T [mi]/C[mi] if C[mi] 6= 0

16. Sort inliers by increasing value of C, or increasing T if C-equal
17. (a) For every inlier mi in sort order
18. If C[mi]< K then mark mi as outlier

19. (a’) For every inlier mi and every inlier m j in sort order
20. If m j conflicts with mi, mark as outlier the match with lowest C,

. or lowest T if C-equal

21. (b) For every inlier mi in sort order
22. Compute the proportion ω of geometric-consistent neighbors of mi

23. Compute the average transformation error χ̄ amongst neighbors of mi

24. Mark mi as outlier if ω < ωmin or χ̄ > χ̄max
25. while some matches have been marked as outliers (in this iteration)
26. If ρ < ρmin go back to line 3 with ρmin = ρmin/2
27. Return matches marked as inliers

Table 4.1: K-VLD filtering algorithm.

4.4.2 Problem statement

Experimentally, requiring that good matches have at least K gVLD-consistent neighbors
eliminates many mismatches, but some may still remain, especially with ambiguous
matches. We found that adding an extra constraint on the proportion ω of geometry-
consistent neighbors and on the average score χ̄ of geometric consistency for neighbors
helped in removing many of these remaining mismatches. Formally, given a set of
potential matches M , we look for a subset M ⊂M such that, for all m ∈M,

|NM,gvld(m)| ≥ K and
(
|NM,geom(m)|
|NM(m)|

≥ ωmin or
∑m′∈NM(m) χ(m,m′)

|NM(m)|
≤ χ̄max

)
. (4.9)

We are actually interested in a set M∗ with maximum cardinality satisfying this condi-
tion. The absence of ambiguous matches in M can also be imposed (see below).
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4.4.3 Algorithm

The detailed K-VLD pseudo-code is given in Table 4.1. For efficiency reasons, we ac-
tually only look for sets M of large cardinality satisfying equation (4.9). Our algorithm
starts with M = M and repeatedly performs the following operations:

(a) remove all m ∈M such that NM,gvld(m)< K

(b) remove all m ∈M such that
|NM,geom(m)|
|NM(m)|

< ωmin and
∑m′∈NM(m) χ(m,m′)

|NM(m)|
> χ̄max

until no match is removed. Upon termination, which always occurs as |M| strictly de-
creases (after around 3 iterations, at most 5 in practice), either M = /0 or M satisfies
condition (4.9). In practice, this yields a large set of matches for M, almost never empty.
gVLD-consistency is enforced first because it is the strongest condition. In all our ex-
periments, we use K = 3, ωmin = 30% and χ̄max = 1.2.

Dealing with ambiguity

Ambiguous matches, i.e., matches that share a point in one images or the other, cor-
respond to a special kind of mismatches. Treating them as ordinary matches when
eliminating outliers does not guarantee an ambiguity-free set of final matches. For
this reason, a heuristic elimination is often performed by matching methods to keep
at most one match per point, generally by keeping only the one with the best score.
But sometimes there is no easy choice, e.g., with ambiguous points on an epipolar line.
In that case we can use VLD information to improve disambiguation. For this, we
sort the matches in M so that matches m with the highest number of gVLD-consistent
neighbors are preferred or, if equal, the highest average of VLD score among these
gVLD-consistent neighbors, i.e., T (m) = ∑m′∈NM,gvld

τ(m,m′)/|NM,gvld(m)|. More formally,
matches are sorted (less likely matches first) according to the order relation: m≺M m′ iff

|NM,gvld(m)|< |NM,gvld(m′)| or
(
|NM,gvld(m)|= |NM,gvld(m′)| and T (m)> T (m′)

)
(4.10)

Match disambiguation can then be addressed with the following step added to the
algorithm:

(a’) for each m ∈M in ≺M-sort order, remove m if ∃m′ ∈M\{m} s.t. m′ conflicts with m

If two matches have same values for |NM,gvld| and T (ie. m=M m′), we keep both of them.
There is a chance to make a decision in later iterations where more false matches are
removed. The sorting can also be used in step (a) and (b) of the algorithm for picking
m ∈M, updating M as matches are removed. However, sorting in (a) and (b) does lead
to much better results experimentally.

4.4.4 Optimizations and heuristics

Given a match m, we need to count the number of gVLD-consistent neighbors m′, which
requires computing τ(m,m′). To avoid recomputation, we keep theses values in a cache
(t|M|×|M| in Table 4.1). Besides, to speed up the algorithm, we do not have to enumerate
all gVLD-consistent neighbors. It is enough to stop after Nmax�K neighbors are found,
as m is then extremely unlikely to be later removed (e.g., Nmax = 20 for K = 3).
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4.5 Evaluation

We experimented with existing matching methods, some of which were also augmented
with VLD, and we compared with K-VLD. We evaluated matching accuracy in various
imaging conditions. We also tested K-VLD as a prefilter to RANSAC-based calibration.

All extracted features are SIFT keypoints, as implemented in VLFeat [80]. We se-
lected a range of state-of-art methods presenting the rich variety of graph matching ap-
proaches. We use the authors’ code for probabilistic hypergraph matching (HGM) [88],
hypergraph matching via reweighted random walks (RRWHM) [43] and tensor match-
ing (TM) [24], and our own implementation of spectral matching (SM) [44], which com-
putes the same matching results (but with different speed) as integer projected fixed
point (IPFP) [45], and game-theoretic matching (GTM) [3]. Besides, VLD was incorpo-
rated to SM (2nd-order method) and HGM. For calibration experiments, we used the
IPOL implementation of ORSA [58, 57], which is a parameterless, state-of-art RANSAC
variant.

4.5.1 Changing imaging conditions

We use Mikolajczyk et al.’s dataset, that evaluates feature detectors and descriptors
under different image transformations, including change of viewpoint and illumina-
tion, zoom, blur and rotation [53]. It is composed of 8 sequences of 6 images with
increasing variation. For each sequence, we successively match image 1 with all other
images in the sequence. We extract the best 400 SIFT matches (i.e., with lowest descrip-
tor distance) as candidates for each image pair. 400 features was about the limit that
methods TM and RRWHM could handle on a 24 GB computer, running in 200 s; K-VLD
runs in 1s, with a performance quasi linear in |M |. For each method, we extract the N
best matches according to the method, where N is the number of ground truth inliers.
Matches with less than 5-pixel transformation error are considered as inliers, and ac-
curacy is the proportion of correct matches among the N returned matches [43]. This
dataset features image transformations that can be described by a single homography.
As lines are preserved, VLDs are expected to be relatively stable. In fact, results in
Figures 4.7 and 4.8 show that K-VLD often outperforms other methods. Besides, VLD
significantly improves existing methods, especially for scenes with viewpoint or scale
changes.

4.5.2 Strong occlusions

To evaluate the case of occlusions, we use the Dětenice fountain dataset [13], from
which we took a sequence of 43 images. The occluding foreground (a statue) creates
strong variations in the background. A ground truth calibration is first constructed by
selecting 50 correct matches by hand. As above, we extract the best 400 SIFT matches
for each pair of successive images. We then measure the actual inlier rate and the accu-
racy. Results are shown in Figure 4.9, where strong local variations have been smoothed
and where the 42 measures have been re-sampled in plotted graphs for readability.

K-VLD creates clusters of consistent matches despite occlusions, outperforming
other methods most of the time. VLD improves SM moderately (5–10% more inliers)
and HGM only slightly, as it already has an excellent performance.
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Figure 4.7: Matching accuracy measured on Mikolajczyk et al.’s [53] dataset (part 1)
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Figure 4.8: Matching accuracy measured on Mikolajczyk et al.’s [53] dataset (part 2)
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Figure 4.9: Dětenice fountain. Top: K-VLD clusters on one image pair (green lines).
Bottom: & average accuracy on all pairs. K-VLD out performs other methods (though
the HGM method also achieves good results with or without VLD pairwise constraints
in this occlusion test, it is shown in previous experiment that HGM+VLD outperforms
HGM under re-scaling and viewpoint changes.)
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4.5.3 Ambiguity and RANSAC prefiltering

To evaluate the benefits of K-VLD as a preprocessing filter for RANSAC-based calibra-
tion, we use Strecha’s Castle-P19 dataset [73]. It is composed of a looping sequence of
19 images of a courtyard and provides ground truth for both internal and external cam-
era calibration. The scene is highly ambiguous due to many repeated windows, which
degrades registration, as illustrated on Figure 4.10.

Around 5,000 to 7,000 SIFT points are extracted in each image. We vary the Lowe
rejection threshold [49], i.e., the maximum distance ratio of closest to second closest
keypoint (often 0.8 in the literature) to generate different potential matches for each
pair of consecutive images. A high rejection threshold (≈ 1) allows more ambiguous
matches but also increase possible matches. Conversely, a low rejection threshold re-
jects ambiguous matches but also decreases the number of potential matches. We also
test the case of symmetric matching, i.e., points P whose match P′ in the second image
has P as match in the first image. This yields 300 to 3,000 matches per image pair.

We measure the average rotation error w.r.t. the ground truth rotation over each
pair after camera calibration based on K-VLD filtered matches, as well as the standard
deviation of this error. As the last image can be compared with the first one, we also
measure the accumulated angle error independently of the ground truth by multiplying
all the rotation matrices and measuring the angle difference with identity. We compare
two methods for estimating the fundamental matrix: using ORSA [57] alone, or pre-
filtering the matches with K-VLD before ORSA. Results are shown in Figure 4.11. The
use of K-VLD as a match prefilter greatly improves stability (deviation) and precision.

Figure 4.10: Matches on pair of images from Strecha’s Castle-P19 dataset [73]. Left:
inliers by ORSA. Middle: false matches near epipolar lines not eliminated by ORSA
but rejected by K-VLD. Right: inliers by K-VLD + ORSA. (Symmetric matches; Lowe
criterion threshold = 0.8; for readability, only 1/4 matches shown, thus matches may
show or hide in different image pairs.)

4.5.4 Comparison of ASIFT and K-VLD

We compare the results of our K-VLD method with ASIFT [59] on a difficult scene
with large view-point change. This is a synthetic scene for which we have an exact
ground truth; images are available on IPOL [60]. We use the ASIFT source code from
the authors, available on IPOL [87].
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Figure 4.11: Angle error on Strecha’s Castle-P19 dataset [73]. Top-Left: average rotation
error over 19 image pairs. Top-right: accumulated rotation error after one loop over
all 19 image pairs. Bottom: detailed rotation error for each image pair and iteration;
results are sorted in increasing error order (50 test results per image pair).
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Matching results depend on a chosen threshold for the Lowe criterion [49]. In our
test, we use for ASIFT a maximum Lowe score of 0.73, which is the default value of
the provided implementation. For SIFT [49], to put us in the worst situation (many
ambiguities, hence many mismatches), we use a maximum Lowe score of 0.99.

Figure 4.12 shows the matches found by SIFT (without any symmetric selection cri-
terion). Filtering those matches with K-VLD removes most mismatches. The remaining
“mismatches” are rather due to the imprecision of the detections that slightly misplaces
corresponding points than to wrong positions.

Figure 4.13 similarly shows matches selected by ASIFT. Due to ambiguities and
viewpoint change, there are many false matches. However, using K-VLD as a post-
filter to ASIFT removes most mismatches.

Figure 4.14 shows the result of filtering the ASIFT matches with ORSA [57]. As dis-
cussed before, the output of ORSA still contains several mismatches near the epipolar
lines. But if we filter the ASIFT matches by K-VLD before feeding them into ORSA,
most remaining mismatches are removed.

4.6 Parameters

Our VLD descriptor may seem to have many parameters, but many of them actually
are directly imported from SIFT, where they have been set to default values after ex-
perimenting on a dataset [49]. Our own experiments just taught us that SIFT standard
values, e.g., the number of sampling scales per octave, could be weakened in our case
for a lighter but still discriminant and robust descriptor.

Most parameters that are specific to VLD are “sanity” bounds, to discard meaning-
less matches. Their actual value has a low impact on robustness and discrimination.
It includes the maximum score for geometric (in)consistency χmax, the minimum disk
radius rmin, the maximum distance between descriptors τmax and the threshold for high
contrast suppression κmax. The number of disks U on a virtual line results mainly from
a compromise between the computation time and the accuracy in line description.

The main parameter of VLD is the balance β between the consistency of the gradient
histograms and the consistency of disk orientations (cf. Section 4.3.5). This parameter,
as well as the suggested weight λ when used as a pairwise score in a graph-matching
method (cf. Section 3.7.4 and 4.3.6) can be learned as described in [45]. Instead, we
looked at the distribution of consistent match pairs vs inconsistent pairs.

More precisely, using images from Mikolajczyk’s dataset [53] with ground truth
matches, we plotted separately the probablity distribution of consistent match pairs
and the probablity distribution of inconsistent match pairs, depending on the gradient
consistency term x and the orientation consistency term y:

x =
U

∑
u=1

V

∑
v=1
|hu,v−h′u,v|

y =
U

∑
u=1

(
γu + γ′u

2
.
min(|w∗u−w′∗u |,W−|w∗u−w′∗u |)

W/2

)
These two terms x and y are balanced using parameter β in the definition of the VLD dis-
tance τ (see Equation 4.5). Both distributions happen to consist of a single mode, whose
support is clearly separated from the support of the other distribution. Figure 4.15 il-
lustrates the superposition of both distributions on a single graph, with an indication
of the corresponding distribution on each peak. The choice of a value for β corresponds
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Figure 4.12: Left: SIFT matches (with Lowe score = 0.99, no symmetry).
Right: K-VLD filtering of these matches (+ K-VLD clusters).

Figure 4.13: Left: ASIFT matches (with default Lowe score = 0.73).
Right: K-VLD filtering of these matches (+ K-VLD clusters).

Figure 4.14: Left: ASIFT matches filtered by ORSA.
Right: ASIFT matches filtered by K-VLD, then by ORSA.
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to the choice of a safe separation line between the correct and incorrect match pairs, i.e.,
a line corresponding to βx+(1−β)y = τmax.
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Figure 4.15: Left: side view of the superposed probability distributions. Right: top-
down view of the superposed probability distributions. The red line represent βx+(1−
β)y = τmax, with β = 0.36 and τmax = 0.35.

An important parameter for the K-VLD matching method is the minimum num-
ber K of neighboring matches that are gVLD-consistent. The choice of K = 3 in our
experiments results from a compromise between robustness (keeping enough inliers
for later use) and discrimination (removing a significant number of mismatches). It
also has an impact on computation time.

As VLD, K-VLD also makes use consistency thresholds and “sanity” bounds, i.e.,
the minimum inlier rate ρmin, which can be very low (e.g., 3%), the neighbor exclusion
radius Bmin, the minimum proportion of geometry-consistent neighbors ωmin and the
maximum average score of geometric consistency for neighbors χ̄max. When choosing
values for χ̄max and ωmin, we want to keep the resulting angle error as small as possi-
ble while producing a number of inliers is as large as possible. Figure 4.16 illustrates
how they are chosen, setting all parameters but one to plausible values for good per-
formance, and letting the remaining parameter under study vary. The test is based
on image pairs of Strecha et al.’s Castle-P19 dataset over 20 iterations with the same
measuring as used in Section 4.5.3.

4.7 K-VLD’s contribution for N-view SfM

The K-VLD method cleans up wrong matches even in the case of match ambiguity, e.e.,
when there are repeated objects in a scene. It increases the match quality for later use,
such as N-view camera calibration.

To illustrate it, we consider both a well-known incremental SfM method (Bundler [72])
and a state-of-art global SfM method (Moulon et al. [62]). Tables 4.2 and 4.3 presents
an evaluation of the accuracy of these calibration methods on Strecha et al.’s datasets
[73]. The rotation error measures the average angular difference of the cameras from
the true rotation (in degrees). The translation error measures the average distance of
the cameras to their true positions (in mm).

Using matches filtered first by K-VLD results in a more accurate camera calibra-
tion (rotation and position) for scenes with repetitive patterns (Castle-P19, Castle-P30
and Entry-P10). For scenes with little or no repetition such as Herz-Jesu-P8 and Herz-
Jesu-P25, the incremental method using K-VLD has worse results, whereas the more
accurate global method using K-VLD performs slightly better.
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Figure 4.16: Performance evaluation for parameters χ̄max and ωmin. The default param-
eter value is in black, the average angle evaluation is in blue and the average number
of inliers is in red.

The numbers in Tables 4.2 and 4.3 differs from ones in [62] because we use a peak
saliency threshold of 0.04 and Lowe ratio threshold of 0.8, which is the default SIFT
setting, while in [62] the peak threshold is equal to 0.02, to generate a larger number
of features. What matters most here is the relative improvement brought by K-VLD to
both incremental and global methods.

4.8 Running time

K-VLD is semi-local in that it considers only a limited number of match neighbors to
evaluate consistency, before deciding whether a match is an inlier or an outlier. As a
result, its running time is more or less linear in the number of matches.

This is observed experimentally on the images pairs used for the N-view calibration
of the scenes in Strecha et al.’s dataset [73], as shown in Figure 4.17. For a given image
pair and an input set of potential matches, the most computationally expensive part of
K-VLD is the photometric consistency evaluation, as opposed, e.g., to geometry consis-
tency checking. The dominant requirement in memory is the score table t|M|×|M|. Still,
our algorithm runs smoothly even on image pairs with 30,000 matches on a computer
with 24GB of RAM.
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Unit: degree Bundler K-VLD + Bundler Global K-VLD + Global
Castle-P19 0.158 0.054 0.038 0.023
Castle-P30 0.094 0.039 0.027 0.026
Entry-P10 0.208 0.062 0.035 0.035

Fountain-P11 0.173 0.146 0.019 0.019
Herz-Jesu-P8 0.148 0.164 0.058 0.055

Herz-Jesu-P25 0.036 0.088 0.032 0.032

Table 4.2: Average angle error.

Unit: mm Bundler K-VLD + Bundler Global K-VLD + Global
Castle-P19 210.5 74.7 28.0 24.6
Castle-P30 73.1 49.3 23.4 22.9
Entry-P10 61.7 31.9 6.7 5.9

Fountain-P11 13.1 9.7 2.6 2.6
Herz-Jesu-P8 20.6 26.0 3.8 3.7

Herz-Jesu-P25 11.4 16.7 5.7 5.6

Table 4.3: Average camera position error with respect to ground truth.

4.9 Limitations of VLD and K-VLD methods

4.9.1 Limitation w.r.t. detection inaccuracies

The design of our virtual line descriptor is inspired by the SIFT descriptor [49]. By con-
sequence, it inherits more or less the same advantages and drawbacks as SIFT. Typically,
the SIFT descriptor is tolerant to a few pixel misplacement of the gradients around the
feature, which is the same for VLD. By consequence, VLD is not sensitive to detection
misplacements (within a few pixel range) and may keep matches that are inaccurate.
Figure 4.18 shows a misplaced feature that has been kept because it is consistent with
its neighbors.

Consequently, VLD is robust against false matches but is not efficient against slightly
misplaced matches. The matching accuracy still mainly relies on feature detection.

4.9.2 Limitation w.r.t. repetitive patterns

Repetitive patterns have always been a problem for feature matching. One approach
is to exclude repetitive features. Lowe criterion can eliminate ambiguous matches to a
certain extent at the cost of losing many matches. However, some images such as urban
scenes contain mostly repetitive structures, like windows and balconies, and excluding
many of them is a significant loss. We have seen an example of the limitation of the
Lowe criterion and the impact of repetitive features in Section 4.5.3.

By design, the K-VLD method requires every match to be consistent with its neigh-
boring matches (geometric and photometric consistency), which we called "semi-local"
validation. This validation strategy works very well under strong occlusion and ambi-
guities. However, there are two situations for which repetitive patterns can still persist
after K-VLD filtering. We have set the Lowe criterion score to 1.0 with no symmetry
verification to amplify these situations in Figure 4.19.

The first situation happens for a repetitive pattern when the true correspondences
of a group of features are occluded (or missing). Lacking the correct matches, the
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Figure 4.17: K-VLD running time in seconds for contiguous image pairs on Strecha et
al.’s Castle-P19 dataset [73], depending on the number of match candidates as input.
Each image pair is tested with Lowe ratio threshold equals to 0.7, 0.8, 0.9 and 0.99, with
and without symmetric matching criterion.

nearest neighbor principle for matching can assign a set of wrong matches to the oc-
cluded group, which could also be self-consistent. It is hard to remedy this situation
by strengthening K-VLD parameters because a too severe geometric constraint would
then lose matches in the case of large view-point changes.

The second situation occurs for a repetitive pattern when a subset of features are
mismatched with a set of neighboring repeated entities. In this case, the geometric and
photometric consistency might be achieved although the matches are wrong. The final
geometric filter (step b in Table 4.1) partially avoids this situation, however this case
can happen when the mismatched subset contains a large-enough number of features.
Fortunately, one clue is observed when this situation happens: the output matches
is divided into two gVLD-consistent clusters, and features in one image of these two
clusters overlap. A solution to this problem could thus be to add a cluster overlapping
detection, and either keep the most important cluster or grow the existing clusters by
re-assigning matches for mismatched features. This is future work.

4.10 Conclusion

For 2nd-order graph matching, distinctive pairwise constraints are crucial, just as dis-
tinctiveness is crucial for ordinary, 1st-order feature matching. As our experiments
show, our virtual line descriptor (VLD) provides such distinctiveness, offering a bet-
ter accuracy to 2nd-order graph matchers. Besides, our K-VLD matching method is
scalable (in time and space) to a large number of points, contrary to high-order graph
matchers (cf. Section 3.7.4). Compared to other graph matching methods, our K-VLD
matcher also provides among the best accuracies, especially when the inlier rate drops,
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Figure 4.18: Illstration of VLD limitation. We consider the matching result of two im-
ages from the Graf scene of Mikolajczyk et al.’s dataset [53]. The dashed line on the
right marks the distance between the projection of the detected feature in the left im-
age and the matching detected feature in the right image. Although the two points
are not the same, K-VLD wrongly validates the match as inlier because it has enough
gVLD-consistent neighbors.

even down to a few percents (less than 5 or 10%) and despite strong occlusions, or
strong viewpoint or scale changes. Moreover, used as a preprocessor to RANSAC, K-
VLD eliminates most mismatches, including near epipolar lines and despite possible
ambiguities, which greatly improves calibration precision.

All these results were achieved with unchanged parameter values after moderate
experimentation to set the, but a more systematic study à la SIFT [49] on a larger bench-
mark would be valuable.
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Figure 4.19: Illustration of K-VLD limitation. Outliers are shown in yellow, and vali-
dated VLD are in red. Left: First case, where the correct matches of a repetitive group
of features are missing. The nearest neighbor principle assigned another set of consis-
tent entities to this group, which is very hard to remove by K-VLD Right: second case,
where a subset of features of a repetitive pattern is mismatched, the mismatched cluster
of matches overlaps with another cluster of matches.
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Chapter 5

Various applications of the K-VLD
method

5.1 Introduction

The K-VLD method is applied to various fields thanks to some of its specific properties.
In this section, we present several applications using either virtual line descriptor or the
K-VLD method.

Contents
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Image Color Blending . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.2.3 K-VLD dense common region detection . . . . . . . . . . . . . . 76
5.2.4 Application to the color coherence . . . . . . . . . . . . . . . . . 77
5.2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Line segment matching . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.3.3 Our contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.3.4 Line segment detection and description . . . . . . . . . . . . . . 81
5.3.5 Initial candidate matches . . . . . . . . . . . . . . . . . . . . . . 81
5.3.6 Pairwise geometric constraint . . . . . . . . . . . . . . . . . . . . 82
5.3.7 Semi-local photometric constraint . . . . . . . . . . . . . . . . . 83
5.3.8 K-VLD method for line segments . . . . . . . . . . . . . . . . . . 84
5.3.9 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.3.10 Computation time . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3.11 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.4 Deformable object matching . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5 Urban localization from Google street views . . . . . . . . . . . . . . . 97
5.5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5.2 K-VLD contribution in air-ground image matching . . . . . . . 97
5.5.3 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



76 5–Various applications of the K-VLD method

5.2 Image Color Blending

5.2.1 Introduction

Digital cameras enable various multiple-image applications, such as 3D reconstruction,
image panoramas and image blending, etc. All these applications need to merge in-
formation from several photos. However, it is often the case that objects in the scene
appear with slightly different colors in different photos. Merging images becomes non
trivial.

When taking a photo, light first goes through a series of lenses, before it hits the
optical sensors at the focal plane; many aspects can affect the produced image.

In terms of changing environment, photos may be taken at different times of day,
with different weather conditions.

In terms of instruments, photos may be taken by different cameras, or even by the
same camera, but with different setups. Camera lenses have different apertures, con-
trolling the amount of coming light per time unit. The shutter time could be different as
well. The optical sensors from different manufacturers do not have the same response
to the same spectral input.

In terms of software, digital cameras are equipped with post-processing algorithms,
including white-balancing and tone-mapping. Additionally, many independent soft-
ware such as photoshop can easily modify the rendering of images.

Consequently, when it comes to assemble several images in various applications
such as panorama making and 3D scene reconstruction, one has to handle the problem
of inconsistent colors across different images, as in Figure 5.1.

5.2.2 Related work

According to Xu and Mulligan [86], much work has been done to minimize the inconsis-
tency in color for two or multiple images. The state-of-the-art algorithms consist of two
parts: common region identification and color difference minimization. We concentrate
on the problem of common regions identification as K-VLD can contribute to address
this issue. For images taken from different view points, it is reasonable to only consider
the common area between images instead of the whole pictures. Traditional sparse fea-
ture matching strategies provide only local spot-like region correspondences and do
not identify common areas. In order to find a sufficiently large common area between
two images, dense matching methods have been proposed as SIFT-flow [47], Gener-
alized PatchMatch (GPM) and the Non-rigid Dense Correspondence (NRDC) [31], see
Figure 5.2. However, the dense matching methods are computationally expensive, and
are thus used mainly on miniature images. They are not appropriate for larger images
nor multiple images. For multiple images, Hacohen [32] proposes several techniques
to reduce the pairwise image comparison.

5.2.3 K-VLD dense common region detection

We now describe an efficient way to extract dense common areas between images using
the K-VLD matching method. To find the common area between two images, we do
not need to know for each pixel its exact position in the other image, but only a binary
indicator, meaning whether it is in the common region. As explained in Chapter 4,
K-VLD simutaneously extracts a consistent subset of matches as well as virtual lines
between matches, that are similar, i.e., that have similar VLDs. For a valid VLD between
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Figure 5.1: Illustration of inconsistent color in panorama reconstruction by Brown and
Lowe [11] and 3D scene reconstruction by Allene et al. [5]. Images borrowed from [11]
and [5].

correct matches, the regions in the two images that lays in the VLD pathes are likely to
represent the same area as they are photometrically consistent, see Figure 5.3.

Formally, we consider correct matches mi,i′=(xi,x′i′) and m j, j′=(x j,x′j′) such that li, j =
(xi,x j) in I and l′i′, j′ = (x′i′ ,x

′
j′) in I′ are gVLD-consistent. We suppose li, j is of length d

and l′i′, j′ is of length d′, we consider the rectangle of size d× 2d
U+1 in I and the rectangle

d′× 2d′
U+1 in I′, i.e., the regions used to construct the VLDs li, j and l′i′, j′ , where U is number

of disks on a VLD. Given a pair of images, the dense common region in each image is
the union of all rectangles on valid VLDs. Figure 5.5 shows the detection result of
images from Strecha et al.’s dataset [73].

Note that K-VLD may not detect all common regions since its detection is based on
feature matches. However, it detects “large enough” dense regions with a complexity
not greater than sparse feature point matching.

5.2.4 Application to the color coherence

This common region detection algorithm has been used by Moulon et al. [63] as the
basis to enforce color consistency in an SfM context. It is illustrated in Figure 5.4.
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Figure 5.2: Illustration of selected common area by NRDC. Image borrowed from [31].

xi

m(xi , x′i′)

m(xj , x′j′)

Image I Image I′

xj

x′i′

x′j′

d
d′

Figure 5.3: Illustration of common region selected by a valid VLD. If neighboring
matches mi,i′=(xi,x′i′) and m j, j′=(x j,x′j′) are correct, and if li, j = (xi,x j) in I and l′i′, j′ =
(x′i′ ,x

′
j′) in I′ are gVLD-consistent, then the blue regions in two images can be consid-

ered as common regions.

Figure 5.4: Common region detection for color blending (courtesy of P. Moulon [63]).
From left to right: input images, filtered SIFT correspondence, common region detec-
tion by the K-VLD method, histograms of the 3 color channels.

5.2.5 Conclusion

The K-VLD method offers the possibility to detect dense common region for large im-
ages and large datasets at the cost of sparse (but semi-local) feature matching, which
makes dense common region detection and color blending practical for realistic datasets.
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Figure 5.5: Demonstration of common region detection using the K-VLD method. Left:
the K-VLD filtered matches, with ORSA post processing. Matches kept by ORSA are
in green, others in blue. Valid VLDs are in magenta. Right: Reconstructed common
region by all valid VLDs.
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5.3 Line segment matching

5.3.1 Introduction

The following is a joint work with Yohann Salaun. It is an application of K-VLD method
for line segment matching. Line segment matching is a good complement to feature
point matching, especially for indoor scenes where textures are poor, yielding little
point saliency, and transformations are strong, from different points of view. Line seg-
ments almost always exist in indoor scenes and can be robustly detected even under
rough view-point change. However, one of the difficulty of line segments is their de-
scription and matching. Segments mostly lay on the border of surfaces, where occlu-
sion is common, making descriptors unreliable for matching. To solve this problem, we
propose to apply only a weak selection according to segment descriptors and then to
use semi-local information between lines to increase the number of matches as well as
to eliminate mismatches.

5.3.2 Related work

Many methods have been proposed to improve line segment matching at different
stages of the matching process: feature description, geometric constraints and features
completion etc.

Descriptor

Wang et al. [83] have generalized the SIFT method for segment matching purpose.
Their descriptor, MSLD (for Mean-Standard deviation Line Descriptor), divides the
area around the segments and sums up information with mean and standard deviation.
Lines are then matched the same way as SIFT with a similar Lowe criterion. Zhang et
al. [90] used a similar but simpler descriptor in which they added scale and geometric
components. It gives good results with a moderate baseline motion but it is computa-
tion heavy with larger pictures. These methods give better results for textured scenes,
but also generate many mismatches in more general scenes. Besides their performance
is affected by occluded parts along segments.

Matching with geometric constraints

Since descriptors for segment are not fully reliable, pairwise or higher-order geometric
constraints have also been used in the segment matching process. Schmid and Zis-
serman [71] or Hofer et al. [35] first estimate the epipolar geometry with point corre-
spondences. Then the search area for segment correspondences is limited by epipolar
geometry on segment extremities. Fan et al. [25] use local affine transformations be-
tween lines and neighboring points to compute the matches. These methods get good
results in textured scenes but heavily depend on point correspondences. Their perfor-
mance is thus limited in low-texture scenes. Wang et al. [82] introduced a pairwise
geometric constraint termed as “line signature”. The line signature describes segment
position relation using angles and segment length ratios. Although this performs well
on the authors’ test images, in our experiments on indoor scenes images with signifi-
cant baseline and viewpoint change, the performance is limited.
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RANSAC for lines

Another drawback of line segments is that their extremities are not accurate for model
fitting. Only line constraint are thus used to build equations to be solved by RANSAC.
This requires segment matching among a minimum of three images (tracks of length
3) and needs 13 random selections of tracks (cf. [34, §15.1]). This is dramatic for two
reasons. First, it is already difficult to have right segment correspondences between
two images, a track of length 3 requires 3 correct pairings of segments, the number
of correct tracks thus drops rapidly. Second, for point features, RANSAC requires 7
correct matches, to compare with 13 correct matches among contaminated tracks, which
requires many more iterations. For instance, using a possible recommended iteration
number formula as K = log(1−P)

log(1−ρn) +
√

1−ρn

ρn and supposing we have a dataset with inlier
rate ρ = 0.5, the recommended iteration number for 7-sample RANSAC equals 216, but
for 13-samples RANSAC, it equals 13869. By consequence, RANSAC-based methods
perform poorly for line segments and are impractical for difficult scenes.

5.3.3 Our contribution

In this section, we extend the K-VLD method to adapt it to line segment matching, in or-
der to take both pairwise geometric consistency and semi-local photometric constraints
into account. Given the unreliability of initial matches, and the capacity of K-VLD to
treat a large number of candidate matches, our algorithm can take a larger amount
of potential matches for input, in which more correct matches are included (but also
much more mismatches). Our algorithm outperforms state-of-the-art methods both in
number of matches and correctness.

5.3.4 Line segment detection and description

Our K-VLD method for segment does not require a specific line segment detection
method as long as the detection provides line orientation and scale. In terms of de-
scription, we implemented the method developed by Zhang [90], an extension of MSLD
(SIFT-like) descriptor [83], to gain some robustness against the line fragmentation issue.
The main idea of this descriptor is to compute the gradient information for both sides
of the segment. The neighboring area around a segment is divided into stripes whose
gradient information is condensed into the mean and the standard deviation.

5.3.5 Initial candidate matches

In the following, we consider a pair of image I, I′, where we have n line segments
detected in image I and n′ line segments in image I′.

Strategies used for feature point matching are often transposed to generate initial
candidate segment matches, such as considering the first neighbor in the other image,
with optionally the symmetric matching criterion and Lowe ratio criterion. However,
descriptors for segments are not as reliable as for point features. A radical alterna-
tive method would be to consider the all-to-all matches as input for K-VLD. This gets
around the step of descriptor matching but it is computationally too expensive. Our
heuristics is a trade-off that considers a large enough number of matches that have a
good chance to include many correct ones.
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For this, we first generate the all-to-all score matrix by comparing descriptors, then
we set up a heuristic number N of initial matches, which is much less than that of the
all-to-all strategy but much higher than what the nearest neighbor would produces. N
satisfies:

max(n,n′)� N� n×n′ (5.1)

Our initial matches consist of N matches of best scores.

Besides, we also tried to use other graph matchers to pre-select matches before K-
VLD, but results are more time consuming with no observable improvements.

5.3.6 Pairwise geometric constraint

Compared to a point feature, a line segment contains more reliable information in terms
of orientation and re-scaling about its transformation between image I and I’, which
allows us to make a new measurement of geometric consistency error.

We note detected oriented segments as Li =
−−→
AiZi, i ∈ {1, . . . ,n} in image I and L′i′ =−−→

A′i′Z
′
i′ , i′ ∈ {1, . . . ,n′} in image I′. The line orientation is given by the orientation of gra-

dients on the line, as discovered by the line segment detector.
Heuristically, the scale of the line is estimated by its length. It is wrong and it may

have a negative impact if the line is oversegmented or partially occluded in one image.
We actually only consider here one-to-one correspondences between image segments,
as opposed to many-to-many or partial matches. However, in practice, the impact of
possible scale errors is moderate and although we may miss a few actual correspon-
dences, we still find many matches (see Section 5.3.9).

For a segment Li in I which has a correspondence L′i′ in I′, we note the transformation
from Li to L′i′ as P(i,i′), and P′(i′,i) its reverse transformation:

L′i′ = P(i,i′)(Li)

Li = P′(i′,i)(L
′
i′)

∀ j, L j = P′(i′,i)P(i,i′)(L j)

(5.2)

Note that P(i,i′) and P′(i′,i) consist of a translation, a rotation and a re-scaling. We also
define the line segment distance

dseg(Li,L j) = max(||Ai−A j||, ||Zi−Z j||) (5.3)

Li

ma= (Li , L′i′)

mb=(Lj , L′j′)

Image I Image I′

P(j′ , j) (L′i′)

L′i′

L′j′

P(i′ , i) (L′j′)
Lj

P′(j, j′) (Li)

P′(i, i′) (Lj)

Figure 5.6: Projected oriented lines are in blue and d(ma,mb) is the maximum length of
red lines.
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For a pair of matches ma = (Li,L′i′) and mb = (L j,L′j′), our pairwise consistency er-
ror measure d(ma,mb) is the maximum segment distance of possible line projections as
defined by Equation (5.4), which is also illustrated in Figure 5.6.

d(ma,mb) = max(dseg(P(i,i′)(L j), L′j′),

dseg(P( j, j′)(Li), L′i′),

dseg(P′(i′,i)(L
′
j′), L j),

dseg(P′( j′, j)(L
′
i′), Li)).

(5.4)

This error features some scale invariance in the sense that re-scaling the smaller
scale images will not affect its value as long as the scale is still smaller than that in the
other image. To adapt to line segment we use this error measure to replace the ones
used for points in the geometric constraint of K-VLD.

5.3.7 Semi-local photometric constraint

Local photometric segment description is hardly robust because gradients are domi-
nated by the normal direction near the line segments. Moreover, a side of the line seg-
ment could be occluded. Using photometric information between two line segments
can reinforce the matching constraints. This calls for an adaptation to line segment of
the K-VLD method defined for points.

The basic idea of K-VLD for point matching is: For each match ma, it checks the
photometric consistency with respect to a number of neighboring matches mb through
a virtual line descriptor (VLD) between mi and each mb, see Figure 5.7. mi and m j are
likely to be gVLD-consistent (geometric and photometric consistency) if ma and mb are
both correct matches. If there are more than K neighbors (a heuristic constant) that are
gVLD-consistent with ma, then ma is considered as a correct match.

xi

ma=(xi , x′i′)

mb=(xj , x′j′)

Image I Image I′

xj

x′i′

x′j′

VLD(xi , xj) VLD(x′i′ , x′j′)

Figure 5.7: illustration of virtual line descriptors for a pair of point matches ma and mb,
they are gVLD-consistent when the two VLDs differ little.

The objective is to modify VLD to adapt it to line segment matching. A crucial
problem to apply the K-VLD method to line segments is to find a stable point on the
segments that lays on the same location in I and I′, in order to build a reliable VLD
descriptor.

Technically, to check the photometric consistency for a pair of matches ma = (Li,L′i′)
and mb = (L j,L′j′), we need to build a pair of VLDs for (Li,L j) and (L′i′ ,L

′
j′). Our algo-

rithm uses the line segment end-point that has the least projection error.
Formally, we note Ea,b(Li) the end-point that Li of ma uses for constructing the VLD

with L j ∈ mb

Ea,b(Li) =

{
Ai if ||P( j′, j)(A

′
i′)−Ai||< ||P( j′, j)(Z

′
i′)−Zi||

Zi otherwise
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By the similarity property, the choice of the end-point is always consistent for Li and
L′i′ .

Ea,b(L′i′) = A′i′ ⇔ Ea,b(Li) = Ai

Ea,b(L′i′) = Z′i′ ⇔ Ea,b(Li) = Zi

We build the pair of VLDs for (Li,L j) and (L′i′ ,L
′
j′) as

V LD(Li,L j) =V LD(Ea,b(Li), Eb,a(L j))

V LD(L′i′ ,L
′
j′) =V LD(Ea,b(L′i′), Eb,a(L′j′))

(5.5)

Note that for different neighbors, different extremities of lines of ma can be chosen to
construct VLDs.

Li

ma= (Li , L′i′)

mb=(Lj , L′j′)

Image I Image I′

L′i′

L′j′

Lj Ea,b(Li)

Eb,a(Lj)

Ea,b(L′i′)
Eb,a(L′j′)

Figure 5.8: illustration of VLD for a pair of line segment matches ma and mb. Red lines
are the paths for the VLDs.

5.3.8 K-VLD method for line segments

We consider a set of initial candidate matches {m1,m2, . . .}. For each match ma = (Li,L′i′)
and each mb = (L j,L′j′), we check if mb is a neighbor of ma in the same way as K-VLD,
using the middle point of each segment such that ||Ci−C j|| < BK or ||C′i′ −C′j′ || < B′K ,
where BK and B′K are defined as previously in Chapter 4, and Ci, C j, C′i′ , C′j′ are the
respective center points of line segments Li, L j, L′i′ , L′j′ .

One additional constraint is that if ma and mb are nearly co-linear in one image, the
VLD will not be discriminant, so we exclude neighbors on the same line. More formally,
ma and mb are neighbors if the following three conditions are satisfied.

1. ||Ci−C j||< BK or ||C′i′−C′j′ ||< B′K

2. angle(
−−→
AiZi,

−−→
CiC j)> αcolinear or angle(

−−→
A jZ j,

−−→
CiC j)> αcolinear

3. angle(
−−→
A′i′Z

′
i′ ,
−−→
C′i′C

′
j)> αcolinear or angle(

−−−→
A′j′Z

′
j′ ,
−−−→
C′i′C

′
j′)> αcolinear

Our K-VLD segment matching algorithm is detailed by Table 5.1.

5.3.9 Experiments

For our experiments, we have considered two state-of-the-art algorithms for line seg-
ment detection: Line Segment Detector (LSD) [81] and ED-Lines [2]. Both methods
are based on the a contrario theory, which allows an automatic adaptation of the main
parameters of the detectors. In our experiments, we have found that the two detec-
tors have different but roughly similar performance in terms of quality and number
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Input: images I and I′,
detected line segments in I and I′,
set of weak (potential) initial matches M

Output: set of selected matches from M
1. Compute pyramids of scaled images for I and I′

2. Set up tables t|M|×|M|, T|M|×1, C|M|×1 and initially mark all matches as inliers
3. Do
4. Set T and C to zero values
5. For every inlier match mi

6. For every inlier match m j, a non-colinear neighbor of mi

7. If t[mi,m j] is undefined
8. If (mi,m j) are gVLD-consistent
9. then t[mi,m j]← τ(mi,m j) and t[m j,mi]← τ(m j,mi)

10. else t[mi,m j]← discard and t[m j,mi]← discard
11. If t[mi,m j] 6= discard
12. T [mi]← T [mi]+ t[mi,m j]
13. C[mi]←C[mi]+1
14. If C[mi]≥ Nmax then pass to the next mi

15. T [mi]← T [mi]/C[mi] if C[mi] 6= 0

16. Sort inliers by increasing values of C, or increasing values of T if C-equal
17. (a) For every inlier mi in sort order
18. If C[mi]< K then mark mi as an outlier

19. (a’) For every inlier mi and every inlier m j in sort order
20. If m j conflicts with mi, mark as outlier the match with lowest C,

. or lowest T if C-equal

21. (b) For every inlier mi in sort order
22. Compute the proportion ω of geometric-consistent neighbors of mi

23. Compute the average transformation error χ̄ amongst neighbors of mi

24. Mark mi as outlier if ω < ωmin or χ̄ > χ̄max
25. while some matches have been marked as outliers (in this iteration)
26. If ρ < ρmin go back to line 3 with ρmin = ρmin/2
27. Return matches marked as inliers

Table 5.1: The K-VLD segment matching algorithm

of detections. In practice, we have used LSD because the code is open-source, which
facilitates the implementation of our algorithm.

The number of line segments generated from the tested images varies approxi-
mately from 300 to 3000. For simplicity, we choose in our experiments a fixed value
of N=15000 initial potential matches (see Equation 5.1), rather than rely on a function
depending on the number of detections in both images. Finding a good heuristics to
discover a large number of correct matches while keeping the computation time low is
left for future work. .

We tested our algorithm on two datasets. The first dataset is the one that is com-
monly used in related work. It allows us to compare with other methods in various
situations. The second dataset is more difficult: it features indoor scenes with little and
repetitive texture. Our algorithm in this case outperforms the state-of-the-art algorithm
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both in number of matches and in precision.

Common dataset, covering various situations

The first dataset is a collection of image pairs of various scenes used for evaluating
line-matching algorithms. The corresponding images are shown on Figure 5.9. This
dataset is used for comparison in [25]. It also has a large overlap with test images
used in [90, 82]. We compare our algorithm 4 other methods: LBD [90], MSLD [83],
LP [25] and LS [82]. We compute both the number of output matches and the match
precision. The correctness of matches is verified manually. (Line segment detections
and corresponding matches are not part of the dataset.)

(1) Low texture (2) Occlusion

(3) Rotation (4) Blurring

(5) Illumination (6) Viewpoint 1

(7) Viewpoint 2 (8) Scale

Figure 5.9: Image pairs of various scenes used in [90, 82, 25].

Results are illustrated in Figure 5.10. We observe that our algorithm retrieves more
or a comparable number of true positive matches in most cases. But sometimes, our al-
gorithm gives a slightly higher number of false positives, compared to the other meth-
ods Still, this dataset does not present the kind of difficulty we are trying to address,
such as indoor scenes with little texture and wide baselines.
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Figure 5.10: Comparison of K-VLD for segments with the state-of-the-art line-matching
algorithms. Above 0: numbers of true positive matches. Under 0: numbers of false
positive matches. (There were only a few of them in this test.)

Difficult scenes

As a matter of fact, line segment matching has less interest for outdoor or textured
scenes since feature point matching is more suitable in this situation. Segment matching
is indeed more helpful in the case of indoor and low-textured scenes.

We took a sequence of 10 pictures taken indoors, going round a long meeting room.
The images are shown in Figure 5.11. We consider all pairs of contiguous images, plus
image pair 10-1. In this dataset, the baseline is large as well as the rotation angle (36
degrees on average) and the variation in depth. Besides, there are repeated elements:
similar tables, widows and chairs, and similar features on the ceiling. Note also that
there are many textureless areas, where a point matching algorithm such as SIFT has
a limited performance. With this dataset, we compare our algorithm for line segment
matching with the LBD matching method, as LBD has a good and stable performance
in the previous tests.

The detailed comparison is shown in Figure 5.12. Unlike with the previous dataset,
where our results are similar as the other methods, in this dataset our method performs
significantly better, especially when the baseline between the two pictures is wide. Our
algorithm generates up to 10 times more matches than LBD. For pairs 7-8 and 8-9, all
LBD matches are false, whereas our precision is higher than 82%, with a large number
of true positive matches.

On Figure 5.13, we further visually illustrate the difference in comparison using
pairs 1-2 and 3-4, where we have a larger output. We see that under a wide baseline
and with a large disparity of depth in images 3 and 4, LBD yields false results for most
matches. We also test both methods on the totally uncorrelated image pair 1-5, where
no match should be generated, as our method does, while LBD finds 39 false matches.
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1 2

3 4

5 6

7 8

9 10

Figure 5.11: Difficult indoor dataset made of pictures of a long meeting room, with a
wide baseline, repetitive patterns, large variation in depth and few textures. We con-
sider all pairs of contiguous images, plus pair 10-1.
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Figure 5.12: Comparison of line segment matching between K-VLD for segments and
LBD, on the difficult meeting room dataset. Above 0: numbers of true positive matches.
Under 0: numbers of false positive matches.

5.3.10 Computation time

The computation time of our algorithm depends essentially on the number of initial
(potential) matches, which we set heuristically to a fixed value. We are slower than
LBD for small images, and much faster than LBD for large images. (LP and LS are far
slower than LBD.)

5.3.11 Conclusion

We have presented here a modified K-VLD algorithm for line segment matching. In
our algorithm, a new geometric consistency criterion for segments is introduced and a
strategy for constructing VLDs between line segments has been proposed. In our ex-
periments, our algorithm has comparable performance in various ordinary situations,
but it outperforms the state-of-the-art algorithms for difficult indoor and textureless
scenes.
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pair 1-2

pair 3-4

Figure 5.13: Detailed comparison between the LBD method (left) and our algorithm
(right). K-VLD for segments outperforms LBD in both cases, especially for pair 3-4,
where little texture is available and perspective transformation is important due to
depth variation.
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5.4 Deformable object matching

5.4.1 Introduction

We now experiment the K-VLD algorithm on non rigid scenes. In the case of a non
rigid transformation, graph matching methods are commonly used to select correct
matches. K-VLD, as explained before, only checks gVLD-consistency with neighbors,
and thus also adapts to deformed situation. This flexibility enables more applications.
We first illustrate the matching results of weakly and strongly deformed sheets of paper
to compare the performance of K-VLD’s semi-local matching method with available
graph matching methods as (HGM) [88], (IPFP) [45] and (GTM) [3]. Then we compare
the performance between selected methods in uncorrelated scene, where the second
image is completely different apart from a small cropped area; a good graph matching
method should detect only matches inside the cropped area.

5.4.2 Experiments

We compare K-VLD with HGM, IPFP and GTM, for they have relatively good results
in previous tests. There are no scale changes in the used dataset, which makes point
distance a valid pairwise geometric constraint for HGM, IPFP and GTM. HGM follows
a “matching until conflict” strategy, which includes many mismatches. IPFP and GTM
output a ranking of matches. To be able to compare K-VLD with them, we extract the
same number of best matches as the number of matches in K-VLD’s output.

Weak deformation: The first scene is a paper map, after being moderately creased.
We consider in Figure 5.14 feature matches from the upper image to the lower image.
There are 3438 features in the upper image and 6225 images in the lower image. 3438
matches (upper to lower image) are generated for processing by the nearest neighbor
strategy.

K-VLD returns 427 filtered matches within 8 seconds; matches are visually correct
as shown in Figure 5.14. We show HGM’s “matching until conflict” strategy is prone to
mismatches, and its best 427 matches in Figure 5.15. The best 427 matches of IPFP and
GTM are shown in Figure 5.16. The best matches of HGM, IPFP and GTM are globally
very close to the right matches, however a closer look indicates that some matches
actually are not correct.

Strong deformation: The second scene (cf. Figure 5.17) is a strongly deformed scene,
that additionally contains a relatively large number of candidate matches. There are
11350 features in the upper image and 8842 images in the lower image. 11350 matches
(upper to lower image) are generated for processing by the nearest neighbor strategy.

K-VLD returns 662 filtered matches in 17 seconds. Matches are visually correct (cf.
Figure 5.17) apart from a small self-consistent group of features whose correct matches
are hidden due to paper deformation, but that match exactly-identical text somewhere
else on the sheet of paper. Compared to the moderate deformation case, performance
drops in the strong deformation case for HGM, IPFP and GTM, because these methods
are not robust to a drop of global geometric consistency.

Uncorrelated scene: Finally we test the performance of K-VLD, HGM, IPFP, GTM
methods for a pair of images that are almost uncorrelated. Compared to the upper im-
ages, the lower image contains a totally different sheet of paper, apart from the cropped
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Figure 5.14: Illustration of K-VLD result for a weakly deformed scene. K-VLD returns
427 filtered matches out of 3438 matches in 8 seconds. Left: feature correspondence
by K-VLD is in green. Right: Valid gVLD-consistent virtual lines are in red. (N.B. Not
all agreeing neighbors are marked; for each match, only the K first gVLD-consistent
neighbors are checked by K-VLD and drawn in the image.)

Figure 5.15: Illustration of HGM’s result for a weakly deformed scene. Left: HGM’s
“matching until conflict” strategy selects 1966 matches, and is prone to mismatches.
(Only one in every six matches is shown for visibility). Right: keeping only the best 427
matches by HGM for comparing with K-VLD, the matches seem correct. However, a
finer look shows that a number of matched features are not at the right location (cf. areas
circled in red, not exhaustive).
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Figure 5.16: Illustration of IPFP’s and GTM’s results for a weakly deformed scene, keep-
ing only the 427 best matches for comparing with K-VLD. Left: as for HGM, thebest
IPFP matches seem correct, but a finer look shows that a number of matched features
are not at the right location (cf. areas circled in red, not exhaustive). Right: in the best
matches found by GTM, mismatches are visible.

Figure 5.17: Illustration of K-VLD’s result for a strongly deformed scene. K-VLD re-
turns 662 filtered matches out of 11350 candidate matches in 17 seconds. Left: fea-
ture correspondence by K-VLD in green. Right: gVLD-consistent virtual lines in red.
(For each match, only the K first gVLD-consistent neighbors checked by K-VLD are
drawn.) Only a small self-consistent group of features are mismatched, to another
exactly-identical text area, due to the lack of correct matches (cf. areas circled in green).
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Figure 5.18: Illustration of HGM’s result for a strongly deformed scene. Left: HGM’s
"matching until conflict" strategy is again prone to mismatches. (Only one in every six
matches is shown for visibility.) Right: the best 662 matches by HGM contain visible
mismatches. Mismatches are still present because global geometric consistency is not
preserved due to the strong deformation. Only separate small patches, as identified by
K-VLD (cf. Figure 5.17), are consistent enough.

Figure 5.19: Illustration of IPFP’s and GTM’s results for a strongly deformed scene. The
662 best matches are extracted for each method. Left: the best matches by IPFP contains
visible mismatches (cf. areas circled in red, not exhaustive). Right: in the best matches
by GTM, mismatches are visible too. As above, the performance is poor because the
methods are not robust to a drop of global geometric consistency.
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Figure 5.20: Illustration of K-VLD’s and HGM’s result on uncorrelated images (except
the cropped part). Left: feature correspondence by K-VLD in green. Right: in the best
matches by HGM, mismatches are visible.

Figure 5.21: Illustration of IPFP and GTM’s result on uncorrelated images (except the
cropped part). Left: in the best matches by IPFP’s, mismatches are visible. Right: in the
best matches by GTM, mismatches are visible too.
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part (a deformed region containing relevant information). The reason to include thus
cropped region is to add just a small number of actual matches, which we can eas-
ily verify in the output of the matchers. This test is important, because a good graph
matching method should not only find common structures, but also be discriminant
to exclude unrelated features. SIFT features are extracted and matched by the nearest
neighbor strategy, before the matching methods are applied. The result (cf. Figures 5.20
and 5.21) demonstrates the relevance of a photometric constraint verification, as geo-
metric constraint can accidentally be satisfied.
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5.5 Urban localization from Google street views

5.5.1 Introduction

In recent years, many efforts have been made in the development of autonomous vehi-
cles, resulting in innovative technologies such as the Google car and unmanned aircraft.
Localization is a crucial problem for autonomous vehicles. Localization systems such
as GPS is a popular solution, however a parallel independent visual localization sys-
tem is expected as well, to face challenging environment. For instance, the GPS signal
in urban environment can be shadowed, unavailable or echoed. Besides, GPS position-
ing is not very accurate. Alternative technologies become thus necessary for vehicle
localization.

5.5.2 K-VLD contribution in air-ground image matching

With the database of Google Street View images becoming available, visual urban local-
ization has become reachable. However, the state-of-the-art visual-localization systems
may perform poorly due to feature matching challenges because of significant view-
point changes, changes of illumination, over-season variation, lens distortions, etc. . .

RANSAC-based methods are one option to clean up feature correspondences, how-
ever the lens distortion due to the wide angle dramatically breaks the rigid transforma-
tion hypothesis, making RANSAC performing poorly.

In previous sections, we have illustrated the performance of K-VLD for deformable
object matching. By design, K-VLD uses a soft semi-local geometric constraint so that
image distortion does not perturb the result. Recent work has been carried out using
K-VLD to match features for MAV geo-referencing. The work of Andras et al. [51] uses
K-VLD to match features between micro aerial vehicle (MAV) images and Google Street
View images. The work of Karel et al. [39, 38] applies K-VLD as an efficient matching
method to overcome complex situations (e.g., large number of features, matching with
a low inlier rate, images from different cameras, of different scales, etc. . . ).

For more details in practical applications, the readers are kindly referred to related
work [51, 39, 38].

Figure 5.22: Illustrating image of MAV urban scene geo-localization borrowed from
Andras et al. [51]. The global position of the MAV is computed by matching the aerial
image taken by the flying vehicle with the closest ground-level geotagged Google Street
View image.
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Figure 5.23: Illustration of air-ground matching between images from AR Drone 2.0 and
images from Google Street View. Images undergo lens distortion as well as significant
viewpoint and scale changes. Left: K-VLD is robust against distortion, and extracts
correct matches. gVLD-consistent paths are in red, matches are in green. Right: ORSA
fails to find a model within 200,000 iterations in all three cases.
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5.5.3 Experiment

We use the dataset provided by Andras et al. [51] to illustrate the robustness of K-VLD
compared to RANSAC. The images are very challenging because of the lens distortion
as well as the significant viewpoint and scale changes. Still, these images correspond to
common cases for the application and it is crucial to be able to treat them appropriately.

We compare K-VLD to ORSA [57]. Whereas Andras et al. [51] used a modified
ASIFT feature detection and description to generate a large number of features, we just
use here a standard SIFT detector and descriptor and a first neighbor matching strategy
to also show the robustness of K-VLD under a low rate of inliers, below 3%. Results are
shown on Figure 5.23: K-VLD can still provide correct matches when RANSAC-based
methods fail.
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Chapter 6

Match refinement for highly
accurate two-view SfM

In this chapter, we propose a variant of least squares matching to refine feature match
locations based on a focused grid and a multi-scale exploration to enhance the accu-
racy of structure from motion (SfM) in the two-view case. We also propose a method
to directly estimate the surface normal of refined blob-like features as SIFT when di-
rect perspective transformation estimation is not reliable. Experiments show that our
match refinement contributes to a better accuracy. Once combined with match selection
introduced in the next chapter, it reduces SfM errors by a factor of 1.1 to 2.0 for rotation,
and 1.6 to 3.8 for translation.
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6.1 Introduction

One way to obtain a better SfM accuracy is to improve the accuracy of feature detec-
tion. Due to differences in imaging conditions, in particular changes of viewpoint or
illumination, a salient point or region detected in one image is not detected in the other
image at the exact matching location. The most popular features are by design only
invariant (at most) to affine transformation (e.g., Harris-affine [54], MSER [52], ASIFT
[59]), or to small affine transformation (e.g., SIFT [49]). But they are not invariant under
perspective transformation, which is enough to offset most detections. Methods to add
some perspective invariance to existing feature detectors have been proposed, but they
require full 3D information (depth map or mesh) [41, 84], which is computationally
expensive or requires more than just image data; others are suited to specific classes
of scenes only, mostly urban environments, as they strongly rely on the presence of
vanishing points and large planar surfaces [6, 15]. Besides, they have been designed to
improve the repeatability of feature detection and matching, which is generally mea-
sured using a threshold on the relative overlap of corresponding regions [54], not in
terms of the closest distance between feature centers.

Traditionally, two detected feature points can still be considered as matching al-
though their position in the images does not correspond exactly to the same 3D point
in the observed scene. For a number of tasks, being close is enough. But for highly
accurate calibration, it is not satisfactory. In fact, we do not care whether a specific 3D
point is accurately identified in both images, such as the very tip of a corner. What we
need is possibly arbitrary pairs of points in the images as long as they correspond to
extremely close 3D points. In this sense, feature detection and matching is just a way
for us to identify corresponding regions rather than corresponding points: their cen-
ter generally corresponds only to close but different 3D points. The match refinement
we propose here only uses them as initial estimates to find pairs of 2D points that are
likely to correspond to closer 3D points because they have a better local photometric
consistency (assuming an unknown affine transformation).

Finely relating image regions can be addressed with optical flow methods [7]. But
these methods are not well adapted here because they suppose small variations, both in
viewpoint (very small baseline, quasi-affine transformation) and in illumination (con-
trolled light scenes). Refining the position of image regions to overlap them better has
been studied in the photogrammetry community. One of the most popular methods
is adaptive least squares matching (LSM), that tries simultaneously to find radiomet-
ric and geometric corrections to best fit two images patches [29]. The most complex
geometric correction generally considered in this framework is affine transformation,
because projective transformations are assumed to be well approximated by an affinity.
We present here an improvement of LSM based on a focused irregular grid and made
robust with coarse-to-fine exploration. We show that it outperforms affine correction.

6.2 Least Squares Matching (LSM)

LSM, originally called adaptive least squares correlation [29], is based on the hypothesis
that, locally, the region around the feature center is mostly planar, so that two matching
regions are approximately related by a homography, which in turn can be approxi-
mated by an affinity if the change of viewpoint is moderate.

Given a match m = (x,x′), LSM tries to best adjust the region around x in I to the
region around x′ in I′, using some unknown affine transformation A, which also needs
to be estimated. The initial value Ainit is the similarity defined by the translation from x
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to x′ and the rotation given by the difference of angles of the feature orientations. It
is iteratively refined by choosing affinity parameters that minimize the dissimilarity
between the two regions.

For all the following, we note G and G′ the sampling grids used to interpret regions
around x and x′, with G′ defined as the transformation of G by the affinity A.

LSM samples points on a regular grid of size (2n+1)× (2n+1). For a point (x,y)
on G, its coordinate is calculated from x = xx + su, y = xy + sv, where (xx,xy) is the co-
ordinate of the feature point in I and s and s′ are re-scaling factors such that s/s′ =
scale(x)/scale(x′) and min(s,s′) = 1:

G = {(xx + su,xy + sv) |u,v ∈ {−n, . . . ,0, . . . ,n}}. (6.1)

We use a spline interpolation of order 5 to retrieve subpixel intensity at each node of
the grids.

6.2.1 Local geometric transformation

The points on grid G′ in image I′ are defined by the projection of the points on grid G
in image I via the transformation A.

To be consistent with the dimensions of the homography matrix used later, we rep-
resent the affine transformation as a 3×3 matrix A = (ai j)1≤i≤3,1≤ j≤3, with a31 = 0,a32 =
0,a33 = 1. We write (x′,y′) = A(x,y) the transformation by the affinity A:

x′ = a11 x+a12 y+a13
y′ = a21 x+a22 y+a23

(6.2)

The grid G′ can thus be defined as G′ = A(G) = {A(x,y) |(x,y) ∈ G}, i.e., the transforma-
tion of the grid G by the affinity A.

To make sure A is not badly conditioned (large values for a13 and a23), the coor-
dinates of the features are actually first shifted in both images to center the reference
frames of I and I′ at (xx,xy) and (x′x,x′y), i.e., so that (xx,xy) = (x′x,x′y) = (0,0) in the new
frames. Moreover, the feature coordinates are divided by the geometric mean of the
image dimensions. The initial affinity Ainit represents the rotation (difference of feature
orientation) and re-scaling.

6.2.2 Local photometric transformation

To reduce the influence of light changes, a transformation of the intensity between the
two image regions can also be considered. It is assumed that this transformation is
affine, i.e., that there are a radiometric scale rs and a radiometric shift rt such that

I(x,y)≈ rs I′(x′,y′)+ rt (6.3)

In practice, the scale rs and shift rt are re-estimated at each iteration of the estimation
process, as described by Potůčková [66, §1.2.1.2, pp.23-24]:

(rs,rt) = argmin
b0,b1

∑
(x,y)∈G

(x′,y′)=A(x,y)

(I(x,y)−b1I′(x′,y′)−b0)
2 (6.4)

Alternatively, rs,rt can be introduced as unknown variables instead of priors. They can
then be estimated together with dA by a vector (rs,rt ,dA). But it increases the dimension
of the system and leads to slower convergence, which then requires more iterations [70].
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6.2.3 Local transformation extimation

The image dissimilarity on the two grids is defined as the sum of square differences
(SSD) of the photometric-transformed intensities:

η(A) = ∑
(x,y)∈G

(x′,y′)=A(x,y)

[
rs I′(x′,y′)+ rt − I(x,y)

]2 (6.5)

To find in I′ a better location than x′ for the point corresponding to feature x in I, we
look for a small displacement (dx′,dy′) of (x′,y′) that minimizes the dissimilarity η(A):

argmin
dx′,dy′

∑
(x,y)∈G

(x′,y′)=A(x,y)

(
rs I′(x′+dx′,y′+dy′)+ rt − I(x,y)

)2 (6.6)

We actually look for a small change dA of the affinity A that would induce such a dis-
placement (dx′,dy′). Following Gruen [29], we consider a first-order approximation
of A: given a small variation dA = (dai j)1≤i≤3,1≤ j≤3 with da31 = 0,da32 = 0,da33 = 1, we
look at the impact on dx′,dy′:

dx′ = da11 x+da12 y+da13

dy′ = da21 x+da22 y+da23 (6.7)

We also consider a first-order expansion of the intensity in I′:

I′(x′+dx′,y′+dy′)≈ I′(x′,y′)+g′x(x
′,y′)dx′+g′y(x

′,y′)dy′ (6.8)

based on gradients computed by finite difference:

g′x(x
′,y′) =

I′(x′+ s′,y′)− I′(x′− s′,y′)
2s′

g′y(x
′,y′) =

I′(x′,y′+ s′)− I′(x′,y′− s′)
2s′

(6.9)

Wrapping up, using in (6.6) the expansion of I′(x′+ dx′,y′+ dy′) in (6.8) as well as the
expression of (dx′,dy′) in (6.7), we obtain a convex system for dA:

argmin
dA

∑
(x,y)∈G

(x′,y′)=A(x,y)

[
rs
(
I′(x′,y′)+g′x(x

′,y′)(da11 x+da12 y+da13)

+g′y(x
′,y′)(da21 x+da22 y+da23)

)
+ rt − I(x,y)

]2 (6.10)

By any classic regression method, we can obtain a solution for dA. We then adjust
the affinity A correspondingly for the next iteration: Ai+1←Ai+dA. LSM indeed iterates
the computation of A. At each iteration, the radiometric correction rs,rt as well as the
gradients g′x,g

′
y are recomputed in function of the new estimation for A. The algorithm

iterates as long as the dissimilarity η(A) decreases with a newly interpreted A, or until
a fixed maximum number of iterations is reached.

The LSM algorithm is pictured in Figure 6.1. To refine a set of matches between
image I and I′, the LSM algorithm is applied to each match independently.

6.3 Sampling density and coverage zone

In LSM, and in many other methods using a grid of intensity samples, the reference
grid G (the grid that does not change) has a configuration of 1 sample per pixel square.
Yet, we have to distinguish the sampled area, of size k×k pixel square, and the sampling
density (2n+1)× (2n+1), for they have different impacts on LSM:
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Estimate dA (cf. Equation 6.10) 

If ŋ(A+dA) < ŋ(A)

LSM A←A0

Feature displacement 
in I' is A(x).

Compute G

A A+dA
Yes No

Estimate rs , rt from A (cf. Equation 6.4) 

Figure 6.1: LSM algorithm (after .

• If the sampled area is too large (large k), there are more chances for the covered re-
gion to be non-planar, or approximately non-planar; it will then appear dissimilar
under a different viewpoint, even if corrected by an affine or homography trans-
formation. If the area is too small (small k), the pixel information is insufficient to
provide a reliable transformation estimation.

• Besides, the larger the sampling density (large n, within resolution bounds), the
more accurate the estimation of the transformation, but also the more computa-
tionally expensive.

Setting the values of k and n thus requires heuristic compromises.
In the following, we choose to set first the value of n, as a balanced compromise with

respect to computation time. Given this relative sampling density, we then define the
size of the sampled area as the best observed size based on experiments with images
in a dataset. Note that the size of the sampled areas, modulo the relative scales of the
detected features (cf. Equation 6.1), is the same for all matches, both in our learning
experiments to define the best (average) size, and in the setting of our test experiments.

6.4 Least Square Focused Matching

We now present a Least Square Focused Matching (LSFM), which is an extension of
Least Square Matching (LSM) that better adjusts the location of matched features.

With LSFM, we propose two improvements. First, instead of using a regular sam-
pling grid around the features, we use an irregular grid focused on the center of the
region to match. Second, we perform an image-scale traversal, to make transformation
estimation more robust to local minima. (We also tried estimating a homography rather
than just an affinity, but it did not produce substantial improvements, cf. Section 6.8.1.)

Note that feature detection covariance [10, 37, 74, 89] is irrelevant here. What we
do is, as LSM, given a position p in I for which we know a roughly corresponding
position p′ in I′, adjust p′ so that the regions around p in I and p′ in I′ correlate better,
under some geometric and photometric affinity to estimate. Feature points that match
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just happen to provide good initial correspondences (p, p′) for the refinement process.
This is also widely different from refining the location of features detected as salient [49,
54]. Moreover, refining given matches leads to a better accuracy than refining detections
before matching.

6.4.1 Image intensity variation

LSM calculate the values of rs,rt by means of a linear regression from Equation (6.4). We
do it in a different way, by normalizing the average intensity and the intensity variance
on grid G′, so that it the same as on grid G. Concretely, we define the average intensity
and the intensity variance as:

IG =
1
|G| ∑

(x,y)∈G
I(x,y) I′G′ =

1
|G′| ∑

(x′,y′)∈G′
I′(x′,y′)

σG =

√
∑(x,y)∈G(I(x,y)− IG)2

|G|
σ
′
G′ =

√
∑(x′,y′)∈G′(I′(x′,y′)− I′G′)2

|G′|
.

where |G|= |G′|= (2n+1)2 is the number of samples in the grid. We look for rs, rt such
that:

IG = I′G′+ rt

σG = rsσ
′
G′ (6.11)

In our experiments, using this estimation for rs,rt provides a slightly better robustness
(and speed). This is what we have used in LSFM.

6.4.2 Focused grid

The image dissimilarity measure η in LSM is based on a regular sampling grid centered
on interest points. This assumes a uniform transformation of the associated image area,
which is basically true close to the grid center and slowly breaks down when moving
away towards the grid periphery. Besides there is an anisotropy due to the grid shape
and alignment.

For this reason, in LSFM we propose two improvements. We use a grid GF focused
on the patch center, i.e., denser in the center than in the border, which is additionally
weighted by a Gaussian kernel to further concentrate on the center and provide rotation
invariance. Concretely, we use a grid whose nodes are placed in a geometric progres-
sion with respect to the grid center, with fixed ratio. As previously, the grid is possibly
also scaled up with respect to the detection scale ratio of the matching features:

GF = {(xx +4x(u),xy +4y(v)) |u,v ∈ {−n, . . . ,n},

4x(u) = sλsign(u)
ρ|u|−1
ρ−1

,

4y(v) = sλsign(v)
ρ|v|−1
ρ−1

} (6.12)

where λ is a covering factor determining the extension of the sampled area, s is the re-
scaling factor (cf. Section 6.2) and ρ is the fixed ratio of the geometric progression. The
points of G′F in image I′ are defined by the projections of points of G via the transfor-
mation A: G′F = A(GF).
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Figure 6.2: Representation of a focused grid. Sampling is denser and heavier at the
center. Colors represent the Gaussian weight.

Besides, for comparing the intensities, we use the following Gaussian weight:

w(u,v) =
1

2πσ2 exp(−4x(u)2 +4y(u)2

2σ2 ) (6.13)

where σ is chosen such that w(u,v)≈ 1
2 for (u,v) ∈ {(0,n),(0,−n),(n,0),(−n,0)} (cf. Sec-

tion 6.7.1). Figure 6.2 illustrates the shape of our grid for the case of n=7.
As above (cf. Section 6.2.1), we actually consider a change of reference frames of

the pixel coordinates in I and I′ such that (xx,xy) = (x′x,x′y) = (0,0) in the new frames.
Expressi

Given the change of reference frames, the dissimilarity η we minimize at each iter-
ation can be expressed as:

η(A) = ∑
(x,y)∈GF

(x′,y′)=A(x,y)

1
2πσ2 exp(−x2 + y2

2σ2 )
[
rs I′(x′,y′)+ rt − I(x,y)

]2 (6.14)

As above, we look for a small displacement (dx′,dy′) of (x′,y′) that minimizes the
dissimilarity η(A), i.e., a small change dA of the affinity A that would induce such a
displacement (dx′,dy′). We similarly obtain a convex system for dA that is a variant of
Equation (6.10), with an added weight and a different grid support:

argmin
dA

∑
(x,y)∈GF

(x′,y′)=A(x,y)

1
2πσ2 exp(−x2 + y2

2σ2 )
[
rs
(
I′(x′,y′)

+ g′x(x
′,y′)(da11 x+da12 y+da13)

+g′y(x
′,y′)(da21 x+da22 y+da23)

)
+ rt − I(x,y)]2 (6.15)

Also as above, the algorithm iterates as long as the dissimilarity η(A) decreases
with a newly interpreted A, or until a fixed maximum number of iterations is reached.
As the optical flow constraint is only a first order approximation, and as we can be
initially far from the optimal solution, we can fall into a local minimum from which
we cannot escape. To reduce the impact of such cases, if A+ dA does not decrease η,
we heuristically try successive smaller modifications A+ 1

2 dA and A+ 1
4 dA to possibly

update A. Otherwise, the LSFM algorithm explores the next (finer) image scale (see
following Section 6.4.3), or stops if it is the last (finest) scale. The pseudo-code for the
LSFM iterative optimization at a single scale is shown in Algorithm 1.
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Input: I, I′: images at a given scale
Ainit: initial transformation matrix

Result: Refined transformation A

A← Ainit

ηbest← η(A), according to Eq. (6.14)
repeat

compute dA by Eq. (6.15)
z← 1
for i← 0 to 2 do

ηnew← η(A+ zdA)
if ηnew < ηbest then

Abest← A+ zdA
break for

else
z← z/2

end
end

until A does not change;
return A

Algorithm 1: Pseudo-code for the LSFM iterative optimization at a given scale

6.4.3 Scale exploration

To provide an additionnal robustness, rather than directly adjusting the feature posi-
tions at their original scale, we perform a coarse-to-fine refinement. For this, we explore
two pyramids of scaled images, for I and I′, similar to the pyramids used in SIFT detec-
tion. These pyramids are independant of the matches; they are created once for a given
pair of images, and explored for each match, possibly differently.

Initialization. Given a feature match in I, I′, for every precomputed image scale we
initialize a grid GF and estimate a corresponding initial affinity Ainit based on the rel-
ative position and orientation of the two considered features. We measure the initial
dissimilarities η(Ainit) at each of the scales and choose as the starting scale the one that
yields the smallest η(Ainit).

Coarse-to-fine process. We begin adjusting the point location in I′ at this starting
scale, and progressively refine the location by reducing the scale until we reach the
original image scale. Note that we do not search here an optimal scale as in [40]; for our
problem, the original scale is the best one regarding the final accuracy.

More precisely, after convergence to an affinity Aup at at a given scale sup, we restart
the affinity refinement at the scale below slow using as initial estimate Ainit the corre-
sponding transformed (scaled) affinity downscaled(Aup). As a high blur may cause devi-
ation from the optimal solution, we make sure there is an actual improvement when we
restart the refinement process at the lower scale. Concretely, at the lower scale slow, if the
measure of dissimilarity η computed with the inherited scaled affinity downscaled(Aup)
is larger than the dissimilarity computed using the affinity Alow defined by just the rel-
ative position and orientation of the matched features at this scale, then Ainit = Alow is
used as the initial estimate instead of downscaled(Aup).

In practice, in our experiments, we explore 5 octaves of scale, with a geometric
progression of ratio

√
2. For better understanding of the scale exploration, please refer

to Algorithm 2.
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This coarse-to-fine strategy improves robustness, preventing some affinity refine-
ments to be caught in a poor local minimum if it were performed directly at the original
scale, and thus leading to a better average accuracy.

The complete LSFM method with scale exploration is described with pseudo-code
by Algorithm 2, based on the above definitions.

Input: (I j)0≤ j≤S and (I′j)0≤ j≤S: pyramids of images at different scales,
with I0 = I, I′0 = I′

m = (x,x′): match to refine
Result: Affinity A, to correct the position of x′ as A(x)

for j← S to 0 do
Â j← affinity defined by relative position and orientation of x,x′ at scale j

end
j∗← argmin0≤ j≤S η(Â j), with η as defined by Equation (6.14)
Ainit← Â j∗

for j← ( j∗−1) to 0 do
A j← affinity computed from initial estimate Ainit at scale j by Algorithm 1
if j > 0 and η(downscaled(A j))< η(Â j−1) then

Ainit← downscaled(A j)
else

Ainit← Â j−1
end

end
return Ainit

Algorithm 2: Pseudo-code for LSFM with scale exploration

6.5 Parameters

In our experiments, we used a spline interpretation of order 5 to get sub-pixel intensity.
We set n = 7 as a trade-off between accuracy and computation time. For the grid focus,
we used ρ = 1.1 in order to make the samples at the grid center roughly twice as dense
(in one direction) as at the border, since 1.1n = 1.95≈ 2.

The σ and λ parameters are related to region size; here we decided first to set the
Gaussian weight to σ = 0.9λ

ρn−1
ρ−1 depending on the scale factor λ. Then λ = 1.57 via

experiments described in Section 6.7.1.

6.6 Impact of the kind of feature detector

LSM-like refinement is more accurate for regions with high gradients. SIFT does not
necessarily detect points in such regions, but its robustness under various conditions
(re-scaling, view-point change, light condition change, etc.) and its generally large
number of detections and matches compensate. Besides SIFT tends to find points
within objects, where relative intensity is more stable, compared to corners that have
strong but less reliable gradients because they often correspond to occlusion edges.
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6.7 Experiments

We compare our focused matching (LSFM, Section 6.4) with standard least square match-
ing (LSM, Section 6.2). Rather than just considering planar scenes and measuring re-
projection errors, we directly measure the impact in terms of camera rotation and trans-
lation error eR,et after calibration.

SIFT features are first detected and matched. The correspondences are cleaned by
the K-VLD filter (cf. Chapter 4). They are then refined by a specific method, LSM or
LSFM. Finally, ORSA+IRLS uses the refined matches to recover the camera position.
The ORSA algorithm [57] is a state-of-the-art RANSAC variant, suited for accuracy
(as opposed, e.g., to robustness or speed); IRLS tries to minimize the sum of squares
of geometric errors between points in the right image and the epipolar line of their
corresponding points in the left image. For the evaluation, we compare eR and et to
the ground truth. In order to produce reliable measures, all the results we provide are
averaged over 20 runs.

Datasets. Only datasets with highly accurate ground-truth calibration can be used
for validation. We experimented with the full dataset of Strecha et al. [73], a de facto
standard in camera calibration: 6 groups of 8 to 30 images totaling 95 pairs of successive
images. For each pair, SIFT feature points are detected and matched with the usual
setting [49] (no tweaking as in Sect. 7.2.2), i.e., a ratio of descriptor distance to next
best match at most 0.8. We ran the same experiment with the DTU robot dataset [1].
However, as it is huge (about 0.5 To), we only considered 9 of the 60 groups of images,
covering various themes (scenes 1, 2, 4, 9, 10, 12, 21, 28, 52), in the reduced format
(fewer images, yielding 12 images pairs: 1-12, 12-24, 24-25, 25-26, 26-37, 37-49, 50-57,
57-64, 57-65, 57-94, 64-95, 64-119), with identical illumination condition (number 08 for
all tests), but full-size images.

6.7.1 Covering factor evaluation

The first set of experiments is designed to estimate optimal coverage zones (cf. Sec-
tion 6.3) for LSM and LSFM methods when n = 7. By varying the covering factor λ,
LSM and LSFM may perform differently. We test both with different covering factors
in a fixed range, and compare them under their best setting. Note, when we vary the
covering factor, we also modify the parameter σ of LSFM since σ depends on λ (cf.
Section 6.4.2).

We test both with λ = k
2n+1 ∈ {1.00, 1.29, 1.57, 1.86, 2.14, 2.43} , which corresponds

to coverage zones for LSM of 14×14, 18×18, 22×22, 26×26, 30×30 and 34×34 pixel
square.

Detailed results are provided in Table 6.1. For LSM, we obtained the best results on
average with λ = 1.86. For LSFM, the best results were obtained for λ = 1.57. These
are the (different) values we kept for the two methods in all the following experiments.
Note that the size of the coverage area for the regular LSM grid is 2λn while the size
of the focused grid is 2λ(ρn−1)/(ρ−1). Although the covering factor of LSM is larger
than the one for LSFM, the corresponding grid is smaller.

6.7.2 LSM vs. LSFM

In the second set of experiments, matches are refined by the following methods: LSM,
LSFM without scale exploration (i.e., LSM with focused grid), and full LFSM (with both
focused grid and scale exploration). Methods are tested using their corresponding best
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Strecha et al. [73] Coverage zone length k (Covering factor λ)
LSM 14 (1.00) 18 (1.29) 22 (1.57) 26 (1.86) 30 (2.14) 34 (2.43)
eR (deg ×10−2) 9.04 8.79 8.21 7.86 7.56 7.76
et (deg) 1.02 0.97 0.91 0.82 0.79 0.83
LSFM 19 (1.00) 24.5 (1.29) 29.6 (1.57) 35.3(1.86) 40.6 (2.14) 46.1 (2.43)
eR (deg ×10−2) 7.00 6.24 5.86 6.16 5.71 5.88
et (deg) 0.73 0.64 0.59 0.60 0.55 0.58

DTU robot [1] Coverage zone length k (Covering factor λ)
LSM 14 (1.00) 18 (1.29) 22 (1.57) 26 (1.86) 30 (2.14) 34 (2.43)
eR (deg ×10−2) 21.52 21.27 20.90 21.16 21.10 21.31
et (deg) 0.89 0.85 0.83 0.88 0.91 0.89
LSFM 19 (1.00) 24.5 (1.29) 29.6 (1.57) 35.3(1.86) 40.6 (2.14) 46.1 (2.43)
eR (deg ×10−2) 20.67 20.52 20.69 20.69 20.30 20.78
et (deg) 0.70 0.65 0.65 0.67 0.68 0.73

Table 6.1: Match refinement evaluation for LSM and LSFM with various values of the
covering factor λ. The different values of λ correspond different values of the length k
of the coverage zone, in {14,18,22,26,30,34}. The best λ for LSM is in red, and the
best λ for LSFM is in green.

eR (deg ×10−2) LSM LSM + foc. grid LSFM gain
Strecha et al. [73] 7.56 6.73 5.86 1.29
DTU robot [1] 21.05 20.83 20.68 1.01
et (deg) LSM LSM + foc. grid LSFM gain
Strecha et al. [73] 0.79 0.72 0.59 1.33
DTU robot [1] 0.83 0.69 0.65 1.28

Table 6.2: Match refinement evaluation using LSM, LSM with focused grid and LSM
with focused grid and scale exploration (LSFM). The gain factor measures the improve-
ment of LSFM over LSM.

covering parameters given by previous experiments (cf. Section 6.7.1). This allows us
to see the contribution of the different components of LSFM.

For LSFM, we use again a focused grid with n= 7, λ= 1.57, ρ= 1.1 and σ= 0.9λ
ρ|n|−1
ρ−1 .

We explore 5 octaves of scale, dividing each octave in two, i.e., with a geometric pro-
gression of ratio

√
2.

Table 6.2 shows that, apart from a poor reduction of rotation error in the DTU robot
dataset, LSFM has a gain factor from 1.28 to 1.33 in accuracy. It also show that both the
focused grid and the scale exploration contribute to a better accuracy.

6.8 Extension: Surface normal estimation

6.8.1 Introduction

Suppose that for a match m = (x,x′), the small regions around two blob-like features
x and x′ are locally planar. Then the two regions around features at x and x′ are lo-
cally related by a homography H. According to (3.8) (see also [34, §13, Eq.(13.2)]), the
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homography matrix can be expressed as:

H = cK′(R− tnT/d)K−1, for some c ∈ R∗ (6.16)

where the vector n represents the surface normal, satisfying nT X+ d = 0 for all points
on this plane. If the camera intrinsic parameter K and K′ are known and if the trans-
formation H and camera position can be estimated, we can also estimate the surface
normal n for the features.

We have tried to refine the match location accuracy by estimating the local planar
perspective transformation (homography H), but the results did not show significant
improvements. On the contrary, the use of H leads to slower convergence and more lo-
cal minima. This is why, in LSFM, we choose to only estimate the affine approximation
of the transformation.

Still, in this section, we present a method to recover the missing part of the homog-
raphy transformation by an iterative affine estimation method, which can estimate local
surface normals over refined matches when the viewpoint change is not too large.

6.8.2 Homography Recovery

We consider that the affine transformation A is a first order approximation of the per-
spective transformation H. For a given homography matrix, we rewrite (6.16) as

K′−1HK = Rc− t(
c
d

nT ). (6.17)

Equation (6.17) is better conditioned than (6.16). We note W T = ( c
d nT ) = [w0,w1,w2].

With estimated R and t, (6.17) becomes an overdetermined linear system in variables
(c,w0,w1,w2). Under a moderate view-point change, the estimated affine transforma-
tion is not too far from the perspective transformation. The surface normal is then given
by W after normalization.

In order to better estimate n, we recover the homography H via (6.16), and refine
the match from the initial transformation H̃ with H31, H32 fixed. In our experiment,
R and t are not re-estimated after each iteration, since we did not observe any impact
on the accuracy for R and t with re-estimation. Experimentally, three iterations of the
refinement-estimation process are more than enough to estimate n; more iterations do
not yield a significant improvement. The algorithm for the surface normal estimation
is described by Algorithm 3.

6.8.3 Normal illustration

Lacking quantitative data for surface normal evaluation, we just illustrate a few qual-
itative results. In Figure 6.3, we present a pair of images from Strecha et al. [73] and
reconstruct the surface normals at match locations.

Normals are reasonnably well reconstructed with or without homography-recovering
iterations. However, results are slightly better with homography-recovering iterations:
normals are more perpendicular to the wall with our algorithm than with the direct
result from match refinement.

6.9 Conclusion

In this chapter, we have proposed an extension of the least square matching method
to refine match locations. According to experiments involving real data with ground-
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Input : I and I′: given images
K′ and K′: intrinsic parameter matrix
R and t: estimated camera rotation matrix and translation vector
m = (x,x′) : match where to estimate the normal

Output: the surface normal vector n

initialize H by feature rotation, re-scaling and translation;
for i← 0 to 2 do

perform LSFM to refine H with fixed H31 and H32 (cf. Algorithm 2);
solve in the least square sense the overdetermined linear system in (c,W ):
Rc− tW T = K′−1HK;
compute H←K′(Rc− tW T )K−1 (update H31 and H32);

end
n← W

|W | ;
return n;
Algorithm 3: Pseudo-code for estimating the normal for matched features

truth calibration, our extended match refinement leads to a significant reduction of SfM
errors.

This method is valuable for two-view stereovision. However, extending it to the
multiple-view case is not trivial because of internal track consistency: the location of
points in a track would need to be optimized simultaneously in all associated images.
This would involve a more complex track refinement.

We will see in the next chapter another method to improve two-view SfM accuracy
(match selection), which can be combined with match refinement to achieve even better
accuracy.
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Figure 6.3: Surface normal estimation (in blue) for feature points reconstructed in 3D
(in red) by SfM from the displayed image pair. Views from above; points behind the
walls correspond to features on the roof. Top: estimated normals from match refine-
ment without homography-recovering iterations. Bottom: estimated normals with
homography-recovering iterations. We can observe that normals are more perpendic-
ular to the wall with our algorithm than with the direct result from match refinement.
The difference is observable in particular in the left bottom area of the scene.
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Chapter 7

Match selection for highly accurate
two-view SfM

In this chapter, we propose a method to greatly enhance the accuracy of two-view struc-
ture from motion (SfM), which is independent from that of Chapter 6. We first answer
the question: “fewer data with higher accuracy, or more data with less accuracy?” For
this, we establish a relation between SfM errors and a function of the number of matches
and their epipolar errors. Using an accuracy estimator of individual matches, we then
propose a method to select a subset of matches that has a good quality vs. quantity
compromise. It can be combined with match refinement techniques of Chapter 6, where
both selection and refinement contribute independently to a better accuracy.
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7.1 Introduction

As feature detection and matching is not perfect, two main hurdles can disturb the SfM
process: the matches can be either incorrect or inaccurate. There is actually a grey area
between these notions: incorrect matches reduce SfM accuracy, sometimes to the point
of making it fail, while inaccurate matches are considered as good enough for calibrat-
ing, even though they also degrade SfM accuracy. Incorrect matches are generally dealt
with using RANSAC [27] or one of its numerous variants [20, 21, 57, 77]. It separates in-
liers (supporting matches) from outliers (conflicting matches), trying to find the largest
consensus on an estimated fundamental matrix, using a threshold (fixed or adaptive) to
assess consistency. While this robust selection method can eliminate many mismatches,
a number of false positives can remain among the selected inliers because the rejection
criterion is based on the distance to epipolar lines, which provides a necessary but not
sufficient condition (because of ambiguity along epipolar lines).

Compromises at two different levels impact SfM accuracy. First of all, statistically,
the more matches to calculate the fundamental matrix, the more accurate the estima-
tion. A first compromise thus concerns the RANSAC selection criterion: if it is too
permissive, matches considered as inliers are more numerous but are also more likely
to be contaminated by wrong matches, and accuracy drops; if the criterion is too strict,
there are too few inliers to get a good accuracy. The second compromise concerns the
accuracy heterogeneity of individual inliers: keeping only the most accurate inliers can
naturally improve SfM accuracy; but it can also degrade it as the estimation is based on
fewer points. The first compromise has indirectly been widely studied: people try to
select as many good matches as possible, while excluding as many wrong matches as
possible. But the second compromise, quality vs. quantity, has been poorly addressed.
This chapter presents an original method to find a good balance between the number
of inliers to consider for SfM estimation and their expected accuracy.

Organization of this chapter

We establish an empirical statistical relationship between the inaccuracy of matches,
their number, and various indicators of SfM inaccuracy (Section 7.2). We describe an
original method that exploits this relationship to select matches that are likely to im-
prove SfM accuracy (Section 7.3). Section 7.4 address to the ranking function used in
our algorithm to select better subsets of matches. Section 7.5 presents two variants of
our match selection algorithm, one for independent use and one to be used in combi-
nation with match refinement. We show in Section 7.6 that this method by itself im-
proves substantially the accuracy of structure from motion, an effect that is amplified
when combined with match refinement. We try to illustrate the impact our algorithm
can have in point cloud reconstruction in Section 7.7 and measure the size of selected
subsets of matches in Section 7.8. Finally, a discussion about the possible alternative
algorithms is give in Section 7.9.

7.2 Statistical behavior of SfM errors

7.2.1 Theoretical results

We consider a pair of images I, I′, obtained by cameras C,C′ with 3× 4 projection ma-
trices P, P′ and 3× 3 calibration matrices K, K′. We also consider a set of matches M
between I and I′, i.e., pairs of points m = (x,x′) where x is the projection of a 3D point X
on I, i.e., x = PX in homogeneous coordinates, and where x′ is a point in I′ considered
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as matching with x, possibly with some inaccuracy. In the general case, a fundamental
matrix FM between I and I′ can be estimated from matches M, and FM may in turn be
used with K, K′ to estimate projection matrices PM, P′M on I, I′. The resulting reprojec-
tion error of X in I′, i.e., the discrepancy in I′ between the exact reprojection of X by P′

and the estimated reprojection of X by P′M is the pixel distance e2D(M,m) = d(P′X,P′MX).
In case images I and I′ are related by a homography H, and considering matching

points x′ as possibly inaccurate measurements of reprojected points P′X=Hx in I′, Hart-
ley and Zisserman [34, §5.1.3, Eq.(5.5)] show that, if these measurements are subject to
independent Gaussian noise with standard deviation σ2D(M), then the estimation error
e2D(M) of reprojected points in I′ by the estimated homography HM, or equivalently
via P′M, is:

e2D(M) = Em∈M[e2D(M,m)2/|M| ]1/2 = 2σ2D(M)/
√
|M|. (7.1)

Dividing the estimation error by 2 thus requires 4 times as many matches, or matches
with location error divided by 2. This bound is optimal (assuming no other errors such
as distortion), and achieved for the Maximum Likelihood Estimator (MLE). Finding
a similar bound for the fundamental matrix is impractical because it is a non convex
problem in very high dimension. We do not try to solve it, but we draw inspiration of
the MLE bound in what follows.

Another reading of (7.1) is that if we can find a subset Msub⊂M such that matching
points x′ in Msub are subject to independent Gaussian noise with standard deviation
σ2D(Msub)< σ2D(M) compared to their expected location Hx, and if σ2D(Msub)/

√
|Msub|<

σ2D(M)/
√
|M|, then eMsub < eM, and HMsub is thus a better estimate of H than HM. Now if

we have a way to evaluate σ2D(Msub) for any Msub, the optimal subset M∗sub of matches
for estimating H is:

M∗sub = argmin
Msub⊂M

σ2D(Msub)/
√
|Msub|. (7.2)

HM∗sub
minimizes reprojection errors w.r.t. ground truth H.

To our knowledge, a similar result is not known for the fundamental matrix. The
situation is more complex in this case as estimating F , with 7- or 8-point methods, relies
on singular value decomposition (SVD) and/or requires solving complex polynomial
systems.

7.2.2 Empirical Results

As a theoretical result is difficult to obtain, we study empirically the influence of |M|
and σ2D(M) on SfM accuracy. Using a collection of images with accurate ground-truth
calibration, presenting various feature distributions, we measure the following:

• FM is the fundamental matrix estimated from M using ORSA (a RANSAC vari-
ant) [57] and iterative re-weighted least squares (IRLS) (see Section 3.7.3).

• eF(M) is the root mean square error (RMSE) of the distance eF(M,m) of x′ to the
FM-epipolar line of x in I′, for all m=(x,x′)∈M.

• eR(M) = ∠RgtR−1
M is the angle between the ground-truth rotation Rgt and its esti-

mate RM based on M.

• et(M) = ∠(tgt, tM) is the angle between the ground-truth translation direction tgt
and its estimate tM.

• e3D(M,R, t) is the RMSE of the distance of the 3D point X̂ triangulated from x,x′
using a given rotation and translation R, t, to the ground-truth 3D point X, for all
m=(x,x′)∈M. We also define e3D(M) = e3D(M,RM, tM).
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7.2.3 Realistic, semi-synthetic dataset

Estimating SfM errors requires a ground truth for both calibration and matched points.
While accurate camera calibrations can be determined using LiDAR data [73], it is diffi-
cult to construct a significant number of accurate ground-truth point matches. For this,
we resort to semi-synthetic ground-truth datasets: the images, the camera poses and
the distribution of matching points are real, but the actual point locations are adjusted
to make sure they are error-free.

Concretely, given a pair of images I, I′ with known calibration Pgt, P′gt, we detect
and match SIFT feature points in each image. We use a descriptor distance ratio to next
best match at most 0.8, which is the standard setting [49]. As these matches may still
contain mismatches, we first clean them using the K-VLD method(cf. Chapter 4, that
eliminates many false matches, including near the epipolar lines, and then using ORSA,
an adaptive state-of-the-art variant of RANSAC by Moisan and Stival [57], known for
its robustness in practical SfM systems [61]. It results in an almost mismatch-free set
of matches M̃. Treating them as inliers, for each match m̃=(x̃, x̃′)∈M̃, we construct
an estimated 3D point X by triangulation using ground truth calibration Pgt, P′gt, and
reproject it onto images I, I′ as new 2D points (x,x′)=m. The resulting set of matches Mgt
yields a perfect ground truth that is realistic in terms of feature distribution in images
and in space.(location and number)

We then add noise by randomly moving in image I′ the matched points x′, using
an isotropic Gaussian distribution with given standard deviation σ2D. This asymmet-
ric setting reproduces the theoretical hypothesis mentioned in Section 7.2.1. (Adding
noise to points in both images experimentally leads to almost identical results, scaled
by a constant factor.) To also conform to this hypothesis, the noise is independent of the
characteristics of the features that originated the synthetic points, such as scale. More-
over, we add variation to the number of matches by randomly selecting only a given
ratio r. This defines new sets of matches M=M(σ2D,r).

In our experiments, we use Strecha et al.’s dataset [73]. It consists of 6 groups of 8
to 30 images with both internal and external accurate ground-truth calibration. We
consider all pairs of consecutive images in all image groups, in which we detect and
match SIFT features. The number of matches typically varies between 300 and 6000.
For each image pair, we consider discrete ratios of matches r = k2/100 with k = 4, . . . ,10
(thus different variant of point configurations), and standard deviation σ2D = 0.2+0.3k
with k = 0, . . . ,6 (in pixels). For each combination of r and σ2D, we sample 50 noisy
variants of the data, estimate their SfM accuracy, and average the corresponding error
measures by quadratic mean (RMS).

7.2.4 Analysis

Adding noise σ2D and ratio r as M=M(σ2D,r) has a direct impact on epipolar error eF(M)
and on rotation and translation errors eR, et . Two observations are important and guide
the following work.

Error source decomposition

Noise σ2D has an impact on the error e3D of estimated 3D points in two ways. First,
it directly introduces error due to noise in matches, which linearly increases with σ2D.
Second, camera motion estimation RM, tM from noisy matches generates a systematic
indirect error due to calibration, see Figure 7.1.
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Figure 7.1: Reconstruction error composition due to σ2D
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Figure 7.2: Amplification of 3D reconstruction error when σ2D grows

Figure 7.2 illustrates the ratio between the combined reconstruction error (direct
reconstruction error plus indirect camera RM, tM errors) and the pure direct reconstruc-
tion error (camera position set to ground truth value Rgt, tgt). With the increase of σ2D,
the calibration errors quickly amplify the 3D reconstruction errors (average on image
pairs). This observation shows that the camera calibration error is the main source of
3D reconstruction error, and reducing errors in RM, tM is a promising way to improve
reconstruction accuracy.

Behavior of reconstruction errors e3D, eR and et

Experimentally, we observe in Figure 7.3 that e3D, eR and et all are highly correlated to
N= |M| and σ2D: despite some variations, we notice that the average values of loge3D,
logeR and loget are more or less linear with respect to logN when σ2D is fixed, with some
slope α depending on the image pair, and more or less linear with logσ2D when N is
fixed (but not the configuration as when N < |M|, we draw N random matches among
the |M|matches.) with some slope−β also depending on the image pair. It is confirmed
by computing the regression correlation coefficient (RCC, see Section 7.11.1) of e3D, eR,
et with σα

2D/Nβ, which is in general very close to 1, as can be seen in Figure 7.4 (bottom 3
curves, plotted on the same diagram).

Besides, we also found empirically that σ2D is more or less proportional to eF(M),
not only to the exact epipolar error (i.e., w.r.t. the ground-truth fundamental matrix).
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Figure 7.3: Behavior of e3D, eR and et in a pair of images.
Row 1: the pair of images.
Row 2: error distribution w.r.t. different N and σ2D.
Row 3: average error w.r.t. different N and σ2D.
Row 4: ln of average error w.r.t. different lnN and lnσ2D.
From left to right, the error respectively represents e3D, eR and et .
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We thus hypothesize the relation:

eR,et ,e3D ∝

σ
α

2D

Nβ
∝

eα

F

Nβ
. (7.3)

With a fixed distribution of points, we should have α = 1 for small errors. Still
with a fixed configuration, but duplicating each match N′ = 2N (thus with the same
distribution), the variance σ2 of each estimated parameter is halved (cf. Section 3.8.1).
We should thus have N′β =

√
2Nβ, hence β = 0.5. This is consistent with (7.1), however

it does not hold when the point configuration varies. Experimentally, α and β can vary
significantly depending on images pairs and match sampling. In our semi-synthetic
dataset (cf. Section 7.2.3), β varies between 0.2 and 1.5. Yet, assuming relation (7.3),
knowing α/β is sufficient to compare errors for a given image pair:

e α

F

Nβ
<

e′ αF

N′β
⇔

e α/β

F

N
<

e′ α/β

F

N′
. (7.4)

The situation where all matched points are treated as inliers and contribute to esti-
mating F amounts to preferring the largest N (smallest 1/N) independently of eF , i.e.,
corresponds to α/β = 0. On the contrary, the larger α/β, the more aggressively low-
accuracy features should be discarded. As can be seen in Figure 7.4,

α/β≥ 2 almost consistently. (7.5)

7.3 Match Selection to Improve Accuracy

To improve accuracy, we estimate the SfM using a selected subset of good matches.

7.3.1 Cleaning up input matches

Although we use IRLS for estimating F , the level of accuracy we target may be sen-
sitive to mismatches remaining after RANSAC. We thus try early to eliminate these
mismatches from the set of input matches. We have to do it without introducing the
bias of an early approximate calibration estimation, which would be the case if we were
to first filter the matches using RANSAC. For this reason, we first clean up the matches
using the K-VLD method (cf. Chapter 4). Based on semi-local geometric and photomet-
ric consistency, it eliminates many mismatches without any calibration assumption.
Running ORSA afterwards for estimating F on the resulting set of matches M typically
(on Strecha et al.’s dataset) only removes on the order of 10% of matches (instead of up
to 90% without K-VLD) with an estimated threshold of less than 2-pixel error.

7.3.2 Comparing subsets of matches

The SfM errors we want to reduce are eR(M), et(M), e3D(M), though only eF(M) can be
easily measured given a pair of images and a set of matches M. However, as indicated
by (7.3) and (7.4), eR(M), et(M), e3D(M) vary monotonically with eF(M)α/β/|M|. The basic
idea of our match selection is to use only a subset of matches Msub ⊂M as soon as:

eF(Msub)
α/β

|Msub|
<

eF(M)α/β

|M|
. (7.6)

However, α/β is a priori unknown for an arbitrary image pair. Moreover, we want
to improve SfM without taking the risk to degrade it. What we need is a sufficient
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condition that reducing the number of matches will probably improve accuracy but
most certainly will not reduce it. For this, we look for a possible value γ ≥ 0 such that,
for any image pair, any set of matches M with corresponding α,β parameters, and any
subset of matches Msub ⊂M,

eF(Msub)
γ

|Msub|
<

eF(M)γ

|M|
⇒

eF(Msub)
α/β

|Msub|
<

eF(M)α/β

|M|
(7.7)

Given such a γ we could then choose the following optimal subset of matches M∗sub for
estimating F :

M∗sub = argmin
Msub⊂M

eF(Msub)
γ

|Msub|
(7.8)

The fundamental FM∗sub
minimizes reprojection errors w.r.t. ground truth Fgt.

Noting that (eF(Msub)/eF(M))γ < |Msub|/|M|< 1 and hypothesizing (7.5), we can choose
γ = 2 because then (eF(Msub)/eF(M))α/β < (eF(Msub)/eF(M))γ, ensuring condition (7.7).
Note that parameter γ is chosen as a safe empirical lower bound, not as an average
value, which is more robust. Still, a general method to treat a specific class of images
would be to run experiments as in Section 7.2.2 and to pick a value γ ≤ α/β. Without
loss of generally, we assume γ = 2 in the following.

7.3.3 Exploring subsets of matches

The difficulty to find M∗sub is to explore Msub⊂M, as there are too many such subsets
(2|M|). We propose to evaluate just a fraction of them, that has the most chances to
lead to smaller ratios eF(Msub)

2/|Msub|. For this, we rank the matches in M and use this
ordering to explore only subsets of top-rank matches. More precisely, we look for a
ranking function φ :M→ R to order the matches into a sequence (mi)1≤i≤|M| such that
i < j⇒ φ(mi)≤ φ(m j), and consider Msub(N) = {mi | 1≤ i≤N}. If the ranking function φ

is highly correlated to the reprojection errors e2D(M,m), and hence to the epipolar er-
rors eF(M,m), then

min
Msub⊂M

eF(Msub)
2

|Msub|
= min

N≤|M|

1
N

min
Msub⊂M
|Msub|=N

eF(Msub)
2

≈ min
N≤|M|

1
N

eF(Msub(N))2 (7.9)

We may thus resort to:

N∗ = argmin
N≤|M|

eF(Msub(N))2

N
(7.10)

M∗ = Msub(N∗). (7.11)

The number of subsets to explore is then reduced from 2|M| to |M|, which is still a
lot given that M may contain several thousands of matches. Note that eF(Msub(N))2/N
is not necessarily a convex function of N. However, it is in practice “smooth” enough
for a reduced exploration of 8 ≤ N ≤ |M| to make sense. In our various experiments,
we found it both robust and accurate enough to preserve in Msub a minimum of 40%
of matches in M and to explore fractions of M with a 5% step, i.e., to consider N = r|M|
with ratio r = 0.4+0.05k and k = 0, . . . ,12.
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7.4 Ranking matches

The choice of a ranking function φ varies with the kind of feature. For SIFT, it seems
natural to consider the distance between feature descriptors d(desc(x),desc(x′)) as an
indicator of feature accuracy. Besides, Tang [75, 76] showed that SIFT subsampling
amplifies location error by the feature scale factor scale(x). This leads us to define the
following ranking function:

φ(x,x′) = max(scale(x),scale(x′))d(desc(x),desc(x′)). (7.12)

Large features thus tend to be ordered last, unless their descriptors match well. Still,
although they have a poor accuracy, they are often useful for robustness, which could
be an issue if too many of them are discarded. But our use of K-VLD provides enough
(if not better) robustness improvement to compensate.

Note that the definition of φ relies only on detection scale and on the SIFT descriptor,
not on the detector. It can thus be used, e.g., for all detectors of Mikolajczyk et al. [54],
including SURF, Harris-Affine and MSER. Transposition to other descriptors is direct,
but the correlation coefficient should be checked.

7.4.1 SIFT ranking function

For SIFT, we have studied the behavior of matching position accuracy based on sev-
eral parameters such as the difference of descriptor vectors, the scale, the salience of
detection.

Dataset

We analyze these parameters using both real and synthetic images (actually transforma-
tions of real images). The images and transformation matrices are from Mikolajczyk’s
dataset [53]. We take the scenes "Bark", "Boat", "Graf" and "Wall" for analysis. For the
real image set, we note the first image of each scene as the image I and image of index 2,
3, 4 as I′ in each pair. For the synthetic image set, we note the first image of each scene
as the image I and interpolate the image I′ via the transformation matrix of image of
index 2, 3, 4. Thus we prepared 12 real images pairs (not shown here) and 12 synthetic
image pairs (Figure 7.5).

Match preparation

For each image pair, SIFT features are extracted and matched according to the nearest
neighbor strategy with the Lowe threshold equal to 0.8. Matches with less than 2 pixels
reprojection error are taken into consideration.

Correlation result

The correlation for real and synthetic image pairs is illustrated in Table 7.1. Note that
the correlation value varies with the upper bound of the position accuracy for matches.
We consider here accurate matches with reprojection error less than 2 pixels, which
explains why the figures are slightly different from that of our published work [48].

We found a correlation coefficient of 0.34 between φ and σ2D on real data (respec-
tively 0.62 for synthetic data), which proves the relevance of φ for ordering M. It out-
performs other indicators, such as feature saliency that has a correlation score of -0.05.
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Figure 7.5: Images used to study the ranking function of SIFT features and matches.
Apart from the first column, images are synthetic.

The Lowe score (ratio of descriptor distance to next best match) has an individual cor-
relation of 0.18 for real image pairs (0.28 for synthetic image pairs), but it does not
improve the global correlation when combined with φ. Figure 7.6 illustrates the fitting
result as a function of φ. Notice that the maximum error has a tendency to increase
with φ, but since most of the matches are in the region φ ≤ 0.4, we can rely on φ as a
good indicator overall.

Parameter Match accuracy (real) Match accuracy (synt.)
SIFT scale 0.28 0.52
Descriptor distance 0.07 0.11
Salience -0.05 -0.11
Lowe score 0.18 0.28
SIFT scale × desc. dist. (= φ) 0.34 0.62

Table 7.1: Correlation coefficient between match position accuracy and various param-
eters for real (middle column) and synthetic (right column) image pairs.

7.5 Algorithm

7.5.1 Match selection alone (without match refinement)

Our match selection algorithm is summarized on Figure 7.7. After feature detection
and matching, matches M are cleaned up using K-VLD and ordered using the ranking
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Figure 7.6: Left: Match position accuracy as a function of φ. Right: Match number
histogram as a function of φ.
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Figure 7.7: A global view of the match selection algorithm

function φ. Subsets Msub of sorted matches are explored to minimize eF(Msub)
γ/|Msub|

and the subset with the lowest value is used to construct the accurate model.

7.5.2 Match selection with match refinement

Match selection (this chapter) and match refinement (Chapter 6) are independent im-
provements that can be combined, match refinement coming first (see Figure 7.8). How-
ever, match refinement changes the correlation between the match errors and the indi-
cators of feature accuracy. When the two methods are combined, the match ranking to
create subset candidates (see Section 7.3) has to be changed.

Based on experiments with the same semi-synthetic data as in Section 7.3, we found
that, after match refinement, the dissimilarity measure η using the focused grid corre-
lates with the actual feature localization error, with a score of 0.27. Besides, intuitively,
the scaling and shearing of the image, as defined by the affinity estimate A, also has an
impact on the quality of matching (see Figure 7.9). Given orthogonal unit vectors (u,v)

in I, we consider the value maxu,v
|uT JT Jv|
|Ju||Jv| with J =

( A00 A01
A10 A11

)
, which is the cosine of

the maximum crushing after transformation. It can be shown to be simply expressed
as χ = |λ1−λ2|

λ1+λ2
, where λ1,λ2 > 0 are the eigenvalues of JT J (the proof is in Section 7.11.2).

It has a correlation score of 0.12 with the localization error. By a linear regression over
the same semi-synthetic data, we empirically define φ(m) = 0.19η+0.97χ , which has a
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correlation of 0.49 with the location error on synthetic dataset and 0.18 on real dataset.1

Note that the feature scale no longer correlates with the location error (correlation is
only 0.01) and is thus discarded from the ranking function.

u

v

u'

v'α
A

Figure 7.9: We look for maxu,v |cos(α)| with (u,v) orthogonal unit vectors passing
through the feature center in image I.

7.5.3 Comparison to related methods

The PROSAC variant of RANSAC also constructs a series of match subsets and iter-
ates first on better ones [20]. However, the target is not accuracy but fast convergence;
robustness and precision are similar to RANSAC. Note that our method is not an alter-
native to RANSAC nor a fundamental matrix estimator, but a complement: the choice
of a RANSAC variant as well as a fundamental matrix estimator is still required to
compute the calibration and the corresponding epipolar error eF for the different Msub
subsets considered. As a matter of fact, Section 7.6 shows that our method, combined
with different variants of RANSAC, consistently provides much better results than us-
ing the RANSAC variant alone.

7.6 Experiments

To evaluate our method, we consider some RANSAC variants [19, 78] among those that
are considered the most suited for accuracy (as opposed, e.g., to robustness or speed):

1These value are different from our published work [48], for two reasons. First, as mentioned above, we
are more interested in accurate matches (with reprojection < 2 pixels) instead of taking all filtered matches.
Second, we have slightly modified the refinement method, which leads to different correlation relations.
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Dataset Strecha et al. [73] DTU robot [1]
eR (deg ×10−2) raw MS MR MR+MS gain raw MS MR MR+MS gain
RANSAC 15.7 9.59 10.9 9.78 1.9 27.4 22.8 21.5 21.2 1.3
MSAC 13.1 9.53 9.55 8.73 1.7 22.5 22.3 21.2 21.2 1.1
LO-RANSAC 16.0 9.71 10.86 9.6 1.8 27.2 22.7 21.6 21.2 1.3
MLESAC 18.0 7.58 6.97 6.95 2.0 23.2 23.2 21.6 21.2 1.1
ORSA 11.5 6.74 5.86 5.90 1.9 23.1 22.1 20.7 21.3 1.1
et (deg) raw MS MR MR+MS gain raw MS MR MR+MS gain
RANSAC 1.85 1.08 1.25 1.10 1.7 3.71 1.42 1.42 0.81 4.5
MSAC 1.41 1.03 1.08 0.96 1.5 1.22 0.99 0.84 0.61 2.0
LO-RANSAC 1.75 1.10 1.24 1.08 1.7 3.70 1.42 1.42 0.82 4.5
MLESAC 1.84 0.74 0.70 0.67 2.7 1.90 1.09 1.11 0.71 2.7
ORSA 1.32 0.70 0.59 0.55 2.4 1.20 0.88 0.65 0.72 1.7

Table 7.2: Average rotation and translation errors: RANSAC alone (raw), + match se-
lection (MS), + match refinement (MR), + both (MR+MS), and gain raw/(MR+MS)

RANSAC with iterative re-weighted least squares (IRLS) for final model estimation [78,
method S1], RANSAC with M-estimator (MSAC), LO-RANSAC [21], MLESAC [77],
and ORSA with IRLS [57]. IRLS tries iteratively to minimize the sum of squares of ge-
ometric error between points in the right image and the epipolar line of corresponding
points in left image. For each of these variants, we compare 4 settings: RANSAC alone,
RANSAC preceded by match selection (MS), RANSAC preceded by match refinement
(MR) using LSFM, and RANSAC preceded both by match refinement and match se-
lection (MR+MS). A uniform threshold of 3 pixels (distance to epipolar line) is used in
the RANSAC variants for outlier rejection, apart from ORSA that chooses the threshold
automatically. All the results we provide are averaged over 20 runs.

Only datasets with highly accurate ground-truth calibration can be used for valida-
tion. We experimented with the full dataset of Strecha et al. [73], a de facto standard in
camera calibration: 6 groups of 8 to 30 images totaling 95 pairs of successive images.
For each pair, SIFT feature points are detected and matched with the usual setting [49]
(no tweaking as in Sect. 7.2.3), i.e., a descriptor distance ratio to next best match at
most 0.8. We ran the same experiment with the DTU robot dataset [1]. However, as it
is huge (about 0.5 To), we only considered 9 of the 60 groups of images, covering var-
ious themes (scenes 1, 2, 4, 9, 10, 12, 21, 28, 52), in the reduced format (fewer images,
yielding 12 images pairs: 1-12, 12-24, 24-25, 25-26, 26-37, 37-49, 50-57, 57-64, 57-65, 57-
94, 64-95, 64-119), with identical illumination condition (number 08 for all tests), but
full-size images.

7.6.1 Match selection and refinement

Figure 7.10 shows the average rotation and translation errors eR,et for each scene of
each dataset. Table 7.2 shows the average results2, illustrating both the separate and
combined benefits of MS and MR. Gain factors attain 2.0 for rotation and 4.5 for trans-
lation. Note that most parameters are learned on independent and widely different
images [54]; only the lower bound γ = 2 is defined from the feature distribution of [73]
and nothing else. Our results on datasets [1, 73] suggest that these parameters make
sense for a wide range of images.

2For the same reasons as mentioned just before, our figures here are slightly different (actually better)
than those in [48].
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Figure 7.11: Average results on the DTU robot datasets. See Figure 7.10 for notations.

7.7 Visual illustration of 3D reconstruction accuracy

We now illustrate the accuracy of our method regarding 3D reconstruction, i.e., struc-
ture. The problem is that a 3D ground truth is not available for the considered datasets.

To get around this problem, we construct a pseudo ground truth based on exact ro-
tation and translation, but approximate point matches: for each match m = (x,x′), in
images I, I′ with ground-truth camera centers C,C′, we construct a 3D point Xx(x′) as
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the point on line Cx that is the closest to line C′x′.
Note that we do not resort to ordinary triangulation here, e.g., mid-point of lines

Cx and C′x′, gold-standard algorithm, etc. [34]. The reason is that a 3D point X(x,x′)
originating from ordinary triangulation provides a kind of middle ground between
views x and x′, where (x,x′) does not try to aim at a specific 3D point. As a result, it
does not make sense with respect to match refinement. The fact is match refinement
is asymmetric; it only moves points in image I′. It yields a new putative match (x,x′′)
that tries to better locate x in 3D, which is different from X(x,x′). On the contrary, if we
consider 3D points Xx(x′) as indicated above, match refinement makes sense: we then
try to get closer to the 3D ground truth location of x both before or after refinement.

A drawback, though, is that the error of the pseudo ground truth with respect to the
unknown actual ground truth might be doubled compared to the ordinary triangula-
tion case. We accept that and consider the measure as relative but fair in the sense that
we evaluate all SfM methods with exactly the same 3D reconstruction principle.

Given that we only have a pseudo ground truth for point cloud (true camera posi-
tions with estimated 3D point position), it does not make sense to provide quantitative
results for e3D. Instead, we provide a qualitative visualization on two representative
image pairs.

Figures 7.12 and 7.13 show how our approach compares to RANSAC-only: recon-
structed 3D points are much closer to the pseudo ground truth with our method. Note
that points on the top left and top right parts of the views are not outliers; they corre-
spond to points on the roof. Figures 7.14 and 7.15 provide a similar example.
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Figure 7.12: An image pair in Strecha et al.’s dataset.

−20 −15 −10 −5 0 5 10

25

30

35

40

45

50

55

−20 −15 −10 −5 0 5 10

25

30

35

40

45

50

55

−20 −15 −10 −5 0 5 10

25

30

35

40

45

50

55

Figure 7.13: View from above of the 3D points reconstructed from the image pair in
Figure 7.12. The colors are as follows:

– black: pseudo ground truth,
– red: using ORSA alone,
– blue: using match selection (MS) before ORSA,
– green: using match refinement followed by match selection(MR+MS) before ORSA.

The difference is more noticeable in the circled area.
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Figure 7.14: Another image pair in Strecha et al.’s dataset.
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Figure 7.15: Front view of the 3D point cloud reconstructed from the image pair shown
in Figure 7.14. The colors are as follows:

– black: pseudo ground truth,
– red: using ORSA alone,
– blue: using match selection (MS) before ORSA,
– green: using match refinement followed by match selection(MR+MS) before ORSA.

The difference is more noticeable in the circled areas.
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7.8 Number of matches kept by match selection

Match selection removes matches when they are likely to degrade accuracy. Experi-
ments of Section 7.6 show that the remaining matches reduce the rotation and transla-
tion errors with respect to actual ground truth. It is interesting to look at the number or
proportion of matches that are discarded.

This is illustrated in Figure 7.16. Match selection alone (MS) keeps 61% of the
matches on average. But preceded by match refinement (MR), match selection (MR+MS)
keeps on average 78% of the matches, as they are more reliable. Note that the number
of used matches may slightly increase after match refinement because some matches
that were previously discarded by the final RANSAC stage (to compute motion) are
now considered as inliers. Note also that the ratio of used matched N rarely goes lower
than 40%, which justifies our heuristic for exploring only discrete fractions of Msub(N)
starting from ratio r=0.4 up (see Section 7.3.3).
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Figure 7.16: Left: number of matches selected to compute motion for image pairs in
Strecha et al.’s dataset. Right: proportion of selected matches. (The ratio can be greater
than 1 with MR-based methods as match refinement can turn outliers that are near
inliers into actual inliers.) Image pairs are ordered by increasing number of matches for
ORSA alone.

7.9 Various possible bias in alternative algorithms

7.9.1 Cleaning up matches with RANSAC before selection is biased

As mentioned in Section 7.3, the preliminary step of cleaning up matches before actual
match selection consists in eliminating likely mismatches. It is crucial not to introduce
any bias at this stage. We compare here some bad alternative of cleaning up choices for
match selection due to bias.

There would be a bias if we were to filter the matches using RANSAC and an es-
timated epipolar geometry. This is illustrated on Figure 7.17 (“ORSA before MS”), on
the 6 scenes of Strecha et al.’s dataset [73]: an increase in both rotation and translation
errors can be observed if match selection (MS) is preceded by ORSA [57] to first clean
up input matches.
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Figure 7.17: Possible bias with inappropriate match selection. Left: rotation error eR on
Strecha et al.’s dataset. Right: translation error et . Lines are defined as follows:

-+×-: ordinary ORSA alone (an a-contrario variant of RANSAC),
-×-: MS preceded by ORSA to first clean up input matches,
-◦-: MS using distance to epipolar line as ranking function φ,
-+-: MS using iterated distance to epipolar line and rmin = 0.4,
-C-: our MS method.

Scenes are ordered by increasing rotation error for ORSA alone.

7.9.2 Distance to the epipolar line is biased for ranking matches

Match selection relies on a ranking function φ to order the matches (cf. Section 7.4).
However, using geometrical information in function φ introduces a bias. In particular, it
is not appropriate to use the distance to the estimated epipolar line to rank the matches,
e.g., to define φ(m) = eF(M,m). This is illustrated on Figure 7.17 (“MS with φ = eF”), also
on the 6 scenes of Strecha et al.’s dataset: results are not as good as with our unbiased
ranking function.

This estimate can be slightly improved, although still with a bias. After estimating a
fundamental matrix FM′ for a given subset of matches M′ ⊂M, and considering another
subset of matches Msub⊂M, we can compute eF(M′,Msub), the root mean square error of
the distance of matches in Msub to the FM′-epipolar lines. The matches m∈M can then
be ordered by increasing distance eF(M′,m) as a sequence (mi)1≤i≤|M| such that i< j⇒
eF(M′,mi)≤eF(M′,m j). Noting M′|n = {mi | 1 ≤ n} the first n matches in M′ and setting
a minimum number of matches Nmin to retain, we can easily find the exact optimal
subset M′∗ ⊂M with respect to FM′ :

M′∗ = argmin
Msub⊂M

Nmin≤|Msub|

eF(M′,Msub)
2

|Msub|

= argmin
Msub=M′|n

Nmin≤n≤|M|

eF(M′,Msub)
2

|Msub|

= M′|n∗ , with n∗ = argmin
Nmin≤n≤|M|

eF(M′,M′|n)
2

n

A linear exploration of n in {Nmin, . . . , |M|} is enough to compute n∗, and then M′∗=M′|n∗ .
Starting with M′0=M, defining M′k+1=M′∗k , and stopping when M′∗k =M′k, we can itera-
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tively get a good estimate for M∗sub⊂M defined as:

M∗sub = argmin
Msub⊂M

eF(Msub,Msub)
2

|Msub|
. (7.13)

As shown of Figure 7.17 (“MS with iterative eF”), results with this estimate for mini-
mum ratio of kept points rmin=Nmin/|M′|=40% are slightly better on average than with
φ(m)=eF(M,m), but still not as good as with φ as defined in Equation 7.12 Moreover,
experiments show that this algorithm tends to lead to values of |M′∗k | that are close to
Nmin, which means it is not well behaved.

7.10 Conclusion

In this chapter we have studied, in the two-view case, the “quality vs. quantity” bal-
ance of point matches for structure from motion — a poorly addressed issue in the
literature. We have found a correlation between SfM errors and a function of the num-
ber of matches and their epipolar errors. Using this relation, we have presented a new
method for selecting relevant subsets of points to improve SfM accuracy. Using ex-
tensive experiments involving real data with ground-truth calibration, we have shown
that match selection and match refinement independently lead to a major reduction
of SfM errors over the best methods targeted at accuracy. Combining both methods,
the error is reduced by factors up to 2.0 for rotations and 3.8 for translations, a huge
improvement.

Our work is valuable for stereovision. Extending it to the multi-view case is not
trivial because of track consistency. First, removing one match does not necessarily
remove the associated points from the track and leads to a substantially different bun-
dle adjustment problem. Second, the location of points in a track would need to be
optimized simultaneously in all associated images. We actually want track selection (or
reduction) as well as track refinement. Besides, a good term to minimize to assess the ben-
efit of match reduction is likely to be linked to the total reprojection error with respect
to all 3D points after bundle adjustment. A study similar to that of Section 7.2 thus has
to be carried out.

Still, a lower bound of the possible improvement can be obtained by applying match
selection (MS) on each image pair in an SfM pipeline, before actual processing by the
system. A preliminary experiment on Strecha et al.’s dataset using OpenMVG [61],
a competitor to Bundler, shows improvements up to 15% on the average camera lo-
cation error, in particular on scenes with wider viewpoint changes and fewer images
(HerzJesu-P8 vs -P25, Castle-P19 vs -P30). Conversely, it may be the case that bundle
adjustment is efficient at averaging on long tracks, compensating for the inaccuracy of
point location. Track selection and track refinement are thus likely to be more profitable
on difficult scenes.

Finally, most of our results are constructed on empirical studies. We however be-
lieve the “quality vs. quantity” issue deserves a better theoretical treatment, including
a study of the influence of the configuration of points in images.
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7.11 Annex

7.11.1 Regression correlation coefficient

This measures the strength and the direction of a linear relationship between two vari-
ables. Suppose we have n observation of the two variables noted as xi and yi, i ∈ [1 . . .n]:

RCC =
n∑

n
i=1 xiyi− (∑n

i=1 xi)(∑
n
i=1 yi)√

n∑
n
i=1 x2

i − (∑n
i=1 xi)2

√
n∑

n
i=1 y2

i − (∑n
i=1 yi)2

. (7.14)

7.11.2 Maximum crushing expression derivation

Given orthogonal unit vectors (u,v) in I and an affine transformation matrix A, we con-

sider the value maxu,v
|uT JT Jv|
|Ju||Jv| with J =

(
A00 A01
A10 A11

)
, which is the cosine of the maximum

crushing after transformation. We prove that it can be simply expressed as χ = |λ1−λ2|
λ1+λ2

,

where λ1,λ2 > 0 are the eigenvalues of JT J. Thus maxu,v |cos(α)| = |λ1−λ2|
λ1+λ2

, with α illus-
trated in Figure 7.9.

Let m = (x,x′) be a refined match with estimated affine transformation A. The trans-

formed vectors (u′,v′) are equal to (Ju,Jv) with J =

(
A00 A01
A10 A11

)
. We get |cos(α)| =

|uT JT Jv|
|Ju||Jv| . We note (V1,V2) the unit eigen-vectors of JT J with non-negative eigenvalues

λ1,λ2 and decompose (u,v) under (V1,V2) as u = cos(θ)V1 + sin(θ)V2 and v =−sin(θ)V1 +
cos(θ)V2. We express cos2(α) as:

cos2(α) =
sin2(θ)cos2(θ)(λ1−λ2)

2

[λ1 cos2(θ)+λ2 sin2(θ)][λ1 sin2(θ)+λ2 cos2(θ)]
(7.15)

=
sin2(θ)cos2(θ)(λ1−λ2)

2

sin2(θ)cos2(θ)(λ2 +λ1)2 +(sin2(θ)− cos2(θ))2λ1λ2

Since the term in the denominator (sin2(θ)− cos2(θ))2λ1λ2 ≥ 0, we get:

cos2(α)≤ sin2(θ)cos2(θ)(λ1−λ2)
2

sin2(θ)cos2(θ)(λ1 +λ2)2
=

(λ1−λ2)
2

(λ1 +λ2)2 . (7.16)

Thus we have

max
u,v
|cos(α)|= |λ1−λ2|

|λ1 +λ2|
reached when |sin(θ)|= |cos(θ)| ⇔ θ =

π

4
mod

π

2
. (7.17)
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Chapter 8

Conclusion and perspectives

8.1 Conclusion

The work presented in this manuscript essentially aims at improving the SfM camera
calibration and hence the 3D reconstruction accuracy in the two-view case. We have
proposed different solutions to improve matching and camera pose refinement in order
to increase the robustness and accuracy in the SfM process.

Robustness and accuracy of matching

We have analyzed the feature matching processes, with graph-matching methods and
with RANSAC-like methods. We have found that the graph-matching methods lack a
robust match constraint based on photometric comparison and the RANSAC-like meth-
ods are limited in trying to eliminate false matches away from the epipolar lines. A
middle-level match validation process based on photometric consistence is needed to
improve the feature matching using a less local method. For that, our solution is the
following:

• We have defined a virtual line descriptor (VLD) that encodes photometric informa-
tion between points by a chain of SIFT-like descriptors. It offers the possibility
to compute a photometric consistency of a pair of matches by comparing their
connecting VLDs in the two images.

• We have proposed K-VLD, a semi-local matching method using the VLD con-
straint. This method verifies the photometric consistency of every match at a
larger scale than feature descriptors. K-VLD is a kind of light photometric-based
graph-matching method, which can be used as a filter before RANSAC methods.
It is robust both to rigid and non-rigid deformations. With a few modifications, it
can also be used to define an efficient segment matching algorithm.

The semi-local property allows the K-VLD method to apply to a large number of
matches in a reasonable time. In our experiments, the practical complexity of our algo-
rithm is quasi linear in the number of matches. On standard desktop machines, it takes
about one minute to process 10,000 matches and just a few seconds to process 1,000.

Accuracy of camera pose estimation

In order to make better camera pose estimation, we have analyzed the behavior of
camera rotation and translation errors under different conditions (varying image pair,
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number of matches and match error distribution). We have found that using all inliers
to estimate the fundamental matrix is not the optimal choice to get a better accuracy.

• A study of reconstruction accuracy in the two-view SfM case has been carried out
with theoretical support and experimental observations while varying the num-
ber of matches and the accuracy of matches. We obtain a “quantity vs. quality”
trade-off, which is safe for reconstruction accuracy.

• The “quantity vs. quality” study shows the possibility of using fewer matches
with higher location accuracy to get a better resulting accuracy in camera pose
estimation. This differs widely from traditional approaches, which use all inliers
to estimate the camera pose. Our match selection approach considers a series of
match subsets of different sizes and generate estimation candidates. The subset
and estimation with the optimal “quantity vs. quality” trade-off is kept.

• We have also applied the match-selection approach to features refined by our least
square matching extension and demonstrated that the match selection method
works even better.

8.2 Perspectives

K-VLD level up

As an initial work in semi-local matching method, K-VLD can be improved in several
aspects.

Speed and performance. The neighbor searching process is quadratic in the num-
ber of features. Given the fact that K-VLD looks only for approximately close matches
without order, with a high-enough number of neighbors, some more efficient neigh-
bor searching methods can be applied. For instance, the kD-tree structure used in [64]
would be well suited to our needs.

Besides, the VLD descriptor is strongly inspired by SIFT. It could be transposed
to a number of other existing descriptors to reduce the memory size of a VLD or to
accelerate its computation and comparison time.

To add invariance (at least in certain directions) against perspective transformation,
it also seems possible to use a non-uniform region according to the scale ratio between
features on the extremities of VLD.

Memory requirement. K-VLD requires a N ×N matrix to store pairwise match
consistency information, where N is the number of matches. But the algorithm tests
only a very small portion of the N×N comparisons. Every match compares only with
its neighbors, and the comparison stops before testing all neighbors when there are
enough supporting neighbors. Thus, a sparse structure would be more adequate than
an complete matrix.

Extension of match refinement and match selection

Presently, our match refinement and match selection are only applied to two-view SfM
and with a ranking function based on a simple combination of correlated parameters.
There is promising future work:
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Machine learning. First, the defined ranking function is quite simple. A deeper
study in match localization accuracy is needed to produce a better ranking function. It
is likely that using a learning process over complex parameters would further improve
the result.

Accuracy modelization. We have studied the impact of match quality and match
quantity over the reconstruction results. Other factors such as the match configuration
(i.e., distribution over images) have not been taken into account, except as dataset vari-
ations to average or bound. A analysis of specific match configurations should provide
a better model to estimate accuracy.

N-view case. Our methods has only been tested over two-view structure from mo-
tion. A naive application in using our method as an input filter did not show remark-
able improvements in accuracy for N-view SfM. A better and more natural extension
to the N-view case would consist in studying track refinement and track selection or
reduction. For track refinement, the difficulty is that the number of refinement param-
eters increases with the length of the track, making the algorithm hard to converge to
a global minimum. In terms of track selection/reduction, a reliable ranking function is
needed, which we have not discovered yet. However, if we “cheat” by using as ranking
function for tracks the average re-projection error calculated with ground-truth camera
positions, we can reduce by 40% the translation error using a global SfM method [62],
which indicates the remaining potential of progress.
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[66] MARKÉTA POTŮČKOVÁ. Image matching and its applications in photogrammetry. PhD
thesis. Aalborg Universitet, 2004 (see p. 103)

[67] RAHUL RAGURAM, ONDREJ CHUM, MARC POLLEFEYS, JIRI MATAS, and J FRAHM.
USAC: a universal framework for random sample consensus. In: Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 35:8 (2013), pp. 2022–2038 (see p. 41)

[68] P. REN, R. C. WILSON, and E. R. HANCOCK. High order structural matching
using dominant cluster analysis. In: Image Analysis and Processing (ICIAP). 2011
(see pp. 43, 50)

[69] EDWARD ROSTEN and TOM DRUMMOND. “Machine learning for high-speed cor-
ner detection”. In: Computer Vision–ECCV 2006. Springer, 2006, pp. 430–443 (see
p. 35)

[70] TONI F SCHENK. Digital photogrammetry: backgrounds, fundamentals, automatic ori-
entation procedures. TerraScience, 1999 (see p. 103)

[71] CORDELIA SCHMID and ANDREW ZISSERMAN. Automatic line matching across
views. In: Computer Vision and Pattern Recognition, 1997. Proceedings., 1997 IEEE
Computer Society Conference on. IEEE. 1997, pp. 666–671 (see p. 80)

[72] NOAH SNAVELY, STEVEN M. SEITZ, and RICHARD SZELISKI. Photo tourism: ex-
ploring photo collections in 3D. In: SIGGRAPH Conference Proceedings. New York,
NY, USA: ACM Press, 2006, pp. 835–846. ISBN: 1-59593-364-6 (see pp. 46, 68)

[73] C. STRECHA, W. VON HANSEN, L. VAN GOOL, P. FUA, and U. THOENNESSEN.
On benchmarking camera calibration and multi-view stereo for high resolution
imagery. In: CVPR. 2008 (see pp. 64, 65, 68, 69, 71, 77, 110–112, 119, 129, 130, 134)

[74] FRÉDÉRIC SUR, NICOLAS NOURY, and MARIE-ODILE BERGER. Computing the
uncertainty of the 8 point algorithm for fundamental matrix estimation. In: Pro-
ceedings of 19th British Machine Vision Conference (BMVC). 2008, pp. 96.1–96.10 (see
pp. 35, 105)

[75] ZHONGWEI TANG. High precision in camera calibration. PhD thesis. ENS Cachan,
2012 (see p. 125)



148 BIBLIOGRAPHY

[76] ZHONGWEI TANG, PASCAL MONASSE, and JEAN-MICHEL MOREL. On the match-
ing precision of SIFT. In: International Conference on Image Processing. IEEE. 2014
(see p. 125)

[77] P. H. S. TORR and A. ZISSERMAN. MLESAC: a new robust estimator with ap-
plication to estimating image geometry. In: CVIU, 78:1 (2000), pp. 138–156 (see
pp. 42, 49, 117, 129)

[78] PHILIP HS TORR and DAVID W MURRAY. The development and comparison
of robust methods for estimating the fundamental matrix. In: IJCV, 24:3 (1997),
pp. 271–300 (see pp. 43, 44, 128, 129)

[79] BILL TRIGGS, PHILIP F MCLAUCHLAN, RICHARD I HARTLEY, and ANDREW W
FITZGIBBON. Bundle adjustment-a modern synthesis. In: Vision algorithms: theory
and practice. Springer, 2000, pp. 298–372 (see p. 45)

[80] A. VEDALDI and B. FULKERSON. VLFeat: An open and portable library of com-
puter vision algorithms. In: Int’l Conference on Multimedia. ACM. 2010, pp. 1469–
1472 (see p. 60)

[81] R GROMPONE VON GIOI, JEREMIE JAKUBOWICZ, JEAN-MICHEL MOREL, and
GREGORY RANDALL. LSD: A fast line segment detector with a false detection
control. In: IEEE Transactions on Pattern Analysis and Machine Intelligence, 32:4
(2010), pp. 722–732 (see p. 84)

[82] LU WANG, ULRICH NEUMANN, and SUYA YOU. Wide-baseline image matching
using line signatures. In: Computer Vision, 2009 IEEE 12th International Conference
on. IEEE. 2009, pp. 1311–1318 (see pp. 80, 86)

[83] ZHIHENG WANG, FUCHAO WU, and ZHANYI HU. MSLD: A robust descriptor
for line matching. In: Pattern Recognition, 42:5 (2009), pp. 941–953 (see pp. 80, 81,
86)

[84] CHANGCHANG WU, BRIAN CLIPP, XIAOWEI LI, J-M FRAHM, and MARC POLLE-
FEYS. 3D model matching with Viewpoint-Invariant Patches (VIP). In: CVPR.
2008 (see p. 102)

[85] LUN WU, ARVIND GANESH, BOXIN SHI, YASUYUKI MATSUSHITA, YONGTIAN

WANG, and YI MA. “Robust photometric stereo via low-rank matrix completion
and recovery”. In: Computer Vision–ACCV 2010. Springer, 2011, pp. 703–717 (see
p. 16)

[86] WEI XU and JANE MULLIGAN. Performance evaluation of color correction ap-
proaches for automatic multi-view image and video stitching. In: Computer Vision
and Pattern Recognition (CVPR), 2010 IEEE Conference on. IEEE. 2010, pp. 263–270
(see p. 76)

[87] GUOSHEN YU and JEAN-MICHEL MOREL. ASIFT: An algorithm for fully affine
invariant comparison. In: Image Processing On Line, (2011). DOI: http://dx.doi.
org/10.5201/ipol.2011.my-asift (see p. 64)

[88] R. ZASS and A. SHASHUA. Probabilistic graph and hypergraph matching. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2008 (see pp. 50,
52, 60, 91)

[89] BERNHARD ZEISL, PIERRE FITE GEORGEL, FLORIAN SCHWEIGER, ECKEHARD G
STEINBACH, NASSIR NAVAB, and GER MUNICH. Estimation of location uncer-
tainty for scale invariant features points. In: Proceedings of 20th British Machine
Vision Conference (BMVC). 2009, pp. 1–12 (see p. 105)

http://dx.doi.org/http://dx.doi.org/10.5201/ipol.2011.my-asift
http://dx.doi.org/http://dx.doi.org/10.5201/ipol.2011.my-asift


BIBLIOGRAPHY 149

[90] LILIAN ZHANG and REINHARD KOCH. An efficient and robust line segment
matching approach based on LBD descriptor and pairwise geometric consistency.
In: J. Visual Communication and Image Representation, 24:7 (2013), pp. 794–805 (see
pp. 80, 81, 86)


	Preamble
	Methods for 3D reconstruction.
	Laser scanner
	Photometric stereo
	Structured light scanner
	Structure from Motion

	Applications of 3D reconstruction

	Introduction
	Thesis contribution
	Publications
	Software contributions
	Teaching and supervision

	Manuscript organization

	Overview of Structure from Motion
	Notations
	Introduction
	Projective geometry
	Pinhole camera model
	Two-view camera geometry
	Feature detection and description
	Feature detection
	Feature description

	Feature matching
	Local descriptor matching
	Global matching strategy
	Model fitting methods—the RANSAC family
	Graph matching methods

	Two-view camera calibration
	Model refinement
	Essential matrix decomposition
	Bundle adjustment

	N-view camera calibration
	Incremental methods
	Global methods


	Feature correspondence
	Introduction
	Feature matching by RANSAC
	Graph matching methods
	Region growing methods

	Our contributions in matching
	Robust 2nd-order photometric criterion
	Light semi-local matching strategy

	Virtual line descriptor (VLD)
	Geometric consistency
	Line covering
	Inter-point gradient histogram
	Inter-point orientation
	Distance between two VLDs
	VLD-consistency
	High contrast suppression

	K-VLD: a K-connected VLD-based matching method
	Neighborhoods
	Problem statement
	Algorithm
	Optimizations and heuristics

	Evaluation
	Changing imaging conditions
	Strong occlusions
	Ambiguity and RANSAC prefiltering
	Comparison of ASIFT and K-VLD

	Parameters
	K-VLD's contribution for N-view SfM
	Running time
	Limitations of VLD and K-VLD methods
	Limitation w.r.t. detection inaccuracies
	Limitation w.r.t. repetitive patterns

	Conclusion

	Various applications of the K-VLD method
	Introduction
	Image Color Blending
	Introduction
	Related work
	K-VLD dense common region detection
	Application to the color coherence
	Conclusion

	Line segment matching
	Introduction
	Related work
	Our contribution
	Line segment detection and description
	Initial candidate matches
	Pairwise geometric constraint
	Semi-local photometric constraint
	K-VLD method for line segments
	Experiments
	Computation time
	Conclusion

	Deformable object matching
	Introduction
	Experiments

	Urban localization from Google street views
	Introduction
	K-VLD contribution in air-ground image matching
	Experiment


	Match refinement for highly accurate two-view SfM
	Introduction
	Least Squares Matching (LSM)
	Local geometric transformation
	Local photometric transformation
	Local transformation extimation

	Sampling density and coverage zone
	Least Square Focused Matching
	Image intensity variation
	Focused grid
	Scale exploration

	Parameters
	Impact of the kind of feature detector
	Experiments
	Covering factor evaluation
	LSM vs. LSFM

	Extension: Surface normal estimation
	Introduction
	Homography Recovery
	Normal illustration

	Conclusion

	Match selection for highly accurate two-view SfM
	Introduction
	Statistical behavior of SfM errors
	Theoretical results
	Empirical Results
	Realistic, semi-synthetic dataset
	Analysis

	Match Selection to Improve Accuracy
	Cleaning up input matches
	Comparing subsets of matches
	Exploring subsets of matches

	Ranking matches
	SIFT ranking function

	Algorithm
	Match selection alone (without match refinement)
	Match selection with match refinement
	Comparison to related methods

	Experiments
	Match selection and refinement

	Visual illustration of 3D reconstruction accuracy
	Number of matches kept by match selection
	Various possible bias in alternative algorithms
	Cleaning up matches with RANSAC before selection is biased
	Distance to the epipolar line is biased for ranking matches

	Conclusion
	Annex
	Regression correlation coefficient
	Maximum crushing expression derivation


	Conclusion and perspectives
	Conclusion
	Perspectives


