A. Altland, D. Ben, and . Simons, Condensed matter field theory, 2010.

M. Büttiker, Absence of backscattering in the quantum Hall effect in multiprobe conductors, Physical Review B, vol.38, issue.14, pp.9375-9389246802, 1988.
DOI : 10.1103/PhysRevB.38.9375

L. Bonsall and A. A. , Some static and dynamical properties of a two-dimensional Wigner crystal, Physical Review B, vol.15, issue.4, pp.1959-1973, 1977.
DOI : 10.1103/PhysRevB.15.1959

M. [. Biddle, S. Peterson, . Das, and . Sarma, Variational Monte Carlo study of spin-polarization stability of fractional quantum Hall states against realistic effects in half-filled Landau levels, Physical Review B, vol.87, issue.23, p.235134, 2013.
DOI : 10.1103/PhysRevB.87.235134

[. Bernevig and N. Regnault, Anatomy of abelian and non-abelian fractional quantum hall states. Physical review letters, p.206801, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00522234

R. Cote and H. Fertig, Collective modes of quantum hall stripes, Physical Review B, vol.62, issue.3, 1993.

T. [. Chui, K. B. Hakim, and . Ma, Solid versus fluid, and the interplay between fluctuations, correlations, and exchange in the fractional quantized Hall effect, Physical Review B, vol.33, issue.10, pp.7110-7121, 1986.
DOI : 10.1103/PhysRevB.33.7110

[. Chang and J. K. Jain, Microscopic origin of the next-generation fractional quantum hall eeect, Phys. Rev. Lett, vol.92, 2004.

Y. Chen, R. M. Lewis, L. W. Engel, D. C. Tsui, P. D. Ye et al., Microwave Resonance of the 2D Wigner Crystal around Integer Landau Fillings, Physical Review Letters, vol.91, issue.1, p.16801, 2003.
DOI : 10.1103/PhysRevLett.91.016801

. R. Dts-+-99-]-r, D. C. Du, H. L. Tsui, L. N. Stormer, K. W. Pfeiier et al., West : Strongly anisotropic transport in higher two-dimensional landau levels, Solid State Communications, vol.109, issue.6, pp.389-394, 1999.

J. P. Eisenstein, G. S. Boebinger, L. N. Pfeiier, and K. W. , New fractional quantum Hall state in double-layer two-dimensional electron systems, Physical Review Letters, vol.68, issue.9, pp.1383-1386, 1992.
DOI : 10.1103/PhysRevLett.68.1383

K. Esfarjani and S. T. Chui, Solidification of the two-dimensional electron gas in high magnetic fields, Physical Review B, vol.42, issue.16, pp.10758-10760, 1990.
DOI : 10.1103/PhysRevB.42.10758

B. Ettouhami, C. Doiron, F. Klironomos, R. Côté, and A. Dorsey, Anisotropic states of twodimensional electrons in high magnetic fields, Phys. Rev. Lett, vol.96, 2006.

K. Esfarjani and Y. Kawazoe, A bilayer of Wigner crystal in the harmonic approximation, Journal of Physics: Condensed Matter, vol.7, issue.36, p.7217, 1995.
DOI : 10.1088/0953-8984/7/36/011

C. Engel, . Li, D. Shahar, M. Tsui, and . Shayegan, Microwave resonances in low-filling insulating phase of two-dimensional electron system, Solid state communications, pp.167-171, 1997.
DOI : 10.1016/S0038-1098(97)00302-5

[. Eisenstein, L. Pfeiier, A. Fogler, and . Koulakov, Independently contacted two-dimensional electron systems in double quantum wells Fertig : Unlocking transition for modulated surfaces and quantum hall stripes Laughlin liquid to charge-density-wave transition at high landau levels, Applied physics letters Phys. Rev. Lett. Physical Review B, vol.57, issue.8215, pp.2324-23263693, 1990.

[. Fogler, A. Koulakov, and . Shklovskii, Ground state of a two-dimensional electron liquid in a weak magnetic field, Physical Review B, vol.54, issue.3, p.1853, 1996.
DOI : 10.1103/PhysRevB.54.1853

G. Fano, F. Ortolani, and E. Colombo, Configuration-interaction calculations on the fractional quantum Hall effect, Physical Review B, vol.34, issue.4, pp.2670-2680, 1986.
DOI : 10.1103/PhysRevB.34.2670

M. M. Fogler, H. Fukuyama, P. M. Platzman, and P. W. , Stripe and Bubble Phases in Quantum Hall Systems, Lecture Notes in Physics Phys. Rev. B, vol.595, issue.19, pp.98-1385211, 1979.
DOI : 10.1007/3-540-45649-X_4

B. Friedman and C. Withrow, Stripes or an anisotropic Wigner crystal in the N=2 Landau level?, Proceedings of the International Conference on Strongly Correlated Electron Systems, pp.5-91500, 2008.
DOI : 10.1016/j.physb.2007.10.317

[. Grimes and G. Adams, Evidence for a liquid-to-crystal phase transition in a classical, twodimensional sheet of electrons, Physical Review Letters, issue.12, p.42795, 1979.

[. Gurarie, M. Flohr, and C. Nayak, The Haldane-Rezayi quantum Hall state and conformal field theory, Nuclear Physics B, vol.498, issue.3, pp.513-538, 1997.
DOI : 10.1016/S0550-3213(97)00351-9

M. Steven and . Girvin, The quantum hall eeect, 1999.

T. [. Girvin and . Jach, Formalism for the quantum Hall effect: Hilbert space of analytic functions, Physical Review B, vol.29, issue.10, pp.5617-5625, 1984.
DOI : 10.1103/PhysRevB.29.5617

P. [. Goerbig and C. Lederer, Microscopic theory of the reentrant integer quantum Hall effect in the first and second excited Landau levels, Physical Review B, vol.68, issue.24, p.241302, 2003.
DOI : 10.1103/PhysRevB.68.241302

P. [. Goerbig and C. Lederer, Competition between quantum-liquid and electron-solid phases in intermediate Landau levels, Physical Review B, vol.69, issue.11, p.115327, 2004.
DOI : 10.1103/PhysRevB.69.115327

]. M. Gls04a, P. Goerbig, C. Lederer, . Morais, and . Smith, Erratum : Second generation of composite fermions in the hamiltonian theory [phys. rev, Phys. Rev. B, vol.69, issue.70, p.155324249903, 2004.

]. M. Gls04b, P. Goerbig, and C. Lederer, Morais Smith : Second generation of composite fermions in the hamiltonian theory, Phys. Rev. B, vol.69, p.155324, 2004.

]. M. Goe09 and . Goerbig, Quantum hall eeects. ArXiv e-prints, septembre, 2009.

M. Greiter and [. Smith, Mapping of parent Hamiltonians : from Abelian and non-Abelian quantum Hall states to exact models of critical spin chains Scaling approach to the phase diagram of quantum hall systems, EPLEurophysics Letters), vol.244, issue.5, p.63736, 2003.
DOI : 10.1007/978-3-642-24384-4

B. [. Goldman and J. K. Su, Detection of composite fermions by magnetic focusing, Physical Review Letters, vol.72, issue.13, pp.2065-2068, 1994.
DOI : 10.1103/PhysRevLett.72.2065

G. Giuliani and . Vignale, Quantum theory of the electron liquid, 2005.
DOI : 10.1017/CBO9780511619915

M. Greiter, X. Wen, F. Wilczekhal79, and ]. E. Hall, Paired hall state at half filling Physical review letters On a new action of the magnet on electric currents [Hal82] B. I. Halperin : Quantized hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential, American Journal of Mathematics Phys. Rev. B, vol.66, issue.25, pp.3205287-922185, 1879.

]. F. Hal83a, Haldane : Fractional quantization of the hall eeect : A hierarchy of incompressible quantum fluid states, Phys. Rev. Lett, vol.51, pp.605-608, 1983.

I. Bertrand and . Halperin, Theory of the quantized hall conductance, Helv. Phys. Acta, vol.56, issue.1-3, p.75, 1983.

P. [. Halperin, N. Lee, and . Read, Theory of the half-filled Landau level, Physical Review B, vol.47, issue.12, pp.7312-7343, 1993.
DOI : 10.1103/PhysRevB.47.7312

J. Huang, L. Pfeiier, and . West, Evidence for a two-dimensional quantum wigner solid in zero magnetic field, 2013.

D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. San-hor et al., A topological Dirac insulator in a quantum spin Hall phase, Nature, vol.70, issue.7190, pp.970-974956, 1988.
DOI : 10.1038/nature06843

J. K. Jain, Composite-fermion approach for the fractional quantum Hall effect, Physical Review Letters, vol.63, issue.2, pp.199-202, 1989.
DOI : 10.1103/PhysRevLett.63.199

]. J. Jai07 and . Jain, Composite Fermions, 2007.

[. Johri, Z. Papí-c, R. N. Bhatt, and P. Schmitteckert, quantum Hall states: Size estimates via exact diagonalization and density-matrix renormalization group, Physical Review B, vol.89, issue.11, p.115124, 2014.
DOI : 10.1103/PhysRevB.89.115124

H. W. Jiang, H. L. Stormer, D. C. Isui, L. N. Pfeiier, and K. W. West, Transport anomalies in the lowest Landau level of two-dimensional electrons at half-filling, Physical Review B, vol.40, issue.17, pp.12013-12016, 1989.
DOI : 10.1103/PhysRevB.40.12013

G. [. Klitzing, M. Dorda, and . Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters, vol.45, issue.6, pp.494-497, 1980.
DOI : 10.1103/PhysRevLett.45.494

M. Kellogg, J. Eisenstein, L. Pfeiier, K. West, . Koulakov et al., Vanishing Hall Resistance at High Magnetic Field in a Double-Layer Two-Dimensional Electron System, Physical Review Letters, vol.93, issue.3, pp.36801-76499, 1996.
DOI : 10.1103/PhysRevLett.93.036801

M. Kohmoto, Topological invariant and the quantization of the Hall conductance, Annals of Physics, vol.160, issue.2, pp.343-354, 1985.
DOI : 10.1016/0003-4916(85)90148-4

W. Krauth, Statistical mechanics : algorithms and computations, 2006.

W. Kang, H. L. Stormer, L. N. Pfeiier, K. W. Baldwin, and K. W. , How real are composite fermions?, Physical Review Letters, vol.71, issue.23, pp.3850-3853, 1993.
DOI : 10.1103/PhysRevLett.71.3850

C. Lanczos, An iteration method for the solution of the eigenvalue problem of linear diierential and integral operators. United States Governm. Press OOce, Lau81] R. B. Laughlin : Quantized hall conductivity in two dimensions, pp.5632-5633, 1950.

]. R. Lau83a and . Laughlin, Anomalous quantum hall eeect : An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett, vol.50, pp.1395-1398, 1983.

]. R. Lau83b and . Laughlin, Quantized motion of three two-dimensional electrons in a strong magnetic field, Phys. Rev. B, vol.27, pp.3383-3389, 1983.

. P. Lce-+-99-]-m, K. B. Lilly, J. P. Cooper, L. N. Eisenstein, K. W. Pfeiier et al., Evidence for an anisotropic state of two-dimensional electrons in high landau levels, Phys. Rev. Lett, vol.82, pp.394-397, 1999.

A. Lopez and E. Fradkin, Fractional quantum Hall effect and Chern-Simons gauge theories, Physical Review B, vol.44, issue.10, pp.5246-5262, 1991.
DOI : 10.1103/PhysRevB.44.5246

K. Pui, S. Lam, D. R. Girvin, W. Luhman, D. C. Pan et al., Liquid-solid transition and the fractional quantum-hall eeect [LPT + 08 Observation of a fractional quantum hall state at ? = 1/4 in a wide gaas quantum well, Physical Review B Phys. Rev. Lett, vol.30, issue.101, p.473266804, 1984.

D. Levesque, J. J. Weis, and A. H. Macdonald, Crystallization of the incompressible quantum-fluid state of a two-dimensional electron gas in a strong magnetic field, Physical Review B, vol.30, issue.2, pp.1056-1058, 1984.
DOI : 10.1103/PhysRevB.30.1056

. M. Lye-+-02-]-r, P. D. Lewis, L. W. Ye, D. C. Engel, L. N. Tsui et al., Microwave resonance of the bubble phases in 1/4 and 3/4 filled high landau levels, Phys. Rev. Lett, vol.89, p.136804, 2002.

[. Macdonald, Introduction to the physics of the quantum hall regime. arXiv preprint cond-mat/9410047, MacR96] M. Milovanoví c et N. Read : Edge excitations of paired fractional quantum hall states. Phys, 1994.

. B. Rev, [Max81] James Clerk Maxwell : A treatise on electricity and magnetism, pp.13559-13582, 1996.

R. Moessner and J. T. Chalker, Exact results for interacting electrons in high Landau levels, Physical Review B, vol.54, issue.7, pp.5006-5015, 1996.
DOI : 10.1103/PhysRevB.54.5006

R. Morf and N. , Stability and Effective Masses of Composite Fermions in the First and Second Landau Level, Physical Review Letters, vol.74, issue.25, pp.5116-5119, 1995.
DOI : 10.1103/PhysRevLett.74.5116

[. Morf and . Halperin, Monte Carlo evaluation of trial wave functions for the fractional quantized Hall effect: Disk geometry, Physical Review B, vol.33, issue.4, p.2221, 1986.
DOI : 10.1103/PhysRevB.33.2221

]. K. Mmy-+-95, H. Moon, K. Mori, S. M. Yang, A. H. Girvin et al., Spontaneous interlayer coherence in double-layer quantum hall systems : Charged vortices and kosterlitz-thouless phase transitions, Morf : Transition from quantum hall to compressible states in the second landau level : New light on the ? = 5/2 enigma, pp.5138-51701505, 1995.

G. Moore and N. Read, Nonabelions in the fractional quantum hall effect, Nuclear Physics B, vol.360, issue.2-3, pp.362-396, 1991.
DOI : 10.1016/0550-3213(91)90407-O

W. Arianna, . Rosenbluth, N. Marshall, . Rosenbluth, H. Augusta et al., Equation of state calculations by fast computing machines. The journal of chemical physics Hamiltonian theories of the fractional quantum hall eeect Signatures of a novel fermi liquid in a two-dimensional composite particle metal, Rev. Mod. Phys. Phys. Rev. Lett, vol.21, issue.73, pp.1087-10921101, 1953.

D. [. Macdonald, S. M. Yoshioka, and . Girvin, Comparison of models for the even-denominator fractional quantum Hall effect, Physical Review B, vol.39, issue.11, pp.8044-8047, 1989.
DOI : 10.1103/PhysRevB.39.8044

K. Maki and X. Zotos, Static and dynamic properties of a two-dimensional Wigner crystal in a strong magnetic field, Physical Review B, vol.28, issue.8, pp.4349-4356, 1983.
DOI : 10.1103/PhysRevB.28.4349

[. Narasimhan and T. Ho, Wigner-crystal phases in bilayer quantum Hall systems, Physical Review B, vol.52, issue.16, pp.12291-123061083, 1995.
DOI : 10.1103/PhysRevB.52.12291

]. Z. Pacgrmac10, M. O. Papí-c, N. Goerbig, and M. V. Regnault, Milovanoví c : Tunneling-driven breakdown of the 331 state and the emergent pfaaan and composite fermi liquid phases, Phys. Rev. B, vol.82, p.75302, 2010.

R. Michael, S. Peterson, . Das, and . Sarma, Quantum hall phase diagram of half-filled bilayers in the lowest and the second orbital landau levels : Abelian versus non-abelian incompressible fractional quantum hall states, Phys. Rev. B, vol.81, p.165304, 2010.

. R. Michael, T. Peterson, S. Jolicoeur, . Das, and . Sarma, Finite-layer thickness stabilizes the pfaaan state for the 5/2 fractional quantum hall eeect : Wave function overlap and topological degeneracy, Phys. Rev. Lett, vol.101, p.16807, 2008.

. Pmm-+-09-]-z, G. Papí-c, M. V. Möller, N. Milovanoví-c, and M. O. Regnault, Goerbig : Fractional quantum hall state at ? = 1 4 in a wide quantum well, Phys. Rev. B, vol.79, p.245325, 2009.

M. Peterson and C. Nayak, More realistic Hamiltonians for the fractional quantum Hall regime in GaAs and graphene, Physical Review B, vol.87, issue.24, p.245129, 2013.
DOI : 10.1103/PhysRevB.87.245129

R. Michael, Z. Peterson, S. Papí-c, H. L. Das-sarma, D. C. Stormer et al., Fractional quantum hall eeects in bilayers in the presence of interlayer tunneling and charge imbalance West : Fractional quantum hall eeect of composite fermions, Phys. Rev. B Phys. Rev. Lett, vol.82, issue.90, p.235312016801, 2003.

F. [. Rezayi and . Haldane, Incompressible Paired Hall State, Stripe Order, and the Composite Fermion Liquid Phase in Half-Filled Landau Levels, Physical Review Letters, vol.84, issue.20, pp.4685-4688, 2000.
DOI : 10.1103/PhysRevLett.84.4685

E. Rezayi and N. Read, Fermi-liquid-like state in a half-filled Landau level, Physical Review Letters, vol.72, issue.6, pp.900-903, 1994.
DOI : 10.1103/PhysRevLett.72.900

N. Read and E. Rezayi, Quasiholes and fermionic zero modes of paired fractional quantum Hall states: The mechanism for non-Abelian statistics, Physical Review B, vol.54, issue.23, pp.16864-16887, 1996.
DOI : 10.1103/PhysRevB.54.16864

[. Sénéchal, Mécanique quantique, 2000.

I. Spielman, J. Eisenstein, L. Pfeiier, and K. West, Resonantly Enhanced Tunneling in a Double Layer Quantum Hall Ferromagnet, Physical Review Letters, vol.84, issue.25, pp.5808-5811, 2000.
DOI : 10.1103/PhysRevLett.84.5808

. W. Ses-+-92-]-y, L. W. Suen, M. B. Engel, M. Santos, D. C. Shayegan et al., Observation of a ?=1/2 fractional quantum hall state in a double-layer electron system, Phys. Rev. Lett, vol.68, pp.1379-1382, 1992.

J. Shabani, T. Gokmen, Y. T. Chiu, and M. Shayegan, Fillings in Asymmetric Wide Quantum Wells, Physical Review Letters, vol.103, issue.25, p.256802, 2009.
DOI : 10.1103/PhysRevLett.103.256802

L. Saminadayar, Y. Glattli, . Jin, and . Etienne, Observation of the e/3 fractionally charged laughlin quasiparticle, Physical Review Letters, issue.13, p.792526, 1997.

J. Shabani, T. Gokmen, M. W. Shayegan-[-sj01-]-v, J. K. Scarola, and . Jain, Correlated states of electrons in wide quantum wells at low fillings : The role of charge distribution symmetry Phase diagram of bilayer composite fermion states, Phys. Rev. Lett. Phys. Rev. B, vol.103, issue.64, p.046805085313, 2001.

]. J. Sls-+-13, Y. Shabani, M. Liu, L. N. Shayegan, K. W. Pfeiier et al., Phase diagrams for the stability of the fractional quantum hall eeect in electron systems confined to symmetric, wide gaas quantum wells, Phys. Rev. B, vol.88, p.245413, 2013.

A. [. Sodemann and . Macdonald, Landau level mixing and the fractional quantum hall eeect Troyer : Subband engineering even-denominator quantum hall states, Phys. Rev. B Phys. Rev. B, vol.87, issue.82, p.245425121304, 2010.

H. C. Suen, X. Manoharan, M. B. Ying, M. Santos, and . Shayegan, Origin of the ??=1/2 fractional quantum Hall state in wide single quantum wells, Physical Review Letters, vol.72, issue.21, pp.3405-3408, 1994.
DOI : 10.1103/PhysRevLett.72.3405

]. P. Sou14 and . Soulé, Étude des Bords des Phases de l'EEet Hall Quantique Fractionnaire dans la Géométrie d'un Contact Ponctuel Quantique, Thèse de doctorat, 2014.

S. Das, S. , and A. Pinczuk, Perspectives in quantum hall eeects : Novel quantum liquids in low-dimensional semiconductor structures, 2008.

S. Simon and E. Rezayi, Landau level mixing in the perturbative limit, Physical Review B, vol.87, issue.15, p.155426, 2013.
DOI : 10.1103/PhysRevB.87.155426

[. Suen, M. Santos, and M. Shayegan, Correlated states of an electron system in a wide quantum well. Physical review letters, p.693551, 1992.

L. Horst, D. C. Stormer, . Tsui, and C. Arthur, Gossard : The fractional quantum hall eeect, Rev. Mod. Phys, vol.71, pp.298-305, 1999.

I. Tamm, ???ber eine m???gliche Art der Elektronenbindung an Kristalloberfl???chen, Zeitschrift f???r Physik, vol.76, issue.11-12, pp.849-850, 1932.
DOI : 10.1007/BF01341581

B. Tanatar and D. M. , Ground state of the two-dimensional electron gas, Physical Review B, vol.39, issue.8, pp.5005-5016, 1989.
DOI : 10.1103/PhysRevB.39.5005

R. Thomale, N. Benoit-estienne, B. A. Regnault, and . Bernevig, Decomposition of fractional quantum Hall model states: Product rule symmetries and approximations, Physical Review B, vol.84, issue.4, p.45127, 2011.
DOI : 10.1103/PhysRevB.84.045127

R. Thomale, N. Benoit-estienne, B. A. Regnault, and . Bernevig, Decomposition of fractional quantum Hall model states: Product rule symmetries and approximations, Physical Review B, vol.84, issue.4, p.45127, 2011.
DOI : 10.1103/PhysRevB.84.045127

D. J. Thouless, M. Kohmoto, and M. P. , Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physical Review Letters, vol.49, issue.6, pp.405-408, 1982.
DOI : 10.1103/PhysRevLett.49.405

T. Csaba, J. K. Oke, and . Jain, Theoretical study of even denominator fractions in graphene : Fermi sea versus paired states of composite fermions, Phys. Rev. B, vol.76, p.81403, 2007.

[. Töke, M. R. Peterson, G. Sang-jeon-et-jainendra, K. Jain, N. Regnault et al., Fractional quantum Hall effect in the second Landau level: The importance of inter-composite-fermion interaction, Journal of Physics : Conference Series, pp.125315-012036, 2005.
DOI : 10.1103/PhysRevB.72.125315

H. [. Tsui and A. C. Stormer, Two-Dimensional Magnetotransport in the Extreme Quantum Limit, Physical Review Letters, vol.48, issue.22, pp.1559-1562, 1982.
DOI : 10.1103/PhysRevLett.48.1559

E. Tutuc, M. Shayegan, and D. Huse, Counterflow Measurements in Strongly Correlated GaAs Hole Bilayers: Evidence for Electron-Hole Pairing, Physical Review Letters, vol.93, issue.3, p.36802, 2004.
DOI : 10.1103/PhysRevLett.93.036802

J. Von, N. , S. Ulam, R. Willett, J. P. Eisenstein et al., Observation of an even-denominator quantum number in the fractional quantum hall eeect, Wig34] E. Wigner : On the interaction of electrons in metals, pp.361776-17791002, 1934.

[. Winkler, Spin-orbit coupling eeects in two-dimensional electron and hole systems. Numéro 191, 2003.

. L. Wpr-+-90-]-r, M. A. Willett, R. R. Paalanen, K. W. Ruel, L. N. West et al., Anomalous sound propagation at ?=1/2 in a 2d electron gas : Observation of a spontaneously broken translational symmetry ?, Phys. Rev. Lett, vol.65, pp.112-115, 1990.

R. L. Willett, R. R. Ruel, K. W. West, and L. N. Pfeiier, Experimental demonstration of a Fermi surface at one-half filling of the lowest Landau level, Physical Review Letters, vol.71, issue.23, pp.3846-3849394, 1979.
DOI : 10.1103/PhysRevLett.71.3846

H. Yi, H. Fertig, and R. Côté, Stability of the smectic quantum hall state : A quantitative study. Physical review letters, p.4156, 2000.

K. Yang, F. Haldane, and E. Rezayi, Wigner crystals in the lowest Landau level at low-filling factors, Physical Review B, vol.64, issue.8, p.81301, 2001.
DOI : 10.1103/PhysRevB.64.081301

D. Yoshioka and P. A. , Ground-state energy of a two-dimensional charge-density-wave state in a strong magnetic field, Physical Review B, vol.27, issue.8, pp.4986-4996, 1983.
DOI : 10.1103/PhysRevB.27.4986

]. D. Yos02 and . Yoshioka, The Quantum Hall EEect, 2002.

[. Zhang and N. Yogesh, Wigner crystal and bubble phases in graphene in the quantum Hall regime, Physical Review B, vol.75, issue.24, p.245414, 2007.
DOI : 10.1103/PhysRevB.75.245414