V. Cellules-de-frittage-direct-et-de-frittage-hybride and .. , 145 1. Choix de l'isolant thermique, p.145

. Mesure-de-température-par-pyrométrie-infrarouge-(-ir-).., 153 a. Choix de la méthode de mesure par pyrométrie, p.153

Z. A. Munir, U. Anselmi-tamburini, and M. Ohyanagi, The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method, Journal of Materials Science, vol.19, issue.452, pp.763-777, 2006.
DOI : 10.1007/s10853-006-6555-2

R. Raj, M. Cologna, and J. S. Francis, Influence of Externally Imposed and Internally Generated Electrical Fields on Grain Growth, Diffusional Creep, Sintering and Related Phenomena in Ceramics, Journal of the American Ceramic Society, vol.71, issue.4, pp.1941-1965, 2011.
DOI : 10.1111/j.1551-2916.2011.04652.x

M. Oghbaei and O. Mirzaee, Microwave versus conventional sintering: A review of fundamentals, advantages and applications, Journal of Alloys and Compounds, vol.494, issue.1-2, pp.175-189, 2010.
DOI : 10.1016/j.jallcom.2010.01.068

Y. Bykov, S. V. Egorov, A. Eremeev, K. I. Rybakov, V. E. Semenov et al., Evidence for microwave enhanced mass transport in the annealing of nanoporous alumina membranes, Journal of Materials Science, vol.36, issue.1, pp.131-136, 2001.
DOI : 10.1023/A:1004893104413

W. H. Sutton, Microwave Processing of Ceramics - An Overview, MRS Proceedings, vol.27, 1992.
DOI : 10.1002/9780470313053.ch46

G. C. Kuczynski, Self-Diffusion in Sintering of Metallic Particles, Trans. A.I.M.E, vol.185, pp.169-178, 1949.
DOI : 10.1007/978-94-009-0741-6_33

R. L. Coble, Sintering Crystalline Solids. I. Intermediate and Final State Diffusion Models, Journal of Applied Physics, vol.32, issue.5, pp.787-792, 1961.
DOI : 10.1063/1.1736107

S. L. Kang, Sintering : densification, grain growth and microstructure, 2005.

D. Bernache-assolant, Chimie-physique du frittage, Hermès, 1993.

G. Bernard-granger and C. Guizard, New relationships between relative density and grain size during solid-state sintering of ceramic powders, Acta Materialia, vol.56, issue.20, pp.6273-6282, 2008.
DOI : 10.1016/j.actamat.2008.08.054

M. C. Geary, Mechanical packing of spherical particles, J. Am. Ceram. Soc, vol.44, pp.513-522, 1961.

C. Greskovic and K. W. Lay, Grain Growth in Very Porous Al2O3 Compacts, Journal of the American Ceramic Society, vol.2, issue.2, pp.142-146, 1972.
DOI : 10.1063/1.1714360

M. P. Harmer and R. J. Brook, The effect of MgO additions on the kinetics of hotpressing in Al 2 O 3, J. Mater. Sci, vol.78, pp.3017-3024, 1980.

M. F. Ashby, On interface-reaction control of Nabarro-Herring creep and sintering, Scripta Metallurgica, vol.3, issue.11, pp.837-842, 1969.
DOI : 10.1016/0036-9748(69)90191-4

G. Bernard-granger and C. Guizard, Apparent Activation Energy for the Densification of a Commercially Available Granulated Zirconia Powder, Journal of the American Ceramic Society, vol.2, issue.2, pp.1246-1250, 2007.
DOI : 10.1111/j.1151-2916.1996.tb08097.x

Y. Oishi, K. Ando, and Y. Sakka, Lattice and grain-boundary diffusion coefficients of cations in stabilized zirconia Advances in ceramics 7, pp.208-219, 1983.

G. Bernard-granger and C. Guizard, Sintering of an ultra pure ??-alumina powder: I. Densification, grain growth and sintering path, Journal of Materials Science, vol.79, issue.8, pp.6316-6324, 2007.
DOI : 10.1007/s10853-006-1206-1

Y. Zhang-bocquet, D. Bernache-assolant, and S. Piekarski, Effect of heating on the surface acidity and particle distribution of silicon nitride, J. Euro. Sol State Inorg. Chem, vol.26, pp.539-551, 1989.

P. Deriu and D. Bernache-assolant, Agglomérats et aggrégats de nitrure d'aluminium , morphologie et compressibilité, Rev. Int. Hautes Tempér. Refrac, vol.27, pp.27-42, 1991.

K. A. Berry and M. P. Harmer, Effect of MgO Solute on Microstructure Development in Al2O3, Journal of the American Ceramic Society, vol.15, issue.2, pp.143-149, 1986.
DOI : 10.1111/j.1151-2916.1986.tb04719.x

C. W. Park and D. Y. Yoon, Effects of SiO2, CaO2, and MgO Additions on the Grain Growth of Alumina, Journal of the American Ceramic Society, vol.243, issue.5, pp.2605-2609, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01596.x

G. Gasnier, Densification de l'oxyde d'yttrium, 1991.

H. Erkalfa, Z. Misirili, and T. Baykara, The effect of TiO2 and MnO2 on densification and microstructural development of alumina, Ceramics International, vol.24, issue.2, pp.81-90, 1998.
DOI : 10.1016/S0272-8842(97)00082-5

H. Yoshida, S. Hashimoto, and T. Yamamoto, Dopant effect on grain boundary diffusivity in polycrystalline alumina, Acta Materialia, vol.53, issue.2, pp.433-440, 2005.
DOI : 10.1016/j.actamat.2004.09.038

Z. A. Munir and D. V. Quash, Electric Current Activation of Sintering: A Review of the Pulsed Electric Current Sintering Process, Journal of the American Ceramic Society, vol.20, issue.[4], pp.1-19, 2011.
DOI : 10.1111/j.1551-2916.2010.04210.x

G. Develey, Chauffage par inductionélectromagnétiqueinductionélectromagnétique : principes. Techniques de l'Ingénieur, ´ editions T.I, 2000.

J. D. Katz, Microwave Sintering of Ceramics, Annual Review of Materials Science, vol.22, issue.1, pp.153-170, 1992.
DOI : 10.1146/annurev.ms.22.080192.001101

S. Sano and Y. Makino, 30 and 83 GHz millimeter-wave sintering of alumina, Journal of Materials Sience, vol.19, pp.2247-2250, 2000.

W. H. Sutton, Microwave processing of ceramic materials, Ceramic Bulletin, vol.68, pp.376-386, 1989.

E. T. Thostenson and T. W. Chou, Microwave processing: fundamentals and applications, Composites Part A: Applied Science and Manufacturing, vol.30, issue.9, pp.1055-1071, 1999.
DOI : 10.1016/S1359-835X(99)00020-2

O. Picon and P. Poulichet, Aide-memoire electromagnetisme, Dunod, 2010.

I. Levin and D. Brandon, Metastable Alumina Polymorphs: Crystal Structures and Transition Sequences, Journal of the American Ceramic Society, vol.44, issue.5, pp.1995-2012, 1998.
DOI : 10.1111/j.1151-2916.1998.tb02581.x

R. S. Zhou and R. L. Snyder, Structures and transformation mechanisms of the ??, ?? and ?? transition aluminas, Acta Crystallographica Section B Structural Science, vol.47, issue.5, pp.617-631, 1991.
DOI : 10.1107/S0108768191002719

J. B. Bilde-sorensen, B. F. Lowler, T. Geipel, P. Pirouz, A. H. Heuer et al., On basal slip and twining in sapphire (?-Al 2 O 3 )-I

P. A. Badkar and J. E. Bailey, The mechanism of simultaneous sintering and phase transformation in alumina, Journal of Materials Science, vol.40, issue.10, pp.1794-1806, 1976.
DOI : 10.1007/BF00708257

F. W. Dynys and J. W. Halloran, Alpha Alumina Formation in Alum-Derived Gamma Alumina, Journal of the American Ceramic Society, vol.3, issue.4, pp.442-448, 1982.
DOI : 10.1016/0036-9748(68)90157-9

P. L. Chang, F. S. Yen, K. C. Cheng, and H. L. Wen, Examinations on the Critical and Primary Crystallite Sizes during ??- to ??-Phase Transformation of Ultrafine Alumina Powders, Nano Letters, vol.1, issue.5, pp.253-261, 2001.
DOI : 10.1021/nl015501c

C. Legros, C. Carry, S. Lartigue-korinek, and P. Bowen, Phase Transformation and Densification of Nanostructured Alumina. Effect of Seeding and Doping, Defect and Diffusion Forum, vol.237, issue.240, pp.237-240665, 2005.
DOI : 10.4028/www.scientific.net/DDF.237-240.665

C. Legros, C. Carry, P. Bowen, and H. Hofmann, Sintering of a transition alumina: effects of phase transformation, powder characteristics and thermal cycle, Journal of the European Ceramic Society, vol.19, issue.11, pp.1967-1978, 1999.
DOI : 10.1016/S0955-2219(99)00016-3

M. Arai, J. G. Binner, and T. E. Cross, Comparison of Techniques for Measuring High-Temperature Microwave Complex Permittivity: Measurements on an Alumina/Zircona System, Journal of Microwave Power and Electromagnetic Energy, vol.31, issue.1, pp.12-18, 1996.
DOI : 10.1080/08327823.1996.11688287

C. Huang, J. Wang, and C. Huang, Sintering behavior and microwave dielectric properties of nano alpha-alumina, Materials Letters, vol.59, issue.28, pp.3746-3749, 2005.
DOI : 10.1016/j.matlet.2005.06.053

Y. Kobayashi and M. Katoh, Microwave mesurement of dielectric properties of lowloss materials by the dielectric rod resonator method, IEEE Trans. on Microwave Theory and Techniques, pp.33586-592, 1985.

S. Penn, N. Alford, A. Templeton, X. Wang, M. Xu et al., Effect of Porosity and Grain Size on the Microwave Dielectric Properties of Sintered Alumina, Journal of the American Ceramic Society, vol.27, issue.194, pp.1885-1888, 1997.
DOI : 10.1111/j.1151-2916.1997.tb03066.x

J. Molla, R. Moreno, and A. Ibarra, Effect of Mg doping on dielectric properties of alumina, Journal of Applied Physics, vol.80, issue.2, pp.1028-1032, 1996.
DOI : 10.1063/1.362836

J. Wang and R. Raj, Estimate of the Activation Energies for Boundary Diffusion from Rate-Controlled Sintering of Pure Alumina, and Alumina Doped with Zirconia or Titania, Journal of the American Ceramic Society, vol.8, issue.9
DOI : 10.1111/j.1151-2916.1990.tb05175.x

E. Sato and C. P. Carry, Yttria Doping and Sintering of Submicrometer-Grained alpha-Alumina, Journal of the American Ceramic Society, vol.65, issue.9, pp.2156-2160, 1996.
DOI : 10.1016/0955-2219(95)91294-X

F. Raether and P. Schulze-horn, Investigation of sintering mechanisms of alumina using kinetic field and master sintering diagrams, Journal of the European Ceramic Society, vol.29, issue.11, pp.2225-2234, 2009.
DOI : 10.1016/j.jeurceramsoc.2009.01.025

W. S. Young and I. B. Cutler, Initial Sintering with Constant Rates of Heating, Journal of the American Ceramic Society, vol.52, issue.1, pp.659-663, 1970.
DOI : 10.1063/1.1735155

I. Chen and X. Wang, Sintering dense nanocrystalline ceramics without final-stage grain growth, Nature, vol.4, issue.6774, pp.168-171, 2000.
DOI : 10.1038/35004548

Y. Lee and Y. Kim, Fabrication of Dense Nanostructured Silicon Carbide Ceramics through Two-Step Sintering, Journal of the American Ceramic Society, vol.86, issue.1, pp.1803-1805, 2003.
DOI : 10.1111/j.1151-2916.2003.tb03560.x

J. Li and Y. Ye, Densification and Grain Growth of Al2O3 Nanoceramics During Pressureless Sintering, Journal of the American Ceramic Society, vol.166, issue.1, pp.139-143, 2006.
DOI : 10.1111/j.1151-2916.1994.tb07040.x

K. Bodisova, P. Sajgalik, D. Galusek, and P. Svancarek, Two-Stage Sintering of Alumina with Submicrometer Grain Size, Journal of the American Ceramic Society, vol.86, issue.12, pp.330-332, 2007.
DOI : 10.1111/j.1551-2916.2005.00763.x

P. J. Jorgensen, Modification of Sintering Kinetics by Solute Segregation in Al2O3, Journal of the American Ceramic Society, vol.46, issue.3, pp.207-201, 1965.
DOI : 10.1063/1.1721874

K. K. Soni, A. M. Thompson, M. P. Harmer, D. B. Williams, J. M. Chabala et al., Solute segregation to grain boundaries in MgO???doped alumina, Applied Physics Letters, vol.66, issue.21, pp.2795-2797, 1995.
DOI : 10.1063/1.113478

F. Zuo, C. Carry, S. Saunier, S. Marinel, and D. Goeuriot, Comparison of the Microwave and Conventional Sintering of Alumina: Effect of MgO Doping and Particle Size, Journal of the American Ceramic Society, vol.31, issue.8, pp.1732-1737, 2013.
DOI : 10.1111/jace.12320

URL : https://hal.archives-ouvertes.fr/hal-00850225

Y. V. Bykov, K. I. Rybakov, and V. E. Semenov, High-temperature microwave processing of materials, Journal of Physics D: Applied Physics, vol.34, issue.13, pp.55-75, 2001.
DOI : 10.1088/0022-3727/34/13/201

K. H. Brosnan, G. L. Messing, and D. K. , Microwave Sintering of Alumina at 2.45 GHz, Journal of the American Ceramic Society, vol.22, issue.910, pp.1307-1312, 2003.
DOI : 10.1111/j.1151-2916.2003.tb03467.x

Y. L. Tian, D. L. Johnson, and M. E. Brodwin, Ultrafine microstructure of Al 2 O 3 produced by microwave sintering, Ceramic Transactions, vol.1, pp.925-932, 1988.

A. Dé, I. Ahmad, E. Whitney, and C. D. , Microwave (hybrid) heating of alumina at 2.45 GHz : I. Microstructural uniformity and homogeneity, Ceram. Trans, vol.21, pp.319-328, 1991.

C. Zhao, J. Vleugels, C. Groffils, P. J. Luypaert, O. Van-der et al., Hybrid sintering with a tubular susceptor in a cylindrical single-mode microwave furnace, Acta Materialia, vol.48, issue.14, pp.3795-3801, 2000.
DOI : 10.1016/S1359-6454(00)00160-9

Z. Xie, J. Yang, X. Huang, and Y. Huang, Microwave processing and properties of ceramics with different dielectric loss, Journal of the European Ceramic Society, vol.19, issue.3, pp.381-387, 1999.
DOI : 10.1016/S0955-2219(98)00203-9

Z. Xie, J. Yang, and Y. Huang, Densification and grain growth of alumina by microwave processing, Materials Letters, vol.37, issue.4-5, pp.215-220, 1998.
DOI : 10.1016/S0167-577X(98)00094-9

J. Wang, J. Binner, Y. Pang, and B. Vaidhyanathan, Microwave-enhanced densification of sol???gel alumina films, Thin Solid Films, vol.516, issue.18, pp.5996-6001, 2008.
DOI : 10.1016/j.tsf.2007.10.095

M. A. Janney and H. D. Kimrey, Microwave sintering of alumina at 28 GHz, Ceram. Powder. Proc, 1988.

M. A. Janney and H. D. Kimrey, Diffusion-Controlled Processes in Microwave-Fired Oxide Ceramics, MRS Proceedings, vol.18, pp.215-227, 1991.
DOI : 10.1111/j.1151-2916.1985.tb16161.x

M. A. Janney, H. D. Kimrey, M. A. Schmidt, and J. O. Kiggans, Grain Growth in Microwave-Annealed Alumina, Journal of the American Ceramic Society, vol.51, issue.1, pp.1675-1681, 1991.
DOI : 10.1007/BF01770909

M. A. Janney, H. D. Kimrey, W. R. Allen, and J. O. Kiggans, Enhanced diffusion in sapphir during microwave heating, Journal of Materials Science, vol.32, issue.5, pp.1347-1355, 1997.
DOI : 10.1023/A:1018568909719

I. N. Sudiana, R. Ito, S. Inagaki, K. Kuwayama, K. Sako et al., Densification of Alumina Ceramics Sintered by Using Submillimeter Wave Gyrotron, Journal of Infrared, Millimeter, and Terahertz Waves, vol.189, issue.4
DOI : 10.1007/s10762-013-0011-6

R. W. Bruce, A. W. Fliflet, R. P. Fisher, D. Lewis, and B. Bender, Millimeter wave processing of alumina compacts, Ceram. Trans, vol.80, pp.287-294, 1997.

G. Link, W. Bauer, A. Weddigen, H. Ritzhaupt-kleissel, and M. Thumm, MMwave processing of ceramics, Ceram. Trans, vol.80, pp.303-311, 1997.

A. W. Fliflet, R. W. Bruce, P. R. Fisher, and D. Lewis, A study of millimeter-wave sintering of fine-grained alumina compacts, IEEE Transactions on Plasma Science, vol.28, pp.924-935, 2000.

Y. V. Bykov, A. F. Gol-'denberg, and V. A. Flyagin, The Possibilities of Material Processing by Intense Millimeter - Wave Radiation, MRS Proceedings, vol.4, pp.41-42, 1991.
DOI : 10.1109/5.4454

Y. Fang, J. P. Cheng, and D. K. , Effect of powder reactivity on microwave sintering of alumina, Materials Letters, vol.58, issue.3-4, pp.498-501, 2004.
DOI : 10.1016/S0167-577X(03)00533-0

E. Pert, Y. Carmel, A. Birnboim, T. Olorunyolemi, D. Gershon et al., Temperature Measurements during Microwave Processing: The Significance of Thermocouple Effects, Journal of the American Ceramic Society, vol.40, issue.7, pp.1981-1986, 2001.
DOI : 10.1111/j.1151-2916.2001.tb00946.x

D. Zymelka, S. Saunier, D. Goeuriot, and J. Molimard, Densification and thermal gradient evolution of alumina during microwave sintering at 2.45GHz, Ceramics International, vol.39, issue.3, pp.3269-3277, 2013.
DOI : 10.1016/j.ceramint.2012.10.015

URL : https://hal.archives-ouvertes.fr/hal-00835466

F. Zuo, S. Saunier, C. Meunier, and D. Goeuriot, Non-thermal effect on densification kinetics during microwave sintering of ??-alumina, Scripta Materialia, vol.69, issue.4, pp.331-333, 2013.
DOI : 10.1016/j.scriptamat.2013.05.016

URL : https://hal.archives-ouvertes.fr/emse-01063760

F. Zuo, A. Badev, S. Saunier, D. Goeuriot, R. Heuguet et al., Microwave versus conventional sintering: Estimate of the apparent activation energy for densification of ??-alumina and zinc oxide, Journal of the European Ceramic Society, vol.34, issue.12, pp.3103-3110, 2014.
DOI : 10.1016/j.jeurceramsoc.2014.04.006

URL : https://hal.archives-ouvertes.fr/emse-01063729

C. , S. Nordhal, and G. L. Messing, Thermal analysis of phase transformation kinetics in ?-Al 2 O 3 seeded boehmite and ?-Al 2 O 3, Thermochimica acta, vol.318, pp.187-199, 1998.

J. Freim, J. Mckittrick, J. Katz, and K. Sickafus, Microwave sintering of nanocrystalline ??-Al2O3, Nanostructured Materials, vol.4, issue.4, pp.371-385, 1994.
DOI : 10.1016/0965-9773(94)90108-2

K. I. Rybakov, A. G. Eremeev, S. V. Egorov, Y. V. Bykov, Z. Pajkic et al., Effect of microwave heating on phase transformations in nanostructured alumina, Journal of Physics D: Applied Physics, vol.41, issue.10, p.102008, 2008.
DOI : 10.1088/0022-3727/41/10/102008

R. W. Bruce and A. W. Fliflet, Microwave Sintering of Pure and Doped Nanocrystalline Alumina Compacts, MRS Proceedings, vol.23, pp.139-144, 1996.
DOI : 10.1111/j.1151-2916.1962.tb11099.x

M. I. Mendelson, Average Grain Size in Polycrystalline Ceramics, Journal of the American Ceramic Society, vol.35, issue.2, pp.443-446, 1969.
DOI : 10.1016/S0016-0032(29)91451-4

D. Lance, F. Valdivieso, and P. Goeuriot, Correlation between densification rate and microstructural evolution for pure alpha alumina, Journal of the European Ceramic Society, vol.24, issue.9, pp.2749-2761, 2004.
DOI : 10.1016/j.jeurceramsoc.2003.09.010

H. Su and D. L. Johnson, Master Sintering Curve: A Practical Approach to Sintering, Journal of the American Ceramic Society, vol.66, issue.69, pp.3211-3217, 1996.
DOI : 10.1111/j.1151-2916.1996.tb08097.x

J. D. Hansel, R. P. Rusin, R. H. Teng, and L. Johnson, Combined-Stage Sintering Model, Journal of the American Ceramic Society, vol.70, issue.12, pp.1129-1135, 1992.
DOI : 10.1111/j.1151-2916.1992.tb05549.x

C. X. Ouyang, S. G. Zhu, J. Ma, and H. X. Qu, Master sintering curve of nanocomposite WC-MgO powder compacts, Journal of Alloys and Compounds, vol.518, pp.27-31, 2012.
DOI : 10.1016/j.jallcom.2011.12.091

D. C. Blaine, Linearization of Master Sintering Curve, Journal of the American Ceramic Society, vol.92, issue.7, pp.1403-1409, 2009.
DOI : 10.1111/j.1551-2916.2009.03011.x

S. F. Zuo, S. Saunier, P. Marinel, N. Chanin-lambert, D. Peillon et al., Investigation of the mechanism(s) controlling microwave sintering of ?-alumina
URL : https://hal.archives-ouvertes.fr/emse-01145446

E. Sato and C. Carry, Effect of powder granulometry and pre-treatment on sintering behavior of submicron-grained ??-alumina, Journal of the European Ceramic Society, vol.15, issue.1, pp.9-16, 1995.
DOI : 10.1016/0955-2219(95)91294-X

S. Charmond, Developpement d'un four micro-ondes monomode et frittage de poudres ceramique et métallique, 2009.

A. Guyon, Frittage ultra-rapide naturel : chauffage par micro-ondes et induction, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01203343

R. Hutcheon, M. D. Jong, F. Adams, G. Wood, J. Mcgregor et al., A system for rapid measurements of RF and microwave properties up to 1400 °C, J. Micro. Pow. Elec. Ener, vol.27, 1992.

R. Heuguet, S. Marinel, A. Thuault, and A. Badev, Effects of the Susceptor Dielectric Properties on the Microwave Sintering of Alumina, Journal of the American Ceramic Society, vol.6, issue.39, pp.3728-3736, 2013.
DOI : 10.1111/jace.12623

A. Kassiba, M. Tabellout, S. Charpentier, N. Herlin, and J. R. Emery, Conduction and dielectric behaviour of SiC nano-sized materials, Solid State Communications, vol.115, issue.7, pp.389-393, 2000.
DOI : 10.1016/S0038-1098(00)00195-2

D. Beruto, R. Botter, and A. W. Searcy, Influence of Temperature Gradients on Sintering: Experimental Tests of a Theory, Journal of the American Ceramic Society, vol.1, issue.3, pp.232-235, 1989.
DOI : 10.1111/j.1151-2916.1989.tb06106.x

D. Zymelka, S. Saunier, J. Molimard, and D. Goeuriot, Contactless monitoring of shrinkage and temperature distribution during hybrid microwave sintering
URL : https://hal.archives-ouvertes.fr/hal-00851285

D. Zymelka, Suivi par méthode optique du frittage micro-ondes d'oxydes céramiques, 2012.

. Flir and . Systems, Thermographie manuel de cours ITC, Infrared Training Center, 2002.

Z. Holkova, L. Pach, V. Kovar, and S. Svetik, Kinetic study of Al 2 O 3 sintering by dilatometry, Ceram, vol.47, pp.9-13, 2003.

V. A. Kashcheev and P. P. Poluektov, The use of alternating electric field for the stimulation of diffusion flow of charged impurities, Sov. Tech. Phys. Lett, vol.17, p.577, 1991.

J. H. Booske, R. F. Cooper, and I. Dobson, Mechanisms for nonthermal effects on ionic mobility during microwave processing of crystalline solids, Journal of Materials Research, vol.3, issue.02, pp.495-501, 1992.
DOI : 10.1016/0375-9601(90)90880-W

S. A. Freeman, J. H. Booske, and R. F. Cooper, Microwave Field Enhancement of Charge Transport in Sodium Chloride, Physical Review Letters, vol.74, issue.11, pp.2042-2045, 1995.
DOI : 10.1103/PhysRevLett.74.2042

T. T. Meek, Proposed model for the sintering of a dielectric in a microwave field, Journal of Materials Science Letters, vol.5, issue.6, pp.638-640, 1987.
DOI : 10.1007/BF01770909

D. L. Johnson, Microwave Heating of Grain Boundaries in Ceramics, Journal of the American Ceramic Society, vol.124, issue.4, pp.849-850, 1991.
DOI : 10.1111/j.1151-2916.1991.tb06937.x

I. M. Lifshitz, A. M. Kossevich, and Y. E. Geguzin, Surface phenomena and diffusion mechanism of the movement of defects in ionic crystals, Journal of Physics and Chemistry of Solids, vol.28, issue.5, pp.783-798, 1967.
DOI : 10.1016/0022-3697(67)90007-8

J. W. Jeong, J. H. Han, and D. Y. Kim, Effect of Electric Field on the Migration of Grain Boundaries in Alumina, Journal of the American Ceramic Society, vol.140, issue.4A, pp.915-918, 2000.
DOI : 10.1111/j.1151-2916.2000.tb01294.x

J. I. Choi, J. H. Han, and D. Y. Kim, Effect of Titania and Lithia Doping on the Boundary Migration of Alumina under an Electric Field, Journal of the American Ceramic Society, vol.195, issue.5, pp.640-643, 2003.
DOI : 10.1111/j.1151-2916.2003.tb03352.x

S. Ghosh, A. H. Chokshi, P. Lee, and R. Raj, A Huge Effect of Weak dc Electrical Fields on Grain Growth in Zirconia, Journal of the American Ceramic Society, vol.92, issue.8, pp.1856-1859, 2009.
DOI : 10.1111/j.1551-2916.2009.03102.x

K. I. Rybakov, V. E. Semenov, G. Link, and M. Thumm, Preferred orientation of pores in ceramics under heating by a linearly polarized microwave field, Journal of Applied Physics, vol.101, issue.8, p.84915, 2007.
DOI : 10.1063/1.2723187

J. H. Booske, R. F. Cooper, S. A. Freeman, K. I. Rybakov, and V. E. Semenov, Microwave ponderomotive forces in solid-state ionic plasmas, Physics of Plasmas, vol.5, issue.5, pp.1664-1670, 1998.
DOI : 10.1063/1.872835

K. I. Rybakov, E. A. Olevsky, and E. V. Krikun, Microwave Sintering: Fundamentals and Modeling, Journal of the American Ceramic Society, vol.94, issue.9-10, pp.1003-1020, 2013.
DOI : 10.1111/jace.12278

K. I. Rybakov and V. E. Semenov, Mass transport in ionic crystals induced by the ponderomotive action of a high-frequency electric field, Physical Review B, vol.52, issue.5, pp.3030-3033, 1995.
DOI : 10.1103/PhysRevB.52.3030

A. Birnboim, J. P. Calame, and Y. Carmel, Microfocusing and polarization effects in spherical neck ceramic microstructures during microwave processing, Journal of Applied Physics, vol.85, issue.1, pp.478-482, 1999.
DOI : 10.1063/1.369411

F. Zuo, Etudes thermodynamique et cinétique du frittage par micro-ondes de l'alumine : influence des paramètres de la poudre, 2014.

Z. He and J. Ma, Constitutive modeling of the densification and grain growth of fine-grained alumina ceramics, References [1] W. Ma and H. Dong, Ceramic thermal barrier coating materials, Thermal Barrier Coatings, pp.130-135, 2003.
DOI : 10.1016/S0921-5093(03)00510-0

T. Kokubo, H. Kim, and M. Kawashita, Handbook of advanced ceramics Ceramics for biomedical applications, 2003.

L. Treccani, T. Y. Klein, F. Meder, K. Pardun, K. Rezwan-arcos et al., Functionalized ceramics for biomedical, biotechnological and environmental applications, Acta Biomaterialia, vol.9, issue.7, pp.7115-7150890, 2013.
DOI : 10.1016/j.actbio.2013.03.036

M. Demuynck, J. Erauw, O. Van-der-biest, F. Delannay, and F. Cambier, Densification of alumina by SPS and HP: A comparative study, Journal of the European Ceramic Society, vol.32, issue.9, pp.1957-1964, 2012.
DOI : 10.1016/j.jeurceramsoc.2011.10.031

Z. Xie, J. Yang, and Y. Huang, Densification and grain growth of alumina by microwave processing, Materials Letters, vol.37, issue.4-5, pp.215-220, 1998.
DOI : 10.1016/S0167-577X(98)00094-9

Z. Xie, J. Yang, X. Huang, and Y. Huang, Microwave processing and properties of ceramics with different dielectric loss, Journal of the European Ceramic Society, vol.19, issue.3, pp.381-387, 1999.
DOI : 10.1016/S0955-2219(98)00203-9

J. Cheng, D. Agrawal, Y. Zhang, and R. Roy, Microwave sintering of transparent alumina, Materials Letters, vol.56, issue.4, pp.587-592, 2002.
DOI : 10.1016/S0167-577X(02)00557-8

Y. Fang, J. Cheng, D. K. Agrawal, M. Mizuno, S. Obata et al., Effect of powder reactivity on microwave sintering of alumina Sintering of alumina by 2.45 GHz microwave heating, Menezes, P.M. Souto, and R.H. Goldschmidt. Microwave fast sintering of submicrometer alumina, pp.498-501387, 2004.

Z. Fan-fei-ans, Z. Jin-bo, S. Ming-xu-zymelka, D. Saunier, J. Goeuriot et al., Densification and thermal gradient evolution of alumina during microwave sintering at 2.45 GHz Comparison of the microwave and conventional sintering of alumina: Effect of MgO doping and particle size Mi-crowave sintering of cubic zirconia Densification and microstructure evolution of Ytetragonal zirconia polycristal powder during direct and hybrid microwave sintering in a single mode cavity Fabrication of porous Al 2 O 3 by microwave sintering and its properties Microwave sintering of alumina -zirconia nanocomposites Improvement of the hydroxyapatite mechanical properties by direct microwave sintering in single mode cavity Improvement of mechanical properties of zirconia-toughened alumina by sinter forging, Effect of A l2 O 3 powder on microstructure and properties of alumina ceramics by microwave sintering. Materials Science and Engineering A Harmer. Hot pressing: technology and theory Concise encyclopedia of advanced ceramic materials Developments in hot pressing (HP) and hot isostatic pressing (HIP) of ceramic matrix composites, Advances in Ceramic Matrix Composites, pp.328-3313269, 1987.

Y. J. He, A. J. Winnubst, H. Verweij, A. J. Burggraaf, C. S. Nordahl et al., Sinter forging of zirconia toughened alumina Transformation and densification of nanaocrystalline ?-alumina during sinter forging Sintering and densification of nanocrystalline ceramic oxide powder: a review, High pressure/ low temperature sintering of nanocrystalline alumina. NanoStructured Materials, pp.6505-65123149, 1994.