. La-croissance-est-suivie-en-mesurant-la-turbidité-avec-un-colorimère-klett-summersonarnold, Le sodium d'acétate estàest`està pH 7. Il est ajouté comme suit : 25 mM d'acétate (cercles), 50 mM d'acétate (triangles pleins) ou 100 mM d'acétate (carrés). L'ajout de 100 mM de chlorure de sodium (NaCl) (diamants pleins) est utilisé, ici, comme un témoin reproduisant la même osmolarité que le sodium d'acétate. L'addition de 25 ou de 50 mM de NaCl a le même effet sur le taux de croissance que 100 mM de NaCl, 2001.

A. M. Abdel-hamid, M. M. Attwood, and J. R. Guest, Pyruvate oxidase contributes to the aerobic growth efficiency of Escherichia coli, Microbiology, vol.147, issue.6, pp.1483-1498, 2001.
DOI : 10.1099/00221287-147-6-1483

J. Almquist, M. Cvijovic, V. Hatzimanikatis, J. Nielsen, and M. Jirstrand, Kinetic models in industrial biotechnology ??? Improving cell factory performance, Metabolic engineering 24, pp.38-60, 2014.
DOI : 10.1016/j.ymben.2014.03.007

E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss, Synthetic biology: new engineering rules for an emerging discipline, Molecular systems biology, 2006.
DOI : 10.1038/msb4100073

C. N. Arnold, J. Mcelhanon, A. Lee, R. Leonhart, and D. A. Siegele, Global Analysis of Escherichia coli Gene Expression during the Acetate-Induced Acid Tolerance Response, Journal of Bacteriology, vol.183, issue.7, pp.2178-2186, 2001.
DOI : 10.1128/JB.183.7.2178-2186.2001

D. Axe and J. Bailey, Transport of lactate and acetate through the energized cytoplasmic membrane ofEscherichia coli, Biotechnology and Bioengineering, vol.75, issue.1, pp.8-19, 1995.
DOI : 10.1002/bit.260470103

T. Baba, T. Ara, M. Hasegawa, Y. Takai, Y. Okumura et al., Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection, Molecular Systems Biology, vol.170, p.8, 2006.
DOI : 10.1038/msb4100050

F. K. Balagaddé, H. Song, J. Ozaki, C. H. Collins, M. Barnet et al., A synthetic Escherichia coli predator???prey ecosystem, Molecular Systems Biology, vol.176, issue.1, 2008.
DOI : 10.1038/nature02491

B. D. Bennett, E. H. Kimball, M. Gao, R. Osterhout, S. J. Dien et al., Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli, Nature Chemical Biology, vol.149, issue.8, pp.593-599, 2009.
DOI : 10.1038/nchembio.186

A. Brencic and S. Lory, RsmA, Molecular Microbiology, vol.31, issue.3, pp.612-632, 2009.
DOI : 10.1111/j.1365-2958.2009.06670.x

M. E. Bulina, K. A. Lukyanov, O. V. Britanova, D. Onichtchouk, S. Lukyanov et al., Chromophore-assisted light inactivation (CALI) using the phototoxic fluorescent protein KillerRed, Nature Protocols, vol.59, issue.2, pp.947-953, 2006.
DOI : 10.1042/BJ20021191

T. Bulter, S. Lee, W. W. Wong, E. Fung, M. R. Connor et al., Design of artificial cell-cell communication using gene and metabolic networks, Proceedings of the National Academy of Sciences of the United States of America, pp.2299-2304, 2004.
DOI : 10.1073/pnas.0306484101

C. Carpenter and J. Broadbent, External Concentration of Organic Acid Anions and pH: Key Independent Variables for Studying How Organic Acids Inhibit Growth of Bacteria in Mildly Acidic Foods, Journal of Food Science, vol.67, issue.1, pp.12-17, 2009.
DOI : 10.1111/j.1750-3841.2008.00994.x

S. Castaño-cerezo, V. Bernal, H. Post, T. Fuhrer, S. Cappadona et al., Protein acetylation affects acetate metabolism, motility and acid stress response in Escherichia coli, Molecular Systems Biology, vol.10, issue.11, pp.762-762
DOI : 10.15252/msb.20145227

S. Castaño-cerezo, V. Bernal, T. Röhrig, S. Termeer, and M. Cánovas, Regulation of acetate metabolism in Escherichia coli BL21 by protein N??-lysine acetylation, Applied Microbiology and Biotechnology, vol.337, issue.80, 2014.
DOI : 10.1007/s00253-014-6280-8

S. Castaño-cerezo, V. Bernal, J. Blanco-catalá, J. L. Iborra, and M. , cAMP-CRP co-ordinates the expression of the protein acetylation pathway with central metabolism in Escherichia coli, Molecular Microbiology, vol.337, issue.5, pp.1110-1128
DOI : 10.1111/j.1365-2958.2011.07873.x

S. Castaño-cerezo, J. M. Pastor, S. Renilla, V. Bernal, J. L. Iborra et al., An insight into the role of phosphotransacetylase (pta) and the acetate/acetyl-CoA node in Escherichia coli, Microbial cell factories, p.54, 2009.
DOI : 10.1186/1475-2859-8-54

Y. Chang, J. E. Wang, and . Cronan, Expression of Escherichia coli pyruvate oxidase (PoxB) depends on the sigma factor encoded by the rpoS(katF) gene, Molecular Microbiology, vol.259, issue.6, pp.1019-1028, 1994.
DOI : 10.1016/0923-2508(91)90094-Q

X. Chen, L. Zhou, K. Tian, A. Kumar, S. Singh et al., Metabolic engineering of Escherichia coli: A sustainable industrial platform for bio-based chemical production, Biotechnology Advances, vol.31, issue.8, pp.31-1200, 2013.
DOI : 10.1016/j.biotechadv.2013.02.009

V. Chubukov, L. Gerosa, K. Kochanowski, and U. Sauer, Coordination of microbial metabolism, Nature Reviews Microbiology, vol.6, issue.5, pp.327-340, 2014.
DOI : 10.1038/nrmicro3238

G. M. Church, M. B. Elowitz, C. D. Smolke, C. A. Voigt, and R. Weiss, Realizing the potential of synthetic biology, Nature Reviews Molecular Cell Biology, vol.333, issue.4, 2014.
DOI : 10.1038/nrm3767

R. A. Cox, Quantitative relationships for specific growth rates and macromolecular compositions of Mycobacterium tuberculosis, Streptomyces coelicolor A3(2) and Escherichia coli B/r: an integrative theoretical approach, Microbiology, vol.150, issue.5, pp.1413-1426, 2004.
DOI : 10.1099/mic.0.26560-0

K. A. Datsenko and B. L. Wanner, One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products, Proc. Natl. Acad. Sci. USA 97, pp.6640-6645, 2000.
DOI : 10.1073/pnas.120163297

D. Mey, M. , S. De-maeseneire, W. Soetaert, and E. Vandamme, Minimizing acetate formation in E. coli fermentations, Journal of Industrial Microbiology & Biotechnology, vol.101, issue.6, pp.689-700, 2007.
DOI : 10.1007/s10295-007-0244-2

P. P. Dennis and H. Bremer, Macromolecular composition during steady-state growth of Escherichia coli B-r, J Bacteriol, vol.119, issue.1, 1974.

J. Diaz-ricci, L. Regan, and J. Bailey, Effect of alteration of the acetic acid synthesis pathway on the fermentation pattern ofescherichia coli, Biotechnology and Bioengineering, vol.4, issue.11, pp.1318-1342, 1991.
DOI : 10.1002/bit.260381109

C. Dittrich, R. Vadali, G. Bennett, and K. San, Redistribution of Metabolic Fluxes in the Central Aerobic Metabolic Pathway of E. coli Mutant Strains with Deletion of the ackA-pta and poxB Pathways for the Synthesis of Isoamyl Acetate, Biotechnology Progress, vol.97, issue.2, pp.627-658, 2005.
DOI : 10.1021/bp049730r

C. R. Dittrich, G. N. Bennett, and K. San, Characterization of the Acetate-Producing Pathways in Escherichia coli, Biotechnology Progress, vol.57, issue.4, pp.1062-1067, 2005.
DOI : 10.1021/bp050073s

M. A. Eiteman and E. Altman, Overcoming acetate in Escherichia coli recombinant protein fermentations, Trends in Biotechnology, vol.24, issue.11, pp.530-536, 2006.
DOI : 10.1016/j.tibtech.2006.09.001

E. M. El-mansi and W. H. Holms, Control of Carbon Flux to Acetate Excretion During Growth of Escherichia coli in Batch and Continuous Cultures, Microbiology, vol.135, issue.11, pp.2875-83, 1989.
DOI : 10.1099/00221287-135-11-2875

B. Enjalbert, F. Letisse, and J. , Portais: 2013, 'Physiological and Molecular Timing of the Glucose to Acetate Transition in Escherichia coli, pp.820-837

I. S. Farmer and C. W. Jones, The Energetics of Escherichia coli during Aerobic Growth in Continuous Culture, European Journal of Biochemistry, vol.103, issue.1, pp.115-122, 1976.
DOI : 10.1016/S0076-6879(57)03413-8

W. R. Farmer and J. C. Liao, Improving lycopene production in Escherichia coli by engineering metabolic control', Nature biotechnology, vol.18, issue.5, pp.533-537, 2000.

A. M. Feist, C. S. Henry, J. L. Reed, M. Krummenacker, A. R. Joyce et al., A genome-scale metabolic reconstruction for Escherichia coli K-12 MG1655 that accounts for 1260 ORFs and thermodynamic information, Molecular Systems Biology, vol.64, p.121, 2007.
DOI : 10.1038/msb4100155

G. Fioraso, Les enjeux de la biologie de synthèse, Office parlementaire des choix scientifiques et technologiques 15, 2012.

D. Fox, N. Meadow, and S. Roseman, Phosphate transfer between acetate kinase and enzyme I of the bacterial phosphotransferase system, J. Biol. Chem, vol.261, issue.29, pp.13498-503, 1986.

R. García-contreras, P. Vos, H. Westerhoff, and F. Boogerd, Why in vivo may not equal in vitro -new effectors revealed by measurement of enzymatic activities under the same in vivo-like assay conditions', FEBS J, issue.22, pp.279-4145, 2012.

T. S. Gardner, C. R. Cantor, and J. J. Collins, Construction of a genetic toggle switch in Escherichia coli', Nature, vol.403, issue.6767, pp.339-342, 2000.

C. C. Geddes, I. U. Nieves, and L. O. Ingram, Advances in ethanol production, Current Opinion in Biotechnology, vol.22, issue.3, pp.312-319, 2011.
DOI : 10.1016/j.copbio.2011.04.012

L. Gerosa and U. Sauer, Regulation and control of metabolic fluxes in microbes, Current Opinion in Biotechnology, vol.22, issue.4, pp.566-575, 2011.
DOI : 10.1016/j.copbio.2011.04.016

D. G. Gibson, L. Young, R. Chuang, J. C. Venter, C. A. Hutchison et al., Enzymatic assembly of DNA molecules up to several hundred kilobases, Nature Methods, vol.102, issue.5, pp.343-345, 2009.
DOI : 10.1038/nmeth.1318

R. Gimenez, M. F. Nuñez, J. Badia, J. Aguilar, and L. Baldoma, The Gene yjcG, Cotranscribed with the Gene acs, Encodes an Acetate Permease in Escherichia coli, Journal of Bacteriology, vol.185, issue.21, pp.6448-6455, 2003.
DOI : 10.1128/JB.185.21.6448-6455.2003

J. M. Grime, M. A. Edwards, N. C. Rudd, and P. R. Unwin, Quantitative visualization of passive transport across bilayer lipid membranes, Proc. Natl. Acad. Sci. USA 105, pp.14277-14282, 2008.
DOI : 10.1073/pnas.0803720105

M. Heinemann and S. Panke, Synthetic biology--putting engineering into biology, Bioinformatics, vol.22, issue.22, pp.2790-2799, 2006.
DOI : 10.1093/bioinformatics/btl469

A. Herrero, R. Gomez, B. Snedecor, C. Tolman, and M. Roberts, Growth inhibition of Clostridium thermocellum by carboxylic acids: A mechanism based on uncoupling by weak acids, Applied Microbiology and Biotechnology, vol.22, issue.1, pp.53-62, 1985.
DOI : 10.1007/BF00252157

W. Holms, The Central Metabolic Pathways of Escherichia coli: Relationship between Flux and Control at a Branch Point, Efficiency of Conversion to Biomass, and Excretion of Acetate, Curr. Top. Cell. Regul, vol.28, pp.69-105, 1986.
DOI : 10.1016/B978-0-12-152828-7.50004-4

L. I. Hu, B. K. Chi, M. L. Kuhn, E. V. Filippova, A. J. Walker-peddakotla et al., Acetylation of the Response Regulator RcsB Controls Transcription from a Small RNA Promoter, Journal of Bacteriology, vol.195, issue.18, pp.4174-4186, 2013.
DOI : 10.1128/JB.00383-13

H. Kakuda, K. Hosono, and S. Ichihara, Identification and Characterization of the ackA (Acetate Kinase A)-pta (Phosphotransacetylase) Operon and Complementation Analysis of Acetate Utilization by an ackA-pta Deletion Mutant of Escherichia coli, The Journal of Biochemistry, vol.116, issue.4, pp.916-922, 1994.
DOI : 10.1093/oxfordjournals.jbchem.a124616

J. D. Keasling, Synthetic Biology for Synthetic Chemistry, ACS Chemical Biology, vol.3, issue.1, pp.64-76, 2008.
DOI : 10.1021/cb7002434

C. Kirkpatrick, L. M. Maurer, N. E. Oyelakin, Y. N. Yoncheva, R. Maurer et al., Acetate and Formate Stress: Opposite Responses in the Proteome of Escherichia coli, Journal of Bacteriology, vol.183, issue.21, pp.6466-6477, 2001.
DOI : 10.1128/JB.183.21.6466-6477.2001

H. Kitano, Systems Biology: A Brief Overview, Science, vol.295, issue.5560, pp.1662-1664, 2002.
DOI : 10.1126/science.1069492

A. H. Klein, A. Shulla, S. A. Reimann, D. H. Keating, and A. J. Wolfe, The Intracellular Concentration of Acetyl Phosphate in Escherichia coli Is Sufficient for Direct Phosphorylation of Two-Component Response Regulators, Journal of Bacteriology, vol.189, issue.15, pp.189-5574, 2007.
DOI : 10.1128/JB.00564-07

K. Kochanowski, U. Sauer, and V. Chubukov, Somewhat in control???the role of transcription in regulating microbial metabolic fluxes, Current Opinion in Biotechnology, vol.24, issue.6, pp.987-993, 2013.
DOI : 10.1016/j.copbio.2013.03.014

D. Lasko, N. Zamboni, and U. Sauer, Bacterial response to acetate challenge: a comparison of tolerance among species, Applied Microbiology and Biotechnology, vol.54, issue.2, pp.243-247, 2000.
DOI : 10.1007/s002530000339

H. G. Lawford and J. D. Rousseau, Effects of pH and acetic acid on glucose and xylose metabolism by a genetically engineered ethanologenicEscherichia coli, Applied Biochemistry and Biotechnology, vol.57, issue.21, pp.301-322, 1993.
DOI : 10.1007/BF02918999

E. Leonard, D. Nielsen, K. Solomon, and K. J. Prather, Engineering microbes with synthetic biology frameworks, Trends in Biotechnology, vol.26, issue.12, pp.674-681, 2008.
DOI : 10.1016/j.tibtech.2008.08.003

J. Li and P. Neubauer, Escherichia coli as a cell factory for heterologous production of nonribosomal peptides and polyketides'. New biotechnology, 2014.

M. Li and I. Borodina, Application of synthetic biology for production of chemicals in yeast Saccharomyces cerevisiae', FEMS yeast research, 2014.

H. Ling, W. Teo, B. Chen, S. S. Leong, and M. W. Chang, Microbial tolerance engineering toward biochemical production: from lignocellulose to products, Current Opinion in Biotechnology, vol.29, pp.99-106, 2014.
DOI : 10.1016/j.copbio.2014.03.005

G. W. Luli and W. R. Strohl, Comparison of growth, acetate production, and acetate inhibition of Escherichia coli strains in batch and fed-batch fermentations, Applied and environmental microbiology, vol.56, issue.4, pp.1004-1011, 1990.

R. Majewski and M. Domach, Simple constrained-optimization view of acetate overflow inE. coli, Biotechnology and Bioengineering, vol.134, issue.7, pp.732-738, 1990.
DOI : 10.1002/bit.260350711

M. D. Mey, M. D. Maeseneire, W. Soetaert, and E. Vandamme, Minimizing acetate formation in E. coli fermentations, Journal of Industrial Microbiology & Biotechnology, vol.101, issue.6, pp.689-700, 2007.
DOI : 10.1007/s10295-007-0244-2

T. Y. Mills, N. R. Sandoval, and R. T. Gill, Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli, Biotechnology for Biofuels, vol.2, issue.1, p.26, 2009.
DOI : 10.1186/1754-6834-2-26

E. A. Mordukhova and J. , Evolved Cobalamin-Independent Methionine Synthase (MetE) Improves the Acetate and Thermal Tolerance of Escherichia coli, Applied and Environmental Microbiology, vol.79, issue.24, pp.7905-7915
DOI : 10.1128/AEM.01952-13

D. Na, S. M. Yoo, H. Chung, H. Park, J. H. Park et al., Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs, Nature Biotechnology, vol.453, issue.2, pp.31-170, 2013.
DOI : 10.1002/elps.1150170325

R. Nahku, K. Valgepea, P. Lahtvee, S. Erm, K. Abner et al., Specific growth rate dependent transcriptome profiling of Escherichia coli K12 MG1655 in accelerostat cultures, Journal of Biotechnology, vol.145, issue.1, pp.60-65, 2010.
DOI : 10.1016/j.jbiotec.2009.10.007

J. Nielsen, M. Fussenegger, J. Keasling, S. Y. Lee, J. C. Liao et al., Engineering synergy in biotechnology, Nature Chemical Biology, vol.73, issue.5, pp.319-322
DOI : 10.1038/nchembio.970

M. Oh, L. Rohlin, K. C. Kao, and J. C. Liao, Global Expression Profiling of Acetate-grown Escherichia coli, Journal of Biological Chemistry, vol.277, issue.15, pp.13175-13183, 2002.
DOI : 10.1074/jbc.M110809200

M. Oldiges, B. J. Eikmanns, and B. Blombach, Application of metabolic engineering for the biotechnological production of l-valine'. Applied microbiology and biotechnology pp, pp.1-12, 2014.

C. Paddon, P. Westfall, D. Pitera, K. Benjamin, K. Fisher et al., High-level semi-synthetic production of the potent antimalarial artemisinin, Nature, vol.68, issue.7446, pp.528-532, 2013.
DOI : 10.1038/nature12051

C. J. Paddon and J. D. , Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development, Nature Reviews Microbiology, vol.199, issue.5, pp.355-367
DOI : 10.1038/nrmicro3240

J. Pey, K. Valgepea, A. Rubio, J. E. Beasley, and F. J. , Integrating gene and protein expression data with genome-scale metabolic networks to infer functional pathways, BMC Systems Biology, vol.7, issue.1, p.134
DOI : 10.1186/1752-0509-7-134

J. Phue, S. J. Lee, J. B. Kaufman, A. Negrete, and J. Shiloach, Acetate accumulation through alternative metabolic pathways in ackA ??? pta ??? poxB ??? triple mutant in E. coli B (BL21), Biotechnology Letters, vol.1, issue.10, pp.1897-1903, 2010.
DOI : 10.1007/s10529-010-0369-7

M. B. Quin and C. Schmidt-dannert, Designer microbes for biosynthesis, Current Opinion in Biotechnology, vol.29, pp.55-61, 2014.
DOI : 10.1016/j.copbio.2014.02.014

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4165810

S. Renilla, V. Bernal, T. Fuhrer, S. Castaño-cerezo, J. M. Pastor et al., Acetate scavenging activity in Escherichia coli: interplay of acetyl???CoA synthetase and the PEP???glyoxylate cycle in chemostat cultures, Applied Microbiology and Biotechnology, vol.6, issue.1, pp.2109-2124, 2011.
DOI : 10.1007/s00253-011-3536-4

A. L. Rodrigues, N. Trachtmann, J. Becker, A. F. Lohanatha, J. Blotenberg et al., Systems metabolic engineering of Escherichia coli for production of the antitumor drugs violacein and deoxyviolacein, Metabolic engineering, pp.29-41, 2013.
DOI : 10.1016/j.ymben.2013.08.004

A. Roe, D. Mclaggan, I. Davidson, C. O. Byrne, and I. Booth, Perturbation of anion balance during inhibition of growth of Escherichia coli by weak acids, J. Bacteriol, vol.180, issue.4, pp.767-72, 1998.

A. J. Roe, C. O-'byrne, D. Mclaggan, and I. R. Booth, Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity, Microbiology, vol.148, issue.7, pp.2215-2222, 2002.
DOI : 10.1099/00221287-148-7-2215

J. Russell, Another explanation for the toxicity of fermentation acids at low pH: anion accumulation versus uncoupling, Journal of Applied Bacteriology, vol.78, issue.5, pp.363-70, 1992.
DOI : 10.1111/j.1365-2672.1992.tb04990.x

J. Russell and F. Diez-gonzalez, The Effects of Fermentation Acids on Bacterial Growth, Adv. Microb. Physiol, vol.39, pp.205-239, 1998.
DOI : 10.1016/S0065-2911(08)60017-X

J. B. Russell, Resistance of Streptococcus bovis to acetic acid at low pH: relationship between intracellular pH and anion accumulation, Applied and environmental microbiology, vol.57, issue.1, pp.255-259, 1991.

J. B. Russell and F. Diez-gonzalez, The effects of fermentation acids on bacterial growth'. Advances in microbial physiology 39, pp.205-234, 1997.

N. R. Sandoval, T. Y. Mills, M. Zhang, and R. T. Gill, Elucidating acetate tolerance in E. coli using a genome-wide approach, Metabolic Engineering, vol.13, issue.2, pp.214-224, 2011.
DOI : 10.1016/j.ymben.2010.12.001

. Palsson, Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0, Nature protocols, vol.6, issue.9, pp.1290-307, 2011.

H. E. Schellhorn and V. L. , Regulation of katF and katE in Escherichia coli K-12 by weak acids., Journal of Bacteriology, vol.174, issue.14, pp.4769-4776
DOI : 10.1128/jb.174.14.4769-4776.1992

J. C. Sigala, S. Flores, N. Flores, C. Aguilar, R. De-anda et al., Acetate Metabolism in <i>Escherichia coli</i> Strains Lacking Phosphoenolpyruvate: Carbohydrate Phosphotransferase System; Evidence of Carbon Recycling Strategies and Futile Cycles, Journal of Molecular Microbiology and Biotechnology, vol.16, issue.3-4, pp.3-4, 2009.
DOI : 10.1159/000151219

K. Smallbone and E. Simeonidis, Flux balance analysis: A geometric perspective, Journal of Theoretical Biology, vol.258, issue.2, pp.311-316, 2009.
DOI : 10.1016/j.jtbi.2009.01.027

URL : https://hal.archives-ouvertes.fr/hal-00554570

G. Smirnova and O. Oktyabr-'skii, Effect of activity of primary proton pumps on growth of Escherichia coli in the presence of acetate, Microbiology (USSR), vol.57, pp.446-51, 1988.

M. T. Smith, K. M. Wilding, J. M. Hunt, A. M. Bennett, and B. C. Bundy, The emerging age of cell-free synthetic biology, FEBS Letters, vol.7, issue.17, pp.588-2755, 2014.
DOI : 10.1016/j.febslet.2014.05.062

V. Starai and J. Escalante-semerena, Acetyl-coenzyme A synthetase (AMP forming), Cellular and Molecular Life Sciences, vol.61, issue.16, pp.2020-2030, 2004.
DOI : 10.1007/s00018-004-3448-x

G. Stephanopoulos, Synthetic Biology and Metabolic Engineering, ACS Synthetic Biology, vol.1, issue.11, pp.514-525, 2012.
DOI : 10.1021/sb300094q

J. J. Tabor, A. Levskaya, and C. A. Voigt, Multichromatic Control of Gene Expression in Escherichia coli, Journal of Molecular Biology, vol.405, issue.2, pp.315-324, 2011.
DOI : 10.1016/j.jmb.2010.10.038

L. C. Thomason, N. Costantino, D. L. Brent, and R. E. , Court: 2007, 'E. coli Genome Manipulation by P1 Transduction

J. Seidman, Current Protocols in Molecular Biology, pp.1-17

J. Timmermans and L. Van-melderen, Conditional Essentiality of the csrA Gene in Escherichia coli, Journal of Bacteriology, vol.191, issue.5, pp.1722-1724, 2009.
DOI : 10.1128/JB.01573-08

J. Timmermans and L. Van-melderen, Post-transcriptional global regulation by CsrA in bacteria'. Cellular and molecular life sciences, pp.67-2897, 2010.

K. Valgepea, K. Adamberg, R. Nahku, P. Lahtvee, L. Arike et al., Systems biology approach reveals that overflow metabolism of acetate in Escherichia coli is triggered by carbon catabolite repression of acetyl-CoA synthetase, BMC Systems Biology, vol.4, issue.1, p.166, 2010.
DOI : 10.1186/1752-0509-4-166

M. J. Van-hoek and R. M. Merks, Redox balance is key to explaining full vs. partial switching to low-yield metabolism, BMC Systems Biology, vol.6, issue.1, p.22, 2012.
DOI : 10.1038/nprot.2007.99

A. Varma, B. W. Boesch, and B. O. Palsson, Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates, Applied and environmental microbiology, vol.59, issue.8, pp.2465-2473, 1993.

A. Veit, T. Polen, and V. F. Wendisch, Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation, Applied Microbiology and Biotechnology, vol.97, issue.Pt 8, pp.406-421, 2007.
DOI : 10.1007/s00253-006-0680-3

G. Vemuri, E. Altman, D. Sangurdekar, A. Khodursky, and M. Eiteman, Overflow Metabolism in Escherichia coli during Steady-State Growth: Transcriptional Regulation and Effect of the Redox Ratio, Applied and Environmental Microbiology, vol.72, issue.5, pp.3653-3661, 2006.
DOI : 10.1128/AEM.72.5.3653-3661.2006

E. Verdin and M. Ott, Acetylphosphate: A Novel Link between Lysine Acetylation and Intermediary Metabolism in Bacteria, Molecular Cell, vol.51, issue.2, pp.132-134, 2013.
DOI : 10.1016/j.molcel.2013.07.006

C. A. Voigt, Genetic parts to program bacteria, Current Opinion in Biotechnology, vol.17, issue.5, pp.548-557, 2006.
DOI : 10.1016/j.copbio.2006.09.001

B. Volkmer and M. Heinemann, Condition-Dependent Cell Volume and Concentration of Escherichia coli to Facilitate Data Conversion for Systems Biology Modeling, PLoS ONE, vol.7, issue.7, p.23126, 2011.
DOI : 10.1371/journal.pone.0023126.t001

Q. Wang, Y. Zhang, C. Yang, H. Xiong, Y. Lin et al., Acetylation of Metabolic Enzymes Coordinates Carbon Source Utilization and Metabolic Flux, Science, vol.327, issue.5968, pp.1004-1007, 2010.
DOI : 10.1126/science.1179687

T. Warnecke and R. Gill, Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications, Microbial Cell Factories, vol.4, issue.1, p.25, 2005.
DOI : 10.1186/1475-2859-4-25

B. T. Weinert, V. Iesmantavicius, S. A. Wagner, C. Schölz, B. Gummesson et al., Acetyl-Phosphate Is a Critical Determinant of Lysine Acetylation in E.??coli, Molecular Cell, vol.51, issue.2, pp.265-272, 2013.
DOI : 10.1016/j.molcel.2013.06.003

V. F. Wendisch, Microbial production of amino acids and derived chemicals: Synthetic biology approaches to strain development, Current Opinion in Biotechnology, vol.30, pp.51-58, 2014.
DOI : 10.1016/j.copbio.2014.05.004

J. C. Wilks and J. L. Slonczewski, pH of the Cytoplasm and Periplasm of Escherichia coli: Rapid Measurement by Green Fluorescent Protein Fluorimetry, Journal of Bacteriology, vol.189, issue.15, pp.5601-5607, 2007.
DOI : 10.1128/JB.00615-07

A. Wolfe, D. Chang, J. Walker, J. Seitz-partridge, M. Vidaurri et al., Evidence that acetyl phosphate functions as a global signal during biofilm development, Molecular Microbiology, vol.174, issue.4, pp.977-88, 2003.
DOI : 10.1046/j.1365-2958.2003.03457.x

A. J. Wolfe, The Acetate Switch, Microbiology and Molecular Biology Reviews, vol.69, issue.1, pp.12-50, 2005.
DOI : 10.1128/MMBR.69.1.12-50.2005

B. Xu, M. Jahic, G. Blomsten, and S. , Glucose overflow metabolism and mixed-acid fermentation in aerobic large-scale fed-batch processes with Escherichia coli, Applied Microbiology and Biotechnology, vol.51, issue.5, pp.564-571
DOI : 10.1007/s002530051433

Y. Yang, G. Bennett, and K. San, Effect of inactivation of nuo and ackApta on redistribution of metabolic fluxes in Escherichia coli, Biotechnology and Bioengineering, vol.65, issue.3, pp.291-298, 1999.
DOI : 10.1002/(SICI)1097-0290(19991105)65:3<291::AID-BIT6>3.3.CO;2-6

J. Zhao and K. Shimizu, Metabolic flux analysis of Escherichia coli K12 grown on 13C-labeled acetate and glucose using GC-MS and powerful flux calculation method, Journal of Biotechnology, vol.101, issue.2, pp.101-117, 2003.
DOI : 10.1016/S0168-1656(02)00316-4

D. Zhou and R. Yang, Global analysis of gene transcription regulation in prokaryotes, Cellular and Molecular Life Sciences, vol.63, issue.19-20, pp.2260-2290, 2006.
DOI : 10.1007/s00018-006-6184-6