. Bibliographie-réseau-sentinelles, Available from : http ://websenti.u707.fr/sentiweb, 2014.

K. Alam and &. K. Saxena, Positive dependence in multivariate distributions, Communications in Statistics, vol.10, pp.1183-1196, 1981.

C. Ané, S. Blachère, D. Chafa¨?chafa¨?, P. Fougères, I. Gentil et al., Sur les inégalités de Sobolev logarithmiques. (On logarithmic Sobolev inequalities. With a preface of Dominique Bakry and Michel Ledoux). Panoramas et Synthèses, 2000.

B. C. Arnold, N. Balakrishnan, and &. H. Nagaraja, A first course in order statistics, Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), vol.54, 2008.
DOI : 10.1137/1.9780898719062

A. A. Balkema and &. L. De-haan, Residual life time at great age. The Annals of Probability, pp.792-804, 1974.
DOI : 10.1214/aop/1176996548

A. A. Balkema and &. L. De-haan, Limit distributions for order statistics I. Theory of Probability and its Applications, pp.77-92, 1978.

A. A. Balkema and &. L. De-haan, Limit distributions for order statistics II. Theory of Probability and its Applications, pp.341-358, 1978.

J. Beirlant, P. Vynckier, and &. J. Teugels, Tail index estimation, Pareto quantile plots, and regression diagnostics, Journal of the American Statistical Association, issue.436, pp.91-1659, 1996.

J. Beirlant, Y. Goegebeur, J. Segers, and &. J. Teugels, Satistics of extremes, Theory and applications, 2004.

J. Beirlant, C. Bouquiaux, and &. B. Werker, Semiparametric lower bounds for tail index estimation, Journal of Statistical Planning and Inference, vol.136, issue.3, pp.705-729, 2006.
DOI : 10.1016/j.jspi.2004.08.018

G. Bennett, Probability Inequalities for the Sum of Independent Random Variables, Journal of the American Statistical Association, vol.18, issue.297, pp.33-45, 1962.
DOI : 10.1214/aoms/1177730437

S. Bernstein, The Theory of Probabilities, 1946.

N. Bingham, C. Goldie, and &. J. Teugels, Regular variation, 1987.
DOI : 10.1017/CBO9780511721434

L. Birgé, An alternative point of view on Lepski's method, State of the art in probability and statistics, pp.113-133, 1999.
DOI : 10.1214/lnms/1215090065

L. Birgé, A New Lower Bound for Multiple Hypothesis Testing, IEEE Transactions on Information Theory, vol.51, issue.4, pp.1611-1615, 2005.
DOI : 10.1109/TIT.2005.844101

L. Birgé and &. P. Massart, Minimum Contrast Estimators on Sieves: Exponential Bounds and Rates of Convergence, Bernoulli, vol.4, issue.3, pp.329-375, 1998.
DOI : 10.2307/3318720

S. Bobkov and &. M. Ledoux, Poincaré's inequality and talagrand's concentration phenomenon for the exponential distribution. Probability Theory and Related Fields, pp.383-400, 1997.

S. Boucheron and &. M. Thomas, Concentration inequalities for order statistics, Electronic Communications in Probability, vol.17, issue.0, pp.1-12, 2012.
DOI : 10.1214/ECP.v17-2210

URL : https://hal.archives-ouvertes.fr/hal-00751496

S. Boucheron and &. M. Thomas, Tail index estimation, concentration and adaptivity, Electronic Journal of Statistics, vol.9, issue.2, 2015.
DOI : 10.1214/15-EJS1088

URL : https://hal.archives-ouvertes.fr/hal-01132911

S. Boucheron, G. Lugosi, and &. P. Massart, Concentration inequalities using the entropy method, Annals of Probability, vol.31, issue.3, pp.1583-1614, 2003.

S. Boucheron, G. Lugosi, and &. P. Massart, Concentration Inequalities, 2013.
DOI : 10.1007/978-1-4757-2440-0

URL : https://hal.archives-ouvertes.fr/hal-00751496

O. Bousquet, A Bennett concentration inequality and its application to suprema of empirical processeses, Comptes Rendus de l'Académie des Sciences de Paris, pp.495-500, 2002.

J. Bresee and &. F. Hayden, Epidemic Influenza ??? Responding to the Expected but Unpredictable, New England Journal of Medicine, vol.368, issue.7, pp.589-92, 2013.
DOI : 10.1056/NEJMp1300375

A. Carpentier and &. A. Kim, Adaptive and minimax optimal estimation of the tail coefficient, Statistica Sinica, 2014.
DOI : 10.5705/ss.2013.272

A. Carpentier and &. A. Kim, Adaptive confidence intervals for the tail coefficient in a wide second order class of Pareto models, Electronic Journal of Statistics, vol.8, issue.2, 2014.
DOI : 10.1214/14-EJS944

. Cépidc, Centre d'´ epidémiologie sur les causes médicales de décès Available from, p.134, 2014.

. Chatterjee, Superconcentration and related topics
DOI : 10.1007/978-3-319-03886-5

H. Chernoff, A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations, The Annals of Mathematical Statistics, vol.23, issue.4, pp.493-507, 1953.
DOI : 10.1214/aoms/1177729330

D. Chibisov, On limit distributions for order statistics. Theory of Probability and its Applications, pp.142-148, 1964.

M. Chichignoud, Performances statistiques d'estimateurs non-linéaires, 2010.

S. Coles, An introduction to statistical modeling of extremes values, 2001.
DOI : 10.1007/978-1-4471-3675-0

S. Coles and &. J. Tawn, Seasonal effects of extreme surges, Stochastic Environmental Research and Risk Assessment, vol.2, issue.87, pp.417-427, 2005.
DOI : 10.1007/s00477-005-0008-3

T. Cover and &. J. Thomas, Elements of Information Theory, 1991.

C. Craig, On the Tchebychef Inequality of Bernstein, The Annals of Mathematical Statistics, vol.4, issue.2, pp.94-102, 1933.
DOI : 10.1214/aoms/1177732803

H. Cramér, Mathematical methods of statistics, 1946.

S. Csörg?-o, P. Deheuvels, and &. D. Mason, Kernel Estimates of the Tail Index of a Distribution, The Annals of Statistics, vol.13, issue.3, pp.1050-1077, 1985.
DOI : 10.1214/aos/1176349656

J. Danielsson, L. De-haan, L. Peng, and &. C. De-vries, Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation, Journal of Multivariate Analysis, vol.76, issue.2, pp.226-248, 2001.
DOI : 10.1006/jmva.2000.1903

D. Darling and &. P. Erdös, independent random variables, Duke Mathematical Journal, vol.23, issue.1, pp.143-155, 1956.
DOI : 10.1215/S0012-7094-56-02313-4

L. De-haan, On regular variation and its applications to the weak convergence of sample extremes, Mathematical Centre Tracts, vol.32, 1970.

L. De-haan and &. A. Ferreira, Extreme value theory, 2006.
DOI : 10.1007/0-387-34471-3

A. L. Dekkers, J. H. Einmahl, and &. L. De-haan, A moment estimator for the index of an extreme-value distribution. The Annals of Statistic, pp.1833-1855, 1989.

L. Denoued, C. Turbelin, S. Ansart, A. Valleron, F. A. et al., Predicting Pneumonia and Influenza Mortality from Morbidity Data, PLoS ONE, vol.163, issue.20, pp.4-64, 2007.
DOI : 10.1371/journal.pone.0000464.s001

C. Dombry, Maximum likelihood estimators for the extreme value index based on the block maxima method. Arxiv preprint arXiv :1301, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00780279

G. Draisma, L. De-haan, L. Peng, and &. T. Pereira, A bootstrap-based method to achieve optimally in estimating the extreme value index, Extremes, vol.2, issue.4, pp.367-404, 1999.
DOI : 10.1023/A:1009900215680

H. Drees, Optimal rates of convergence for estimates of the extreme value index, The Annals of Statistics, vol.26, issue.1, pp.434-448, 1998.
DOI : 10.1214/aos/1030563992

H. Drees, On Smooth Statistical Tail Functionals, Scandinavian Journal of Statistics, vol.25, issue.1, pp.187-210, 1998.
DOI : 10.1111/1467-9469.00097

H. Drees, Minimax Risk Bounds in Extreme Value Theory, The Annals of Statistics, vol.29, issue.1, pp.266-294, 2001.
DOI : 10.1214/aos/996986509

H. Drees and &. E. Kaufmann, Selecting the optimal sample fraction in univariate extreme value estimation, Stochastic Processes and Applications, p.149172, 1998.
DOI : 10.1016/S0304-4149(98)00017-9

H. Drees, L. De-haan, and &. S. Resnick, How to make a Hill plot, The Annals of Statistics, vol.28, issue.1, pp.254-274, 2000.
DOI : 10.1214/aos/1016120372

B. Efron and &. C. Stein, The Jackknife Estimate of Variance, The Annals of Statistics, vol.9, issue.3, pp.586-596, 1981.
DOI : 10.1214/aos/1176345462

P. Embrechts, C. Klüpperberg, and &. T. Mikosch, Modelling of extremal events in insurance and finance, ZOR Zeitschrift f???r Operations Research Mathematical Methods of Operations Research, vol.73, issue.1, 1997.
DOI : 10.1007/BF01440733

A. Falchi, C. Turbelin, L. Andreoletti, C. Arena, B. T. et al., Nationwide surveillance of 18 respiratory viruses in patients woth influenza-like illnesses : a pilot feasibility study in the french sentinel network, Journal of Medical Virology, issue.8, pp.83-1451, 2011.

R. Fisher and &. L. Tippett, Limiting forms of the frequency distribution of the largest or smallest member of a sample, Mathematical Proceedings of the Cambridge Philosophical Society, vol.24, issue.02, pp.180-190, 1928.
DOI : 10.1017/S0305004100015681

M. Fréchet, Sur la loi de probabilité de l'´ ecart du maxium, Annales de la Société Polonaise de Mathématique, pp.93-116, 1927.

J. Geluk, L. De-haan, and S. Resnick, St? aric? a. Second-order regular variation, convolution and the central limit theorem, Stochastic Processes and Applications, pp.139-159, 1997.

E. Giné and &. V. Koltchinskii, Concentration inequalities and asymptotic results for ratio type empirical processes, The Annals of Probability, vol.34, issue.3, pp.1143-1216, 2006.
DOI : 10.1214/009117906000000070

B. Gnedenko, Sur La Distribution Limite Du Terme Maximum D'Une Serie Aleatoire, The Annals of Mathematics, vol.44, issue.3, pp.423-453, 1943.
DOI : 10.2307/1968974

E. Goldstein, S. Cobey, S. Takahashi, J. Miller, and &. M. Lipstch, Predicting the epidemic sizes of influenza A/H1N1, A/H2N3 and B : a statistcal method, PLoS Medecine, vol.8, issue.7, pp.1001-1051, 2011.

I. Grama and &. V. Spokoiny, Statistics of extremes by oracle estimation, The Annals of Statistics, vol.36, issue.4, pp.1619-1648, 2008.
DOI : 10.1214/07-AOS535

URL : https://hal.archives-ouvertes.fr/hal-01269582

&. Y. Guillou, M. L. Kratz, and . Strat, An extreme value theory approach for the early detection of time clusters with application to the surveillance of salmonella, Statistics Applications, 2013.

P. Hall, Using the bootstrap to estimate mean squared error and select smoothing parameter in nonparametric problems, Journal of Multivariate Analysis, vol.32, issue.2, pp.177-203, 1990.
DOI : 10.1016/0047-259X(90)90080-2

P. Hall and &. I. Weissman, On the estimation of extreme tail probabilities, Annals of Statistics, vol.25, issue.3, pp.1311-1326, 1997.

P. Hall and &. A. Welsh, Adaptive Estimates of Parameters of Regular Variation, The Annals of Statistics, vol.13, issue.1, pp.331-341, 1985.
DOI : 10.1214/aos/1176346596

B. Hill, A Simple General Approach to Inference About the Tail of a Distribution, The Annals of Statistics, vol.3, issue.5, pp.1163-1174, 1975.
DOI : 10.1214/aos/1176343247

W. Hoeffding, Probability Inequalities for Sums of Bounded Random Variables, Journal of the American Statistical Association, vol.1, issue.301, pp.13-30, 1963.
DOI : 10.1214/aoms/1177730491

K. Joag-dev and &. F. Proschan, Negative Association of Random Variables with Applications, The Annals of Statistics, vol.11, issue.1, pp.286-253, 1983.
DOI : 10.1214/aos/1176346079

R. Katz, M. Parlange, and &. P. Naveau, Statistics of extremes in hydrology, Advances in Water Resources, vol.25, issue.8-12, pp.1287-1304, 2002.
DOI : 10.1016/S0309-1708(02)00056-8

T. Klein, Une inégalité de concentrationàconcentration`concentrationà gauche pour les processus empiriques. Comptes Rendus de l'Académie des Sciences de Paris, pp.501-504, 2002.

T. Klein and &. E. Rio, Concentration around the mean for maxima of empirical processes, The Annals of Probability, vol.33, issue.3, pp.1060-1077, 2005.
DOI : 10.1214/009117905000000044

V. Koltchinskii, Oracle inequalities in empirical risk minimization and sparse recovery problems. Ecole d'´ eté de Probabilités de Saint-Flour, Lecture Notes in Mathematics, 2008.

P. Laplace, Deuxì eme supplémentsupplément`supplémentà la théorie analytique des probabilités, 1818.

M. Leadbetter, G. Lindgren, and &. H. Rootzén, Extremes and related properties of random sequences and processes. Springer Series in Statistics, p.137, 1983.

. Ledoux, A simple analytic proof of an inequality by P. Buser, Proceedings of the, pp.951-959, 1994.
DOI : 10.1090/S0002-9939-1994-1186991-X

M. Ledoux, On Talagrand's deviation inequalities for product measures, ESAIM: Probability and Statistics, vol.1, pp.63-87, 1997.
DOI : 10.1051/ps:1997103

M. Ledoux, The concentration of measure phenomenon, 2001.
DOI : 10.1090/surv/089

M. Ledoux, A remark on hypercontractivity and tail inequalities for the largest eignevalues of random matrices, volume 1982 Séminaire de probabilités XXXVII, Lecture Notes in Mathematics, 2006.

M. Ledoux and &. M. Talagrand, Probability in Banach spaces, 1991.
DOI : 10.1007/978-3-642-20212-4

O. Lepski, A problem of adaptive estimation in Gaussian white noise. Teoriya Veroyatnosteui i ee Primeneniya, pp.459-470, 1990.

O. Lepski, Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates. Teoriya Veroyatnosteui i ee Primeneniya, pp.645-659, 1991.

O. Lepski, Asymptotically minimax adaptive estimation. II. Schemes without optimal adaptation Adaptive estimates. Teoriya Veroyatnosteui i ee Primeneniya, pp.468-481, 1992.

O. Lepski and &. A. Tsybakov, Asymptotic exact nonparametric hypothesis testing in supnorm and at a fixed point. Probability Theory and Related Fields, pp.17-48, 2000.

D. Mason, Laws of Large Numbers for Sums of Extreme Values, The Annals of Probability, vol.10, issue.3, pp.754-764, 1982.
DOI : 10.1214/aop/1176993783

P. Massart, empirical processes, The Annals of Probability, vol.28, issue.2, pp.863-885, 2000.
DOI : 10.1214/aop/1019160263

P. Massart, Concentration inequalities and model selection, Lecture Notes in Mathematics, vol.1896, 2006.

P. Mathé, The Lepskii principle revisited, Inverse Problems, vol.22, issue.3, pp.11-15, 2006.
DOI : 10.1088/0266-5611/22/3/L02

B. Maurey, Construction de suites symétriques Comptes Rendus de l'Académie des Sciences de Paris Série I Mathématiques, pp.679-681, 1979.

B. Maurey, Some deviation inequalities Geometric and Functional Analysis, pp.188-197, 1991.

R. Miller, The jackknife : a review, Biometrika, vol.61, pp.1-15, 1974.

V. Milman and &. G. Schechtman, Asymptotic theory of finite-dimensional normed spaces, 1986.

S. Novak, Lower bounds to the accuracy of inference on heavy tails, Bernoulli, vol.20, issue.2, pp.979-989, 2014.
DOI : 10.3150/13-BEJ512

M. Okamoto, Some inequalities relating to the partial sum of binomial probabilities, Annals of the Institute of Statistical Mathematics, vol.7, issue.1, pp.29-35, 1958.
DOI : 10.1007/BF02883985

J. Pickands, Statistical inference using extreme order statistics, Annals of Statistics, vol.3, pp.119-131, 1975.

G. Pisier, Some applications of the metric entropy condition to harmonic analysis, Banach spaces, pp.123-159, 1983.
DOI : 10.2307/1970931

H. Potter, The mean value of a Dirichlet series II, Proceedings of the London Mathematical Society, pp.1-19, 1942.

R. Reiss, Approximate distributions of order statistics. With applications to nonparametric statistics. Springer Series in Statistics, 1989.

A. Rényi, On the theory of order statistics, Acta Mathematica Academiae Scientiarum Hungaricae, vol.54, issue.44, pp.191-227, 1953.
DOI : 10.1007/BF02127580

S. Resnick, Heavy-tail phenomena : probabilistic and statistical modeling, 2007.

S. Resnick and &. , Smoothing the Hill Estimator, Advances in Applied Probability, vol.12, issue.01, pp.271-293, 1997.
DOI : 10.1214/aos/1176349551

E. Rio, Inégalités de concentration pour les processus empiriques de classes de parties. Probability Theory and Related Fields, pp.163-175, 2001.

J. Segers, Abelian and Tauberian Theorems on the Bias of the Hill Estimator, Scandinavian Journal of Statistics, vol.15, issue.3, pp.461-483, 2002.
DOI : 10.1016/S0378-3758(99)00085-3

P. Sen, Asymptotic normality of sample quantiles of m-dependent sequences, Annals of Mathematical Statistics, vol.39, pp.1724-1730, 1968.

J. Shao and &. C. Wu, A general theory for jackknife variance estimation. The Annals of Statistics, pp.1176-1197, 1989.

L. Simonsen, M. Clarke, G. Williamson, D. Stroup, N. Arden et al., The impact of influenza epidemics on mortality: introducing a severity index., American Journal of Public Health, vol.87, issue.12, pp.1944-1950, 1997.
DOI : 10.2105/AJPH.87.12.1944

N. Smirnov, ¨ Uber die verteilung des allgemeinen gliedes in der variationsreihe, Metron, vol.12, pp.59-81, 1935.

N. Smirnov, Limit distributions for the terms of a variational series, p.139, 1952.

. Smirnov, Some remarks on limits laws for order statistics. Theory of Probability and its Applications, pp.196-205, 1967.

J. M. Steele, An Efron-Stein inequality for nonsymmetric statistics. The Annals of Statistics, pp.753-758, 1986.

M. Talagrand, Regularity of gaussian processes, Acta Mathematica, vol.159, issue.0, pp.99-149, 1987.
DOI : 10.1007/BF02392556

M. Talagrand, An isoperimetric inequality on the cube and Khintchine-Kahane inequalities in product spaces, Proceedings of the, pp.905-909, 1988.

M. Talagrand, A new isoperimetric inequality and the concentration of measure phenomenon, Lecture Notes in Mathematics, vol.68, pp.94-124, 1989.
DOI : 10.1007/BF00535169

M. Talagrand, Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and margulis' graph connectivity theorem. Geometric And Functional Analysis, pp.296-314, 1993.

M. Talagrand, Sharper Bounds for Gaussian and Empirical Processes, The Annals of Probability, vol.22, issue.1, pp.28-76, 1994.
DOI : 10.1214/aop/1176988847

M. Talagrand, Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathématiques de l'I, pp.73-205, 1995.

M. Talagrand, New concentration inequalities in product spaces, Inventiones Mathematicae, vol.126, issue.3, pp.505-563, 1996.
DOI : 10.1007/s002220050108

M. Talagrand, A new look at independence. Annals of Probability, pp.1-34, 1996.

M. Talagrand, The generic chaining, 2005.

J. Tillich and &. G. Zémor, Discrete Isoperimetric Inequalities and the Probability of a Decoding Error, Combinatorics, Probability and Computing, vol.9, issue.5, pp.465-479, 2001.
DOI : 10.1017/S0963548300004466

A. B. Tsybakov, Pointwise and sup-norm sharp adaptive estimation of functions on the Sobolev classes, The Annals of Statistics, vol.26, issue.6, pp.2420-2469, 1998.
DOI : 10.1214/aos/1024691478

J. Upsensky, Introduction to Mathematical Probability, 1937.

S. A. Van-de-geer, Applications of empirical process theory, 2000.

A. Van and . Vaart, Asymptotic statistics, 1998.

H. Van and . Vaart, A simple derivation of the limiting distribution function of a sample quantile with increasing sample size, Statistica Neerlandica, vol.15, pp.239-242, 1961.

. Vervaat, Functional central limit theorems for processes with positive drift and their inverses, Zeitschrift f???r Wahrscheinlichkeitstheorie und Verwandte Gebiete, vol.41, issue.4, pp.245-253, 1971.
DOI : 10.1007/BF00532510

R. Mises, La distribution de la plus grande de n valeurs, Review Mathematique Union Interbalcanique, vol.1, pp.141-160, 1936.

H. Wickham, ggplot2 : elegant graphics for data analysis, 2009.

L. Wu, A new modified logarithmic Sobolev inequality for Poisson point processes and several applications. Probability Theory and Related Fields, pp.427-438, 2000.