. Bibliography, Y. Agarwal, N. Furukawa, I. Snavely, B. Simon et al., Building rome in a day, Communications of the ACM, vol.54, issue.10, p.105112, 2011.

A. Adan and D. Huber, 3D Reconstruction of Interior Wall Surfaces under Occlusion and Clutter, 2011 International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, 2011.
DOI : 10.1109/3DIMPVT.2011.42

A. Lus and . Alexandre, 3d descriptors for object and category recognition: a comparative evaluation, Workshop on Color-Depth Camera Fusion in Robotics at IROS, 2012, p.14

. A. Aldoma, F. Zoltan-csaba-marton, W. Tombari, C. Wohlkinger, B. Potthast et al., Tutorial: Point Cloud Library: Three-Dimensional Object Recognition and 6 DOF Pose Estimation, IEEE Robotics & Automation Magazine, vol.19, issue.3, p.8091, 2012.
DOI : 10.1109/MRA.2012.2206675

K. Pankaj, M. Agarwal, and . Sharir, Arrangements and their applications, Handbook of Computational Geometry, p.49119, 1998.

A. Budroni and J. Boehm, Toward automatic reconstruction of interiors from laser data, 3D ARCH, 2009.

A. Budroni and J. Boehm, Automated 3D Reconstruction of Interiors from Point Clouds, International Journal of Architectural Computing, vol.34, issue.3-4, p.5573, 2010.
DOI : 10.1260/1478-0771.8.1.55

[. Borrmann, J. Elseberg, K. Lingemann, and A. Nuechter, The 3D Hough Transform for plane detection in point clouds: A review and a new accumulator design, 3D Research, vol.39, issue.4, p.2011
DOI : 10.1007/3DRes.02(2011)3

M. Berger, J. A. Levine, L. G. Nonato, G. Taubin, and C. T. Silva, A benchmark for surface reconstruction, ACM Transactions on Graphics, vol.32, issue.2, 2013.
DOI : 10.1145/2451236.2451246

A. Boulch and R. Marlet, Fast and robust normal estimation for point clouds with sharp features. SGP, 2012
DOI : 10.1111/j.1467-8659.2012.03181.x

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

G. Bradski, The OpenCV Library. Dr. Dobb's Journal of Software Tools, p.65, 2000.

B. Bellekens, V. Spruyt, and R. Berkvens-maarten-weyn, A survey of rigid 3d pointcloud registration algorithms, AMBIENT, 2014

M. Berger, A. Tagliasacchi, L. M. Seversky, P. Alliez, J. A. Levine et al., State of the art in surface reconstruction from point clouds, Eurographics, p.2014
URL : https://hal.archives-ouvertes.fr/hal-01017700

Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts, PAMI, vol.23, issue.80, pp.12221239-75, 2001.

Y. Cheng, Mean shift, mode seeking, and clustering, PAMI, vol.17, issue.8, p.790799, 1995.

C. Chen, A. Liaw, and L. Breiman, Using Random Forest to Learn Imbalanced Data, 2004.

[. Chauve, P. Labatut, and J. Pons, Robust piecewise-planar 3D reconstruction and completion from large-scale unstructured point data, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010.
DOI : 10.1109/CVPR.2010.5539824

URL : https://hal.archives-ouvertes.fr/hal-00654408

E. R. Davies, Computer and Machine Vision: Theory, Algorithms, Practicalities, 2005.

D. [. Edelsbrunner, R. Kirkpatrick, and . Seidel, On the shape of a set of points in the plane, IEEE Transactions on Information Theory, vol.29, issue.4, p.551559
DOI : 10.1109/TIT.1983.1056714

R. [. Fischler and . Bolles, Random sample consensus: A paradigm for model tting with applications to image analysis and automated cartography, Communications of the ACM, vol.24, issue.6, p.381395, 1981.

[. Fu, D. Cohen-or, G. Dror, and A. Sheer, Upright orientation of man-made objects, 2008.

[. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, Manhattan-world stereo, 2009 IEEE Conference on Computer Vision and Pattern Recognition, p.20, 2009.
DOI : 10.1109/CVPR.2009.5206867

[. Furukawa, B. Curless, S. M. Seitz, and R. Szeliski, Reconstructing building interiors from images, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459145

A. Flint, C. Mei, D. Murray, and I. Reid, A Dynamic Programming Approach to Reconstructing Building Interiors, ECCV, 2010.
DOI : 10.1007/978-3-642-15555-0_29

M. Garland and P. S. Heckbert, Surface simplication using quadric error metrics, SIGGRAPH, 1997.

[. Gokhool and M. Meilland, Patrick Rives, and Eduardo Fernández-Moral. A dense map building approach from spherical rgbd images, VISAPP, 2014

D. Holz and S. Behnke, Fast Range Image Segmentation and Smoothing Using Approximate Surface Reconstruction and Region Growing, IAS 12, pp.6173-2012
DOI : 10.1007/978-3-642-33932-5_7

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

T. Hoppe, T. Derose, J. Duchamp, W. Mcdonald, and . Stuetzle, Surface reconstruction from unorganized points, 1992.
DOI : 10.1145/133994.134011

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

[. Hedau, D. Hoiem, and D. Forsyth, Recovering the spatial layout of cluttered rooms, 2009 IEEE 12th International Conference on Computer Vision, 2009.
DOI : 10.1109/ICCV.2009.5459411

P. V. Hough, A method and means for recognizing complex patterns, p.654, 1962.

D. Izadi, O. Kim, D. Hilliges, R. Molyneaux, P. Newcombe et al., KinectFusion, Proceedings of the 24th annual ACM symposium on User interface software and technology, UIST '11, p.73, 2011.
DOI : 10.1145/2047196.2047270

[. Jenke, B. Huhle, and W. Straÿer, Statistical reconstruction of indoor scenes, WSCG, 2009.

A. Johnson, Spin-Images: A Representation for 3-D Surface Matching, 1997.

T. Karras, Maximizing parallelism in the construction of bvhs, octrees, and k-d trees, Proceedings of the Fourth ACM SIGGRAPH / Eurographics Conference on High-Performance Graphics, pp.33-37

K. Khoshelham and S. O. Elberink, Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications, Sensors, vol.12, issue.12, p.14371454, 2012.
DOI : 10.3390/s120201437

[. Kim, N. J. Mitra, D. Yan, and L. Guibas, Acquiring 3D indoor environments with variability and repetition, ACM Transactions on Graphics, vol.31, issue.6, pp.2012-2026
DOI : 10.1145/2366145.2366157

V. Kolmogorov and R. Zabih, What energy functions can be minimized via graph cuts, PAMI, vol.26, p.6581, 2004.
DOI : 10.1109/tpami.2004.1262177

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

F. Lafarge and P. Alliez, Surface Reconstruction through Point Set Structuring, Eurographics, 2013
DOI : 10.1111/cgf.12042

URL : https://hal.archives-ouvertes.fr/hal-00768197

F. Lafarge and C. Mallet, Creating Large-Scale City Models from 3D-Point Clouds: A Robust Approach with Hybrid Representation, International Journal of Computer Vision, vol.47, issue.2
DOI : 10.1007/s11263-012-0517-8

URL : https://hal.archives-ouvertes.fr/hal-00759265

]. D. Low99 and . Lowe, Object recognition from local scale-invariant features. 2:11501157, p.14, 1999.

G. David and . Lowe, Distinctive image features from scale-invariant keypoints, IJCV, vol.60, issue.2, p.91110, 2004.

X. Li, Y. Wu, A. Chrysanthou, D. Sharf, N. J. Cohen-or et al., Globt: Consistently tting primitives by discovering global relations, pp.11-22, 2011.

DOI : 10.1142/S0129626411000187

C. Mura, O. Mattausch, A. Villanueva-jaspe, E. Gobbetti, and R. Pajarola, Robust Reconstruction of Interior Building Structures with Multiple Rooms under Clutter and Occlusions, 2013 International Conference on Computer-Aided Design and Computer Graphics, pp.5259-5278, 2013.
DOI : 10.1109/CADGraphics.2013.14

C. Mura, O. Mattausch, A. J. Villanueva, E. Gobbetti, and R. Pajarola, Automatic room detection and reconstruction in cluttered indoor environments with complex room layouts, Computers & Graphics, vol.44, issue.23, pp.20-32, 2014.
DOI : 10.1016/j.cag.2014.07.005

R. Hornung and . Pajarola, Object detection and classication from large-scale cluttered indoor scans, Eurographics, pp.15-22, 2014.

A. Richard, S. Newcombe, O. Izadi, D. Hilliges, D. Molyneaux et al., Kinectfusion: Realtime dense surface mapping and tracking, ISMAR, p.73, 2011.

[. Nan, K. Xie, and A. Sharf, A search-classify approach for cluttered indoor scene understanding, SIGGRAPH Asia, vol.22, p.14, 2012.

S. Oesau, F. Lafarge, and P. Alliez, Indoor scene reconstruction using feature sensitive primitive extraction and graph-cut, ISPRS Journal of Photogrammetry and Remote Sensing, vol.90
DOI : 10.1016/j.isprsjprs.2014.02.004

URL : https://hal.archives-ouvertes.fr/hal-00980804

R. Sebastian-ochmann, R. Vock, M. Wessel, R. Tamke, and . Klein, Automatic generation of structural building descriptions from 3d point cloud scans, GRAPP, 2014.

E. Brian, X. Okorn, B. Xiong, D. Akinci, and . Huber, Toward automated modeling of oor plans, 3D DVPT, pp.16-31, 2010.

[. Pham, T. Chin, J. Yu, and D. Suter, The random cluster model for robust geometric tting, CVPR, 2012

V. Pascucci and R. J. Frank, Global static indexing for real-time exploration of very large regular grids, Proceedings of the 2001 ACM/IEEE conference on Supercomputing (CDROM) , Supercomputing '01, 2001.
DOI : 10.1145/582034.582036

R. Qiu, Q. Zhou, and U. Neumann, Pipe-Run Extraction and Reconstruction from Point Clouds, ECCV, 2014.
DOI : 10.1007/978-3-319-10578-9_2

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=

N. [. Rusu, M. Blodow, and . Beetz, Fast Point Feature Histograms (FPFH) for 3D registration, 2009 IEEE International Conference on Robotics and Automation, 2009.
DOI : 10.1109/ROBOT.2009.5152473

R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, Learning informative point classes for the acquisition of object model maps, 2008 10th International Conference on Control, Automation, Robotics and Vision, 2008.
DOI : 10.1109/ICARCV.2008.4795593

[. Rabbani, F. Van-den, G. Heuvel, and . Vosselman, Segmentation of point clouds using smoothness constraint, ISPRS, vol.36, issue.5, p.248253, 2006.

M. Stephen, J. Smith, and . Brady, Susan -a new approach to low level image processing, IJCV, vol.23, issue.1, p.4578, 1997.

[. Silberman, D. Hoiem, P. Kohli, and R. Fergus, Indoor Segmentation and Support Inference from RGBD Images, ECCV, 2012
DOI : 10.1007/978-3-642-33715-4_54

[. Schnabel, R. Wahl, and R. Klein, Ecient RANSAC for point-cloud shape detection, CGF, vol.26, issue.13, pp.214226-214237, 2007.

V. Sanchez and A. Zakhor, Planar 3D modeling of building interiors from point cloud data, 2012 19th IEEE International Conference on Image Processing
DOI : 10.1109/ICIP.2012.6467225

P. [. Turner, A. Cheng, and . Zakhor, Fast, Automated, Scalable Generation of Textured 3D Models of Indoor Environments, IEEE Journal of Selected Topics in Signal Processing, vol.9, issue.3, pp.409421-2014
DOI : 10.1109/JSTSP.2014.2381153

L. Teran and P. Mordohai, 3D Interest Point Detection via Discriminative Learning, ECCV, 2014.
DOI : 10.1007/978-3-319-10590-1_11

E. Turner and A. Zakhor, Floor plan generation and room labeling of indoor environments from laser range data, GRAPP, p.16, 2014.

H. Vu, R. Keriven, P. Labatut, and J. Pons, Towards highresolution large-scale multi-view stereo, CVPR, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00834903

S. Vicente, V. Kolmogorov, and C. Rother, Graph cut based image segmentation with connectivity priors, 2008 IEEE Conference on Computer Vision and Pattern Recognition, 2008.
DOI : 10.1109/CVPR.2008.4587440

H. Wang, S. Gould, and D. Koller, Discriminative learning with latent variables for cluttered indoor scene understanding, ECCV, 2010.
DOI : 10.1145/2436256.2436276

J. Xiao and Y. Furukawa, Reconstructing the world's museums, ECCV, 2012. (Cited on pages 19, pp.73-77

J. Xiao, B. C. Russell, and A. Torralba, Localizing 3d cuboids in single-view images, NIPS, 2012

Y. Qian, V. Zhou, and . Koltun, Dense scene reconstruction with points of interest. SIGGRAPH, 2013

Y. Qian, U. Zhou, and . Neumann, 5 d building modeling by discovering global regularities, CVPR, 2012