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Sonder l’Énergie Noire avec les
neutrons

HDR soutenue publiquement le 13 mai 2015 ,
devant le jury composé de :
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There is a deep connection between cosmology – the science of the infinitely large –and
particle physics – the science of the infinitely small. This connection is particularly
manifest in neutron particle physics. Basic properties of the neutron – its Electric
Dipole Moment and its lifetime – are intertwined with baryogenesis and nucleosynthesis
in the early Universe. I will cover this topic in the first part, that will also serve as an
introduction (or rather a quick recap) of neutron physics and Big Bang cosmology. Then,
the rest of the manuscript will be devoted to a new idea: using neutrons to probe models
of Dark Energy. In the second part, I will present the chameleon theory: a light scalar
field accounting for the late accelerated expansion of the Universe, which interacts with
matter in such a way that it does not mediate a fifth force between macroscopic bodies.
However, neutrons can alleviate the chameleon mechanism and reveal the presence of the
scalar field with properly designed experiments. In the third part, I will describe a recent
experiment performed with a neutron interferometer at the Institut Laue Langevin that
sets already interesting constraints on the chameleon theory. Last, the chameleon field
can be probed by measuring the quantum states of neutrons bouncing over a mirror. In
the fourth part I will present the status and prospects of the GRANIT experiment at
the ILL.
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I. THE INTERPLAY BETWEEN NEUTRON PARTICLE
PHYSICS AND COSMOLOGY

There is a profound connection between cosmology –
the science of the infinitely large – and particle physics
– the science of the infinitely small. The primordial cre-
ation of the light nuclei is an example: a detailed knowl-
edge of nuclear interactions is needed to predict the out-
come of the Big Bang nucleosynthesis. Conversely, cos-
mological observations have a great impact on our under-
standing of the laws of Nature at the most fundamental
level. The existence of Dark Matter, Dark Energy and
the matter-antimatter asymmetry provide three glimpses
of what is hiding beyond the Standard Model of parti-
cle physics. It is likely that future progress in particle
physics will proceed from the solution of one of these
cosmological puzzles, or vice versa.

The deep connection between particle physics and
cosmology is particularly manifest in neutron particle
physics, when we use low energy neutrons to investigate
the fundamental interactions and symmetries. The work
presented in the next chapters builds on this tradition.
We will contemplate the possibility to probe models of
Dark Energy with neutron experiments. Before devel-
oping on this original idea, we review in the present
chapter the traditional interplay between neutron par-
ticle physics and cosmology. A comprehensive treatment
of this topic can be found in the excellent review of Dub-
bers and Schmidt (2011). See also Dubbers (2014) for a
shorter and more recent overview.

There are two fundamental properties of the neutron
connected to the physics of the early Universe. First, the
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value of the neutron lifetime is a basic input for the
theory of Big Bang nucleosynthesis. Second, the search
for the neutron electric dipole moment is key to elu-
cidate the origin of the baryon asymmetry of the Uni-
verse. We will explain these two subjects, after a brief
review of neutron particle physics and cosmology.

A. Free up neutrons

Neutrons make up about half the mass of ordinary ob-
jects, like bicycles, cheese or elephants. Even an empty
bottle, that is, full of air, contains more than 1020 neu-
trons per cm3. These neutrons are bound into nuclei
since billions of years. On the contrary free neutrons do
not exist naturally because they decay with a radioactive
period of ten minutes. It takes a significant effort to ex-
tract neutrons from nuclei; it is much more difficult than
extracting electrons from atoms. Indeed the binding en-
ergy of neutrons in nuclei is of the order of 1 MeV whereas
the chemical binding energy is only about a few electron-
Volts. Thus, no chemical reaction would set neutrons
free: a nuclear reaction is needed.

Neutron sources. About twenty large nuclear in-
stallations dedicated to neutron production are presently
being operated over the world. These installations fall
into two categories: fission nuclear reactors and spalla-
tion sources.

The reactor of the Institut Laue Langevin (ILL) in
Grenoble belongs to the first category. Neutrons are
produced by fission in a compact cylindrical core (con-
taining 9 kg of weapons grade uranium, 93 % 235U) and
moderated in heavy water. Each fission ejects on aver-
age 2.5 neutrons with an energy of 2 MeV. The reac-
tor design optimizes the thermal neutron flux, reaching
1015 cm−2 s−1 with a reactor thermal power of 58 MW. In
a typical nuclear reactor used to produce electricity with
a thermal power of 3000 MW, the neutron flux is about
1014 cm−2 s−1. Among the 246 operating research reac-
tors listed by the International Atomic Energy Agency,
46 of them are high flux reactors (above 1014 neutrons
cm−2 s−1), 11 of them feature a cold neutron source and
operate instruments available to external users (see Table
I).

The ultracold neutron facility at the Paul Scherrer In-
stitute (PSI) in Switzerland uses a neutron source based
on the spallation process. A proton beam, with an en-
ergy of 600 MeV and an intensity of 2.5 mA is shot at a
lead target. When a proton collides with a heavy nucleus
(lead in this case), it ejects about 20 neutrons with an
energy of about 20 MeV along with other nuclear frag-
ments. The neutrons are then moderated in a heavy
water tank surrounding the spallation target. Spallation
sources are now competing with reactors as neutron fac-
tories, Table II lists the spallation sources equipped with
neutron instruments available to external users.

TABLE I High flux reactors producing beams of cold neu-
trons. The number of instruments available for outside users
is indicated.

Reactor City Started Th. Power Instruments

ILL Grenoble (France) 1971 58 MW 45

HFIR Oak Ridge (USA) 1965 85 MW 12

CARR Bejing (China) 2010 60 MW 12

FRM II Munich (Germany) 2004 20 MW 19

HANARO Daejon (Korea) 1995 30 MW 8

WWR-M Gatchina (Russia) 1959 18 MW 19

NIST Gaithersburg (USA) 1967 20 MW 28

JRR-3M Tokai (Japan) 1990 20 MW 26

BRR Budapest (Hungary) 1959 10 MW 11

OPAL Sydney (Australia) 2006 20 MW 7

BER II Berlin (Germany) 1973 10 MW 22

TABLE II Neutron spallation sources serving instruments
available to users.

Spall. Source City Beam Power Instruments

SINQ @PSI Villigen (Switzerland) 1.5 MW 20

SNS @ORNL Oak Ridge (USA) 1.4 MW 25

JSNS @KEK Tsukuba (Japan) 0.3 MW 17

ISIS @RAL Oxford (UK) 0.2 MW 36

Lujan @LANSCE Los Alamos (USA) 0.1 MW 13

What is the purpose of investing so much efforts and
money for building sources of free neutrons? What is
special about free neutrons that cannot be done with the
neutrons inside nuclei? Beyond doubt the main desir-
able feature of the neutron is its electrical neutrality 1.
Even atoms, which have no net electric charge, interact
mainly with electromagnetic interactions due to their rel-
atively large polarisability. Atomic processes are essen-
tially unaffected by nuclear or gravitational interactions
and all phenomena we experience in everyday life are ulti-
mately due to basic electromagnetic interactions (except
for the rather trivial effect of weight). Using neutrons one
can probe matter using non electromagnetic interactions.
Studying the diffraction of neutrons at a sample mate-
rial, solid-state physicists are able to obtain information
about the structure of the sample which is complemen-
tary to the information they get using electromagnetic
probes such as X-ray diffraction.

Particle physicists also find neutron’s sensitivity to
non-electromagnetic forces quite useful to do fundamen-
tal physics. Studying free neutron beta decay we mea-
sure the fundamental parameters of the weak interac-
tion. Measuring neutron bounces we explore gravity with
quantum objects. The search for the neutron electric
dipole moment constitutes a crucial test of the time rever-
sal invariance in elementary processes. One can also use

1 The particle data group (Olive et al., 2014) evaluation of the
neutron charge is (−2±8)×10−22 electron charges, in agreement
with electrical neutrality.
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neutrons to search for new, yet undiscovered interactions.
All these experiments would be impossible with charged
particles for which the Coulomb force overwhelms any
other force by many orders of magnitude. We shall come
back to these subjects in the rest of this manuscript.

At the ILL, 38 instruments are dedicated to the study
of material structure, condensed matter and magnetism
and 7 instruments are dedicated to quantum, nuclear and
particle physics. For a broad exploration of the physics
of slow neutrons, see Byrne (1994).

Wave particle duality. Experiments very often
benefit from using slow neutrons. Those neutrons result
from the thermalisation of the primary fast neutrons in
a thermal or cold moderator. In a moderator, a neutron
will dissipate its energy by collision until it reaches the
kinetic energy (kT = 25 meV at room temperature) of
the molecules. The De-Broglie wavelength λ of a neutron
with kinetic energy E is

λ =
2π~√
2mE

= 0.18 nm×
√

25 meV
E

, (1)

where m = 939.6 MeV/c2 is the neutron mass. It is
remarkable that the wavelength of thermal neutrons cor-
responds to the typical distance between atoms in solid
matter. Thus, whereas fast neutrons behave essentially
as particles, cold neutrons could behave like waves.

E. Fermi was the first to realize that slow neutrons
could undergo optical phenomena such as reflection and
refraction at surfaces. It can be shown (see for exam-
ple Golub et al. (1991)) that matter acts as a uniform
medium with a potential energy for slow neutrons called
the Fermi potential. The Fermi potential is given by the
following expression:

VF = 4π
~2

2m
bn, (2)

where b is the bound coherent neutron scattering length
of the nuclei constituting the material and n is its num-
ber density. If the material is heterogeneous one must
sum the potentials of all nuclear species composing the
material. For most materials the Fermi potential is pos-
itive, i.e. repulsive 2; it is of the order of 10−7 eV, much
smaller than the kinetic energy of thermal neutrons. For
example, natural nickel is a material with a relatively
high Fermi potential which amounts to 250 neV.

Neutrons approaching a surface at grazing incidence
could be reflected by the Fermi potential of the material.
Total reflection occurs when the kinetic energy associated

2 This is surprising because the strong nuclear interaction respon-
sible for the Fermi potential is attractive: it holds neutrons inside
nuclei. For an explanation of this apparent paradox, see for ex-
ample Pignol (2009).

with the velocity normal to the surface is smaller than
the potential barrier (2). In practice this phenomenon
is at play in neutron guides. It is possible to transport
neutrons from the core of the reactor where they are pro-
duced to an experimental hall situated at a distance of
up to 100 m, using evacuated rectangular tubes, with
a cross section of typically 100 cm2, made up of plates
coated with nickel or with a multilayer of nickel and tita-
nium. Thermal neutrons with an energy of E = 25 meV
are reflected off a nickel surface if the angle of incidence θ
satisfies the condition sin2 θ < VF /E, that is, θ < 0.2 deg.
For colder neutrons, the efficiency of the guiding is better
and a beam of cold neutrons transported in a guide can
have a larger angular divergency.

Ultracold neutrons. Zel’dovich (1959) real-
ized that neutrons with total kinetic energy lower than
250 neV should be reflected at any angle of incidence
and therefore could be stored in material bottles. These
storable neutrons were called ultracold neutrons (UCNs)
by the pioneer workers in the field. It is not easy to get
ultracold neutrons, because their proportion in the en-
ergy spectrum of thermal neutrons (when neutrons are
thermalised in a moderator at room temperature) is only
10−11. The first storage of ultracold neutrons was re-
ported by Groshev et al. (1971). The group of Russian
physicists stored on average 2 neutrons at a time in a
copper cylindrical bottle (diameter 14 cm and length
174 cm). The capacity of the bottle to store neutrons
was quantified by a storage time of about 30 s (compare
to the neutron beta decay lifetime of 880 s).

The kinetic energy of ultracold neutrons corresponds
to a temperature as low as a few mK. However, it is
important to understand that ultracold neutrons can be
stored in bottles at room temperature. The neutrons do
not thermalise with the walls of the bottle, like photons
of visible light do not thermalise when reflecting off a
mirror. In fact the specular (i.e. mirror) reflection of
ultracold neutrons and visible photons share many simi-
larities, because the wavelength of UCNs is of the order
of 100 nm, very close to the wavelength of visible light. In
both cases the wavelength is much larger than the lattice
spacing of atoms in the matter of the walls. It means that
the particle interacts with a large number of atoms in the
wall, it is almost blind to the thermal motion of individ-
ual atoms. Using appropriate wall materials, UCNs can
undergo as many as 104 specular reflections before being
inelastically scattered or captured by a single nucleus.

The ability to store neutrons for a long period was
immediately recognized as a great opportunity for fun-
damental physics, for two main reasons. First, ultracold
neutrons provide a direct method to measure the neu-
tron lifetime by simply storing neutrons for a certain time
and counting the survivors. Second, longer observation
times enhance the sensitivity of detection schemes like
the Rabi or Ramsey resonance techniques, following the
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uncertainty relation δE × T ≥ ~, where δE is the pre-
cision of the measured energy and T is the observation
time. A 1 m long apparatus observes a neutron spin in
a cold beam for typically 10 ms, whereas in a storage
experiment observation times longer than 100 s could
be achieved. The measurement of the neutron electric
dipole moment (nEDM) could thus benefit from an im-
provement of the sensitivity by four orders of magnitude.
Since 1970 the techniques to produce and handle ultra-
cold neutrons were greatly improved to pursue these two
goals: a precise measurement of the neutron lifetime and
the search for the nEDM. We will come back to these two
topics after taking a cosmological detour.

B. The standard picture of the early Universe

The modern picture of the Big Bang was initiated by
G. Lemâıtre, supported by the measurement of the ex-
pansion of the Universe by Hubble (1929). At that time,
the modern theory of gravity, Einstein’s general relativ-
ity, was just invented. Within this framework it was
possible to consider the Universe as a physical system
interacting with its content. Assuming the cosmologi-
cal principle - the Universe is homogeneous and isotropic
on large scales - the cosmic evolution of a spatially flat
Universe is described by the Robertson-Walker metric

ds2 = dt2 − a(t)
(
dx2 + dy2 + dz2

)
(3)

where a(t) is the dimensionless scale factor defined in
such a way that at the present time t0 the scale fac-
tor is unity a(t0) = 1. In our expanding Universe,
the Hubble parameter H(t) = ȧ(t)/a(t) is positive. In
the cosmic past, all distances were smaller by the fac-
tor a(t). For example, light emitted at time t with a
wavelength λ is observed now with a larger wavelength
λ0 = λ/a(t) = (z + 1)λ. The redshift z = 1

a(t) − 1, being
actually observable, is often preferred to t as a variable
to indicate the ticking of the cosmic clock.

Assuming that the Universe is filled with an homo-
geneous fluid with an energy density ρ and a pressure
p, Einstein’s equations of general relativity (with a van-
ishing cosmological constant) reduce to the Friedmann
equations

H2 =
8πG

3
ρ (4)

dρ

dt
+ 3H(ρ+ p) = 0. (5)

In the early Universe, the expansion was dominated
by radiation, i.e. photons and relativistic particles. In
this case the pressure is related to the energy density as
p = ρ/3. Then from the Friedmann equations we deduce
ρ ∝ a−4(t), a(t) ∝

√
t and H(t) = 1

2t . Going backwards
in time (higher z) the energy density of the radiation
ρ ∝ (z+1)4 was higher. Assuming that the radiation was

in thermal equilibrium, one can associate a temperature
T to the radiation according to

ρ =
π2

30
N(T )T 4, (6)

where N(T ) counts the effective number of relativistic de-
grees of freedom (+1 per boson polarization state, +7/8
per fermion state). Combining with the Friedmann equa-
tions we can relate the age of the Universe t to the tem-
perature T

t =

√
45

16π3GN(T )
1
T 2

=
2.4 s√
N(T )

1 MeV2

T 2
. (7)

The Universe was hotter in the past. For example, at the
beginning of the Big Bang nucleosynthesis the tempera-
ture was T ≈ 1 MeV, the effective numbers of degrees
of freedom was N(T ) = 29/4 (only photons and three
families of neutrinos), thus the age of the Universe was
t ≈ 0.5 s. One can also relate the photon temperature to
the redshift,

T = (z + 1)T0

(
N(T0)
N(T )

)1/4

, (8)

where T0 = 2.7255(6) K is the present temperature of
the Cosmic Microwave Background (CMB). Note that
Eq. (7) is valid only in the radiation dominated epoch
whereas Eq. (8) holds for the whole thermal history of
the Universe.

Very different energy scales of the primordial plasma
were successively at play in the thermal history of the
Universe. This leads to a fascinating and fruitful con-
nection between cosmology and particle physics that re-
late phenomena at the highest energies with phenomena
at the earliest epoch. Before exploring more specifically
the relevance of low energy neutron physics, which is a
subfield of particle physics, we shall shortly review the
present standard scenario of the hot Big Bang (see Ta-
ble III). For a more complete review on the status of the
standard cosmological model, see Bartelmann (2010).

It is believed that the Universe started with a phase of
accelerated expansion driven by a scalar field called the
inflaton (Guth, 1981). What happened before is even
more speculative because it is related with physics at the
Planck scale and involves the great problem of unifying
gravity with quantum mechanics. The inflaton field is
supposed to be coupled to Standard Model particles and
the energy density of the scalar field would be converted
into particles by the end of the inflation. This reheat-
ing process would start the thermal history of the Uni-
verse with an initial temperature of presumably about
1015 GeV.

Then the Universe cooled down while expanding and
a succession of phase transitions occurred. At tem-
peratures corresponding to the electroweak scale (T ≈
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TABLE III The history of the Universe: standard scenario. Values in bold are taken from Olive et al. (2014).

Transition Temperature Time Redshift z

Inflation ends (reheating) ∼ 1015 GeV ∼ 10−37 s ∼ 1028

Electroweak phase transition 170 GeV 10−11 s 1015

QCD phase transition 170 MeV 30µs 1012

Big Bang nucleosynthesis 80 keV 150 s 3× 108

Matter radiation equality 1 eV 30000 Yr 3360(70)

CMB decoupling (recombination) 0.3 eV 372000 Yr 1090.2(7)

First stars (reionization) 30 K 460 MYr 11

Today 2.7255(6) K 13.81(5) GYr 0

200 GeV), the Higgs boson field expectation value con-
densed from the symmetric phase 〈φ〉 = 0 down to the
non-symmetric phase 〈φ〉 = 246 GeV. We will come back
to the electroweak phase transition in section I.D. Next,
at a temperature below T = 100 MeV, quarks and gluons
condensed into nucleons during the QCD phase transi-
tion. The Universe was then populated by photons, neu-
trinos, relativistic electrons and positrons, and traces of
protons and neutrons. The nucleons are leftovers from a
tiny asymmetry between quarks and antiquarks, the so-
called baryon asymmetry of the Universe (BAU) which
was generated earlier. Further condensation of nucle-
ons into nuclei became possible at the temperature of
T ≈ 80 keV during the Big Bang nucleosynthesis (BBN).
We will explain the connection between the BBN and the
measurement of the neutron lifetime in the next section.

The radiation dominated period of the Universe ended
at a temperature of T = 1 eV, when the energy den-
sity of dark matter became larger than that of radia-
tion. Shortly after, at T = 0.3 eV, electrons and protons
combined into hydrogen atoms and the Universe became
transparent to photons. When we observe the CMB to-
day we see in fact photons emitted during the recombi-
nation at the redshift of z ≈ 1000. In the matter domi-
nated Universe, the primordial density fluctuations grew
until star formation began at the very recent redshift of
z = 11. In the late luminous Universe the expansion
is again accelerating, perhaps driven by a new substance
called Dark Energy. We will develop in the next chapters
some possible ways to address the Dark Energy problem
with neutron experiments.

C. Big Bang nucleosynthesis and the neutron lifetime

The Big Bang nucleosynthesis. Gamow (1948)
formulated the hypothesis that nuclear fusion in the early
Universe is responsible for the formation of nuclei. He
argued that the primordial nucleosynthesis started at a
temperature of TBBN = 100 keV, when the radiative dis-
sociation of deuterium stopped. The age of the Universe
was then a few minutes, which he considered to be the

timescale associated with nucleosynthesis. Conveniently,
this is also the order of magnitude of the neutron life-
time, which was poorly known in 1948. Then, he re-
quired the mean time for the reaction p + n → d + γ to
be about 2 minutes. Indeed, if the mean time was much
longer then no complex nuclei would have been formed
during the BBN. On the other hand if the mean time was
much shorter then there would be no deuterium left (sub-
sequent fusion reactions happen to be faster than deu-
terium formation). Quantitatively this educated guess,
sometimes referred to as the Gamow criterion, can be
expressed as

nb σv × 2 min ≈ 1, (9)

where σ ≈ 10−29 cm2 is the fusion cross section, v ≈
5 × 108 cm/s is the thermal velocity of the protons and
neutrons at the temperature TBBN and nb is the number
density of protons and neutrons. With the above crite-
rion Gamow got nb ≈ 1018 cm−3 corresponding to a mass
density of ρb(tBBN) ≈ 10−6 g/cm3.

Following this line of argument one can pre-
dict the present temperature of the CMB, T0 =
TBBN

3
√
ρb(t0)/ρb(tBBN), by using the scaling laws T (t) ∝

a(t)−1 and ρb(t) ∝ a(t)−3. Using the estimate ρb(t0) ≈
10−30 g/cm3 obtained from the Hubble rate, Alpher and
Herman (1949) predicted T0 ≈ 5 K. The Big Bang model
was unambiguously confirmed in 1965 when Penzias and
Wilson discovered the CMB.

Building on the seminal work of Gamow, a more so-
phisticated theory of the BBN was worked out. A key
quantity is the ratio of baryon to photon number densi-
ties η = nb/nγ . For a given value of η the theory can
predict the relative abundance of the four light elements
produced during the BBN, namely D, 3He, 4He and 7Li.
From the observed relative abundances of each of these
elements one can extract η. The most sensitive probe of η
comes from the measurement of the deuterium to proton
ratio in extragalactic clouds, D/H= (2.53± 0.04)× 10−5,
from which the following result is obtained (Cooke et al.,
2014)

ηBBN = (6.0± 0.1)× 10−10. (10)
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The study of the temperature anisotropies in the CMB
provides an independent determination of the baryon
density of the Universe at the recombination. The Planck
satellite (Ade et al., 2014) has produced the result

ηCMB = (6.05± 0.07)× 10−10, (11)

in excellent agreement with the BBN value.
In order to compute the abundances from the BBN the-

ory, the neutron lifetime τn needs to be known with suffi-
cient accuracy, because the number of neutrons available
for fusion at TBBN depends on τn. According to state-of-
the-art calculations by Coc et al. (2014), the sensitivity
of the deuterium fraction to the values of the input pa-
rameters is

∆(D/H)
D/H

= −1.6
∆η
η

+ 0.4
∆τn
τn

. (12)

The parametric uncertainty due to the error on the neu-
tron lifetime becomes negligible compared to the obser-
vational error if ∆τn � 30 s. We will explain in the next
paragraph how the needed sub-percent accuracy has been
achieved in the 1990’s.

The measurement of the neutron lifetime. The
neutron decays due to the weak interaction into a proton,
an electron and an antineutrino with a period of about
ten minutes. It is the simplest case of nuclear beta decay.
Given its importance in cosmology and particle physics,
the neutron lifetime has been measured by more than
20 experiments. There are two distinct experimental ap-
proaches to measure the neutron lifetime τn.

1. The beam method. A detector records the decay
products in a well-defined part of a neutron beam.
A neutron beam is indeed radioactive due to beta
decay and the rate of appearance in the beam of
the decay products is

− dN

dt
=
N

τn
. (13)

This method requires (i) a determination of the
number of neutrons N in the beam, that is, an ab-
solute determination of the neutron flux and (ii) a
detector for decay products with a well calibrated
registration efficiency to measure dN/dt.

2. The bottle method. A bottle is filled with UCNs.
After a certain waiting time t, the trapped neutrons
are emptied into a detector to count the number of
remaining neutrons N(t). One repeats this opera-
tion for various times t and the storage time τstor

is extracted from a fit of the storage curve

N(t) = N(0) e−t/τstor . (14)

The efficiency of the neutron counter does not
need to be known accurately, but the losses due to

neutron lifetime [s]
865 870 875 880 885 890 895

ILL,  magnetic trap 1989

ILL,  mambo I 1989 (corr. 2012)

ILL,  beam 1990 (corr. 1996)

Gatchina, gravitrap I 1992

ILL,  double bottle I 1993

ILL,  double bottle II 2000 (corr. 2012)

ILL, gravitrap II 2005

NIST, beam 2005 (corr. 2013)

ILL, mambo II 2010

FIG. 1 Results of the latest neutron lifetime measurements
with the beam method ( ), material bottle method (�) and
magnetic bottle method (♦). Dashed lines correspond to mea-
surements which have been withdrawn or corrected later on.

absorption or inelastic scattering during collisions
with the walls must be carefully controlled in order
to determine τn from the storage time τstor.

The current situation of the measurements is summa-
rized in Fig. 1. References to the publications of each ex-
periment can be found in the recent review by Wietfeldt
and Greene (2011), except for the recent reevaluation of
the latest beam result by Yue et al. (2013).

Concerning the beam method, one can choose to mea-
sure either the electron or the proton activity of the beam
(it would be silly to try to measure the neutrino activ-
ity). Although early experiments (not represented in Fig.
1) detected the electrons coming out of the beam, mod-
ern measurements count the protons. Combining the two
most recent measurements we obtain

τbeam
n = (888.0± 2.1) s. (15)

Let us now come to the storage method where one
measures the storage time τstor of UCNs in a material
bottle, which is a combination of the beta decay life-
time and the lifetime due to losses at wall collisions :
1/τstor = 1/τn + 1/τwall. Most of the time neutrons are
specularly reflected at wall collisions, but there is a small
probability of capture or up-scattering. The loss proba-
bility can be of the order of µ ≈ 10−5, using walls coated
with hydrogen-free oil such as fomblin for example. In a
typical material bottle with mean distance λ ≈ 30 cm,
UCNs with velocity v ≈ 3 m/s will collide with the
walls at a frequency f = v/λ ≈ 10 Hz. Then we ex-
pect τwall = 1/fµ ≈ 104 s, which corresponds to a 10 %
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correction of the beta decay lifetime. The usual strategy
to control this effect is to measure the storage time for
various geometries of the bottle, with different volume to
surface ratio, and extrapolate to the ideal case of van-
ishing wall collision frequency. In some experiments the
bottle is cooled down to reduce the neutron losses due to
up-scattering. The five UCN measurements performed
at the ILL produced the combined value

τbottle
n = (879.6± 0.8) s. (16)

There is a 3.8σ discrepancy between the beam result
(15) and the bottle result (16) that needs to be resolved.
To alleviate the issue of the losses at wall collisions which
are not fully understood yet, new projects aim at confin-
ing UCNs in a magnetic bottle. The neutron is a spin
1/2 particle with a magnetic moment µn = −60 neV/T.
Thus a magnetic “wall” of the order of 1 T acts as a
repulsive potential of height 60 neV for low field seekers
neutrons (i.e. neutrons with spin parallel to the magnetic
field). The measurement of the neutron lifetime is still
an active field of research. Several teams in Europe and
in the US are currently attempting to obtain a reliable
measurement with an accuracy of 0.1 s.

D. The matter antimatter asymmetry and the neutron
electric dipole moment

Apparently our Universe is made up of matter, not
antimatter. Not a single complex antinucleus like an-
tihelium has been detected in cosmic rays. No excess
of gamma radiation resulting from the annihilation of
antimatter with matter is observed. Most cosmologists
believe that the matter dominance over antimatter ex-
tends to at least the whole visible Universe. In fact, the
imbalance is tiny. When the baryons were in equilib-
rium with the rest of the plasma in the early Universe
just before the QCD phase transition, for every billion
baryon-antibaryon pair there was one spare baryon. It
should be noted that we quantify the matter-antimatter
asymmetry by the baryon asymmetry. For sure there are
also more electrons than antielectrons in the Universe to-
day. However, an excess of antineutrinos over neutrinos
in the cosmic neutrino background could perhaps com-
pensate for the electron-positron asymmetry. Therefore
we do not know for certain that an excess of matter over
antimatter exists for leptons. As we have seen, the asym-
metry parameter η = nb/nγ deduced from considerations
about the primordial nucleosynthesis (10) agrees with the
one deduced from the microwave background (11). Given
that the two methods rely on two completely separated
epochs in the Universe, the agreement is remarkable.

The Sakharov conditions to generate the
baryon asymmetry. We have solid evidence that
the baryon asymmetry exists since before the Big Bang

nucleosynthesis. Is it merely an initial condition of the
Big Bang tuned to allow intelligent life to emerge? In
the context of inflation this idea is no longer plausi-
ble, because inflation would have tremendously diluted
the initial baryon density. Well before inflation was in-
vented, Sakharov (1967) proposed that the asymmetry
could have been generated dynamically from an initially
symmetric state. He outlined three conditions that are
necessary for this to be possible:

1. The baryon number should not be conserved.

2. The Universe should at some time depart from ther-
mal equilibrium.

3. The discrete symmetries C (charge conjugation)
and CP (charge conjugation combined with parity
transformation) should be violated.

See Bernreuther (2002) for a pedagogical introduction
to baryogenesis, the hypothetical process in the early
Universe that meets all these conditions to generate the
baryon asymmetry.

Electroweak baryogenesis. The second Sakharov
condition suggests that the baryon asymmetry was gen-
erated during a phase transition in the early Universe be-
fore the primordial nucleosynthesis. Electroweak baryo-
genesis, a mechanism that biases the baryon number
during the electroweak phase transition, is one of the
most attractive among the many proposed realizations of
baryogenesis. In fact, all three Sakharov conditions are
qualitatively fulfilled by the standard electroweak the-
ory although it fails quantitatively to predict the correct
baryon asymmetry. Nevertheless, electroweak baryogen-
esis is still a viable scenario in extensions of the Standard
Model (SM) of particle physics. New physics is required
at or close to the electroweak scale, this makes the sce-
nario testable - and falsifiable - by current or planned
experiments. Let us take a closer look at the Sakharov
conditions in the context of the electroweak phase tran-
sition.

Surprisingly, the SM does accommodate baryon num-
ber violation, induced by non-perturbative effects asso-
ciated with the nontrivial structure of the SU(2) gauge
fields vacuum. We do not observe baryon number vi-
olation in the laboratory because the process requires
a quantum tunneling through a large energy gap with
an extremely small probability. However, Kuzmin et al.
(1985) discovered that baryon number violation processes
called sphalerons were frequent in the early Universe
when the temperature was high enough to overcome the
energy barrier. In fact, the first Sakharov condition does
not demand physics beyond the Standard Model.

Next, the second Sakharov condition deserves a dis-
cussion about the electroweak phase transition, when the
Higgs field acquired a non-zero expectation value. When



9

 / GeVφ
0 20 40 60 80 100 120 140

4
) 

/ (
10

0 
G

eV
)

φ
V

(

-0.02

0

0.02

T=
 1

64
 G

eV

T=
 1

66
 G

eV

T=
 1

68
 G

eV

T=
 1

70
 G

eV

T=
 1

72
 G

eV

T=
 1

74
 G

eV

 / GeVφ
0 50 100 150 200 250

4
) 

/ (
10

0 
G

eV
)

φ
V

(

-0.05

0

0.05

= 700 GeVΛ

T
= 

11
4 

G
eV

T
= 

11
8 

G
eV

T=
 1

22
 G

eV

T=
 1

25
 G

eV

T=
 1

30
 G

eV

T=
 1

35
 G

eV

FIG. 2 Effective Higgs potential for different temperatures
at the electroweak phase transition. Top: calculation within
the SM, a smooth cross-over occurs at T = 170 GeV. Bot-
tom: calculation within the φ6 extension, a first order phase
transition occurs at T = 120 GeV.

coupled to the thermal bath at temperature T , the effec-
tive potential of the SM Higgs field φ can be written as
a sum of the bare potential and a thermal correction:

Veff(φ, T ) = −µ
2

2
φ2 +

λ

4
φ4 + Vth(φ, T ). (17)

At zero temperature the thermal correction to the po-
tential is absent (Vth = 0) and the potential (17) has
the famous Mexican hat shape with a minimum at φ =√
µ2/λ = 246 GeV. At high temperature the thermal

correction Vth 6= 0 modifies the potential in such a way
that the minimum of the potential is φ = 0. When the
temperature decreased, the field φ condensed from the
symmetric state φ = 0 to the state φ = 246 GeV, break-
ing spontaneously the electroweak symmetry. Successful

baryogenesis requires that the phase transition be first
order: the field must change discontinuously from φ = 0
to φ > 0. Figure 2 (Top) shows the modification of the
potential close to the phase transition at T = 170 GeV.
The formulas for the effective potential are taken from
the thesis of Fromme (2006), where I specified the value
of the Higgs mass to mh = 126 GeV conforming with the
recent discovery at the Large Hadron Collider. We see
that the minimum of the potential smoothly moves away
from zero, there is no sufficient departure from thermal
equilibrium and no baryogenesis in the Standard Model.

Now, a non-standard Higgs potential could lead to a
first order electroweak phase transition. As an example,
we could add to the potential (17) a non-renormalisable
operator of the form 1

8Λφ
6. We plot in Fig. 2 the modifi-

cation of the effective potential in the case Λ = 700 GeV,
using again the formulas in Fromme (2006). In this case
the minimum of the potential suddenly changes from
φ = 0 to φ = 140 GeV at the critical temperature of
Tcr = 120 GeV, this is a first order phase transition. If
such a transition did take place in the early Universe,
bubbles of true vacuum started to nucleate and expand
in a sea of false vacuum. In such a boiling environment,
the Universe could have been driven sufficiently out of
equilibrium for baryogenesis to be possible.

A first order electroweak phase transition can be real-
ized in more sophisticated extensions of the scalar sector
of the SM, such as the two-Higgs-doublet model or su-
persymmetric extensions. Since these models modify the
physics at the electroweak scale, they are testable at par-
ticle colliders. .

Last, electroweak baryogenesis requires CP violation at
the electroweak scale. It turns out that the CP violation
contained in the SM, from phase δ of the quark mix-
ing matrix, is not strong enough to generate the baryon
asymmetry. Thus CP-violating new physics is required
to satisfy the third Sakharov condition as well. Such
new physics is best probed by low energy precision ex-
periments searching for electric dipole moments (EDM)
of particles.

In summary, the failure of the SM to allow for the
electroweak baryogenesis is a hint toward the presence
of new physics lying just above the electroweak scale
that may be discovered both by collider experiments and
EDM searches.

CP violation and neutron EDM. The existence of
a nonzero EDM for a spin 1/2 particle such as the neu-
tron would imply the violation of the CP symmetry. In
the Standard Model, the induced neutron EDM expected
from the δ phase is tiny, dn ≈ 10−32 e cm. This value is
to be compared to the current best limit obtained at the
ILL by Baker et al. (2006):

|dn| < 3× 10−26 e cm (90 % C.L.). (18)

Therefore, improvements of the neutron EDM measure-
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FIG. 3 One loop diagram contributing to the quark EDM.
The quark EDMs then transfer almost directly to the neutron
EDM.

ment are motivated by the potential discovery of a new
source of CP violation beyond the SM. As for any low en-
ergy observable, the new physics at a high energy scale
manifests itself via quantum loops involving virtual par-
ticles. Figure 3 shows a Feynman diagram contributing
to a quark EDM via the CP-violating vertices of heavy
scalars and fermions with masses M .

Generically the neutron EDM induced by such a loop
amounts to (Pospelov and Ritz, 2005)

dn ≈
(

1 TeV
M

)2

× sinφ× 10−25 e cm (19)

where M is the mass of the particles running in the loop.
In this case the heavy particles couple strongly with the
quark (such as the SUSY coupling between quark, squark
and gluinos) with a CP-odd vertex multiplied by sinφ.
The CP-odd part usually originates from the imaginary
part of some parameter in the Lagrangian and φ would
then correspond to the CP-violating phase of that spe-
cific parameter. Thus, considering natural CP violation
(sinφ ≈ 1) in the new heavy sector, the neutron EDM is
sensitive to new physics at the multi-TeV scale.

Searches for permanent electric dipole moments of
other particles (protons, deuterons, muons, atoms,
molecules) are complementary probes of CP violation
above the electroweak scale. Many experimental efforts
are under way, they have been compiled recently by Kirch
(2013). Below we concentrate on the search for the neu-
tron EDM.

Measuring the neutron EDM. The neutron EDM
measurement is based on the analysis of the Larmor pre-
cession frequency of neutrons, stored in a volume perme-
ated with electric and magnetic static fields either paral-
lel or antiparallel. For such configurations, the precession
frequency fn reads

hfn = µnB ± dnE (20)

where µn and dn are the magnetic and electric dipole
moments of the neutron and h is Planck’s constant. The

FIG. 4 The nEDM apparatus installed at the PSI. The pre-
cession chamber sits in a large cylindrical vacuum chamber
(with front end open on the picture), surrounded by a four-
layer mumetal magnetic shield. The UCN guide injects the
neutrons from the bottom. High voltage is applied using the
HV feed-trough connected to the top electrode.

frequency difference of these two configurations gives
directly access to the neutron EDM: dn = h∆fn/4E.
To measure the precession frequency, we use Ramsey’s
method of separated oscillatory fields which provides a
statistical precision per cycle of

σ(dn) =
~

2αET
√
N

(21)

where T is the precession time, α is the visibility (re-
lated to the polarization of the neutrons) and N the to-
tal number of detected neutrons. Using stored ultracold
neutrons, the precession time can be set to T = 200 s,
five orders of magnitude longer as compared to the first
experiment performed by Smith et al. (1957) using a neu-
tron beam!

The main experimental challenge in current experi-
ments consists in achieving a magnetic field homogeneity
at the level of 10−4 over a volume of typically 20 ` while
maintaining a temporal stability of about 10−7 over 100
s. These requirements are necessary to control the sub-
tle systematic effects (see for example Pignol and Roccia
(2012)). Atomic magnetometry and magnetic shielding
techniques are therefore at the core of such a measure-
ment.

As of 2015 there are six projects worldwide competing
for improving the measurement of the neutron EDM, all
at different stages.

1. A PNPI group is currently operating a room-
temperature double-chamber spectrometer at the
ILL (Serebrov et al., 2014). Later the apparatus
will be moved back to PNPI where a new UCN
source will be built.
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2. Another PNPI group pursues a completely differ-
ent experimental method. It exploits inter-atomic
electric fields in crystals that are 104 times stronger
than electric fields produced by charging electrodes
as in all other experiments. However the interac-
tion time is much shorter because it is a neutron
scattering technique. The result obtained recently
at the ILL (Fedorov et al., 2010) is two orders of
magnitude less precise than the conventional UCN
method.

3. A German project at Munich (Altarev et al., 2012)
is waiting for the construction of a new UCN source
at the reactor FRM-2. The newly built magnet-
ically shielded room performs very well (Altarev
et al., 2014). This large room is designed to host a
double-chamber room-temperature experiment.

4. A Canada-Japan collaboration plans to build a su-
perthermal UCN source and a room-temperature
EDM apparatus at TRIUMF Vancouver, based on
the prototype operated at RNCP Osaka (Masuda
et al., 2012, 2014; Matsuta et al., 2013).

5. An ambitious project is pursued by the US commu-
nity based on the original proposal of Golub and
Lamoreaux (1994). The idea is to run the exper-
iment in superfluid 4He, that serves both as a su-
perthermal UCN source and a precession chamber.
Traces of spin-polarized 3He will be injected in the
volume to both detect the neutrons and act as a co-
magnetometer (Ye et al., 2009). The project is still
in the R&D phase and will start real data taking
at SNS Oak Ridge in 2020 at best.

6. A European collaboration (Belgium, France, Ger-
many, Poland, Switzerland and UK) is running an
experiment at the PSI UCN source (Baker et al.,
2011). We are currently operating an upgraded ver-
sion of the RAL-Sussex spectrometer (see picture
Fig. 4) which has produced the lowest experimen-
tal limit for the neutron EDM and that we moved
from the ILL to the PSI in 2009. In the same
time we have started the design of n2EDM, a next
generation room-temperature double-chamber ap-
paratus in view of its delivery around 2018. With
the current apparatus we aim at slightly improv-
ing the present limit on the neutron EDM whereas
with n2EDM we aim at a precision of better than
10−27 e cm. In addition, we have produced sev-
eral spin-off scientific results with the apparatus
(i) a search for neutron to mirror-neutron oscilla-
tions (Altarev et al., 2009b; Ban et al., 2007) (ii) a
sensitive test of Lorentz invariance (Altarev et al.,
2009a, 2010, 2011) (iii) a measurement of the neu-
tron magnetic moment with an uncertainty of 0.8
ppm (Afach et al., 2014) (iv) a search for Axionlike
particles (Afach et al., 2015).

Although the experiments are getting more and more
difficult (in the 1950s and 1960s two or three persons
could run an experiment, nowadays author lists rarely
count less than 20 people) prospects are good to improve
the accuracy on the neutron EDM by more than an order
of magnitude in the next decade.

::::

In conclusion, experiments with neutrons address the
cosmological question of the origin of the baryonic mat-
ter. Today we understand how protons and neutrons
combined in the early Universe to form nuclei. Experi-
ments measuring the neutron lifetime contributed a fare
share of the successful prediction of the Big Bang nucle-
osynthesis. However we still do not know how the neu-
trons and protons were created in the first place, because
we do not understand the baryon asymmetry of the Uni-
verse. Planned measurements of the neutron EDM will
contribute to solve this question.
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II. CHAMELEON DARK ENERGY

The 2011 Nobel Prize in physics was awarded to S.
Pelmutter, B. Schmidt and A. Riess for the discovery of
the late acceleration of the expansion of the Universe.
Although the acceleration is now established as a fact, it
remains a great puzzle. We do not know the nature of
the Dark Energy responsible for the acceleration.

The two other cosmological puzzles, the origin of the
baryon asymmetry and the nature of the Dark Matter,
are thought to be related to physics at high energy, be-
yond the electroweak scale. On the contrary, the en-
ergy scale associated to the Dark Energy has the peculiar
value of 2 meV. It suggests that there is still new physics
in the infrared to be discovered, perhaps with low energy
precision experiments using neutrons?

A. The accelerated expansion of the Universe

A linear relation between the distance and radial ve-
locity among galaxies, v = H0d, was first established
by Hubble (1929). The first Hubble diagram is shown
in Fig. 5. Incidentally, due to an error in the dis-
tance evaluations, Hubble derived an expansion rate of
500 km/s/Mpc which is much larger than the most recent
determination by Ade et al. (2014):

H0 = 67.3± 1.2 km/s/Mpc. (22)

Hubble’s linear law was discovered using observations
of nearby galaxies. At much larger distances, the rela-
tion is not expected to be linear anymore. The expan-
sion of the Universe was thought to slow down because of
the attractive power of gravity. The deceleration of the
Universe was then searched for by drawing a Hubble di-
agram with more distant objects. Explosions of type IA
supernovae are (i) very bright, they can be seen at cos-
mological distances (ii) very reproducible, they all have
almost the same intrinsic brightness. A sufficient number
of supernovae observations using the Hubble space tele-
scope and ground based telescopes were reported by two
teams (Perlmutter et al., 1999; Riess et al., 1998). The
supernovae Hubble diagram of one team is shown in Fig.
5.

Surprisingly, it was found that the expansion of the
Universe accelerates. Let us analyse this incredible find-
ing in the framework of a flat Universe whose expansion
is driven by an homogeneous substance with an energy
density ρ and a pressure p (i.e. a perfect fluid). We as-
sume an equation of state of the substance of the form
p = wρ. From the Friedmann equations (4),(5) one de-
rives the acceleration:

ä

a
= −4πG

3
ρ (1 + 3w). (23)

A substance made up of non-relativistic matter (w = 0)
or radiation (w = 1/3) would decelerate the expansion.
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FIG. 5 Top: diagram taken from Hubble (1929) representing
the velocity (deduced from the redshift) of nearby galaxies as
a function of distance. Bottom: supernovae Hubble diagram
taken from Perlmutter et al. (1999) representing the magni-
tude (indicating the distance) as a function of the redshift.
Notice that the highest velocity of 1000 km/s in the 1929 di-
agram corresponds to the redshift z = 0.003 which is smaller
than the smallest redshift in the supernovae diagram.

Instead, a positive acceleration requires w < −1/3. The
mysterious substance driving the expansion must have a
negative pressure. This substance is generically called
Dark Energy.

B. The ΛCDM concordance model

In the standard model of cosmology, the acceleration
of the expansion is attributed to a perfect fluid with w =
−1. According to the second Friedmann equation (5),
the energy density of this fluid is constant. It does not
dilute with the expansion, it is a cosmological constant.

In the late Universe, the expansion is driven by two dis-
tinct perfect fluids: the cosmological constant and some
non-relativistic matter (radiation became unimportant a
few million years after the Big Bang). Hence the name
“ΛCDM” for the standard model, which stands for a cos-
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FIG. 6 The age of the Universe calculated in the flat ΛCDM
model as a function of ΩΛ. The vertical orange band repre-
sents the Dark Energy fraction reported by Ade et al. (2014).

mology with a cosmological constant and cold dark mat-
ter (baryonic matter accounts for only a fraction of the
non-relativistic matter).

We note ρM,0 and ρΛ,0 the present value of the energy
density associated with the matter and the cosmological
constant, and ρc,0 = 3H2

0
8πG the critical density. We use the

standard notation ΩM = ρM,0/ρc,0 and ΩΛ = ρΛ,0/ρc,0,
which represent the fraction of the total energy density in
the form of matter and cosmological constant. For a flat
Universe, Eq. (4) considered at the present epoch implies
ΩM + ΩΛ = 1. From the second Friedmann equation (5)
the past values of the densities are

ρM (t) =
ρM,0

a(t)3
, ρΛ(t) = ρΛ,0. (24)

Then, Eq. (4) can be brought to the form(
ȧ

a

)2

= H2
0

(
ΩM
a3

+ ΩΛ

)
. (25)

This is the equation describing the expansion rate in the
flat ΛCDM model. Let us calculate the age of the Uni-
verse, by transforming the previous equation into:

1 =
ȧ
√
a

H0

√
ΩM + a3ΩΛ

. (26)

Next, we integrate the equation from t = 0 to t = t0 (t0 is
the age of the Universe). Recall that in our conventions
a(t0) = 1. We get

t0 =
1
H0

∫ 1

0

√
a da√

ΩM + a3ΩΛ

=
2

3H0

asinh
√

ΩΛ/ΩM√
ΩΛ

.

(27)

The age of the Universe is plotted in Fig. 6 as a func-
tion of ΩΛ. We can compare it to the age of the oldest
stars, estimated to at least 11 Gyr (Bartelmann, 2010).
The Einstein-de Sitter model, i.e. the flat matter dom-
inated Universe with ΩM = 1 and ΩΛ = 0, is excluded
because the Universe cannot be younger than the stars.
The long-standing disagreement between the Hubble ex-
pansion rate and the age of the oldest stars has finally
been resolved in the ΛCDM model with the introduction
of the cosmological constant.

In addition to the supernovae and the age of oldest
stars, the acceleration of the Universe is now supported
by several other independent cosmological observations
including baryon acoustic oscillations, weak gravitational
lensing and counts of galaxy clusters. These observa-
tional probes of cosmic acceleration were recently re-
viewed in Weinberg et al. (2013) and future prospects
are described.

Since the discovery of the accelerated expansion, the
precision of the cosmological data increased spectacu-
larly, in particular the measurements of the CMB. The
ΛCDM model, which emerged at the end of the last cen-
tury as a concordance cosmology, is still able to describe
all observations. ΛCDM fits indicate that the energy
budget of the Universe today is:

Ωb = 5 % ΩDM = 27 % ΩΛ = 68 %, (28)

where the non-relativistic matter has a baryonic and non-
baryonic component (ΩM = ΩDM + Ωb). These three
components driving the expansion of the Universe today
are associated with the three major puzzles in cosmology.
It is often said that the baryonic content of the Universe
is the only part which is well understood. In fact, the
very presence of baryons results from the initial matter-
antimatter asymmetry of the Universe, it cannot be ex-
plained by the standard theory. Next, the microscopic
description of the non-baryonic Dark Matter is lacking.
It could be made up of massive weakly interacting parti-
cles a.k.a. WIMPS. It could also well be something com-
pletely different like a Bose-Einstein condensate of very
light scalar particles like Axions. Last, the microscopic
nature of the Dark Energy is completely unknown. Con-
trary to Dark Matter, no well motivated extensions of
the Standard Model of particle physics provide a natural
candidate for the Dark Energy.

C. The cosmological constant problem

In natural units (~ = c = 1), the energy density asso-
ciated with the Dark Energy is

ρΛ = ΩΛ ρc,0 = (2.2 meV)4. (29)

The fact that the energy scale associated with the Dark
Energy is so curious constitutes the cosmological con-
stant problem. In the ΛCDM model, the Dark Energy is
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simply the energy density of the vacuum, or equivalently
a cosmological constant. In principle the vacuum energy
is expected to receive contributions from several sources.

At the classical level, any scalar field φ contributes to
the vacuum energy by the amount V(φ0) where V(φ) is
the energy density function of the field and φ0 is the vac-
uum value of the field. One could argue that the zero en-
ergy is arbitrary, we can choose to define it as the state of
lowest energy for all fields in the Universe. All local phe-
nomena do not depend on this choice of the zero energy,
there is no reason that it should have such a dramatic
gravitational effect on cosmological scales. However, in
the case of phase transitions, the effect of zero energy
cannot be ignored by simply declaring that the zero en-
ergy cannot gravitate. During the electroweak symmetry
breaking mentioned in section I.D, the energy density
associated with the Higgs field changes, by an amount
as large as (100 GeV)4. The vacuum energy was much
larger before the electroweak phase transition. This dif-
ference in vacuum energy is definitely a physical mean-
ingful quantity, according to straightforward application
of the general relativity theory in a purely classical con-
text. If differences in vacuum energy certainly gravitate,
what determines the actual value of the vacuum energy?
It could perfectly correspond to an intrinsic property of
the Universe that should be treated as another free pa-
rameter. Why then is it adjusted so that the vacuum
energy after the electroweak phase transition is almost
zero, but not quite? It seems that Nature decided to
“lift” the Mexican hat potential of the Higgs field in a
very precise, fine-tuned amount.

In addition, the vacuum energy receives contributions
from quantum fluctuations induced by virtual particles.
Quantum field theories predict that every bosonic de-
gree of freedom of frequency ω has a zero-point energy
of ~ω/2. Since there are in principle an infinite number
of degrees of freedom in the quantum fields, the total
vacuum energy is technically infinite, unless the contri-
bution from the fermionic and bosonic degrees of freedom
compensate each other. If physics can be described by
an effective local quantum field theory up to the Planck
scale,

mPl =

√
~c

8πG
= 2.4× 1018 GeV, (30)

dimensional analysis indicate that the vacuum energy in-
duced by quantum fluctuations should be of the order of
m4

Pl ≈ 10120ρΛ. This is definitely the worse theoretical
prediction ever. Supersymmetric compensation between
the fermionic and bosonic quantum fluctuations above
the SUSY breaking scale could reduce the disagreement
between the expected and observed vacuum energy from
10120 down to 1058, still enormous.

In summary, the vacuum energy can be separated as
a sum of two terms: ρΛ = ρΛ,class + ρΛ,quant. The term

induced by quantum fluctuations ρΛ,quant cannot be cal-
culated in a self consistent way in quantum field theory
but it is expected to be huge from dimensional analysis.
The classical term ρΛ,class is the energy density of the
scalar fields in the ground state, it is a free parameter of
the theory. At the end, the vacuum energy can perfectly
be considered as a free parameter in the present incom-
plete theories of particle physics and gravity. However,
there is a naturalness problem very similar to the hierar-
chy problem of particle physics in the sense that “bare”
value has to be extraordinarily fine-tuned to almost com-
pensate for the huge quantum contribution.

Well before the discovery of the accelerating Universe,
Weinberg (1987) discussed an anthropic explanation to
the cosmological constant problem. He gave an upper
bound on the vacuum energy density:

ρΛ . (10 meV)4. (31)

The argument goes as follows. If the vacuum energy is
too large, the accelerated phase of the expansion starts
too early. Then the inhomogeneities of the mass den-
sity do not have time to grow sufficiently before getting
stretched away by the accelerated expansion. Only if the
Weinberg bound (31) is satisfied can the perturbations
grow to form stars and galaxies. Otherwise the Universe
would consist in an homogeneous fluid in accelerated ex-
pansion, quite unfriendly for life. Imagining that many
universes exist, with a different value for the cosmologi-
cal constant in each, it is not surprising that we happen
to live in a seemingly very special universe where life is
possible at all. Indeed the observed vacuum energy den-
sity (29) is not particularly fine-tuned with respect to the
range of possible values in the anthropic sense given by
(31).

This anthropic explanation is further supported by the
landscape of string theory: there is a huge number of pos-
sible vacua of the string theory associated with the many
many different ways to compactify the extra dimensions.
One might believe that all these versions of string the-
ory “exist” somehow, and intelligent life can emerge only
in a tiny fraction of a vast number of possible versions.
The fine-tuning of the parameters could then be just an
illusion.

In addition, the eternal inflation scenario supports the
plausibility that many worlds can “exist” in a multiverse.
In these theories, the Universe is inflating due to the en-
ergy density of a scalar field – the inflaton – which is in
a false vacuum. The inflaton decays in the true vacuum,
stopping the inflationary phase. But this process hap-
pens only locally, forming a bubble of true vacuum sur-
rounded by the rest of the Universe which is still inflating.
In some versions of the theory, the part of the Universe
which is still inflating grows fast enough to accommo-
date for the continuous formation of bubbles (the speed
of the bubble walls could be slower than the exponential
expansion of the false vacuum space). In this case the
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inflationary phase of the Universe lasts forever in some
regions of the Universe and causally disconnected bub-
bles are produced on and on. Different bubbles having
different cosmological constants is not strictly speaking
a prediction of eternal inflation, but if inflation is due to
Planck-scale physics or stringy effects, who knows? We
might be living in one out of a vast number of bubbles,
where the vacuum energy density is such that it does not
forbid the appearance of intelligent life.

D. The quintessence as Dark Energy

The anthropic explanation of the cosmological con-
stant problem is both elegant and fascinating. However
it rests on speculative ideas, to say the least. This ex-
planation is a source of great inspiration for imagination
and philosophy, unfortunately it gives poor insight for
further observations and experiments. It is thus neces-
sary to explore other possibilities. We can take the view
that Dark Energy is a dynamical process revealing new
physics at the energy scale ρ1/4

Λ ≈ 1 meV. A review of the
possible dynamics of Dark Energy and its observational
consequences can be found in Copeland et al. (2006). Al-
though none of these models really solve the cosmologi-
cal constant problem in a top-down way, they are useful
bottom-up approaches to guide future observations and
experiments to refine our knowledge of Dark Energy.

The most popular routes to a dynamical extension
of the simple ΛCDM parametrization are quintessence
models. Akin to inflationary models, the accelerated ex-
pansion is due to the energy density of a scalar field.
The scalar field responsible for the acceleration of the
Universe during the inflation era is called the infla-
ton, whereas the hypothetical scalar field making up the
Dark Energy driving the late acceleration is called the
quintessence. There are even models explaining both the
early inflation and the late acceleration of the Universe
using a single scalar field (Peebles and Vilenkin, 1999).

Let us review the theory of the gravitational dynam-
ics of a scalar field. The action for gravity and the
quintessence field ϕ with the so-called minimal coupling
is

S =
∫
d4x
√
−g
(
−m

2
Pl

2
R+ Lϕ

)
, (32)

where g = det(gµν) is the determinant of the metric ten-
sor, R = gµνRµν is the trace of the Ricci curvature tensor
Rµν and

Lϕ =
1
2
gµν∂µϕ∂νϕ− V(ϕ) (33)

is the Lagrangian of the scalar field with a generic poten-
tial V(ϕ).

Einstein’s equations governing the response of the met-
ric to the scalar field are obtained from the variational

principle δS/δgµν = 0:

Gµν = 8πGTϕµν , (34)

where Gµν = Rµν − 1/2gµνR is Einstein’s tensor and

Tϕµν = 2
δLϕ
δgµν

− gµνLϕ (35)

= ∂µϕ∂νϕ−
1
2
gµνg

αβ∂αϕ∂βϕ+ gµνV(ϕ) (36)

is the stress-energy tensor of the scalar field.
In the homogeneous Universe, the scalar field is uni-

form in a Robertson-Walker metric (3). The problem
reduces to only two degrees of freedom a(t) and ϕ(t) and
tensors take a diagonal form:

gµν = diag
(
1,−a2

)
(37)

gµν = diag
(
1,−1/a2

)
(38)

Gµν = diag
(

3H2, a2[−3H2 − 2Ḣ]
)

(39)

Tϕµν = diag
(

1
2
ϕ̇2 + V(ϕ), a2[

1
2
ϕ̇2 − V(ϕ)]

)
(40)

The 00 component of Einstein’s equations reduces then
to the Friedmann equation

H2 =
8πG

3

(
1
2
ϕ̇2 + V(ϕ)

)
. (41)

In addition, the evolution of the scalar field is given by
the variational principle δS/δϕ = 0, which in the homo-
geneous Universe reduces to

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0. (42)

The coupled dynamics of the expansion (i.e. the time
evolution of H = ȧ/a and ϕ) is completely specified by
the two equations (41) and (42). It is useful to notice that
these two equations are equivalent to the two Friedman
equations (4),(5) with ρ = ϕ̇2/2+V(ϕ) the energy density
of the quintessence and p = ϕ̇2/2−V(ϕ) its pressure. The
equation of state parameter

w =
p

ρ
=
ϕ̇2/2− V(ϕ)
ϕ̇2/2 + V(ϕ)

(43)

is a dynamical quantity that can evolve with time.
Different cosmologies can be built depending on the

potential V(ϕ). If ϕ corresponds to a standard mas-
sive scalar field, such as the Axion, the potential V(ϕ) =
1
2µ

2ϕ2 is parabolic. For the harmonic potential there is
equipartition between the kinetic energy ϕ̇2/2 and the
potential energy V(ϕ) and therefore w = 0. In this case
ϕ is a candidate for pressurless cold Dark Matter. It is
also possible to build models which mimic a cosmological
constant with w ≈ −1, where the field does not develop
significant kinetic energy. Such a model has been first
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proposed by Ratra and Peebles (1988), with the poten-
tial given by

V(ϕ) = M4
Λ

(
MΛ

ϕ

)n
(44)

whereMΛ is a new mass scale and n is a positive exponent
called the Ratra-Peebles index.

As a generic feature of quintessence models, a de-
parture from w = −1 is expected. Therefore there is
a chance that future supernovae surveys could detect
a deviation from the ΛCDM model where w = −1.
Now, is there another way to reveal the presence of the
quintessence field ϕ? If the field were coupled to ordinary
matter, then it would mediate a fifth force. It is then very
appealing to design laboratory experiments searching for
this new force.

E. The chameleon

A quintessence field coupled with matter mediates a
new force with a range extending up to cosmological
scales. At first it was generally assumed that the coupling
must be very small, much smaller than the gravitational
strength, in order to satisfy the stringent tests of the
equivalence principle, as well as the tests of general rel-
ativity in the Solar system. However, Khoury and Welt-
man (2004a,b) discovered that the coupled quintessence
scalar theory automatically features a very efficient mech-
anism to suppress the force called the chameleon mecha-
nism. Then, Brax et al. (2004) explored the cosmological
consequences of the chameleon theory to find that it is a
nice viable Dark Energy candidate.

Let us explain the chameleon screening mechanism.
We start by considering the Lagrange density of the
scalar field ϕ coupled with a fermion ψ (with a mass
m) in a Minkowski spacetime: 3

L =
1
2
∂µϕ ∂µϕ− V(ϕ)− β m

mPl
ϕ ψ̄ψ. (45)

The dimensionless constant β corresponds to the strength
of the coupling relative to gravity. From the Lagrange
density we can deduce in principle how ϕ affects a parti-
cle, and conversely, how the presence of particles gener-
ates a field.

3 The term βm/mPlϕ ψ̄ψ originates from a conformal coupling
of the scalar field to the fermion. The conformal coupling con-
sists in replacing the metric gµν in the fermion Lagrange density
by a function of the scalar field A2(ϕ)gµν : Lm(A2(ϕ)gµν , ψ).
A popular choice of the conformal coupling function is A(ϕ) =
eβϕ/mPl . Since the excursions of the field always satisfies
βϕ/mPl � 1 in concrete cosmological or laboratory situations,
we can approximate A(ϕ) = 1 +βϕ/mPl. It finally produces the
Yukawa coupling term βm/mPlϕ ψ̄ψ.
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FIG. 7 The black dashed line represents the runaway po-
tential V(ϕ). The solid lines represent the effective potential
Veff(ϕ) where the environment density ρ is low (blue) and
where the density is high (red).

1. A fermion evolving in a field ϕ(r) is affected by the
potential

V (r) = β
m

mPl
ϕ(r), (46)

corresponding to a force:

F = −β m

mPl
∇ϕ(r). (47)

2. The field ϕ(r) generated by a distribution of
fermions is given by the Euler-Lagrange equation

∂µ

(
∂L

∂(∂µϕ)

)
− ∂L
∂ϕ

= 0. (48)

More specifically, the Euler-Lagrange equation deduced
from the Lagrange density (45) reads

∂µ∂
µϕ+ V ′(ϕ) + β

ρ

mPl
= 0, (49)

where ρ is the mass density of the fermions (we have
assumed the non-relativistic limit mψ̄ψ = ρ).

It is then apparent that, within an environment of den-
sity ρ, the dynamics of the chameleon is not governed by
V(ϕ), but rather by the effective potential

Veff = V(ϕ) + β
ρ

mpl
ϕ, (50)

in the sense that Eq. (49) can be written in the form
∂µ∂

µϕ+ V ′eff(ϕ) = 0.
Let us recall that the equation governing a basic mas-

sive scalar field (with a potential 1
2µ

2ϕ2) is the Klein-
Gordon equation ∂µ∂µϕ+µ2ϕ = 0, where µ is the mass of
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the elementary excitations of the field. In this well-known
case, the field generated by a static point source (if the
field is coupled to fermions, this corresponds to a source
term in the right hand side of the Klein-Gordon equation)
takes the form of a Yukawa potential ϕ(r) ' e−µr/r.
It means physically that the field mediates an interac-
tion between fermions with a range 1/µ (in S.I. units,
λ = ~c

µc2 ). A very massive field will mediate a short-range
force, whereas a light field can travel long distances.

We now come back to the more complicated situation
of the coupled quintessence field. We will discuss the
consequences of the specific features of the effective po-
tential depicted in Fig. 7. Assuming that the density
ρ is uniform everywhere, then there is a static and uni-
form solution to Eq. (49), given by the minimum of the
effective potential V ′eff(ϕmin) = 0. In the case of the
Ratra-Peebles potential (44) the minimum of the effec-
tive potential reads

ϕmin = MΛ

(
nM3

Λmpl

βρ

) 1
n+1

. (51)

For small perturbations of the field around this uniform
value (induced by an extra mass on top of the environ-
ment density ρ for example), we can approximate the
effective potential around the minimum by

Veff(ϕ) ≈ Veff(ϕmin) +
1
2

(ϕ− ϕmin)2 V ′′eff(ϕmin). (52)

We can attribute an effective mass µ for the perturba-
tions of the field, with

µ2 = V ′′eff(ϕmin) = β
ρ

mpl

n+ 1
ϕmin

. (53)

The effective mass is associated with the curvature of
the effective potential at the minimum. Clearly, what is
happening here is that the mass of the field is density-
dependent, in such a way that the range of the force me-
diated by the field shrinks in a high density environment.
For this reason, the scalar field is called “chameleon”: it
adapts its properties to the environment to evade obser-
vation.

Consider for example the Sun as a source of the
chameleon field. Since the density in the interior of the
Sun is quite high, the chameleon is effectively massive
in the Sun. Therefore, a test particle situated outside
the Sun is not affected by the inner part of the Sun be-
cause the field created by the mass inside the Sun cannot
propagate to the outside. In fact, it is shown in Khoury
and Weltman (2004a,b) that when the coupling β is large
enough, then only a thin shell at the surface of a large
body such as the Sun or the Earth contributes to the
force on a test particle outside the body. Then, in a more
elaborate analysis, Mota and Shaw (2007) concluded that
strongly coupled chameleons, i.e. β � 1, are not ruled
out by terrestrial and solar system tests of gravity.

𝜑(𝑥)

PLATE OF DENSITY ρ

𝑑
𝑥

𝑋 = 𝑥 − 𝑑

𝜑0

𝜑𝑆

FIG. 8 Sketch of the one-dimensional problem.

F. 1D solutions of the chameleon equation

In order to gain more insight about the properties
of the chameleon field, we shall now solve explicitly
the chameleon equation in the case of the simple one-
dimensional problem illustrated on Fig. 8. We consider
a plate of material (to be specific, a plate of aluminium
with thickness 2d = 1 mm) surrounded by perfect vac-
uum.

We consider a static solution in one dimension, there-
fore ∂µ∂

µϕ = ∂2ϕ
∂t2 − ∆ϕ = −d

2ϕ(x)
dx2 . In this case the

chameleon equation (49) becomes

d2ϕ

dx2
= V ′eff(ϕ) (54)

In addition, the symmetry of the problem implies
ϕ(−x) = ϕ(x). We will therefore solve for x > 0 with
the boundary condition ϕ′0 = 0. For simplicity we treat
the case with n = 2 but other Ratra-Peebles indices can
be treated similarly.

Solution in vacuum. In the vacuum (X > 0), the
chameleon equation reads

d2ϕ

dX2
= −2

M6
Λ

ϕ3
. (55)

we can find a family of solutions with different values ϕS
at the boundary:

ϕ(X) = ϕS
√

1 +X/XS (56)

with XS satisfying

XS =
√

2
4

ϕ2
S

M3
Λ

. (57)

Notice the remarkable expression of the derivative at the
boundary

ϕ′S =
√

2
M3

Λ

ϕS
. (58)
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Next, we deal with the inside of the plate (0 < x <
d). No exact solution exists for the problem, we need to
consider two asymptotic regimes.

Solution inside the plate: linear regime. We
start by considering what we call the linear regime, where
ϕ0 � ϕmin. We will derive a posteriori the corresponding
condition for the parameter β. We recall that ϕmin is the
value of the field minimizing the effective potential inside
the plate, it is given by Eq. (51). In this regime, the
effective potential is dominated by the coupling term and
we can neglect the self-interaction term V(ϕ). Therefore,
the chameleon equation reduces to a Poisson equation :

d2ϕ

dx2
≈ β ρ

mpl
=

2M6
Λ

ϕ3
min

. (59)

with the solution

ϕ(x) = ϕ0 +
M6

Λ

ϕ3
min

x2 (60)

We now need to connect this solution to the vacuum so-
lution at the boundary by equalizing the value of the field
and the derivative. We get the solution

ϕ0

MΛ
=

1√
2(MΛd)

(
ϕmin

MΛ

)3

− (MΛd)2

(
MΛ

ϕmin

)3

. (61)

Now we can work out a posteriori the domain of validity
of the linear approximation. We see from the solution
that the condition ϕ0 � ϕmin is equivalent to the condi-
tion MΛd � (ϕmin/MΛ)2, or, expressed in terms of the
basic parameters:

linear regime : β � mplM
3
Λ

ρ

1
(MΛd)3/2

. (62)

Let us evaluate numerically this condition in the case
of our aluminium plate. Equations are expressed in nat-
ural units, so we will express all masses in eV and all
distances in eV−1. We will consider the energy scale of
the chameleon potential to correspond to the Dark En-
ergy scale:

MΛ = ρ
1/4
Λ = 2.4× 10−3 eV. (63)

The Planck mass amounts to mpl = 2.4 × 1027 eV. The
half-thickness of the plate is d = 0.5 mm = 2.5×103 eV−1

and the density of aluminium is ρ = 2.7 g/cm3 = 1.2 ×
1019 eV4. We find that the solution is described by the
linear regime when

β � 0.2. (64)

The linear regime does not describe strongly coupled
chameleons (i.e. β � 1) in the presence of ordinary ob-
jects of normal size!

Solution inside the plate: saturated regime. In
the opposite regime, which we call the saturated regime,

the field inside the plate is very close to ϕmin. We re-
call that ϕmin would be the uniform value of the field
in the situation where the plate with density ρ fills the
entire space uniformly. In the saturated regime we can
write ϕ(x) = ϕmin + φ, with φ� ϕmin. In this case, the
chameleon equation reduces to the Klein-Gordon equa-
tion

d2φ

dx2
= µ2φ (65)

where the effective mass µ satisfies Eq. (53), that is:

µ2 = β
ρ

mpl

3
ϕmin

=
6M6

Λ

ϕ4
min

. (66)

At this point it is useful to notice that the opposite of
the linear regime condition Eq. (62) can be written in
the form:

saturated regime : µd� 1. (67)

Physically, it means that in the saturated regime the
range of the force mediated by the chameleon is much
shorter than the thickness of the plate.

The solution of the Klein-Gordon equation is:

φ(x) = φ0 cosh(µx). (68)

The continuity of ϕ and ϕ′ at the boundary provides a
quadratic equation for φ0:

φ0µ sinh(µd) (ϕmin + φ0 cosh(µd)) =
√

2M3
Λ, (69)

or equivalently, we get a quadratic equation for ϕS =
ϕmin + φ0 coshµd:

(ϕS − ϕmin)ϕS =
√

2
M3

Λ

µ

coshµd
sinhµd

. (70)

Interpretation of the solution. The solution of
the chameleon equation on the right side of the plate is
plotted on Fig. 9, for three different values of the cou-
pling constant β. The field inside the plate is “attracted”
to small values. Outside the plate, the field wants to grow
to minimize the potential V(ϕ).

For strongly coupled chameleons, the field inside the
plate takes a nearly uniform value ϕ = ϕmin. When
the field is saturated inside the bulk, the plate acts as a
screen: if a source mass moves on the left side of the plate,
the field will be modified on the left side but it will remain
saturated to ϕmin inside the plate. Therefore the solution
on the right side of the plate will remain unaffected. The
plate shields the right side from what happens on the left
side. This screening mechanism makes the chameleon
field difficult to detect by laboratory experiments.

Another important feature of the chameleon is the sat-
uration of the field. We see in Fig. 9 that the solution
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FIG. 9 Solution of the 1D chameleon equation with n = 2.
The half-thickness of the aluminium plate is d = 0.5 mm.
The blue curve (β = 0.05) is calculated using the linear ap-
proximation. The black (β = 1) and red (β = 20) curves are
calculated using the saturated approximation.

outside the plate becomes independent of β for large val-
ues of β. To better understand this, let us discuss the
gradient of the field dϕ

dx at the immediate vicinity of the
plate, say X = 10 µm. The gradient of the field is anal-
ogous to an electric field (which is the gradient of the
electric potential). The force acting on a test mass is
proportional to dϕ

dx in the same way as the force acting
on a charged particle is proportional to the electric field.
There is no saturation effect for the electric field, in the
sense that an electrically charged plate produces at the
vicinity of the surface an electric field proportional to the
charge density of the plate. Fig. 10 shows the gradient
of the chameleon field as a function of β. In the linear
regime, the gradient grows linearly with β (or ρ) as for
the electric field (hence the name of the linear regime).
On the contrary, in the saturated regime, the gradient
saturates to a finite asymptotic value.

As a matter of fact, when searching for strongly cou-
pled chameleons, one should think of solid matter as a
zero boundary condition for the field ϕ. In this case the
field in the vicinity of the surface of any plate has been
derived by Brax and Pignol (2011) for any Ratra-Peebles
index n. In S.I. units it reads:

ϕ(X) = MΛ

(
2 + n√

2
MΛ

~c
X

)2/(2+n)

. (71)

In the particular case n = 2 we recover Eq. (56) in
the limit ϕS = 0. This solution is independent of the
coupling strength β, because of the saturation property
we just discussed.

The problem of the “capacitor”, i.e. two parallel plates
separated by a thickness 2R of vacuum, has been consid-
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FIG. 10 Gradient of the chameleon field at X = 10 µm from
the surface of the aluminium plate, as a function of β. The
blue curve is calculated using the linear approximation, the
red curve is calculated using the saturated approximation.
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FIG. 11 Solution of the chameleon equation for n = 1 (black
curves) and n = 2 (red curves). Solid lines correspond to the
two-plates solution Eq. (72) with 2R = 1 cm. Dashed lines
correspond to the one-plate solution Eq. (71).

ered by Ivanov et al. (2013). They proposed the approx-
imate analytical solution

ϕ(x) = MΛ

(
2 + n

2
√

2
RMΛ

~c

[
1− x2

R2

])2/(2+n)

(72)

which is exact for n = 2. In this equation x = 0 refers to
the middle position of the capacitor.

The one-plate and two-plate chameleon profiles are dis-
played in Fig. 11. What is the physical reality of those
chameleon profiles? Consider a test particle of mass m
in the vicinity of a plate, or inside a two-plate capaci-
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tor, the chameleon profile generates a potential energy
βm/mplϕ(x). We will discuss later suitable neutron ex-
periments to probe these chameleon fields.

It is important to note that a macroscopic test mass
will not be subjected to the same potential energy. For
strong couplings β, the core of the test mass will be
shielded from the external chameleon field. It is some-
times useful to think of experiments searching for a new
force as made of two components: a source (sometimes
called an attractor) and a probe (sometimes called a de-
tector). In the case of strongly coupled chameleons, a
macroscopic source such as a plate produces a saturated
chameleon field, independent of β. Also, the response
of a macroscopic probe will show some saturation effect,
whereas the response of a particle such as a neutron will
be proportional to the coupling strength β.

G. Searching for the chameleon in the lab

Probing new forces with neutrons. Since the
existence of new interactions are generic predictions of
theories beyond the standard model, they are actively
searched for in a great variety of experiments probing
scales from subatomic to astronomical distances (see An-
toniadis et al. (2011) for a recent review).

It is however quite recently that slow neutrons were
recognized as interesting probes of new forces. In par-
ticular, neutron scattering experiments were found to
be sensitive to new Yukawa forces of nanometric range
(Nesvizhevsky et al., 2008; Pokotilovski, 2006). At the
micrometer scale, the measurement of quantum states
of neutrons bouncing over a mirror provides some con-
straints, however they are not as stringent as those de-
rived from fifth-force searches using macroscopic bodies.

In addition, neutrons can be sensitive to spin-
dependent forces in the sub-millimeter range (induced
by new bosons of mass µ > 10−3 eV). Limits on
CP violating spin-dependent forces induced by the ex-
change of light Axionlike particles were first set by bounc-
ing neutrons (Baeßler et al., 2009, 2007; Jenke et al.,
2014). These limits were quickly superseded by exper-
iments measuring the spin-precession of ultracold neu-
trons (Afach et al., 2015; Serebrov et al., 2010). Now the
neutron limits compete with experiments using hyper-
polarized 3He (Petukhov et al., 2010). At shorter range,
a neutron diffraction experiment provides an interesting
constraint on Axionlike particles (Voronin et al., 2009).
There are also neutron beam experiments probing new
spin-dependent interactions mediated by spin 1 bosons
(Piegsa and Pignol, 2012; Yan and Snow, 2013).

Neutrons probing strongly coupled chameleons.
Due to the peculiarity of the force induced by the
chameleon field, the constraints on generic short range
Yukawa force do not generally apply. In this case, it is

quite attractive to consider the neutron as a probe of
strongly coupled chameleons because of the absence of
the saturation effect.

The case of the neutron bouncer is particularly inter-
esting. Ultracold neutrons can bounce above an hori-
zontal plate because they are specularly reflected by the
Fermi potential when they fall on the plate (which we call
a mirror). It is possible to prepare neutrons almost at
rest (concerning the vertical motion), so that the bounc-
ing height is only a fraction of a millimeter. In this case
the energy of the vertical motion is quantized, as demon-
strated experimentally for the first time at the Institut
Laue Langevin by Nesvizhevsky et al. (2002). We (Brax
and Pignol, 2011) argued that the chameleon field Eq.
(71) would be detectable in this system and deduced the
upper limit β < 1011. Next, Jenke et al. (2011) real-
ized the first spectroscopy of the quantum states by in-
ducing resonant transitions. The chameleon field would
shift the frequency of the resonances and the upper limit
β < 6× 108 was deduced (Jenke et al., 2014). In part IV
we will dwell on this topic and give the prospects of the
GRANIT experiment.

Besides quantum states of bouncing neutrons, there
is a second route: neutron interferometry. Pokotilovski
(2013) proposed to build a Llyod’s mirror interferometer
for very cold neutrons to probe the chameleon. Such a
method could in principle be sensitive to chameleon cou-
plings down to β ∼ 107 but the cold neutron interferome-
ter technique has yet to be developed. As an alternative,
we (Brax et al., 2013) proposed to use triple Laue-case
interferometers with slow neutrons that have been oper-
ated routinely for decades in several neutron facilities. A
first experiment has been performed in summer 2013 at
the Institut Laue Langevin (Lemmel et al., 2015). We
will describe it in part III.

The constraints in the chameleon parameter space
(Ratra-Peebles index n and matter coupling β) from
these neutron experiments are shown in Fig. 32 together
with constraints from non-neutron experiments.

Other laboratory searches for chameleons.
Aside from neutron experiments, there are of course a
few other means to probe the chameleon.

• Using torsion pendulum with exquisite sensitivity
(such as Kapner et al. (2007)) one searches for
an anomalous torque between a rotating attractor
disk and a torsion pendulum separated by a frac-
tion of a millimeter. The detector and the attrac-
tor are both disks with a diameter of a few cen-
timeters, they are then subjected to the chameleon
screening mechanisms in the case β � 1. Upadhye
(2012) undertook the very complicated task of de-
riving the limits on the chameleon couplings from
this experiment. For n = 1 the excluded range is
10−2 < β < 10. Couplings larger than 10 are al-
lowed!
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• Measurements of the Casimir force could also be
sensitive to chameleons (Brax et al., 2007). Exist-
ing experiments are sensitive only in the region of
the parameter space where MΛ > 0.1 eV. Future
experiments could be sensitive to the interesting
case MΛ = 2.4 × 10−3 eV for a wide range of cou-
pling β.

• Atomic precision tests in the hydrogen atom can re-
veal the presence of a scalar field coupled to protons
and electrons. Brax and Burrage (2011) derived the
limit β < 1014 from existing data.

• An atom-interferometry experiment using ultracold
cesium atoms (Hamilton et al., 2015) has been re-
ported (while this manuscript was nearly finished).
They obtained the limit β < 2× 104 for n = 1.

• In addition to the coupling to matter (the term
βm/mPlϕψ̄ψ), the chameleon field can be coupled
to photons with the Lagrange density term

1
4
βγ
mPl

ϕ FµνF
µν . (73)

This case leads to a unique experimental signa-
ture. Due to the γγϕ vertex, chameleons can be
produced by shining an intense laser in a region
permeated by an intense magnetic field (take a
spare dipole magnet from a giant particle acceler-
ator). In this context, a chameleon is an elemen-
tary quantum excitation of the field ϕ. The pro-
duction region is a vacuum chamber, the produced
chameleon has a very low mass. The walls of the
vacuum chamber act as a repulsive potential for
the chameleon, because the mass of the chameleon
is large inside the walls. Therefore the chameleons
can be stored in the chamber (provided that the
coupling to matter is strong enough, in practice it
requires β > 104). After switching off the laser, the
trapped chameleons can be converted back to pho-
tons through the reverse of the process that formed
them, one would then measure an afterglow. A ded-
icated experiment called CHASE (Chameleon Af-
terglow Search) was performed at Fermilab Steffen
et al. (2010). No afterglow was observed, the ex-
periment sets the limit βγ < 1011.

Modified gravity. We conclude this part by men-
tioning that the chameleon theory is one amongst several
known (theoretically) screening mechanisms (see Khoury
(2013) for a pedagogical overview). In the general frame-
work of modified gravity, the Einstein-Hilbert action of
general relativity is modified by adding a scalar field ϕ.
There are many possible choices for the potential V(ϕ),
for the coupling to the standard model A(ϕ), for non-
standard kinetic terms, etc. To understand the differ-
ent possibilities we follow Brax (2013) and write the La-
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grange density linearised around a background configu-
ration ϕ0:

L =
Z(ϕ0)

2
∂µϕ∂

µϕ− 1
2
µ2(ϕ0)ϕ2 +

β(ϕ0)
mPl

ϕρ. (74)

In general the background configuration ϕ0 depends on
the environment density ρ, a property which could bring
about screening. We can see that there are three general
classes of screening mechanisms.

• The mass µ(ϕ0) becomes large in a dense environ-
ment. This is the chameleon mechanism.

• Z(ϕ0) becomes large in a dense environment. A
special case of this is the Galileon field.

• The coupling β(ϕ0) becomes small in a dense en-
vironment. The Damour-Polyakov mechanism be-
longs to this class. The symmetron is another ex-
ample.

::::

The comprehensive study of these theories, their cos-
mological implications, and the design of laboratory ex-
periments is a vivid ongoing field of research (see Fig
12). The hunt is on for the non-gravitational interaction
of dark energy.
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FIG. 13 General principle of neutron interferometry.

III. NEUTRON INTERFEROMETRY CONSTRAINS THE
CHAMELEON

This part describes a search for the chameleon using
neutron interferometry. The experiment has been re-
ported also in Lemmel et al. (2015).

A. Neutron interferometry

The first neutron interferometer, analogous to a Mach-
Zehnder interferometer for light, has been realized by
Rauch et al. (1974). The principle of neutron interferom-
etry is depicted in Fig. 13. A monochromatic neutron
beam with a wavelength of λ = 0.27 nm (or wavenumber
of k = 2π/λ = 23 nm−1) is split by Bragg diffraction into
two coherent beams using a single-crystal silicon plate.
Then part of these two beams are recombined using two
additional similar parallel plates. The neutron detectors
measure the flux resulting from the interference of neu-
trons going through path I and path II. A phase flag
(usually an aluminium plate with variable angle) is in-
troduced in path II to record the interferogram, i.e. the
neutron flux in detectors H and O as a function of the
phase flag position:

FO = AO +BO cos(ξflag); FH = AH −BH cos(ξflag),
(75)

where ξflag is a function of the phase flag position. Then,
a sample is introduced in path I and a new interferogram
is recorded:

FO = AO+BO cos(ξflag+ξ); FH = AH−BH cos(ξflag+ξ).
(76)

The phase ξ due to the sample is expressed as an inte-
gral of the potential V (x) along the neutron beam in the
sample (Rauch and Werner, 2000):

ξ = − m

k~2

∫
V (x)dx. (77)

Recording interferograms with and without sample one
can extract the phase shift due to the sample.

In order to probe the chameleon, we (Brax et al., 2013)
proposed to use a rectangular vacuum cell as a sample.
When evacuated, a chameleon field ϕ with a bubble-like
profile will appear in the cell. Since the neutron has an
energy V = βm/mpl ϕ in the chameleon field, the phase
associated with the chameleon bubble reads:

ξ = − m

k~2
β
m

mpl

∫
ϕ(x)dx. (78)

The cell needs to be evacuated in order to build up
a chameleon field “bubble” in the cell, because even air
at atmospheric pressure is too dense. Indeed, from the
calculations presented in the previous part of this docu-
ment, we can estimate that the chameleon field is in the
saturated regime in a few cm of air for strong coupling
(β � 1). The bubble solution (72) cannot build up in
air, instead, the solution would be nearly uniform in the
cell. Note that the neutron interferometers are generally
operated in air. The search for the chameleon field calls
for a dedicated experiment with a vacuum cell.

Interestingly, it is possible in principle to switch off
and on the chameleon bubble by adding or removing a
small amount of gas in the cell. We can profit from this
effect in an experiment, because this is a rather unique
signature which is easy to exploit in a practical setup.
If β = 108, a pressure of 10−2 mbar of helium (about a
million times less dense than air!) is enough to suppress
the bubble, as we will calculate later.

B. The experiment

A dedicated experiment to search for the chameleon
field was performed at the S18 instrument (see Kroupa
et al. (2000) for a description) at ILL in summer 2013.
We used the largest single-crystal interferometer avail-
able (see picture Fig. 14) with a beam separation of
50 mm.

A vacuum chamber specially designed for the
chameleon search was built by the Atominstitut group
in Vienna. The device, depicted in Fig. 15 consists of
an aluminium vacuum chamber with inner dimensions
40× 40× 94 mm3 and two air chambers sitting alongside
the vacuum chamber. The whole box can be moved side-
wards for swapping the vacuum cell between beam path
I and beam path II and to probe different beam trajec-
tories within the vacuum cell. The vacuum chamber is
connected to a gas system through a hole of diameter
5 mm on the top of the cell. The gas system comprises
a pressure gauge, a motorized leak valve connected to
a helium bottle and pumps. A turbomolecular pump is
running continuously while a controlled amount of he-
lium is let in through the leak valve. This way, the pres-
sure of helium in the cell can be controlled in the range
10−4 mbar < P < 10−2 mbar. To get higher pressure the
turbomolecular pump needs to be disconnected.
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FIG. 14 Picture of the large interferometer made out of a
single-crystal silicon used in the S18 experiment.
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FIG. 15 Top view of the setup. The chamber box (blue) can
be moved by a remote controlled robot, allowing the beams
to pass at different positions labeled by ’a’ to ’n’.

During data-taking, we recorded many interferograms
while varying the parameters of the cell (helium pressure
and beam position). It takes about half an hour to record
one interferogram. A major difficulty concerns the phase
drifts due to environmental factors such as temperature
gradients, air flow and vibrations. The use of such a
big single-crystal interferometer is very delicate since it
is more sensitive to these nuisances compared to smaller
interferometers. To compensate for environmental phase
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FIG. 16 Interferograms recorded in position ’d’. The plots
show the intensity in the detector O as a function of the path
length difference created by the rotating phase flag.

drifts, interferograms were recorded in parallel. It means
that the phase flag was rotated to the first angular po-
sition and neutrons were counted for a certain amount
of time for each parameter setting. Then the phase flag
is rotated to the next position and neutrons are counted
again for all parameter settings etc. We recorded data
with two different modes: the “profile mode” and the
“pressure mode”.

Pressure mode. In the pressure mode, the beam
II passes in the middle of the cell (position ’d’). We
recorded four interferograms in parallel with four dif-
ferent helium pressures (2.4 × 10−4, 7.1 × 10−4, 2.7 ×
10−3, 1.1×10−2 mbar). A subset of these interferograms
is shown in Fig. 16.

Profile mode. In the profile mode, a fixed value of
the helium pressure is established in the cell. Interfero-
gram with different positions of the cell are recorded in
parallel, to look for the bubble profile. More specifically,
we recorded interferograms at positions ’a’, ’d’ and ’g’,
that we will refer later as center position (y = 0, z =
−4 mm) and side position (y = ±15 mm, z = −4 mm).
This mode allows to probe a wider domain of pressure be-
cause the pressure needs not be changed rapidly. How-
ever, there is a possible systematic effect in this mode
associated with the variation of the wall thickness of the
cell. The data in the profile mode require a position de-
pendent phase correction based on a precise mapping of
the wall thickness.
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C. Expected signal

To analyse the data, we need to calculate the field ϕ
inside the cell for different helium pressure. The field
satisfies the chameleon equation ∆ϕ = V ′eff(ϕ). Since no
exact analytical solution exists for this problem, a nu-
merical scheme was employed. To simplify the problem,
we considered the chameleon equation in two dimensions
y, z transverse to the beam. Indeed, the longitudinal size
of the cell (l = 94 mm) is longer than the transverse size
(a = 40 mm), we can assume that the field is approxi-
mately uniform in the x direction. We solve for the field
in units of MΛ, i.e. we introduce the dimensionless field
F (y, z) = ϕ(y, z)/MΛ.

The numerical method adopted to calculate the solu-
tion is described in Appendix A. Figure 17 shows selected
results of such calculations.

Expected chameleon phase-shift. From the cal-
culations of the transverse profile F , we can extract the
expected phase signal

ξ = − m

k~2
β
m

mpl

∫
MΛF dx (79)

= − m

k~2
β
m

mpl
MΛF leff . (80)

We have introduced the effective length leff to take into
account the edge effects in the direction longitudinal to
the beam. To estimate the effective length of the bubble
in the longitudinal direction, we performed a 3D lattice
calculation of the bubble. The 3D calculation is much
more demanding in terms of CPU time as compared to
the 2D calculation, in particular it does not permit to
use a fine grid neither to repeat the calculation for mul-
tiple change of parameters. Calculating with a grid size
of 0.5 mm the empty bubble for n = 1 we found an ef-
fective length of leff = 84 mm (compare to the physical
length of l = 94 mm). At the end, we found the following
numerical relation between the expected phase shift (in
degree) of the bubble ξexp and the 2D profile F :

ξ = −4.7× 10−9 deg × β × F. (81)

The 2D profile F is a function of the transverse posi-
tion y, z of the beam with respect to the cell, the helium
pressure p in the cell and the coupling β.

Nuclear phase-shift. There is in principle an ex-
pected phase shift proportional to the pressure due to the
Fermi potential of the helium. Combining (2) and (77)
we find that this phase amounts to

ξnucl = −λ l b nHe = −0.1 deg × P

1 mbar
, (82)

where λ = 0.27 nm is the neutron wavelength, l = 94 mm
is the longitudinal length of the chamber, b = 3.26 fm
is the bound neutron scattering length of 4He and nHe
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FIG. 17 Calculations of the chameleon bubble profile trans-
verse to the neutron beam for different helium pressure in the
cell. We plot F (y, z) = ϕ(y, z)/MΛ, for n = 1 and β = 5×107.
Top: pressure = 10−2 mbar, middle: pressure = 10−3 mbar,
bottom: in vacuum.
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ence between low pressure and 0.011 mbar (pressure mode).
In both cases the orange line represents the theoretical expec-
tation for n = 1 and β = 5× 107.

is the number density of atoms. For pressures below
10−2 mbar, as in the actual experiment, this phase shift
is too small to be detected. We will ignore this effect.

D. The results

The final results of the S18 experiment are shown in
Fig. 18. In the profile mode, there is no significant phase
difference between the center and side position of the
beam, even when the cell is evacuated to 10−4 mbar of
helium. The data does not show the bubble profile as-
sociated with a chameleon field. In the pressure mode,
where the beam always probes the center of the cell, there
is no significant phase difference when the helium pres-
sure changes. The data is in agreement with the “no
chameleon” hypothesis.

To derive a limit on the coupling β, we calculate the
χ2:

χ2(β) =
∑
i

(ξ(β)i − ζi)2

σ2
i

(83)

where the sum goes over all 8 data points ζi±σi shown in
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FIG. 19 Calculated χ2(β) (according to Eq. (??)) for n =
1, 2, 3, 4. The horizontal orange dashed line corresponds to
the limit at a confidence level of 95 %.

TABLE IV Limits on the chameleon coupling β (at 95 %
C. L.) derived from the S18 experiment at ILL.

n βlim

1 1.6× 107

2 4.6× 107

3 1.2× 108

4 3.4× 108

Fig. 18 thus combining the profile and pressure modes.
Figure ?? shows χ2(β) calculated for n = 1, 2, 3, 4. The
minimum of χ2(β) is always obtained for β = 0. To
derive the exclusion limits (at a confidence level of 95 %)
we use the standard criterion

χ2(βlim) = χ2
min + 1.962, (84)

the limits are reported in Table IV and also in Fig. 32.
For n = 1, the limit is already a factor of 30 better than
the current limit obtained with Gravity Resonance Spec-
troscopy (Jenke et al., 2014).

::::

A new experiment with the interferometer is scheduled
for summer 2015. By improving the contrast of the in-
terferometer and increasing the statistics, we can gain at
least a factor of 10 in sensitivity.
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IV. BOUNCING NEUTRONS WITH GRANIT

A. Quantum states of bouncing neutrons

If the kinetic energy of an incident neutron is less than
the Fermi potential of a material wall (or floor, or ceil-
ing) then the neutron will be reflected off the surface
for any angle of incidence. This is the definition of an
ultracold neutron. For example, glass has a Fermi po-
tential of 90 neV. It reflects neutrons up to an energy of
E = 90 neV, or a velocity of 4 m/s. The reflection is
almost perfectly specular, i.e. mirror-like. The probabil-
ity of non-specular (diffuse) reflection off a well-polished
glass mirror can be less than 10−3 (Nesvizhevsky et al.,
2007).

The Fermi potential of glass corresponds to a height in
the gravity field of h = 88 cm through the relation E =
mgh, where m is the neutron mass and g = 9.806 m/s2

is the acceleration in the lab. It means that a neutron
dropped from a height of less than a meter will bounce
above a glass floor. The bouncing period T =

√
8h/g is

of the order of a second, like any object bouncing with a
height of about a meter.

Now, if we consider a shorter bouncing height, or a
higher bouncing frequency, the simple classical descrip-
tion of the bouncing ball might fail. We will see that
when the bouncing frequency enters the audio range
(above about 100 Hz), corresponding to a bouncing
height of about 10 µm, a quantum description is needed.

The quantum bouncer. The vertical motion of
a neutron bouncing above a mirror nicely realizes the
academic problem of a particle confined in a potential
well. The well consists in the gravitational potential
V (z) = mgz pulling the particle down and a perfect mir-
ror V (0) = +∞ 4 pushing the particle up. According
to the quantum description, the vertical motion has a
discrete energy spectrum. The bound states energies Ek
and the corresponding wavefunctions ψk(z) satisfy the
stationary Schrödinger equation

− ~2

2m
d2

dz2
ψk +mgzψk = Ekψk, ψk(0) = 0. (85)

The problem of finding the bound states energies and
wavefunctions is solvable and we are going to solve it. By
dimensional analysis we define the characteristic height
of the quantum bouncer:

z0 =
(

~2

2m2g

)1/3

= 5.87 µm. (86)

4 The mirror potential is the Fermi potential of glass (≈ 100 neV),
it can be considered infinite because it is much larger than the
energies of the quantum levels (≈ 1 peV).
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FIG. 20 Representation of the probability density functions
|ψk(z)|2, k = 1, 2, 3, 4 for the first four energy states of the
neutron bouncer. The four functions are translated in the
vertical axis according to the energy of the state. The grey
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Defining the dimensionless height Z = z/z0, the station-
ary Schrödinger equation takes the form of the Airy equa-
tion

d2ψk
dZ2

+ (εk − Z)ψk = 0, (87)

where εk = Ek/mgz0. The general solution of this sec-
ond order linear differential equation is a linear combi-
nation of the two Airy functions Ai and Bi: ψ(Z) =
C Ai(Z − ε) + D Bi(Z − ε). The function Bi diverges
at Z = +∞ therefore the physically acceptable solutions
are those with D = 0. Next, the condition ψk(0) = 0
at the boundary enforces the quantification of the energy
levels Ai(−εk) = 0. Therefore the energy levels of the
stationary states are given by

Ek = mgz0 εk (88)

where

εk = {2.338, 4.088, 5.521, 6.787, · · · } (89)

is the sequence of the negative zeros of the Airy function.
Numerically the energy levels are in the range of 1 peV =
10−12 eV (E1 = 1.41 peV, E2 = 2.46 peV · · · ), five
orders of magnitude below the kinetic energy of ultracold
neutrons.

To each quantum state |k〉 corresponds the wavefunc-
tion

ψk(z) = Ck Ai(z/z0 − εk), (90)
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where Ck is a normalization coefficient. The probabil-
ity density functions | 〈z| k〉 |2 = |ψk(z)|2 associated with
the wavefunctions are plotted in Fig. 20. As in any 1D
potential well, the number of nodes (the places where the
wavefunction vanishes) of the kth quantum state is k.

Let us compare the neutron quantum bouncer to the
hydrogen atom, a more familiar case of a bound system.
The typical energy of the neutron bouncer is 13 orders
of magnitude smaller than 13.6 eV, the binding energy
of the electron in the ground state. The typical size of
the wavefunction is 5 orders of magnitude larger than
0.05 nm, the size of the hydrogen atom. These very un-
usual scales arise due to the extraordinary weakness of
gravity as compared to the Coulomb force. Another im-
portant difference concerns the stability of the excited
levels. An excited state of the hydrogen atom decays
by spontaneous emission of a photon with a time scale
of the order of 1 ns. The neutron bouncer could also
in principle decay by spontaneous emission of gravitons.
However, Pignol et al. (2007) estimated the timescale of
this effect to 1077 s, i.e. 60 orders of magnitude longer
than the age of the Universe. Again, this is due to the
extreme weakness of gravity.

Observing the quantum states. It is usually
believed that the weakness of gravity is not the experi-
mentalist’s friend. In the case of the neutron bouncer,
however, it is a great asset. It makes the wavefunctions
very large, almost visible to the naked eye. This property
has been used in a series of experiments started in 1999
at the PF2 ultracold neutron source of the ILL reactor
(Nesvizhevsky et al., 2003, 2005, 2002).

The setup which served to observe for the first time
the quantum states of the neutron bouncer is sketched
in Fig. 21. It is a flow-through experiment: ultracold
neutrons with horizontal velocity are coming from the
left, they bounce on top of a horizontal, well-polished
glass mirror. They are then counted in a gaseous detec-
tor filled with 3He. A flat neutron absorber is installed
on top of the horizontal mirror, parallel to it. It forms
a slit, with a height h that can be precisely regulated
with a micrometer accuracy. The experiment consists in
recording the neutron flux passing through as a function
of the height of the slit. The result obtained in this ex-
periment is shown in Fig. 21. When the slit height is
h < 15 µm, no neutron passes through the slit, contrary
to the classical expectation. In the quantum picture, the
neutron wavefunction is a linear combination of the sta-
tionary quantum states. A given state “decays” in the
slit if its wavefunction overlaps significantly with the ab-
sorber. When the absorber is lower than 15 µm, every
state, including the ground state |1〉, overlaps with the
absorber and the slit becomes completely opaque to neu-
trons. This is precisely what was observed.

A quantitative analysis of the transmission curve al-
lows to extract the spatial parameters of the quantum

Neutron absorber

Glass mirror 10 cm

FIG. 21 Top: scheme of the method used to discover the
quantum states of the neutron bouncer. Bottom: Figure
taken from Nesvizhevsky et al. (2002), reporting the flux in
the detector as a function of the height of the slit. The solid
curve is the classical fit to these data.

states. The difficulty of the analysis lies in the choice
of a model for the absorber. Nesvizhevsky et al. (2005)
parametrized the transmission curve by introducing the
critical height of the first quantum state h1 = ε1z0. It
corresponds to the turning point of a classical bouncer
with vertical energy E1. They report hexp

1 = (12.2 ±
1.8syst±0.7stat)µm, the systematic uncertainty takes into
account the error in the slit size calibration and the finite
accuracy of the absorber model. In terms of the param-
eter z0, the extracted value zexp

0 = (5.2 ± 0.8)µm agrees
with the theoretical value zth

0 = 5.87 µm.
There is a more direct way to access the spatial struc-

ture of the quantum states, by taking a photograph. In-
stead of just counting the neutrons at the exit of the
mirror, a position sensitive detector with a micrometric
resolution could be used. As proposed by Nesvizhevsky
et al. (2000), one should aim at observing the node of the
second quantum state (at a height of 10 µm) which pro-
vides a clear signature, instead of looking at the ground
state which does not display a specific pattern. Selecting
the first few levels could be done with a slit: a horizon-
tal mirror and an absorber on top. At the exit of the
slit, we place a second horizontal mirror (no absorber on
top). The second mirror is placed 13.5 µm below the
first mirror, in order to increase the vertical energy of
the neutron bouncing on the second mirror. This way,
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FIG. 22 Histogram of the neutron vertical position measured
with the nuclear track position sensitive detector. A dip cor-
responding to the first node of the excited wavefuctions is
clearly visible. The figure is taken from Pignol (2009).

the ground state population will be suppressed and the
population of the second quantum state enhanced.

A first version of this experiment has been performed
at the PF2 ultracold neutron source in 2005. A plastic
nuclear track detector coated with a thin 235U conver-
sion layer was used. Absorption of an ultracold neutron
in the uranium induces a fission. One of the two fission
products is emitted in the plastic and the ionization pro-
duces a latent track. After removing the conversion layer
and etching the plastic with NaOH, the tracks become
visible with an optical microscope. The result of this
measurement is shown in Fig. 22. A fit of the data al-
lows to extract the populations of the quantum states,
the spatial resolution of the detector, the background
level, the height offset and the z0 parameter (Pignol,
2009). The result is z0 = (6.0 ± 0.2) µm, it is more
accurate than the transmission-through-the-slit method.
This first measurement was not ideal because the pop-
ulations of quantum states up to |10〉 was quite high.
Improvements are definitely possible, by refining the pu-
rity of the selection of the state |2〉. We aim at taking
better pictures with the GRANIT instrument.

Gravity Resonance Spectroscopy. Imagine we
prepare an initial quantum state |k〉. It is possible to
induce a transition k → l to the state |l〉 with a periodic
excitation of frequency fkl = (Ek −El)/2π~. We define5

f0 =
mgz0

2π~
≈ 145 Hz, (91)

the transition frequencies write

fkl = f0(εk − εl). (92)

5 Notice that a classical ball dropped from the height z0 bounces
with a frequency of π × f0.

For the first few quantum states, the transition frequen-
cies lie in the audio-range, for example we expect a res-
onance associated to the 1 → 2 transition at the fre-
quency f21 = 254 Hz. Conveniently, the audio frequency
range is easily accessible by electrical as well as mechan-
ical oscillators. This allows direct experimental access to
the energy spectrum of the neutron quantum bouncer, a
technique called Gravity Resonance Spectroscopy (GRS).

Let us recall the quantum mechanics of a Rabi reso-
nance, at the basis of the GRS. Assume we apply the
external harmonic perturbation V (t) = V̂ cos(ωt), with
the excitation frequency ω/2π close to a transition fre-
quency fkl. It means that the detuning δω = ω − 2πfkl
should be small compared to the angular frequencies of
the transitions in the spectrum. Assume also that the
bouncer is prepared initially in the sate |ψ(0)〉 = |k〉.
In this case, the two level approximation holds and the
system can be described by |ψ(t)〉 = a(t) |k〉 + b(t) |l〉.
Solving the time-dependent Schrödinger equation

i~
d

dt
|ψ(t)〉 =

(
p̂2

2m
+mgẑ

)
|ψ(t)〉+ V̂ eiωt |ψ(t)〉 (93)

we deduce the quantum amplitudes a(t) and b(t). Finally
the transition probability Pk→l(t) = |b(t)|2 is given by the
Rabi formula:

Pk→l(t) =
sin2(

√
δω2 + Ω2 t/2)

1 + δω2/Ω2
, (94)

where

Ω =
1
~
〈l| V̂ |k〉 (95)

is the Rabi angular frequency that characterizes the
strength of the excitation. The duration t available for
the excitation is an important parameter. A longer du-
ration is desirable because it corresponds to a narrower
resonance line. In flow through mode, neutrons pass a
transition region of typically 16 cm at a speed of 4 m/s,
corresponding to a duration of t0 = 40 ms (these pa-
rameters are those of the system built for the first stage
of GRANIT). With the duration of the excitation fixed,
one should set the excitation strength such that Ωt0 = π.
Therefore, the transition probability is maximum at res-
onance: Pk→l(t0) = 1 when δω = 0. The measurement
consists in recording the presence of the state |l〉 (or the
disappearance of the state |k〉) for different values of the
excitation frequency ω/2π. It forms a resonance curve
with a peak at ω/2π = fkl. The width (FWHM) of the
peak is ∆f = Ω/π = 1/t0.

There are two practical possibilities to do the exci-
tation (i) using a vibrating mirror (ii) using a magnetic
force. GRS with vibrating mirror has been realized at the
PF2 UCN beamline by Jenke et al. (2014, 2011). The
technique with a magnetic excitation is in preparation
with the GRANIT instrument. We will come back to
this subject in detail later.
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FIG. 23 Inertial mass versus gravitational mass of the neu-
tron. The diagonal line corresponds to the weak equivalence
principle mi = mg. The pink band represents the 1σ region
deduced from the analysis of the photograph of the quantum
states. The blue dashed line is an iso-E0 line.

Testing the equivalence principle. We learn at
school that it is impossible to tell the mass of a body by
observing how it falls down. Newton’s law of motion for
a falling body is mia = mgg, where a is the acceleration
of the body, g is the gravity strength, mi is the inertial
mass, mg is the gravitational mass. If we assume that
both masses are equal then we find that the acceleration
of all bodies is the same, equal to g. The hypothesis
(mi = mg) is called the weak equivalence principle,
the observable consequence is called the universality
of free fall.

Surprisingly, the weak equivalence principle does not
imply the universality of free fall in the case of the quan-
tum bouncer. This is because the mass in the Schrödinger
equation (85) does not simplify, contrary to Newton’s
law of motion. By measuring the properties of the quan-
tum bouncer we can tell the mass. Indeed, from Eq.
(86) we derive m = ~/

√
2gz3

0 . Using the result of
the photograph Fig. 22 we measure the neutron mass:
mc2 = 910± 50 MeV.

It is therefore of interest to investigate the question
of the equivalence principle with the quantum bouncer
in more details. Distinguishing the inertial and gravita-
tional masses, the Schrödinger equation becomes

− ~2

2mi

d2

dz2
ψk +mggzψk = Ekψk, ψk(0) = 0. (96)

In this framework, the size of the wavefunctions is gov-
erned by the parameter

z0 =
(

~2

2mimgg

)1/3

. (97)

It means that the measurements of the spatial properties
of the quantum states are sensitive to the product mimg.
Figure 23 interprets the result of the first photograph in
the mi,mg plane. Next, the energies of the quantum
levels are Ek = E0εk with

E0 = mggz0 =

(
m2
g

mi

g2~2

2

)1/3

. (98)

It is remarkable that the measurement of the energy lev-
els is sensitive to another combination of the masses,
namely m2

g/mi.
Then, not only can we tell the mass of the neutron

by observing the quantum bouncer, but we can measure
separately the inertial mass mi and gravitational mass
mg. For this, we need to measure the spatial feature of
the quantum states to extract z0 on the one hand and
to perform the spectroscopy of the quantum states with
GRS to extract E0 on the other hand.

B. Effects of the chameleon field

Since the energy difference between the first quantum
states is as low as about 1 peV, the neutron quantum
bouncer is a sensitive system to search for hypothetical
new forces acting on the neutron at the vicinity of the
mirror. Such a new force could be induced by the pres-
ence of the chameleon field. Since this force is attractive,
it would shrink the wavefunctions of the quantum states
and enlarge the energy spectrum.

We have argued in Brax and Pignol (2011) that ex-
tremely large coupling β > 1011 would lead to new
bound states at a distance of less than 2 µm which is
ruled out by the first transmission-through-the-slit ex-
periment. The limit β < 1011 is practically independent
of the Ratra-Peebles index n. Next, Jenke et al. (2014)
analyzed their experiment with the vibrating mirror to
derive limits on the chameleon coupling. They quote the
limit β > 6× 108, also practically independent of n.

Let us now analyse quantitatively how the properties
of the quantum bouncer are modified in the presence of
the chameleon field. As we have seen in part II, if the
chameleon is strongly coupled with matter (β � 1), a
scalar field ϕ(z) will be generated above the mirror. We
have seen that the field ϕ(z) is saturated: it is indepen-
dent of β as long as β � 1, it is also independent of the
mass density of the mirror. When no absorber is placed
above the mirror the scalar field is given by Eq. (71).
Then, the neutron feels the potential

V (z) = mgz + β
m

mPl
ϕ(z). (99)

The chameleon term in the potential has the form

δV (z) = β
m

mPl
ϕ(z) = βvn(z/λ)αn (100)
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FIG. 24 Wavefunction of the second quantum state ψ2(z).
The black curve corresponds to the unperturbed case (no
chameleon). The red curve is the wavefunction in the pres-
ence of the chameleon with n = 2 and β = 109, calculated at
the first order of perturbation theory.

with

vn =
m

mPl
MΛ

(
2 + n√

2

)αn

≈
(

2 + n√
2

)αn

× 10−21 eV,

(101)
where λ = ~c/MΛ = 82 µm and αn = 2/(2 + n).

The task is now to calculate the shift of the energy
states and the shrinking of the wavefunctions induced by
the perturbation δV . We skip the details of the calcula-
tions (see appendix B) and we discuss the results.

Shrinking of the wavefunctions. At first order in
perturbation theory, the correction of the wavefunctions
is

ψk(z) = ψ
(0)
k (z) + βvn(z0/λ)αn

∑
l 6=k

Okl(αn)
Ek − El

ψ
(0)
l (z).

(102)
In Fig. 24, we plot the modification of the second state
for the coupling β = 109 using the results in the appendix
B (the sum goes up to l = 5). The effect of the chameleon
is a shrinking of the wavefunction, as expected for an
attractive force. The node of the wavefunction h0

2 (which
we will try to measure in GRANIT) is displaced to lower
z.

More quantitatively, a numerical study in the case n =
2 shows that the displacement of the node is a linear
function of β for β < 109:

h0
2 = (10.3− β × 7.7× 10−10) µm (103)

A precision of 0.1 µm, which is what we could reason-
ably get in forthcoming measurements with GRANIT,
will correspond to β ≈ 108. This method is less sensitive
than the gravity resonance spectroscopy, as we will see.

Shifts of the transition frequencies. At first
order in perturbation theory, the correction of the energy
levels is

δEk = βvn(z0/λ)αnOkk(αn), (104)

and the correction of the transition frequencies is

δfkl =
δEk − δEl

2π~
= β

vn
2π~

(z0/λ)αn(Okk(αn)−Oll(αn)). (105)

For example, consider the shift of the resonance line 2→
1 (expected at f21 = 254 Hz) due to the chameleon with
the Ratra-Peebles index n = 2. We find numerically

δf21 = β × 3.7× 10−8 Hz. (106)

As we will see later, we aim at a precision better
than 1 Hz for the measurement of the 2 → 1 transi-
tion frequency with the flow-through resonance setup in
GRANIT. This measurement will therefore be sensitive
to a chameleon coupling of β ≈ 2× 107.

It is possible in principle to improve the precision on
the transition frequency by increasing the interaction
time t. We recall that the width of the resonance is given
by ∆f = 1/t, and the precision is approximately given
by δf = ∆f/

√
N , where N is the number of counts in

the resonance. Instead of a flow-through setup, one needs
to trap the neutrons in quantum states. Ultimately, the
precision is limited by the beta decay lifetime of the neu-
tron τn ≈ 880 s. Therefore the ultimate precision is
δf ≈ 1/(τn

√
N) ≈ 10−5 Hz (taking N = 10000). In con-

clusion, the measurement of the spectrum of the quan-
tum states could potentially be sensitive to chameleon
couplings down to β = 102 (a long way to go, though...).

C. The GRANIT instrument

GRANIT is an instrument dedicated to the study of
the neutron quantum bouncer, now in the commissioning
phase. For a description of the instrument see Baeßler
et al. (2011a,b); Roulier (2015); Roulier et al. (2015);
Schmidt-Wellenburg et al. (2009). GRANIT is located
at the level C of the ILL reactor in Grenoble. As shown
in Fig. 25, the instrument comprises a superthermal 4He
source (fed by the monochromatic cold neutron beam
H172A), producing ultracold neutrons to be used in the
spectrometer located in a ISO 5 class clean room.

No attempt to describe the instrument in technical de-
tails will be made here, except for a few selected items.
We will first describe the ultracold neutron source. Next,
the setup for the magnetic excitation of resonant transi-
tions will be explained.

The ultracold neutron source. Previous experi-
ments observing the neutron quantum bouncer were all
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FIG. 25 Top: schematics of the GRANIT instrument at the
ILL H172A beam line. Bottom: picture of the spectrometer
inside the clean room.

performed at the PF2 instrument, the “first generation”
ultracold neutron source situated at the level D of the
ILL reactor. “Next generation” sources can potentially
deliver many more ultracold neutrons, and GRANIT op-
erates now a source based on the SUN1 prototype de-
scribed in Piegsa et al. (2014); Zimmer et al. (2011).

The concept of the source has been proposed by Golub
and Pendlebury (1977): a volume filled with superfluid
4He is irradiated with a beam of cold neutrons. Neu-
trons can undergo inelastic scattering in the medium,
losing energy while emitting a phonon. Given the dis-
persion relation of the phonons in superfluid helium, it
turns out that a neutron having a wavelength of exactly
λ∗ = 0.89 nm transfers its entire energy to the phonon
and comes at rest in the superfluid. Neutrons with a
wavelength not too far from λ∗ come almost at rest. The
process produces ultracold neutrons, with a volumic pro-
duction rate (number of UCN produced per unit volume
and unit time) of

P =
dφ

dλ

∣∣∣∣
λ∗
× (3.0± 0.2)× 10−9 nm cm−1, (107)

where dφ/dλ is the differential flux in the cold neutron
beam. This theoretical estimate is valid for neutrons cre-
ated in the velocity range 0 < v < 5.6 m/s (Piegsa et al.,
2014), corresponding to the storage capability of a trap
made with stainless steel walls 6.

When the reactor power is 58 MW, H172A delivers
3×109 neutrons per second with a wavelength of 0.89 nm
(the differential flux has a Gaussian shape with a RMS
σ = 0.021(1) nm), in a square section of 7 × 7 cm2

(Roulier, 2015). In the continuity of the guide, the source
itself consists in a tube with square section (inner di-
mensions 7 × 7 × 100 cm3) with BeO walls filled with
superfluid helium. The differential flux inside this pro-
duction volume is reduced by absorption of cold neu-
trons in windows (×0.895) and by the divergence of the
beam (×0.72), resulting in an effective flux of dφ/dλ|eff =
(7.7 ± 0.3) × 108 cm−2s−1nm−1. The UCN production
inside our source is then expected to occur at a rate of
P ≈ 2.3 UCN/cm3/s. In total the 4900 cm3 should pro-
duce about 10, 000 ultracold neutrons per second.

Those ultracold neutrons produced in the superfluid
helium are stored by the BeO walls of the production
volume. To extract the neutrons, the volume is connected
to a chimney (a stainless steel tube) going up to a UCN
valve. When the valve is closed UCNs accumulate in the
volume. Above the valve there is a UCN guide going up,
then a 90 degree bent, followed by an horizontal stainless
steel guide connected to the spectrometer inside the clean
room.

For efficient accumulation of UCNs inside the source,
the storage time τ should be as long as possible in order
to maximize the UCN density ρ = Pτ at saturation. The
loss rate 1/τ inside the source has several contributions:

1/τ = 1/τn + 1/τwall + 1/τ3He + 1/τup (108)

where τn ≈ 880 s is the beta decay lifetime, τwall corre-
sponds to the losses at wall collision, τ3He is due to the
absorption by residual traces of 3He in the bath of nor-
mally pure 4He, and τup corresponds to upscattering by
thermal excitations in superfluid helium. Inconveniently,
this last contribution forces us to operate the source at
temperatures below 1 K. According to the theoretical es-
timation by Golub (1979), the temperature dependent
upscattering rate is

1/τup = Ae−E
∗/T +B T 7 + CT 3/2e−∆/T (109)

where the first term corresponds to one-phonon absorp-
tion with A = 500 s−1, the second term corresponds to

6 Our trap is made of BeO walls with a Fermi potential of 257 neV,
but a small portion is made of stainless steel with a Fermi po-
tential of 184 neV only. Since superfluid helium has a Fermi
potential of 18 neV, the threshold energy for trapped neutrons is
E < 184−18 neV, corresponding to a critical velocity of 5.6 m/s.
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FIG. 26 Top: Theoretical estimation of the lifetime due to
upscattering τup in superfluid helium, as a function of the
temperature. Bottom: Flux of UCN at the measured at the
exit of the horizontal extraction guide (a tube with inner di-
ameter 3 cm) as a function of the temperature of the helium
(with the UCN valve completely open).

two-phonon process with B = 0.008 s−1, the last term
corresponds to roton-phonon process with C = 18 s−1.
Helium temperature T is expressed in Kelvin, E∗ = 12 K
is the phonon energy corresponding to λ∗ and ∆ = 8.6 K.
The time τup is plotted as a function of the tempera-
ture in Fig. 26 (top). We see the dramatic effect of the
temperature in Fig. 26 (bottom): we measured the flux
of UCNs at the exit of the source as a function of the
temperature. The flux is significantly reduced when the
temperature is above 1 K. Even at low temperature we
only count 400 UCNs per second. Some losses are due to
absorption of neutrons in the vacuum separation window
(a 15 µm thick titanium foil situated in the horizontal
guide) and the entrance window of the detector (another
15 µm thick titanium foil). Also, the storage time at low
temperature is only about 30 s, which is not very long
compared to the emptying time of 13 s (Roulier et al.,
2015). There are also certainly some more losses which
are being investigated.

Let us describe a little bit what’s inside the spectrom-

BeO volume 
filled with superfluid helium

Cold UCN valve
Stainless steel

guide

Titanium
window

Warm 
UCN valve

Copper 
antichamber

Semi-diffusive
slit

FIG. 27 Scheme of the connection of the source to the spec-
trometer. Not shown: container of the superfluid, thermal
screens, vacuum chamber of the source, lead biological shield,
wall of the clean room, vacuum chamber of the spectrometer,
support of the copper antichamber and semi-diffusive slit.

eter. As shown in Fig. 27, the horizontal guide is con-
nected to a cylindrical storage volume labeled “copper
antichamber” (in the test mentioned before, a detector
was placed instead of the antichamber). The 30 cm long
cylinder has a diameter of 4 cm, it is made of pure cop-
per (Fermi potential 168 neV). A small aperture in the
antichamber leads to a semi-diffusive slit made of a bot-
tom reflective mirror and a top diffusing mirror. Both
mirrors are coated with diamond like carbon. The idea
is that neutrons with too large vertical velocity in the slit
are diffused back in the antichamber. On the contrary,
neutrons with small vertical velocity, those bouncing on
the bottom mirror without touching the roof, are trans-
mitted. In a first test of this system conducted in De-
cember 2014, the opening of the semi-diffusive slit was
set to 127 µm, preparing the first 20 quantum states.
A 3He counter with an aluminium entrance window was
placed immediately at the exit of the slit. Unfortunately
due to a cryogenic failure it was only possible to get to
T = 1.3 K for the temperature of the source. In this con-
figuration, we counted 0.13 neutrons per second out of
the semi-diffusive slit. This is not yet as good as the ex-
periments performed at PF2 (see Fig. 21). By fixing the
cryogeny and using a detector with improved efficiency
for soft UCNs (i.e. with a titanium entrance window for
example) things will get better. Progress is under way to
deliver a decent flux of ultracold neutrons at the exit of
the slit.

The magnetic excitation. Now I describe how
we plan to measure the resonant transitions using the
magnetic excitation as proposed in Baeßler et al. (2015);
Kreuz et al. (2009); Pignol (2009); Pignol et al. (2014).
An oscillating magnetic field gradient will generate the
vertical force on the neutron to excite the system. In-
deed, the motion of a neutron in a magnetic field B is
governed by the potential sµ|B| 7, where µ = 60 neV/T

7 This is valid when the variation of the magnetic field is slow com-
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FIG. 28 Sketch of the flow through setup. UCNs enter from
the semi-diffusive slit on the left ; they fall down the step to
depopulate the ground state (1), 16 cm long transition region
(2), 9 cm long filter (3), and detector (4).

is the magnetic moment and s = 1 for “spin up” neutrons
and s = −1 for “spin down” neutrons. Classically, a ver-
tical force is applied on the neutron by the field gradient
∂z|B| (an homogeneous field does not exert any force,
it acts only on the spin dynamics). Let us now assume
a magnetic excitation of the form |B| = βz cosωt, the
corresponding quantum mechanical potential reads

V̂ (t) = sµβẑ cosωt. (110)

This is what we need to excite resonant transitions be-
tween the quantum states of the neutron bouncer.

The sketch of the setup is shown in Fig. 28. The spec-
troscopy method is conceptually the same as the famous
1939 Rabi resonance experiment. It is performed with
four steps (1) state preparation, (2) resonant transition,
(3) state analysis, and (4) detection of the transmitted
flux.

1. UCNs are first prepared in an excited state by going
down a step (1) of height 15 µm. The population
of the first state |1〉 is suppressed as compared to
the populations of the excited states |2〉 , |3〉 , · · · .

2. Next, transitions between quantum states are ex-
cited with a periodic magnetic field gradient. The
length of the transition region L = 16 cm corre-
sponds to an average passage time t0 = 40 ms
8. Two different schemes could be implemented in
principle: the AC excitation ad the DC excitation.
In the DC mode, the field gradient is static and spa-
tially oscillating in the x direction with a period of
d = 1 cm. In this case, only neutrons with specific
horizontal velocities meet the resonance condition.
The deexcitation 2 → 1 is expected to occur at a
frequency of f21 = 254 Hz corresponding to the res-
onant horizontal velocity of v21 = df21 = 2.54 m/s
(in the 3 → 1 case we expect v31 = 4.62 m/s). In
the AC mode, the field gradient is spatially uni-
form and oscillating in time. One would then find

pared to the Larmor frequency. In this case, called the adiabatic
regime, the spin follows the direction of the magnetic field and
the neutron trajectory and the spin dynamics are decoupled.

8 We expect the vx velocity along the beam to be distributed with
a mean value of 4 m/s and a standard deviation of 1.5 m/s.

FIG. 29 Picture of the wire array for the magnetic excitation.
It is made of four modules, each one holding 32 adjacent wires
with a section of 1 mm2 each and a length of 30 cm in the y
direction. Adjacent wires are separated by a gap of 0.25 mm.

the resonances by directly scanning the excitation
frequency.

3. A second horizontal mirror above the main mirror
serves as a state filter. For a slit opening of about
25 µm, only neutrons in the ground state are ac-
cepted and higher quantum states are absorbed.

4. Neutrons are finally detected at the exit of the fil-
ter. In the AC mode one should see a resonance
in the transmitted flux as a function of the exci-
tation frequency. In the DC mode, one needs to
measure the horizontal velocity of transmitted neu-
trons. This is achieved by measuring the height of
the neutrons after a 30 cm long free fall.

We need to apply an oscillating gradient with an am-
plitude of β = 0.22 T/m to induce the 2 → 1 transition
and β = 0.74 T/m for 3 → 1 (Pignol et al., 2014). This
is done with an array of 128 copper wires with square
section arranged as shown in Fig. 28. The array will
be placed above the horizontal mirror in region (2) at
a distance of 0.8 mm from the mirror. The real system
shown in Fig. 29. Electrical connectors are arranged
so that the following 8-periodic pattern current could be
applied: I1, I2, I3, I4,−I1,−I2,−I3,−I4, I1, . . . and thus
the magnetic field produced by the array will be 1 cm
periodic in the x direction. It is possible to tune the
currents in the 4 circuits I1, I2, I3, I4 to create a homo-
geneous gradient at the surface of the mirror, as shown
in Fig. 30. The configuration of the gradient depends on
the external magnetic field: by applying a strong exter-
nal field (of the order of 2 mT) on top of the field created
by the wire array, one generates an oscillating gradient
in the x direction. The wire array is therefore a versatile
device to generate the field gradient that can be used for
the AC as well as for the DC excitation modes.

We will apply currents up to 5 A in the circuits, corre-
sponding to Joule heating of up to 25 W (the resistance
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FIG. 30 Calculation of the magnetic field gradient ∂z|B|
produced at the surface of the main mirror with currents set
to I1 = I4 = 1.4 A, I2 = I3 = 3.5 A and without any external
field applied.

of each circuit is 0.3 Ω). Since the wire array will be op-
erated in vacuum, an active cooling system is necessary
to dissipate the heat. We built a heat exchanger with cir-
culating cold gaseous nitrogen and tested it successfully
in vacuum.

In the AC mode, we apply AC currents in the wires.
Note that the gradient β is not a linear function of
the currents. In particular, the gradient always satis-
fies β > 0, because the field |B| is always weaker away
from the wire. As a result, the excitation frequency (i.e.
the frequency of β(t) seen by the neutrons) is twice the
driving frequency (i.e. the frequency of the AC current
in the wires). The complete system of excitation has
been simulated in Pignol et al. (2014) by solving the
time-dependent Schrödinger equation with realistic func-
tion β(t) taking into account the non-linearities. The
expected resonance curve is shown in fig. 31. We see
a double resonance, one corresponding to spin up neu-
trons, the other to spin down. This is a shift called
Stern-Gerlach shift (Baeßler et al., 2015) caused by the
unavoidable constant (time-independent) component of
β(t). Fortunately this shift cancels when averaging the
two resonant frequencies.

With a statistics of 10,000 neutrons counted during a
scan of the driving frequency between 50 Hz and 200 Hz,
it will be possible to extract the resonance frequency f21

with a precision better than 1 Hz.

::::

In the long term, increasing the precision of the tran-
sition frequencies can in principle be achieved by storing
the neutrons in the quantum states for long times com-
pared with the flow-through arrangement. One would
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FIG. 31 Calculation of the expected resonance curve in the
AC mode of excitation. The probability of the 2 → 1 transi-
tion is plotted as a function of the driving frequency.

use a trap consisting of an horizontal mirror and verti-
cal walls, the excitation (vibration or magnetic) could be
applied during a longer storage period. The control of
the environmental noises such as vibrations is an issue
because it could provoke unwanted transition between
quantum states, but the lifetime of the quantum states
in the trap could reach a few tens of seconds (Codau
et al., 2012; Pignol, 2009). The filling and emptying of
such a trap with limited losses of neutrons remains an
open problem.

Another interesting route for the future is the devel-
opment of position sensitive detectors with micrometric
resolution to “see” the quantum states. We have men-
tioned an attempt to take pictures of the quantum states
using a uranium-coated plastic nuclear track detector. It
achieves a good resolution of 2 µm, but it lacks real-time
readout. More recently, pixel detectors based on CCD
(charge coupling device) coated with 6Li or 10B have
shown to offer both a good spatial resolution and real-
time readout capability (Kawasaki et al., 2010). Pursuing
in this way will certainly lead to clean measurements of
the wavefunctions.

In conclusion, progress are foreseen both in the spec-
troscopy of the quantum bouncer and in the measure-
ment of the spatial features of the quantum states. These
will permit to probe new forces acting on the neutron and
to test the equivalence principle in a quantum context.
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V. CONCLUSION

It is fascinating that experiments at low energy with
neutrons can address three big questions about the Uni-
verse:

1. Does the standard theory of primordial nucleosyn-
thesis predict the correct amount of helium and
deuterium?

2. Was the asymmetry between matter and antimat-
ter generated during the electroweak phase transi-
tion?

3. Is Dark Energy a dynamical field interacting with
matter?

The measurement of the neutron lifetime helps to an-
swer question 1. Experiments will continue until the in-
consistencies of the present data are resolved.

The answer to the second question is either yes or no.
By improving the measurement of the neutron electric
dipole moment we could be able to reach a definitive
answer in the next decade.

The third question is the main focus of this work. We
have looked in details at the strongly coupled Khoury-
Weltman chameleon. The present constraints are com-
piled in Fig. 32. We have identified two methods to probe
the chameleon with neutrons. The first is neutron inter-
ferometry. A pilot experiment performed in 2013 was
described in this work. The second is using the quan-
tum states of bouncing neutrons. Ultimately, it has the
potential to explore a significant part of the parameter
space.

Searching for Dark Energy in the lab is a new and
rapidly developing field of research. Less than ten years
after the chameleon was proposed, a major part of the pa-
rameter space is already excluded by experiments search-
ing for deviations of the inverse square law of gravity at
short distances, neutron experiments, and very recently
atom-interferometry. Besides the chameleon, there are
other theoretical ideas related to Dark Energy to be ex-
plored in the lab. For sure there are other neutron ex-
periments to be invented.

n
1 2 3 4

β

1

10

210

310

410

510

610

710

810

910

1010

EXCLUDED

Q Bounce

neutron-interferometry

atom-interferometry

 = 1 Hz12 fδ

ultimate gravitational levels

 force limits

th5

FIG. 32 Exclusion regions (95 % C.L.) in the chameleon
parameter space (Ratra-Peebles index n and matter coupling
β). The blue zone is excluded by gravitational resonance spec-
troscopy of the quantum bouncer (Jenke et al., 2014). The red
dashed line corresponds to the sensitivity of the flow-though
setup in GRANIT, the red dotted line corresponds to the ulti-
mate sensitivity. The orange zone is excluded by the neutron-
interferometry experiment (Lemmel et al., 2015). The grey
zone is excluded by the Eot-Wash experiment to search for
a short range force (Upadhye, 2012). The hatched region is
excluded by the atom-interferometry experiment (Hamilton
et al., 2015).
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Appendix A: Lattice calculation of the chameleon field

We describe here the calculation of the chameleon field
in the rectangular cell used in the neutron-interferometry
experiment. The dimensionless field F = ϕ/MΛ satisfies
the equation

∂2F

dy2
+
∂2F

dz2
= K2

(
− n

Fn+1
+
βρ~3c5

M3
ΛmPl

)
(A1)

with K = MΛ
~c = (0.082 mm)−1. The second term on

the right hand side of the equation is proportional to the
helium pressure (ρ is the mass density of helium in the
cell). In addition, we assume that the field is saturated
in the walls of the cell, therefore we impose F = 0 at the
boundary of the cell.

Let us now describe the numerical method adopted to
calculate the solutions. We used a finite difference on a
2D grid of step h. The Laplace operator on the grid is
taken to be

(∆F )i,j =
1
h2

(Fi+1,j + Fi,j+1 + Fi−1,j + Fi,j−1 − 4Fi,j) ,

(A2)
then the discrete chameleon equation becomes

4Fi,j = Ni,j − h2Si,j (A3)

where

Ni,j = Fi+1,j + Fi,j+1 + Fi−1,j + Fi,j−1

Si,j = K2

(
− n

Fn+1
i,j

+
βρ(~c)3

MΛmPl

)
.

We used the iterative Jacobi relaxation method with SOR
(Successive Over-Relaxation). The algorithm starts from
an initial field F (0) (in our case the initial field is con-
structed from the 1D profile (72)) and iterates according
to

F
(k+1)
i,j = (1− ω)F (k)

i,j +
ω

4

(
N

(k)
i,j − h

2S
(k)
i,j

)
. (A4)

The boundary condition (Fi,j = 0 for i, j at the bound-
ary) is enforced at each iteration. If the sequence con-
verges, the fixed point necessarily satisfies the discrete
chameleon equation. The SOR parameter ω usually
serves to accelerate the convergence (in this case one sets
ω > 1). In our case, we observed numerical instabilities
spoiling the convergence when calculating the bubble for
high helium pressure. The numerical instabilities were
fixed by setting the SOR parameter to ω = 0.8, at the
price of a slower convergence. Finally we used a step of
h = 0.2 mm and iterate the algorithm 30000 times. A
calculation takes about 10 min in a normal computer.
Figure 17 shows selected results of such calculations.

Appendix B: Perturbation of the quantum states

We use the Rayleigh-Schödinger perturbation theory
to calculate the effect of the chameleon field on the quan-
tum states of the bouncing neutron. The perturbation
δV is given by Eq. (100). The shift δEk of the energy
level Ek is given at first order by

δEk = 〈k| δV (z) |k〉 (B1)

where |k〉 are the unperturbed stationary states. Like-
wise, the modification of the wavefunction at first order
of the perturbation theory is

ψk(z) = ψ
(0)
k (z) +

∑
l 6=k

〈l| δV (z) |k〉
Ek − El

ψ
(0)
l (z). (B2)

where ψ
(0)
k (z) = 〈z| k〉 are the unperturbed wavefunc-

tions.
It is useful to define the matrix elements of the power

law operator as:

Okl(α) = 〈l| (z/z0)α |k〉 =
∫ ∞

0

ψl(z)ψk(z)(z/z0)αdz.

(B3)
These matrix elements are calculated numerically for the
first five quantum states and for the Ratra-Peebles in-
dices n = 1, 2, 3, 4. We provide the result in the form of
four symmetric 5× 5 matrices:

O(α1 = 2/3) =


1.31 0.36 0.13 0.08 0.05

1.89 0.47 0.17 0.09
2.31 0.56 0.20

2.65 0.63
2.94

 (B4)

O(α2 = 1/2) =


1.22 0.25 0.10 0.06 0.04

1.59 0.31 0.12 0.07
1.85 0.35 0.14

2.05 0.38
2.22

 (B5)

O(α3 = 2/5) =


1.16 0.19 0.08 0.05 0.03

1.44 0.23 0.09 0.06
1.62 0.25 0.10

1.76 0.27
1.88

 (B6)

O(α4 = 1/3) =


1.13 0.15 0.07 0.04 0.03

1.35 0.18 0.08 0.05
1.49 0.20 0.08

1.60 0.21
1.68

 .(B7)
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