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Abstract

Spatio-temporal data describing trajectories of moving objects has increased as a con-
sequence of the increasing availability of such data with current sensors techniques. These
devices use different technologies like global navigation satellite system (GNSS), wireless
communication, radio-frequency identification (RFID), and sensors techniques. Although
capturing technologies differ, the captured data has common spatial and temporal fea-
tures. Relational database management systems (RDBMS) can be used to store and query
that captured data. RDBMS define spatial data types and spatial operations. Recent ap-
plications show that the solutions based on traditional data models are not sufficient to
consider complex use cases that require advanced data models. A complex use case refers
not only to data, but also to the domain expert knowledge. An inference mechanism
enriches semantic trajectories with this knowledge. Temporal and spatial reasoning are
fundamental for the inference mechanism on semantic trajectories. Several research fields
are currently focusing on semantic trajectories to discover more information about the
behavior of mobile objects.

In this thesis, we propose a modeling approach based on ontologies. We introduce a
high-level trajectory ontology. The temporal and spatial parts form an implicit background
of the trajectory model. We choose temporal and spatial models to be integrated with
our trajectory model. We apply our modeling approach to a particular domain applica-
tion : marine mammal trajectories. We model this application and integrate it into our
ontology. We implement our approach using RDF. Technically, we use Oracle Semantic
Data Technologies. To accomplish reasoning over trajectories, we consider the mobile ob-
jects, temporal and spatial knowledge in our ontology. Our approach demonstrates how
temporal and spatial relationships that are common in natural language expressions (i.e.,
relations between time intervals like ”before”, ”after”, etc.) are represented in the ontol-
ogy as user-defined rules. To annotate data with this kind of rules, we need an inference
mechanism over trajectory ontology. Experiments over our model using the temporal and
spatial reasoning address an inference computation complexity. This complexity is time
computations and space storage. In order to reduce the inference complexity, we propose
optimizations, such as domain constraints, temporal and spatial neighbor refinements.
Controlling the repetition of the inference computation is also proposed. We define a re-
finement specifically for the application domain. Finally, we evaluate our contribution.
Results show their positive impact on reducing the complexity of the inference mecha-
nism. These refinements reduce half of the time computation and allow considering bigger
size of data.

Keywords: Trajectory data model, Spatial data model, Time data model, Ontology in-
ference, Domain knowledge, Spatial rules, Temporal rules.





Résumé

Le développement de technologies comme les systèmes de positionnement par satellites
(GNSS), les communications sans fil, les sytèmes de radio-identifcation (RFID) et des cap-
teurs a augmenté la disponibilité de données spatio-temporelles décrivant des trajectoires
d’objets mobiles. Des bases de données relationnelles peuvent être utilisées pour stocker
et questionner les données capturées. Des applications récentes montrent l’intéret d’une
approche intégrant des trajectoires « sémantiques » pour intégrer des connaissances sur
les comportements d’objets mobiles.

Dans cette thèse, nous proposons une approche basée sur des ontologies. Nous présen-
tons une ontologie pour les trajectoires. Nous appliquons notre approche à l’étude des
trajectoires de mammifères marins. Pour permettre l’exploitation de nos connaissances
sur les trajectoires, nous considérons l’objet mobile, des relations temporelles et spatiales
dans notre ontologie. Nous avons évalué la complexité du mécanisme d’inférence et nous
proposons des optimisations, comme l’utilisation d’un voisinage temporel et spatial. Nous
proposons également une optimisation liée à notre application. Finalement, nous éva-
luons notre contribution et les résultats montrent l’impact positif de la réduction de la
complexité du mécanisme d’inférence. Ces améliorations réduisent de moitié le temps de
calcul et permettent de manipuler des données de plus grande dimension.

Mots-clés: Modélisation de trajectoire, Modélisation de temp, Modélisation de space,
Règles temporelles, Inférence, Régles.
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Chapter 1

Introduction

Contents
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Illustrative examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.5 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1 Background

Over the last few years, there has been a huge collection of a real-time data of mobile
objects. This data is obtained by GNSS 1 (GPS 2 or ARGOS 3), phone location or RFID 4

systems. These location and communication technologies have encouraged collecting spa-
tial, temporal and spatio-temporal data of moving objects [60]. Therefore, there is an
increasing necessity to understand and to provide solutions for an efficient analysis and
knowledge extraction from this data. It opens new perspectives for using these solutions
in applications, such as bird migration monitoring [126], daily trips of employees [141],
military applications [91] and marine mammal tracking [135].

Captured data records the movement track of a moving object from a departure to a
destination point. Generally, this data is spatio-temporal points consisting of longitude,
latitude and time of the capture. However, depending on devices’ capabilities, additional
data can be captured. For example, a device can record the speed and the temperature
of a moving object, weather conditions and may provide measurements of a moving ob-
ject’s environment. The captured data is considered as raw data and a commonly called
trajectories. A trajectory is inherently a spatio-temporal notion. From users’ viewpoint,

1. GNSS : Global Navigation Satellite System
2. GPS : Global Positioning System
3. ARGOS : Advanced Research and Global Observation Satellite
4. RFID : Radio Frequency IDentification

9



1.2. PROBLEM DEFINITION 10

the notion of a trajectory is rooted in the evolving position of some object traveling in a
space during a given time interval to achieve a goal or to perform activities. This notion
can also help to understand the behavior of a moving object.

Spatio-temporal trajectory data should be used in its context. In general, this context
is application domain dependent. Therefore, the latter should provide a benchmark or a
framework for efficient interpretation of this data. For example, a traffic analysis based
on cars’ trajectories may derive meaningful results while incorporating information about
road networks. Similarly, studies on bird migration patterns may require an understan-
ding of features of the particular bird species (e.g., their body sizes, food sources, and
competitors) as well as information about the weather conditions during their flight. So in
this case, we are about to associate raw data captured, called trajectories, with additional
data bearing well-defined semantics. This is called semantic trajectories [7]. Semantic
trajectories can be seen as a high-level data layer associated with raw trajectories’ layer.
This high-level layer may facilitate the discovery of new knowledge [141]. For example,
human trajectories are best understood when captured positions can be labeled with ac-
tivities performed at places related to these positions. Knowledge about these places and
all activities can help the system to better interpret the displacement.

This thesis present a research work conducted on trajectories. We present a trajectory
analysis and modeling framework to enrich a hight-level data layer. To meet the challenges
imposed by the semantic trajectory notion, we present a modeling approach based on an
upper trajectory ontology centered on a triple (object, trajectory, activity). Considering
this workspace, we show how we can use our modeling approach in a particular domain
application : marine mammal trajectories. This thesis provides solutions to several scien-
tific problems to be considered in a trajectory’s modeling approach based on ontologies
taking into account the spatial, temporal and domain dimensions.

1.2 Problem definition

We base our work on trajectory data of moving objects. This requires a trajectory data
model and a moving object model. Moreover, to enrich data with knowledge, a semantic
model should be taken into consideration. Therefore, there is a requirement for a generic
model to consider the trajectory, moving objects and semantic models simultaneously.
This is represented by a semantic trajectory model shown in Fig. 1.1. This model can
consume captured data of trajectories and other external data as shown in Fig. 1.1 link
(1). This data is related to an application domain. This requires an application domain
trajectory model which consists of domain model, as shown in Fig. 1.1 link (2). The
latter will support semantics related to users’ needs. In the domain model, we also find
the necessary semantics related to the real moving object, its trajectories, its activities
and others. This semantics is often designed by a domain expert. In general, considering
various facets of data, the semantic trajectory model must be extended by other models,
such as temporal and spatial, as shown in Fig. 1.1 link (3).

As it can be noted from our general introduction, various scientific issues need to be
addressed. The main issue is to build and design the semantic trajectory model with its
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Figure 1.1 – Problem and its modeling required

required components. As explained before and shown in Fig. 1.1, our proposed model
must take into consideration the following models :

1. Application domain trajectory model : This model has the requirements extracted
from the use cases of the application domain. These use cases contain queries and
knowledge proposed by domain experts. Therefore, the domain model focuses on
mobile object’s characteristics and its trajectory’s activities ;

2. Other models : An implicit background of the semantic trajectory model could be
formed by other models, such as temporal and spatial models.

The semantic trajectory modeling approach is tightly related to the problem of a se-
mantic gap between this model and raw data. Link (1) in Fig. 1.1 presents this gap.
Moreover, our model that involves multiple models must establish semantic mappings
among them, to ensure interoperability. In Fig. 1.1, links (2) and (3) match the domain,
temporal and spatial models with the semantic trajectory model. This matching extends
the capabilities of our model. For more efficient semantic capabilities, we want to annotate
the data with domain, temporal and spatial knowledge. This knowledge are defined by
experts representing users’ needs. Annotating data with this knowledge could be done au-
tomatically or manually. We cannot use a manual annotation over huge data. Therefore,
we choose an automatic annotation which can be accomplished by an ontology inference
mechanism. This inference mechanism derives new semantics from existing information
using additional knowledge. Figure 1.2 shows this knowledge in a form of rules either
supplied by the reasoner or defined by the user. Fundamental axioms are the reasoner’s
rules, such as RDF, RDFS, OWL or others. User-defined rule is a knowledge related to
users’ needs. There is a problem of defining these rules in the model in an optimized way.
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Figure 1.2 – Components of the inference mechanism

Oracle evaluates the ontology inference mechanism using fundamental axioms. Oracle
inference performance [5] is computed over LUBM ontology and different benchmark data
size using RDFS and OWL reasoning. Figure 1.3 presents the results of this evaluation in
terms of number of triples inferred and computation time. We notice that the inference
is computed over huge data in few hours. However, this is not the case when using user-
defined rules. The inference mechanism becomes more complex while using user-defined
rules.

Figure 1.3 – Oracle ontology inference performance

1.3 Illustrative examples

This work deals with marine mammals tracking applications, namely seal trajectories.
Trajectory data is captured by sensors included in a tag glued to the fur of the animal be-
hind the head. The captured trajectories consist of spatial, temporal and spatio-temporal
data. Trajectories data can also contain some meta-data about the marine environment.
These datasets are organized into sequences. Each sequence, mapped to a temporal in-
terval, characterizes a defined state of the animal. In our application, we consider three
main states of a seal : hauling out, diving and cruising. Every state is related to a seal’s
activity. For example, a foraging activity occurs during the state diving. In this applica-
tion, large datasets need to be analyzed and modeled to tackle the user’s requirements. To
answer user’s queries, we also need to take into account the domain knowledge. Indeed,
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domain knowledge is composed both of spatial and temporal knowledge, where and when
the moving object activities take place during a given time interval.

In a first step, we assume that the trajectory data is stored and managed in a spa-
tial relational database. Then, we consider the query (Example 1) based on a schema
(Code 1.1) of two spatial tables.

Example 1 Which dives are located within a zone during the time interval : [2007-08-
02T00 :00 :00, 2007-08-09T23 :59 :00]

Table Dive (idDive:integer, refSeal:string, maxDepth:real, shape:line(startPoint, endPoint),

startTime: dateTime, endTime: dataTime);

Table Zone (idZone:integer, name:string, shape:polygon(points[]));

Code 1.1 – Spatial schema

To answer the query (Example 1), we need a relational database language supporting
spatial data. ISO/IEC 13249-3 SQL/MM [31] is a standardized extensions for multi-media
and application-specific packages in SQL. The standard is organized in several parts. The
part 3 [127] is the international spatial standard that defines how to store, retrieve and
process spatial data using SQL. It also defines how spatial data is represented, and the
functions available to convert, compare, and process spatial data in various ways. Code 1.2
gives the SQL/MM expression of the query (Example 1).

SELECT D.idDive, D.refSeal

FROM Dive D, Zone Z

WHERE Z.shape.ST_Contains(D.shape) AND Z.idZone = 5

AND startTime => "2007-08-02T00:00:00"

AND endTime <= "2007-08-09T23:59:00";

Code 1.2 – The SQL/MM query of Example 1

The SQL/MM expression (Code 1.2) is based on a relational model of the trajectory
data. This model represents the domain by a set of attributes and their values. Therefore,
this model cannot take into account the domain knowledge as given by experts. Let us
illustrate the query (Example 2).

Example 2 In which zones is the seal foraging during the time interval : [2007-08-
02T00 :00 :00, 2007-08-09T23 :59 :00]

Even if the SQL/MM language provides spatial operations to solve the
query (Example 1), it is not designed to resolve the query (Example 2). Indeed, the
later query combines spatial data (zone), spatial operation (contains), temporal data
(interval), temporal operation (during) and the semantic domain knowledge related
to the seal’s activity (foraging). We notice that there is a semantic gap between the
trajectory data model and the considered operators and activities. We eliminate this gap
with an automatic annotation process. This process annotates trajectories or part of the
trajectories with semantic annotations. These annotations are domain activities, temporal
and spatial operators. The results of this process are semantic trajectories. In the semantic
trajectories, each Sequence is labeled with one of these activities or these operators. This
process is an ontology inference mechanism which goes from low-level data into high-level
knowledge.
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1.4 Contributions

The work of this thesis is based on a trajectory framework presented in Mefteh the-
sis [94]. This framework has the following models :

1. Semantic trajectory model : To meet the semantic requirements and fix the semantic
gap in this framework, a modeling approach based on ontologies was chosen. The
semantic trajectory model consists of :

(a) Trajectory model : to develop a generic trajectory model, Mefteh et al. [93]
consider trajectories of different moving objects : ships and aircrafts. They
study the context of each object, collect use cases from required queries, un-
derstand and analyze the captured data. Based on these studies, a conceptual
model for trajectories of each moving object was presented. Then, they consi-
der common concepts having the same meaning in both models and common
features to propose a generic trajectory model.

(b) Semantic model : an efficient way to take into account a knowledge collected
through users’ needs. These needs are generally studied by a semantic model.
This model can be organized as activities of moving objects contain different
base activities ;

(c) Mobile object model : understanding, analyzing and modeling trajectory data
fundamentally leads to define the mobile object model.

2. Application domain trajectory model : The semantic trajectory model is applied
over an application domain. Mefteh [94] defined a domain application trajectory
ontology. Moreover, she considered domain knowledge experts to formulate semantic
requirements or rules. As an example, the foraging activity is not a value or a set
of values. It is a domain knowledge or a rule in the ontology ;

3. Temporal model : Ontologies of time define concepts that are used in specifying time
and temporal elements, such as instant, interval, chronon and etc., and temporal
relationships such as after, overlaps and others. We reuse W3C OWL-Time ontology
in our framework. We believe that all temporal classes and properties must be
considered regardless of the domain model.

In this thesis, we modify this semantic trajectory framework and integrate it with
domain, temporal and spatial dimensions. Therefore, the scope of this thesis tackles the
following issues :

1. Spatial model : Spatial ontologies define concepts that are used in specifying spatial
elements (e.g., point, line, polygon), spatial relationships such as topological rela-
tionships, and continuous fields. We reuse a spatial ontology. We believe that all
spatial classes and properties must be considered regardless of the domain model.
The independent spatial model must contain all the spatial reasoning ;

2. Integration models : We base our approach on the definition of various separated
ontologies. Accordingly, we need links between these ontologies. In the data enginee-
ring field, this problem is also known as : data integration or mapping. Indeed, the
study of this question is not recent and it arose from the need of reusing models ;
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3. Data within the model : Our model is an ontological approach based on RDF graph.
However, raw trajectories may be provided as files or as relational data. To put raw
trajectories into the model, we need a mapping process. This process provides a
direct mapping from relational data into RDF graph by D2RQ engine [21]. Then,
we can populate data into the ontology. Moreover, we have to resolve the semantic
gap between the semantic trajectory model and raw data. Therefore, we map the
defined domain knowledge experts with the semantic model’s concepts ;

4. Inference mechanism : In our work, an ontology inference mechanism is applied.
The knowledge used by this mechanism is the domain experts and the operators of
other integrated models. Precisely, the knowledge consists of domain, temporal and
spatial rules. The objective of the ontology inference mechanism using these rules is
to annotate data with them. For example, to annotate data with a foraging activity
taking into account during temporal operator and contains spatial operator, it
is necessary to apply the inference mechanism based on this activity and these
operators. The results will be a data labeled with semantic annotations ;

5. Inference complexity : We attempt to understand the methodology of the inference
mechanism. We compute the inference mechanism over our model with different
experiments. We compute the inference using the domain and temporal rules, the
domain and spatial rules, and the domain, temporal and spatial rules together.
From these experiments, we address the inference computation complexity in terms
of time computations and space storage. The size of the data and number of user-
defined rules impact the computation of the inference mechanism. This complexity
is due to the application of all rules between all pairs of data. We also evaluate the
inference mechanism using different engines. Furthermore, to tackle the inference
complexity, we define some enhancements. Searching for enchantments, we intervene
inside the mechanism of the inference engine which leads to invalidity of the whole
database. Then, we modify the definition of rules by limiting their executions with
some conditions. These conditions could be temporal and spatial restrictions and
constraints. Finally, we visualize the trajectories to view the movement of a moving
object and to understand the behavior. From this visualization, we attempt to group
interesting data into place-of-interest. Then, we reduce the inference computation
by considering place-of-interest instead of the whole data.

In this work, we consider an ontological modeling approach. Detailed later, this model
presents a major advantage which lies in the separation between the declarative world,
which supports the static aspects, and the imperative world describing the system’s dy-
namics by rules. The global dynamics of the system will be supported by the inference
process. Our model is based on a spatio-temporal reasoning and consists of a set of infe-
rence rules applying temporal and spatial relationships. Their purpose is to assert addi-
tional implied facts in the knowledge base (i.e., determine the spatial or temporal relation
between two objects). The formalization frameworks of ontologies also presents various
and efficient solutions for data integration.
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1.5 Thesis outline

The thesis is organized in four parts :

1. Extended background and basic concepts I : In this part, we address the back-
ground, foundations needed and some related work. In Chap. 2, we present the basic
concepts in the trajectory data modeling approach, time and spatial data models.
The semantic technologies for semantic trajectory modeling approach are also illus-
trated. Chapter3 summarizes related work in trajectory data model in thematic,
spatial, temporal and spatio-temporal terms. Work on trajectory ontology modeling
approach and ontology inference is also addressed.

2. Modeling approach II : This part considers our modeling approach and the way
we apply the ontology inference over this model. In Chap. 4, we introduce a generic
trajectory model connected to two background models : time and spatial. In Chap. 5,
we illustrate an ontology inference mechanism and its necessary parts like spatial
and temporal ontology rules.

3. Research design and implementation III : In this part, we implement our model
and address the application domain. WOur implementation is based on RDF triple
store and is illustrated in Chap. 6. Chapter 7 details the implementation of our
framework and the computation of the inference mechanism over it. Chapter 8 maps
our framework and the case of marine mammal trajectory application. The inference
mechanism considers the global framework with the application case. Finally, we
propose our contributions to enhance the inference process in general and in the
case of the marine mammal application.

4. Research results IV : This part evaluates the trajectory ontology inference over
our framework in Chap. 9. Finally, experimental results evaluate the impact of the
trajectory ontology inference refinements in Chap. 10.

Finally, we conclude the thesis and give some future prospects.
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In this part, we address the background, foundations needed and some related work.
In Chap. 2, we present the definition of a trajectory and basic concepts in a trajectory
data model. We illustrate time and spatial data models needed for the trajectory data
model. In the latter model, a trajectory is considered as data and an ontology modeling
approach can be a solution for modeling this data.

In Chap.3, we summarize the related work done on trajectory data model in domain,
spatial, temporal and spatio-temporal terms. Specifically, the work on trajectory ontology
modeling approach and ontology inference is addressed.
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2.1 Introduction

In this chapter, we address the background and foundations needed. We present the
definition of a trajectory, structured trajectory and semantic trajectory. However, there is
a need for a generic trajectory data model considering temporal sources, spatial sources
or other knowledge. For modeling spatio-temporal trajectory, we illustrate time and spa-
tial data models needed. This generic model should be applicable to different domain
applications. An ontology modeling approach can be considered as a solution for mode-
ling the trajectory data. Then, we illustrate the ontology language representation and the
reasoning over ontologies to query the extracted knowledge.

21
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2.2 Trajectory data modeling approach

2.2.1 Trajectory definition

A trajectory is considered as a spatio-temporal path covered by a moving object. It
represents a semantically meaningful unit of movement for an application. Spaccapietra
et al. [126] define a trajectory as follows :

Definition 1 (Trajectory) [126]. A trajectory is a record of the evolution of the position
(perceived as a point) of an object that is moving in space during a given time interval in
order to achieve a given goal.

A trajectory is a spatio-temporal concept where spatial coordinates and time are used
to express the position and the time of a moving object, respectively. Most frequently,
a moving object is geometrically represented as a set of points. It depends on the do-
main application. We call raw trajectory a captured data from different sensors. Yan
et al. [142] define a raw trajectory as follows :

Definition 2 (Raw trajectory – T ) [142]. - A sequence of spatio-temporal points re-
cording the trace of a moving object, i.e. T = Q1, ..., Qm, where Qi = (x, y, t) is a triple
with the positioning (longitude x, latitude y) at timestamp t.

However, raw trajectories do not provide any information about the travel, geographi-
cal space and background knowledge. Raw trajectories lack semantic information. This
semantic information is to understand activities of the moving object. To be useful for
the end-user, raw trajectory must undergo a semantic enrichment process that allows the
integration of different kinds of knowledge (spatio-temporal, trajectory, geographic, back-
ground, domain, etc). The use of semantics was proposed to address these problems [20].
Semantics refer to the meaning of data rather than its syntax or structure. Therefore,
there is a need to enrich raw trajectories with semantic information. Semantics here re-
late to any additional data that is annotated either to a trajectory as a whole or to some
of its subparts. Yan et al. [142] define a semantic trajectory as follows :

Definition 3 (Semantic Trajectory) [142]. A trajectory where spatio-temporal posi-
tions are completed with annotations. i.e. ST = Q′1, Q

′2, ..., Q′m, where Q′i = (x, y, t, A)
is a tuple defining a spatio-temporal point (x, y, t) and its possibly empty set of associated
annotations A.

For example, recording the goal of a person’s trip to La Rochelle (e.g., business, tourism)
is an annotation at the trajectory level (i.e., holding one value per trajectory). Trajectories
should be then enriched with semantic data from the application world. From the user’s
perspective, trajectory is a semantic spatio-temporal concept because it is viewed as an
evolving position of a moving object in some space during a given time interval, having a



2.2. TRAJECTORY DATA MODELING APPROACH 23

specific meaning or goal. Analysis the behavior of moving objects is currently increasing
in the research community. Understanding why and how people and animals move, which
places they visit, and for which purposes, what are their activities, and which resources
they use, is of significant importance for all kinds of decision makers. For example, it is
important to observe the “activity” of a moving animal (with activity values “feeding”,
“resting”, “moving”, etc.), to infer and record the “means of transportation” used by this
moving animal.

For modeling spatio-temporal trajectory, there are two facets of a trajectory [126] : a
geometric facet which only considers the point geometry and a semantic facet which gives
a meaning or semantic interpretation of application objects. Trajectory components have
been enriched by different types of information, then concepts of a semantic trajectory
make it possible to extract these information from raw trajectory. Then, any trajectory
model must support the characterization of trajectories and their components with attri-
butes, semantic constraints, topological constraints, and links to application objects.

2.2.2 Trajectory and temporal data model

Traveling for achieving a goal takes a limited amount of time (and covers some distance
in space), therefore trajectories are inherently defined by the time intervals. Each time
interval is delimited by an instant when the object starts a travel and another instant
when the travel ends. A trajectory is therefore considered as a temporal concept. This
requires a temporal data model to suit the trajectory model.

2.2.2.1 Temporal schema in ISO 19108 standard

The standard ISO 19108:2002 [72] is prepared by technical committee ISO/TC 211,
Geographic information/Geomatics. This international standard defines concepts for des-
cribing temporal characteristics of geographic information. It provides a basis for defining
temporal feature attributes, feature operations, feature relationships, and for defining the
temporal aspects of metadata about geographic information. ISO 19103 defines a concep-
tual schema for describing temporal aspects of geographic information in the Unified
Modeling Language (UML). Figure 2.1 shows the UML hierarchy of temporal objects
defined by the ISO 19108 standard. These temporal objects are :

– TM_Object is an abstract class in the hierarchy ;
– TM_Primitive is an abstract class that represents a non-decomposed element of geometry

or topology of time ;
– TM_GeometricPrimitive provides information about temporal position. The two

geometric primitives in the temporal dimension are the instant and the period.
TM_GeometricPrimitive is an abstract class with two subclasses, TM_Instant and
TM_Period. Figure 2.2 shows these primitives. TM_GeometricPrimitive inherits from
TM_Primitive a dependency on the interface TM_Order, and also has a dependency on
the interface TM_Separation ;

– TM_TopologicalPrimitive provides information about connectivity in time ;
– TM_Complex is an aggregation of TM_Primitives ;
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– TM_TopologicalComplex is the only subclass of TM_Complex that is defined in this stan-
dard, and it is an aggregation of connected TM_TopologicalPrimitives.

Figure 2.1 – The hierarchy of temporal objects defined by ISO 19103 standard

2.2.2.2 Allen temporal interval relationships

To represent actions and events occurring over time, Allen [6] proposed a time model
based on time intervals. The author gave an order between two time intervals. In [6], the
author introduced the algebra of time intervals and a calculation for temporal reasoning
based on 13 temporal relationships or atomic data. Figure 2.3 presents the definition of
these relationships.

The standard ISO 19108 [72] uses Allen temporal relationships. Based on them,
TM_Order provides an operation for determining the position of the TM_Primitive relative to
another TM_Primitive. Values for relative positions are provided by the enumerated data type
TM_RelativePosition, shown in Figure 2.4.

2.2.3 Trajectory and spatial data model

Most trajectory data models developed so far have considered moving objects with an absolute
representation of space [60]. In these trajectory models, a moving object is usually represented
using its location as a function of time.

2.2.3.1 Spatial concepts

Formal spatial, and spatio-temporal representations have been studied extensively within a
database [58] and recently, the Semantic Web community [109]. Spatial entities (e.g., objects,
regions) in classic database systems are typically represented using geometries. A geometry is
any geometric shape, such as a point, polygon, or line, and is used as a representation of a
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Figure 2.2 – The hierarchy of temporal geometric primitives defined by ISO 19103 stan-
dard
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feature’s spatial location. A coordinate system describes a location relative to some center. A
geocentric coordinate system places the center in the Earth using standard x, y and z ordinates
or a Minimum Bounding Rectangle (MBR) enclosing objects or regions and their relationships.
Relationships among spatial entities can be topological, orientation or distance based relations.

Any geometry has a coordinate reference system (CRS) (alternatively known as spatial re-
ference system). Elements of a CRS provide context for the coordinates that define a geometry
in order to describe accurately their position and establish relationships between sets of coordi-
nates. There are four parts that make up a CRS : a coordinate system, an ellipsoid, a datum,
and a projection. An ellipsoid defines an approximation for the center and the shape of the
Earth. A datum defines the position of an ellipsoid relative to the center of the earth. WGS84
is a datum that is widely used by GPS devices that approximates the entire world. Geographic
coordinate systems use an Earth based datum that transforms an ellipsoid into a representation
of the Earth. A geographic (or geodetic) coordinate system uses a spherical surface to determine
locations. In such a system, a point is defined by angles measured from the center of the Earth
to a point on the surface. These are also known as latitudes and longitudes. The combination of
these elements defines a CRS.

2.2.3.2 OGC spatial data model

The OpenGIS Simple Features Interface Standard (SFS) provides a well-defined and common
way for applications to store and access feature data in relational or object-relational databases.
The spatial data can be used to support other applications through a common feature model,
data store and information access interface. The OpenGIS supports simple feature specification
for SQL [75]. This specification describes a standard set of the SQL geometry types based on
OpenGIS geometry model. Each spatial data is associated with a well-defined spatial reference
system (SRID). SRID is a Spatial Reference IDentifier which supports coordinate system to
uniquely identify any position on the earth. Latitudes and longitudes can be traced back to
arbitrarily exact locations on the surface of the Earth. In this section, we present Open Geospatial
Consortium (OGC) spatial data model and its implementation in different database systems.
Then, we discuss the implementation of OGC in Oracle Spatial database.

OGC geometry object model. OGC geometry object model is based on extending the Geo-
metry Model specified in the OpenGIS Abstract Specification. It is distributed computing plat-
form neutral and uses Object Modeling Technique (OMT) notation. Figure 2.5 shows the object
model for geometry. The base geometry class has subclasses for Point, Curve, Surface and
Geometry Collection. Each geometry object is associated with a Spatial Reference System
(SRS) and has a Well-Known Text (WKT) presentation. The geometry model defines two-
dimensional collection classes named MultiPoint, MultiLineString and MultiPolygon for
modeling geometries corresponding to collections of Points, LineStrings and Polygons res-
pectively. MultiCurve and MultiSurface are introduced as abstract super classes that gene-
ralize the collection interfaces to handle Curves and Surfaces. Figure 2.5 shows aggregation
lines between the leaf collection classes and their element classes.

OGC model in database systems. Nowadays, database management systems (DBMS)
handle spatial data by supporting spatial data types. DBMS are extended to handle spatial
data capabilities and each type uses a set of properties and methods that correspond to the
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Figure 2.5 – The OGC geometry object model hierarchy

OGC functionality. In relational database systems, the OGC geometry model and its collection
classes are defined as tables with geometry columns and its features are stored as rows in these
tables. In fact, OGC geometry data types are implemented differently in DBMS and these im-
plementations are used in many applications. We give a glimpse of a few examples systems,
without being exhaustive.

Common Language Runtime (CLR) types package in SQL Server System contains components
implementing geometry, geography, and hierarchy types in SQL Server 2008 R2 [89]. SQL Server
implements OGC methods to support spatial operators defining spatial objects relationships.
This implementation also supports index over spatial data types. Similarly, MySQL implements
a subset of SQL with Geometry Types environment proposed by OGC [137]. This term refers to
an SQL environment that has been extended with a set of geometry types as well as functions
to create and analyze geometry values. Moreover, PostGIS [112] is a spatial database technology
research project. It is based on PostgreSQL DBMS for defining and manipulating spatial data.
Other DBMS, like ALTIBASE HDB or DB2 also define spatial extensions to support spatial
data.

OGC model in Oracle Spatial.

Oracle DBMS supports the spatial data since version 8 (1997). Spatial data definition and
manipulation is done according to OGC specifications. Oracle Spatial [102] is designed to make
spatial data management easier and more natural to users of location-enabled applications and
GIS applications. Oracle Spatial provides an SQL schema and functions to enable the storage,
retrieval, update, and query of spatial features in Oracle database. Oracle Spatial consists of the
following :
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– A schema (MDSYS) that prescribes the storage, syntax, and semantics of supported geometric
data types ;

– A spatial indexing mechanism ;
– Operators, functions, and procedures for performing area-of-interest queries, spatial join que-

ries, and other spatial analysis operations ;
– Topology data model for working with data about nodes, edges, and faces in a topology ;
– Network data model for representing capabilities or objects that are modeled as nodes and

links in a network ;
– GeoRaster, a feature to index, query, analyze, and deliver GeoRaster data, that is, raster

image and gridded data and its associated metadata.
Oracle Spatial supports the object-relational model for representing geometries. This model
corresponds to an ”SQL with Geometry Types” implementation of OpenGIS simple feature
specification for SQL [75]. Oracle Spatial stores a geometry in a spatial data type SDO_GEOMETRY.
An Oracle table can contain one or more SDO_GEOMETRY columns. A geometry is an ordered
sequence of vertices that are connected by straight line segments or circular arcs. The semantics
of the geometry are determined by its type. Oracle Spatial supports several primitive types, and
geometries composed of collections of these types, including two-dimensional : Points, Lines,

Polygons, etc.

The spatial relationships are based on geometry locations. The most common spatial relation-
ships are based on topology and distance. To determine spatial relationships between entities in
the database, Oracle Spatial has several secondary filter methods :
– The SDO_RELATE operator evaluates topological criteria ;
– The SDO_WITHIN_DISTANCE operator determines if two spatial objects are within a specified

distance of each other ;
– The SDO_NN operator identifies the nearest neighbors for a spatial object.
For example, the SDO_RELATE operator implements a nine intersection model, which are develo-
ped by Clementini and others [26, 27]. This implementation is for categorizing binary topological
relationships between Points, Lines, Polygons. This yields to the set of spatial relationships
as shown in 2.1 :

SDO_covers, SDO_coveredby, SDO_contains, SDO_equal, SDO_touch, SDO_inside, SDO_anyinteract, SDO_overlaps

Code 2.1 – Topological relationships in Oracle Spatial

Oracle Spatial uses a two-tier query model to resolve spatial queries and spatial joins, in other
words, two distinct operations are performed to resolve queries : primary and secondary filter
operations. The output of the two combined operations yield the exact result set. The primary
filter permits fast selection of candidate records to pass along to the secondary filter. The latter
applies exact computations to geometries which result from the primary filter. The secondary
filter yields an accurate answer to a spatial query.

2.3 Trajectory and ontology engineering

We’ve seen in the previous section that there is a need for a generic trajectory data model consi-
dering temporal sources, spatial sources or other knowledge. This model should be applicable to
different domain applications. Therefore, an ontology modeling approach can be considered as
a solution for trajectory data model. In this section, we start with a history of structuring data.
Then, we illustrate the representation for an ontology.
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Figure 2.6 – Hierarchy for structuring data on the Web

2.3.1 Introduction

Tim Berners-Lee [20], one inventor of the World Wide Web, envisioned in the year 2000 the
future of the Internet. He coined the Semantic Web which gives semantics to structured data
and responds to complex human requests based on their meaning. Figure 2.6 shows the hie-
rarchy of structuring data on the Web. Data is represented as a Uniform Resource Identifier
(URI) and their values as UNICODE. The World Wide Web Consortium (W3C) has adopted
Resource Description Framework (RDF) [114] as a standard for representing data. RDF can be
represented as a directed graph (edges and nodes). In RDF graph, a directed edge is labeled
with a Property which connects two nodes (a Subject to an Object). A Subject, a Predicate and
an Object compose an RDF statement commonly called a triple. These triples are stored in a
store known as triplestore. RDF Schema (RDFS) [115] provides a standard vocabulary for
schema-level constructs such as Class, SubClassOf, Domain, and Range. Ontologies [32] provide
logical models of concepts, entities and relationships in a specific domain. They are considered
as the most common forms of the knowledge representation on the Web [56]. Web Ontology Lan-
guage (OWL) [92] is a well known standard for structuring data in an ontology. OWL extends
RDF/RDFS by defining additional vocabulary for describing classes as logical combinations
(e.g., intersection, union, complement) and allows additional assertions about property types
(e.g., transitive, symmetric or functional). Rules restrict semantics of concepts of an ontology
and conceptual relationships in a specific conceptualization of a particular application domain.
Many semantic stores (including Jena [79], Oracle [103], Vituoso RDF Triple Store [104], Se-
same [24] and C-Store [1]) use databases to store and process RDF data. Finally, queries can be
applied over ontologies to extract information.
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2.3.2 Languages for ontology representation

Ontology languages provide essential vocabularies to describe domain knowledge, the under-
lying common model for data aggregation and integration. We briefly present a list of relevant
formal languages used to represent knowledge. The most important ones are referred as OWL-
family [92]. The World Wide Web Consortium has proposed ontology representation languages
(RDFS and OWL) to capture domain knowledge. OWL is the main language used to describe
and share ontologies over the Web, developed as a follow-on from RDF and RDFS [68]. Another
important capability of OWL is the ability to define restrictions on the behavior of a property
with respect to a given class. In 2009, a new version of OWL (OWL 2) [53] was proposed by the
W3C, which aimed to be both an extension and revision of OWL. The motivation for the deve-
lopment of this new version came from the limited expressiveness of OWL, an overly complex
syntax and the inability to annotate axioms.

Description logics [9] is a family of knowledge representation languages that seem to be speci-
fically tailored for ontology description. DLs describe knowledge in terms of concepts and role
restrictions that are used to automatically derive classification taxonomies. The main effort of the
research in knowledge representation is in providing theories and systems for expressing struc-
tured knowledge and for accessing and reasoning with it in a principled way. DL languages [10]
are in expressive power, depending on the building-operators that are retained for the language.
Various studies have examined extensions of the expressive power for such languages and the
trade-off in computational complexity for deriving Is-A relationships between concepts in such
a logic.

2.3.3 Ontology formalization syntax

SHIQ [67] is an expressive DL language, implemented in the FaCT and RACER reasoning [61]
systems. Its concepts can be expressed using boolean constructors (conjunction (∩), disjunction
(∪) and negation (¬)). SHIQ supports the existential and universal restriction constructors
(∃R.C and ∈ R.C) that define the set of instances which are linked by role (R) to at least (or
only to) instances of the concept (C). SHIQ also supports the number restriction constructors
(≤nR, ≥nR, = nR), and the qualified number restriction constructors (≤nR.C, ≥nR.C, =nR.C)
that define the set of instances that are linked by at least (at most, exactly) n instances of the
role R (to C instances).

Based on SHIQ, an ontology is represented as a graph G for a domain D. Common components
of an ontology G are shown in Table2.1. With consideration of two sets : B is the set of values
associated with each basic domain (i.e., integer, string) and Ω is the abstract entity domain
such that B ∩ Ω = ∅. Defining constraints in an ontology are shown in Table 2.2. Therefore, an
ontology G is a 4-tuple 〈E,A,R,X〉.

∀(e, a, r, x) ∈ G for a domain D where : (e, a, r, x) ∈ (E ∪ A ∪R ∪ X ).

Over all of these components and constraints, we can represent the size of a graph G as #(G).
This size is defined as the cardinality of the entities, properties, relationships and axioms in the
ontology representation : #(G) = #(E) + #(A) + #(R) + #(X ).
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Table 2.1 – Syntax and semantics of common components of an ontology

Construct
name

Syntax Semantics Definition

Entities E Ei ⊆ Ω concepts, classes (C), kinds of things, instances (I)
from concepts or classes. E = C ∪ I

Attributes A Ai ⊆ Ω×B properties of concepts
RelationshipsR Ri ⊆ Ω ×

... × Ω =
Ωn

ways in which (classes, classes) and (individuals, in-
dividuals) can be related to one another

Axioms X - assertions related to the ontology language, in a logi-
cal form

Table 2.2 – Semantics of constraints of an ontology

Constraint Semantics Example
Attributes E ⊆ {e ∈ Ω|#(A ∩ ({e} ×

BD)) ≥ 1}
∀x.E(x)→ ∃y.A(x, y) ∧D(y)

Relationships R ⊆ E1 × ...× En ∀x1, ..., xn.R(x1, ..., xn) → E1(x1) ∧ ... ∧
En(xn)

Cardinality Ei ⊆ {ei ∈ Ω|p ≤ #(R ∩
(Ω× {ei} × Ω)) ≤ q}

∀xi.E(xi) →
∃≥px1, ..., xi−1, xi+1, ...xn.R(x1, ..., xn)∧
∃≤qx1, ..., xi−1, xi+1, ...xn.R(x1, ..., xn)

IS A Ei ⊆ E,∀i = 1, ..., n The subsumption of E1is aE2 means that E1

is a subconcept of E2
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2.3.4 Ontology reasoning

An ontology language provides different expressive power for an interpretation of the world based
on formal semantics and also computational complexity for reasoning. They allow the encoding
of knowledge about specific domains and often include reasoning facilities that support the
processing of these knowledge. Inference engines, also called reasoners, can reason ontology’s
instances and schema definition for advanced information access and navigation. Supporting an
inferencing capability is challenging for several reasons :
– Expressiveness vs. Tractability tradeoffs : On one hand, the expressive constructs

allow users to compactly capture domain knowledge. On the other hand, the reasoning should
not be only tractable but also efficient ;

– Pre-known semantics vs. user-defined semantics expressed as rules : User-defined
semantics that are expressed as domain rules pose additional challenges. Then, the reasoning
should support user-defined rules ;

– Scalability : The inference engine should be able to do inferencing on arbitrarily large
knowledge bases. Moreover, the inference engine should be able to adapt itself as the amount
of derived triples increases.

2.3.5 Querying data through ontologies

Specifying queries for massive volumes of RDF data is becoming every day more and more
important. Ontology query languages are developed to query the information defined by these
ontology languages and reasoning systems. These languages can be broadly classified into three
categories : RDF-based, applying subgraph matching of RDF triples against the ontology graph ;
DL-based, supporting directly the DL semantics ; and mixed approaches that combine DL ex-
pressivity with DL query conjunction.

Most query languages used for querying RDF documents are SPARQL [40], SeRQL [3] and
RQL [54]. The SPARQL query language has become a standard from W3C. It is based on
matching graph patterns. The simplest graph pattern is a triple pattern, which corresponds to
an RDF triple. SeRQL (Sesame RDF Query Language) is a new RDF/RDFS query language
that was developed to address practical requirements from the Sesame user community 5 that
was not sufficiently met by other query languages. SeRQL combines features of other languages
and adds some of its own. SeRQL handles optional matches, reification and schema queries.
SeRQL has recently become the default query language of the Sesame system [24]. RQL is an
RDF Schema query language designed by ICS-FORTH [124]. RQL uses a path expression syntax
and has a functional approach to query language design. In fact, SeRQL’s syntax was in a large
part based on RQL. The SPARQL, SeRQL and RQL offer support of features such as Graph
transformation [119] or the specification of simple rules. Graph transformation is a powerful tool
in application scenarios ; where mapping between different vocabularies is needed.

Finally, Strabon [17] is a semantic spatio-temporal RDF store. It can be used to store linked
geospatial data that changes over time and pose queries using two extensions of SPARQL,
stSPARQL and stRDF. The stSPARQL can be used to query data represented in an extension
of RDF called stRDF. Strabon supports spatial datatypes enabling the serialization of geometric
objects in OGC standards WKT and GML. The recent OGC standard is GeoSPARQL [16] which
consists of the core, geometry extension and geometry topology extension. Strabon is built by

5. www.OpenRDF.fr
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extending the well-known RDF store Sesame [24] and extends Sesame’s components to manage
domain, spatial and temporal data that is stored in the backend RDBMS.

2.4 Conclusion

In this chapter, we presented the basic concepts related to the notion of trajectory and all the
associated definitions. A trajectory is considered as a spatio-temporal concepts. The notion of
being a temporal concept, proposed by the ISO 19108 standard model, and temporal relation-
ships are based on Allen’s algebra were illustrated. The notion of being a spatial, the OGC
spatial model, specifically its implementation in the management system Oracle databases was
described. Modeling spatio-temporal trajectory could be based on an ontology approach. Finally,
a brief review of the representation, reasoning and querying ontologies aspects was performed.
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3.1 Introduction

In this chapter, we summarize some related work done on trajectory data model from conceptual
models to semantic models considering domain, spatial, temporal or spatio-temporal terms.
Based on an ontology approach for modeling trajectory data, we present some spatio-temporal
ontology for semantic trajectories. This leads to reuse online ontologies and to match separated
ontologies. So, we present ontology matching approach. Finally, we present some work based on
an inference mechanism over ontology models and their complexity.

3.2 Trajectory data modeling approach

3.2.1 Conceptual data model and data mining on trajectories

Mefteh et al. [93] introduced a generic trajectory data model. To develop this model, they
considered trajectories of different application domains. They studied the domain context and

35
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analyzed the captured data to present a conceptual model for trajectories of each application
domain. Then, they considered the common concepts and common features to propose this
generic trajectory model. Our work [136] is based on this generic model. However, Parent et
al. [126] also introduced a conceptual model for trajectories. Their model is an evolution of
the spatio-temporal MADS model [106] to support trajectories. They addressed trajectories as
movements corresponding to semantically meaningful travels (of humans, animals, objects, and
phenomena). Components of a trajectory include the definition of when a trajectory starts,
when it ends, and when it pauses. These components are fixed by the application, based on
semantics given to the trajectories. Therefore, the conceptual model for trajectories supports
these components and provides constructs and rules to use movement data as sets of identifiable
trajectories traveled by application objects.

Parent et al. [126] considered a trajectory as a segment of spatio-temporal path where the
moving object alternatively changes position or stays fixed. They called the former moves and
the latter stops. A stop is an interesting place in which a moving entity has stopped or reduced
significantly its speed for a sufficient amount of time, likely to accomplish some activity. A move

is any subset of an object trajectory between consecutive stops. Thus, a trajectory is a sequence
of moves going from one stop to the next one (or as a sequence of stops separating the moves).
Identifying stops (and moves) within a trajectory is the responsibility of the application. In
Parent et al. [126], the stops and moves are semantically defined as follows.

Definition 4 (Stop) A stop is a part of a trajectory, such that :
– The user has explicitly defined this part of the trajectory ([tbeginstopx, tendstopx]) to represent a

stop.
– The temporal extent ([tbeginstopx, tendstopx]) is a non-empty time interval, and
– The traveling object does not move, i.e. the spatial range of the trajectory for the

([tbeginstopx, tendstopx]) interval is a single point. All stops are temporally disjoint, i.e. the tem-
poral extents of two stops are always disjoint.

Definition 5 (Move) A move is a part of a trajectory, such that :
– The part is delimited by two extremities that represent either two consecutive stops, or tbegin

and the first stop, or the last stop and tend, or ([ttbegin, tend]).
– The temporal extent([tbeginmovex, tendmovex]) is a non-empty time interval, and
– The spatial range of the trajectory for the ([tbeginmovex, tendmovex]) interval is the spatio-

temporal line (not a point) defined by the trajectory function (in fact, it is the polyline built
upon the sample points in the([tbeginmovex, tendmovex]) interval).

Definition 6 (Begin-End) A beginning, ending of a trajectory is a stop where their temporal
extent is a single chronon.

A trajectory design pattern, Figure 3.1, holds object types for representing trajectories and their
Begin, End, Stops (B.E.S) and Moves, where each part contains a set of semantic data. An
object type B.E.S groups begin, end, and stop objects as instances of the same type, because
of their similar features. Each B.E.S object is a simple time interval and a geometry point. A
relationship type TrajComp relates trajectories to their components. Its cardinalities imply that
each component belongs to a single trajectory, and each trajectory has at least two components
Begin and End. The two object types B.E.S and Move are related by two relationship types,
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Figure 3.1 – Trajectory design pattern from Parent et al. [126]

From and To, materializing the fact that each move starts and ends in a stop. In addition to
expressing the internal structure of a trajectory, trajectories are linked to a hook object type
TravelingOT that represents the traveling objects covering the trajectories. B.E.S may be linked
to a hook spatial object type SpatialOT1 that represents the corresponding location in terms of
application objects. The IsIn relationship bears a topological inside constraint. Similarly, moves
may be related to a hook object type SpatialOT2 by another topological inside relationship,
called IsOn, that may be used to model network-constrained trajectories. To evaluate Parent
et al. [126] approach, bird migration monitoring was analyzed to get better understanding of
the bird’s behavior. Scientists tried to answer queries such as : where, why and how long birds
stop along their travel, what activities did they perform during their stops and which weather
conditions did the birds face during their flight.

Based on this conceptual model of trajectories, several studies have been proposed such
as Yan [141], Bogorny [22] and Alvares [7]. Bogorny et al. [22] transformed the conceptual
data model into a trajectory data mining. They implemented three data mining tasks suppor-
ted by their model, as shown in Figure 3.2 : trajectory frequent patterns, trajectory sequential
patterns and trajectory association rules. A sequential pattern is a list of items ordered in time.
A frequent pattern is a set of items, i.e., a set of stops or moves in any order. A trajectory
association rule is an association pattern that is composed by a set of items that correspond to
the antecedent of a rule and a set of disjoint items corresponding to the consequent of the same
rule. Bogorny et al. [22] applied their model on trajectories tourism application.

In Parent et al. [126], patterns had drawbacks when using a relational trajectory model, such
as complex maintenance when upgrading the application (a simple update of the application
to a given point can have an impact in cascade on other functions of the application), and the
application will then be edited in its entirety. Moreover, the functional approach is not suitable
to develop applications managing complex phenomena that are constantly changing.

Etienne [41] proposed an approach to data mining of pairing homogeneous groups of trajecto-
ries to be analyzed by statistical method. This approach extracts trajectories’ spatio-temporal
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Figure 3.2 – Trajectory conceptual modeling to data mining
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Figure 3.3 – Multiple perspective on trajectories

patterns in order to detect abnormal behavior. This research defines tools based on spatial and
temporal measures and fuzzy logic to qualify trajectories. These tools are used over this appli-
cation of maritime traffic. This work is validated using a set of real data from this application.
The developed research allows an operator in maritime surveillance to focus its attention on the
movement of vessels trajectories qualified as unusual.

3.2.2 Semantic trajectory data model

Most of the research on semantic trajectory started from GeoPKDD project [49]. The GeoPKDD
project emphasized the need to address and to use semantic data about moving objects for an
efficient analysis of the trajectory. To continue the investigation on the discovery of knowledge
and exploitation of moving object data, GeoPKDD was followed first by MODAP [98] and more
recently by SEEK [118]. The same community recently presented a survey of the research in
the same area [107]. Among the active initiatives aiming at boosting the research on moving
object modeling, analysis and visualization, a notable contribution includes the COST action
MOVE [99].

Yan [144] presented a semantic trajectory data analysis. He provided a multi-layer trajectory
model with multiple perspectives on trajectories, which integrates three kinds of trajectory data :
raw movement, geographic data and application domain data, as shown in Figure 3.3.

Alvares et al. [7] adopted the conceptual model [126] for enriching trajectories with semantic
geographical information. They applied spatial joins between trajectories and a given set of
regions of interest (ROIs), computing frequent moves between stops and two important trajectory
episodes. Episode is a maximal sub-sequence of a trajectory such that all its spatio-temporal
positions comply with a given predicate that bears on the spatio-temporal positions and/or
their annotations. Thus, a trajectory is segmented into a list of episodes. The scope of Alvares
et al. [7] research is limited to the formal definition of semantic trajectories. Based on the notion
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of episodes model, Guc et al. [57] introduced an extensible trajectory annotation model. Their
model provided two kinds of annotation elements : episodes and trips. Episodes partitioned a
trajectory and described semantically homogeneous sections of the trajectory. Trips are defined
as groups of sequences of episodes on a higher semantic level which pertain to a common aim.

Parent et al. [107] presented a survey focused on semantic trajectories about mobility. They
extended this initial task to cover moving objects’ behaviors, whose discovery represents one of
the most popular uses of mobility data and possibly the ultimate goal of trajectory analyses.

3.2.3 Semantic spatio-temporal trajectory data model

Recently, much research has focused on moving objects databases (MOD) technology, such as a
discrete spatio-temporal trajectory based on moving object database system (DSTTMOD) [95]
and moving objects spatio-temporal (MOST) model [138, 105, 123]. The database representation
of spatio-temporal trajectories still requires integration of semantic-based approaches necessary
for studying of moving objects’ activities in space and time. For the representation and modeling
of semantic trajectories, we can distinguish two different approaches : a traditional one that
includes moving object semantics since the phase of data design, and an a-posteriori approach
in which trajectories are annotated by analyzing their raw features.

The first approach, which adopted by Zheni et al. [146], is based on an algebraic spatio-temporal
trajectory data type (STT) endowed with a set of operations designed as a way to cover syntax
and semantics of a trajectory. The modeling approach represents the concept of space-time
trajectories by a series of connected trips and activities that are the usual primitives used in the
conceptual apprehension of space-time trajectories. Close to this approach is the work of Pfoser
et al. [33], that generates synthetic datasets of semantic trajectories.

The second approach, which can be also referred to semantic of trajectories, is more frequent
in the literature. The resulting representation is compliant to the episodes model defined by
Alvares et al. [7]. Based on that, Yan et al. [141] presented a hybrid spatio-semantic trajectory
model and a computing platform for developing and transforming raw mobility data (GPS) to
meaningful semantic trajectories. For example, they represented a spatio-temporal raw data feed
at different semantically abstracted levels, starting from basic abstractions (e.g. stop, moves) to
enriched higher-level abstractions (e.g. office, shop). Their application concerned daily trips of
employees from home to work and back. Their hybrid model, as shown in Figure 3.4, consisted
of :
– Data model encapsulating the trajectory definitions available from a raw data perspective.
– Conceptual model as a key mid-level abstraction of a trajectory that allows a progressive

abstraction of the raw mobility data.
– Semantic model encapsulating spatio-semantic behavior of the trajectory.
Their trajectory computing platform [141] exploited the spatio-semantic trajectory model and
built trajectory instances of the models at every level (spatio-temporal, structural, semantic)
from large-scale real-life GPS feed. Figure 3.5 shows four layers in their platform, each containing
several techniques for progressive computation of the trajectory instances : data preprocessing
layer, trajectory identification layer, trajectory structure layer and semantic enrichment layer.

The two approaches can be combined by trajectory features processing with contextual infor-
mation, like Yan et al. [142, 143]. The two former steps defined a conceptual semantic trajectory
model to describe a trajectory as a sequence of semantic episodes. This model corresponds
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Figure 3.4 – Hybrid spatio-semantic trajectory model

Figure 3.5 – Spatio-semantic trajectory computing platform
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Figure 3.6 – Logical view of SeMiTri

to an application’s interpretation of trajectories. They developed a framework, called SeMiTri

(Semantic Middleware for Trajectories). Figure 3.6 shows the logical view of this framework.
SeMiTri supports semantic enrichment of raw trajectories, exploiting both geometric properties
and background geographic of a stream of spatio-temporal points. They introduced seman-

tic places as a semantic counterpart of spatio-temporal positions. Thus, they annotated each
spatio-temporal position of a trajectory with links to semantic place objects that the moving
object visited. SeMiTri progressively annotates trajectory’s episodes with three categories of
geographic objects : regions of interest (ROIs) such as park, administrative region and landuse
cells (residential, industrial) ; lines of interest (LOIs) such as jogging path, highway and other
roads ; and points of interest (POIs) such as bar, restaurant or even a big shopping mall. For
example, stop episodes need to be annotated with POIs while move episodes can be integrated
with road networks (LOIs). Finally, both moves and stops are annotated as activities, such as
walking, driving, cycling, and transportation modes, like bus, car, taxi, etc.

Most advances in the research on trajectories and semantics may be broadly classified among
three research areas : spatio-temporal data modeling for the representation of semantic trajec-
tories ; knowledge discovery from data (KDD) for semantic trajectory mining ; and geographic
visualization and visual analytics for semantic trajectory visualization.

3.3 Trajectory ontology approach

3.3.1 Trajectory ontology

To exploit raw trajectories, ontology modeling approach is a well known candidate. Yan et
al. [140] described a framework for modeling and querying of trajectory data. This framework
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Figure 3.7 – Geo-Ontology design pattern for semantic trajectory

relies on the definition of trajectory-related ontologies. Trajectory ontologies are developed for
knowledge discovering with aim to understand moving object’s behaviors and other phenomena.
The work of Yin [147] is focused on activity recognition from trajectory data.

Camossi et al. [25] described a methodology for semantic pattern discovery. This methodology
relies on a top-level ontology for modeling moving object trajectories, namely moving object
ontology (MOO). The authors studied scenario of maritime surveillance in order to detect sus-
picious containerized transportations. In this scenario, they defined a knowledge base for the
domain of maritime containers, namely the maritime container ontology (MCO) [134], and mo-
deled anomalous container patterns that describe suspicious movement behaviors.

3.3.2 Spatio-temporal ontology for semantic trajectory

Using ontologies for spatio-temporal data modeling is a new research field. Several studies inte-
grate spatial domain, however there is no standard representation of spatial and temporal data
in ontologies. In 2007, the Geospatial Incubator Group (GeoXG), a W3C working group, tried
to provide an overview of geospatial foundation ontology to represent geospatial concepts [86].
The result of this work is GeoRSS inspired by GML. The use of GeoRSS in the domain of
ontologies offers the advantage of a simplified spatial representation, nevertheless it tends to
suffer from an overly semantic limitation. Moreover, beyond the formalization of spatial entities,
very little work has been carried out concerning the implementation of spatial reasoning pro-
cedures in Geospatial ontology [82]. Figure 3.7 shows schematic description of a geo-ontology
design pattern for semantic trajectory. This ontology represents a trajectory as a set of segments
which has a starting and ending spatio-temporal point as fix. The authors reused OWL-Time
ontology to express the temporal information associated with a fix and point of interest (POI)
ontology to include geographic data. Moreover, a geo-ontology design pattern for semantic tra-
jectories [70] presented a GeoSPARQL as a common query language for the Geospatial semantic
web to handle and index linked spatio-temporal data. GeoSPARQL is based on OGC [78] with
some adaptations for RDF.
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Figure 3.8 – Ontological infrastructure for trajectories

For spatio-temporal trajectory, Yan et al. [140] used an ontological approach for representing
semantic trajectory. They defined three different ontology modules for representing geometry,
geography and the requirements of the application domain. In their model, the three following
ontologies were combined to provide a semantic infrastructure necessary to describe the semantic
trajectory, as shown in Figure 3.8 :

– The geometric trajectory module describes spatio-temporal features, as a set of structured
trajectories compliant with the model they defined in [126].

– The geography module is linked to a geometric trajectory and application modules, because
each geometric element has a geographical corresponding according to the application domain.
This module constituted of building and places, topography and network relations.

– Application domain module describes all concepts related to the application.

These three component ontologies are integrated into a unique ontology by setting up links bet-
ween them. These links are shown in Figure 3.9 which presents the semantic trajectory ontology
for a traffic management application. For example, the concept Car in the traffic domain ontology
is connected to the concept Trajectory in geometric trajectory ontology by a hasTrajectory

property.

The work of Vandecasteele et al. [132, 133] is based on these modules and who adopted this
approach to detect abnormal ship behavior. Based on these modules, Battle et al. [16] built an
ontology design patterns on semantic trajectories, called Geo-Ontology. In the Geo-Ontology,
the representation of a semantic trajectory is integrating W3C OWL-Time ontology, the point-
of-interest ontology (POI)), domain knowledge and semantic sensor information [96] (W3C SSN-
XG ontology) 6. The authors used their semantic trajectory pattern to annotate two kinds of
databases : trajectories generated by human travelers and by animals. This work lacks semantics
and does not support inference over domain rules to enhance the semantic trajectories.

In [110], Perry et al. presented an upper-level ontology defining a general hierarchy of thematic
and spatial entity classes and associating relationships to connect these entity classes. They
combined concepts and relationships from both, the thematic and spatial dimensions, and showed
how to deal with temporal semantics in their ontology. To represent two-dimensional space and

6. http ://www.w3.org/2005/Incubator/ssn/wiki/Main Page
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Figure 3.9 – Semantic trajectory ontology for a traffic management application

time information in the model, they distinguished entities which persist over time and maintain
their identity through change named continuants, and events that happen and then no longer take
place, called occurrents. The spatial dimension is presented by a spatial region, a coordinate,
and a coordinate system entities. Temporal information is integrated into their ontology by
labeling relationship instances with their valid times. Figure 3.10 shows the ontology-based
model of space, time, and theme. Moreover, the ontology is formalized by RDFS vocabulary and
implemented in a relational database. The main concepts presented in their ontology [109] are :

1. Geographical place representing a geographic feature or a named place.

2. Named place linked to a footprint spatial element to geo reference point, line, or polygon.

3. Dynamic entities representing undefined spatial properties.

4. Entities with static spatial properties referring to buildings, administrations, markets,
universities or a city which are presented by named places entities.

5. Events that are special types of entities, representing occurrences in space and time e.g.
workshop, inauguration of an institute, etc.

However, Boulmakoul [23] proposed a general moving object meta-model in space-time ontology
and event models to structure tremendous data collected data. Their meta-model includes the
hybrid spatio-semantic model proposed by Yan [141] and others like spatial model according to
OGC spatial data model. Their approach was inspired by ontologies, but the resulting system
was database-based. However, in extracting information from the instantiated model during the
evaluation phase, they relied on a pure SQL-based approach.

In [136], we work on the marine mammal tracking with the objective of understanding the be-
havior of the animal. To model semantic trajectories, an ontological approach was defined to
represent trajectory concepts integrated with OWL-Time ontology. In [135], we mapped the tra-
jectory ontology to a spatial ontology based on OGC geometry model. The ontologies constructed
are formalized in RDF and OWL languages.
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Figure 3.10 – Ontology-based model of space, time, and theme

3.4 Reused ontology approach

Ontologies tend to be for many applications, such as information integration, peer-to-peer sys-
tems, electronic commerce, semantic web services, social networks, and so on. However, different
systems may use different ontologies, thus, the use of ontologies does not avoid heterogeneity.
Ontology matching has been used as a solution for the ontology heterogeneity problem. It ad-
dresses the combination of multiple ontologies to enable data reuse and integration. Euzenat et
al. in [42] provided a repository of information devoted to ontology matching. Ontology mat-
ching can be defined as a process of discovering similarities between two ontologies. This process
takes two ontologies as input and returns, as output, a set of correspondences (i.e. an alignment)
between the entities of these ontologies. It reconciles the differences between ontology entities, in
order to facilitate tasks such as information retrieval, information integration, query answering
and navigation on the semantic web. Thus, matching ontologies enables the knowledge and data
expressed in the matched ontologies to interoperate.

Ontology matching can be processed by exploiting a number of different techniques. To pro-
vide a common conceptual basis, researchers have started to identify different types of onto-
logy matching techniques and to propose classifications to distinguish them. Ontology matching
techniques, as shown in Figure 3.11, have generally been developed to operate on database sche-
mas [19], XML schemas [8], taxonomies [111], formal languages, entity-relationship models [34],
dictionaries, and other label frameworks. For example, Abels et al. [2] proposed a classification
that consists of nine matching techniques based on existing literature studies. Another example
is the classification developed by Shvaiko and Euzenat [120]. The categories proposed in [39] are
the following :
– Element-level techniques : consider ontology entities, such as class or properties, and ignore

their relations with other entities. They are usually based on string-based methods, i.e., name
similarity or edit distance[85], (for example“title”and“title”are aligned because they are equal
strings). They are also based on language-based methods, (i.e., tokenisation, lemmatisation,
elimination) and constraint-based methods, (i.e., type similarity, key properties). Furthermore,
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external resources such as WordNet 7 database can be used to find the similarity between
ontology entities. For example, “author” and “creator” are aligned because they are synonyms
in WordNet.

– Structure-level techniques : find alignments by analyzing how ontology entities appear in the
structure by comparing their relation with other entities. Consider combinations of elements,
such as complex schema structure, model-based method (SAT solvers, DL reasoners), graph-
based method (graph homomorphism, path, levels), and taxonomy-based method (taxonomy
structure). For example, “Book” and “Essay” are aligned because they have super classes that
are aligned.

Figure 3.11 – Classification of matching techniques

3.5 Ontology inference

In order to exploit a trajectory ontology, it must be integrated with a reasoning engine. The
purpose of the inference engine is to infer new facts from existing data and defined rules. Then,
the behavior of the moving object can be determined according to the outcome of these rules
and the inference engine.

The work conducted by Baglioni et al. [11, 12] is based on the conceptual model on trajecto-
ries [126]. They represented annotated trajectories in an ontology encompassing the geographical
knowledge and the application domain knowledge. They considered different kinds of stops and
temporal knowledge to distinguish between them. Afterwards, they used ontology axioms to
infer behavior of patterns using Oracle and OWLPrime to test the axioms. Moreover, Perry et
al. in [91] applied an inference mechanism over their ontology. This inference is based on several

7. http ://wordnet.princeton.edu/
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domain specific table functions and only on RDFS rules indexes. They used a military appli-
cation domain and applied complex queries requiring sophisticated inference methods. In their
implementation, they used Oracle DBMS and demonstrate the scalability of their approach with
a performance study using both synthetic and real-world RDF datasets.

To implement the ontological framework of Yan et al. [140] cited in Sect. 3.3.2, the authors relied
on database technology enriched with reasoning capabilities, Oracle Semantics with OWLPrime
for ontology representation, querying and inferencing. The ABox of the ontology is containing
the ontology instances. However, Vandecasteele et al. [132] proposed an ontology with a spatial
dimension. The prototype system aims to analyze ship positions and characterize their behavior
according to rules defined by experts. These rules are defined using SWRL language and executed
by an inference mechanism. They provided a graphical interface to display the results of the
inferences obtained.

Van Hage et al. [131] presented an approach for modeling and analyzing ship trajectories for
early time awareness for maritime surveillance and security. This approach takes into account
semantics of trajectories and takes as inputs the marine automatic identification system (AIS)
as messages sent by ships. They built trajectories and segment them by detecting the significant
events that represent changes in ship behavior, such as speeding up, anchored and stopped.
Reasoning rules for event labeling are specified in SWI-Prolog, and the geographical knowledge
relies on the GeoNames 8 ontology. Moreover, Randell et al. [113] described an interval logic for
reasoning about space using a simple ontology that defines functions and relations for expressing
and reasoning over spatial regions.

In [135], our presented framework contains domain, trajectory, spatial and time ontologies. We
combined these ontology by creating links between their concepts. Focusing on the inference, we
defined domain, temporal and spatial rules. We built an inference methodology to execute these
rules over the raw trajectories.

3.6 Complexity of the ontological inference

Ontology languages such as OWL are being widely used as the ontology data engineering. With
the proliferation of the Semantic Web, more and more large-scale ontologies are being developed
in real-world applications to represent and integrate knowledge and data. There is an increasing
need for measuring the complexity of these ontologies in order to better understand, maintain,
reuse and integrate them. In general, the file size, the number of classes and properties, used
in the ontology, effect the inference complexity. Zhang et al. [145] proposed ontology metrics
to measure the design complexity of ontologies which also effect the inference complexity. They
classified the metrics into two sets : one for measuring the overall design complexity of an ontology
(ontology-level metrics), and the other for measuring the complexity of internal structure (class-
level metrics).

A key issue in semantic reasoning is the computational complexity of inference tasks on expressive
ontology languages such as OWL DL and OWL 2 DL. Theoretical works have established worst-
case complexity results for reasoning tasks for these languages. Kang et al. [77] identified a
number of metrics that can be used to effectively predict reasoning performance. A set of 8
ontology metrics are defined with the aim of measuring different aspects of the design complexity

8. www.geonames.org
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of OWL ontologies. These metrics provide additional insights into ontology engineering and
maintenance. These metrics are defined on a graph representation of an ontology and are used
as a set of features for predicting reasoner performance. They are divided into the two categories
defined by Zhang et al. [145]. In addition to these 8 metrics, Kang et al. [77] defined some other
metrics that measure different aspects : an ontology’s size and structural characteristics. The
metrics are defined on the asserted logical axioms in an ontology and they are divided into
two more categories : anonymous class expressions and properties. The authors hypothesized
that different metrics may have different effects on ontology classification performance. Feature
selection is a very widely-used techniques in data pre-processing to remove irrelevant features.
A number of feature selection algorithms are applied to identify and quantitatively study the
ontology metrics that have a positive impact on the performance.

3.7 Conclusion

In this chapter, we discussed related work. In reality, there is also the opportunity to complete
all the definitions associated with the notion of trajectory. We presented the generic trajectory
model proposed by Wafa Mefteh. A trajectory is seen as a set of spatio-temporal sequences.
Literature semantic trajectory models was reviewed, and the spatio-temporal semantic models.
We present the formalism of ontologies. Again, we presented work related to an ontological
representation and spatio-temporal trajectory semantics. The last three sections discuss issues
related to integration separated ontologies, possible modes of inference, as well as metrics for
assessing the complexity of an ontology.
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In this part, we explain our framework, modeling and reasoning aspects. We represent a general
spatio-temporal trajectory data model. Moreover for efficient interpretation of this model, we
associate it with an ontology inference mechanism to consider its high-level layers.

Firstly in Chap. 4, we introduce a generic trajectory model. This model contains of three sepa-
rated models : a mobile object domain, a trajectory domain model and a semantic annotation
model. We connect these models to have a semantic trajectory domain model. Enriching tra-
jectories with semantic annotations is to enable the desired interpretations of movements. From
these semantic trajectories, we lock forward to extract knowledge about movements’ charac-
teristics, in particular the behavioral patterns of moving objects. Moreover, a trajectory is by
definition a set of spatio-temporal sequences which trace movements of a moving object in a
specific place during a given time interval. Then, space and time models can be used to enrich
the description of the concepts in the trajectory modeling approach, to represent their spatial
and temporal localization. We reuse on-line time and space models and connect them with our
model.

Our main objective is to extract the possible knowledge from our framework to answer user
queries. Therefore secondly in Chap. 5, we introduce an inference mechanism as a software
application derives new knowledge based on an existing one. This mechanism is based on data and
additional aspects called rules. We detail the inference layers, inference rules and the mechanism
of the inference engine. Meanwhile, we give examples of some rule languages and examples of
inference engine systems. Then to apply the inference mechanism over our trajectory model, we
introduce domain, spatial and temporal rules and integrate with with our modeling approach.
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4.1 Introduction

In this chapter, we introduce a generic trajectory model on which this work is based. This model
contains of three separated models : a mobile object domain, a trajectory domain model and
a semantic annotation model. We connect these models to have a semantic trajectory domain
model. Enriching trajectories with semantic annotations is to interpret these movements. From
these semantic trajectories, we lock forward to extract knowledge about movements’ characte-
ristics, in particular the behavioral patterns of moving objects. Moreover, spatial and temporal
parts form an implicit background of trajectory model. Then, space and time models can be used
to enrich the description of the concepts in the trajectory modeling approach and to represent

55
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their spatial and temporal localizations. We reuse online time and space models and connect
them with our model.

4.2 Trajectory model

Trajectory data are captured as a series of points coming from different sensors related to
moving objects. Understanding, analysis and modeling this data is fundamental for studying
moving objects trajectories. Trajectory modeling is proposed for querying moving objects.

In our previous work, we proposed a methodology for modeling trajectory data [94]. This me-
thodology focused on two real cases : boats and plans trajectories. For each case, we define a
context, data capture, an analysis process of these data, and then we proposed a UML domain
model. From these models, we show that it is possible to define a trajectory pattern in a form
of a generic trajectory model.

4.2.1 Mobile object domain model

Mobile objects are considered as a series of moving points in 3D dimensions. Figure 4.1 presents
the mobile object domain model. Every Mobile Object is equipped with one or more Sensor

objects. The Deployment describes the spatio-temporal relationships between the sensor and the
mobile object.

Figure 4.1 – Mobile object domain model

4.2.2 Trajectory domain model

The trajectory domain model defines trajectory components independently of any application
domain. This high-level data model can be adapted to maintain additional requirements and
can be used in many moving object applications. A trajectory is therefore formed by spatial,
temporal and spatio-temporal components. More precisely, a trajectory consists of a series of
spatio-temporal points representing movements of a moving object.

The class diagram 4.2 presents the trajectory domain model. Table 4.1 provides descriptions and
logical forms of the classes of this model. Coordinates of each class are represented in the logical
forms, like in Alvares et al. work [7].
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Table 4.1 – Trajectory domain model dictionary

Concept Description Logical form
Position spatio-temporal point supports an exploration of

the positioning of a moving object at an instant of
time. It is characterized by its spatial coordinates
(xi, yi, zi) denoting a position in the 3D space,
and (ti) holds a time interval of a capture

pi = (xi, yi, zi, ti)

Sequence spatio-temporal interval representing a capture
between starting and ending points

S = 〈pi, pj〉

GeoSequence spatial part of a sequence S = 〈pi, pj〉
Specific
Sequence

metadata associated of a capture S = 〈pi, pj〉

Trajectory a set of sequences of the spatio-temporal path co-
vered by a moving object

T = 〈S1, ..., Sn〉

xfgfxgh
Figure 4.2 – Trajectory domain model
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4.2.3 Semantic annotation model

Semantic annotation model considers users’ needs into the designed model. Figure 4.3 represent
the components of the semantic annotation model. It is organized as general activities and a
hierarchy of basic activities.

Figure 4.3 – Semantic annotation model

4.2.4 Semantic trajectory domain model

The goal of applications using trajectories is to meet as much as possible the needs of users.
These requires :

1. A thorough knowledge of the application domain ;

2. Formalization of this knowledge ;

3. Integration of the knowledge in the application.

Semantic integration is an active area of research in databases, information-integration or onto-
logies. A brief survey by Natalya [101] provided approaches to semantic integration produced by
various projects between models. This survey discussed techniques for finding correspondences
between models, declarative ways of representing these correspondences, and use of these cor-
respondences in various semantic-integration tasks. Other approaches in semantic integration as
statistical methods [62] or probabilistic [88] are also interesting. A semantic trajectory model is
proposed by Parent et al. in [107].

A semantic data model is a result of integrating semantic layers to a data model. In this work,
we suppose that semantic layers can be defined using semantic annotations. These requires :

1. Constructing trajectories from movements tracks ;

2. Enriching trajectories with semantic annotations to enable the desired interpretations of
movements ;

3. Analyzing semantic trajectories and extracting knowledge about movements’ characteris-
tics, in particular the behavioral patterns of the moving objects.
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The logical form of a semantic trajectory is ST = 〈S′1, S′2, ..., S′m〉, where S′i = (S,A) is a tuple
defining a sequence (S) and its possibly empty associated activity (A). Figure 4.4 represents the
semantic trajectory domain model where the trajectory and sequence concepts have, respectively,
activity and base activity.

Figure 4.4 – Semantic trajectory domain model

4.3 Trajectory ontology

UML class diagram has limitations related to additional requirement constraints needed and
imposed by the semantic data definitions. There are several approaches that fully meet the
semantic integration problem [101, 18]. In this work, we propose a modeling approach based
on ontologies. The class diagram of the trajectory domain model, Figure 4.4, is the starting
point for the construction of the declarative part of the trajectory ontology. The concepts of
this ontology keep the same definition as the trajectory domain model classes. In the following
sections, we detail the different parts of the global trajectory domain model.

4.3.1 Mobile object domain ontology

In Mobile Object Domain ontology (MOD), each mobile object has a sensor to capture data.
Axioms 4.1 - 4.2 define the properties of the MOD ontology. Figure 4.5 presents the MOD
ontology as an upper layer describes the mobile object. The concepts of this ontology keep the
same definition as the mobile object domain model classes. Table 4.2 details the relationships
between the concepts of the MOD ontology. Later, we can extend the concepts and relationships
of the MOD to take into account more information.

hasSensor ⊆MobileObject× Sensor (4.1)

hasDeploy ⊆MobileObject×Deployment (4.2)
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Deployment

Sensor

Mobile 
Object

Thing

hasSensor

hasDeploy

Moving Object Domain Ontology

rdfs:subClassOf

owl:ObjectProperty

is-a

Figure 4.5 – Overview of the mobile object domain ontology

Table 4.2 – Object properties of the mobile object domain ontology

Object property Description
hasSensor equips every moving object with a sensor
hasDeploy describes the spatio-temporal relationships between the sensor

and the moving object
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4.3.2 Trajectory domain ontology

To define the trajectory domain ontology, we transform this diagram to an OWL ontology called
Trajectory Domain ontology (TD). Figure 4.6 presents an extract of it. Besides these concepts,
Table 4.3 details the object properties between the concepts of the TD ontology.

An encoded formalization for the concepts and relationships of the TD ontology is given by Axioms
4.3 - 4.10. A sequence is a spatio-temporal interval. Each sequence could be a GeoSequence or a
Specific Sequence, as forced by Axiom 4.3. Axioms 4.4 - 4.6 enforce that every GeoSequence

has a startPosition and endPosition. Axioms 4.7 - 4.8 enforce that every Sequence has a
startDate and endDate related to Instant. Axioms 4.9 - 4.10 enforce that every sequence
belongs to a trajectory and every trajectory contains at least one sequence.

Sequence

Position

Trajectory

Specific
Sequence

GeoSequence

Thing

Instant

startDate

endDate

rowl:ObjectProperty

rdfs:subClassOf blank node

Trajectory Domain Ontology

Figure 4.6 – Overview of the trajectory domain ontology

Table 4.3 – Object properties of the trajectory domain ontology

Object property Description
startPosition, endPo-
sition

represent the starting and ending coordinate of a GeoSequence

startDate, endDate represent the starting and ending date of a sequence

Sequence ⊆ GeoSequence ∪ Specific Sequence (4.3)

GeoSequence ⊆ ∃startPosition ∩ ∃endPosition (4.4)

startPosition ⊆ GeoSequence× Position (4.5)

endPosition ⊆ GeoSequence× Position (4.6)

startDate ⊆ Sequence× Instant (4.7)
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endDate ⊆ Sequence× Instant (4.8)

isSequnceOf ⊆ Sequence× Trajectory (4.9)

isTrajectoryOf ⊆ Trajectory × Sequence (4.10)

4.3.3 Semantic domain ontology

Figure 4.7 displays the Semantic Domain (SD) ontology. An Activity has one or different
BaseActivity. An encoded formalization for the concepts of the SD ontology is given by Axioms
4.11 - 4.12.

BaseActivity ⊆ Activity (4.11)

∀b.BaseActicity(b)→ ∃>ja.isBaseActivity(b, a) ∧Activity(a) (4.12)

Activity

BaseActivity

rdfs:subClassOf

is a

Semantic Domain Ontology

Thing

is a

Figure 4.7 – An extract of the semantic domain ontology

4.3.4 Semantic trajectory domain ontology

Figure 4.8 presents the Semantic Trajectory Domain (STD) ontology, called owlSemantic-

Trajectory. This ontology contains the three models : mobile object domain ontology, trajectory
domain ontology and semantic domain ontology, where :

1. Each trajectory is a trajectory of a mobile object, formally in Axiom 4.13 ;

2. Each trajectory has one or more activity, fomally in Axioms 4.14 - 4.15 ;

3. Each sequence has one base activity, formally in Axioms 4.16 - 4.17.
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hasTrajectory ⊆MOD : MobileObject× TD : Trajectory (4.13)

TD : Trajectory ⊆ ∃TD : hasActivity (4.14)

TD : hasActivity ⊆ TD : Trajectory × SD : Activity (4.15)

TD : Sequence ⊆ ∃SD : hasBaseActivity (4.16)

hasBaseActivity ⊆ TD : Sequence× SD : BaseActivity (4.17)

Activity

Base
Activity

Sequence

Position

Trajectory

Specific
Sequence

GeoSequenceDeployment

Sensor

Mobile
Object

Thing

is:a

is:a

is:a

is:a is:a

is:ais:a

hasTrajectory hasActivity

hasSensor

hasDeploy

Moving Object Domain Ontology Trajectory Domain Ontology

rowl:ObjectProperty

rdfs:subClassOf

hasBaseActivity

Semantic Annotation ontology

startPosition

endPosition

Instant

startDate

endDate

blankdnode

Figure 4.8 – An extract of the semantic trajectory domain ontology, owlSemanticTra-
jectory

4.4 Reusing other ontologies

By definition, a trajectory is a set of spatio-temporal concepts. Therefore, our ontology owlSe-

manticTrajectory, presented in Figure 4.8, is formed by these types of concepts. To achieve
a complete model, we must consider for each type of concept the ability to connect to an exis-
ting ontology model approach. Space and time models can be used to enrich the description of
the concepts in the trajectory ontology to represent their spatial and temporal localization. So,
we need a spatial and temporal models in order to query trajectories by their spatio-temporal
positions. We could answer such as the following queries :

1. Activity of a moving object in a given point ;

2. Activity of a moving object at a specific speed during a given time ;

3. Activity performed during a given time interval in a specific place.
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4.4.1 Time ontology

Representing temporal concepts and temporal relationships is also a well researched topic. The
requirements of an ontology of time highlight the temporal concepts : instant and interval.
The identification of temporal relationships leads to consider Allen temporal algebra [6].

In [108], Peralta et al. analyzed and tested different temporal ontologies for reusing objective.
In particular, Simple Time Ontology 9 is a mechanism to support portable ontologies Onto-

lingua [130] and other large ontologies such as WordNet [50], upperCyc [97], SUMO [100] and
LKIF-Core ontology [66]. The common point among these ontologies is the theory of Allen
algebra. However, there is a lack of the structure of the temporal concepts in these ontologies
which makes them difficult to be reused. The Simple Time Ontology has a structured concepts
of time, but lack of documentation.

The OWL-Time ontology 10 [65] is developed by the World Wide Web Consortium (W3C). This
ontology has a precise specification on temporal concepts and relationships as defined in the
theory of Allen, formalized in OWL. Therefore, it is a better candidate for our model as a
reused temporal ontology. An extract of the declarative part of this ontology is shown in Fig. 4.9
described in detail in [74].

TimeZone Instant

TemporalEntity ProperIntervalInterval

January

DurationDescription

DateTimeDescription

Thing

TemporalUnit

DateTimeInterval

DayOfWeek

Year

is-a

is-a

is-a

is-a

is-a

is-a

is-a

is-a
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Figure 4.9 – A view of OWL-Time ontology

4.4.2 Spatial ontology

The requirements of an ontology of space highlight spatial concepts, such as point, line and
polygon concepts and others. The identification of spatial relationships leads to consider spa-
tial relationships : Equals, Within, Touches, Disjoint, Intersects, Crosses, Contains

and Overlaps.

The standard OGC OpenGIS [75] presents spatial objects and functions over these objects. This
standard contains a precise definition of spatial classes and reference systems. In our approach,

9. Simple Time Ontology in http://ontolingua.stanford.edu
10. http://www.w3.org/2006/time

http://ontolingua.stanford.edu
http://www.w3.org/2006/time
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we rewrite the OGC geometry object model (Figure 2.5) in a UML class diagram, then we trans-
form the latter into a formal ontology. We call the resulting spatial ontology owlOGCSpatial.
Figure 4.10 presents an extract of this ontology.
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Figure 4.10 – A view of owlOGCSpatial ontology

4.4.3 Matching trajectory ontology and time/spatial ontologies

4.4.3.1 Matching trajectory and time ontologies

In the OWL-time ontology, we are mainly interested in the ProperInterval and Instant concepts
and the two properties hasBeginning and hasEnd between them. We defined a trajectory on-
tology (Figure 4.8) where a Sequence is a temporal interval having beginning and ending time.
To meet these requirements, we need to connect trajectory and time ontologies by finding the
alignment between them. Table 4.4 presents the alignment concepts and relationships between
trajectory domain ontology and OWL-Time ontology. The concept Sequence from the trajec-
tory domain ontology is connected to ProperInterval from OWL-Time ontology. Then, the
properties of the latter are visible and available for the first.

Table 4.4 – Matching trajectory and time ontologies

Trajectory ontology OWL-Time ontology
Sequence ProperInterval
startDate hasBeginning
endDate hasEnd

4.4.3.2 Matching trajectory and spatial ontologies

We defined a trajectory ontology (Figure 4.8) which has to take into account that a Sequence

has spatial coordinates. To meet these requirements, we need to connect trajectory and spatial
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ontologies. Table 4.5 presents the connected concepts between trajectory domain ontology and
owlOGCSpatial ontology. We connect the Position to Point. As the Sequence has a starting
and ending position, we connect it to Line.

Table 4.5 – Matching trajectory and spatial ontologies

Trajectory ontology owlOGCSpatial ontology
Sequence Line
Position Point

4.5 Conclusion

In this chapter, we explained the design of our trajectory model. The concepts and the relation-
ships between the concepts were defined. To meet the semantic trajectory notion, we presented a
modeling approach based on an upper trajectory ontology. This ontology contains of three sepa-
rated ones : 1) a mobile object model, 2) a trajectory model presented as a set of spatio-temporal
sequences and 3) a semantic annotation model which is dedicated to the description the activi-
ties carried out by a moving object while traveling. The three basic models are then collected
in a semantic trajectory model. This modeling approach takes into account the temporal and
spatial dimensions. So, we reused the W3C OWL-Time ontology and owlOGCSpatial ontology
for time and space models, respectively. We match the trajectory ontology with the time and
spatial ontologies. The objective from these spatio-temporal trajectories is to extend knowledge
about moving object movements’ characteristics, in particular the behavioral patterns.
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Trajectory ontology inference
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5.1 Introduction

We introduced our framework in Chap. 4, called owlSemanticTrajectory in Sect. 4.3, containing
and connecting three separated models : mobile object domain ontology, trajectory domain
ontology and semantic annotation ontology. We detailed the concepts and the relationships
for each ontology. In this chapter, our objective is to extract all the possible knowledge from
our framework. Therefore, we need to integrate these concepts and relationships of the three
ontologies in an inference mechanism. This mechanism is a software application that extends
knowledge based on an existing model. The inference mechanism is based on data and on some
additional information defined in an ontology, called rules. Data should be populated with
the same structure of our model owlSemanticTrajectory. We detail the ontology inference
mechanism in Sect. 5.2. We introduce rules on which the inference mechanism is based. These
rules are related to owlTime and owlOGCSpatial ontologies in Sect. 5.3.

67
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5.2 Ontology inference

Inferences over ontologies and individuals can be made to extract semantics in the Web Ontology.
Inferencing is the ability to make logical deductions based on data and on some additional
information defined in an ontology. This additional information is in the form of a vocabulary,
e.g., a set of rules or rulebase. Thus, inference engines, also called reasoners, are software
applications that derive new pieces of knowledge based on previous ones.

5.2.1 Ontology inference layer

Ontology Inference Layer (OIL) is a proposal for a web-based representation and inference layer
for ontologies. OIL [71] unifies three important aspects provided by different communities, as
shown in Figure 5.1 :

– Description logics [10] are the formal semantics and efficient reasoning support. OIL inherits
from Description Logic its formal semantics and the efficient reasoning support developed for
these languages ;

– Frame-based systems are the central modeling primitives of predicate logic. Their central
modeling primitives are classes (i.e., frames) with certain properties called attributes. A frame
provides a certain context for modeling one aspect of a domain. Therefore, OIL incorporates
the essential modeling primitives of frame-based systems into its language. OIL is based on
the notion of a concept and the definition of its superclasses and attributes. Relations can also
be defined not as attributes of a class, but as independent entities having a certain domain
and range ;

– Web standards are a standard proposal for syntactical exchange notations as provided by the
Web community. RDF and RDFS are the candidates for a web-based syntax for OIL.

Figure 5.1 – The three aspects for ontology inference layer

A simple example may help. The data set to be considered may include the relationship (Flipper
is-a Dolphin). An ontology may declare that “every Dolphin is also a Mammal”. This means that
the Semantic Web program understanding the notion of “X is also Y” can add the statement
(Flipper is-a Mammal) to the set of relationships, although that was not part of the original
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data. Another simple example, if we know that John is the father of Mary, we would expect a
’yes’ if we query whether John is the parent of Mary. The parent relationship is not asserted,
but we know from the ontology example that fatherOf is a sub-property of parentOf. If ’John
fatherOf Mary’ is true, then ’John parentOf Mary’ is also true.

5.2.2 Ontology rules

A semantic reasoner, reasoning engine, rules engine, or simply a reasoner, is a piece of software
able to infer logical consequences from a set of asserted facts or axioms. The notion of a semantic
reasoner generalizes that of an inference engine, by providing a richer set of mechanisms to work
with. The inference rules are commonly specified by means of an ontology language, and
often a description language. Rules help users to create a repository of knowledge base which
are executable. Rules produce new type assertions and new property assertions. In logic, a rule

of inference (also called a transformation rule) is a function from sets of formulae to formulae
based on IF-THEN pattern. The argument is called the premise set (or simply premises) and
the value of the conclusion. They can also be viewed as relations holding between premises and
conclusions, whereby the conclusion is said to be inferable (or derivable, or deducible) from the
premises. If the premise set is empty, then the conclusion is said to be a theorem or axiom of
the logic. Rules of inference can be in a form ”If p then q” or in a form ”p”, and returns the
conclusion ”q”. A rule is valid with respect to the semantics of classical logic (as well as the
semantics of many other non-classical logics), in the sense that if the premises are true (under
an interpretation), then the conclusion is true. Rules must be distinguished from axioms of a
theory. In terms of semantics, axioms are valid assertions and usually regarded as starting points
for applying rules and generating a set of conclusions. In another words, rules are statements
about the system, axioms are statements in the system. Finally, a rule is identified by three
parts :
– An IF side pattern for antecedents ;
– An optional filter condition that further restricts the subgraphs matched by the IF side pat-

tern ;
– A THEN side pattern for consequent.

5.2.2.1 Logical rule formalization

Logically, we represent a rule as L. Based on the dictionary Table 6.1, a rule is represented by
antecedents, filters and a consequent, as in Axiom 6.1. In Axiom 6.2, each antecedent represents
a property (A) for a concept, or a relationship (R) or OWL axiom (X ) between two concepts,
or between a concept and a defined variable. A rule has a set of filters as in Axiom 6.3. Each
filter is applied over a defined variable. A rule has one consequent. A consequent, Axiom 6.4,
asserts new relationship to a concept or between two concepts.

LI ⊆ (Antecedent× {Filter} × Consequent) (5.1)

Antecedent ⊆ ((Ω ∧ Type ∧ (Ω ∪ Type ∪ V ariable))× {Antecedent}) (5.2)

Filter ⊆ ((V ariable ∧Operator ∧ B)× {Filter}) (5.3)

Consequent ⊆ (Ω ∧ Type ∧ (Ω ∪ Type)) (5.4)

Type ⊆ (X I ∪ AI ∪RI) (5.5)
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Operator ⊆ (> ∪ < ∪ = ∪! = ∪ <> ∪ >= ∪ <=) (5.6)

V ariable : V1, V2, ..., Vz for each variable (5.7)

5.2.2.2 Integration rules with ontologies

According to the Semantic Web in Figure 2.6, rules are on the top of an ontology. A Web rule lan-
guage should be useful to express different kinds of rules :“standard-rules”, for chaining ontologies
properties, such as the transfer of properties from parts to wholes, “bridging-rules” for reasoning
across domain, “mapping rules” between Web ontologies for data integration, “querying-rules”
for expressing complex queries upon the Web, “meta-rules” for facilitating ontology engineering
(acquisition, validation, maintenance) [44].

One important use case for combining rules and ontologies is an ontology alignment, or in general
data integration from different data sources. The current status of the Semantic Web standardi-
zation effort is specifying standards for ontology and rules layers and how to combine those two
layers. The Ontology Layer has reached a certain level of maturity with W3C recommendations
such as RDF and OWL, current interest focuses on the Rules Layer. Ontologies are treated as
external sources of information, which are accessed by rules that also may provide input to the
ontologies. The realization of reasoning with rules and ontologies affects basically four compo-
nents of the so-called “Semantic Web layer” in Figure 2.6 : RDF, RDFS, Ontology Layer, and
Rules Layer. Whereas RDF, RDFS, and OWL are not yet completely clear where and how to
fit in rules, possibly involving non-monotonicity, preferences, or other expressive features. This
is a limitation of OWL related to the absence of syntactic structures for rule creation. However,
these structures enable reasoning and deduction of new facts from information contained in a
knowledge base.

Rules and ontologies represent two main components in the Semantic Web vision which are ex-
pected to tightly interplay for making this vision a reality. The integration of rules and ontologies
is currently under investigation, and many proposals in this direction have been made [47]. Eiter
et al. [38] sited two strategies for combining rules as in logic programming and ontologies forma-
lized in classical logic. In the first strategy, rules are introduced by adapting existing semantics
for rule languages directly in the Ontology Layer. W3C established Rule Interchange Format
(RIF) and Semantic Web Rule Language (SWRL) [69]. Consequently, Horrocks [68] proposed a
creation of SWRL that combines OWL DL and RuleML. Unlike OWL, SWRL only allows the
addition of relationships and existing properties if they meet the rule. In addition to the OWL
predicates, SWRL has supplementary “built-in” functions. These functions extend the initial
OWL capabilities ; in particular they enable string comparisons and calculations.

In the second strategy, integration of ontologies and rules is called hybrid approach in which
the predicates of rules and ontology are kept strictly separate and only communicate via a “safe
interface”. A natural choice of rule languages relevant for this integration are those originating
from logic programming and non-monotonic reasoning, in particular languages which are based
on answer-set programming paradigm [13]. The latter paradigm is a way to realize the Seman-
tic Web Rules Layer. Answer-set programming has its roots in the seminal work by Gelfond
et al. [48], who presented a semantics for logic programs with negation as failure and strong
negation. This inherent nondeterminism can be exploited to represent different solutions to a
problem in the answer sets of a logic program, as in [87]. Answer-set programming [13] plays a
central role in the Rules Layer, while OWL/RDF flavors would keep their purpose of description
languages, not aimed at intensive reasoning jobs, in the underlying Ontology Layer.
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5.2.2.3 Rule languages : examples

SWRL (Semantic Web Rules Language) is a proposed language for the Semantic Web that can
be used to express rules as well as logic, combining OWL with a RuleML sublanguages of the
Rule Markup Language. A SWRL ontology is composed of ordinary OWL axioms and SWRL
rules. The rule consists of antecedents and consequents, which both consist of lists of atoms.
Since SWRL is an extension of the OWL ontology language, it is restricted to unary and binary
DL-predicates. Usually, SWRL rules are part of an OWL ontology encoded in XML or in abstract
syntax. The SWRL rules work only on OWL ontologies and are not designed to operate on RDF
triples. The proposed rules are of the form of an implication between an antecedent (body) and
consequent (head).

The following SWRL rule to assert that the combination of the hasParent and hasBrother
properties implies the hasUncle property. SWRL syntax is in Code 5.1.

Man( ?x) ∧ hasBrother( ?x, ?y) ∧ hasChild( ?y, ?z) -> Uncle( ?x, ?z)

Some SWRL rules can be encoded in DL expression. Description logic (DL) is a family of formal
knowledge representation languages. DL is used in artificial intelligence for formal reasoning
on the concepts of an application domain. It is of particular importance in providing a logical
formalism for ontologies and the Semantic Web. Then, we do not need to express a rule in SWRL
if we are able to express it in DL. For example, the DL expression for the previous rule is :

Man u ∃hasBrother.∃hasChild.> v Uncle

Datalog [37] is a nonprocedural query language based on the logic-programming language Pro-
log. A user describes the information desired without giving a specific procedure for obtaining
that information. The major difficulties in the representation is that in the Datalog facts the
attributes are not named. A rule has the following form <head> :-<body> ; Head is a single
predicate and the body is a list of predicates. For example, the Datalog for the previous rule is :

Uncle(x,z) :- Man(x), hasBrother(x,y), hasChild(y,z)

1 rule ::= ’( antecedent -> consequent )’

2 antecedent ::= ’Antecedent( atom )’

3 consequent ::= ’Consequent( atom )’

4

5 atom ::= description ’(’ i-object ’)’

6 | dataRange ’(’ d-object ’)’

7 | individualvaluedPropertyID ’(’ i-object i-object ’)’

8 | datavaluedPropertyID ’(’ i-object d-object ’)’

9 | sameAs ’(’ i-object i-object ’)’

10 | differentFrom ’(’ i-object i-object ’)’

11 | builtIn ’(’ builtinID { d-object } ’)’

12

13 builtinID ::= URIreference

Code 5.1 – SWRL syntax

Notation3 (N3) is a language for RDF and as a rules language for the Semantic Web. N3 allows
declarations of variables. The N3 rule engine is a forward chaining reasoner operating with such
rules. Rules may have full N3, even with nested graphs, on both sides of the implication. This
gives a form of completeness as rules can generate rules. When used as a rule language on RDF
alone, N3 can of course be constrained so that there is no nesting of graphs. Then N” syntax for
the rule example is as the following :
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Figure 5.2 – High-level view of an inference engine

?x hasType ?Man . ?x hasParent ?y . ?y hasBrother ?z . => ?x hasUncle ?z .

5.2.3 Inference engine

An inference engine is a tool to apply logical rules to the knowledge base and deduce new
knowledge. This process would iterate as each new fact in the knowledge base could trigger
additional rules in the inference engine. Figure 5.2 shows a high level view of an inference engine.
Rules are stored in a Production Memory and the facts that the inference engine matches against
are kept in the Working Memory. Facts are asserted into the Working Memory where they may
be modified or retracted. A system with a large number of rules and facts may result in many
rules being true for the same fact assertion ; these rules are said to be in conflict. The Agenda
manages the execution order of these conflicting rules using a Conflict Resolution strategy.

The inference engine can be described as a form of finite state machine with a cycle consisting
of three action states : match rules, select rules, and execute rules [122]. In the first state, match
rules, the inference engine finds all of the rules that are satisfied by the current contents of the
data store. When rules are in the typical condition-action form, this means testing the conditions
against the Working Memory. The found rule matchings are all candidates for execution : they
are collectively referred to as the conflict set. Note that the same rule may appear several times
in the conflict set if it matches different subsets of data items. The pair of a rule and a subset
of matching data items are called an instantiation of the rule. The inference engine then passes
along the conflict set to the second state, select rules. In this state, the inference engine applies
some selection strategy to determine which rules will actually be executed. The selection strategy
can be hard-coded into the engine or may be specified as part of the model. In the larger context
of Artificial Intelligence, these selection strategies as often referred to as heuristics. Finally the
selected instantiations are passed over to the third state, execute rules. The inference engine
executes or fires the selected rules, with the instantiation’s data items as parameters. Usually the
actions in the right-hand side of a rule change the data store, but they may also trigger further
processing outside of the inference engine. Since the data store is usually updated by firing rules,
a different set of rules will match during the next cycle after these actions are performed. The
inference engine then cycles back to the first state and is ready to start over again. This control
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mechanism is referred to as the recognize-act cycle. The inference engine stops either on a given
number of cycles, controlled by the operator, or on a quiescent state of the data store when no
more rules match new data [55].

5.2.3.1 Types of inference engine

There are two types of inference engine : forward chaining and backward chaining :
– Forward chaining engine starts with the available data and uses inference rules to extract

more data until a goal is reached. An inference engine using forward chaining searches the
inference rules until it finds one where the antecedent (If clause) is known to be true. Then, it
can conclude, or infer, the consequent (Then clause), resulting as new information to its data.
This cascade of rule firings continues until no more rules can fire, as shown in Figure 5.3. As
the data determines which rules are selected and used, this method is also called data-driven.
Once the inference phase is completed the inference graph will act as if it was the union
of all the statements in the original model together with all the statements in the internal
deductions graph generated by the rule firings.
The basic algorithm for many popular rule engines named “RETE algorithm” [46]. This algo-
rithm is orientated to scenarios where forward chaining and ”inferencing” is used to calculate
new facts from existing facts, or to filter and discard facts in order to get to some conclusion.
The Rete Match Algorithm is an efficient pattern method algorithm for implementing pro-
duction rule systems and for comparing a large collection of patterns to a large collection of
objects. It finds all the objects that match each pattern. The Rete algorithm was designed by
Dr Charles L. Forgy’s Ph.D. Thesis.

– Backward chaining engine starts with a list of goals (or a hypothesis) and works backwards
from the consequent to the antecedent to see if there is data available that will support any
of these consequents. An inference engine using backward chaining would search the inference
rules until it finds one which has a consequent (Then clause) that matches a desired goal. If
the antecedent (If clause) of that rule is not known to be true, then it is added to the list of
goals. As the list of goals determines which rules are selected and used, this method is also
called goal-driven inference, or hypothesis-driven, because inferences are not performed until
the system is made to find a particular goal or question.

5.2.3.2 Inference engine systems : examples

There are many inference engines such as Jess 11, Pellet 12, RacerPro, Jena 13, FaCT++ 14, Drools
and Oracle engine [103], etc. We study some of them.

Jena [79] is a Java framework for Semantic Web Applications. In addition to providing an API
for RDF, RDFS and OWL, it also includes a rule-based inference engine. Jena’s inference engine
uses forward and backward chaining and it supports the most common OWL constructs. In
addition, it allows users to define their own custom rules.

OpenRDF Sesame [24] is a de-facto standard framework for processing RDF data. This includes
parsers, storage solutions (RDF databases a.ka. triplestores), reasoning and querying, using the

11. http ://www.jessrules.com
12. http ://clarkparsia.com/pellet
13. http ://jena.sourceforge.net
14. http ://owl.man.ac.uk/factplusplus/
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Figure 5.3 – Forward chaining inference engine

SPARQL query language. It provides an inference engine for RDFS that uses forward chaining
and materialization of the data. It does not support the OWL constructs.

BigOWLIM [80] is a scalable application that is fully compatible with the Sesame RDF framework.
OWLIM supports RDFS, some OWL constructs [64], and extensions with user-defined rules. The
OWLIM reasoner uses two strategies called forward and backward chaining. The rule language
has three sections named Prefices for defining namespaces, Axioms for asserting free variable
triples and Rules for defining conditions and consequences.

Drools is a forward chaining rule engine that uses the rule-based approach, more correctly known
as a production rule system. Drools is a rules engine based on Charles Forgy’s Rete algorithm
tailored for the Java language. Drools 5.2 provides a hybrid chaining with both forward and
backwards.

Pellet is an open source reasoner for OWL 2 DL in Java. It provides standard and cutting-edge
reasoning services for OWL ontologies. For semantically-enabled applications that need to re-
present and reason about information using OWL, Pellet is the leading choice for systems where
sound-and-complete OWL DL reasoning is essential. Pellet is a core component of ontology-based
data management applications. It also incorporates various optimization techniques, including
novel optimizations for nominals, conjunctive query answering, and incremental reasoning. Pel-
letSpatial [128] extends the Pellet OWL reasoner with qualitative spatial reasoning capabilities.
It supports checking the consistency of spatial relations expressed using RCC-8 calculi and
computes new spatial inferences from asserted relations. The spatial relations are expressed in
RDF/OWL and can be combined with arbitrary domain ontologies.

Oracle 11g supports RDFS/OWL and comes with a reasoning engine, more specifically, OWL-
Prime [103]. Its inference engine is implemented as a database application. It supports forward-
chaining rules and extends its SQL dialect with new constructs for querying RDF inside of
Oracle’s relational DBMS. Inferencing involves the use of rules, either supplied by the reasoner
or defined by the user. The inference engine composes code that when executed by the pro-
cessor, executes inference rules for an RDF model built on the data saved on a triple table
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(semantic data table). At the data level, inference is a process of deriving implicit relationships
(new triples). Every created triple from the execution of the inference rules is also stored in the
semantic data table. Inferencing, or computing entailment, is a major contribution of semantic
technologies that differentiates them from other technologies. This inference engine computes
production rule based entailment and Oracle supports two kind of regimes [125] :

1. Standard entailment : there are several standard entailment regimes : RDF, RDFS and
OWL encoded semantic data models. Support for RDF and RDFS is simplified by the
availability of axioms and rules that represent their semantics. Support for major subsets
of OWL-Lite and OWL-DL vocabularies have been provided. In this work, we use the
subset OWLPRIME [139] vocabulary which has approximately 50 inference rules that capture
the semantics of the language constructs ;

2. Custom entailment : since the standard vocabularies cannot handle all varieties of seman-
tic application data, it becomes important to provide support for entailment based on
arbitrary user-defined rules.

5.3 Trajectory ontology rules

Our spatio-temporal trajectory modeling approach is based on three ontologies : trajectory
ontology, time ontology and spatial ontology. Reasoning over trajectory data is preformed by
introducing a set of rules operating on temporal and spatial relationships. Reasoners that support
rules can be used for inference and consistency checking over spatio-temporal relationships. In
addition to reasoning applying on temporal and spatial relations, reasoner applies to the ontology
schema to infer additional facts using OWL semantics.

Then, we integrate rules into our ontology model. Considering the three models, we have domain,
temporal and spatial rules.

5.3.1 Domain ontology rules

In the domain dimension, we need to understand the behavior of moving objects. Therefore, we
focus on defining activities of the moving objects. These activities are called domain knowledge.
These activities are carried out through moving objects’ trajectories during a given time interval.
To define them, we need to contact domain knowledge experts. Then, we consider this knowledge
to formulate requirements or rules.

This knowledge can be defined in accordance to a domain application. For example in the bird
application, activities could be flying, feeding or resting. In the human application, activities
could be sleeping, traveling, eating, walking or working. In our case, the domain ontology rules
will be explained in Chap. 8.

5.3.2 Time ontology rules

Reasoning is preformed by introducing a set of rules operating on temporal intervals. Reasoners
that support rules can be used for inference and consistency checking over temporal relations.
In addition to reasoning applied on temporal relations, a reasoner is applied to the ontology
schema to infer additional facts using OWL semantics.
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The temporal reasoning rules are based on the 13 Allen relationships [6], as shown in
Figure 2.3 in Sect.2.2.2. These are : intervalEquals, intervalBefore, intervalDuring,

intervalOverlaps, intervalOverlappedBy, intervalStartedBy, intervalFinishedBy,

intervalFinishes, intervalContains, intervalMetBy, intervalMeets, interval-

Starts, and intervalAfter.

5.3.3 Spatial ontology rules

Spatial relation is one of the most important conceptual problems in the fields of spatial reaso-
ning, Geographical Information System (GIS) and computer vision, as important as the spatial
object itself. Spatial relation plays an important role in the process of spatial reasoning, spatial
query, spatial analysis, spatial data modeling and map interpretation. Spatial relation is the
relation between the objects with spatial characters. It usually consists of topological relations,
metric relations and order relations. These relations are the bases of spatial data organizing, que-
rying, analyzing and reasoning. All spatial entities are inherently related to some other spatial
entity. Whether two entities intersect somehow or are thousands of miles apart, the relationship
that they share can be described and evaluated.

Topological relationships represent the relative position of regions in the plane. The most wi-
despread formalism for representing such relations is the so called Region Connection Calculus
(RCC) formalism [113]. RCC-5, RCC-7, RCC-8, RCC-10 and RCC-13 are deduced by the RCC
theory. The most commonly used form of this calculus is referred to as RCC-8 calculus and
specifies the eight mutually exhaustive pairwise disjoint relations between region pairs, as shown
in Figure 5.4 :

– DC(x, y) (x is disconnected from y) ;
– x = y (x is identical with y) ;
– PO(x,y) (x partially overlaps y) ;
– EC(x,y) (x is externally connected with y) ;
– TPP(x,y) (x is a tangential proper part of y) ;
– NTPP(x,y) (x is a non-tangential proper part of y) ;
– TPPi(x,y) (y is a tangential proper part of x) ;
– NTPPi(x,y) (y is a non-tangential proper part of x).

Figure 5.4 – Region connection calculus 8 relationships

The same set of eight geospatial topological relations is described with different names based
on the Dimensionally Extended Nine-Intersection Model (DE-9IM). The DE-9IM representation
was developed by Clementini and others [26, 27] based on the seminal works of Egenhofer and
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others [36, 35]. These spatial relationships are used to test the existence of a specified topological
spatial relationship between two geometries. OGC considers two kinds of spatial relationships :
– Topological relationships are shown in Figure 5.5 : Equals, Within, Touches, Disjoint,

Intersects, Crosses, Contains, Overlaps and Relate ;
– Functions for distance relationships : Distance.

Figure 5.5 – OGC topological relationships

5.4 Conclusion

This chapter dedicated to the inferences in the ontology of semantic trajectories. Our objective
was to interpret efficiently spatio-temporal data on the trajectory ontology. So, we detailed
an inference mechanism to facilitate the extraction of knowledge. Inference rule and inference
engine are parts of this mechanism. The language Semantic Web Rules Language (SWRL)
is a language for the inference rules and is an indispensable ally of Web Ontology Language
(OWL). We also illustrated the different operating models of an inference engine based on rules.
Regarding the ontology of trajectory, three types of rules are associated to infer knowledge or,
more precisely, explicit knowledge : 1) application domain rules (for example, deduct activities),
2) temporal rules based on Allen’s relationships algebra, and 3) spatial rules based on the Open
GIS Consortium (OGC) topological relationships.

We are about to implement the spatio-temporal trajectory ontology. To compute the ontology
inference mechanism, it is necessary to implement the spatio-temporal rules. We will present
more details in the next chapter.
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In this part, we specify our choice for implementing our framework. Then, we present the steps
of the implementation of our trajectory modeling approach and trajectory ontology inference.
Finally, we apply our model in a specific application domain.

In our implementation, we are based on RDF triple store. In Chap. 6, we detail the trajectory
ontology RDF triple store. For this, we are based on Oracle Database Semantic Technologies for
modeling, storing and querying. Based on that, we present the steps of our trajectory ontology
implementation.

Then in Chap. 7, we introduce the trajectory ontology inference. We implement the trajectory
ontology rules, domain, temporal and spatial rules. Then, we detail the mechanism of Oracle
rule-based inference engine in the computation process and in the execution of rules. We show
the complexity of this process, especially when using user-defined rules for temporal and spatial.
Here, we introduce our contribution to reduce this complexity. Therefore, we design and imple-
ment some refinements over the ontology inference. For this enhancement, we address temporal
and spatial neighbor refinements. Moreover, we present a refinement to reduce the inference
repetition.

Overall, to evaluate the explained model, we need to apply it over an application domain.
Then, our generic model is applied to a case of marine mammal trajectories, particularly seal
trajectories in Chap. 8. We detail the application scenario to represent the seal trajectory model.
To integrate it with our model, we transform it to a seal trajectory ontology modeling approach.
We populate the final ontology in RDF triple store. To consider the knowledge of seal application,
we implement the seal trajectory ontology rules and apply the inference over captured seal
trajectory data. Related to the inference complexity problem, we design and implement a seal
trajectory ontology inference refinement. We name it two-tier inference filters.
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6.1 Introduction

In the past few years, there were many attempts to provide a database model for large graph
data [90]. Research in graph databases fields was popular in the early 1990s with databases
models like LDM [83], GOOD [51], O2 [84], and GraphDB [59]. The international conference
GraphConnect [52], which first edition was held in 2012, is a major meeting for discussing graph
databases models and their applications. The main-stream graph databases provide an object
model for nodes and relationships. These graph databases focus on either RDF triplets, linked
data, or relationships for storage. These databases often use direct memory links to adjacent
nodes rather than requiring joins or keys lookups. Currently, data models focus more on providing
an object-oriented, or relationship oriented and structure.

83
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Figure 6.1 – RDF triple store capabilities

Here are some examples of graph databases. AllegroGraph [4] is a high-performance, RDF da-
tabases model. AllegroGraph supports SPARQL, RDFS++, and Prolog reasoning. DEX [90]
is a very efficient, bitmaps-based graph database model written in C++. The focus of DEX is
performance in the management of very large graphs, and even allows the integration of various
data sources. FILAMENT [45] is a graph persistence library built on the top of PostgreSQL.
This library allows querying graph data with SQL through JDBC. G-STORE [29] is a prototype
query language and storage manager for large graphs. It is also built on the top of PostgreSQL.

In our work, we use Oracle RDF triple store. This technology has evolved in Oracle DBMS
version 10g, 11g and takes the name of“Oracle Spatial and Graph - RDF Semantic Grap” [102] in
Oracle DBMS version 12c. This system provides support for persistence, inference and querying
ontologies through the implementation of RDF, RDFS and a large part of OWL standards [103].
The DBMS defines a core in its metabase to support technologies related to RDF data. In the
following section, we detail the Oracle RDF triple store and then we use this technology for the
implementation of our ontology .

6.2 Oracle RDF triple store

RDF Semantic Graph (Formerly Oracle Database Semantic Technologies) is a standards-based,
scalable, secure, reliable and efficient RDF management platform. Based on a graph data model,
RDF triples are persisted, indexed and queried, like other object-relational data. Figure 6.1
shows that RDF infrastructure contains semantic data and ontologies (RDF/OWL models), as
well as traditional relational data.

In the following sections, we detail RDF data modeling. The way RDF data are stored, loaded
and queried in a database.

6.2.1 RDF data model

RDF data model is a collection of conceptual tools for describing entities and the relationships
among these entities and for modeling them in a database [121, 28]. Since Oracle database 10g
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Figure 6.2 – Attributes of SDO_RDF_TRIPLE_S object type

Release 2, this model has been used for storing RDF and OWL data. This functionality builds
on the top of Oracle Spatial Network Data Model (NDM). NDM is the Oracle solution for
managing graphs within the Relational Database Management System (RDBMS) [129]. Then,
RDF data has a simple data structure as a directed graph managed by NDM. This graph is
implicitly defined by sets of triples [114, 63]. Subjects and objects of RDF triples are stored as
start-nodes and end-nodes of a graph, respectively. Properties of triples are stored as directed
links that describe relationships between the nodes. Each RDF triple is treated as one unique
database object. A specified table is created to hold references to triples related to one model.
In Oracle, two data types are defined for RDF data :
– The SDO_RDF_TRIPLE object type represents RDF data sets of triples (subject, predicate,

object) ;
– The SDO_RDF_TRIPLE_S object type stores triples in database tables, (the _S for storage).

Figure 6.2 shows the attributes of this type referring to tables under the MDSYS schema
(the owner of spatial which is a part of interMedia). This type contains IDs of the subject,
predicate and object of a triple referring to their text value saved in the table RDF_Value$.
It also contains ID of the model of these triples referring to the model’s name in the table
RDF_Model$.

6.2.2 RDF data storage

An RDF triple is stored as one database object in a semantic data network. In this network, the
subjects and objects of triples are mapped to network nodes, and the predicates are mapped to
network links that have subject start-nodes and object end-nodes. The nodes are stored only
once, regardless of the number of times they participate in triples. A new link is created whenever
a new triple is inserted. RDF graph’ data and metadata are stored in the system as entries in
tables under the MDSYS schema. To store RDF data in the database :

1. A tablespace is recommended for all RDF data tables, since RDF data storage tends to
be very large ;

2. A semantic network is created by the procedure SEM_APIS.CREATE_SEM_NETWORK to hold
the RDF model ;
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3. A table is created to store RDF triples. It is recommended that this table includes a column
named ID of type NUMBER and a column named Triple of type SDO_RDF_TRIPLE_S ;

4. An RDF model is created by specifying a model name, the name of the table created
before. This model is created by the SEM_APIS.CREATE_SEM_MODEL procedure.

6.2.3 RDF data loading

RDF data are loaded in an RDF triple store. To load RDF triples into a table, there are three
options as following :
– Bulk loading is a highly optimized method for loading medium to large number (e.g., billions)

of triples. RDF data are loaded into a staging table as a preparation for loading them into
the created table ;

– Batch loading is an optimized method to handle loading a medium number (e.g., a few millions)
of triples. Its advantage is that, unlike bulk loading, it does not require object values to stay
within 4000 bytes ;

– Incremental loading via transactional SQL statement INSERT INTO is a recommended method
for a small number (e.g., up to a few thousands) of triples.

For bulk loading and batch loading, only N-Triple [30] file-based input format is supported.
Incremental loading requires use of an object type constructor, SDO_RDF_TRIPLE_S, with target
RDF model name and lexical values for subject, predicate and object components of the triple
used as arguments. Figure 6.3 is an activity diagram modeling the insertion of an RDF triple
into a graph. The parts of a triple are inserted into the RDF values$ table and then an entry is
inserted into the RDF link$ table.

6.2.4 Rules and rulebases

RDF triple store is a rulebased system. Each rulebase consists of a set of rules. Oracle sup-
ports RDF, RDFS, RDFS++, OWLSIF, OWLPrime, OWL2RL and OWL2EL rulebases [116].
The RDF and RDFS rulebases are created to add RDF support to the database. However,
RDFS++ is a minimal extension to RDFS. OWLSIF [64] contains OWL with IF Semantic. Fi-
nally, OWLPrime supports full OWL capabilities, such as property characteristics, comparisons
and restrictions, as well as class comparisons and expressions. Code 6.1 presents the RDFS/OWL
vocabulary constructs included in OWLPrime rulebase. In our work, we use OWLPrime rulebase.

rdfs:subClassOf, rdfs:subPropertyOf, rdfs:domain, rdfs:range,

owl:SymmetricProperty, owl:TransitiveProperty, owl:inverseOf,

owl:equivalentClass, owl:equivalentProperty, owl:hasValue,

owl:someValuesFrom, owl:allValuesFrom, owl:differentFrom,

owl:FunctionalProperty, owl:InverseFunctionalProperty,

owl:disjointWith, owl:complementOf, owl:sameAs

Code 6.1 – RDFS/OWL Constructs Included in OWLPrime rulebase
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Figure 6.3 – Insert a new triple in an RDF triple store
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6.2.5 User defined rules

Each rule in a rulebase is based on an IF-THEN pattern. A rule may yield additional triples when
applied to an RDF model. Thus, the rule-based system is said to be a deduction system. In
deduction systems, a rule has the three following components :
– IF pattern is the antecedent pattern as a subgraph to be matched in the data model ;
– Filter condition is an optional pattern as a boolean condition to be satisfied. This pattern

typically involves variables from the antecedent ;
– THEN pattern is the consequence pattern describing the triples to be generated when the rule

is fired.
A rule fires when its antecedent pattern and filter condition are both satisfied. The consequent
pattern are the new triples generated from the firing rule. For each rulebase, a view, named
MDSYS.SEMR_rulebase-name, is generated. Each rule is a row in this view. Users use this view
to insert, delete, or update a rule. Table 6.1 gives the dictionary of this view for deduction-
oriented antecedent-consequent rules.

Table 6.1 – MDSYS.SEMR_rulebase-name view dictionary

Column name Data type Description
Rule Name Varchar2 (30) name of the rule
Antecedents Varchar2 (4000) IF side pattern for the antecedents
Filter Varchar2 (4000) filter condition that further restricts the sub-

graphs matched by the IF side pattern
Consequent Varchar2 (4000) THEN side pattern for the consequent
Aliases SEM ALIASES one or more ontologies to be used

6.2.6 Rules index

A rules index (entailment) is an object containing pre-computed triples from applying a specified
set of rulebases to a specified set of models. If a graph query refers to any rulebases, a rule
index must exist for each rulebase-model combination in the query. To create an entailment, the
SEM_APIS.create_entailment procedure must be used. Table 6.2 gives the parameters of this
procedure. When a rule index is created, a view, called MDSYS.SEMI_entailment-name, is also
created to include a row for each triple.

6.2.7 RDF data query

In order to query RDF triples, Oracle defines SEM_MATCH table function. This function searches
for a given pattern into the RDF triples based on some rules. Table 6.3 gives the parameters of
this function. The query attribute is a string literal with one or more triple patterns, usually
containing variables. The models attribute identifies the RDF models to use. The rulebases

attribute identifies rulebases for the considered models. The aliases attribute identifies onto-
logies. The filter attribute identifies any additional selection criteria. Finally, the SEM_MATCH

table function returns an object of type anydataset 15.

15. Anydataset can be seen as an array of elements that shares the same data type. The data type can
be an Oracle built in data type or a user defined one
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Table 6.2 – Parameters of the SEM_APIS.create_entailment procedure

Column name Data type Description
entailment NameVarchar2 name of the entailment
Models SEM_Models one or more model names
Rulebases SEM_Rulebases one or more rulebase names
Passes Number the number of rounds that the in-

ference engine should run, default
SEM_APIS.REACH_CLOSURE

Inf Components Varchar2 represent inference components, default
NULL

Options Varchar2 options to control the inference process

Table 6.3 – Attributes of the SEM_MATCH function

Column name Data type Description
Query Varchar2 one or more triple patterns
Models SEM_Models one or more model names
Rulebases SEM_Rulebases one or more rulebase names
Aliases SEM ALIASES one or more ontologies to be used
Filter Varchar2 any additional selection criteria

6.3 Ontology implementation

Implementing our approach includes the creation the declarative and the imperative parts of the
trajectory, spatial and time ontologies. In Oracle RDF data Store, we have to :

1. Prepare the creation of the ontologies ;

2. Create the declarative parts of the ontologies ;

6.3.1 Preparation of the ontologies

Code 6.2 refers to the preparation for storing triples related to the trajectory, spatial and time
ontologies, explained as follows :

1. Lines 1 to 5 create a tablespace, named tbl_space ;

2. Line 7 creates a semantic network for the tablespace created ;

3. Lines 9 to 11 create a semantic data table for each ontologies. owlSemanticTrajec-

tory_data is a table for the trajectory ontology ;

4. Lines 13 to 15 create a semantic model for each ontology referring to the created table
and to its column triple.
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1 CREATE BIGFILE TABLESPACE tbl_space

2 DATAFILE ’/data/oradata/tbl_space.dbf’

3 SIZE 1024M REUSE AUTOEXTEND ON

4 MAXSIZE UNLIMITED

5 EXTENT MANAGEMENT LOCAL UNIFORM SIZE 64M;

6

7 EXECUTE SEM_APIS.CREATE SEM NETWORK (’tbl_space’);

8

9 CREATE TABLE owlSemanticTrajectory_data (id NUMBER, triple SDO RDF TRIPLE S);
10 CREATE TABLE owlTime_data (id NUMBER, triple SDO RDF TRIPLE S);
11 CREATE TABLE owlOGCSpatial_data (id NUMBER, triple SDO RDF TRIPLE S);
12

13 EXECUTE SEM_APIS.CREATE SEM MODEL(’owlTrajectory’,’owlSemanticTrajectory_data’, ’triple’);

14 EXECUTE SEM_APIS.CREATE SEM MODEL(’owlTime’, ’owlTime_data’, ’triple’);

15 EXECUTE SEM_APIS.CREATE SEM MODEL(’owlOGCSpatial’,’owlOGCSpatial_data’, ’triple’);

Code 6.2 – Preparation to create owlSemanticTrajectory, OWL-Time and owlOGCSpatial

ontologies

6.3.2 Creation of the declarative parts of the ontologies

To create the declarative parts of the trajectory, time and spatial ontologies, we implement the
concepts and their relationships provided by Protégé tool. Protégé 16 is a system for creating
ontologies. It is very popular in the field of Semantic Web and the level of research in computer
science. Protégé is developed in Java. It can read and save ontologies in most formats : RDF,
RDFS, OWL, etc.. We visualize the ontology schema by ProtégéVOWL 17. ProtégéVOWL im-
plements the Visual Notation for OWL Ontologies (VOWL) by providing graphical depictions
for elements of the Web Ontology Language (OWL).

We implement the concepts and the relationships for the owlSemanticTrajectory ontology pre-
sented in Sect. 4.3.4, the OWL-Time ontology introduced in Sect. 4.4.1 and the owlOGCSpatial

ontology explained in Sect. 4.4.2. We save the resource of the ontologies in N-Triple format.
In general, we use bulk loading form to load the ontology into the suitable database table. We
load the declarative parts of the owlSemanticTrajectory ontology in the owlSemanticTrajec-

tory_data table, the OWL-Time ontology in the owlTime_data table and the owlOGCSpatial

ontology in the owlOGCSpatial_data table.

6.4 Matching the ontologies

Matching ontologies is fundamental while considering different and independent sources of
knowledge, like in our case the trajectory, time and spatial ontologies. OWL language de-
fines the ontology-import owl:imports construction to import additional ontologies. OWL lan-
guage can connect concepts of two ontologies using the built-in property owl:equivalentClass,
and connect properties using the built-in property owl:equivalentProperty. The construction
owl:equivalentClass states that the two classes involved have the same class extension (i.e.,
both class extensions contain exactly the same set of individuals). The owl:equivalentProperty
states that the two properties have the same property extension.

16. http ://protege.stanford.edu/
17. http ://vowl.visualdataweb.org/
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6.4.1 Matching trajectory and time ontologies

The ontology owlSemanticTrajectory imports the ontology OWL-Time. The concept sequence
is an equivalent class to the concept properInterval from OWL-Time. The startDate and
endDate properties of a sequence are equivalent properties to the hasBeginning and hasEnd

properties from OWL-Time. Figure 6.4 shows the mapping defined between the trajectory and
time ontologies according to our requirements.

Thing

Sequence

owl:equivalentClass 

Trajectory

= is owl:equivalentProperty

Time Ontology

hasBeginninghasEnd

ProperInterval

Instant

startDate=hasBeginning

endDate=hasEnd

Trajectory Domain Ontology

is a

is a

Figure 6.4 – Trajectory and time ontologies mapping

6.4.2 Matching trajectory and spatial ontologies

We defined the trajectory domain ontology (Figure 4.8) with the following considerations :

– Sequence : can be considered as a spatial line owlOGCSpatial:Line ;
– Position : can be considered as a spatial point owlOGCSpatial:Point.

To meet these requirements, we need to connect the trajectory and the spatial ontologies. As
these ontologies are formalized in OWL, we use this language to define the needed matching.
The ontology owlSemanticTrajectory imports the ontology owlOGCSpatial, so all statements
of the latter are visible and available for the first ontology. Figure 6.5 shows the mapping defined
between the trajectory domain and spatial ontologies according to our requirements. In this
mapping, the concept Sequence is an equivalent class to the concept Line from owlOGCSpatial.
The concept Position is an equivalent class to the concept Point from owlOGCSpatial. The
startPosition and endPosition properties of a sequence are the beginning and ending points,
respectively.
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Trajectory

Sequence

GeoSequenceLine

Point

xsd:string

 rdfs:subClass

 rdfs:subClass 

 wkt 

startPosition = points

endPosition = points

owl:equivalentClass
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seqStr = wkt

Spatial Ontology Trajectory Domain Ontology

= is owl:equivalentProperty

Figure 6.5 – Trajectory and spatial ontologies mapping

6.5 Conclusion

In this chapter, we implemented our trajectory ontology modeling approach. This implementa-
tion is based on RDF triple store and detailed the RDF triple store in Oracle Database Semantic
Technologies. This system, which provides support for storage, inference and querying ontologies
transformed into RDF triples, is available from the 10g version of Oracle software. It also has the
advantage of being a system based inference rules. We prepared and made the implementation
of the declarative parts of the three ontologies in RDF triple store Oracle : trajectory, time
and spatial. The concepts and relationships defined were then transformed into RDF triples and
finally loaded into the corresponding tables in the Oracle RDF triple store. Considering different
and independent ontologies, matching ontologies was fundamental. The matching between the
trajectory ontology with time and spatial reused ontologies was performed using OWL axioms
of equivalence.
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7.1 Introduction

In this chapter, we start prepare the heart of the inference mechanism over our framework. We
implement the trajectory ontology rules : Allen’s temporal rules ; and OCG topological spatial
rules. Our objective is understand how the inference engine rule-based Oracle managed by the
system. Then, the Oracle inference engine computed over the ontology rules. We detail how
the rules are executed by the inference. After many experiments, we address the complexity
of the inference mechanism over user rules. We address some enhancements over the inference
computation : neighbor, repetition refinements.
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7.2 Trajectory ontology rules

Each rule has declarative and imperative parts in the ontology. These sets of rules will directly
influence the ontological inference process used by the query engine.

7.2.1 Time ontology rules

We implement the rule base owlTime_rb to hold the temporal interval relationships. These re-
lationships are : intervalEquals, intervalBefore, intervalDuring, intervalOverlaps,

intervalOverlappedBy, intervalStartedBy, intervalFinishedBy, intervalFinishes,

intervalContains, intervalMetBy, intervalMeets, intervalStarts, and intervalAf-

ter. Each relationship has a declarative part as an RDF ObjectProperty and an imperative
part, formally, an associated rule as an IF-THEN pattern. Appendix 1 presents the implemen-
tation of all temporal rules. Figure 7.1 shows the declarative part of the intervalAfter rule.
This rule is an object property between two proper intervals. Code 7.1 is the imperative part of
the rule. It is based on operations defined in the table TM_RelativePosition of the ISO/TC
211 specification about temporal schema [72], detailed in Sect. 2.2.2. In Code 7.1, the line 7
expresses the condition :

self.begin.position > other.end.position
where

self = tObj2
other = tObj1
self.begin.position = beginT ime2
other.end.position = endT ime1

Figure 7.1 – Declarative part of intervalAfter rule

1 EXECUTE SEM_APIS.CREATE_RULEBASE(’owlTime rb’)
2 INSERT INTO mdsys.semr_owltime_rb

3 VALUES(’intervalAfter rule’,
4 ’(?tObj1 rdf:type ot:ProperInterval) (?tObj2 rdf:type ot:ProperInterval )

5 (?tObj1 ot:hasEnd ?end1 ) (?end1 ot:inXSDDateTime ?endTime1 )

6 (?tObj2 ot:hasBeginning ?begin2 ) (?begin2 ot:inXSDDateTime ?beginTime2 )’,

7 ’(beginTime2 > endTime1 )’,

8 ’(?tObj2 ot:intervalAfter ?tObj1 )’,

9 SEM_ALIASES(SEM_ALIAS(’ot’,’http://www.w3.org/2006/time#’)) );

Code 7.1 – Implementation of intervalAfter rule
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7.2.2 Spatial ontology rules

In this thesis, we consider spatial topological relationships. These relationships are : Equals, Wi-

thin, Touches, Disjoint, Intersects, Crosses, Contains, Overlaps and Relate. Each
relationship has a declarative part as an RDF ObjectProperty and an imperative part, for-
mally, an associated rule as IF-THEN pattern. We create a rulebase named owlOGCSpatial_rb

to hold spatial relationships rules. Appendix 3 presents the implementation of all spatial rules.
Figure 7.2 shows the declarative part of the Contains rule. This rule is an object property bet-
ween two geometries. Code 7.2 presents the imperative part of the spatial Contains rule. Lines 4
to 6 represent the IF part of the rule. We construct a subgraph and necessary variables, namely,
the two spatial objects sObj1 and sObj2 their strings coordinates, respectively, wktSObj1 and
wktSObj2, and the srid which is the Spatial Reference System Identifier. Line 9 is the Filter

part of the rule which evaluates the spatial relationship between the two spatial objects using
a function called evalSpatialRelationship. This function builds a bridge between the onto-
logy spatial rules and the spatial operators in Oracle Spatial DBMS. Line 10 in Code 7.2 is the
consequent or the THEN part of the rule.

Figure 7.2 – Declarative part of Contains rule

1 EXECUTE SEM_APIS.CREATE_RULEBASE(’owlOGCSpatial rb’);
2 INSERT INTO mdsys.semr_owlOGCSpatial_rb

3 VALUES(’contain rule’,
4 ’(?sObj1 rdf:type os:Geometry ) (?sObj2 rdf:type os:Geometry )

5 (?spaRefSys1 rdf:type os:SpatialReferenceSystem) (?sObj1 ? os:srs ?spaRefSys1 )

6 (?spaRefSys2 rdf:type os:SpatialReferenceSystem) (?sObj2 ? os:srs ?spaRefSys2 )

7 (?spaRefSys1 os:srid ?srid ) (?spaRefSys2 os:srid ?srid )

8 (?sObj1 os:wkt ?wktSObj1 ) (?sObj2 os:wkt ?wktSObj2 )’,

9 ’(evalSpatialRelationship(sObj1,wktSObj1,sObj2,wktSObj2,srid,’’CONTAINS’’ ) = 1 )’,

10 ’(?sObj1 os:contains ?sObj2 )’,

11 SEM_ALIASES(SEM_ALIAS(’os’,’http://l3i.univ-larochelle.fr/owlOGCSpatial#’)) );

Code 7.2 – Implementation of Contains rule

Figure 7.3 illustrates the functionality of the evalSpatialRelationship during the execution
of the eight spatial rules over spatial objects. For every two spatial objects, the inference pro-
cedure executes spatial rules. The function evalSpatialRelationship calls the corresponding
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Oracle spatial operator for the current running spatial rule, as in Table 7.1. From the inference
computation, a new relationship is computed and saved as a new inferred triple.

Table 7.1 – evalSpatialRelationship connects spatial ontology rules to Oracle spatial
operators

evalSpatialRelationship bridge
Ontology spatial rule Oracle spatial operator
Equals rule SDO Equal
Contains rule SDO Contains
Overlaps rule SDO Overlaps
Touch rule SDO Touch
Covers rule SDO Covers
CoveredBy rule SDO CoveredBy
AnyInteract rule SDO AnyInteract
Inside rule SDO Inside

7.3 Oracle rule-based inference engine

Reasoners, that support DL-safe rules such as Oracle engine, can be used for inference and
consistency checking over spatio-temporal relationships. The Oracle reasoner is applied to an
ontology schema to infer additional facts using OWL semantics. The Oracle inference system
adopts a forward-chaining strategy. From inference results, Oracle supports a set of graph queries
over an original and inferred data.

7.3.1 Inference engine entailment

The inference process starts with creating an entailment through the CREATE_ENTAILMENT pro-
cedure [103] to perform inference against a set of semantic models and a set of rulebases. This
entailment can be used with user-defined rulebases and predefined rulebases. Intuitively, an en-
tailment means that inferred data are a logical consequence of an input semantic model and
a specified set of rulebases. Code 7.3 creates an entailment using the trajectory, temporal and
spatial models. The USER_RULES=T option is required while applying user-defined rules.

1 SEM_APIS.CREATE ENTAILMENT(’owlTrajectory_idx’,

2 SEM MODELS(’owlTrajectory’,’owlTime’,’owlOGCSpatial’),
3 SEM RULEBASES(’OWLPrime’,owlTime rb,’owlOGCSpatial rb’),
4 SEM_APIS.REACH CLOSURE,

5 NULL,

6 ’USER RULES=T’);

Code 7.3 – Entailment over the trajectory domain, temporal and spatial models

7.3.2 Inference process computation

The inference process consumes a huge amount of time to be computed over ontologies and the
users’ rules. The objective is to understand the way the inference computes and the time taken.
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Figure 7.3 – Activity diagram for spatial inference process

The first solution is to generate a proof, which is a list of triples used to derive a new inferred
triple. However the proof can not be generated while using users’ rules. The second solution is
the AUDIT_SYS_Operations which enables the auditing of operations issued by the user.

From the auditing, we found the following steps which detail The Oracle inference engine
work [139]. Figure 7.4 is the activity diagram of the ontology inference process in Oracle.
– The inference process starts with the creation of a new partition in the semantic data table and

the creation of a temporary table to hold new inferred triples. An exchange table is created
with the same structure and the same index as the semantic data table ;

– The inference process selects the following information : the semantic data model (ID, name),
the values in RDF values$ table, the RDF rulebase$ (ID, name) and the rules in the selected
rulebases from RDF rules$ ;

– The core inference logic is driven by a set of inference rules. Each rule will be executed during
the inference process and only new triples are added into the temporary table. The inference
process has many passes. In one pass, all rules will be executed ;

– When the rules no longer generate any new triple, the inference process terminates by copying
out all triples from the temporary table into the exchange table ;

– Exchanging data from the exchange table into the newly created table partition in the semantic
data table.
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Figure 7.4 – The ontology inference process in Oracle
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7.3.3 Inference rule execution

Rules in Oracle can be divided into three categories :

1. Axioms are rules that have no antecedent ;

2. 1-shot rules have an antecedent, but no variables in the consequent ;

3. General rules have an antecedent and have variables in the consequent.

In the computation time, each user-defined rule is automatically translated into an SQL query
statement. This SQL query is executed on the semantic data table. For each rule antecedent
pattern, the engine searches for matched triples in the semantic data table. The matched triples
are joined based on common variables which are in the rule’s filter pattern. Finally, the rule
engine adds new triples related to the consequent pattern. Figure 7.5 is the activity diagram of
execution of an ontology inference rule in Oracle.

Figure 7.5 – Execution of an ontology inference rule in Oracle

The set of results from the inference is fully materialized in order to support graph queries over
an original and inferred data.
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7.4 RDF triple store inference and complexity

The inference mechanism is computed over the model, rules and loaded triples. Users query these
triples and the inferred one with a SEM_MATCH query language. When new triples are loaded,
users are no longer able to run any query neither over the new data, nor over the previous
inferred results. In this case, the inference mechanism should be recomputed again over the new
data as well over the previous data. This is because the Oracle inference mechanism is not an
incremental process, especially with user-defined rules. However, some OWL constructs are not
very suitable for inferencing and the user may need reasoning at query time. However, Oracle,
version 11G, does not support any query at the computation time.

In the Oracle Semantic data store, any trial to add a new triple manually in the database’s
tables will break the validity of the database. Then, the user should delete the database and
start again. However for this case, OpenLink’s Virtuoso and BigOWLim inference engines take
in charge additional inferences and facts while answering a user query.

7.4.1 User-defined rule inference

Supporting user-defined rules, Oracle Semantic data store has limitations on supporting efficient
options in this case :

1. The INC option enables incremental inference taking into account the inference of the
previous step. This option saves index execution and time. However it is not available
with user-defined rules ;

2. The REACH_CLOSURE option is the default value for the number of rounds for the engine.
It must be respected in the case of user-defined rules ;

3. The DISTANCE option generates additional distance information that is useful for semantic
operators. It is also not available with user-defined rules.

Finally, we have to mention that the Oracle inference engine does not integrate the OWL and
user-defined rule inference components similarly. Behind the scene, Oracle first runs the OWL
rules till a closure occurs. Then, similarly Oracle runs user-defined rules till a closure occurs,
and repeats the whole process till no new triple is generated from either component. Moreover,
the inference time will increase as vocabulary becomes increasingly expressive, especially when
using OWLPrime with user-defined rules. This is because the inference time depends on the
complexity of the rules in a vocabular [139].

7.4.2 Rule execution complexity

Logically, we represent a user-defined rule as L and a set of rules as {L1, L2..., Lu}. From IF-
THEN pattern, we can say that a rule is represented as the following :

LI ⊆ (Antecedent× {Filter} × Consequent) (7.1)

Considering the way the inference engine works, we try to specify the complexity of execution
an inference rule. While the parts of a rule are patterns, we represent a pattern as P . The
representation of the number of patterns in one antecedent in a rule Lj is #(PLj ). For an
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ontology G in a domain Di, we represent the number of ontology patterns as #(PG). Considering
the number of cycles, the inference engine runs to execute the rules, we represent the number of
cycles as N . We represent Computing Running Consumption of rules as CRC. Then, Computing
Running Consumption of a rule Lj as CRCLj is in Equation 7.2 :

CRCLj = N ∗
[
#(PLj ) ∗#(PG)

]
(7.2)

The worst case is when the number of rule’s patterns are equal to the ontology patterns #(PLj ) =
#(PG) in Equation 7.3,

CRCLj = N ∗
[
#(PG)2

]
(7.3)

Computing running consumption of U ontology rules in an ontology G is in Equation 7.4 :

CRC = N ∗
U∑

j=1

[
#(PLj ) ∗#(PG)

]
(7.4)

7.5 Ontology inference refinements

The inference mechanism computes relationships between all pairs of data and annotates them
with activities of moving objects. This mechanism is needed for queries on the spatio-temporal
trajectory ontologies. Our objective is to enhance the inference mechanism as mush as possible,
particularly, when using user-defined rules.

7.5.1 Neighbor refinement

The spatial and temporal ontology rules are computed redundantly to compute the spatial and
temporal relationships between objects during the inference mechanism. Then, we tackle the
complexity problem of the computation of the inference. To reduce the computation of rules in
the inference mechanism, we limit the size of the data considered in the computation into the
needed ones.

To enhance the inference process, the user can define, for example, domain restrictions and
constraints to limit the computation in a useful way for their work’s objective. These limitations
can be directional considering objects in the same direction or can be constrained by distance
considering a specific distance between objects. The user also can apply restrictions related to
the type of the considered objects.

To enhance the computation of rules in the inference mechanism, we define a refinement called
neighbor inference. Over this refinement, the inference mechanism is computed just between
neighbor objects.
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7.5.1.1 Temporal neighbor refinement

Calculating the inference between all sequences of trajectories considering all time rules takes
a huge amount of time and space storage capacity. To enhance the inference mechanism, we
define a refinement called temporal neighbor inference : “A temporal neighbor is when a se-
quence happened within a conceptual distance to another sequence”. The goal of this refinement,
algorithm 1, is to consider the distance between two sequences in order to calculate the corres-
ponding temporal relationships. This refinement takes all sequences (L Seq) and the considered
temporal neighbor number (TN). The function distance measures the distance between the two
considered sequences and return a number. We apply this refinement over the implementation
of the 13 temporal rules. Appendix 2 presents the implementation of all the refinement temporal
rules. Then, when computing the inference, the temporal rules carry out this refinement. It is
still difficult to determine the best candidate for the temporal neighbor distance.

input : List of sequences : L Seq
input : A tempotral neighbour : TN

1 for Sr, Sa ∈ L Seq do
2 if distance (Sa, Sr) ≤ TN then
3 calculate the temporal rule between Sr and Sa;
4 end

5 end

Algorithm 1: Temporal neighbor refinement algorithm

7.5.1.2 Spatial neighbor refinement

The spatial neighbor refinement limits the computation of the inference to the objects located
in a specified area. So, we call this refinement Area of interest. The area of interest refinement is
given by Algorithm 2, considering all spatial objects (L SP ) in our model and an area of interest
(area). It considers the eight topological spatial relationships. This algorithm starts with two
spatial objects (Sr, Sa). The algorithm checks if these two objects belong to the interested
area by the Oracle function SDO_WITHIN_DISTANCE. Then, the result of this function allows the
computation of the spatial relationship between the two considered objects. If the two objects
do not belong to this area, the algorithm goes for another spatial candidates.

input : List of spatial objects : L SP
input : An interested area : area

1 initialization;
2 for Sr, Sa ∈ L SP do
3 if SDO WITHIN DISTANCE (Sr, Sa, area) then
4 calculate spatial relationship between Sr and Sa;
5 end

6 end

Algorithm 2: Area of interest refinement algorithm
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We modify our function evalSpatialRelationship 7.3 between the spatial rules and Oracle
spatial operators to consider this refinement. Figure 7.6 shows the spatial inference process
considering neighbor refinement. The first step of this figure is checking if the two considered
objects belong to the area of interest. In this refinement, the optimization coefficient for the
interested area depends on an application domain and can be estimated after considering the
statistical data dispersion.

Figure 7.6 – Spatial inference process considering neighbor refinement

7.5.2 Inference repetition refinement

We mention that the inference engine has many computation cycles. In Oracle, we mention the
REACH_CLOSURE problem in the case of applying user-defined rules. This number of cycles to
reach the closure is a part of the computation complexity. To control this number of cycles,
we define an inference refinement called Passes refinement. In this refinement, we limit this
repetition into one pass, however, we keep the quality of the results. The idea is to save the
inference results in a database from the first pass and use these results for the other passes, so
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that they are not computed again. Algorithm 3 illustrates the passes refinement. This algorithm
considers all spatial objects (L SP ) and the eight spatial relationships. The algorithm checks
an existing spatial relationship between the two considered objects in the database. When there
is no relationship, this means that the inference passes for the first time. The inference process
will be computed normally and its results will be saved in the database. In the other case where
the inference was already performed before, the algorithm passes to the next two objects. We
modify our function evalSpatialRelationship 7.3 to consider this refinement and to optimize
the passes of the engine during the computation of the inference. Figure 7.7 shows the spatial
inference process considering passes refinement.

input : List of spatial objects : L SP
1 initialization;
2 for Sr, Sa ∈ L SP do
3 if Spatial relationship between (Sr, Sa) /∈ database then
4 Res := calculate Spatial relationship between Sr and Sa;
5 Save Res in the database ;

6 end

7 end

Algorithm 3: Passes refinement algorithm

Figure 7.7 – Spatial inference process considering passes refinement
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7.6 Conclusion

In this chapter, we prepared the application of the inference mechanism over our framework. We
implemented the trajectory ontology rules. Allen’s temporal rules and OCG topological spatial
rules are considered. Then, the Oracle inference engine computed over the ontology rules.

We focused on how the inference engine rule-based Oracle which over the ontology rules managed
by the system. We addressed rule execution complexity. Then, we tried to understand technicality
the work of the inference engine. We applied the inference mechanism using different engines.
Moreover, we performed experiments to understand the way the inferred data is separated and
saved in the database. The difficulty was when we manually tried to add data into the database
as inferred data, the whole database becomes invalid, then we had to delete it and rebuilt it
again. Besides the fact that Oracle supports the inferences of OWL, we highlighted the system
limitations on inference rules defined by the user. The Oracle inference mechanism is not an
incremental process when using user-defined rules. For this problem, in the step N, we passed to
the inference engine new data with the previous inferred data from the step N-1. However, the
engine recomputed the inferred data (step N-1) in all the cases. Given these obstacles related
to both Oracle and inherent rules of inference, tackle the inference computation complexity.
We designed and implemented two types of refinements to enhance the inference computation.
Temporal and spatial neighbor refinements, which are to enable the inference rules only temporal
or spatial for trajectories close in distance, were defined. Moreover, we presented a refinement to
reduce the inference repetition which is made to avoid repeating ontology rules unnecessarily.
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8.1 Introduction

We presented our generic trajectory model in Chap. 4. We showed how this can serve as a
high-level model to take into account a domain application. In this chapter, we discuss the
domain application “marine mammal”. This generic model is applied to the case of marine
mammal trajectories. The context is the following. Seals are observed equipped with GPS sensors,
temperature and depth. Biologists want to know how seals use the marine environment for food.
The sensors in the presence identify three types of state : out of the water, cruise, dive.
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8.2 Seal trajectory model

Today’s advances in sensors technological have enabled capturing events with a better accuracy.
In our study, the information collected onboard by the tag include a GPS location, the envi-
ronment (air or water), the sea temperature and the dive depth when the tag is below the sea
surface. The collected data increase exponentially, analyzing data in an optimized way therefore
becomes more complex.

8.2.1 Application scenario

We consider trajectories of seals, Figure 8.1. The data comes from the LIENSs 18 (CNRS/U-
niversity of La Rochelle) in collaboration with SMRU 19. These laboratories work on marine
mammals. Trajectories of seals between their haulout sites along the coasts of the English Chan-
nel or in the Celtic and Irish seas are captured using GNSS 20 systems provided by SMRU, as
shown in Figure 8.2. LIENSS deployed 63 tags since 2006 on marine mammals (30 on harbour
seals and 33 on grey seals). The tags recorded 8952 raw data per day on average. The captu-
red data, seal trajectories, can be classified into three main states : haulout, cruise and dive.
Figure 8.3 shows the three states, the transitions and their guard conditions :

– GPS locations are captured every 20 minutes when the seal is at the surface ;
– diving data contains maximum depth, total duration, surface duration (time spent at the

surface after a dive and before the next one) and the TAD index. The TAD (Time Allocation
at Depth) index defines the shape of a seal’s dive, as mentioned in [43]. A dive starts when
the tag goes below a chosen ”depth threshold”. For most GPS/GSM deployments, the chosen
depth threshold was 1.5 meters ;

– a haulout is a period of time spent on land by the seal. It starts when the tag is dry for at
least 10 minutes and ends when the tag is wet for at least 40 seconds ;

– temperature of the sea water is given for 12 points per dive.

The main goal of the biologists when analyzing the captured data is to understand how seals use
the marine habitat to feed. They are particularly interested in understanding how, when and
where seals look for their food, and therefore characterize their preferred habitat (do they prefer
one type of sediment, bathymetry, etc) and finally, where and when they could interact with
human activities (such as fisheries). With our biologist, we define the main activities of seals
when they are in the water : foraging, traveling and resting. These are the activities of parts of
a trajectory. Biologist are interested in :

1. Foraging activities ;

2. Foraging activities during a given time interval ;

3. Foraging activities performed during a given time interval in a specific zone.

For all these queries, we have to define a seal trajectory domain rule called Foraging. However,
for the last two queries, time rules must be defined between trajectory’s parts. For example, the
query 3 needs Foraging domain rule, During time rule and Include topological relationship as
illustrated by Table 8.1.

18. http ://lienss.univ-larochelle.fr
19. SMRU : Sea Mammal Research Unit- http ://www.smru.st-and.ac.uk
20. GNSS : Global Navigation Satellite System
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Figure 8.1 – Seal with a
sensor Figure 8.2 – Seal data captured by SMRU tags

Seal states

Haulout

Cruise

Dive

[continously wet for 40 sec]

[continously dry for 10 mins]

[shallower than 1.5m]

[deeper than 1.5 m for 8 secs]Sensor deployment end 
date time is known

Sensor deployment start 
date time is known

Figure 8.3 – The three states of seal trajectory

Table 8.1 – Domain, time, space concepts and rules needed for answering the query 3

Concepts and rules Description

Concepts
Domain Dive specific part of the seal trajectory
Time Temporal

interval
the given temporal interval

Space topological
zone

the specific zone

Rules
Domain Foraging seal activity
Time During temporal relationship between the activity and

time interval
Space Include topological relationship between the activity and

specific space
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8.2.2 Seal domain model

Two seal species occur in French waters : the grey seal (Halichoerus grypus) and the harbour seal
(Phoca vitulina). The seal domain 8.4 is considered as a mobile object in our application. The
Seal concept is connected to the Mobile Object concept as shown in the UML class diagram 8.4.

Figure 8.4 – Seal domain model

8.2.3 Seal trajectory model

A trajectory of a seal is composed of sequences. Every sequence characterizes a defined state of
the seal : Dive, Haulout and Cruise. They are classes characterized spatially and temporally. A
CTD (Conductivity-Temperature-Depth) sensor records the marine environment parameters such
as temperature, pressure and water conductivity. Summary is metadata about the three states.
From the analysis of the captured data, table 8.3 presents the concepts of the seal trajectory
which are considered as the concepts of the trajectory domain. We define a seal trajectory model
connected to the trajectory domain model, as shown in Figure 8.5.

Table 8.3 – Mapping the seal trajectory to the trajectory domain model

Seal trajectory Trajectory domain
Dive, Haulout, Cruise GeoSequence

CTD, Summary Specific Sequence
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Figure 8.5 – Seal trajectory domain model
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8.3 Seal trajectory ontology

8.3.1 Seal trajectory ontology concepts

We transform the seal domain model in (Figure 8.4) to mobile object seal ontology (Figure 8.6).
A seal is considered as a mobile object in the Mobile Object Domain (MOD) ontology. An
encoded formalization for this ontology is shown in Axiom 8.1.

Seal ⊆MOD : MobileObject (8.1)

We transform the seal trajectory, Figure 4.2, into a seal trajectory ontology, Figure 8.6. The
formalization of these concepts are detailed in Axioms 8.2 - 8.10. In the Seal Trajectory

ontology, geoSequence can be one of the three seal states, as shown in Axiom 8.2. These states
are non-intersecting enforced by Axioms 8.3 -8.4. Each dive has a feature (isFeatureOf), Axiom
8.5. The class Feature contains four features : max depth, dive dur, sur dur and TAD, as in
Axioms 8.6 - 8.9. The Specific Sequence metadata is Summary and CTD defined by Axiom 8.10.

TD : GeoSequence ⊆ Dive ∪Haulout ∪ Cruise (8.2)

Dive ∩Haulout ∩ Cruise = ∅ (8.3)

∀x.Dive(x)→ TD : GeoSequence(x)∧qHaulout(x)∧qCruise(x) (8.4)

isFeatureOf ⊆ Dive× Feature (8.5)

Feature ⊆ {f |#(max depth ∩ ({f} ×Double)) ≥ 1} (8.6)

Feature ⊆ {f |#(tad ∩ ({f} ×Double)) ≥ 1} (8.7)

Feature ⊆ {f |#(dive dur ∩ ({f} ×Double)) ≥ 1} (8.8)

Feature ⊆ {f |#(sur dur ∩ ({f} ×Double)) ≥ 1} (8.9)

TD : SpecificSequence ⊆ Summary ∪ CTD (8.10)

8.3.2 Seal trajectory ontology with activities

We focus on the activities carried out during a seal trajectory (i.e. when the seal is in the water
between two consecutive haoulouts). According to the domain expert, we distinguish four main
activities :
– Resting is an activity where the seal is either sleeping or at least resting (limited activity)

under water. Usually this is close to the haulout sites but in some circumstances it could be
further away ;

– Traveling is a seal activity corresponding to the displacement of the animal from one place
of interest to another one. It is usually far from the haulout site ;

– Foraging is an activity where the seal is looking for a prey or catching/eating it. It is usually
far from the haulout site ;

– Traveling-Foraging is a seal activity which combines both previous activities, either because
the seal is opportunistically feeding along its travel, or because we are unable to distinguish
these two activities from the data collected.
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Figure 8.6 – Overview of the seal trajectory ontology
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In the design part, Figure 8.7 shows an overview of the seal trajectory ontology with their
activities. These activities are connected to the BaseActivity in the Semantic Domain (SD)
ontology, Axiom 8.11. They are non-intersecting forced by Axiom 8.12.

SD : BaseActivity ⊆ Foraging ∪ Traveling ∪Resting (8.11)

Foraging ∩ Traveling ∩Resting = ∅ (8.12)
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Figure 8.7 – Overview of the seal trajectory ontology with their activities

8.4 Application implementation

Our approach for creating declarative and imperative parts of seal trajectory ontology in the
Oracle Semantic Data Store iw as follows :

1. Creating the declarative parts of the seal trajectory ontology ;
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2. Matching the ontologies (seal trajectory and spatial ontologies) ;

3. Mapping relational data to RDF ;

4. Populating the ontologies ;

5. Creating seal trajectory ontology rules ;

6. Defining seal trajectory ontology inference.

8.4.1 Seal trajectory ontology declarative parts

Code 8.1 refers to the preparation to store seal trajectory triples, explained as follows :

1. A semantic data table for the seal ontology is created to refer its semantic data. This table,
called owlSealTrajectory_data, has a column of type SDO_RDF_TRIPLE_S (triple),
which refers to semantic data, Line 1 ;

2. A semantic model for the seal ontology is created by the SEM_APIS.CREATE_SEM_MODEL

procedure, called owlSealTrajectory and refers to the triple column, Line 2.
1 CREATE TABLE owlSealTrajectory_data (id NUMBER, triple SDO RDF TRIPLE S);
2 EXECUTE SEM_APIS.CREATE SEM MODEL(’owlSealTrajectory’,’owlSealTrajectory_data’, ’triple’);

Code 8.1 – Preparation to create owlSealTrajectory ontology

8.4.2 Matching the ontologies

We defined the seal trajectory ontology (Figure 8.7) which has to take into account the following
considerations :

– Zone : can be considered as a spatial polygon owlOGCSpatial:Polygon ;
– Dive : can be considered as a spatial line owlOGCSpatial:Line.

To meet these requirements, we need to connect seal trajectory and spatial ontologies. Figure 8.8
shows the mapping defined between the seal trajectory and spatial ontologies according to our
requirements. So, the concept Zone is an equivalent class with the concept Polygon. The second
requirement where the concept Dive is an equivalent class with the concept Line is realized while
Dive is inherited from the Sequence in the Trajectory Domain Ontology and the Sequence is
an equivalent class with Line.

8.4.3 Mapping relational data to RDF

The majority of data underpinning the Web and in domains such as life sciences and spatial
data management are stored in Relational DataBases (RDB) with their proven track record
of scalability, efficient storage, optimized query execution and reliability. As compared to the
relational data model, RDF is a more expressive data model and data expressed in RDF can
be interpreted, processed and reasoned by software agents [117]. This is why the strategies for
mapping relational data to RDF abound in [76]. The direct mapping defines an RDF graph
representing data in a relational database. It can be seen as a transformation witch takes a
relational database (data and scheme) as input and gives an RDF graph as output. In our work,
we use the D2RQ Mapping Language [21]. D2RQ is a declarative language for mapping relational
database schemes to RDF vocabularies and OWL ontologies. The language is implemented in
the D2RQ Platform. Figure 8.9 illustrates the mapping process from RDB to RDF in this thesis.
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8.4.4 Populating the ontologies

Loading RDF data in Oracle RDF triple store supports three forms (bulk load, batch load and
incremental loading), discussed in 6.2.3. We load seal trajectory data in the table owlSealTra-

jectory_data using the bulk load form.

8.4.5 Seal trajectory ontology rules

Seal trajectory ontology (Figure 8.7) considers the seal’s activities. Each seal activity has both
a declarative part as an RDF Class, and an imperative part, formally, an associated rule as IF-
THEN pattern. Figure 8.10 shows the declarative part of an activity Foraging. The imperative
parts of activities are defined as rules in the ontology in a rulebase called sealActivities_rb.
Therefore, every activity, or rule, will match a row in the view MDSYS.SEMR_sealActivities_rb.
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Figure 8.10 – Declarative part of Foraging rule

According to the domain expert, we take into consideration different parameters to define the
seal activities. The parameters are the geometrical shape of dives (TAD), the maximum dive depth
and surface ratio which is the ratio between surface duration and dive duration. The activities
are :
– Resting is when a seal is sleeping at the sea bottom with the TAD higher than 0.9. The

surface duration after the dive state should be quite high so that seals have enough time to
breath before another sleep under water ;
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Table 8.4 – Decision table associated with seal activities

Rules Max dive Dive shape Surface ratio =
depth (meter) or TAD surface dur/dive dur

Resting < 10 >0.9 > 0.5
Travelling > 3 < 0.7 < all
Foraging > 3 > 0.9 < 0.5
TravellingForaging > 3 > 0.7 & < 0.9 < 0.5

– Traveling could be in any dive depth deeper than 3 meters, but the TAD should be lower
than 0.7 because the seal does not need to spend a lot of time at the maximum depth. The
surface duration does not make any difference in this case ;

– Foraging is when the dive depth is deeper than 3 meters. The TAD however should be high
(>0.9) because the grey seal is a benthic forager, which means it is feeding on fish located on
or close to the sea bottom (i.e at the maximum depth available). Also the surface duration is
short because the seal wants to go back quickly to look for more fish ;

– TravelingForaging is when the dive depth is deeper than 3 meters. The TAD however should
be higher than (>0.7) and smaller than (>0.9). Also the surface duration is short because the
seal wants to go back quickly to look for more fish.

The decision Table 8.4 summarizes the above conditions to be considered in the IF part of a
rule associated with each activity. Based on this table, Code 8.2 is the imperative part of the
Foraging activity. Line 4 to 9 construct a subgraph and necessary variables needed by the
IF part of foraging rule. Line 10 is the Filter part of this rule. Line 11 gives the THEN part
associating a foraging activity to an object. Line 12 defines the aliases of seal trajectory ontology.

1 EXECUTE SEM_APIS.CREATE_RULEBASE(’sealActivities rb’);
2 INSERT INTO mdsys.semr_sealActivities_rb

3 VALUES( ’foraging rule’,
4 ’(?diveObject rdf:type s:Dive )

5 (?diveObject s:max depth ?maxDepth )

6 (?diveObject s:tad ?diveTAD )

7 (?diveObject s:dive dur ?diveDur )

8 (?diveObject s:surf dur ?surfaceDur )

9 (?diveObject s:seqHasActivity ?activityProberty )’,

10 ’(maxDepth > 3) and (diveTAD > 0.9) and (surfaceDur/diveDur < 0.5 )’,

11 ’(?activityProberty rdf:type s:Foraging )’,

12 SEM_ALIASES(SEM_ALIAS(’s’,’http://l3i.univ-larochelle.fr/owlSealTrajectory#’)) );

Code 8.2 – Implementation of Foraging rule

8.4.6 Seal trajectory ontology inference

We want to apply the domain activity over all considered data. So, we need to take into consi-
deration the domain application, Seal Trajectory ontology, when applying the inference. We
modify the entailment owlTrajectory_idx created in Sec.7.3, to consider the model and the
rulebase of seal trajectory ontology sealActivities rb. Code 8.3 creates the entailment over tra-
jectory owlTrajectory, temporal owlTime, spatial owlOGCSpatial and seal trajectory owl-

SealTrajectory models and their rulebases : owlTime rb, owlOGCSpatial rb, sealActivities rb,
respectively.



8.5. SEAL TRAJECTORY ONTOLOGY INFERENCE REFINEMENT 119

1 SEM_APIS.CREATE ENTAILMENT(’owlTrajectory_idx’,

2 SEM MODELS(’owlTrajectory’,’owlTime’,’owlOGCSpatial’,’owlSealTrajectory’),
3 SEM RULEBASES(’OWLPrime’,owlTime rb,’owlOGCSpatial rb’,’sealActivities rb’),
4 SEM_APIS.REACH CLOSURE,

5 NULL,

6 ’USER RULES=T’);

Code 8.3 – Entailment over domain trajectory application, temporal and spatial models

8.5 Seal trajectory ontology inference refinement

A complexity problem occurs when computing the inference over all trajectory data. However,
users could not be interested in all of these data. Their interest focuses on places where a mo-
ving object stays longer and visits more often. Therefore, the observed movement path of the
moving object will consist of two different search strategies, Figure 8.11. Extensive movement
corresponds to periods of movement with high speed and low turning rate, and hence, a small
area will be crossed more quickly. Conversely, intensive movement corresponds to periods of mo-
vement with low speed and high turning rate. The latter term is Area of Restricted Search

(ARS) [81] which represents an area where a moving object spends more time.

Figure 8.11 – Simulated moving object movement path consisting of two unique search
strategies. Extensive movement (grey) and intensive movement/ARS (black)

8.5.1 Two-tier inference refinement

We introduce a two-tier inference refinement on the trajectory data. In other words, two distinct
operations are performed to enhance the inference : primary and secondary inference operations.
Figure 8.12 shows the two-tier inference refinement. The primary filter is applied to the captured
data to classify them into a set of interesting places (ARSs). The primary filter allows fast
selection of the classified data to pass along to the secondary inference. The latter computes
the inference mechanism considering the ARS. Then, instead of annotating each sequence in the
model, we annotate the ARSs with the expert knowledge activity model. The inference process
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Figure 8.12 – Two-tier inference filter refinement

is computed for each ARS. The secondary inference yields the final knowledge data that the user
can query.

Our proposal is to analyze the captured data before computing the ontology inference. This
analysis is achieved thanks to our primary inference. This step considers trajectories that are
segmented by the object positions. These positions change and remain fixed. Spaccapietra [126]
named the former moves and the latter stops. For this reason, a trajectory is seen as a sequence
of moves going from one stop to the next one.

Definition 7 (Stop) A stop is a part of a trajectory having a time interval and represented as
a single point.

Definition 8 (Move) A move is a part of a trajectory represented as a spatio-temporal line.

The primary filter defines interesting ARSs for a moving object. Each ARS contains sequences
aggregated according to two properties : places that the moving object visited more often or
places where it stayed longer. This filter takes the two parts of a trajectory (move and stop)
data as input and gives ARSs as output. The secondary inference is the inference mechanism
applied over these ARSs and the considered rules.

8.5.2 Two-tier inference refinement algorithm

The two-tier inference refinement is applied over trajectory data. The primary filter classifies
data into a set of ARSs. The primary filter is based on the following definitions :

Definition 9 (Neighbors) Neighbors of a point (pi) are a list of points from the Move
data where the distance between pi and any neighbor point is smaller than a fixed radius.
Neighbor(pi) = {(pj)nj=1 : pi, pj ∈Move, distance(pi, pj) < radius}.

Definition 10 (Points Neighbors) Points Neighbors are a list of points and their neighbors.
Points Neighbors = {(pi, Neighborsi)

n
i=1 : pi, Neighborsi ∈Move}.
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input : Move
input : Stop
input : radius
output: Places

1 initialization;
2 Neighbor ← φ;
3 Points Neighbors ← φ;
4 Places ← φ;
5 for each pi ∈Move do
6 calculate Neighbor(pi);
7 Points Neighbors ← (pi, Neighbors(pi));
8 Move←Move−Neighbor(pi);
9 end

10 for each pi ∈ Points Neighbors AND condition(distance(pi, Stop) > radius) do
11 if distance(pi, P laces[j]) > radius then
12 Places[k]← (Neighborsi, 1);
13 else
14 Places(Neighborsj, nV isitsj) = ([Neighborsj, Neighborsi], nV isitsj + 1);
15 end

16 end

Algorithm 4: The area-restricted search (ARS) algorithm

Definition 11 (Places) Placei is an interesting place which contains the Neighbor(pi) and
number of its visits (nV isits) by the moving object. Places = {(Neighborsi, nV isitsi)

n
i=1 :

Neighborsi ∈Move, nV isitsi ∈ number}.

Algorithm 4 is the primary filter. Lines 5-9 gather the move data into groups of neighbors. These
groups are defined with respect to a radius, an input for this algorithm. This radius is a fixed
distance between two points to calculate the neighbors. The candidate of the radius is related
to the application view of a trajectory. The group list is in Points Neighbors.

Lines 10-16 define the interesting places. In general, we can consider all the members of
Points Neighbors or a part of them respecting to a domain condition. For example, the appli-
cation view could be interesting when a place has 60 points and over, or could be interesting in
any place having at least a point. For defining a place, the coordinates of the neighbors could be
an interesting place after applying two conditions. Every point that belongs to a place should
be far from the stop data more than the fixed radius. Any place should not have any neighbor
place within the radius distance, otherwise we merge the two coordinates and increase the visits
number. The ARSs are the output Places of this algorithm.

8.6 Conclusion

In this chapter, We described an application of the conceptual trajectories seal proposals.
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we applied our modeling approach in a particular domain application : marine mammal tra-
jectories. We presented the seal trajectory model considering the expert knowledge. Then the
associated ontology with the generic semantic trajectory model was described. The concepts
and the relationships between these concepts were exposed. An implementation of this ontology
was detailed. The ontology was populated from the collected data that was stored in a data-
base, before being transformed into RDF triples through D2RQ mapping engine. To consider
the knowledge of seal application, semantic rules were used to characterize specific activities
(rest, movement, foraging). The inference mechanism is computed using these rules. To solve
the inference complexity problem, we designed and implemented a refinement of inference rules,
called a two-tier refinement refinement. The first step is to determine regions of interest with
high-density data and therefore may contain reveal interesting information activities of seals.
Then, the inference applies over these places.
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This part is the evaluation part of our work and contribution. We evaluate the trajectory ontology
inference in Chap. 9. In our evaluation, we consider sets of real GPS seal trajectories. To evaluate
the time inference over seal trajectories, we consider the 13 temporal interval rules. Then to
evaluate the spatial inference, we consider the eight topological spatial rules. Moreover, we
evaluate the trajectory ontology over the spatio-temporal inference considering spatio-temporal
rules. From the results of these experiments, we address the computation complexity, especially
user-defined rules inference complexity.

In Chap. 10, we evaluate our contribution : trajectory ontology inference refinement. Firstly, we
evaluate the temporal inference refinement, then the spatial inference refinement. Moreover, we
perform experiments to evaluate the spatio-temporal inference refinements. Overall, we discuss
the enhancement made by these refinements in term of reducing the inference complexity. Finally,
we perform experiments to evaluate the application refinement. The two-tier filter inference
refinement reduces the considered data into interesting data organized in interesting places.
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9.1 Introduction

Experiments are performed over huge amount of captured seal data. In 2011, we have 410 690
raw data as seal dives and 1 255 raw data as seal haulout. We also consider data captured in
2006, 2007 and 2008. These experiments are proceeded on a high-performance server running
OS Linux 2.6.18 and Java 1.6 on an Intel (R) Xeon X7560 CPU at 2.27GHz with a maximum
of 40GB. The reasoner invoked is Oracle 11G. In our experiments, we consider sets of real GPS
seal trajectory data. The evaluation curves is according to the number of data (dive) treated.

9.2 Trajectory ontology inference : time inference

Code 9.1 creates an entailment over the domain seal trajectory and time models. This entailment
uses a subset of OWL rules called OWLPrime [103], the seal trajectory rule 8.4 and the 13 temporal
rules 7.2. In our experiment, we measure the time needed to compute the entailment (Code 9.1)
for different sets of real trajectory data for one seal. Its movements were captured from 16 to 18
June 2011 and led to the capture of 10 000 data. In this experiment, the seal activity rulebase
contains only the foraging rule. The input data for this entailment are only dives. Figure 9.1

127
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shows the experiment results for the time computation in seconds needed by the entailment. For
example, for 450 dives, the inference takes around 60 000 seconds (' 16.6 hours). Figure 9.2
shows the experiment results for the number of the triples inferred by the inference mechanism.
For example, for 450 dives, the inference takes around 2 200 000 triples.

1 SEM_APIS.CREATE ENTAILMENT(’owlSealTrajectory_idx’,

2 SEM MODELS(’owlSealTrajectory’,’owlTime’),
3 SEM RULEBASES(’OWLPrime’,’sealActivities rb’, ’owlTime rb’),
4 SEM_APIS.REACH CLOSURE, NULL, ’USER RULES=T’);

Code 9.1 – Entailment over the owlSealTrajectory and owlTime ontologies
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Figure 9.1 – Time computation over the temporal rules
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Figure 9.3 – Spatial ontology rules and DBMS spatial operators calls

9.3 Trajectory ontology inference : spatial inference

The spatial ontology inference is the process of applying the eight spatial rules 7.2 to compute
topological relationships between spatial objects. For this, the system needs an entailment over
seal trajectory and spatial rules. The system must compile the spatial relationships between
zones and dives, considered as spatial polygons and lines, respectively.

In Oracle RDF triple store, an entailment contains precomputed data inferred from applying a
specified set of rulebases to a specified set of semantic models. Code 9.2 creates an entailment
using domain trajectory and spatial models. This entailment uses a subset of OWL rules cal-
led OWLPrime [103], the domain seal trajectory rules 8.4 and spatial rules 7.2. Other options
are also required like the number of rounds that the inference engine should run. Where ap-
plying user-defined rules USER_RULES=T, the number of rounds should be assigned as default to
REACH_CLOSURE.

1 SEM_APIS.CREATE ENTAILMENT(’owlSealTrajectory_idx’,

2 SEM MODELS(’owlSealTrajectory’,’owlOGCSpatial’),
3 SEM RULEBASES(’OWLPrime’,’sealActivities rb’,’owlOGCSpatial rb’),
4 SEM_APIS.REACH CLOSURE,

5 NULL,

6 ’USER RULES=T’);

Code 9.2 – Entailment over owlSealTrajectory and owlOGCSpatial models

In this part, we discuss the cost of the spatial inference process. This cost study depends on
how many Oracle operations are performed during the inference process. Figure 9.3 shows the
number of executions of the spatial ontology rules is 1 000 000 and the number of DBMS spatial
operator calls is 125 000, for 250 dives. Figure 9.4 shows time executions of the spatial ontology
rules. For example, for 300 dives, the inference takes around 120 000 seconds (' 35.5 hours).
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Figure 9.4 – Time computation of spatial ontology rules needed by the inference mecha-
nism

9.4 Trajectory ontology inference : spatio-temporal

inference

In this section, we perform experiments with the aim of outlining the inference difficulties over
all the needed ontologies and rules. The inference uses the eight spatial rules, the 13 temporal
rules 7.2 and the trajectory domain foraging rule 8.4. Figure 9.5 shows the experimental results
over the three ontologies and their rules. The vertical axis measures the number of executions
needed to compute the inference mechanism for each considered number of dives. For example,
for 500 dives, the inference needs 6 000 000 calls to be normally computed over 22 spatio-temporal
trajectory rules.

9.5 Computation complexity

9.5.1 Spatial inference complexity

Figure 9.3 in the experimental evaluation of spatial ontology inference on semantic trajectory
shows two surveys :

1. Spatial ontology rules calls : the results show the evolution of the spatial rules calls based
on the number of dives. The size of this number is given by Equation 9.1. The DiveNb is
the number of dives loaded in the ontology model and the RuleNb is the number of the
spatial rules considered during the inference.

Rule index execution = 2 ∗DiveNb2 ∗RuleNb (9.1)
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Figure 9.5 – Spatio-temporal trajectory ontology inference

2. DBMS spatial operators calls : determines the number of calls of each Oracle spatial
operator. The size of this number is given by Equation 9.2.

Oracle spatial operator call = 2 ∗DiveNb2 (9.2)

The complexity of the size of computing the inference on spatial rules appears clearly from the
results in Fig. 9.3 and from the form of Equations (9.1, 9.2). The number of the spatial ontology
rule calls and the number of Oracle spatial operator calls are growing quickly when the loaded
data increases.

9.5.2 User-defined rules inference complexity

Oracle Semantic Data Store did not perform special options for the inference over spatial data.
Moreover, Oracle Semantic Data Store has limitations on supporting effective options in the case
of user-defined rules :

1. The INC option enables incremental inference taking into account the inference of the
previous step. This option saves index execution and time. However it is not available
with user-defined rules ;

2. The REACH_CLOSURE option is the default value for the number of rounds for the engine.
It must be respected in the case of user-defined rules ;

3. The DISTANCE option generates additional distance information that is useful for semantic
operators. It is also not available with user-defined rules.

Furthermore in our experiments, we compute the inference independently of any semantic query,
which means that we compute the inference mechanism off-line. Moreover in terms of updating
data or new data captured, the inference process should be computed once again.
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9.6 Discussion

We evaluated the inference performance in terms of inferred graph size, and computation time.
We computed the inference over OWLPrime and user-defined rules. We noticed that the inference
time increases seemingly out of proportion when using user-defined rules. This is because the
Oracle inference engine does not integrate OWL and user-defined rule inference components
similarly. Behind the scene, Oracle first runs OWL related inference till a closure occurs. Then
Oracle runs user-defined rules till a closure occurs, and repeats the whole process till no new
triple is generated from either component. Finally, the inference time increases as the vocabulary
becomes increasingly expressive, especially when using OWLPrime with user-defined rules. In
term of time computation, the inference over the time rules takes 16.6 hours for 450 dives,
while the inference over the spatial rules takes 35.5 hours. In term memory and space storage,
the inference over the time rules generates more than 2 millions for 450 dives, the inference
over the spatial rules is executed 1 million times and the Oracle spatial operators is executed
125 thousands for 250 dives. AS a conclusion, we have to enhance the inference computation
complexity by our refinements.

9.7 Conclusion

We evaluated the inference computation using temporal, spatial and spatio-temporal rules. We
addressed the inference complexity over these user-defined rules. The system of Oracle manages
the user rules differently than the standard OWLPrime rules. We should mention that we could
not be able to compute the inference using these rules over more that 500 raw trajectories.
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10.1 Introduction

This chapter is the mirror of the previous one, however it shows evaluations over the temporal,
spatial, and spatio-temporal refinements, as well as the two-tire inference refinement associated
with regions of interest. We present results in terms of time computation in hours, memory and
space storage in number of executions.

10.2 Temporal inference refinement

We performed experiments with the aim of measuring the impact of the introduction of tem-
poral refinement in the inference process computation. Figures 10.1 and 10.2 show results from
experiment, on the time computation in seconds and the storage space in triples needed by the
inference calculation. The evolution curves is given by the number of dives. In all the following
experiments, shown in Fig. 10.1 and 10.2, we consider the domain rules :

1. The experiment named Temporal rules analyses the inference on real data taking into
account a classic version of temporal rules ;

133
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2. The experiment named Temporal rules refined - Real data analyses the inference on real
data considering the refinement of temporal rules given by Algorithm 1 ;

3. The experiment named Temporal rules refined - Generated data analyses the inference on
generated data as in the previous experiment.

It clearly appears that the experiment 1 gives poor inference results in terms of time computation
and space storage. For example, for 500 dives, the inference takes around 67.000 seconds (' 18.5
hours) and generates 2.300.000 triples. In our point of view, this problem occurs because of
time integration without applying any domain constraints on temporal rules. In this work, we
propose a first solution to this problem by defining a domain constraint on temporal intervals
based on the conceptual distance in the ontology hierarchy. This constraint limits the calculation
of temporal rules into the neighbourhood of the current interval. From the seal trajectory domain
and with our biological feedback, we candidate the conceptual distance between two sequences to
five minutes (300 seconds). So, we modify the implementation of the temporal rules considering
this candidate. For instance, the implementation of the intervalAfter_Refined rule, is given
by the code 10.1.

1 EXECUTE SEM_APIS.CREATE_RULEBASE(’owlTime_rb’)

2 INSERT INTO mdsys.semr_owltime_rb VALUES(

3 ’intervalAfter Refined rule’,
4 ’(?timeObject1 rdf:type owltime:ProperInterval)(?timeObject1 owltime:hasEnd ?End1)(?End1 :

inXSDDateTime ?EndTime1)
5 (?timeObject2 rdf:type owltime:ProperInterval)(?timeObject2 owltime:hasBeginning ?Begin2)(?Begin2 :

inXSDDateTime ?BeginTime2)’,
6 ’(BeginTime2 > EndTime1)
7 ((timeIntervalLengthInSeconds(dateTime2TimeStamp(EndTime1),dateTime2TimeStamp(BeginTime2))<300)’,
8 ’(?timeObject2 owltime:intervalAfter Refined ?timeObject1)’,

9 SEM_ALIASES(SEM_ALIAS(’owltime’,’http://www.w3.org/2006/time#’)));

Code 10.1 – Creating of the temporal intervalAfter_Refined rule

In the experiment 2, we consider real GPS/GSM data and the inference uses the refined tem-
poral rules. The time computation and space storage results show the improvement made on
the inference calculation comparing to the experiment 1. For example, for 500 dives, the infe-
rence takes less than 30.000 seconds (' 8 hours) and generates less than 1.100.000 triples. In
the experiment 3, the inference is calculated on generated data and uses the refined temporal
rules. Generated data contains temporal intervals with the same initial density for temporal
relationships. The results show the reasonable time computation and space storage taken by
the inference mechanism. These experiments provide a view of the inference behaviour while
considering independent or neutral data.

10.3 Spatial inference refinement

In this section we evaluate the two spatial refinements we introduced in this work. The inference
uses the eight spatial rules and the trajectory domain foraging rule.

Firstly, we evaluate the area of interest refinement. Related to the seal trajectory domain and
to our domain knowledge, we limit the area of interest to 500 meters. We pass this candidate
to Algorithm 2. The experimental results of this proposed refinement are shown in Figure 10.3.
The results show its impact by the three following experiments :

1. Spatial ontology rule calls - constraints refinement presents the number of executions of
the spatial ontology rules using the area of interest refinement ;
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2. Spatial ontology rule calls not executed gives the number of reduced executions of the
spatial ontology rule after applying this constraints refinement comparing to the results
in Figure 9.3 ;

3. DMBMS spatial operator calls - constraints refinement provides the number of execution of
each Oracle spatial operator during the inference process with area of interest refinement.

We observe a decrease in both of the spatial ontology rules executions and the number of DBMS
spatial operator executions. For example, considering 250 dives, in the normal case of inference,
Figure 9.3, the number of executions of the spatial ontology rules is 1 000 000 and the number
of DBMS spatial operator calls is 125 000. However in the refinement case Figure 10.3, the
number of executions of the spatial ontology rules is 130 000 and the number of DBMS spatial
operator calls is 16 000. We therefore obtained a positive impact by applying the area of interest
refinement.
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Figure 10.3 – Enhancement of the spatial ontology inference with constraints refinement
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Secondly, we evaluate the proposed passes refinement. The experimental results are shown in
Figure. 10.4. The impact results are shown by the three following experiments :

1. Spatial ontology rule calls presents the number of the spatial ontology rule calls during
the normal inference process, without any refinement ;

2. Spatial ontology rule calls - passes refinement displays the number of the spatial ontology
rule calls when applying the passes refinement ;

3. Spatial ontology rule calls - passes and constraints refinement provides the number of
the spatial ontology rule calls when applying the passes and area of interest refinements
together.

We observe a decrease in the number of the spatial ontology rule calls while applying the passes
refinement and while applying the constraints and the passes refinements together. For example,
considering 300 dives, in the normal case of inference, the number of the spatial ontology rule
calls is 2 000 000. However in the passes refinement case, the number of the spatial ontology rule
calls is 500 000.
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Figure 10.4 – Evaluation of the spatial ontology inference over the proposed refinement

Figure. 10.5 shows time execution of the spatial rules and refined spatial rules. The inference
mechanism takes 126 000 seconds to execute the spatial rules, while around 34 000 seconds to
execute spatial rules over the passes refinement and even less for both passes and constraints refi-
nements. Finally, the refinements over spatial rules effects positively the computation complexity
of the inference process.
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10.4 Spatio-temporal inference refinement

In this section, we perform experiments with the aim of outlining the inference difficulties over
all the needed ontologies and rules. We evaluate the impact of the two spatial refinements and
the temporal neighbor refinement over the executions of the inference mechanism. The inference
uses the eight spatial rules, the 13 temporal rules and the trajectory domain foraging rule. For
evaluating the constraints refinement and temporal neighbor refinement, the candidate depends
on the application domain and can be estimated after considering the data statistical dispersion.
Related to the seal trajectory domain and to our domain knowledge, we set the temporal neighbor
between two sequences at five minutes (300 seconds) and the constraints to 500 meters.

Figure 10.6 shows the number of executions of the inference over the normal and the refined
temporal and spatial rules. In our experiments, we consider sets of real GPS seal trajectory data.
The evaluation curves is given by the number of dives. The vertical axis measures the number
of executions (calls) needed to compute the inference mechanism for each considered number of
dives.

For example, for 500 dives, the inference needs 6 000 000 executions to be normally computed
over the 22 spatio-temporal rules. Over the 22 refined rules, the inference needs 2 000 000
executions to be computed. In term of the inferred triple, Fig. 10.7 shows 5 300 000 triples for
the normal execution and 3 400 000 triples over the 22 spatio-temporal refined rules.
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10.5 Two-tier inference refinement

To analyze our data, we consider the same datasets in Sect. 9.2. We pass these data to the ARS
algorithm. This algorithm analyzes the data and gives as output the places and their visits,
as shown in Fig. 10.8 interesting places (1). For example, the ”place B” has 20 visits from the
moving object, therefore may contain an interesting information related to the seal’s activities.

Figure 10.9 shows the evaluation over the two-tier inference refinement with temporal neighbor
refinement. This figure shows the results in term of number of triples generated by the inference.
For example, for 450 dive, the inference mechanism generates 400 000 triples over the two-tier
inference and the temporal neighbor refinements, while it generates 1 100 000 triples over the
temporal neighbor refinement.

For evaluating the foraging places in Fig. 10.8 foraging places (2), we pass the coordinates of
these places to our biologist to evaluated. The biologist finds that these are places where direct
(visual) observations of seals (and dolphins) have been made in the past, and they correspond to
places that are also known by local fishermen to be good for fishing thanks to the tidal current
and the sediment type. Figure 10.10 is a map showing the coastline and the boundaries of the
marine park in western Brittany with the evaluated foraging places. This information included
in the map will be forwarded to the managers of the marine park, so that they take it into
account for the management of interactions between seals and human activities.
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Figure 10.10 – marine park in western Brittany with the evaluated foraging places
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Table 10.1 – Results of time neighbor refinement

Rules Data Time Triple Inference
(hour) * 103 enhancement

Temporal 450 16.6 2 200
2 times

Temporal neighbor 450 8 1 100

Table 10.2 – Results of spatial neighbor and passes refinements

Rules Data Spatial rule Time Execution Time
execution * 103 (hour) enhancement enhancement

Spatial 300 2 000 35
15 times

-
Spatial neighbor 300 130 -
Spatial passes 300 500 9 4 times < 4 times
Spatial passes neighbor 300 150 8.7 13 times > 4 times

10.6 Discussion

Table 10.1 shows the summary of the inference experiments over the time rules and the time
refined rules (time neighbor refinement). This comparison shows 2 time enhancement over the
time computation, memory and space storage of the inference.

Table 10.2 shows the summary of the inference experiments over the spatial rules and the spatial
refined rules (spatial neighbor refinement and spatial passes refinement). In term of memory and
space storage, this comparison shows 7 time enhancement over the number of executions the rules
using the neighbor refinement and 4 time enhancement using the passes refinement, moreover 7
time enhancement using the passes and neighbor refinements. In term of the time computation,
this comparison shows 4 time enhancement using passes and neighbor refinements.

Table 10.3 shows the summary of the inference experiments over the time neighbor rules and
the two-tier inference refinements. This comparison shows 2 time enhancement over the memory
and space storage of the inference mechanism.

10.7 Conclusion

In this chapter, we evaluated all our contributions proposed to solve the issue of inference
complexity. Experiments evaluated the impact of the ontology inference refinements. Firstly, we
performed experiments over the temporal inference refinement, the spatial inference refinement
and then, the spatio-temporal inference refinements. Overall, we discussed the enhancement
made by these refinements in term of reducing time computation, memory and space storage of

Table 10.3 – Results of two-tier inference refinement

Rules Data Triple * 103 Inference enhancement
Temporal neighbor 450 1 100

3 times
Two− tier inference 450 400
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the inference complexity. Finally, we performed experiments to evaluate the proposed application
domain refinement. The two-tier inference refinement reduces the considered data into interesting
data organized in interesting places. With this refinement, we were able to compute the inference
over all the captured data, while, in the normal inference, we were able to compute the inference
over just 500 raw trajectories.
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Conclusion

Trajectories are usually available as raw data. The data lack semantics which is fundamental
for their efficient use. Our work is based on an ontology modeling approach for semantic trajec-
tories. The trajectory approach consists of multiple separated ontologies : a general trajectory
model, a mobile object model and a semantic model. However, the domain part of the trajectory
ontology focuses on mobile object’s characteristics and its trajectory’s activities. Then, an ap-
plication domain trajectory model is proposed consisting of a domain model. This model should
be integrated with the semantic trajectory model. Considering a trajectory as a spatio-temporal
concept, the semantic trajectory model must map to temporal and spatial models. For mapping
to a temporal model, we reuse the W3C OWL-Time ontology. For mapping to a spatial model,
we reuse a spatial ontology based on the OpenGIS Simple Features Interface Standard (SFS).
We apply our modeling approach to an application domain : marine mammal tracking, in par-
ticularly seal trajectories. We model the application domain with a seal ontology. We map this
ontology to our trajectory ontology.

We implement the declarative and the imperative parts of the ontologies. In this implementation,
we consider RDF triple store. Technically, we use Oracle Semantic Data Technologies. We use
Oracle RDF data for modeling, storing, loading and querying data. While our model is based
on multiple ontologies, we map our trajectory ontology to the extended models (temporal and
spatial models) and to the application domain ontology using OWL and RDFS constructions.
To populate the ontologies, we add seal data within the ontology. The seal trajectory data is
provided as files, then we have a problem of integrating them with the ontology model. So, we
load this data into a relational database, then, we use the D2RQ mapping engine to map the
relational data into RDF graph triples. Moreover, we address the semantic gap between the
model and the captured data. Then, application domain knowledge experts are defined in the
seal trajectory ontology and connected to the semantic model in the semantic trajectory model.

The objective is to annotate data with the considered knowledge. Over huge data, an ontology
inference mechanism is used as an automatic annotation. This mechanism derives new semantics
from existing information using additional knowledge. These knowledge could be in a form of
rules either axioms or defined by the user. Fundamental axioms are the reasoner’s rules, such as
RDF, RDFS, OWLPrime or others. User-defined rules are knowledge related to users’ needs. The
user rules are the domain, temporal and spatial knowledge. Moving object activities are applied
as rules. Temporal relationships, specifically the 13 Allen relationships, are implemented as
temporal rules. Spatial relationships, specifically OGC topological relationships, are implemented
as spatial rules. The ontology inference mechanism is computed to annotate the data with the
considered user-defined rules. These annotations are data labeled with semantic annotations as
triples. We clearly address that computing the inference using axioms is completely different from
using user-defined rules. Oracle presents an experiment over 133 million data using OWLPrime
reasoner rules and it takes 7 hours. We preform an experiment using temporal rules, however
for 450 data, it takes 16 hours. This is because Oracle inference engine does not integrate
OWLPrime and user-defined rule inference components similarly. Behind the scene, Oracle first
run OWLPrime until a closure occurs. Then Oracle run user-defined rules until a closure occurs,
and repeat the whole process till no new triple is generated from either component. Therefore,
the time computation increases as the vocabulary becomes increasingly expressive, especially
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when using OWLPrime with user-defined rules. The inference mechanism therefore becomes an
expensive mechanism in terms of time computations and space storage.

Our objective is to reduce this inference complexity. We try to understand technicality the work
of the inference engine. We evaluate the inference mechanism using different engines. Then,
we compute the inference mechanism over our model with different experiments. We compute
the inference using the domain and temporal rules, then the domain and spatial rules, and
finally the domain, temporal and spatial rules together. Moreover, we perform experiments to
understand the way the inferred data is separated and saved in the database. The difficulty is
that whenever we intervene into this schema, the whole database becomes invalid. Then, we have
to delete everything and rebuild the database again. Moreover, the problem of Oracle inference
mechanism is not an incremental process when using user-defined rules.

After all these experiments and in order to reduce the inference complexity, we propose three
optimizations. We suggest some domain constraints, temporal and spatial neighbor refinements.
Using these refinements, we modify directly the rules which influence positively the computation
of the inference. Moreover, we propose a reduction of the repetition of the inference computation.
In this case, the inference results are saved in our index, not on the standard inference index.
Finally, we visualize seal trajectories to view the movement of a moving object and understand its
behavior. From this visualization, we define a refinement specifically for the domain application.
This refinement reduces the considered data into interesting data grouped into place-of-interest.
We call it two-tier inference filters. In other words, two distinct operations are performed to
enhance the inference : primary and secondary filter operations. The primary filter analyzes the
trajectory data into places of interest. The secondary filter computes the ontology inference over
these places. The inference computation filters the interesting places into domain activity places
which are the results of the annotation process. In this case, we are able to consider all the
captured data in the annotation process.

We can sum up the main contributions of this work as following :
– Using an ontology modeling approach for semantic trajectories integrated with external back-

ground models ;
– Connecting separated and different needed ontologies ;
– Computing the inference mechanism over semantic trajectories to enrich high-level knowledge,

then answer user queries ;
– Addressing the computation complexity of the inference mechanism in terms of time compu-

tations and space storage ;
– Reducing the inference complexity by some refinements.
We evaluate our contributions on real-world trajectory data. The experimental results highlight
the positive impact of the proposed refinements. In the neighbor and repetition refinements, we
approximately reduce half of the time computation of the inference mechanism. In evaluating
the two-tier filters, the results show that we are able in this case to consider all the captured
data, not just part of them like in the normal inference mechanism. In other words, we are able
to answer queries over much more data than the normal ontology inference.
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Perspectives

Our approach computes the inference mechanism over our spatio-temporal trajectory data mo-
del. Our model deals with 2D+1/2 scientific problems with temporal and spatial dimensions.
However, there is always a way to improve. A global enhancement could be upgrading our
approach to consider any spatio-temporal data over the trajectory model. Moreover, we look
forward to take into consideration three-dimensions in the trajectory model.

Based on our experiments for understanding the mechanism of the inference process, we can
specify how a reasoner should compute the inference. So, we design our own inference engine
taking into account the following considerations :
– A logical order to execute the rules ;
– The reflexive, symmetric, transitive rules when executing a rule. This means that when we

execute a rule, the output should be its result with its reflexive, symmetric, transitive results,
without taking time to re-execute its reflexive, symmetric, transitive rules ;

– The composition rules when executing the rules [14, 15].
We highlight parts in our approach that need improvement :
– In our approach, we are able to answer experts queries. Therefore, providing a query interface

gives possibilities to the end user to specify an activity, an assigned moving object and all the
other necessary parameters : time, zone or others. Over all, a query optimization should be
provided, as well as a query transformation into SPARQL or SQL queries to be applied over
our existing model ;

– Our semantic annotation process is applied over trajectories. However, the annotation process
labels parts of a trajectory with the considered knowledge. These parts are the Sequences of
a trajectory. Meaning that, the results of the inference mechanism are the Sequences labeled
with activities of a moving object or other considered rules. However, the objective could be
annotating the whole trajectory with one knowledge. For example, if a trajectory has resting
sequences, traveling sequences and foraging sequences, then we need a decision about the
activity of the whole trajectory. The objective of the trajectory of a mobile object in a specific
day is a foraging activity ;

– In our application domain, the global objective is to determine foraging parts or foraging
trajectories. So, the foraging rule could be enhanced by a global view over the whole trajectory.
Therefore, we can define the following scenario and the following definitions :
Definition 12 (Trip) . A trip is a travel at sea between two haulouts of the seals (time spent
on land). This definition is provided by the biologist Jason in [73].
Related to our application domain, we define three kinds of a trip, shown in Figure 10.11 :
Definition 13 (Return trip (rock)) . Return (rock) trip is a trip of a moving object where
it returns to the same specific rock which it started from.
Definition 14 (Return trip (area)) . Return (area) trip is a trip of a moving object where
it returns to the same specific area which it started from.
Definition 15 (Travel trip) . Travel trip is a trip of a moving object from one haulout to
a different one.
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Figure 10.11 – kinds of a trip

Figure 10.12 – Combination features for the Foraging activity

Overall, defining a foraging activity within a trajectory could combine three parts. Figure 10.12
presents the combination of the following parts to make a decision about the foraging activity
within the whole trajectory.
– Specific features of dives related to a foraging activity, defined in Sect. 8.4 ;
– Validating dives’ features in interesting places (Area-Restricted Searches (ARSs)), de-

tailed in Sect. 8.5 ;
– Having return trip within the haulout data in a trajectory.
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Appendix rules

1 Temporal rules

1.1 IntervalAfter rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalAfter_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalAfter_rule’,

’(?x rdf:type :ProperInterval) (?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime) (?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin) (?yBegin :inXSDDateTime ?yBeginDateTime)’,

’(yBeginDateTime > xEndDateTime)’,

’(?y :intervalAfter ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.2 – Declarative part of intervalAfter rule (NT format)

1.2 IntervalBefore rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalBefore_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalBefore_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),
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dateTime2TimeStamp(yEndDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0))’,

’(?y :intervalBefore ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.3 – Declarative part of intervalBefore rule (NT format)

1.3 IntervalContains rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalContains_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalContains_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))>0))’,

’(?y :intervalContains ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.4 – Declarative part of intervalContains rule (NT format)

1.4 IntervalDuring rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalDuring_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalDuring_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)
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(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))>0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0))’,

’(?y :intervalDuring ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.5 – Declarative part of intervalDuring rule (NT format)

1.5 IntervalEquals rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalEquals_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalEquals_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))=0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))=0))’,

’(?y :intervalEquals ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.6 – Declarative part of intervalEquals rule (NT format)

1.6 IntervalFinishedBy rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalFinishedBy_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalFinishedBy_rule’,
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’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))=0))’,

’(?y :intervalFinishedBy ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.7 – Declarative part of intervalFinished rule (NT format)

1.7 IntervalFinishes rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalFinishes_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalFinishes_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))>0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))=0))’,

’(?y :intervalFinishes ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.8 – Declarative part of intervalFinishes rule (NT format)

1.8 IntervalMeets rule
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DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalMeets_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalMeets_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))=0))’,

’(?y :intervalMeets ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.9 – Declarative part of intervalMeets rule (NT format)

1.9 IntervalMetBy rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalMetBy_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalMetBy_rule’,

’(?x rdf:type :ProperInterval) (?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime) (?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin) (?yBegin :inXSDDateTime ?yBeginDateTime)’,

’(yBeginDateTime = xEndDateTime)’,

’(?y :intervalMetBy ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.10 – Declarative part of intervalMetBy rule (NT format)

1.10 IntervalOverlappedBy rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalOverlappedBy_rule’);
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INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalOverlappedBy_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))>0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))>0))’,

’(?y :intervalOverlappedBy ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.11 – Declarative part of intervalOverlappedBy rule (NT format)

1.11 IntervalOverlaps rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalOverlaps_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalOverlaps_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),
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dateTime2TimeStamp(yEndDateTime))>0))’,

’(?y :intervalOverlaps ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.12 – Declarative part of intervalOverlaps rule (NT format)

1.12 IntervalStartedBy rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalStartedBy_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalStartedBy_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))=0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))>0))’,

’(?y :intervalStartedBy ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.13 – Declarative part of intervalStartedBy rule (NT format)

1.13 IntervalStarts rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalStarts_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalStarts_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),
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dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))=0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0))’,

’(?y :intervalStarts ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.14 – Declarative part of intervalStarts rule (NT format)

2 Refinement temporal rules

2.1 intervalAfter refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalAfterRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalAfterRef_rule’,

’(?x rdf:type ot:ProperInterval) (?x ot:hasEnd ?xEnd)

(?xEnd ot:inXSDDateTime ?xEndDateTime) (?y rdf:type ot:ProperInterval)
(?y ot:hasBeginning ?yBegin) (?yBegin ot:inXSDDateTime ?yBeginDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<300)

and

(yBeginDateTime > xEndDateTime))’,

’(?y ot:intervalAfterRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’ot’,’http://www.w3.org/2006/time#’)));

Code 10.15 – Declarative part of intervalAfter refinement rule (NT format)

2.2 intervalBefore refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalBeforeRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalBeforeRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and
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(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(yEndDateTime),

dateTime2TimeStamp(xBeginDateTime))<300))’,

’(?y :intervalBeforeRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.16 – Declarative part of intervalBefore refinement rule (NT format)

2.3 intervalContains refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalContainsRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalContainsRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))>0)

and

((timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(yBeginDateTime))<300)

or

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yEndDateTime))<300)))’,

’(?y :intervalContainsRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.17 – Declarative part of intervalContains refinement rule (NT format)

2.4 intervalDuring refinement rule
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DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalDuringRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalDuringRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))>0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0)

and

((timeIntervalLengthInSeconds(dateTime2TimeStamp(yEndDateTime),

dateTime2TimeStamp(xEndDateTime)) < 300)

or

(timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(xBeginDateTime))<300)))’,

’(?y :intervalDuringRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.18 – Declarative part of intervalDuring refinement rule (NT format)

2.5 intervalEquals refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalEqualsRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalEqualsRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))=0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),
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dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))=0))’,

’(?y :intervalEqualsTime ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.19 – Declarative part of intervalEquals refinement rule (NT format)

2.6 intervalFinishedBy refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalFinishedByRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalFinishedByRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))=0))’,

’(?y :intervalFinishedByRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.20 – Declarative part of intervalFinishedBy refinement rule (NT format)

2.7 intervalFinishes refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalFinishesRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalFinishesRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)
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and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))>0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))=0))’,

’(?y :intervalFinishesRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.21 – Declarative part of intervalFinishes refinement rule (NT format)

2.8 intervalMeets refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalMeetsRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalMeetsRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))=0))’,

’(?y :intervalMeetsRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.22 – Declarative part of intervalMeets refinement rule (NT format)

2.9 intervalMetBy refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalMetByRef_rule’);
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INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalMetByRef_rule’,

’(?x rdf:type :ProperInterval) (?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime) (?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin) (?yBegin :inXSDDateTime ?yBeginDateTime)’,

’(yBeginDateTime = xEndDateTime)’,

’(?y :intervalMetByRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.23 – Declarative part of intervalMetBy refinement rule (NT format)

2.10 intervalOverlappedBy refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalOverlappedByRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalOverlappedByRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))>0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))>0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yEndDateTime))< 300))’,

’(?y :intervalOverlappedByRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.24 – Declarative part of intervalOverlappedBy refinement rule (NT format)

2.11 intervalOverlaps refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalOverlapsRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalOverlapsRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
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(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))>0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(yEndDateTime))< 300))’,

’(?y :intervalOverlapsRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.25 – Declarative part of intervalOverlaps refinement rule (NT format)

2.12 intervalStartedBy refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalStartedByRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalStartedByRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))=0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))>0))’,

’(?y :intervalStartedByRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.26 – Declarative part of intervalStartedBy refinement rule (NT format)
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2.13 intervalStarts refinement rule

DELETE FROM mdsys.semr_owlTime_rb

WHERE upper(rule_name) = upper(’intervalStartsRef_rule’);

INSERT INTO mdsys.semr_owlTime_rb VALUES(

’intervalStartsRef_rule’,

’(?x rdf:type :ProperInterval)
(?x :hasEnd ?xEnd)

(?xEnd :inXSDDateTime ?xEndDateTime)

(?x :hasBeginning ?xBegin)

(?xBegin :inXSDDateTime ?xBeginDateTime)

(?y rdf:type :ProperInterval)
(?y :hasBeginning ?yBegin)

(?yBegin :inXSDDateTime ?yBeginDateTime)

(?y :hasEnd ?yEnd)

(?yEnd :inXSDDateTime ?yEndDateTime)’,

’((timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))<0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xBeginDateTime),

dateTime2TimeStamp(xEndDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))=0)

and

(timeIntervalLengthInSeconds(dateTime2TimeStamp(xEndDateTime),

dateTime2TimeStamp(yBeginDateTime))+

timeIntervalLengthInSeconds(dateTime2TimeStamp(yBeginDateTime),

dateTime2TimeStamp(yEndDateTime))<0))’,

’(?y :intervalStartsRef ?x)’,

SEM_ALIASES(SEM_ALIAS(’’,’http://www.w3.org/2006/time#’)));

Code 10.27 – Declarative part of intervalStarts refinement rule (NT format)

3 Spatial rules

3.1 AnyInteract rule

DELETE FROM mdsys.semr_owlSpatialOnto_rb

WHERE upper(rule_name) = upper(’anyInteract_rule’);

INSERT INTO mdsys.semr_owlSpatialOnto_rb VALUES(

’anyInteract_rule’,

’(?spObj1 rdf:type os:Geometry)(?spObj1 os:srid ?sridSpObj1)(?spObj1 os:wkt ?strSpObj1)

(?spObj2 rdf:type os:Geometry)(?spObj2 os:srid ?sridSpObj2)(?spObj2 os:wkt ?strSpObj2)’,

’(evalSpatialRelation(spObj1,strSpObj1,spObj2,strSpObj2,sridSpObj2,’’ANYINTERACT’’) = 1)’,

’(?spObj1 os:anyInteract ?spObj2)’,

SEM_ALIASES(SEM_ALIAS(’os’,’http://l3i.univ-larochelle.fr/Sido/owlOGCSpatial#’)));

Code 10.28 – Declarative part of anyInteract rule (NT format)

3.2 Contains rule

DELETE FROM mdsys.semr_owlSpatialOnto_rb

WHERE upper(rule_name) = upper(’contains_rule’);

INSERT INTO mdsys.semr_owlSpatialOnto_rb VALUES(

’contains_rule’,
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’(?spObj1 rdf:type os:Geometry)(?spObj1 os:srid ?sridSpObj1)(?spObj1 os:wkt ?strSpObj1)

(?spObj2 rdf:type os:Geometry)(?spObj2 os:srid ?sridSpObj2)(?spObj2 os:wkt ?strSpObj2)’,

’(evalSpatialRelation(spObj1,strSpObj1,spObj2,strSpObj2,sridSpObj2,’’CONTAINS’’) = 1)’,

’(?spObj1 os:contains ?spObj2)’,

SEM_ALIASES(SEM_ALIAS(’os’,’http://l3i.univ-larochelle.fr/Sido/owlOGCSpatial#’)));

Code 10.29 – Declarative part of contains rule (NT format)

3.3 CoveredBy rule

DELETE FROM mdsys.semr_owlSpatialOnto_rb

WHERE upper(rule_name) = upper(’coveredBy_rule’);

INSERT INTO mdsys.semr_owlSpatialOnto_rb VALUES(

’coveredBy_rule’,

’(?spObj1 rdf:type os:Geometry)(?spObj1 os:srid ?sridSpObj1)(?spObj1 os:wkt ?strSpObj1)

(?spObj2 rdf:type os:Geometry)(?spObj2 os:srid ?sridSpObj2)(?spObj2 os:wkt ?strSpObj2)’,

’(evalSpatialRelation(spObj1,strSpObj1,spObj2,strSpObj2,sridSpObj2,’’COVEREDBY’’) = 1)’,

’(?spObj1 os:coveredBy ?spObj2)’,

SEM_ALIASES(SEM_ALIAS(’os’,’http://l3i.univ-larochelle.fr/Sido/owlOGCSpatial#’)));

Code 10.30 – Declarative part of coveredBy rule (NT format)

3.4 Covers rule

DELETE FROM mdsys.semr_owlSpatialOnto_rb

WHERE upper(rule_name) = upper(’covers_rule’);

INSERT INTO mdsys.semr_owlSpatialOnto_rb VALUES(

’covers_rule’,

’(?spObj1 rdf:type os:Geometry)(?spObj1 os:srid ?sridSpObj1)(?spObj1 os:wkt ?strSpObj1)

(?spObj2 rdf:type os:Geometry)(?spObj2 os:srid ?sridSpObj2)(?spObj2 os:wkt ?strSpObj2)’,

’(evalSpatialRelation(spObj1,strSpObj1,spObj2,strSpObj2,sridSpObj2,’’COVERS’’) = 1)’,

’(?spObj1 os:covers ?spObj2)’,

SEM_ALIASES(SEM_ALIAS(’os’,’http://l3i.univ-larochelle.fr/Sido/owlOGCSpatial#’)));

Code 10.31 – Declarative part of covers rule (NT format)

3.5 Equals rule

DELETE FROM mdsys.semr_owlSpatialOnto_rb

WHERE upper(rule_name) = upper(’equals_rule’);

INSERT INTO mdsys.semr_owlSpatialOnto_rb VALUES(

’equals_rule’,

’(?spObj1 rdf:type os:Geometry)(?spObj1 os:srid ?sridSpObj1)(?spObj1 os:wkt ?strSpObj1)

(?spObj2 rdf:type os:Geometry)(?spObj2 os:srid ?sridSpObj2)(?spObj2 os:wkt ?strSpObj2)’,

’(evalSpatialRelation(spObj1,strSpObj1,spObj2,strSpObj2,sridSpObj2,’’EQUAL’’) = 1)’,

’(?spObj1 os:equals ?spObj2)’,

SEM_ALIASES(SEM_ALIAS(’os’,’http://l3i.univ-larochelle.fr/Sido/owlOGCSpatial#’)));

Code 10.32 – Declarative part of equals rule (NT format)
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3.6 Inside rule

DELETE FROM mdsys.semr_owlSpatialOnto_rb

WHERE upper(rule_name) = upper(’inside_rule’);

INSERT INTO mdsys.semr_owlSpatialOnto_rb VALUES(

’inside_rule’,

’(?spObj1 rdf:type os:Geometry)(?spObj1 os:srid ?sridSpObj1)(?spObj1 os:wkt ?strSpObj1)

(?spObj2 rdf:type os:Geometry)(?spObj2 os:srid ?sridSpObj2)(?spObj2 os:wkt ?strSpObj2)’,

’(evalSpatialRelation(spObj1,strSpObj1,spObj2,strSpObj2,sridSpObj2,’’INSIDE’’) = 1)’,

’(?spObj1 os:inside ?spObj2)’,

SEM_ALIASES(SEM_ALIAS(’os’,’http://l3i.univ-larochelle.fr/Sido/owlOGCSpatial#’)));

Code 10.33 – Declarative part of inside rule (NT format)

3.7 Overlaps rule

DELETE FROM mdsys.semr_owlSpatialOnto_rb

WHERE upper(rule_name) = upper(’overlaps_rule’);

INSERT INTO mdsys.semr_owlSpatialOnto_rb VALUES(

’overlaps_rule’,

’(?spObj1 rdf:type os:Geometry)(?spObj1 os:srid ?sridSpObj1)(?spObj1 os:wkt ?strSpObj1)

(?spObj2 rdf:type os:Geometry)(?spObj2 os:srid ?sridSpObj2)(?spObj2 os:wkt ?strSpObj2)’,

’(evalSpatialRelation(spObj1,strSpObj1,spObj2,strSpObj2,sridSpObj2,’’OVERLAPS’’) = 1)’,

’(?spObj1 os:overlaps ?spObj2)’,

SEM_ALIASES(SEM_ALIAS(’os’,’http://l3i.univ-larochelle.fr/Sido/owlOGCSpatial#’)));

Code 10.34 – Declarative part of overlaps rule (NT format)

3.8 Touch rule

DELETE FROM mdsys.semr_owlSpatialOnto_rb

WHERE upper(rule_name) = upper(’touch_rule’);

INSERT INTO mdsys.semr_owlSpatialOnto_rb VALUES(

’touch_rule’,

’(?spObj1 rdf:type os:Geometry)(?spObj1 os:srid ?sridSpObj1)(?spObj1 os:wkt ?strSpObj1)

(?spObj2 rdf:type os:Geometry)(?spObj2 os:srid ?sridSpObj2)(?spObj2 os:wkt ?strSpObj2)’,

’(evalSpatialRelation(spObj1,strSpObj1,spObj2,strSpObj2,sridSpObj2,’’TOUCH’’) = 1)’,

’(?spObj1 os:touch ?spObj2)’,

SEM_ALIASES(SEM_ALIAS(’os’,’http://l3i.univ-larochelle.fr/Sido/owlOGCSpatial#’)));

Code 10.35 – Declarative part of touch rule (NT format)
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