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Glossary

Symbol De�nition

a†i , ai Boson 
reation and annihilation operators at rare earth site i
aas(ε) Asymmetry parameter varying with the kineti
 energy ε
abg Time-independent ba
kground term

ad Distan
e between the 
enter of two neighbouring tetrahedra

alat Latti
e parameter

amag(q) Amplitude of the magneti
 intera
tion

a0 Initial muon asymmetry or Bohr radius,

depending on the 
ontext

Ah(≡ A) Absorption fa
tor

Ainc Weighing fa
tor for in
oherent nu
lear intensity

Amag Weighing fa
tor quasielasti
 magneti
 intensity

Am
n (≡ Am

n (R)) CEF parameters of rare earth R
A143

hyp Hyper�ne 
onstant of isotope

143
Nd

bg,i Ba
kground intensity at the experimental point i
bj Fermi length of atom j
Bdem Demagnetising �eld

Bdip Dipolar magneti
 �eld

B′
dip Dipolar magneti
 �eld arising from magneti
 moments

inside the Lorentz sphere

Bhyp Hyper�ne magneti
 �eld

Bint Internal �eld

Bj Parameter des
ribing the amplitude of the isotropi
t

displa
emen around the atomi
 mean position,

and involved in the Debye-Waller fa
tor

BJ(x) Brillouin fun
tion

Bloc Lo
al magneti
 �eld

BLor Lorentz magneti
 �eld

Bmax Maximum amplitude of the lo
al �eld Bloc

Bm
n CEF parameters: Bm

n = Am
n 〈rn〉Θn

ca, cx Heat 
apa
ity of the platform and of the sample, respe
tively

cp Heat 
apa
ity at 
onstant pressure

C Constant

Cel Ele
troni
 spe
i�
 heat

Cex Spe
i�
 heat of magnon-like ex
itations

Cnuc Nu
lear spe
i�
 heat
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Symbol De�nition

Cp Spe
i�
 heat at 
onstant pressure

Cph Latti
e 
ontribution to the spe
i�
 heat

Csh Constant

Cv Spe
i�
 heat at 
onstant volume

Cα,β(q) Analyti
al fun
tion of q

d Dimension of a system/matrix/representation

dhkl(≡ d) Interplanar spa
ing

dpair Ve
tor joining a magneti
 ion to one of its nearest neighbours

d1, d2 Interla
ed sublatti
es des
ribing a Heisenberg


ollinear antiferromagnet

d
(µ)
ν (gi) Matrix representation of the symmetry element gi

in the representation Γ
(µ)
ν

d̂
(µ)
ν (gi) Matrix representation of the symmetry element gi

in the representation Γ̂
(µ)
ν

D Dipolar energy s
ale

Dc(Bloc) Field distribution

Ddiff Di�usion 
oe�
ient

DDM Dzyaloshinskii-Moriya ve
tor

Dnn Dipolar energy s
ale between two nearest neighbours

Dαβ
ri

Components of the �eld dipole tensor asso
iated with site ri
D Constant

Dt S
ale of the distortion

e+ Positron

Eex Ex
itation energy

Ef Neutron �nal energy

Ei Neutron in
ident energy or CEF energy levels,

depending on the 
ontext

Em Nu
lear energy levels

Emax Maximal energy of a magnon ex
itation

f Frustration index or �lling fa
tor, depending on the 
ontext

fj(q) Atomi
 form fa
tor (Fourier transform of the ele
troni
 density)

fmag(q) Magneti
 form fa
tor

F (x) Fun
tion des
ribing a CEF transition and taken as the


onvolution of a Gaussian and a Lorentzian fun
tion

Fmag(q) Magneti
 stru
ture fa
tor

Fn(q) Neutron stru
ture fa
tor

F ′
n(q) Unit-
ell stru
ture fa
tor

Fp(q) X-ray stru
ture fa
tor

g Spe
tros
opi
 splitting fa
tor or order of Gk,

depending on the 
ontext

g(ω) Density of states

geff E�e
tive spe
tros
opi
 fa
tor

gi Symmetry operation

gJ Landé fa
tor
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Symbol De�nition

gm(E) Magneti
 density of states

g‖ Longitudinal spe
tros
opi
 fa
tor

g⊥ Transverse spe
tros
opi
 fa
tor

G(x) Gaussian fun
tion

Gk Little group: subgroup of the spa
e group leaving

the magneti
 propagation waveve
tor invariant

Gαβ
ri

Components of the tensor G representing the 
oupling

between the muon spin and the spins of the system

h Label of the Bragg peaks positions at the angle θh,
or translational part of a symmetry operator,

depending on the 
ontext

~ Redu
ed Plan
k 
onstant (or Dira
 
onstant)

Happlied Real applied magneti
 �eld at the sample

Hc Criti
al magneti
 �eld indu
ing a phase transition

Hext External magneti
 �eld

HG Full width at half maximum of the Gaussian fun
tion

HL Full width at half maximum of the Lorentzian fun
tion

HAF Heisenberg 
ollinear antiferromagneti
 Hamiltonian

HCEF CEF Hamiltonian

H(J)
CEF CEF Hamiltonian a
ting on the multiplet de�ned by a

total angular momentum J

H(J),mix
CEF CEF Hamiltonian a
ting on the multiplet de�ned by a

total angular momentum J taking into a

ount the J-mixing

e�e
t arising from the 
oupling with other multiplets

HCSI Classi
al spin-i
e Hamiltonian

(longitudinal ex
hange Hamiltonian)

HDB Dipolar spin-i
e Hamiltonian in terms of

the dumbell model notation

HDSM Dipolar spin-i
e Hamiltonian

Hex Anisotropi
 ex
hange Hamiltonian

HFM Hamiltonian for a ferromagneti
 system

Hper Perturbative Hamiltonian

HQ Quadrupolar Hamiltonian

HQSI Quantum spin-i
e Hamiltonian (XXZ model)

HXYZ Anisotropi
 ex
hange Hamiltonian of the XYZ model

HZ Zeeman Hamiltonian

H⊥ Transverse ex
hange Hamiltonian (XXZ model)

I Nu
lear spin ve
tor operator

Ibg Ba
kground 
ontribution

Ic Criti
al 
urrent in a Josephson jun
tion

Ih Intensity at the Bragg position h

I Isotropi
 ex
hange 
oupling 
onstant

Ieff E�e
tive nearest-neighbour isotropi
 ex
hange 
oupling 
onstant

Inn(≡ Jnn) Nearest-neighbour isotropi
 ex
hange 
oupling 
onstant
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Symbol De�nition

I0 S
aling fa
tor

{I1, ..., I4} Anisotropi
 ex
hange 
onstants involved in Hex

Notations {Izz, I±, I±±, Iz±} are also used

I⊥ Transverse ex
hange 
oupling 
onstant

Ji Total angular momentum ve
tor operator of rare earth at site i
J1(x) Bessel fun
tion of the �rst kind

J± Raising and lowering spin operators

{J̃x, J̃y, J̃z} Ex
hange 
onstants involved in HXYZ

{J1, ...,J4} Anisotropi
 ex
hange 
onstants involved

in the e�e
tive spin-1/2 ex
hange Hamiltonian

k Ve
tor in the re
ipro
al spa
e

kB Boltzmann 
onstant

ki,kf In
ident and �nal waveve
tors, respe
tively

kmag Magneti
 propagation waveve
tor

K Disso
iation 
onstant for the nu
leation of magneti
 monopoles

Kexp Normalised muon frequen
y shift

K ′
dip Muon Knight shift that arises only from the dipolar �eld


reated by the magneti
 moments inside the Lorentz sphere

K0 Complex 
onjugation operator

K1, K2 Thermal 
ondu
tan
e between the 
ryostat and the platform,

and between the platform and the sample, respe
tively

Kµ Muon Knight shift

L Neutron �ight path

L(x) Lorentzian fun
tion

Li Total orbital momentum ve
tor operator of rare earth at site i
Lp,h Lorentz fa
tor

me Ele
tron mass

mn Neutron mass

mpm Paramagneti
 moment

msat Saturation value of the magneti
 moment

msp Spontaneous magneti
 moment

m111 Proje
tion of the spontaneous magneti
 moment

over the [111℄ axis

mµ Muon mass

M Bulk magnetisation

Md Divergen
e-free part of the Helmholtz de
omposition

Mh Multipli
ity of the re�e
tion h

MLor Magnetisation inside the Lorentz sphere

Mm Curl-free part of the Helmholtz de
omposition

M⊥(q) Proje
tion of the Fourier transform of the

total magnetisation density

on a plane perpendi
ular to q

n Order of the operators or number of free parameters,

depending on the 
ontext

n(x) Distribution fun
tion
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Symbol De�nition

n(4f) Number of 4f ele
trons

nb Number of bound magneti
 monopoles

nBE(x) Bose-Einstein distribution fun
tion

nFD(x) Fermi-Dira
 distribution fun
tion

nP(x) Plan
k distribution

nu Number of disso
iated magneti
 monopoles

n0 n0 = nb + nu

N Number of magneti
 ions in the system

N(t) Positron 
ounts in a dete
tor

N Demagnetising �eld tensor

Nc Number of unit 
ells in the system

NCu Number of Cu nu
lei in the sample holder

Nf Number of formula unit in the unit 
ell

NL Number of magneti
 moments inside the Lorentz sphere

Nmag Number of magneti
 
ells

NNd Total number of

143
Nd nu
lei in the sample

Np Number of experimental points

N0 S
ale of the positron 
ount

N± Positron 
ounts in the forward (+)/ba
kward (-) dete
tors

NZZ
Longitudinal 
omponent of the diagonal tensor N

NA Avogadro number

Om
n Stevens operators

p Magneti
 s
attering length for a magneti
 moment of 1 µB

at q = 0
p Pressure or proton, depending on the 
ontext

pi Relative abundan
e of isotope i
pmn Prefa
tor

P Thermal power

P (θ) Polarisation fa
tor

Pn(x) Legendre polynomials

Pm
n (x) Asso
iated Legendre polynomials

PX(t),PY (t) Transverse muon polarisation fun
tions

P exp
X (t) Experimentally measured transverse muon

polarisation fun
tion

PZ(t) Longitudinal muon polarisation fun
tion

P exp
Z (t) Experimentally measured longitudinal muon

polarisation fun
tion

P stat
Z (t) Stati
 longitudinal muon polarisation fun
tion

q S
attering ve
tor

qBZ Radius of the �rst Brillouin zone 
onsidered as a sphere

qi Ele
tri
 
harge

qm Magneti
 
harge arising from the fragmentation of

the magneti
 moment

Q Quadrupolar moment

Qex Quadrupole moment of the ex
ited Mössbauer state
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Symbol De�nition

Qgs Quadrupole moment of the Mössbauer ground state

Qh Heat input brought to the sample

Qα(≡ Q) Total magneti
 monopole 
harge in a tetrahedron α

Q̃eff E�e
tive magneti
 
harge 
arried by a magneti
 monopole

r Spin anisotropy ratio: r = g⊥/g‖
ri Ve
tor linking the muon to the rare earth site i
rij Ve
tor linking rare earth sites i and j
rnn distan
e between nearest neighbours

〈rn〉 Expe
tation values of the nth power distan
e between

the nu
leus of the magneti
 ion and the 4f ele
troni
 shell

R Ideal gas 
onstant or rare earth ion, depending on the 
ontext

R(x) Instrumental resolution fun
tion

Rexp, Rp, Rwp Pro�le, weight pro�le, and expe
ted weight pro�le fa
tors,

respe
tively

Ri Distan
e between an ele
tri
 
harge and the rare earth

S(q, ω) S
attering fun
tion

S′(≡ Sµ) E�e
tive spin-1/2

Sel Ele
troni
 entropy

Si Total spin ve
tor operator of rare earth at site i
Siso(q, ~ω) Isotope-in
oherent s
attering fun
tion

Smag(q, ~ω) Magneti
 s
attering fun
tion

Sspin(q, ~ω) Spin-in
oherent s
attering fun
tion

Sµ Muon spin

T Temperature

TC Curie temperature

Tc Transition temperature

T0, Ta, Tx Temperatures of the 
ryostat, the platform, and the sample,

respe
tively

{U, V,W} Half-width free parameters des
ribing the resolution fun
tion

Uαβ Anisotropi
 displa
ement parameters involved in

the Debye-Waller fa
tor

vc(≡ v0) Volume of the unit 
ell

v⋆c Volume of the �rst Brillouin zone

vD Doppler velo
ity

vex Ex
itation velo
ity

vi, vf Neutron in
ident and �nal velo
ity, respe
tively

vmag Volume of the magneti
 
ell

vTb Volume per terbium ion

V (rαβ) Magneti
 Coulomb intera
tion between

two magneti
 monopoles

separated by a distan
e rαβ
VCEF CEF potential

VF(r) Fermi pseudo-potential at the r real spa
e position

Vmag Potential of magneti
 intera
tion

Vp(x) Pseudo-Voigt fun
tion
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Symbol De�nition

Vzz Prin
ipal 
omponent of the ele
tri
-�eld gradient tensor

W (θ) Probability of the positron to be emitted in a dire
tion θ
x Position of oxygen atom O1

X Isotropi
 strain parameter

yc,i Cal
ulated intensity at the experimental point i
yc,0 S
aling fa
tor

yo,i Observed intensity at the experimental point i
Y Isotropi
 size parameter

Y m
n (x) Spheri
al harmoni
s

z Quantisation axis [111℄

znn Number of nearest neighbours

Zi(≡ Z) Partition fun
tion of isotope i
Z(θ) Peak pro�le fun
tion

Zm
n (x) Tesseral harmoni
s

α Parameter set involving the n free parameters:

α = (α1, ..., αn)
αc Criti
al exponent involved in the 
riti
al behaviour of Cel

αd Instrumental balan
e parameter

αm αm = nu/n0

βc Criti
al exponent involved in the 
riti
al behaviour of msp

αD Constant

βse Exponent of the stret
hed exponential fun
tion

δi Unit ve
tor belonging to a <111> axis at rare earth site i
χ Bulk magneti
 sus
eptibility

χ(q, ~ω) Dynami
al sus
eptibility

χ′
ac Real part of the a.
. magneti
 sus
eptibility

χ′′(q, ~ω) Imaginary part of the dynami
al sus
eptibility

≡ Im{χαβ(q, ω)}
χ′(q) q-dependent stati
 sus
eptibility
δ(x) Dira
 fun
tion

δCEF Energy splitting between the low-lying CEF energy levels

δi,j Krone
ker symbol

∆ Anisotropi
 energy gap

∆a Strength of the spin anisotropy

∆G Standard deviation of a Gaussian �eld distribution

∆N,i Energy splitting between nu
lear levels of isotope i
∆Q Nu
lear quadrupole splitting

∆so Energy splitting between the CEF ground state

and the �rst CEF ex
ited energy level

∆Selec Ele
troni
 entropy variation

∆t Time s
ale

∆X Standard deviation of the �eld distribution

η Mixing parameter involved in the pseudo-Voigt fun
tion

ϕ Phase shift

φn Neutron �ux
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Symbol De�nition

Φαβ(t) Symmetrised 
orrelation fun
tion of the �u
tuating part

of the lo
al magneti
 �eld at the muon site

Φ±
0 Ground state wavefun
tions

γi Gyromagneti
 ratio of isotope i
γµ Muon gyromagneti
 ratio

γ∞ Sternheimer 
oe�
ient

Γ(x) Gamma fun
tion

Γi,i′ Linewidths of the Lorentzian fun
tion a

ounting for the

lifetime of the i′ CEF energy level during the transition i → i′

Γq Quasielasti
 Lorentzian linewidth

ΓZ Inverse lifetime of the nu
lear level

Γ
(µ)
ν (≡ Γν) Irredu
ible representation of order µ

and labelled by the index ν

Γ̂
(µ)
ν Loaded irredu
ible representation

καm Magneti
 
ondu
tivity illustrating

the motion of the magneti
 monopoles

λso Spin-orbit 
oupling 
onstant

λX Transverse (or spin-spin) relaxation rate

λZ Spin-latti
e relaxation rate

λexp
Z Expe
ted spin-latti
e relaxation rate

λZ,0 Constant

Λαβ(q, ω) Symmetrised spin 
orrelation fun
tion

µ Magneti
 moment or 
hemi
al potential,

depending on the 
ontext

µ0 Permeability of free spa
e

µB Ele
troni
 Bohr magneton

µCF
CEF magneti
 moment

µCF
‖ CEF magneti
 moment along the z axis

µCF
⊥ CEF magneti
 moment perpendi
ular to the z axis

µn Magneti
 moment of the neutron

µN Nu
lear Bohr magneton

µ+
Muon with positive ele
tri
 
harge

νe Neutrino asso
iated to the positron

νext Muon pre
ession frequen
y around the external

magneti
 �eld Bext

νFC Fermi 
hopper frequen
y

νM Relaxation rate of the magnetisation

ν0 Self energy a

ounting for the dipolar and ex
hange energy

between nearest neighbours

ναm Relaxation rate for re
ombination of the

nu
leated magneti
 monopoles

νµ Muon neutrino or muon pre
ession frequen
y

around the lo
al magneti
 �eld Bloc, depending on the 
ontext

ν̄µ Antineutrino asso
iated to the muon
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Symbol De�nition

ωµ Muon pre
ession angular frequen
y

Ω Solid angle

Ωm Number of mi
rostates

Ψj
i (≡ Ψi) Basis ve
tors of the irredu
ible representations taken at atom j

(the index i labels the di�erent basis ve
tors)
Ψ±

CEF wavefun
tions of a given doublet state

π+
Positive pion

σ Neutron spin

σa,i Neutron absorption 
ross se
tion of atom i
σi Standard deviation of yi
σi
spin, σ

i
iso Spin-in
oherent and isotope-in
oherent 
ross se
tions of atom i

σ2 S
reening 
oe�
ient

Σ,Σ′
In
ident and �nal total absorption 
ross se
tions, respe
tively

τ Redu
ed temperature: τ = T−Tc

Tc

τc Magneti
 
orrelation time: τc = 1/νc
τ0 Spin �u
tuation time: τ0 = 1/ν0
τ1 Relaxation time of the sample temperature

τµ Muon lifetime

θ̂ Odd time-reversal symmetry operator

θCW Curie-Weiss temperature

θh Bragg peak angle

ΘD Debye temperature

Θn Stevens multipli
ative fa
tors

ξ(x) Riemann fun
tion

|i〉 Eigenve
tors of HCEF

|m〉 Zeeman states (−I ≤ m ≤ I, I nu
lear spin)

|mJ〉 Zeeman states (−J ≤ mJ ≤ J , J total angular momentum)

dσ
dΩ

Di�erential neutron 
ross se
tion

dσcoh(q)
dΩ

Di�erential 
oherent neutron 
ross se
tion

dσinc(q)
dΩ

Di�erential in
oherent neutron 
ross se
tion

dσmag(q)

dΩ
Di�erential magneti
 neutron 
ross se
tion

d2σ
dΩdE′

Double di�erential neutron 
ross se
tion

(

d2σ
dΩdE

)

inc
Double di�erential in
oherent neutron 
ross se
tion

(

d2σ
dΩdE

)

mag
Double di�erential magneti
 neutron 
ross se
tion

(

d2σ
dΩdE

)

se
Double di�erential neutron 
ross se
tion

from the sample environment

[A,B] Commutator of operators A and B: [A,B] = AB−BA

{A,B} Symmetrised 
orrelation fun
tion of operators A and B:

2 {A,B} = AB+BA

〈...〉 Thermal average
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A general introdu
tion on magneti
 geometri
al frustration and a non exhaustive

review of the di�erent exoti
 magneti
 states en
ountered in the two pyro
hlore series

R2M2O7 (M= Ti, Sn) of interest in this work are provided in the following. Moreover,

a brief des
ription of the 
ontent of the manus
ript is given at the end of this 
hapter.

1.1 Geometri
al frustration

Magneti
 
ompounds usually undergo a transition to establish at low temperatures a

long-range magneti
 order and stabilise in a well-known magneti
 state su
h as ferro-

magneti
 order where all the spins are parallel, antiferromagneti
 order where spins are

antiparallel or ferrimagnetism order where magneti
 moments of di�erent magnitudes

15
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are antiparallel. For instan
e, the ferromagneti
 order should appear below the Curie

temperature TC ≈ θCW, where θCW is the Curie-Weiss temperature 
hara
terising the

nature and strength of the magneti
 intera
tions.

The notion of frustration in magnetism refers to the inability to simultaneously

satisfy all the magneti
 intera
tions. This originates from the 
ompetition of several

ex
hange paths between two magneti
 ions, i.e. frustration of intera
tions, or from the

topology of the latti
e where the spatial arrangement of the magneti
 atoms pre
ludes

the satisfa
tion of the magneti
 intera
tions simultaneously. The latter 
ase, of interest

here, is 
alled geometri
al frustration. An example is given in Fig. 1.1 where Ising

spins, i.e. spins allowed to point up or down, with nearest-neighbour antiferromagneti


intera
tions are lo
ated at the 
orner of a square and a triangle. In the former 
ase, all

the antiferromagneti
 intera
tions are satis�ed whereas in the triangular 
ase, if one an-

tiferromagneti
 intera
tion is satis�ed with two spins antiparallel, the orientation of the

third spin is un
ertain sin
e it 
annot satisfy simultaneously the two antiferromagneti


bonds with its two neighbours.

AF AF

AF

AF

AF AF

AF
?

Figure 1.1: Ising spins are lo
ated at the 
orner of a square latti
e (left) where all the

antiferromagneti
 intera
tions between the �rst neighbours 
an be satis�ed and on a

triangle (right) where one of the AF bonds displayed by the blue bond is not satis�ed.

Geometri
al frustration has fo
used a lot of attention from an experimental and

theoreti
al point of view in the past de
ades in front of the ri
hness of the magneti


ground states. This 
on
ept leads to un
onventional magneti
 states, su
h as 
omplex

magneti
 stru
tures or prevention of the long-range magneti
 order. Frustration usually

forbids the establishment of a single state, and the lowest energy spin 
on�guration is

realised by minimising the intera
tion energies in several manners, i.e. the ground states

of frustrated 
ompounds are usually highly degenerated. The degree of frustration


an be evaluated through the ratio f = |θCW|/Tc, where Tc denotes the temperature

of the transition, if any, to a magneti
 order or a glassy state. Among the various

latti
es leading to frustration, the most popular two-dimensional stru
tures are the

triangular and the Kagome latti
e, illustrated in the left and right panels of Fig. 1.2,

respe
tively. Wannier [1℄ �rstly introdu
ed this 
on
ept noti
ing that ferromagneti
 and

antiferromagneti
 intera
tions between Ising spins have very di�erent properties on a

triangular latti
e: in the latter 
ase, no magneti
 transition is predi
ted down to the

lowest temperatures. Three-dimensional geometri
ally frustrated latti
e are displayed
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Figure 1.2: Two dimensional geometri
ally frustrated systems: the triangular (left) and

Kagome (right) latti
e.

Figure 1.3: Examples of three-dimensional geometri
ally frustrated systems: the py-

ro
hlore latti
e 
omposed of 
orner-sharing tetrahedra. Magneti
 ions are drawn by

bla
k spheres lo
ated at the 
orners of tetrahedra. Reprinted �gure with permission

from Ref. [2℄. Copyright 2015 by the Ameri
an Physi
al So
iety. Right: hyperk-

agomé latti
e (
orner-sharing triangles) as found in the gadolinium garnet 
ompound

Gd3Ga5O12 [3℄.

in Fig. 1.3 in the 
ase of a 
orner-sharing tetrahedra (left) or triangles (right) network.

1.2 The pyro
hlore 
ompounds

A realisation of a three-dimensional frustrated network is the pyro
hlore latti
e, illus-

trated in the left panel of Fig. 1.3 where magneti
 ions are lo
ated in the verti
es of a


orner-sharing tetrahedra network. We will fo
us on insulator 
ompounds of 
hemi
al

formula R2M2O7 where R is a rare earth magneti
 ion, and M = Ti or Sn in this work.

They 
rystallise in the fa
e 
entred 
ubi
 latti
e of spa
e group Fd3̄m. More details

of the unit 
ell 
rystallography are provided in App. A. However, we need to noti
e

that the [111℄ dire
tion is a lo
al trigonal symmetry axis whi
h will be taken as the

quantisation axis z in the following. Some rare earth properties will be given in the

introdu
tion of Chapter 3.

The simplest model whi
h 
an be 
onsidered is the 
lassi
al isotropi
 nearest-neigh-
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Figure 1.4: The three spin 
on�gurations of the irredu
ible representation Γ7 de�ned

by the basis ve
tors Ψ4 (left), Ψ5 (middle), and Ψ6 (right), see Tab. D.1. Pi
ture

reprodu
ed from Ref. [9℄ with kind permission of IOP Publishing.

bour ex
hange Hamiltonian:

H = −I
∑

i,j

Si · Sj , (1.1)

where I is the nearest-neighbour ex
hange 
oupling, i.e. I > 0 in the 
ase of ferromag-

neti
 intera
tions and I < 0 for antiferromagneti
 ones, and Si is a Heisenberg spin

lo
ated at site i. In the antiferromagneti
 
ase, the authors of Refs. [4�6℄ show through

Monte Carlo simulations that the system remains disordered at any �nite temperature,

i.e. a 
lassi
al spin liquid. Note that the ferromagneti
 
ase does not lead to frustration

sin
e the minimal energy 
on�guration is a
hieved when all the spins are parallel.

Nevertheless, still 
onsidering 
lassi
al Heisenberg spins intera
ting through nearest-

neighbour antiferromagneti
 intera
tions, and taking into a

ount dipolar intera
tions,

Palmer and Chalker [7℄ show that the degenera
y asso
iated to the in�nite number

of spin 
on�gurations, previously predi
ted in Ref. [8℄, is lifted. For a spe
i�
 range

of the ratio of the dipolar energy s
ale over the ex
hange energy, the system enters

a four-sublatti
e long-range magneti
 order with a magneti
 propagation waveve
tor

kmag = (0, 0, 0) and a 
oplanar spin 
on�guration illustrated in Fig. 1.4 by the three

basis ve
tors of the Γ7 irredu
ible representation (see Tab. D.1).

However other aspe
ts need to be 
onsidered. One important feature of the investi-

gated pyro
hlore 
ompounds is the strong spin-orbit 
oupling, larger than the 
rystal-

ele
tri
-�eld a
ting at the rare earth site and 
reated by the surrounding ele
tri
 
harges.

As we will see in Chapter 3, the 
rystal �eld perturbation splits the ground state mul-

tiplet, leading in most 
ases to a ground state magneti
 doublet. This enfor
es a strong

anisotropy of the spin. With regard to the lo
al axis [111℄ at the rare earth site, spins


ould lie along or perpendi
ular to this axis, i.e. the Ising or XY anisotropy, respe
tively.

Considering Ising 
lassi
al spins, the Hamiltonian is written as:

Hex = −I
∑

i,j

Si · Sj −∆a

∑

i

(δi · Si)
2, (1.2)

where ∆a > 0 s
ales the strength of the anisotropy and δi is a unit ve
tor belonging to

a <111> axis. Monte-Carlo 
al
ulations predi
t [10, 11℄, within the approximation that

a strong anisotropy enfor
es spins to lie along the <111> axis (|I| ≪ ∆a), that with

nearest-neighbour antiferromagneti
 intera
tions a long-range magneti
 order o

urs at



1.2. THE PYROCHLORE COMPOUNDS 19

Figure 1.5: Spins 
on�guration for a planar anisotropy in a single tetrahedron: the non


oplanar Ψ2 state (left) and the 
oplanar Ψ3 state (right). Blue spheres indi
ate rare

earth ions sitting on the 
orner of a tetrahedron and red arrows show the orientation

of the spins. Reprinted �gure with permission from Ref. [14℄. Copyright 2015 by the

Ameri
an Physi
al So
iety.

Tc ≈ |I| with a magneti
 propagation waveve
tor kmag = (0, 0, 0) and a 
on�guration

where all the spins are pointing into or out the 
enter of the tetrahedra; the �rst

experimental realisation of this magneti
 order has been found in the 
orner-sharing

tetrahedra 
ompound FeF3 [12℄. On the 
ontrary, in the 
ase of nearest-neighbour

ferromagneti
 intera
tions, the system does not display any long-range magneti
 order:

two spins are pointing into and two spins are pointing out the 
enter of a tetrahedron,

i.e. the 
lassi
al spin-i
e 
ase (see below) [13℄. This absen
e of order results from the

high degenera
y of the ground state sin
e several energy equivalent spin 
on�gurations

ful�l the "two-in/two-out" 
onstraint, see Se
. 1.3.

In the 
ase of an XY spin anisotropy with nearest-neighbour antiferromagneti
 inter-

a
tions, two magneti
 stru
tures 
an be a
hieved where spins lie in a plane perpendi
ular

to the lo
al axis [111℄, as shown in Fig. 1.5: a non 
oplanar spin 
on�guration de�ned

as the Ψ2 state (left panel) and a 
oplanar spin arrangement 
hara
terised by the Ψ3

state (right panel). Note that these two states are the basis ve
tor of the irredu
ible

representation Γ5 allowed by the spa
e group Fd3̄m, see Tab. D.1. These states are

energy equivalent leading to the degenera
y of the ground state. However, in a so-
alled

order by disorder me
hanism [15℄, thermal �u
tuations sele
t the Ψ2 states, i.e. whereas

the internal energy of the two states are equal, minimising the free energy whi
h takes

into a

ount thermal �u
tuations will sele
t the aforementioned state [16℄. Therefore

a �rst-order magneti
 transition is predi
ted to o

ur with a magneti
 propagation

waveve
tor kmag = (0, 0, 0). When quantum �u
tuations are 
onsidered, a se
ond-order

magneti
 transition is predi
ted [14, 17℄.

In summary, the magneti
 ground state of the pyro
hlore is ruled by numerous

physi
al aspe
ts: the nature of the nearest-neighbour ex
hange intera
tion and the


hara
ter of the spin anisotropy need to be 
onsidered, but also dipolar and further

neighbour intera
tions, anisotropi
 ex
hange intera
tions, and whether the spins are
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Figure 1.6: Illustration of the analogy between the spin-i
e and the water i
e model.

Left: Water i
e stru
ture where the oxygen ions (O

2−
) are displayed by the empty

spheres and the protons (H

+
) by the bla
k ones. Arrows show the proton displa
ement

from the middle of two oxygen atoms where two are near the 
entral oxygen ion whereas

the other two are far from it. Reprinted �gure with permission from Ref. [24℄. Copyright

2015 by the Ameri
an Physi
al So
iety. Right: Single tetrahedron obeying the i
e rule:

two Ising spins are pointing into the 
enter of the tetrahedron and two spins are pointing

out. Reprinted �gure with permission from Ref. [18℄. Copyright 2015 by the Ameri
an

Physi
al So
iety.


lassi
al or quantum. The subtle balan
e between these 
onsiderations is at the origin of

the various exoti
 magneti
 states en
ountered in the pyro
hlore series. In the following,

we endeavour ourselves to summarise brie�y di�erent magneti
 ground states at play

in the R2M2O7 families where M = Ti or Sn.

1.3 The 
lassi
al spin-i
e

The terminology of spin-i
e was �rst introdu
ed by Harris et al. [18℄ for the pyro
hlore


ompound Ho2Ti2O7 where no long-range order was eviden
ed down to 50 mK by µSR
spe
tros
opy [19℄. Other pyro
hlore 
ompounds, namely Dy2Ti2O7 [20℄, Ho2Sn2O7 [21℄

and Dy2Sn2O7 [22℄ have also been unambiguously 
lassi�ed as 
lassi
al spin-i
e. In the

following, we will present some pe
uliar properties of these 
ompounds.

1.3.1 The water i
e model

The 
rystal-ele
tri
-�eld a
ting on the rare earth site 
onstrains the spins to lie along

the lo
al [111℄ dire
tion, i.e. de�ning the Ising model. The 
on�guration on a single

tetrahedron is two spins pointing into the 
enter of the tetrahedra and two spins pointing

out, de�ning the so-
alled i
e rule. This denomination originates from the analogy made

with the model of the water i
e Ih originally proposed by Bernal and Fowler [23℄, as

illustrated in Fig. 1.6, where two protons are 
lose to the 
entral oxygen position and

two far from it.

The degenera
y of the ground state of frustrated materials is a 
onsequen
e of

the pe
uliar latti
e topology. For a given tetrahedron obeying the i
e rule, only six


on�gurations are available as illustrated in Fig. 1.7. The 
orresponding entropy 
an be
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Figure 1.7: The six possible spin 
on�gurations obeying the i
e rule illustrate the

degenera
y of the ground state in a spin-i
e 
ompound.


al
ulated [25℄: a system of N spins 
orresponds to

N
2
tetrahedra sin
e a spin belongs

to two tetrahedra. As Ising spins are 
onsidered, i.e. up or down, 24 
on�gurations

should be 
onsidered for a single tetrahedron but only 6 of them are available in order

to satisfy the i
e rule. Thus the number of mi
rostates a

essible to the spin-i
e is


al
ulated as Ωm = 2N( 6
16
)
N
2
and the entropy per spin is Sel/N = kB ln Ωm = kB

2
ln 3

2
,


orresponding to Pauling's result for water i
e [26℄. The magneti
 entropy is dedu
ed

from spe
i�
 heat measurements down to 0.2 K on Dy2Ti2O7 [20℄, illustrated in the

left panel of Fig. 1.8, and down to 0.34 K on Ho2Ti2O7 [27℄, after subtra
tion of the

nu
lear 
ontribution arising from strong hyper�ne intera
tions a
ting on the nu
leus,

and is in agreement with this predi
tion. The sibling stannate 
ompounds present the

same residual magneti
 entropy in Ho2Sn2O7 [28℄ and Dy2Sn2O7 [29℄.

The spin-i
e 
ompounds do not exhibit any magneti
 long-range order as for instan
e

in Ho2Ti2O7 where no spontaneous os
illations and no drop in the initial asymme-

try of the muon polarisation fun
tion are resolved by zero-�eld µSR experiments [19℄.

The ele
troni
 spe
i�
 heat exhibits a broad hump roughly around T = 1 K below

whi
h it drops to almost zero, indi
ative of a spin freezing in Ho2Ti2O7 [27℄ and

Dy2Ti2O7 [20℄. This property was 
on�rmed by magnetisation measurements with the

presen
e of an hysteresis e�e
t between zero-�eld and �eld 
ooling pro
edures at 0.65 K

for Dy2Ti2O7 [30℄, and 0.75 K for Ho2Sn2O7 [31℄, the latter 
ase being illustrated in

the right panel of Fig. 1.8. An additional proof of this spin freezing lies in the presen
e

of a peak in the real part of the a.
. sus
eptibility in Dy2Ti2O7 [30℄ and Dy2Sn2O7 [22℄

indi
ative of the development of spin 
orrelations.

1.3.2 The dipolar spin-i
e model (DSM)

As dis
ussed above, the 
ase of 
lassi
al spins with a strong Ising anisotropy, see the

Hamiltonian in Eq. 1.2, leads to the spin-i
e 
on�guration if ferromagneti
 intera
tions

are at play, whi
h is in agreement with the positive Curie-Weiss temperature dedu
ed

from sus
eptibility measurements: θCW ≈ 1.9, 0.5, 1.8, and 1.7 K for Ho2Ti2O7 [18℄,

Dy2Ti2O7 [20℄, Ho2Sn2O7 [31℄, and Dy2Sn2O7 [33℄, respe
tively.

However, magneti
 ions 
arry a large magneti
 moment of about ≈ 10 µB. There-
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Figure 1.8: Left: Temperature dependen
e of the magneti
 entropy of Dy2Ti2O7 re-

vealing the same residual entropy as explained by Pauling in water i
e [26℄. A �t to

the data is a
hieved using the dipolar spin-i
e model, see Eq. 1.3. Experimental data

are from Ref. [20℄. Reprinted �gure with permission from Ref. [32℄. Copyright 2015 by

the Ameri
an Physi
al So
iety. Right: Temperature dependen
e of the magnetisation

of Ho2Sn2O7 re
orded in ZFC-FC and showing a spin freezing behaviour. Copyright

IOP Publishing. Pi
ture reprodu
ed from Ref. [31℄ by permission of IOP Publishing.

All rights reserved.

fore, dipolar intera
tions are not negligible 
ompared to the weak ex
hange intera
-

tion inferred from the Curie-Weiss temperature. An estimation of the dipolar energy

s
ale between two nearest neighbours is given by Dnn = 5
3
µ0

4π
µ2

r3nn
≈ 2.4 K [34℄, where

rnn = alat
√
2/4 is the nearest-neighbour distan
e and µ = 10 µB. Therefore, an e�e
tive

nearest-neighbour energy s
ale is put forward to take into a

ount both the e�e
t of the

ex
hange and dipolar intera
tions: Ieff ≡ Inn+Dnn, where Inn is the nearest-neighbour

ex
hange 
onstant. Analysing spe
i�
 heat data, a negative value of the ex
hange


onstant is inferred indi
ative of nearest-neighbour antiferromagneti
 ex
hange intera
-

tions, i.e. Inn = −0.52 and -1.24 K for Ho2Ti2O7 [27℄ and Dy2Ti2O7 [32℄, respe
tively.

Therefore, dipolar intera
tions are of prime importan
e sin
e they restore the ferro-

magneti
 nature of the net nearest-neighbour intera
tions, a mandatory 
ondition to

re
over the spin-i
e 
ase.

The dipolar spin-i
e Hamiltonian was introdu
ed in order to des
ribe the low tem-

perature properties of the 
lassi
al spin-i
e 
ompounds [32℄:

HDSM = −I
∑

<i,j>

SiSjzi · zj +Dr3nn
∑

j>i

SiSj

(

zi · zj
|r3ij|

− 3(zi.rij)(zj.rij)

|r5ij|

)

, (1.3)

where the �rst term a

ounts for the nearest-neighbour ex
hange intera
tion (I = 3Inn)
1

and the ve
tor zi refers to lo
al 〈111〉 dire
tion of spin Si lo
ated at the rare earth

site i. The se
ond term arises from the dipolar intera
tion (D = 3Dnn/5).
2

The

1

The fa
tor 3 
omes from the s
alar produ
t between the lo
al 〈111〉 dire
tions of two nearest

neighbour Ising spins lo
ated at sites i and j.
2

The

3
5 fa
tor 
omes from the s
alar produ
t between the 〈111〉 dire
tions and the ve
tor dire
tion


onne
ting two nearest neighbours.
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Figure 1.9: Zero-�eld phase diagram of the dipolar spin-i
e model predi
ted by Melko

et al. [38℄ with Monte Carlo simulations. Jnn and Dnn have been de�ned in the main

text and refer to the nearest-neighbor ex
hange and dipolar energy s
ales, respe
tively.

Here, Jnn ≡ Inn. Copyright IOP Publishing. Pi
ture reprodu
ed from Ref. [38℄ by

permission of IOP Publishing. All rights reserved.

role of the long-range dipolar intera
tions was at stake for these frustrated systems to

understand why they do not lift the degenera
y to establish a long-range ordering. If

the �rst Monte Carlo simulations fail to des
ribe the spe
i�
 heat and magneti
 entropy

results [35, 36℄, due to a trun
ated sum over the dipolar term [37℄, bulk properties of the

spin-i
e 
ompound were �nally 
onsistent with simulations using the dipolar spin-i
e

Hamiltonian for Ho2Ti2O7 [37℄ and Dy2Ti2O7 [32℄, the latter 
ase being illustrated in

the left panel of Fig. 1.8.

The 
orresponding phase diagram of the Hamiltonian written in Eq. 1.3 has been


omputed in Refs. [32, 38℄, see Fig. 1.9. When the nearest neighbour ex
hange energy

be
omes su�
iently large 
ompared to the dipolar one, we re
over the all-in-all-out

antiferromagneti
 state with a magneti
 propagation waveve
tor kmag = (0, 0, 0). Above
this value, the ferromagneti
 spin-i
e 
ase is eviden
ed where the upper dotted line refers

to the broad peak in spe
i�
 heat measurements 
orresponding to a slowing down of

the spin �u
tuations. De
reasing the temperature, the spin-i
e 
ompound is predi
ted

to undergo a �rst order transition at T/Dnn ≤ 0.08 with kmag = (0, 0, 1), whi
h has

never been eviden
ed experimentally.

The experimental eviden
e of a signature of the existen
e of dipolar spin 
orrelations

was a 
hallenge over the past few years. Dipolar 
orrelations in the real spa
e are


hara
terised by a 1/r3 de
ay, whi
h 
orresponds in the re
ipro
al spa
e by Fourier

transformation to [39℄:

〈Si(−k)Sj(k)〉 ∝
(

δij −
kikj
k2

)

, (1.4)

where k is a ve
tor of the re
ipro
al spa
e. This leads to singularities at the Brillouin

zone 
entres, the so-
alled pin
h points in neutron s
attering measurements. Whereas

these pin
h points were hardly seen with unpolarised neutron experiments on the spin-

i
e 
ompounds Ho2Ti2O7 [34, 40℄ and Dy2Ti2O7 [41℄, Fennell et al. [42℄ su

eeded to
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Figure 1.10: Di�use magneti
 s
attering map re
orded on the spin-i
e 
ompound

Ho2Ti2O7 at 1.7 K in the (hhl) plane in order to eviden
e pin
h points. From Ref. [42℄.

Reprinted with permission from AAAS.

eviden
e these pe
uliar pin
h points on Ho2Ti2O7 using polarised neutrons, see Fig. 1.10,

revealing the dipolar nature of the spin 
orrelations. The 
omparison of data re
orded

in the spin �ip and non spin-�ip 
hannels explains why previous measurements 
ould

not resolve these pin
h points with unpolarised neutrons.

1.3.3 Magneti
 monopoles

The notion of magneti
 monopoles was �rstly introdu
ed by Ryzhkin [43℄ in order to

des
ribe ex
itations in spin-i
e. Then, the dumbbell model, see for instan
e Ref. [44℄, has

been developped in order to illustrate the DSM Hamiltonian and to des
ribe the thermal

�u
tuations breaking of the i
e rule with emergent quasiparti
les, i.e. the magneti


monopoles [43℄. The prin
iple lies on the fragmentation of the magneti
 dipole into

two magneti
 monopoles of opposite 
harges ±qm (dumbbell) as illustrated in Fig. 1.11,

and separated by a length ad =
√
3alat/2 whi
h is the distan
e separating the 
enter

of two neighbouring tetrahedra. Thus, the magneti
 moment 
arried by the dipole

µ = qmad is re
overed. Therefore, the total magneti
 
harge in a tetrahedron α is

Qα =
∑

i qm,i, where the sum runs over the four magneti
 
harges inside the tetrahedra.

This resulting total magneti
 
harge is the so-
alled magneti
 monopole. Note that in

the i
e rule ground state Qα = 0 and if a spin is �ipped Qα = ±2qm. A

ording to

Refs. [44, 45℄, the magneti
 Coulomb intera
tion between two monopoles is written as:

V (rαβ) =

{

µ0

4π

QαQβ

rαβ
if α 6= β

ν0Q2
α

2
if α = β,

(1.5)
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Figure 1.11: (a) Two neighbouring tetrahedra obeying the i
e rule. (b) The spin shared

by the two tetrahedra is thermally �ipped to 
reate a pair of magneti
 monopoles of

opposite 
harge. Panels (
) and (d) are the illustration of panel (a) and (b) in terms of

the dumbbell model: a magneti
 moment is repla
ed by two opposite magneti
 
harges

±qm. (e) Propagation of two magneti
 monopoles along a Dira
 string. Reprinted by

permission from Ma
millan Publishers Ltd: Nature [44℄, 
opyright 2015.

where rαβ denotes the distan
e between two monopoles. The �rst line of Eq. 1.5 refers

to the dipolar intera
tion of the DSM and the introdu
tion of the self energy ν0 in the

se
ond line a

ounts for the dipolar and ex
hange energy between nearest neighbours.

The DSM Hamiltonian 
an be rewritten in terms of the dumbbell notation su
h as:

HDB =
µ0

4π

∑

α6=β

QαQβ

rαβ
+

ν0
2

∑

α

Q2
α (1.6)

When the i
e rule is satis�ed, the spin-i
e state is de�ned as a Coulomb phase

sin
e the three 
riteria stated by Henley [46℄ are ful�lled: (i) the system is highly

disordered sin
e no long-range order is established, (ii) ea
h dumbbell is asso
iated to a

magneti
 �ux, and (iii) the magneti
 �ux at the 
entre of the tetrahedron vanishes. The

last 
ondition 
an be rewritten as a divergen
e free 
oarse-grained �eld, i.e. ∇ · B =
µ0

∑

αQα = 0 in the spin-i
e ground state. We should noti
e that in a more usual


ooperative paramagnet, the system enters in a phase without long-range magneti
 order

with spin 
orrelations de
reasing exponentially, whereas in the so-
alled Coulomb phase

spin 
orrelations are algebrai
.

Therefore, this model allows to des
ribe spin dynami
s in su
h a system: to a spin

thermally �ipped 
orresponds the nu
leation of two magneti
 monopoles of opposite



26 CHAPTER 1. INTRODUCTION


harge lo
ated in two 
orner-sharing tetrahedra. These monopoles intera
t through a

magneti
 Coulomb potential. The divergen
e-free 
ondition is broken, i.e. the i
e rule

is not ful�lled anymore. Thus, on
e magneti
 monopoles are nu
leated, their di�usion

along a path of reversed spins, i.e. the so-
alled Dira
 string, see panel (e) of Fig. 1.11,


orresponds to the propagation of a zero energy 
ost spin reversal along the string, sin
e

ea
h tetrahedron tends to re
over the ground state de�ned by the i
e rule 
on�guration.

1.3.4 Experimental eviden
e for magneti
 monopoles

Bramwell et al. [47℄ have re
ently proposed by muon spe
tros
opy the presen
e of mag-

neti
 monopoles intera
ting through a magneti
 potential in the spin-i
e pyro
hlore


ompound Dy2Ti2O7. The prin
iple lies on the in
rease of the magneti
 monopoles

density when applying a magneti
 �eld, inspired from Onsager's work [48℄ on the se
ond

Wien e�e
t whi
h predi
ts the in
rease of the disso
iation 
onstant of water mole
ule

into H3O
+
and OH

−
ions under an applied ele
tri
 �eld whi
h over
omes the Coulomb

energy barrier. Pursuing this analogy, the disso
iation 
onstant K for the nu
leation

of magneti
 monopoles was assumed to take a similar form as in Onsager's theory for

weak magneti
 �eld B [47℄:

K(B) = K(0)

(

1 + b+
b2

3
...

)

, (1.7)

where b = µ0Q3B
8πk2BT

2 .
3

At the equilibrium, i.e. without applied magneti
 �eld, the number

of bound magneti
 monopoles nb is predominant 
ompared to the disso
iated ones nu.

A

ording to Ref. [47℄, the disso
iation 
onstant is written as:

K(0) = n0
α2
m

1− αm
, (1.8)

where n0 = nb + nu and αm = nu/n0. The re
ombination of nu
leated magneti


monopoles follows an exponential de
ay with a relaxation time 1/ναm . Sin
e ναm ∝
καm , where καm is the magneti
 
ondu
tivity (illustrating the motion of the magneti


monopoles) proportional to the density of magneti
 monopoles, and re
alling that αm ≪
1, it follows [47℄:

ναm(B)

ναm(0)
=

καm(B)

καm(0)
=

αm(B)

αm(0)
=

√

K(B)

K(0)
≈ 1 +

b

2
. (1.9)

Furthermore, Bramwell et al. [47℄ put forward that the �u
tuations of the magneti


monopole density produ
es �u
tuations of the lo
al �eld. Therefore after a magneti


�eld perturbation, the relaxation rate of the magnetisation νM is proportional to the

relaxation rate of the magneti
 monopole density ναm .

ναm(B)

ναm(0)
=

νM(B)

νM(0)
(1.10)

3

Note that the index α labelling a tetrahedron has been dropped now, Q refers to the magneti



harge of an e�e
tive monopole.



1.4. THE QUANTUM SPIN-ICE 27

Figure 1.12: Temperature dependen
e of the 
al
ulated value of the e�e
tive mag-

neti
 
harge Q̃eff inferred from the �eld dependen
e of the muon spin relaxation rate

in the 
ase of Dy2Ti2O7. Reprinted by permission from Ma
millan Publishers Ltd:

Nature [47℄, 
opyright 2015.

In the transverse �eld muon spin relaxation te
hnique, see Se
. 2.6, the muon polari-

sation fun
tion is 
hara
terised by os
illations illustrating the pre
ession of the muon

spin around the lo
al �eld, and an envelope giving information on dynami
s of the lo
al

�eld at the muon site: in the 
ase of slow �u
tuations of the lo
al �eld, the relaxation

rate λ , 
hara
teristi
 of the exponential de
ay of the envelope, is proportional to νM.
Therefore, Bramwell et al. �nd an ingenious way to measure the magneti
 
harge 
ar-

ried by the magneti
 monopoles. Hen
e, measuring the �eld dependen
e of λ allows to

extra
t the e�e
tive magneti
 
harge 
arried by the monopoles, see Fig. 1.12. A typi
al

value of Q̃eff = 5 µBÅ
−1

has been inferred in good agreement with Ref. [44℄ within

the temperature range Tlower ≤ T ≤ Tupper where Onsager's theory remains valid. The

authors of Ref. [49℄ draw the same 
on
lusions with µSR experiments on the spin-i
e


ompound Ho2Ti2O7.

Whereas these results were strongly debated [50, 51℄ in a �rst instan
e, additional

experimental proofs eviden
ed a signature of magneti
 monopoles in spin-i
e as for

instan
e the observation of Dira
 strings in Dy2Ti2O7 with neutron s
attering experi-

ments under a magneti
 �eld applied along [100℄ [52℄. Existen
e of su
h strings were

previously suggested in Ref. [42℄ from the broadening of pin
h points. Furthermore,

the temperature dependen
e of the relaxation time inferred from a.
. sus
eptibility on

Dy2Ti2O7 [30℄, previously misunderstood, has been des
ribed in terms of the motion of

magneti
 monopoles [53℄.

1.4 The quantum spin-i
e

1.4.1 Beyond the 
lassi
al spin i
e

The quantum spin-i
e is de�ned by the same properties as its 
lassi
al 
ounterpart:

Ising spins along the trigonal axis [111℄ ful�l the i
e rule 
onstraint, de�ning the same



28 CHAPTER 1. INTRODUCTION

Figure 1.13: Illustration of the tunnelling between two spin 
on�gurations on an hexag-

onal plaquette, preserving the i
e rule 
onstraint. Reprinted �gure with permission

from Ref. [56℄. Copyright 2015 by the Ameri
an Physi
al So
iety.

divergen
e free 
ondition, i.e. ∇ · B = 0. However, in the former 
ase, additional

transverse nearest-neighbour ex
hange intera
tion I⊥ are at play with the usual lon-

gitudinal 
oupling Izz. To these in-plane intera
tions result slight tilts of the spins

away from their initial dire
tion, sin
e I⊥ ≪ Izz. Note that the U(1) symmetry is pre-

served sin
e a rotation around the lo
al [111℄ axis leaves the system invariant. Hermele

et al. [54℄ �rstly introdu
ed this planar intera
tion as a perturbation of the 
lassi
al

spin-i
e ground state. Following notations of Ref. [55℄, the nearest-neighbour ex
hange

Hamiltonian with e�e
tive spin-1/2 (or XXZ model) is thus written:

HQSI = HCSI +H⊥ where,

HCSI = Izz

∑

〈i,j〉
Sz
i S

z
j and,

H⊥ = I⊥
∑

〈i,j〉
(S+

i S
−
j + S−

i S
+
j ). (1.11)

The introdu
tion of this small perturbation lifts the degenera
y asso
iated to the 
las-

si
al spin-i
e. Using perturbation theory on H⊥ shows that the �rst and se
ond order

terms lead to a vanishing or 
onstant 
ontribution to the energy. The third order term

involves, in order to preserve the i
e rule 
onstraint, a tunnelling between a spe
i�


spin 
on�guration: a ring ex
hange running on an hexagonal plaquette as illustrated

in Fig. 1.13. The authors of Ref. [54℄ show that, for a �nite range of the ratio of the

strength of the tunnelling matrix element (whi
h involves the transverse 
omponent of

the nearest-neighbour intera
tion) over the number of �ippable plaquettes in the sys-

tem, the U(1) quantum spin liquid phase is predi
ted, the quantum spin i
e state being

a pe
uliar 
ase of the latter.

Sin
e the i
e rule is preserved, the divergen
e free 
ondition of the magneti
 �eld

allows to introdu
e a gauge �eld A, su
h as ∇ × A = B. Therefore, the tunnelling

between i
e 
on�gurations introdu
es time �u
tuations of A resulting on the emergen
e

of an ele
tri
 �eld E = −∂A
∂t

[57℄. Due to the U(1) symmetry, only transverse �u
tua-

tions are allowed for this gauge �eld. This state supports several kinds of ex
itations:

magneti
 monopoles, or spinons in the spin liquid literature, resulting from a spin �ip
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breaking the i
e rule 
onstraint whi
h, unlike the 
lassi
al spin-i
e, intera
t through

magneti
 and ele
tri
 �elds. By 
onstru
tion of the spin loops on a hexagonal plaque-

tte, ele
tri
 loops appear. Flipping a spin will not only generate magneti
 monopoles

but also will break these ele
tri
 loops: the extremities of these strings be
ome sour
e

of ele
tri
 
harges, the so 
alled visons (see Ref. [55℄ and referen
es therein). Finally,

at low temperatures, the emergen
e of a gapless magneti
 photon resulting from the

transverse �u
tuations of A is predi
ted in Ref. [56℄.

1.4.2 The ex
hange Hamiltonian

As we will see in Chapter 3, the 
rystal ele
tri
 �eld a
ts as a perturbation of the spin-

orbit multiplet in the pyro
hlore 
ompounds, leading for most of them to a well isolated

magneti
 ground state doublet whi
h enfor
es a strong anisotropy of the spins. There-

fore, the low temperature properties 
an be des
ribed by an e�e
tive spin-1/2. Looking
for a realisation of the quantum spin i
e state, 
ompounds with a strong anisotropy

of the ex
hange intera
tions is an asset to the existen
e of quantum �u
tuations, as

introdu
ed above. Therefore, an anisotropi
 e�e
tive spin-1/2 Hamiltonian within the

ground state doublet was �rstly derived on symmetry grounds in Ref. [58℄ and mostly

taken over in the quantum spin i
e literature.

4

Following the notations introdu
ed in

Ref. [60℄, this ex
hange Hamiltonian takes the form:

Hex =
∑

〈ij〉
IzzS

z
i S

z
j − I±(S

+
i S

−
j + S−

i S
+
j )

+I±±[γijS
+
i S

+
j + γ⋆

ijS
−
i S

−
j ] + Iz±[S

z
i (ξijS

+
j + ξ⋆ijS

−
j ) + i ↔ j], (1.12)

where the e�e
tive spin is written in terms of lo
al 
oordinates, i.e. the z dire
tion is

taken along the trigonal axis [111℄ at the rare earth site, γ is a 4×4 
omplex matrix (see

Ref. [60℄), and ξ = −γ⋆
. The spa
e des
ribed by the four 
oupling 
onstants 
onstitutes

a 
hallenge in order to theoreti
ally des
ribe the exoti
 magneti
 phases observed in

the pyro
hlore 
ompound. Note that the 
ase where I±± = Iz± = 0 has been treated

in Ref. [54℄ and presented in the former se
tion. We re
ognise Izz, the longitudinal or

Ising ex
hange 
onstant. A

ording to Refs. [55, 61℄, the three other ex
hange 
oupling

terms illustrate di�erent intera
ting pro
esses at play. Linear 
ombinations of these

parameters allow to retrieve an isotropi
 ex
hange intera
tion, a pseudo-dipolar nearest-

neighbour intera
tion of the form SiSj − 3(Si · rij)(Sj · rij) where rij is a unitary ve
tor

onne
ting two nearest neighbours and the Dzyaloshinskii-Moriya intera
tion of the

form DDM · (Si × Sj) [62, 63℄. The latter intera
tion depends on the symmetry of the


rystal: Moriya's rules [64℄ state that if the middle point between the two magneti


sites is a 
enter of inversion, there is no Dzyaloshinskii-Moriya intera
tion. The authors

of Refs. [62, 63℄ have shown that only two 
ases are allowed in the pyro
hlore latti
e:

in both 
ases, ve
tors DDM must be perpendi
ular to the {110} planes.

The anisotropi
 ex
hange Hamiltonian in Eq. 1.12 has been analysed by means of

gauge mean �eld theory gMFT in order to 
ompute the phase diagram in the Kramers

(half-integer spin) [65℄ or non-Kramers (integer spin) [66℄ 
ases, illustrated in the left and

4

Note that a similar Hamiltonian is derived based on the superex
hange intera
tion �the hy-

bridization of the 4f orbital of the magneti
 ion and the 2p orbital of an oxygen� and 
al
ulating the

probability of an ele
tron (or a hole) to hop between the aforementioned orbitals [59℄.
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Figure 1.14: Left: Zero temperature phase diagram resulting from gMFT analysis of

the Hamiltonian written in Eq. 1.12 in the 
ase of Kramers (left) and non-Kramers ions

(right). Here Jzz ≡ Izz, Jz± ≡ Iz±, J± ≡ I±, and J±± ≡ I±±. Reprinted �gures with

permission from Refs. [65, 66℄ for left and right panels, respe
tively. Copyright 2015 by

the Ameri
an Physi
al So
iety.

right panels of Fig. 1.14, respe
tively. In Ref. [65℄, Izz > 0 has been taken, i.e. the spin

i
e ground state manifold, and I±± = 0 to restrain the spa
e to two parameters. FM

and AFM denote the Higgs ferromagneti
 and antiferromagneti
 long-range order, QSL

refers to the quantum spin liquid (or quantum spin-i
e 
ase sin
e Izz > 0) presented in

Se
. 1.4.1� de�ned as a de
on�ned phase sin
e Coulombi
 intera
tion between e�e
tive

parti
les is weak �, and CFM names the Coulomb ferromagneti
 state whi
h displays

the same ex
itations as in the quantum spin-i
e and a dipolar long-range order [65℄.

Note that the non zero temperature phase diagram has been studied re
ently in Ref. [67℄.

On the other hand, the non-Kramers 
ase has been treated in Ref. [66℄, using Izz > 0.
The 
oupling between the Ising and planar 
omponents of the e�e
tive spin does not


ontribute to the Hamiltonian in the non Kramers 
ase sin
e |〈φ±
0 |S±|φ∓

0 〉| = 0, where
φ±
0 are the wavefun
tions of the ground state. The resulting phase diagram leads to

the quantum spin-i
e state, and two ordered phases: an XY antiferroquadrupolar order

and a non 
oplanar ferroquadrupolar order.

The most propitious and studied 
ompound over the past few years whi
h 
ould

exhibit a quantum spin liquid phase is Tb2Ti2O7: we will present a non exhaustive

review of it in Chapter 5. Other 
andidates to the quantum spin-i
e state are Pr2Sn2O7

and Pr2Zr2O7 [68℄. The latter 
ompound belongs to a pyro
hlore series whi
h will not

be dis
ussed in this work. On the former 
ompound, inelasti
 neutron s
attering mea-

surements reveal a non Kramers ground state doublet well isolated from the ex
ited

ones, and 
rystal �eld 
al
ulations taking a

ount the low lying multiplets arising from

the spin-orbit 
oupling show an Ising anisotropy and a magneti
 moment ≈ 2.6 µB [69℄,

implying that dipolar intera
tions are mu
h weaker than in the 
lassi
al spin-i
e. Fer-

romagneti
 intera
tions are dominant sin
e θCW = 0.3 K [33℄. The authors of Ref. [70℄

show a broad hump in the spe
i�
 heat at T = 0.86 K indi
ative of the development of

short range 
orrelations, as 
on�rmed by neutron di�ra
tion where no magneti
 Bragg

peaks are eviden
ed down to 0.2 K but rather a di�use magneti
 s
attering intensity.

The residual entropy at 0.37 K is higher than the one found in spin i
e, attesting the dy-
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nami
al nature of the ground state. A 
hara
teristi
 
orrelation time ≈ 2 ps is inferred
from the quasielasti
 signal observed by inelasti
 neutron s
attering measurements. A

small hysteresis in the �eld dependen
e of the magnetisation at T = 90 mK indi
ates

a slowing down of the �u
tuations, 
on�rmed by a.
. sus
eptibility measurements [71℄.

Note that due to the non-Kramers nature of the ground state, �u
tuations have been

proposed to originate from quadrupolar intera
tions [69, 72℄.

1.5 The pyro
hlore series R2M2O7: a large variety of

magneti
 ground states

We present here a short review of the magneti
 states existing in the pyro
hlore 
om-

pounds R2M2O7 (M=Ti, Sn) whi
h were not dis
ussed yet. Note that the 
ase of

the thulium ion will not be dis
ussed sin
e it exhibits a non magneti
 singlet ground

state, see Chapter 3. We �rst fo
us on 
ompounds having an Ising anisotropy, namely

Tb2M2O7 and then brie�y des
ribe those having a dominant planar anisotropy.

1.5.1 Tb2Ti2O7 vs Tb2Sn2O7

As already mentioned, Tb2Ti2O7 is a 
andidate for the quantum spin-i
e phase and will

be largely dis
ussed in Chapter 5. It does not display any magneti
 order. On the 
on-

trary, Tb2Sn2O7 is 
hara
terised by a long-range magneti
 order at Tc = 0.87 K as seen

by magneti
 sus
eptibility measurements. The high temperature range (100 ≤ T ≤
300 K) of the sus
eptibility follows a Curie-Weiss law leading to θCW ≈ −12 K, indi
a-
tive of antiferromagneti
 intera
tions,

5

and a paramagneti
 moment 
lose to the value of

the free ion [33℄. Powder neutron di�ra
tion experiments show that nearest-neighbour

antiferromagneti
 
orrelations appearing below 100 K are progressively repla
ed by the

development of ferromagneti
 
orrelations below T = 2 K. This reminds us the 
ase

of the 
lassi
al spin-i
e 
ompounds where dipolar intera
tions over
ome the nearest-

neighbour antiferromagneti
 ex
hange 
oupling resulting in an overall ferromagneti


intera
tions. An ordered magneti
 phase is eviden
ed with a magneti
 propagation

waveve
tor kmag = (0, 0, 0) at Tc.
6

The magneti
 stru
ture is seen with magneti


moments 
anted away from the lo
al axis [111℄ with an angle of ≈ 13◦ and their lon-

gitudinal 
omponents are arranged in the two-in/two-out 
on�guration, i.e. an ordered

spin-i
e state, see the left panel of Fig. 1.15. A spontaneous magneti
 moment of 5.9 µB

is found [74℄. However, whereas a peak is observed at the transition in spe
i�
 heat

measurements [74, 75℄, the analysis of the low temperature part raises some questions.

Ions Tb

3+

arry a nu
lear spin I = 3

2
, and nu
lear levels are split by Zeeman e�e
t

from the hyper�ne �eld and a quadrupolar term arising from the ele
tri
 �eld gradient

a
ting at the rare earth site. Estimation of the hyper�ne �eld leads to a smaller mag-

neti
 moment, i.e. 4.5 µB, 
ompared to the one found by neutron di�ra
tion [74, 76℄.

This feature was understood 
onsidering the spin �u
tuations � or �u
tuation of the

5

Note that an estimation of the 
rystal-ele
tri
-�eld 
ontribution yields a weaker but still antifer-

romagneti
 Curie-Weiss 
onstant θCW ≈ −6 K [73℄

6

Note that irredu
ible representations allowed by the pyro
hlore spa
e goup Fd3̄m 
annot a

ount

for the magneti
 di�ra
tion pattern and a solution was found by lowering the symmetry of the 
rystal

(spa
e group I41/amd), i.e. magnetoelasti
 e�e
ts distort the 
rystal [74℄.
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Figure 1.15: Left: Magneti
 stru
ture of Tb2Sn2O7: spins are slightly 
anted away from

the [111℄ axis and their longitudinal 
omponents are in the "two-in/two-out" 
on�gu-

ration. All tetrahedra are identi
al, de�ning the ordered spin-i
e state. Reprinted from

Ref. [76℄, 
opyright 2015, with permission from Elsevier. Right: Temperature depen-

den
e of the muon spin-latti
e relaxation rate in zero-�eld µSR measurements and µSR
spe
tra re
orded in zero-�eld at T = 0.17 and 2.4 K. No spontaneous os
illations are

seen in the ordered phase. Data reprodu
ed from Fig. 2 of Ref. [75℄.

hyper�ne �eld � leading to the non thermal equilibrium of the nu
lear levels, and

thus to a de
rease of the nu
lear spe
i�
 heat [74℄. Spin dynami
s was 
on�rmed by

µSR experiments where no spontaneous os
illations are observed in the ordered phase

and no 
lear eviden
e of a transition is seen in the temperature dependen
e of the

spin-latti
e relaxation rate [75, 77℄, see the right panel of Fig. 1.15. A 
hara
teristi


�u
tuation time τc ≈ 10−10
s was found. Additional measurements with the neutron

spin-e
ho te
hnique show the 
oexisten
e of stati
 (q = 0.08 Å) [78℄ and dynami
al

spins [79℄ at larger waveve
tors with a �u
tuation time τc = 2 × 10−11
s. Polarised

neutron di�ra
tion experiments show that 60% of the spins remain stati
, 
ontributing

to the observation of magneti
 Bragg peaks, whereas the remaining are responsible for

the liquid-like di�use magneti
 ba
kground and �u
tuating at τc ≈ 5 × 10−11
s [80℄.

Finally, the analysis of the Bragg peak widths, the di�use magneti
 s
attering and the

small angle neutron s
attering at T = 0.1 K yield several spin 
orrelation lengths [81℄,

using high-resolution neutron di�ra
tion experiments. In the same referen
e, neutron

ba
ks
attering spe
tros
opy eviden
es a �u
tuation time τc = 1.3 × 10−9
s. There-

fore, the ground state of Tb2Sn2O7 is 
hara
terised by long and short-range 
orrelation

lengths and a distribution of �u
tuation times, attesting the presen
e of dynami
 spins


oexisting with a long-range magneti
 order.

1.5.2 Yb2Ti2O7 vs Yb2Sn2O7

Yb2Ti2O7 is believed to be a realisation of a three-dimensional quantum spin-liquid sys-

tem. It possesses a Kramers ground state doublet well isolated from the ex
ited ones

and a dominant planar anisotropy, see Chapter 3. A sharp peak in the temperature

dependen
e of the spe
i�
 heat indi
ates a transition at Tc = 0.24 K [82℄. A broad
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hump is also observed at T ≈ 2 K, attributed to the development of short-range spin


orrelations and not to a S
hottky anomaly sin
e the �rst ex
ited 
rystal-ele
tri
-�eld

energy level is predi
ted to lie above 50 meV, see Chapter 3. Ferromagneti
 intera
-

tions are inferred from the Curie-Weiss temperature θCW = 0.75(10) K [83℄. From the

hyper�ne �eld measured by Mössbauer spe
tros
opy, the magneti
 moment 
arried by

the Yb

3+
moments is found to be equal to ≈ 1.15 µB and therefore, dipolar intera
tions

are negligible [84℄. In the same referen
e, magneti
 moments are shown to be 
anted

away from the lo
al axis [111℄ with an angle of 44(5)◦. The sharp transition observed

in the temperature dependen
e of the Yb

3+
magneti
 moments, and the 
oexisten
e of

paramagneti
 and stati
 moments, are indi
ative of a �rst-order transition [84℄. This

feature is 
on�rmed by µSR and Mössbauer spe
tros
opies sin
e the spin �u
tuation

rate undergoes a sharp de
rease at Tc of three orders of magnitude, with a persisten
e of

spin dynami
s down to 40 mK with a 
hara
teristi
 �u
tuation time τc ≈ 10−6
s [84℄, see

left panel of Fig. 1.16. However, originally unpolarised and polarised neutron di�ra
-

tion experiments seem to pre
lude the existen
e of a long-range magneti
 ordering, see

Refs. [84, 85℄. Therefore, this 
andidate attra
ts a lot of attention in order to under-

stand its magneti
 ground state as a possible 
andidate to a quantum spin-liquid. The

determination of the ex
hange 
ouplings introdu
ed in Eq. 1.12 be
omes of prime im-

portan
e. Analysing the spin wave dispersion measured by inelasti
 neutron s
attering

at T = 30 mK under applied magneti
 �eld, the authors of Ref. [60℄ �nd a set of values

given in meV, i.e. Izz = 0.17(4), I± = 0.05(1), I±± = 0.05(1), and Iz± = −0.14(1),
putting this 
ompound deep in the ferromagneti
 state

7

shown in the left panel of

Fig. 1.14. Note that despite the strong planar anisotropy, the Ising ex
hange 
oupling

is dominant. These results allow to well des
ribe zero-�eld spe
i�
 heat data above

0.7 K [86℄ and the temperature dependen
e of the magnetisation under di�erent ap-

plied magneti
 �elds [87℄. The predi
tion of a long-range ferromagneti
 order state is in

agreement with some earlier measurements: Yasui et al. [88℄ have eviden
ed magneti


Bragg peaks at T = 0.03 K with a redu
tion of the magneti
 moment (1.1 µB) 
ompared

to the saturation value of the magnetisation measured at T = 5 K (1.8 µB), indi
ative

of 
anted magneti
 moments. These results were strongly debated at the time sin
e

they 
ontradi
t the 
on
lusions of the aforementioned Refs. [84, 85℄. Besides, neutron

spin e
ho measurements at T = 0.18 K show that the relaxation of the intermediate

s
attering fun
tion o

urs out of the neutron spin e
ho time window, i.e. spin dynami
s


hara
terised by a �u
tuation time τc ≤ 4 ps [85℄ mu
h faster than the one inferred

from µSR (τc ≈ 10−6
s). However, polarised neutron experiments [89℄ supports the

existen
e of a ferromagneti
 state sin
e a magneti
 Bragg peak has been undoubtfully

eviden
ed below Tc. An explanation for su
h di�erent experimental results 
ould arise

from the possibility of stu�ng, i.e. site ex
hange between ytterbium and titanium ions,

or evaporation of the titanium, while growing single 
rystals by the opti
al �oating zone

te
hnique [90℄. This goes in line with spe
i�
 heat measurements where a sharp peak

at Tc is observed or not for powder samples or single 
rystals [91℄.

On the other hand, the sibling 
ompound Yb2Sn2O7 exhibits very similar physi
al

properties: ferromagneti
 intera
tions dedu
ed from θCW = 0.51 K [33℄, a sharp tran-

sition at Tc = 0.15 K [92℄ in the temperature dependen
e of the spe
i�
 heat, together

7

A

ording to Ref. [65℄, the phase diagram shown in the left panel of Fig. 1.14 is symmetri
 in

Iz± → −Iz±.
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Figure 1.16: Left: Flu
tuation rate of spin dynami
s measured by µSR (νc,µ) and

Mössbauer (νc,M) spe
tros
opies for Yb2Ti2O7 [83℄ (blue symbols) and Yb2Sn2O7 [92℄

(red symbols). Note that µSR experiments are ne
essary to probe slower spin dynami
s

sin
e the Mössbauer time windows is limited to time t ≤ 10−8
s. Right: Powder neutron

di�ra
tion pattern of Yb2Sn2O7 re
orded at 52 mK. Reprinted �gures with permission

from Ref. [92℄. Copyright 2015 by the Ameri
an Physi
al So
iety.

with a broad hump around 2 K [92, 93℄. The �rst-order nature of the transition is


on�rmed by µSR and Mössbauer spe
tros
opies where, similarly to Yb2Ti2O7, a sharp

in
rease in the temperature dependen
e of the Yb

3+
magneti
 moments, the 
oexisten
e

of paramagneti
 and stati
 magneti
 moments and an abrupt redu
tion of several orders

of magnitude of the spin �u
tuation rate is observed at the transition [92℄, see left panel

of Fig. 1.16 for the latter property. A persisten
e of spin dynami
s down to the lowest

temperatures with a typi
al spin 
orrelation time τc ≈ 3× 10−6
s is also eviden
ed [92℄.

From the measurement of the hyper�ne �eld with Mössbauer spe
tros
opy, the sponta-

neous magneti
 moment msp = 1.1 µB is tilted away from the [111℄ axis with an angle

of 65◦, leading to a stronger planar anisotropy 
ompared to Yb2Ti2O7 [92, 94℄. The

main di�eren
e 
ompared to the titanate 
ompound resides in the presen
e of magneti


Bragg peaks with a magneti
 propagation waveve
tor kmag = (0, 0, 0): the di�ra
tion
pattern, see the right panel of Fig. 1.16, is very well re�ned using the Γ9 irredu
ible

representation allowed by the Fd3̄m spa
e group: a spontaneous magneti
 moment

msp = 1.05(2) µB has been inferred, very 
lose to the Mössbauer value, with magneti


moments 
anted away from the z axis with the aforementioned angle [92℄. Therefore,

the name of splayed ferromagneti
 state is 
oined [92℄. However, no spontaneous os
il-

lations are seen by µSR spe
tros
opy due to the persisten
e of spin dynami
s [92, 94℄.

The latter assumption is supported by a.
. sus
eptibility measurements where a be-

haviour of spin freezing rather than a magneti
 long-range order is put forward from

the analysis of the imaginary part of the sus
eptibility, with a 
hara
teristi
 time of

spin �u
tuations τc ≈ 1.5 × 10−6
s at 0.13 K, 
ompatible with the value inferred from

µSR measurements [94℄. Therefore, the magneti
 ground state of Yb2Sn2O7 is one of

the ferromagneti
 states (Coulomb ferromagnet or Higgs ferromagneti
 state) predi
ted

in Ref. [65℄, see left panel of Fig. 1.14. The persisten
e of spin dynami
s should pla
e

Yb2Sn2O7 
lose to the quantum spin liquid state [94℄.
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1.5.3 Er2Ti2O7 vs Er2Sn2O7

Er2Ti2O7 has a strong planar anisotropy, i.e. spins lie in a plane perpendi
ular to the

lo
al [111℄ axis, see Chapter 3. A sharp peak at T = 1.2 K in the temperature de-

penden
e of the spe
i�
 heat indi
ates a magneti
 transition [82℄. The analysis of the

high temperature range of the magneti
 sus
eptibility yields strong antiferromagneti


intera
tions dedu
ed from the Curie-Weiss temperature θCW = −15.9 K and a para-

magneti
 moment 
lose to the value of the free ion [95℄. Powder neutron di�ra
tion

reveals the se
ond-order nature of the transition and a long-range magneti
 order with

a magneti
 propagation waveve
tor kmag = (0, 0, 0) [96℄. The magneti
 stru
ture is


hara
terised by the so-
alled Ψ2 state, see Tab. D.1, basis ve
tor of the irredu
ible rep-

resentation Γ5 [97℄. The 
orresponding spin 
on�guration over a tetrahedron is shown

in the left panel of Fig. 1.5. The authors of Refs. [96, 98℄ show that an order by dis-

order me
hanism [15℄ through thermal �u
tuations sele
ts the Ψ2 state. However the

transition is predi
ted to be �rst order in 
ontradi
tion with experimental results. The

four symmetry-allowed ex
hange 
ouplings introdu
ed in Eq. 1.12 are determined from

the analysis of spin wave dispersion under magneti
 �elds [17℄ and given in 10−2
meV:

Izz = −2.5(1.8), I± = 6.5(8), I±± = 4.2(5), and Iz± = −0.88(1.5). Note here that the
transverse ex
hange 
onstants are dominant. We 
an mention that these parameters are

roughly similar to those determined from zero-�eld di�use neutron s
attering intensity

maps [2℄. More importantly, the se
ond order nature of the phase transition is restored

with the introdu
tion of quantum �u
tuations [14, 17, 99℄.

8

Coexisten
e of short-range spin 
orrelations and long-range order has been eviden
ed

in Ref. [101℄ from the sharpening of the magneti
 Bragg peaks and redu
tion of the

di�use s
attering when applying a magneti
 �eld. The presen
e of spin dynami
s in the

ordered phase has been 
on�rmed by the absen
e of spontaneous os
illations by µSR
spe
tros
opy [2, 102℄, similarly to the ordered 
ompound Tb2Sn2O7. However, zero-

�eld µSR spe
tra 
annot be des
ribed by usual muon depolarisation fun
tions, and the

origin of its shape remains mysterious. Applying strong longitudinal magneti
 �eld �

but lower than the 
riti
al �eld Hc = 2 T indu
ing a phase transition [103℄� allows to

re
over a usual exponential de
ay of the muon depolarisation sep
trum, as displayed in

the left panel of Fig. 1.17.

On the other side, the XY stannate 
ounterpart Er2Sn2O7 does not display any

long-range magneti
 order down to T = 0.13 K from magneti
 sus
eptibility measure-

ments [33℄ and down to T = 0.02 K from µSR experiments [102℄ whi
h suggests a

dynami
al nature of the ground state. In the former referen
e, the analysis of the high

temperature range of the magneti
 sus
eptibility reveals that Er2Sn2O7 has a paramag-

neti
 moment very 
lose to the value of the free ion while the Curie-Weiss temperature

θCW = −14 K indi
ates antiferromagneti
 intera
tions smaller than those in Er2Ti2O7.

The absen
e of magneti
 order was also 
on�rmed later by neutron di�ra
tion down

to T = 100 mK, but di�use magneti
 s
attering was eviden
ed starting from T = 5 K

down to the lowest temperatures, indi
ative of the apparition of short-range spin 
or-

relations [105℄. This freezing of spin dynami
s is 
on�rmed by the hysteresis e�e
t in

�eld 
ooling/zero-�eld 
ooling below T = 0.2 K in the temperature dependen
e of the

8

We should mention that authors of Ref. [100℄ propose an alternative explanation to the order by

disorder me
hanism sele
ting the Ψ2 state and stabilizing a long-range magneti
 order by 
onsidering

an admixture of the low-lying ex
ited 
rystal-ele
tri
-�eld energy levels.
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Figure 1.17: Left: Zero and longitudinal �elds µSR spe
tra of a Er2Ti2O7 
rystal sample

re
orded deep into the ordered phase at T = 21 mK. For magneti
 �elds H ≥ 0.5 T,

an exponential de
ay is re
overed. Reprinted �gure with permission from Ref. [2℄.

Copyright 2015 by the Ameri
an Physi
al So
iety. Right: Di�use magneti
 s
attering

of Er2Sn2O7 analysed following spin 
orrelations des
ribed by the Γ5 (green line) or

the Γ7 (blue line) irredu
ible representations, the latter 
orresponding to the Palmer-

Chalker state. Reprinted �gure with permission from Ref. [104℄. Copyright 2015 by the

Ameri
an Physi
al So
iety.

magnetisation and the frequen
y dependen
e of the peak observed in the imaginary part

of the a.
. sus
eptibility [104℄. In the latter referen
e, the magneti
 di�use s
attering

re
orded at T = 1.5 K is analysed in terms of spin 
orrelations a

ording to the spin


on�guration 
orresponding to the three-dimensional Γ7 irredu
ible representation,
9

i.e.

the Palmer-Chalker state introdu
ed in Se
. 1.2, as shown in the right panel of Fig. 1.17.

However, it should be noted that an experimental report from ILL [106℄ suggests from

neutron di�ra
tion experiments on Er2Ti2−xSnxO7 that Er2Sn2O7 enters a long-range

magneti
 order at Tc ≈ 0.1 K.

1.5.4 Gd2Ti2O7 vs Gd2Sn2O7

The 
ase of pyro
hlore 
ompounds with gadolinium ion is slightly apart from the other

rare earths sin
e Gd does not posses an orbital momentum (the 4f ele
troni
 shell

is half-�lled). Therefore, the spin anisotropy resulting from the 
rystal-ele
tri
-�eld

should not play any role: thus, spins are expe
ted to be Heisenberg. Still, ele
tron

paramagneti
 resonan
e measurements reveal an XY anisotropy of the spins and with a

strength non negligible 
ompared to ex
hange and dipolar energies for Gd2Ti2O7 [107℄

and Gd2Sn2O7 [108℄. In the latter 
ompound, the strength of the anisotropy is about

one-third lower than in the titanate one.

Both 
ompounds display antiferromagneti
 intera
tions with a Curie-Weiss temper-

9

Note that this analysis does not allow to distinguish whi
h basis ve
tors Ψ4,5,6 are involved.
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ature θCW ≈ −9.5 and −9.4 K for Gd2Ti2O7 [8, 109℄ and Gd2Sn2O7 [109, 110℄. The

paramagneti
 moment is very 
lose to the expe
ted value of the free ion, i.e. 7.94 µB.

Gd2Ti2O7 exhibits two transitions in spe
i�
 heat measurements [8, 111, 112℄ at

Tc,1 = 1 K and Tc,2 = 0.74 K. The 
omputed magneti
 entropy rea
hes ≈ 90% of

the expe
ted Rln(2S + 1) = Rln8 value for the free ion. Powder neutron di�ra
tion

experiments initially revealed below Tc,2 a single kmag = (1
2
, 1
2
, 1
2
) magneti
 stru
ture

where magneti
 moments lying in the Kagome planes are stati
 whereas those belonging

to the triangular planes remain dynami
 [113℄.

10

However, the authors of Ref. [114℄ show

that the only possible 
on�guration allowing to a

ount for a supplementary magneti


Bragg peak lo
ated at (1
2
, 1
2
, 1
2
) and to be 
onsistent with the 
orrelation length dedu
ed

from magneti
 di�use s
attering intensity re
orded with polarised neutrons is a 4-kmag

stru
ture with spins perpendi
ular to the lo
al [111℄ axis. Furthermore, 25% of the spins

are not ordered in the temperature range Tc,2 ≤ T ≤ Tc,1 and this fra
tion of the spins

partially orders at T = Tc,2, i.e. they 
arry a magneti
 moment of 1.9 µB whereas the

fully ordered spins 
arry a magneti
 moments 
lose to the value expe
ted for the free

ion. Hen
e, the magneti
 ground state is very pe
uliar, exhibiting a partially ordered

magneti
 stru
ture with spins remaining strongly �u
tuating. The latter property was


on�rmed by µSR spe
tros
opy: whereas spontaneous os
illations are observed in zero-

�eld measurements as a signature of a long-range magneti
 order, persisten
e of spin

dynami
s is eviden
ed down to 20 mK with a 
hara
teristi
 �u
tuation time τc =
0.7(2) ns [112℄.11 With the purpose of 
on�rming the proposed magneti
 ground state,

neutron spin e
ho measurements show at T = 110 mK that 80% of the intermediate

s
attering fun
tion is 
onstant as a proof of stati
 spins behaviour. The remaining

20% of the signal is missing, meaning that spins �u
tuate faster than the NSE window

time [115℄.

On the other hand, Gd2Sn2O7 undergoes a single transition at T ≈ 1 K [117℄. From

Mössbauer spe
tros
opy, the spontaneous magneti
 moment in the ordered phase is

found to be ≈ 7 µB, and its temperature dependen
e indi
ates a �rst order transi-

tion [117℄. Neutron di�ra
tion measurements reveals a magneti
 stru
ture with kmag =
(0, 0, 0) and magneti
 moments with an XY anisotropy lying parallel to the edges of the

tetrahedron [9℄. This magneti
 stru
ture 
orrespond to the Palmer-Chalker state [7℄

des
ribed earlier in Se
. 1.2 for 
lassi
al Heisenberg spins intera
ting through nearest-

neighbour antiferromagneti
 ex
hange and dipolar intera
tions. An explanation to the

di�eren
e observed between the magneti
 ground states of these two gadolinium 
om-

pounds 
ould arise from a di�erent third-neighbour ex
hange 
oupling [9℄. Despite the

magneti
 long-range order 
on�rmed by the presen
e of spontaneous os
illations ob-

served by µSR spe
tros
opy [116, 118℄, persistent spin dynami
s down to ≈ 20 mK is

dedu
ed in Mössbauer spe
tros
opy from the analyis of the relative intensities of Möss-

bauer lines leading to a population of the nu
lear levels more even than predi
ted by

the Boltzmann population fa
tor, indi
ative of spins �u
tuations [119, 120℄. These spin

�u
tuations are 
hara
terised by a 
hara
teristi
 time out of the Mössbauer time win-

dow, i.e. τc < 1.2×10−8
s for Gd

3+
. The latter feature is 
on�rmed by the non vanishing

10

We refer to Fig. A.2 to see that looking in the <111> dire
tions, magneti
 ions belong altenatively

to triangular and Kagome planes.

11

A stret
hed exponential fun
tion is used to analyse µSR data with an exponent βse ≈ 0.5 and

βse ≈ 0.75 for T ≤ Tc,2 and T ≤ Tc,1, respe
tively [112℄.
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Figure 1.18: Left: Illustration of the 4-kmag magneti
 stru
ture in Gd2Ti2O7. The

green spheres show magneti
 ions ordering for Tc,2 ≤ T ≤ Tc,1 and the orange ones

those remaining dynami
s in this temperature range, and whi
h partially order below

Tc,2. Copyright IOP Publishing. Pi
ture reprodu
ed from Ref. [114℄ by permission

of IOP Publishing. All rights reserved. Right: zero �eld µSR spe
trum of Gd2Sn2O7

re
orded at 21 mK. A zoom over the shortest times displays the spontaneous os
illations

of the muon spin attesting from the long-range nature of the magneti
 state, but still an

exponential de
ay is observed at longer times as a signature of persistent spin dynami
s.

Reprinted from Ref. [116℄, 
opyright 2015, with permission from Elsevier.

plateau of the spin-latti
e relaxation rate revealed by µSR spe
tros
opy [116, 118℄.

1.6 Content of the manus
ript

The present work fo
uses on low temperature properties of geometri
ally frustrated

magneti
 
ompounds: the two pyro
hlore series R2Ti2O7 and R2Sn2O7 where R is a

rare earth. We will outline in this se
tion the 
ontent of ea
h following 
hapters.

The se
ond 
hapter will introdu
e the di�erent experimental te
hniques used in this

work in order to 
hara
terise the physi
al properties of the investigated 
ompounds.

Laboratory experiments have been 
ondu
ted at INAC, CEA-Grenoble, whi
h in
lude

X-ray di�ra
tion and bulk measurements su
h as spe
i�
 heat and magnetisation mea-

surements. Large s
ale fa
ilities � the Institut Laue-Langevin (ILL), the Rutherford

Appleton laboratory (ISIS) and the Paul S
herrer Institut � allowed us to perform

experiments with a wide panel of te
hniques: X-ray syn
hrotron radiation, neutron

di�ra
tion, neutron time-of-�ight, neutron ba
ks
attering and µSR experiments will be

des
ribed.

The third 
hapter is devoted to the study of the 
rystal-ele
tri
-�eld a
ting at the

rare earth site, whi
h is of prime importan
e sin
e it provides the energy levels s
heme

of the rare earth, the spin anisotropy, and the wavefun
tions of the di�erent states for

instan
e. Within the approximation that only the ground state term arising from the

spin-orbit 
oupling needs to be taken into a

ount, i.e. using the Stevens Hamiltonian,
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a global analysis of published and measured inelasti
 neutron s
attering spe
tra aims

to 
hara
terise ea
h pyro
hlore series of interest with a single set of 
rystal-ele
tri
-�eld

parameters.

The fourth 
hapter will present numerous results obtained on the pyro
hlore 
om-

pound Nd2Sn2O7 with a wide panel of te
hniques. This 
ompound undergoes a se
ond-

order magneti
 transition at Tc = 0.91 K, with an all-in-all-out spin 
on�guration. The

long-range order nature is 
on�rmed by the observation of spontaneous os
illations in

µSR experiments. However, persistent spin dynami
s is observed in the ordered state

and as
ribed to low-energy spin loops ex
itations. Anomalously slow spin �u
tuations

are also eviden
ed in the paramagneti
 state.

The following 
hapter deals with one of the most intriguing pyro
hlore 
ompound

over the past few years: Tb2Ti2O7. A review of its di�erent physi
al properties will

be presented before a dis
ussion on the two possible magneti
 ground states: X-ray

syn
hrotron radiation and µSR Knight shift measurements are brought to shed light if

a Jahn-Teller transition o

urs or if this 
ompound is a realisation of a quantum spin-i
e

state.

General 
on
lusions and some perspe
tives for future work are given in the last


hapter.

Finally, several appendi
es are provided in order to give further information on: (i)

the 
rystallography of the pyro
hlore 
ompounds, (ii) the point 
harge model support-

ing the existen
e of a s
aling law between 
rystal-ele
tri
-�eld parameters of di�erent


ompounds and mandatory to a global analysis of the 
rystal-ele
tri
-�eld properties,

(iii) the 
orre
tion of the neutron absorption in
luded in the analysis of neutron time-of-

�ight data, (iv) some basi
s of group theory for the determination of magneti
 stru
tures

and an analyti
al eviden
e 
on�rming the sele
tion of the irredu
ible representation for

Nd2Sn2O7, and �nally (v) some ne
essary theoreti
al tools to understand and analyse

µSR data.

We �nish the overview of the manus
ript by mentioning some other aspe
ts inves-

tigated during this PhD thesis whi
h are not in
luded in the manus
ript. The spin

dynami
s of Er2Ti2O7 in the ordered and paramagneti
 states has been probed using

the neutron spin-e
ho te
hnique and results are 
urrently being analysed at the time

of writing. Spinel 
ompounds of 
hemi
al formula Cd2R2X4, where R = Ho or Yb and

X = S or Se, whi
h present the same frustrated network as the pyro
hlore 
ompounds,

have been studied by means of X-ray di�ra
tion, spe
i�
 heat, magnetisation, and µSR
measurements. These results are not dis
ussed here in order to keep the 
oheren
e of

the manus
ript, fo
using on the pyro
hlore series.
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In this 
hapter are detailed the di�erent te
hniques used in this work: spe
i�
 heat

and magnetisation measurements, X-ray and neutron di�ra
tion, neutron time-of-�ight

and neutron ba
ks
attering spe
tros
opies and �nally positive muon spin relaxation

spe
tros
opy. The di�erent fa
ilities visited along this work will be brie�y introdu
ed.

2.1 Bulk measurements

Bulk experiments su
h as spe
i�
 heat and magnetisation measurements are brie�y

dis
ussed in this se
tion.

2.1.1 Spe
i�
 heat

The spe
i�
 heat experiments have been 
ondu
ted at CEA-Grenoble, using a Quantum

Design PPMS (Physi
al Property Measurement System) to perform experiments down

to 0.4 K. The temperature of 1.9 K is rea
hed with a �rst

4
He 
ooling equipment.

A

3
He sti
k 
an be inserted in the sample spa
e in order to extend the experimental

temperature down to 0.4 K. The system is kept adiabati
 with a se
ondary va
uum

needed to ensure no heat losses by ex
hange gas.

The heat 
apa
ity 
hara
terises the amount of heat to bring to the sample to in
rease

its temperature and it is de�ned as follows [121℄:

cp = lim
δT→0

(

δQh

δT

)

p

, (2.1)

where Qh is a heat input brought to the sample, and the index p refers to 
onstant

pressure. Sin
e the heat 
apa
ity is an extensive quantity, one rather works with the

spe
i�
 heat Cp, being the heat 
apa
ity divided by the number of moles. Note that

di�eren
e between spe
i�
 heat measured at 
onstant volume (Cv) or pressure (Cp) is

not relevant due to the low 
ompressibility of the studied 
ompounds, i.e. Cp − Cv =
p
(

∂V
∂T

)

p
[122℄.

The PPMS employs the thermal-relaxation te
hnique by measuring the response

of the sample after a heat perturbation. In the left panel of Fig. 2.1 is shown the

pu
k used for

3
He measurements: the sample is pla
ed at the 
entre of a platform

linked by four threads of thermal 
ondu
tan
e K1 to the 
ryostat. Apiezon N grease

ensures a good thermal 
ondu
tivity between the sample and the platform. Its spe
i�


heat temperature dependen
e is displayed in the left panel of Fig. 2.2. A simpli�ed

experimental set up s
heme is given in the right panel of Fig. 2.1. We denote Tx, Ta

and T0 the temperatures of respe
tively the sample, the platform and the 
ryostat, P
the thermal power applied to the platform and cx and ca the heat 
apa
ity of the sample

and the platform. Performing the heat-balan
e [121℄ of the platform and sample, we
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sample, Tx , cx

platform, Ta , ca

cryostat, T0

K2

K1

Figure 2.1: Left: On the top panel is shown a pi
ture of the pu
k used for

3
He measure-

ments. The sample is pla
ed on the 
entre of the platform as illustrated in the pi
ture at

the bottom. Right: simpli�ed s
heme of the PPMS. The heat transfer between the sam-

ple and the platform is 
ontrolled by a thermal 
ondu
tan
e K2. The 
onta
t between

the platform and the 
ryostat is ensured by four threads of total thermal 
ondu
tan
e

K1.

derive:



















P = ca
dTa

dt
+K2(Ta − Tx) +K1(Ta − T0),

0 = cx
dTx

dt
+K2(Tx − Ta).

(2.2)

Considering the thermal 
ondu
tion between the sample and the platform to be im-

portant, i.e. K2 ≫ K1, see right panel of Fig. 2.1, it results Tx ≃ Ta. Thus, Eq. 2.2

be
omes:

P = (cx + ca)
dTx

dt
+K1(Tx − T0). (2.3)

A thermal power P is applied to in
rease the sample temperature from T0 to T0 +∆T1

at a time tf → ∞. The solution of Eq. 2.3 is then:

Tx(t) = T0 +∆T1[1− exp(−t/τ1)], (2.4)

where∆T1 = P/K1 ≈ 0.01T0 and τ1 = (cx+ca)/K1 is the relaxation time. Then, 
utting

the heat power at a time t′, the sample temperature relaxes down to the temperature

set point from Tx(t
′) = T0 +∆T2 to T0. The solution of Eq. 2.3 be
omes:

Tx(t) = T0 +∆T2 exp(−(t− t′)/τ1), (2.5)

As K1 is determined by the estimation of ∆T1 and ca is tabulated, the measure of

τ1 gives a

ess to the spe
i�
 heat of our sample. This te
hnique is illustrated in the
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Figure 2.2: Left: Temperature dependen
e of the Apiezon N spe
i�
 heat measured by

Y. Chapuis [123℄. Right: Evolution of the temperature of a Nd2Sn2O7 sample powder

to illustrate the relaxation te
hnique. Raw data are displayed by red 
ir
les, the full

blue line and the green dotted line are a �t using Eq. 2.4 and Eq. 2.5 respe
tively, the

bla
k dashed line is the asymptoti
 value of Eq. 2.4, the purple dashed-dotted line is

the tangent at the origin allowing to determine τ1.

right panel of Fig. 2.2. Pra
ti
ally, it is also 
he
ked that the relaxation time between

the platform and the 
ryostat is negligible whi
h is indi
ative of the goodness of the

measurement as it justi�es the hypothesis K2 ≫ K1.

It has been observed that in some temperature range where the spe
i�
 heat of the

measured sample be
omes small, the 
ontribution of the grease should be taken into

a

ount. Then, a preliminary measurement of the pu
k with an appropriate amount of

grease is performed. The grease 
ontribution is then interpolated and subtra
ted from

the total spe
i�
 heat.

2.1.2 Magnetometry

Magnetisation experiments have been performed with a Quantum Design MPMS (Mag-

neti
 Property Measurement System) at INAC, CEA-Grenoble. This magnetometer

gives a

ess to a temperature range from 300 to 2 K thanks to a

4
He 
ryostat and a

magneti
 �eld up to µ0Hext = 5.5 T. From this te
hnique is obtained the magnetisation


urve M = f(H) and the bulk magneti
 sus
eptibility de�ned in the linear approxima-

tion (weak magneti
 �elds) as:

χ = lim
Hext→0

∂M

∂Hext
=

M

Hext
. (2.6)

The MPMS is equipped with a SQUID sensor (Super
ondu
ting QUantum Inter-

feren
e Devi
e) and it is illustrated in the left panel of Fig. 2.3 whereas the relevant


onstituents are displayed in the right panel of Fig. 2.3. The magneti
 moment is

measured thanks to the extra
tion method with a pre
ision up to 1× 10−11
A.m

2
.

A super
ondu
ting ele
tromagnet applies a stati
 magneti
 �eld in whi
h the sample

is moved. The magneti
 �ux variation 
aused by the sample motion indu
es a 
urrent

in the three super
ondu
ting dete
tion 
oils 
on�gured as a se
ond order gradiome-

ter [124℄, thus avoiding external magneti
 �elds perturbations. These dete
tion 
oils
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Figure 2.3: Left: S
hemati
 view of the Quantum Design MPMS [125℄. Right: Insight

on the relevant 
onstituents involved in the extra
tion method [126℄: (1) Super
ondu
t-

ing ele
tromagnet applying a magneti
 �eld µ0Hext at the sample. (2) Super
ondu
ting

dete
tion 
oils. (3) Sample moving along the �eld dire
tion. (4) Input 
oils and SQUID

sensor.

are 
onne
ted to the input 
oil of the SQUID sensor lo
ated outside from the sample en-

vironment. The sensor is 
onstituted by an annular super
ondu
tor with two Josephson

jun
tions inserted in the loop as illustrated in the left panel of Fig. 2.4 and providing a

high sensitivity for the dete
tion of magneti
 �eld.

This te
hnique allows us to measure the magneti
 sus
eptibility. As this quantity

is measured at small applied magneti
 �eld µ0Hext to ful�l the linear approximation,

see Eq. 2.6, the real �eld µ0Happlied at the sample need to be pre
isely known, sin
e it

di�ers from the set up value due to the presen
e of a remanent �eld of several Oersted

in the super
ondu
ting magnet. The paramagnet o
ta-hydrate sulfate of gadolinium

(Gd2(SO4)3.8H2O) permits to pre
isely determine the real �eld: magneti
 intera
tions

are negligible between the spins of the gadolinium S = 7
2
as they are magneti
ally

isolated by the H2O mole
ules. Through the temperature dependen
e of its magneti


moment, the real applied �eld 
an be measured.

The inverse magneti
 sus
eptibility is plotted in the right panel of Fig. 2.4. We


ompare preliminary measurements where two di�erent weakly diamagneti
 sample

holders were used: a 
ylindri
al one in the �rst 
ase whereas in the se
ond 
ase a �at

pellet was introdu
ed in a straw, applying the magneti
 �eld in the pellet plane. In

the latter 
ase, the measured magneti
 sus
eptibility is in
reased sin
e the geometry

of our sample redu
es the demagnetising �eld. Therefore, measurements displayed in

Chapter ?? are performed with an ellipsoidal pellet.
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Figure 2.4: Left: S
hemati
 illustration of the SQUID sensor. A super
ondu
ting loop

is interrupted by two Josephson jun
tions. The Josephson e�e
t is the ability to sustain

a 
urrent with a zero voltage through the tunnelling of Cooper pairs up to the 
riti
al


urrent Ic. To a stati
 magneti
 �ux, the Josephson jun
tions 
urrent is enslaved to Ic.
The 
on
ept is based on the quantisation of the magneti
 �ux (Φ0 =

h
2e
). To a variation

of the magneti
 �ux inside the loop will appear a sinusoidal s
reening 
urrent in the

super
ondu
ting ring with a period equal to the number of quantum �ux 
hanges, and

thus a voltage at the Josephson jun
tion with same 
hara
teristi
s as the s
reening


urrent. Pi
ture taken from Ref. [127℄. Right: Inverse of the magneti
 sus
eptibility

versus temperature: 
omparison of a powder �lling a 
ylindri
al sample holder and

the 
ase where the �eld is applied in the plane of a �at pellet. In the latter 
ase, the

magneti
 sus
eptibility is in
reased.

2.2 Fa
ilities for mi
ros
opi
 probe measurements

We brie�y present the di�erent fa
ilities, illustrated in Fig. 2.5, where are lo
ated the

di�erent instruments introdu
ed in this 
hapter.

2.2.1 Institut Laue Langevin (ILL), a 
ontinuous neutron sour
e

Lo
ated at Grenoble, the ILL is a nu
lear rea
tor whi
h provides a high neutron �ux.

The neutron produ
tion is based on the �ssion of

235
U. A heavy water (D2O) moderator

at 300 K gives, through inelasti
 
ollisions of the neutrons with the nu
lei of the mod-

erator, a 
ontinuous beam of thermal neutrons with a Maxwellian energy distribution


entred at λc = 1.2 Å and a �ux φn = 1.5 × 1015 n 
m

−2
s

−1
[128℄. The di�ra
tome-

ters des
ribed here are supplied by these thermal neutrons, see Se
. 2.3.4, whereas the

ba
ks
attering spe
trometer is fed with 
old neutrons lo
ated in the guide H53, see

Se
. 2.5, using a liquid deuterium moderator at 25 K.
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Figure 2.5: View of the di�erent fa
ilities en
ountered during this work: the Institut

Laue Langevin (left), ISIS (middle), and the Paul S
herrer Institut (right).

2.2.2 ISIS, a muon and neutron pulsed sour
e

ISIS is a neutron spallation and muon sour
e of the Rutherford Appleton laboratory,

United Kingdom. To produ
e neutrons and muons, H

−
ions are a

elerated up to

70 MeV in a linear a

elerator (Lina
) with radiofrequen
y 
avities providing a sinu-

soidal ele
tri
 �eld, and are stripped through an aluminium oxide target to produ
e

protons. Then a 
ontinuous beam of protons is inje
ted in the syn
hrotron. Protons

are a

elerated up to 800 MeV with radiofrequen
y 
avities where an os
illating �eld

is applied to 
reate two bun
hes of parti
les separated by a time of 330 ns. Dipole

magnets bend the beam to ensure a 
ir
ular traje
tory in the 
y
lotron and multipo-

lar magnets fo
us the beam. Four out of �ve bun
hes are propelled to Target Station

1, where the neutron and muon spe
trometers of interest are lo
ated. About 3 % of

the in
ident �ux is dedi
ated to the produ
tion of muons, as explained in Se
. 2.6.2.

The remaining protons en
ounter a tantalum target to produ
e neutrons (≈ 4 × 1014

neutrons produ
ed per proton pulse) through a so-
alled spallation pro
ess.

2.2.3 A neutron and muon pseudo-
ontinuous sour
e at PSI

The Paul S
herrer Institut, lo
ated in Switzerland, owns a neutron spallation and muon

sour
e. Three a

elerators set up in 
as
ade provide a high energy proton beam up to

590 MeV: a Co
k
roft-Walton pre-a

elerator (energy up to 870 keV) brings protons in a

4-se
tor inje
tor 
y
lotron (energy up to 72 MeV) and then the main 
y
lotron permits

to rea
h the �nal energy up to 590 MeV to produ
e a high intensity beam with bun
hes

separated by a time approximately equal to 20 ns. The beam passes through two pion

targets to produ
e muons for the Swiss Muon Sour
e (SµS), see Se
. 2.6.2. Thus, the
remaining protons are deviated to the neutron spallation sour
e (SINQ fa
ility) where

the in
ident protons intera
t with a lead target to provide high energy neutrons that

are slowed down in a heavy water moderator. The resulting thermal neutron �ux is

φn ≈ ×1014 n 
m−2
s

−1
[129℄.

2.2.4 A third generation syn
hrotron at PSI

Not only a muon and a neutron sour
e, the Paul S
herrer Institut has a third-generation

syn
hrotron, the Swiss Light Sour
e (SLS). A 288 m 
ir
umferen
e storage ring produ
es

a very large light spe
trum, from infrared to hard X-rays, thanks to an ele
tron beam

rea
hing an energy of 2.4 GeV. The syn
hrotron light is produ
ed either with bending
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magnets resulting in photons with a wide energy spe
trum, or with undulators in the

straight part of the ring whi
h are 
omposed of a periodi
 arrangement of permanent

magnets, and sele
t the desired wavelength by tuning the magneti
 �eld. A mu
h more

intense and narrow beam is a
hieved 
ompared to the one resulting from the usual

bending magnet [129℄.

2.3 Di�ra
tion experiments

Powder di�ra
tion is a well suited te
hnique for the identi�
ation of 
rystalline phases

but also for a quantitative analysis of 
rystallographi
 stru
tures. A brief introdu
tion

to X-ray and neutron di�ra
tion, to the di�ra
tometers, and to the Rietveld method

employed to analyse data with the FullProf suite [130℄ will be presented.

2.3.1 Introdu
tion to di�ra
tion

2.3.2 Nu
lear or 
harge s
attering

Let us 
onsider an X-ray or neutron beam as a plane wave di�ra
ted by a periodi
al lat-

ti
e. The in
ident wavelength λ must be of the same order as the inter-atomi
 distan
e.

In
ident and s
attered waves must be in phase to get 
onstru
tive interferen
es. This


ondition of di�ra
tion is des
ribed by the Bragg law 2dhkl sin θ = nλ, where dhkl =
2π
k

is the interplanar spa
ing and k = ha⋆+kb⋆+ lc⋆ (h, k, l integers) is a re
ipro
al latti
e
ve
tor, θ is the angle of the in
ident and di�ra
ted beam with respe
t to the atomi


planes, and n is the order of di�ra
tion. This di�ra
tion 
ondition is illustrated in the

left panel of Fig. 2.6. The s
attering ve
tor is de�ned as q = ki − kf , where ki and kf

are the in
ident and �nal waveve
tor respe
tively (ki = kf = 2π
λ
in di�ra
tion 
ondi-

tion). The Bragg law 
an be rewritten as q = 2πn
dhkl

; the di�ra
tion 
ondition tells that

the s
attering ve
tor q must be a ve
tor of the re
ipro
al latti
e, de�ning the dire
tion

of di�ra
tion. This leads to the well-known Ewald 
onstru
tion, illustrated in the right

panel of Fig. 2.6, whi
h is a geometri
al representation of the di�ra
tion 
ondition.

The di�ra
ted intensity is proportional to the square modulus of the stru
ture fa
tor

Fα(q) where α takes the index n or p for neutrons or photons, respe
tively. Photons

intera
t with the ele
troni
 
loud of the atoms whereas neutrons intera
t with the

nu
leus through the Fermi pseudo-potential:

VF(r) =
2π~2

mn
bjδ(r− rj), (2.7)

where bj is the Fermi length of atom j and mn the neutron mass. Consequently, the

atomi
 form fa
tor for photons is the Fourier transform of the ele
troni
 density fj(q)
whereas for neutrons it is the Fourier transform of the nu
lear density taken as a Dira


fun
tion in real spa
e, sin
e a nu
leus is 
onsidered as a point obje
t:

Fp(q) =
N
∑

j=1

fj(q) exp(2iπq.rj). exp

(

−Bj
sin2 θ

λ2
j

)

,

Fn(q) =

N
∑

j=1

bj exp(2iπq.rj) exp

(

−Bj
sin2 θ

λ2
j

)

, (2.8)
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Figure 2.6: Left: S
hemati
 view of the Bragg law. Pi
ture adapted from Ref. [131℄.

Right: Visualisation of the Ewald sphere with a radius 2π/λ. The in
ident beam passes

through the sample (green square) rea
hing the surfa
e of the sphere at the origin of

the re
ipro
al latti
e. A re
ipro
al latti
e point must lie on the surfa
e of the Ewald

sphere to be in di�ra
tion 
ondition. Pi
ture adapted from Ref. [132℄.

where the summation runs over the N atoms of the unit 
ell, rj is the position of atom

j and exp(−Bj
sin2 θ
λi

) = exp(−Wj(q)) is the Debye-Waller fa
tor, where Bj ∝ 〈u2
j〉 is

the amplitude of an isotropi
 displa
ement around the atomi
 mean position. Ignoring

the Debye-Waller fa
tor, the stru
ture fa
tor 
an be written as the produ
t of two

summations, one over the latti
e points (xj , yj, zj) of the primitive 
ell and the se
ond

over the basis of atoms r atta
hed to a latti
e point:

Fα(q) =

(

∑

j

aj,α exp[2iπ(hxj + kyj + lzj)]

)(

∑

r

exp[2iπ(hXr + kYr + lZr)]

)

,

(2.9)

where aα stands for the neutron or X-ray form fa
tor, i.e. aj,n = bj and aj,p = fj(q).
Now looking at the �rst fa
tor of the right hand-side of this equation, and 
onsidering

the fa
e 
entred Bravais latti
e F of interest where the 
oordinates of the latti
e points

are (0, 0, 0), (1
2
, 1
2
, 0), (0, 1

2
, 1
2
), (

1
2
, 0, 1

2
), it results a non vanishing stru
ture fa
tor only

if the Miller indexes (hkl) are of same parity.

The di�ra
ted intensity is proportional to the di�erential 
ross se
tion. In the X-ray


ase, it is written as [133℄:

dσ

dΩ
= nc

2π3

v0

∑

k

δ(q− k)|Fp(q)|2P (θ), (2.10)

where nc is the number of unit 
ells, v0 is the unit 
ell volume. P (θ) = 1+cos2(2θ)
2

is the

polarisation fa
tor assuming the in
ident beam is unpolarised, i.e. the ele
tri
 �eld is

in a plane perpendi
ular to the in
ident waveve
tor. Sin
e the X-ray beam is polarised

during the s
attering pro
ess, the polarisation fa
tor results from the proje
tion of the
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two 
omponents of the ele
tri
 �eld in the dire
tion 2θ of the s
attered beam [134,

135℄. In the 
ase of syn
hrotron radiation, when the in
ident polarised beam is set up

perpendi
ular to the s
attering plane, P (θ) = 1. The Dira
 term refers to the di�ra
tion


ondition, i.e. the waveve
tor transfer must be a ve
tor of the re
ipro
al latti
e.

For neutrons, the Fermi length of an isotope j will depend on the isotope 
onsidered

and on the nu
lear spin of the latter [136℄. To the di�erential 
ross se
tion will result a


oherent and in
oherent 
ontributions, the latter resulting in a ba
kground in di�ra
tion

experiment. We de�ne:

bj =
∑

ξ

cξbj,ξ,

|bj |2 =
∑

ξ

cξ|bj,ξ|2, (2.11)

where ξ labels an isotope of atom j with 
on
entration cξ. The 
oherent and in
oherent
di�erential 
ross se
tions are 
al
ulated as:

dσcoh(q)

dΩ
= nc

(2π)3

v0

∑

k

δ(q− k)|F ′
n(q)|2,

dσinc(q)

dΩ
= nc

∑

j

(|bj |2 − |bj|2) exp(−Wj(q)), (2.12)

with the so-
alled unit-
ell stru
ture fa
tor:

F ′
n(q) =

∑

j

bj exp(iq · rj) exp(−Wj(q)). (2.13)

2.3.3 Magneti
 s
attering

In the 
ase where a 
ompound undergoes a magneti
 transition, the periodi
ity of the

magneti
 moment resulting from the spin of the unpaired ele
trons leads to a magneti


stru
ture. This periodi
ity is des
ribed by a magneti
 propagation waveve
tor kmag.

The symmetry of the ordered phase is lowered 
ompared to the one of the 
rystallo-

graphi
 group. Note that even if kmag = (0, 0, 0), at least the time reversal symmetry

is broken. One has to �nd the symmetry operations leaving kmag invariant in order

to 
onstitute a subgroup Gk whose representation 
an be de
omposed into irredu
ible

representations Γν , where ν labels the order of the representation. A

ording to the

Landau theory, only one of these representations is sele
ted if the transition is se
ond

order, its basis ve
tors de�ning the orientation of the magneti
 moment [137℄. We refer

to App. D.1 for more detailed information.

The neutron spin intera
ts with the magneti
 �eld B = µ0H 
reated by the distri-

bution of unpaired ele
trons. The potential of intera
tion is de�ned as:

Vmag = −µn · µ0H, (2.14)

where µn = −γµNσ is the magneti
 moment of the neutron, γ = −1.91, µN is the

nu
lear Bohr magneton, σ is the neutron spin, and H is expressed in A.m

−1
. Within



50 CHAPTER 2. EXPERIMENTAL TECHNIQUES

the dipolar approximation, the amplitude of the magneti
 intera
tion is dedu
ed for

unpolarised neutrons as [138, 139℄:

amag(q) = pfmag(q)σ ·M⊥(q), (2.15)

where 2p = |γr0| = 0.54 × 10−12

m is the magneti
 s
attering length for a magneti


moment of 1 µB at q = 0, fmag(q) is the magneti
 form fa
tor and M⊥(q) = q̂ ×
(M(q) × q̂) (with q̂ = q/q) is the proje
tion of the Fourier transform of the total

magnetisation density (orbital and spin 
ontributions) on the plane perpendi
ular to q.

In the 
ase of a periodi
 magneti
 stru
ture with a magneti
 propagation waveve
-

tor kmag, and 
onsidering only one type of magneti
 ion, a magneti
 moment 
an be

expanded in a Fourier series:

mj =
∑

kmag

mkmag exp(−ikmag · rj), (2.16)

Therefore, the elasti
 magneti
 
ross se
tion is given by:

dσmag(q)

dΩ
= Nmag

(2π)3

vmag

∑

k,kmag

δ(q− k− kmag)|F⊥
mag(q)|2, (2.17)

where Nmag is the number of magneti
 
ells and vmag their volume. The Dira
 fun
-

tion refers to the di�ra
tion 
ondition: if the magneti
 propagation waveve
tor kmag =
(0, 0, 0), the magneti
 Bragg peaks are at the same positions as the nu
lear ones, oth-

erwise satellites peak appear at positions q = k + kmag. However, if kmag · rj 6= nπ,
Eq. 2.16 is no longer available sin
e the magneti
 moment need to remain a real quan-

tity. Therefore, the magneti
 propagation ve
tor −kmag has to be taken into a

ount,

see for instan
e Eq. D.7, and 
onsequently satellites peaks are observed at q = k±kmag.

The magneti
 stru
ture fa
tor has been introdu
ed as:

Fmag(q) = pfmag(q)
∑

j

mj exp(iq · rj) exp(−Wj(q)), (2.18)

where F⊥
mag(q) = q̂× (Fmag(q)× q̂).

2.3.4 Powder di�ra
tometers

An overview of the X-ray and neutron powder di�ra
tometers is given here. As the

sample is 
onstituted of small randomly oriented 
rystallites, the main advantage of a

powder di�ra
tion experiment is that all the Bragg positions will be observed in the 2θ
position of the dete
tor.

2.3.5 X-ray experiments

X-rays experiments were performed in the Bragg-Brentano 
on�guration, see Fig. 2.7,

with an Xpert Panalyti
al Phillips di�ra
tometer at INAC, CEA-Grenoble. A poly-


hromati
 X-ray beam is obtained with a 
opper anode. A ni
kel �lter permits to

mainly keep the 
opper Kα wavelength λ = 1.5406 Å. However a residual small wave-

length bandwidth persists taking into a

ount the KNi absorption edge of the ni
kel
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Figure 2.7: Left: illustration of the θ − 2θ geometry. Sample and dete
tor are moved


on
omitantly to ensure that the dete
tor is always at 2θ from the sample and the

sample surfa
e is always at an angle θ from the in
ident beam. Pi
ture taken from

Ref. [141℄. Right: s
hemati
 view of the high resolution powder di�ra
tometer of the

MS beamline in the Debye-S
herrer 
on�guration. Pi
ture taken from Ref. [142℄

λK,Ni = 1.4881 Å and do not provide a purely mono
hromati
 beam. This results in a

step in the right side of the tail of the Bragg peak pre
luding a quantitative analysis of

the di�ra
ted intensity. The beam is fo
used with several sets of slits: the �rst diver-

gen
e slits with variable size are used to keep 
onstant the irradiated area on the sample

and to restri
t the beam to the sample size. Determining the size of the re
eiving slits

lo
ated in front of the dete
tor is a stake to get better resolution without redu
ing the

di�ra
ted beam intensity. Additional Soller slits limit the axial (verti
al) divergen
e of

the beam and in
rease the resolution, espe
ially at low s
attering angles.

Experiments were also 
ondu
ted using the high resolution powder di�ra
tometer of

the Material S
ien
e (MS) beamline of SLS whi
h is supplied by photons with an energy

raising up to 38 keV, see right panel of Fig. 2.7. It is equipped with a sili
on mi
rostrip

dete
tor of se
ond generation, MYTHEN II, made of more than 30000 Si-units to 
over

a total angle from 2 to 120

◦
with a maximum resolution of 3.7 mdeg [129, 140℄. An x-ray

beam of wavelength λ = 0.49646 Å, 
orresponding to an energy E = hc
λ

= 24.98 keV,

was used.

2.3.6 Neutron experiments

Neutron powder di�ra
tion experiments were performed at the ILL on the D2B and D1B

di�ra
tometers, see Fig. 2.8, and at the PSI on the high resolution powder di�ra
tometer

HRPT.

D1B is a two-axis powder di�ra
tometer optimised for high resolution at low q and
high neutron �ux (φn = 6.5 × 106 n 
m−2

s

−1
at the wavelength λ = 2.52 Å thanks to

three graphite (002) mono
hromators). A

3
He multidete
tor 
overs a s
attering angle

from 2◦ ≤ 2θ ≤ 80◦, whi
h 
an be extended to 130◦ as the multidete
tors 
an be moved.

Angular resolution rea
hes up to FWHM= 0.2◦ (FWHM: full width at half maximum)

at small angles. To determine the magneti
 stru
ture of our sample deep into the
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Figure 2.8: Illustration of the D1B (left) and D2B (middle) di�ra
tometers, from

Ref. [128℄, and of HRPT (right), from Ref. [143℄.

ordered phase (down to 60 mK), we used a

3
He-

4
He dilution 
ryostat. As the atomi


magneti
 form fa
tor de
reases with in
reasing q, this di�ra
tometer is well suited for

the determination of magneti
 stru
tures.

D2B is a high resolution two-axis powder di�ra
tometer 
overing a s
attering angle

5◦ ≤ 2θ ≤ 165◦ thanks to 128

3
He dete
tors. A germanium (115) mono
hromator

o�ers a wavelength λ = 1.594 Å with a neutron �ux φn = 1 × 106 n 
m

−2
s

−1
in the

high resolution 
on�guration. As a wide angular range is 
overed with a high neutron

�ux and high resolution, this di�ra
tometer is well adapted for the determination of a


rystal stru
ture and to perform a quantitative analysis of the di�ra
ted intensities.

Additional neutron di�ra
tion experiments have been 
ondu
ted on HRPT. A ger-

manium (822) mono
hromator sele
ts a neutron wavelength of 1.154 Å and as the

3
He

dete
tors 
over a s
attering angle up to 165◦ with an angular step of 0.1◦, a wider

q-range has been explored 
ompared to the D2B di�ra
tometer. High resolution is

a
hieved for thermal neutrons up to

∆d
d

≈ 1× 10−3
.

Note that for the D2B and HRPT di�ra
tometers, an additional os
illating radial


ollimator redu
es the s
attering from the sample environment.

2.3.7 The Rietveld re�nement

Analysis of di�ra
tion data have been performed using the Rietveld method with the

FullProf 
ode [130℄. The re�nement routine minimises the fun
tion:

χ2 =

Np
∑

i=1

1

σ2
i

[yo,i − yc,i(α)]
2, (2.19)

where the summation runs over theNp experimental points, yo,i is the observed intensity,
σi is the standard deviation of yo,i, and yc,i is the 
al
ulated intensity where α =
(α1, ..., αn) is the parameter set involving the n free parameters. The 
al
ulated intensity

is de�ned as [144℄:

yc,i = yc,0
∑

h

MhAhLp,hIhZ(θi − θh) + bg,i, (2.20)
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where h labels the Bragg peak positions at the angle θh, yc,0 is a s
aling fa
tor, bg,i is
the ba
kground intensity, Z(θi−θh) is the peak pro�le fun
tion modelling instrumental

and sample e�e
ts, Mh is the multipli
ity of the re�e
tion h and Ah is the absorption


orre
tion. The intensity Ih is proportional to the di�erential 
ross se
tion de�ned

in Eq. 2.10 and in Eq. 2.12 for X-ray and neutrons respe
tively. The Lorentz fa
tor

Lp,h = 1
sin 2θ

des
ribes the fa
t that at high angle di�ra
ted intensity is in
reased as the

angular aperture of the Debye S
herrer 
one is higher and the interse
tion between the

latter and the Ewald sphere is wider [134, 135℄.

For an estimate of the analysis goodness, we use three R fa
tors and χ2
exp. They are

de�ned as follows [145℄.























Rp =

∑

i |yo,i − yc,i|
∑

i yo,i
, R2

wp =

∑

i wi(yc,i − yo,i)
2

∑

i wiy
2
o,i

,

R2
exp =

Np − n
∑

iwiy
2
o,i

, χ2
exp =

∑

i wi(yc,i − yo,i)
2

Np − n
.

(2.21)

Rp, Rwp, and Rexp are respe
tively the pro�le, weight pro�le, and expe
ted weight

pro�le fa
tors, and wi =
1
σ2
i

has been introdu
ed for 
larity in Eq. 2.21.

Two di�erent pro�le fun
tions have been utilised in the di�erent di�ra
tion experi-

ments. The pseudo-Voigt fun
tion des
ribes the shape of the Bragg peaks as:

Vp(x) = ηL(x) + (1− η)G(x), (2.22)

where η is a free mixing parameter whi
h de�nes the shape of the Bragg peak between

the Gaussian (G(x)) or Lorentzian (L(x)) limits,

L(x) =
aL

1 + bLx2
,

G(x) = aG exp(−bGx
2), (2.23)

with aG = 2
√
ln 2

HG

√
π
, bG = 4 ln 2

H2
G

, aL = 2
πHL

, and bL = 4H2
L, where HL and HG are the

FWHM (Full Width at Half Maximum) for the Lorentzian and the Gaussian fun
tions,

respe
tively. They are here taken to be equal here and are related to the {U, V,W} half-
width free parameters whi
h des
ribe the resolution fun
tion of the instrument [144℄:

H2
G = H2

L = U2 tan2 θ + V tan θ +W. (2.24)

Note that no strain or size e�e
ts have been 
onsidered.

The Bragg peak shape 
an alternatively be des
ribed by the 
onvolution of a Thomps-

on-Cox-Hastings pseudo-Voigt fun
tion [146℄ with an asymmetri
 fun
tion resulting

from the interse
tion of the di�ra
tion 
ones with the 
ylindri
al dete
tor [147℄. In this


ase, the Lorentzian and Gaussian fun
tions have di�erent FWHMs,

H2
G = U tan2 θ + V tan θ +W,

H2
L = Y/ cos θ, (2.25)

where {U, V,W, Y } are free parameters and Y refers to the Lorentzian isotropi
 size

parameter. The mixing parameter η introdu
ed in Eq. 2.22 is no longer a free parameter

in this 
ase but it is 
al
ulated as a fun
tion of HL and HG [144℄.
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Figure 2.9: S
hemati
 view of the MARI spe
trometer [148℄ (left) and illustration of

the neutron path (right) in the time-of-�ight te
hnique, explained in the main text. A

methane moderator at 100 K thermalises in
ident high energy neutrons.

2.4 Neutron time-of-�ight spe
tros
opy

The time-of-�ight (TOF) spe
trometer is an instrument well suited to explore ex
i-

tations sin
e wide energy and momentum transfer ranges are 
overed. In the dire
t

geometry used here, where the in
ident energy of the neutron is �xed, the time of �ight

of the s
attered neutron over a known distan
e is measured to dedu
e the energy trans-

fer in a given dire
tion. TOF spe
trometers are optimal for pulsed sour
e like the ISIS

fa
ility, where our experiments have been 
ondu
ted.

2.4.1 The MARI spe
trometer

TOF experiments were performed on the MARI spe
trometer. A simple s
heme of this

instrument and the neutron path is given in the left and right panels of Fig. 2.9, re-

spe
tively. Ba
kground 
oming from high energy neutrons and γ radiation is de
reased

with a �rst nemati
 
hopper. The in
ident energy is sele
ted with a gadolinium Fermi


hopper by phasing the neutron transparent 
urved slits with the neutron pulse, and

illustrated by the dotted blue line. The frequen
y of this rotor raising up to 600 Hz

determines the resolution, i.e. the width of the elasti
 line. The 
hopper is magneti-


ally suspended to avoid me
hani
al 
onta
t via fri
tion. Several rotor 
hoppers exist

allowing us to sele
t in
oming energies up to 2 eV. We only use the gadolinium Fermi


hopper, allowing to rea
h an in
ident energy up to 200 meV. Neutron traje
tories from

the sample to the dete
tors are displayed for inelasti
 (green dash dotted line) or elasti


(blue dotted line) pro
esses. To determine pre
isely the neutron gain or loss of energy

and the resolution, the di�erent distan
es separating the 
onstituents must be pre
isely

known. In the MARI 
ase, we have L1 = 11.05 m, L2 = 4.02 m and L3 = 1.689 m. Low

and high angle dete
tor banks, lo
ated 
lose to the dire
t beam and under the sam-

ple respe
tively, are 
omposed of 
ylindri
al

3
He dete
tors, 
overing s
attering angles

3◦ ≤ 2θ ≤ 135◦. Samples were 
ooled down to 5 K with a top loading CCR 
ryostat.

The left panel of Fig. 2.10 illustrates the inelasti
 s
attering pro
ess at the sample.

An in
ident neutron of energy Ei and waveve
tor ki is s
attered in the dete
tor dire
-

tion 2θ with a �nal energy Ef and waveve
tor kf . From the momentum 
onservation
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Figure 2.10: Left: Neutron s
attering triangle. Right: Illustration of the (q, ~ω) spa
e
probed by dete
tors lo
ated in the 2θ dire
tions for neutrons of in
ident energy Ei =
200 meV in dire
t geometry.

q = ki − kf , we get:

q2 = k2
i + k2

f − 2kikf cos(2θ). (2.26)

Using the energy transfer relation ~ω = Ei −Ef , we get the (q, ~ω) spa
e probed by a

dete
tor in the dire
tion 2θ, see right panel of Fig. 2.10:

~
2q2

2m
= 2Ei − ~ω − 2[Ei(Ei − ~ω)]

1
2 cos(2θ). (2.27)

2.4.2 Energy resolution

The total energy resolution of the spe
trometer arises from the 
onvolution of several


ontributions. The �rst one originates from the time distribution of neutrons in the

pulse. Whereas Gaussian fun
tions are usually introdu
ed to take into a

ount the

resolution of spe
trometers at a 
ontinuous sour
e, they are no longer adequate for a

pulsed sour
e where the moderator produ
es a strongly asymmetri
 time distribution

of the neutrons. The latter distribution has been modelled for a given in
ident energy

Ei with the 
onvolution of a slowing down term des
ribed by a χ2
distribution fun
tion

a

ounting for fast neutrons at short times whi
h are not thermalised and a storage

term depi
ted by an exponential fun
tion to take into a

ount neutrons emerging after

thermalisation [149℄. As the distan
e between the moderator and the Fermi 
hopper is

signi�
ant, the initial pulse shape spreads out in time due to the di�erent neutron ve-

lo
ities. As explained above, phasing the Fermi 
hopper allows to sele
t neutrons with

a spe
i�
 energy and tuning the frequen
y to determines the wavelength spread. This


hopper introdu
es a se
ond 
omponent to the resolution fun
tion due to the approx-

imately triangular transmission fun
tion whi
h takes into a

ount not only the phase

of the Fermi 
hopper but also the neutron speed and entry angle [150℄. An additional


omponent arising from size e�e
ts of the sample and dete
tors geometries has been 
al-


ulated through Monte Carlo simulations [151℄. The e�
ien
y of the dete
tor depends

on the neutron speed [152℄: the probability of a neutron to be dete
ted at a spe
i�
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Figure 2.11: Examples of the resolution 
urves as a fun
tion of the transfer energy for

two 
on�gurations with an in
ident energy Ei = 80 meV and a Fermi 
hopper frequen
y

νFC = 600 Hz, and Ei = 80 meV and νFC = 400 Hz.

position within the dete
tor thi
kness depends on its energy and adds a supplementary

broadening in the resolution fun
tion.

As explained in Refs. [153, 154℄, the energy resolution for elasti
 s
attering ∆E is


al
ulated as:

∆E

Ei

= 8.7478× 10−10

√
Ei

L
∆t, (2.28)

where L (in meters) is the total neutron �ight path, ∆t (in µs) is the time width of the

pulse at the dete
tor whi
h is the quadrati
 sum of the aforementioned time dispersion


ontributions, and Ei the in
ident energy (in meV). The total resolution of the MARI

spe
trometer has been 
al
ulated using the MSLICE 
ode [155℄ supplied by ISIS. Some

plots are tra
ed in Fig. 2.11. Note that the resolution is improved as the energy transfer

in
reases.

2.5 Neutron ba
ks
attering spe
tros
opy

The ba
ks
attering experiments have been performed at the ILL with the IN16 spe
-

trometer 
hara
terised by a high energy resolution. This se
tion des
ribes the IN16

spe
trometer and dis
usses the ba
ks
attering pro
ess and energy resolution 
onsider-

ations.

2.5.1 The IN16 spe
trometer

The IN16 spe
trometer is illustrated in Fig. 2.12. A �rst graphite (002) de�e
tor s
at-

ters a wide wavelength band of neutrons into a fo
using neutron guide. A beryllium

�lter prevents high energy neutrons to enter the spe
trometer and a ba
kground 
hop-

per pulses the neutron beam. In the so-
alled primary spe
trometer, a se
ond rota-

tive de�e
tor, whi
h is 
omposed alternatively of two open segments and two graphite

(002) mono
hromators, de�e
ts the beam towards a spheri
ally 
urved ba
ks
attering

mono
hromator, moved by a Doppler drive at a 
hosen frequen
y. Note that the same
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Figure 2.12: S
hemati
 view of the IN16 spe
trometer. The basi
 prin
iple and the role

of ea
h 
onstituent is des
ribed in the main text. Pi
ture taken from Ref. [156℄.

material is used for the �rst de�e
tor and the se
ond rotative de�e
tor allowing to have

a ba
ks
attered beam parallel to the initial white beam in the neutron guide, simplify-

ing the setup of the spe
trometer. Neutrons are ba
ks
attered onto the sample lo
ated

behind the se
ond de�e
tor thanks to the open segments of the rotative de�e
tor, work-

ing as a 
hopper. In the so-
alled se
ondary spe
trometer, several banks of sili
on (111)

140 
m high analysers lo
ated at 2 m from the sample and 
overing an angular range of

8◦ ≤ θ ≤ 155◦, sele
t neutrons of an energy of about 2 meV s
attered from the sample

and re�e
ts these in exa
t ba
ks
attering geometry ba
k through the sample to a set

of 320

3
He dete
tors pla
ed behind the sample. As the neutron beam being pulsed,

neutrons dire
tly s
attered by the sample towards dete
tors are not taken into a

ount

sin
e dete
tors are ele
troni
ally 
losed when in
ident neutrons hit the sample.

2.5.2 The ba
ks
attering pro
ess

The �rst ba
ks
attering pro
ess o

urs at the Doppler mono
hromator in the primary

spe
trometer to sele
t the in
ident neutron wavelength λi with a wavelength spread ∆λ.
The energy resolution is

∆E
E

= 2∆λ
λ
. The aim is to rea
h the highest energy resolution.

By di�erentiating the Bragg law we get the relation:

∆λ

λ
= cot θ∆θ +

∆d

d
. (2.29)
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Figure 2.13: Left: Darwin 
urve showing the neutron re�e
tion 
oe�
ient of the

mono
hromator as a fun
tion of an arbitrary parameter y whi
h 
ould be a variation

of k, λ or θ. Right: Pi
ture taken from Ref. [156℄ illustrating the nearly ba
ks
attering

geometry where a small angular deviation of the in
ident beam is introdu
ed. Here τ
is a re
ipro
al latti
e ve
tor (τ ≡ k) and k0 ≡ ki.

In exa
t ba
ks
attering geometry (θ = 90◦), the angular term of the right hand side

of Eq. 2.29 vanishes. The quantity

∆d
d

= ∆k
k


an be 
al
ulated within the dynami
al

theory of s
attering, where interferen
e e�e
ts between the in
ident and s
attered waves

are taken into a

ount. In the Bragg 
ase, i.e. where in
ident waves are re�e
ted, the

re�e
tivity 
oe�
ient R 
an be 
al
ulated [157, 158℄, see the Darwin 
urve in the left

panel of Fig. 2.13. The so-
alled Darwin width

∆k
k

de�nes the plateau where R = 1,
i.e. the loss of neutron �ux is minimised. It is 
al
ulated as [159℄:

∆k

k
=

16πF ′
n(k)N

k2
, (2.30)

where N is the number density of unit 
ells and F ′
n(k) is the unit-
ell stru
ture fa
tor

de�ned in Eq. 2.13, and 
al
ulated at the re
ipro
al latti
e ve
tor k. Then, the energy

resolution is:

∆E =
2E∆k

k
=

~
24πF ′

n(k)N

mn
, (2.31)

where E = ~2(k2/4)
2mn

. To ensure a minimised energy resolution, the 
hoi
e of the material


onstituting the mono
hromator is of �rst importan
e. For Si (111) 
rystals, we get

∆k
k

= 1.86 × 10−5

orresponding to an energy resolution of ∆E = 0.077 µeV for λ =

6.2709 Å.
To 
al
ulate the true energy resolution, one has to 
onsider also a small divergen
e

of the beam due to a small deviation of the ba
ks
attering geometry, i.e. ε = 90◦ − θ
as illustrated in the right panel of Fig. 2.13. This divergen
e is 
al
ulated as the
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di�eren
e between the minimum and maximum in
ident ki ve
tors denoted kmin and

kmax, respe
tively. Therefore, we derive:

kmax =
k/2 + ∆k/4

cos(∆θ
2
+ ǫ)

, kmin =
k

2
−∆k

4
, and ki =

k/2 + ∆k/4

cos(ǫ)
≈ k/2+∆k/4. (2.32)

Assuming that ∆k/(k +∆k/2) ≈ ∆k/k, we get:

∆ki
ki

=
kmax − kmin

ki
≈ 1

cos(∆θ
2
+ ε)

− 1 +
∆k

k
,

≈ 1

2

(

∆k

2
+ ε

)2

+
∆k

k
, (2.33)

where the last line is obtained assuming small values of

∆θ
2

+ ε. Then, the energy

resolution is obtained as:

∆E

E
= 2

∆ki
ki

=

(

∆θ

2
+ ε

)2

+ 2
∆k

k
. (2.34)

The total energy resolution is then 
al
ulated as the 
onvolution of the values of Eq. 2.34

found for the primary and se
ondary spe
trometers.

2.5.3 Spe
tros
opy

To perform spe
tros
opy measurements, one 
hanges the in
ident neutron energy. This


an be a

omplished by 
hanging the latti
e parameter via thermal 
y
ling or through

the Doppler e�e
t by moving the mono
hromator at a velo
ity vD parallel to the in
ident

neutron beam as set up on the IN16 spe
trometer. The energy 
hange δE of the

ba
ks
attered neutrons is then linearly dependent of the Doppler velo
ity vD, assuming

vD ≪ vi [159℄:
δE

E
≈ 2

vD
vi

. (2.35)

On IN16, the maximum amplitude of the Doppler velo
ity is 2.2 ms

−1
. Neutrons of

wavelength λ = 6.2709 Å have a velo
ity vi ≈ 631 ms

−1
, whi
h results in a maximum

energy 
hange of the ba
ks
attered neutrons of δEmax = 14.5 µeV. We re
all that the

analysers and the Doppler mono
hromator are identi
al. Therefore neutrons s
attered

by the sample will be analysed, i.e. ba
ks
attered in the se
ondary spe
trometer, if

λ = 6.2709 Å. The velo
ity pro�le of the Doppler drive is sinusoidal-like around the

mean value vD = 0, 
orresponding to zero energy transfer. Neutrons dete
ted with a

velo
ity di�erent from vi will have been inelasti
ally s
attered by the sample to ful�l the

ba
ks
attering 
ondition at the analysers. The variation of the position of the Doppler

mono
hromator is assumed negligible and thus the neutron �ight time from the Doppler

mono
hromator to the dete
tor tMD is 
onstant. Therefore, the �nal neutron energy at

a time tf is dedu
ed from the Doppler velo
ity re
orded at a time tf − tMD.

2.6 Muon spe
tros
opy

A brief introdu
tion on the muon spin relaxation spe
tros
opy (µSR) is presented here.

For more detailed information, one has to refer to Ref. [160℄.
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Bloc

Sµ

Figure 2.14: Illustration of the muon spin pre
ession around a lo
al magneti
 �eld Bloc.

Pi
ture taken with kind permission from Ref. [160℄.

2.6.1 Introdu
tion

This te
hnique allows to probe the lo
al magneti
 �eld of a sample. Muon is an ele-

mentary parti
le of mass mµ = 1.88353 × 10−28
kg ≈ 200me where me is the mass of

the ele
tron. Here, muons posses a positive ele
tri
 
harge and a lifetime τµ = 2.2 µs.
Polarised muons are implanted in the matter and due to their positive ele
tri
 
harge

they are lo
alised at an interstitial site. The aim of this te
hnique is to follow the time

evolution of the polarisation of these muons in a so-
alled time-di�erential measure-

ment. As they 
arry a spin Sµ = 1
2
, muons intera
t with the lo
al magneti
 �eld Bloc

of the sample. Thus the spin of the muon undergoes a pre
ession motion around Bloc,

as pi
tured in Fig. 2.14, des
ribed by the Larmor equation:

dSµ

dt
= γµSµ ×Bloc, (2.36)

where γµ = 8.51616× 108 rad s

−1
T

−1
is the muon gyromagneti
 ratio.

2.6.2 Experimental details

A high energy beam of protons provided by an a

elerator hits a graphite target, see

Se
. 2.2. Some rea
tions involved in the 
ollisions of the in
ident protons p and neutrons
n and protons of the target are des
ribed by the following equations:

p+ p → π+ + p+ n,
p+ n → π+ + n+ n, (2.37)

where π is a pion, an instable parti
le with a lifetime τπ = 26 ns. This parti
le de
ays

into a muon µ and a muon neutrino νµ:

π+ → µ+ + νµ. (2.38)

As we 
onsider a pion at rest, i.e. with zero kineti
 energy, the muon and the neutrino

are emitted in opposite dire
tion due to momentum 
onservation. Sin
e the neutrino

has a negative heli
ity � the heli
ity being de�ned by the proje
tion of the spin over

the momentum � the spin of the muon is antiparallel to its momentum be
ause of
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Figure 2.15: Left: De
ay of the pion π+
into a muon µ+

and a muon neutrino νµ. Right:
Probability of the positron emission dire
tion with respe
t to the muon spin.


onservation of angular momentum. This is illustrated in the left panel of Fig. 2.15.

The de
ay of the muon follows the rea
tion:

µ+ → e+ + νe + ν̄µ, (2.39)

where νe and ν̄µ are respe
tively the neutrino and antineutrino asso
iated with the

positron and the muon. The positron is the parti
le of interest whi
h is dete
ted by

a plasti
 s
intillator to produ
e a photon whi
h is driven through a light guide to a

photomultiplier. As the emitted positrons have a large kineti
 energy, up to 52 MeV,

they weakly intera
t with the sample and are weakly absorbed by the surrounding


ryostat and va
uum 
hamber walls.

The key point lies on the dire
tion of the emitted positron, whi
h is 
orrelated to

the muon spin orientation as shown in the right panel of Fig. 2.15. This panel illustrates

the probability W (θ) of the positron to be emitted in a dire
tion making an angle θ
with the muon spin and 
al
ulated as:

W (θ) ∝ [1 + aas(ε) cos θ], (2.40)

where aas is an asymmetry parameter varying with the kineti
 energy ε of the positron
as (2ε− 1)/(3− 2ε). Counting all the positrons and integrating over the energy range

available for the positron give 〈aas〉 = 1
3
.

2.6.3 Pseudo-
ontinuous versus pulsed sour
e

The SµS sour
e at PSI is a pseudo-
ontinuous sour
e, see Se
. 2.2.3. A dete
tor is

pla
ed in the muon beam 
lose to the sample, and a 
lo
k is started when a muon is

dete
ted. The 
lo
k is stopped when the de
ay positron is dete
ted to 
onstitute a

so-
alled event. If a se
ond muon is implanted before the positron arising from the �rst

implanted muon is dete
ted, the ele
troni
 a
quisition system pauses to avoid so-
alled


oin
iden
e. As the dete
tors do not 
over a 4π solid angle around the sample, there is

a non-negligible probability that the positron arising from the muon de
ay does not hit

the dete
tor. As a result, a timeout of few muon lifetimes is introdu
ed (≈ 10 µs). In
spite of these ele
troni
 
onsiderations, the presen
e of a 
onstant residual ba
kground

due to the un
ertainty to know the muon of origin of the dete
ted positron 
annot be

avoided.
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The ISIS sour
e is a pulsed sour
e des
ribed brie�y in Se
. 2.2.2. The muon beam

has the same time 
hara
teristi
s as the high energy proton beam hitting the graphite

target: approximately Gaussian shaped muon pulses are separated by a time of 20 ms

and a width of about 100 ns limiting the time resolution of the experiment. Contrary

to the SµS sour
e, a bun
h of order thousands of muons is implanted in the sample

at a time taken at zero. The main advantages lie �rst that only a few ba
kground

parti
les are dete
ted between the muons pulses whi
h permits to 
hara
terise the

muon spin polarisation fun
tion to signi�
antly longer times 
ompared to the SµS
sour
e as mentioned above, and thus to 
hara
terise slow relaxation pro
ess. However,

note that an ele
trostati
 de�e
tor has been set up on the SµS line whi
h prevents any

additional muons to be implanted in the sample until its prede
essor will be dete
ted.

This Muons-On-REquest (MORE) 
on
ept signi�
antly redu
es the ba
kground of a

pseudo-
ontinuous sour
e without de
reasing the intensity [161℄.

As a result, a pseudo-
ontinuous sour
e provides a high time resolution at short times

and allows to observe strongly damped signals but the dete
tion of weak magneti
 �elds

giving a low muon frequen
y pre
ession and the slow relaxation pro
ess are perturbed

by the residual ba
kground. At the opposite, the latter pro
esses 
an be eviden
ed on

a pulsed sour
e.

2.6.4 Muon spe
trometers

The MuSR spe
trometer, see Fig. 2.17, is one of the muon instrument lo
ated at ISIS.

To 
ope with the high intensity muons pulse, 32 positron dete
tors in forward position

and 32 positron dete
tors in ba
kward position surround the sample environment. Only

a separator is present on the beam line to remove the ba
kground parti
les arising from

the intera
tion between the proton beam and the graphite target. The muon spin

is antiparallel to its momentum. Two possible 
on�gurations are available: zero or

longitudinal �eld geometry and transverse �eld geometry, where the magneti
 �eld is

applied parallel or perpendi
ular to the muon spin, as shown in Fig. 2.16.

The GPS (General Purpose Surfa
e) and LTF (Low Temperature Fa
ility) spe
trom-

eters, see Fig. 2.17, have been utilised at the SµS. Their 
hara
teristi
s are summed

up in Tab. 2.1. These spe
trometers are designed to work also in zero, longitudinal or

transverse �eld. However, in transverse geometry, the magnitude of the applied �eld is

limited sin
e the Lorentz for
e will deviate the muon beam out of the sample. Therefore,

a spin rotator is pla
ed between the muon produ
tion target and the spe
trometers of

interest. Firstly, it is used as a separator to sele
t muons with a 
ertain velo
ity. The

aim is to remove ba
kground parti
les su
h as positrons arising from the pion de
ay

by de�e
ting parti
les with a transverse magneti
 �eld to mainly sele
t muons. In the

transverse �eld geometry, the spin rotator rotates the muon spin by about 50◦. There-
fore, a 
omponent of the muon spin is perpendi
ular to its momentum. Note that now,

we apply the magneti
 �eld parallel to the muon momentum, giving a

ess to higher

�eld magnitude. However, the initial asymmetry dete
ted in the dete
tors is redu
ed.

The zero-�eld 
ompensation pro
ess enables to remove the remanent �eld at the

sample by applying hysteresis 
y
le of 10 mT, 
omplemented with an a
tive 
ompensa-

tion devi
e to rea
h a remanent �eld lower than 3× 10−4
mT.
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Figure 2.16: Left: Illustration of the longitudinal (or zero) �eld geometry where a

magneti
 �eld is applied along the dire
tion of the muon spin. Right: Illustration of

the transverse geometry where a magneti
 �eld is applied perpendi
ular to the muon

spin. Pra
ti
ally, intensity of transverse magneti
 �eld is low to prevent the de�e
tion

of the muon beam before implantation in the sample. Note that for both geometries,

the muon spin is antiparallel to its momentum. Pi
tures taken with kind permission

from Ref. [160℄.

Spe
trometer Temperature Maximal longitudinal �eld Typi
al 
hannel time

GPS 1.5-300 K 0.56 T 1 ns

LTF 10 mK-10 K 2.8 T 1 ns

MuSR 40 mK-1000 K 250 mT 16 ns

Table 2.1: Summary of the 
hara
teristi
s of muon spe
trometers of interest. GPS and

LTF are respe
tively equipped with �ve (Forward, Ba
kward, Up, Down, Right) and

four (Forward, Ba
kward, Right and Left) positrons dete
tors.

2.6.5 Polarisation fun
tions

The positron 
ounts in a dete
tor are modelled as:

N(t) = N0 exp(−t/τµ)[1 + a0Pα(t)] + abg, (2.41)

where N0 is the s
ale of the positron 
ount, the exponential term stands for the �nite

lifetime of the muon, a0 is the initial asymmetry, usually of order 0.25 and assumed

to be only dependent of the experimental 
onditions su
h as the solid angle 
overed

by the dete
tor, Pα(t) is the time dependent muon polarisation fun
tion of interest

measured in the X, Y, Z dete
tor dire
tion, and abg is a time-independent ba
kground

term non negligible in the 
ase of a pseudo-
ontinuous sour
e. In the longitudinal �eld

geometry, only PZ(t) is of interest whereas PX(t) and PY (t) are a

essible in transverse

�eld geometry.

Labelling the forward dete
tor as �+� and the ba
kward one as �−�, then the number
of positrons dete
ted in ea
h of one is written as:

N±(t) = N0,± exp(−t/τµ)[1± a0Pα(t)] + abg,±. (2.42)

Then, assuming that abg,± = 0 and introdu
ing a parameter αd = N0,+/N0,− taking

into a

ount the di�eren
e of e�
ien
y of the dete
tors, and usually determined ap-

plying a weak transverse �eld, the polarisation fun
tion of the muon is then obtained
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Figure 2.17: Pi
tures of the di�erent muon spe
trometers of interest in this work: GPS

(left), LTF (middle) and MuSR (right).


ombining the 
ounts of ea
h dete
tors as:

a0Pα(t) =
N+(t)− αdN−(t)

N+(t) + αdN−(t)
, (2.43)

where t refers to the dis
retized time 
hannel. In the 
ase of a pseudo-
ontinuous sour
e,

a time independent ba
kground must be introdu
ed

The basi
 muons polarisation fun
tions will be introdu
ed. Let us �rst 
onsider a

magneti
 sample with a spontaneous lo
al �eld Bloc. If no external magneti
 �eld is

applied, muon spins undergo a pre
ession motion around the lo
al �eld Bloc oriented

at an angle θ with respe
t to the muon spin. Solving the Larmor equation displayed in

Eq. 2.36 leads to:

PZ(t) = cos2 θ + sin2 θ cos(ωµt), (2.44)

where ωµ = γµBloc is the Larmor pulsation. Performing a spatial average of Eq. 2.44

sin
e we are only interested in powder samples, we get:

PZ(t) =
1

3
+

2

3
cos(ωµt). (2.45)

In the paramagneti
 
ase or if the spin �u
tuations are su�
iently fast in the ordered

state not to keep a 
onstant value of Bloc, the muon polarisation relaxes through an

ex
hange of energy between the muon spin and the system. The polarisation fun
tion

of the muon spin is then des
ribed by:

PZ(t) = exp[−(λZt)
βse ], (2.46)

where λZ is the so-
alled spin-latti
e relaxation rate and βse = 1. In the 
ase where

a 
ontinuous distribution of relaxation 
hannels is involved, a stret
hed exponential

fun
tion is introdu
ed with 0 < βse ≤ 1.
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Figure 2.18: Illustration of the transverse geometry used at the LTF spe
trometer (PSI).

A spin rotator �ips the muon spin of about ≈ 50◦ from its momentum. Note that the

initial asymmetry is slightly redu
ed in this 
on�guration, i.e. a0 ≈ 0.22 
ompared to

the value expe
ted in zero or longitudinal �eld geometry (a0 ≈ 0.25). The magneti


�eld Bext is applied parallel to the in
oming muon beam. Therefore, the muon spin

undergoes a pre
ession motion around the lo
al �eld Bloc: the red arrow illustrates the

muon spin orientation at the muon implantation time in the sample t = 0 where it is

antiparallel and tilted from the muon beam dire
tion. The blue arrow is the muon spin

at a time t > 0 with a phase shift γµBloct. The red and blue 
ardioids represent the

probability W (θ) of positron emission along the muon spin axis, see Eq. 2.40, at times

t = 0 and t > 0, respe
tively. The bla
k parallelepipeds are the right and left positron

dete
tors of the muon spe
trometer giving a

ess to the transverse muon polarisation

fun
tion a0PX(t).

2.6.6 Muon Knight shift measurements

We spe
ify in this se
tion some details about the muon Knight shift te
hnique, used at

the SµS (PSI). In order to prevent the de�e
tion of the muon beam out of the sample

and apply higher magneti
 �eld, the usual transverse �eld mode des
ribed in Se
. 2.6

is not used here. We rather �ip the muon spin Sµ of about 50◦ from its momentum

with a spin rotator and use the transverse-�eld geometry pi
tured in Fig. 2.18. The

external magneti
 �eld Bext is applied parallel to the muon beam and its dire
tion

states the Z axis of the laboratory frame. The quantity of interest is the TF-µSR
asymmetry time spe
trum a0P

exp
X (t), where P exp

X (t) des
ribes the evolution of the muon
polarisation under Bext. The muon polarisation fun
tion is des
ribed by the sum of

two os
illating 
omponents: one a

ounting for the muons implanted in the sample and

pre
essing with a frequen
y νµ around the lo
al �eld at the muon site Bloc, and the

se
ond for the muons stopped in the sample surroundings, essentially the silver sample

holder, whi
h pre
ess around a �eld 
lose to the external �eld Bext with a frequen
y

νext. The normalised muon frequen
y shift Kexp is de�ned as [160℄:
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Kexp =
Bext · (Bloc −Bext)

B2
ext

. (2.47)

Usually measurements are performed in a �eld su�
iently large su
h as |Bloc −Bext| is
small 
ompared to Bext, and Eq. 2.47 be
omes:

Kexp =
Bloc − Bext

Bext
. (2.48)

Note that the aforementioned 
ondition means that Kexp is a measure of the magneti


response of the system submitted to a magneti
 �eld, i.e. the lo
al magneti
 sus
epti-

bility at the muon site, along the dire
tion of Bext. Sin
e we have νµ = γµBloc/(2π)
and νext = γµBext/(2π), we get:

Kexp =
νµ − νext

νext
=

∆ν

νext
. (2.49)

Sin
e we are dealing with insulators, only the dipolar �eld Bdip arising from the rare

earth magneti
 moments 
ontributes to the lo
al �eld at the muon site. The dipolar

�eld at the muon site is 
al
ulated as:

Bdip =
gµ0µB

4π

N
∑

i=1

Ji

r3i
− 3(Ji · ri)ri

r5i
, (2.50)

where ri is the ve
tor linking the muon to the magneti
 ion at site i. Although the

dipolar �eld 
reated by a magneti
 moment at a distan
e r de
reases as r3, the number
of magneti
 moments at this distan
e in
rease as r2. This statement implies that all

the magneti
 moments of the sample need to be 
onsidered. This dipolar �eld at the

muon site 
an be de
omposed in several 
ontributions [160℄:

Bdip = B′
dip +BLor +Bdem (2.51)

where B′
dip is the dipolar �eld arising from a dis
rete sum over the magneti
 moments

lo
ated in a so-
alled Lorentz sphere 
entered at the muon site and of radius su�
iently

large so that the sum 
onvergen
e is rea
hed. The remaining magneti
 dipoles are

lo
ated outside the Lorentz sphere and 
an be des
ribed in a 
ontinuous approa
h.

Therefore, two additional terms to the dipolar �eld at the muon site 
ontribute: the

Lorentz �eld BLor and the demagnetising �eld Bdem arising from the magneti
 
harges

lo
ated at the surfa
e of the Lorentz sphere and of the sample, respe
tively. Sin
e the

two latter 
ontributions are ma
ros
opi
 �elds, the muon Knight-shift Kµ is usually

des
ribed as [160℄:

Kµ = Kexp −
Bext · (BLor +Bdem)

B2
ext

. (2.52)

Therefore, Kµ arises only from the dipolar �eld 
reated by the magneti
 moments inside

the Lorentz sphere, i.e. Kµ = K ′
dip. Sin
e the Lorentz �eld arises from magneti
 
harges

lo
ated on the surfa
e of the Lorentz sphere, it is easily derived as:

BLor =
µ0MLor

3
, (2.53)
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whereMLor is the magnetisation per unit of volume inside the Lorentz sphere . Note that

we assume that the investigated 
ompound is magneti
ally saturated and MLor = M,

where M is the bulk magnetisation of the sample. Note that this equality does not

hold on anymore if magnetisation domains exist. In the 
ase of an ellipsoidal sample,

the demagnetising �eld is uniform and 
an be derived:

Bdem = −µ0NM (2.54)

where N is a diagonal tensor. Re
alling that Bext is 
ollinear to the Z axis so does

the magnetisation in a paramagneti
 sample, and 
ombining Eq. 2.53 and Eq. 2.54 in

Eq. 2.52 gives us:

Kµ = K ′
dip = Kexp − µ0

(

1

3
−NZZ

)

M

Bext
. (2.55)
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The study of the 
rystal-ele
tri
-�eld (CEF) a
ting at the rare earth site is of 
entral

importan
e in the pyro
hlore 
ompounds. It �xes the spin symmetry at the rare earth

site: Ising, XY, Heisenberg. The predi
tion of the CEF energy level s
heme tea
hes us if

the ground state is well isolated from the ex
ited energy levels as in the spin-i
e 
ase, or

if we should 
onsider a mixing between the ground state and the low-lying energy level

as in Tb2Ti2O7, see Chapter 5. Finally, the determination of the CEF wavefun
tions is

ne
essary to provide a basis for the diagonalisation of the Hamiltonian of interest. We

will introdu
e in this 
hapter the Stevens Hamiltonian used in this work. Then, using

68
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Figure 3.1: Left: Lo
al environment of a given rare earth ion in the pyro
hlore latti
e

stru
ture. The rare earth atoms are pi
tured with the largest red spheres, oxygen atoms

with the smallest blue spheres, and the atoms M =Ti or Sn with green intermediate

size spheres. Reprinted �gure with permission from Ref. [91℄. Copyright 2015 by the

Ameri
an Physi
al So
iety. Right: Illustration of the ground state multiplet arising

from the spin-orbit 
oupling split by the perturbative CEF Hamiltonian.

a simple model des
ribing the whole family of the titanate pyro
hlore R2Ti2O7, we will


ompare our results to previous work and �nally we will apply the same methodology

on the stannate family of 
hemi
al formula R2Sn2O7 analysing our inelasti
 neutron

s
attering measurements.

3.1 Introdu
tion

3.1.1 Rare earth properties

At the rare earth site, an ele
tri
 �eld a
ts on the magneti
 ion. This 
rystalline �eld

arises from all the ele
tri
 
harges 
arried by the surroundings ions as illustrated in the

left panel of Fig. 3.1. Magnetism in the rare earth 
ompounds arises from the lo
alised

4f ele
troni
 shell. The ele
troni
 
on�guration of the ground state of the rare earth ions

is of the form [Xe℄4fn5d16s2. The number n of ele
trons in the in
omplete 4f ele
troni


shell is given in Tab. 3.1. The degenera
y asso
iated to the ground state of the free

ion, 
hara
terised by the kineti
 energy of the ele
trons and the ele
tron-ele
tron and

nu
leus-ele
tron 
oulombi
 intera
tions, is 
al
ulated by the number of possibilities to

pla
e n ele
trons in the in
omplete 4f ele
troni
 shell, i.e. 14!/(n!(14−n)!). The Russel-
Saunders 
oupling, whi
h arises from the intera
tion between the spin and the orbital

momentum of the ele
trons, splits the ground state of the free ion into multiplets.

1

The

spin-orbit Hamiltonian takes the following form:

Hso = λsoL · S, (3.1)

1

This is valid in the 
ase of the rare earth ions where the intera
tion between the orbital angular

momentum of the 4f ele
trons is weak. This assumption is not valid anymore for heavier elements for

whi
h the j − j 
oupling should be 
onsidered.
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Rare earth Pr

3+
Nd

3+
Gd

3+
Tb

3+
Dy

3+
Ho

3+
Er

3+
Tm

3+
Yb

3+

n(4f) 2 3 7 8 9 10 11 12 13

S 1 3/2 7/2 3 5/2 2 3/2 1 1/2

L 5 6 0 3 5 6 6 5 3

J 4 9/2 7/2 6 15/2 8 15/2 6 7/2

gJ 4/5 8/11 2 3/2 4/3 5/4 6/5 7/6 8/7

Ground state

3
H4

4
I9/2

8
S7/2

7
F6

6
H15/2

5
I8

4
I15/2

3
H6

2
F7/2

∆so (meV) 266 236 - 294 408 644 802 729 1271

Kramers ion no yes yes no yes no yes no yes

Table 3.1: Some rare earth properties: the number of ele
trons in the 4f ele
troni


shell, the total spin S, orbital momentum L and total angular momentum J of the rare

earth ions, the Landé fa
tor, the ground state multiplet arising from the spin-orbit


oupling, the energy di�eren
e between the latter and the �rst ex
ited term [162℄, and

the Kramers 
hara
ter of the ion of interest are listed in this table. The ground state

term is labelled as

2S+1XJ where X=(S, P, D, F, G, H, I) for L=(0, 1, 2, 3, 4, 5, 6).

where L and S are the total orbital and spin angular momenta of the rare earth,

respe
tively, and λso is a 
onstant taking into a

ount the radial part of the ele
tron

wavefun
tion. The matrix form of Eq. 3.1 is diagonal within the basis |L, S, J,mJ〉,
where J = L + S is the total angular momentum and −J ≤ mJ ≤ J . All these

quantum numbers are determined by Hund's rules,

2

and are gathered in Tab. 3.1 as

well as the 
orresponding denomination of the ground state term, the energy splitting

between the ground state and the �rst ex
ited term, and the Landé fa
tor gJ . The

latter is 
al
ulated as:

gJ =
1 + J(J + 1)− L(L+ 1) + S(S + 1)

2J(J + 1)
. (3.2)

Ea
h multiplet is 
hara
terised by a value of J with a degenera
y equal to (2J + 1).
The ground state multiplet is de�ned in Tab. 3.1. The Kramers theorem should be

mentioned 
on
erning ions having an odd number of ele
trons, i.e. for half-integer J
values (Kramers ions): the multiplets arising from the spin-orbit 
oupling 
an only be

split into at least doubly degenerated states, where the degenera
y 
an only be lifted

by a time-reversal symmetry breaking perturbation su
h as an external magneti
 �eld.

A pe
uliar feature of the wavefun
tions des
ribing these states is that they are time


onjugated, i.e. if |Ψ±〉 are the wavefun
tions of a given doublet state, then |Ψ−〉 =
θ̂|Ψ+〉 where θ̂ is the odd time-reversal operator [163℄. On the other side, for non-

Kramers ions, i.e. for an even number of ele
trons, no rule governs the splitting of the

multiplets: a

idental degenerated states exist and the degenera
y is sus
eptible to be

lifted by any perturbations.

We have introdu
ed above the notion of lo
alised magnetism. The reason lies in the

fa
t that the 4f ele
troni
 shell is more internal than the 5s, 5p, 5d and 6s ele
troni


2

The three Hund's rules are for a given ele
troni
 
on�guration:

1 The ground state term is de�ned with the maximum multipli
ity, i.e. the highest value of S,

2 For a given multipli
ity, the term with the lowest energy is the one maximising L,

3 The lowest energy term for atoms with an ele
troni
 shell equal or less than half-�lled is the one

with J = |L− S| whereas for atoms with an ele
troni
 shell more than half-�lled, J = |L + S|.
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shells. Besides, the rare earth are usually in the 3+ valen
e state meaning that two

ele
trons of the 5s shell and one of the 5p shell are missing. Therefore, 5s and 5p
ele
troni
 shells are involved in the 
hemi
al bondings and the 4f ele
troni
 shell is

shielded by the 5d and 6s external ele
troni
 shells: thus, 
rystal-ele
tri
-�eld e�e
ts


an be treated as a perturbation of the spin-orbit 
oupling. The multiplets are split into


rystal-ele
tri
-�eld states, e.g. (2J + 1) states for the ground state multiplet. These

su

essive splittings are illustrated in the right panel of Fig. 3.1 where an order of

magnitude of the overall energy splitting is given in units of temperature.

3.1.2 The Stevens Hamiltonian

The 
rystal-ele
tri
-�eld HamiltonianHCEF 
an be written in terms of Stevens operators

Om
n (see App. B):

HCEF =
∑

nm

[Am
n 〈rn〉Θn]O

m
n , (3.3)

where Θn are the Stevens multipli
ative fa
tor listed in Tab. B.1, 〈rn〉 are the expe
ta-
tion values of the nth power distan
e between the nu
leus of the magneti
 ion and the

4f ele
troni
 shell, listed in Tab. B.2, and the 
rystal-ele
tri
-�eld parameters Am
n are

de�ned by Eq. B.18. We note that the Stevens operators are polynomial fun
tions of Jz

and J±. The aim is to 
al
ulate the matrix elements of HCEF within the ground state

multiplet de�ned by the basis |L, S, J,mJ〉, whi
h we will denote |mJ〉 in the following

sin
e L, S, and J are �xed values within a multiplet. We assume that the splitting

between the ground state and �rst ex
ited multiplets is su�
iently large not to 
on-

sider the latter. This hypothesis may not be valid for the lightest rare earths, see ∆so

in Tab. 3.1

We need to determine whi
h Stevens operators are involved in the CEF Hamiltonian.

First, all matrix elements for operators of order n > 2l vanish, where l is the orbital
quantum number of the ele
tron (for the 4f ele
troni
 shell, l = 3) [164℄. Besides, the
CEF Hamiltonian needs to remain invariant under time reversal symmetry. We fo
us

on the operators Jn
z involved in the Stevens operator Om

n . The time reversal symmetry

operator is written within the |mj〉 basis as [163℄:

θ̂ = exp(iπJy)K0, (3.4)

where K0 is the 
omplex 
onjugation operator a
ting on a wavefun
tion of the form

|Ψ〉 =∑mJ
αmJ

|mJ〉, where αmJ
are 
onstants, as:

K0|Ψ〉 =
∑

mJ

α⋆
mJ

|mJ〉. (3.5)

Therefore we 
al
ulate the 
ommutator of Jn
z and θ̂ within two wavefun
tions de�ning

the ground state multiplet |mJ〉 and |m′
J〉:

〈m′
J |
[

Jn
z , θ̂
]

|mJ〉 = 〈m′
J |Jn

z θ̂ − θ̂Jn
z |mJ〉. (3.6)

From Ref. [163℄, the only non-vanishing matrix elements are:

〈−mJ | exp(iπJy)|mJ〉 = (−1)J−mJ . (3.7)
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This leads to:

〈m′
J |
[

Jn
z , θ̂
]

|mJ〉 = δm′

J ,−mJ
(mJ)

n(−1)J−mJ [(−1)n − 1]. (3.8)

In order to get the CEF Hamiltonian invariant under time reversal symmetry, we need

Eq. 3.8 to vanish. This 
ondition is ful�lled only if n = 2k, where k is an integer.

We re
all that the lo
al point group symmetry at the rare earth site is D3d. One of

the symmetry elements belonging to this group is the

2π
3
rotation

3

around the z axis

[111℄ and its asso
iated operator is de�ned as:

Rz

(

2π

3

)

= exp

(

−2iπ

3
Jz

)

. (3.9)

The CEF Hamiltonian needs to remain invariant under the symmetry operators asso-


iated to the lo
al point group. We fo
us on the operators Jm
± involved in the Stevens

operators Om
n . Therefore, we 
al
ulate the 
ommutator of Jm

± and the symmetry oper-

ator Rz

(

2π
3

)

within the |mJ〉 basis:

〈m′
J |
[

Jm
± , Rz

(

2π

3

)]

|mJ〉 = 〈m′
J |Jm

± exp

(

−2iπ

3
Jz

)

− exp

(

−2iπ

3
Jz

)

Jm
± |mJ〉

= α±,mδm′

J
,(mJ±m) exp

(

−2iπmJ

3

)[

1− exp

(∓2iπm

3

)]

, (3.10)

where δa,b is the Krone
ker symbol (δa,b = 1 if a = b and 0 otherwise), and the 
onstants
α±,m have been introdu
ed su
h as:

Jm
± |mJ〉 = α±,m|mJ ±m〉, with for instance

J±|mJ〉 =
√

J(J + 1)−mJ(mJ ± 1)|mJ ± 1〉. (3.11)

Therefore, the invarian
e of the Hamiltonian is preserved, i.e. Eq. 3.10 vanishes, if

m = 3p, where p is an integer.

In 
on
lusion, we have shown with these geometri
al 
onsiderations that the CEF

Hamiltonian at the rare earth site is written as:

4

HCEF =
∑

nm

[Am
n 〈rn〉Θn]O

m
n =

∑

nm

Bm
n Om

n ,

= B0
2O

0
2 +B0

4O
0
4 +B3

4O
3
4 +B0

6O
0
6 +B3

6O
3
6 +B6

6O
6
6, (3.12)

where we have introdu
ed:

Bm
n = Am

n 〈rn〉Θn. (3.13)

The useful Stevens operators are expressed as:

3

Other symmetry elements of this point group are not used here sin
e they are not useful to

determine whi
h Stevens operators are needed in the CEF Hamiltonian.

4

We re
all that m ≤ n.
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O0
2 = 3J2

z − J(J + 1),

O0
4 = 35J4

z − 30J(J + 1)J2
z + 25J2

z − 6J(J + 1) + 3J2(J + 1)2,

O0
6 = 231J6

z − 315J(J + 1)J4
z + 735J4

z + 105J2(J + 1)2J2
z

−525J(J + 1)J2
z + 294J2

z − 5J3(J + 1)3 + 40J2(J + 1)2

−60J(J + 1),

O3
6 =

1

4

{

[

11J3
z − 3J(J + 1)Jz − 59Jz

]

(J3
+ + J3

−)

+(J3
+ + J3

−)
[

11J3
z − 3J(J + 1)Jz − 59Jz

]

}

,

O3
4 =

1

4

[

Jz(J
3
+ + J3

−) + (J3
+ + J3

−)Jz

]

,

O6
6 =

1

2
(J6

+ + J6
−). (3.14)

Note that in the |mJ〉 basis, the Stevens operators O0
n are diagonal, and applying

operators O3
n and O6

n on a ket |mJ〉, give us only |J,mJ ± 3〉, and |J,mJ ± 3〉 and

|J,mJ ± 6〉, respe
tively. Therefore the matrix representation of the CEF Hamiltonian

of dimension (2J + 1) 
an be ordered in a blo
k form.

From the point 
harge model introdu
ed in App. B, using Eq. B.18 and expressing

the tesseral harmoni
s Zm
n (θi, φi) in Cartesian 
oordinates,

5

the CEF parameters Am
n

are derived as:

A0
2 = − e

4πε0

(

1

4

)2(
5

π

) k
∑

i=1

4π

5
qi
3z2i −R2

i

R5
i

,

A0
4 = − e

4πε0

(

3

16

)2(
1

π

) k
∑

j=i

4π

9
qi
35z4i − 30z2iR

2
i + 3R4

i

R9
i

,

A3
4 = − e

4πε0

(

3

8

)2(
70

π

) k
∑

j=i

4π

9
qi
zi(x

3
i − 3xiy

2
i )

R9
i

,

A0
6 = − e

4πε0

(

1

32

)2(
13

π

) k
∑

i=1

4π

13
qi
231z6i − 315z4iR

2
i + 105z2iR

4
i − 5R6

i

R13
i

,

A3
6 = − e

4πε0

(

1

32

)2(
2730

π

) k
∑

i=1

4π

13
qi
(11z3i − 3ziR

2
i )(x

3
i − 3xiy

2
i )

R13
i

,

A6
6 = − e

4πε0

(

231

64

)2(
26

231π

) k
∑

i=1

4π

13
qi
x6
i − 15x4

i y
2
i + 15x2

i y
4
i − y6i

R13
i

, (3.15)

5

The useful tesseral harmoni
s are tabulated in Tab.IV of Ref. [164℄.
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where (xi, yi, zi) are the Cartesian 
oordinates of the k ele
tri
 
harges lo
ated at a

distan
e Ri = (x2
i +y2i +z2i )

1/2
from the magneti
 rare earth. Therefore, for isostru
tural


ompounds, i.e. belonging to the same family R2M2O7 (M =Ti or Sn), a s
aling law

allows to dedu
e the CEF parameters for a rare earth R′
from those of a rare earth

R [164℄:

Am
n (R

′) =
an+1
lat (R)

an+1
lat (R′)

Am
n (R) (3.16)

where alat(R) is the latti
e parameter of the 
ompound R2M2O7. Note that we have

impli
itly assumed that the free parameter x, see Tab. A.1, whi
h governs the position

of the oxygen atoms labelled O1, see Tab. A.1, is approximatively 
onstant within the

series 
onsidered. This is the 
ase of the 
ompounds of interest here, with x ≈ 1/3 [165℄.
Within the framework of ab-initio 
al
ulations, the point 
harge model is 
learly

not reliable. The ex
hange 
harge model (ECM) has been introdu
ed by Malkin et

al. (see for instan
e Ref. [166℄) to estimate the 
rystal-ele
tri
-�eld parameters. The

latter are 
al
ulated from two 
ontributions: the �rst is the e�e
t of the ele
tri
 �eld

on 4f ele
trons arising from a point 
harge distribution taking into a

ount shielding

e�e
ts of the external ele
troni
 shells. The se
ond 
ontribution takes into a

ount the

ex
hange integrals arising from the overlap of the orbitals of 4f ele
trons and those of

the nearest neighbours. Note that the CEF Hamiltonian is des
ribed with the tensor

spheri
al operators Cm
n rather than the Stevens operators. This is the 
ase for several

works in the literature. The two Hamiltonians are equivalent and only di�er from a

prefa
tor in the CEF parameters. Relations between the two sets of parameters 
an be

found in Ref. [123℄. However, our goal is not to perform ab-initio 
al
ulations, and we

assume the relation introdu
ed in Eq. 3.16 to be reliable.

3.1.3 Neutron 
ross se
tion

The most 
ommon method to determine CEF parameters is to analyse the CEF tran-

sitions revealed by inelasti
 neutron s
attering experiments. The neutron partial dif-

ferential s
attering 
ross se
tion is expressed in the dipole approximation as, see for

example Ref. [167℄:

d2σ

dΩdE ′ = C
kf
ki
S(q, ω), (3.17)

where S(q, ω) is the s
attering fun
tion, Ω the solid angle, kf/ki the ratio of the mo-

menta of the s
attered and in
ident neutrons and C a 
onstant. For a poly
rystalline

sample only the modulus q of the s
attering ve
tor has to be 
onsidered. For a set of

CEF transitions {i → i′} at a 
onstant s
attering ve
tor and at temperature T , we have

S(q, ω) =
I0
Z

∑

i,i′

(

∑

α=x,y,z

|〈i|Jα|i′〉|2
)

exp [−Ei/ (kBT )]F (Ei − Ei′ + ~ω) , (3.18)

where Z =
∑

i exp [−Ei/ (kBT )] is the partition fun
tion. Here I0 is a 
onstant, |i〉 and
|i′〉 are eigenve
tors of HCEF de�ned as:

|i〉 =
J
∑

mJ=−J

αmJ
|mJ〉. (3.19)
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Rare earth Tb

3+
Dy

3+
Ho

3+
Er

3+
Tm

3+
Yb

3+

alat (Å) 10.1475(1) 10.1248(1) 10.0986(1) 10.0727(1) 10.0537(2) 10.0204(1)

Table 3.2: List of the latti
e parameters alat used in this work for the R2Ti2O7 series.

Data taken from Ref. [165℄.

The fun
tion F (Ei −Ei′ + ~ω) des
ribes the i → i′ CEF transition with a neutron

energy transfer ~ω = Ei′−Ei. It is taken as the 
onvolution of Gaussian and Lorentzian

fun
tions. The Gaussian stands for the resolution of the spe
trometer. The Lorentzian

fun
tion is written as:

Li,i′(~ω + Ei − Ei′) =
1

π

Γi,i′

Γ2
i,i′ + (~ω − (Ei′ −Ei))2

(3.20)

where the FWHM Γi,i′ a

ounts for the lifetime of the i′ CEF energy level during the

transition i → i′.

3.2 CEF of the titanate series R2Ti2O7

In this se
tion, after a short review of published CEF parameters, we will present our

results of a global analysis leading to a single set of CEF parameters des
ribing the

whole R2Ti2O7 series. The following se
tions will fo
us on the details of the analysis of

inelasti
 neutron s
attering spe
tra for Tb2Ti2O7, Er2Ti2O7, and Ho2Ti2O7.

3.2.1 Published CEF parameters

Many sets of CEF parameters have been proposed in the literature to des
ribe the CEF

properties of the titanate series. The most relevant are listed in Tab. 3.3. Mirebeau et

al. [73℄ and Rosenkranz et al. [168℄ have derived the CEF parameters analysing inelasti


neutron s
attering spe
tra of a poly
rystalline sample of Tb2Ti2O7 measured on a triple-

axis spe
trometer, and of a powder sample of Ho2Ti2O7 measured on a time-of-�ight

spe
trometer, respe
tively. The 
orresponding CEF energy levels s
heme are shown in

the top left and right panels of Fig. 3.2. If 
omputed and experimental CEF energy

levels mat
h very well for the investigated 
ompound, some notable dis
repan
ies appear

looking at the other titanate 
ompounds of the series: for instan
e, CEF parameters

of Mirebeau et al. [73℄ a

ount very well for Tb2Ti2O7; however, inelasti
 neutron

s
attering spe
tra of Er2Ti2O7 and Ho2Ti2O7 
annot be des
ribed with this set of

parameters. Malkin et al. [169℄ have derived a set of CEF parameters with ab-initio


al
ulations using the ECM model brie�y introdu
ed at the end of Se
. 3.1.2. Looking

at the bottom left panel of Fig. 3.2, the mismat
h between experimental and 
al
ulated

energy levels does not allow to analyse inelasti
 neutron s
attering spe
tra of 
ompounds

of the titanate series.

3.2.2 Proposal of a single CEF solution

Whereas 
rystal �eld parameters are determined in the literature for a single 
ompound,

we endeavour ourselves here to des
ribe CEF properties of the whole series of the ti-

tanate 
ompounds R2Ti2O7 with a single set of CEF parameters Am
n (related to the Bm

n
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Figure 3.2: Computed CEF energy levels drawn for theR ions in theR2Ti2O7 pyro
hlore

series using CEF parameters listed in Tab. 3.3 proposed by Mirebeau et al. [73℄ (top

left), Rosenkranz et al. [168℄ (top right), Malkin et al. [169℄ (bottom left), and Hodges

et al. [83℄ (bottom right). Solid thin and thi
k lines stand for singlet and doublet

states, respe
tively. All the theoreti
al CEF levels have been drawn. They may not be

resolved on the �gure be
ause of the limited graphi
al resolution. The 
al
ulated energy

levels are 
ompared to experimental data extra
ted from inelasti
 neutron s
attering

experiments presented in dashed lines. These data are reprodu
ed from Refs. [73, 170℄

for Tb2Ti2O7, Refs. [96, 171℄ for Er2Ti2O7, Ref. [168℄ for Ho2Ti2O7 and Ref. [172℄ for

Tm2Ti2O7.

parameters through Eq. 3.13) using the s
aling law of Eq. 3.16. The latti
e parameters

alat used in this work are listed in Tab. 3.2. The perturbative CEF Hamiltonian is

restrained to the ground state multiplet

6

whi
h allows us to signi�
antly redu
e the

dimension d of the matrix elements, i.e. d = (2J + 1). The 
ode CEF [174℄ has been

developed in order to diagonalise the CEF Hamilton and simultaneously analyse pub-

lished inelasti
 neutron s
attering spe
tra of di�erent rare earths with a single set of

Bm
n parameters. The �rst step of the analysis was to �nd solutions allowing a mat
h

between experimental and 
al
ulated energy levels. The interval over whi
h the Am
n

CEF parameters have been varied is displayed in the last row of Tab. 3.3.

6

This assumption is valid for the heavier rare earth, but 
ould be debatable, in the 
ase of the lighter

rare earth sin
e ∆so be
omes of the same order of magnitude as the whole CEF energy splitting, see

Tab. 3.1.
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Am
n (meV/an0) A0

2 A0
4 A3

4 A0
6 A3

6 A6
6

This work [173℄ 40.5(1) 24(1) 213(13) 1.03(3) -17(1) 14(1)

Mirebeau et al. [73℄ 37 22 184 0.88 -11.2 13.6

Zhang et al. [170℄ 87 20.3 289 1.55 65.0 110.4

Rosenkranz et al. [168℄ 45 27 201 0.96 -16.4 17.6

Hodges et al. [83℄ 51.4 8.1 310 3.1 -20.7 23.8

Malkin et al. [169℄ 45 27 201 0.96 -16.4 17.6

Interval probed [0,85℄ [-34,50℄ [-300,455℄ [-3,3℄ [-34,34℄ [-25,30℄

Table 3.3: The Am
n parameters obtained from a global �t of the CEF levels deter-

mined by inelasti
 neutron s
attering experiments are shown for Tb2Ti2O7 in the se
-

ond row. The CEF parameters for the other 
ompounds of the series 
an be obtained

from Eq. 3.16. The units for Am
n are meV/an0 , where a0 is the Bohr radius. In the

subsequent four rows are listed the Am
n parameters derived from the works of Mirebeau

et al. [73℄ and Zhang et al. [170℄ on Tb2Ti2O7, from the work of Rosenkranz et al. [168℄

on Ho2Ti2O7, and from the work of Hodges et al. [83℄ on Yb2Ti2O7. For 
omparison the

Am
n values inferred from the ex
hange-
harge model are listed in the seventh row [169℄.

All CEF parameters given here have been res
aled for Tb2Ti2O7 using Eq. 3.16. The

last row gives the intervals over whi
h the Am
n parameters have been varied in our global

analysis.

A pe
uliar feature of the Hamiltonian given in Eq. 3.12 should be noti
ed: in-

ter
hanging the A3
4 and A3

6 signs, or equivalently the B3
4 and B3

6 signs, has no in�u-

en
e on its eigenvalues as well as on the neutron intensity of the CEF transitions.

As a 
onsequen
e, this enables to redu
e the numeri
al e�ort by a fa
tor two when

s
anning the CEF parameters looking for solutions diagonalising HCEF. This 
an

be understood as follows. For the sake of the derivation, the CEF Hamiltonian de-

�ned in Eq. 3.12 is denoted here as HCEF(B
0
2 , B

0
4 , B

3
4 , B

0
6 , B

3
6 , B

6
6). It 
an be eas-

ily shown that the matrix representation of this Hamiltonian in the Zeeman basis

{|mJ = J〉, . . . , |mJ = −J〉} is the same as that of HCEF(B
0
2 , B

0
4 ,−B3

4 , B
0
6 ,−B3

6 , B
6
6)

in the basis {|mJ = −J〉, . . . , |mJ = J〉}.7 Hen
e the eigenvalues, i.e. the energy levels,

are equal. As mentioned in Se
. 3.1.3, we need to 
onsider |〈i|Jα|i′〉|2 for the neutron
intensity, where |i〉 and |i′〉 are eigenve
tors. If |i〉 =∑J

mJ=−J αmJ
|mJ〉 is an eigenve
-

tor of the Hamiltonian with the B3
4 and B3

6 parameters, the 
orresponding eigenve
tor

of the se
ond Hamiltonian with −B3
4 and −B3

6 is |j〉 =
∑J

mJ=−J αmJ
| − mJ〉. Sin
e

〈−mJ |Jα| −m′
J〉 = p 〈mJ |Jα|m′

J〉 with p = 1 if α = x and p = −1 if α = y or z, the
transition intensities asso
iated with the two Hamiltonians are equal.

The advantage of �tting the whole set of available level positions rather than the

levels for a single 
ompound is the in
rease in the number of levels involved. Even for

the most favorable 
ase of Ho2Ti2O7 only �ve levels were experimentally measured. Our

global �t for four 
ompounds in
ludes twelve levels. The two highest CEF energy levels

of Tb2Ti2O7 revealed by Zhang et al. [170℄ are not in
luded in the analysis sin
e they

were not yet published. The se
ond step was to simultaneously analyse the inelasti


neutron s
attering spe
tra (details of the analysis are presented in the following se
tion).

Within the probed CEF parameters interval, we �nd a single solution listed in the �rst

7

Note the 
hange in the ve
tors sequen
e in the two bases
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Figure 3.3: Computed CEF energy levels drawn for theR ions in theR2Ti2O7 pyro
hlore

series using our CEF parameters listed in the �rst row of Tab. 3.3 (left) and CEF

parameters proposed in Ref. [170℄ listed in the third row of Tab. 3.3 (right). More

details about the des
ription of these panels are given in the 
aption of Fig. 3.2.

row of Tab. 3.3 leading to a fair des
ription of the experimental data, see for instan
e the


orresponding 
omputed CEF energy levels s
heme given in the left panel of Fig. 3.3.

Hodges et al. [83℄ have 
ombined

170
Yb Mössbauer spe
tros
opy,

172
Yb perturbed

angular 
orrelation, magnetisation and sus
eptibility measurements of Yb2Ti2O7 in

order to determine the CEF parameters. These parameters are listed in the �fth row of

Tab. 3.3 and the 
omputed CEF energy level s
heme is displayed in the bottom right

panel of Fig. 3.2 whi
h 
learly 
annot a

ount for the inelasti
 neutron s
attering data.

However, the three ex
ited Kramers doublets of Yb2Ti2O7 are predi
ted to lie at ≈ 53,
64, and 82 meV. Our set of CEF parameters listed in the �rst row of Tab. 3.3 leads

to energy levels lying at ≈ 57, 59, and 89 meV. These results are supported by the

work of Malkin et al. [169℄ where opti
al measurements on a poly
rystalline sample of

Yb2Ti2O7 revealed CEF energy levels at 58 and 81 meV. We re
all that our model does

not take into a

ount the in�uen
e of the �rst ex
ited multiplet whi
h 
an explain the

di�eren
e observed between the highest 
omputed energy levels, as it is the 
ase here

for Yb2Ti2O7. On the other hand, Ma
zka et al. [175℄ performed Raman spe
tros
opy

on Dy2Ti2O7 and eviden
ed at low temperatures a CEF transition from the ground

state to an ex
ited level lying at ≈ 37.2 meV. This is 
onsistent with our 
al
ulations

sin
e we predi
t an energy level at 37.9 meV.

Con
erning Tm2Ti2O7, CEF ex
itations are predi
ted at around 10, 20, 27 and

51 meV; see the left panel of Fig. 3.3. Measurements by Zinkin et al. [172℄, indeed

observe a 
rystal �eld ex
itation at around 10 meV in an inelasti
 neutron s
attering

spe
trum re
orded up to 14 meV. However, these authors 
laim that they looked for

other transitions up to a maximum energy of 54 meV, but fail to dete
t any. Our

simulation predi
ts that the two highest ex
itations at 27 and 51 meV have a negligible

intensity, (≈ 6% and 4% of the intensity of the peak at 10 meV) whi
h 
ertainly explains

that they 
ould not be dete
ted. Still the intensity of the transition at 20 meV is

predi
ted to be around 70% of the main peak and it should in prin
iple be visible. A

short lifetime of the asso
iated level 
ould smear it out. In the following, we analyse

published inelasti
 neutron s
attering spe
tra for several 
ompounds using, within the
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Figure 3.4: Left: Energy levels s
heme of Tb2Ti2O7 obtained with our CEF parameters

listed in the se
ond row of Tab. 3.3. The di�erent energy levels are labelled by numbers

in order to identify the CEF transitions involved in inelasti
 neutron s
attering spe
tra,

see Tab. 3.4 and Tab. 3.5. The numbers in parentheses (1) and (2) 
orrespond to

singlet and doublet states, respe
tively. The dotted lines indi
ate the experimental

CEF transitions revealed by inelasti
 neutron s
attering spe
tros
opy [73, 170℄. Right:

Inelasti
 neutron s
attering spe
trum re
orded on a powder sample of Tb2Ti2O7 at

T = 1.4 K and q = 2 Å

−1
. Data are extra
ted from Fig. 5 (left) of Ref. [73℄. The

blue dashed line is the ba
kground 
ontribution taken as a 
onstant value. The bla
k

solid line is a �t to the data using our CEF parameters listed in the se
ond row of

Tab. 3.3. Bla
k arrows indi
ate the CEF transitions: they are labelled by letters in

order to identify the CEF energy levels, see Tab. 3.4 and left panel of this �gure.

errors bars, our CEF parameters listed in the �rst row of Tab. 3.3.

3.2.3 Analysis of Tb2Ti2O7

The 
omputed CEF energy level s
heme already shown in the left panel of Fig. 3.3 is

drawn in the left panel of Fig. 3.4 for Tb2Ti2O7 in order to label the CEF transitions

involved in the inelasti
 neutron s
attering spe
tra of interest. First, we look at data

re
orded by Mirebeau et al [73℄ on a poly
rystalline sample of Tb2Ti2O7: (i) at T =
1.4 K and q = 2 Å

−1
, see the right panel of Fig. 3.4 and Tab. 3.4 for some details of

the analysis reporting the linewidths of the Lorentzian fun
tions des
ribing the CEF

transitions and their relative intensities, (ii) at T = 38 K and q = 2 Å

−1
, see Fig. 3.5

and Tab. 3.5, and (iii) at T = 4.1 K and q = 3 Å

−1
, see left panel of Fig. 3.6. The

instrumental resolution is taken as a Gaussian fun
tion with FWHM equal to 0.25 meV

for the right panel of Fig. 3.4 and Fig. 3.5, and to 1.08 meV for the left panel of

Fig. 3.6 [73℄. Before dis
ussing goodness of the analysis, we should noti
e that the

small peak observed at ≈ 7 meV is attributed to two inequivalent Tb

3+
sites [176℄.

However, we note two issues in the analysis of Tb2Ti2O7. First, our model predi
ts

that a CEF transition lo
ated at 13.3 meV should be visible in the spe
trum re
orded

at T = 38 K, as illustrated in the left panel of Fig. 3.5, 
orresponding to the transition

2 → 4 (D) (from the �rst to the third ex
ited energy level), see left panel of Fig. 3.4,

whi
h are not 
ompatible with data re
orded by Mirebeau et al. [73℄. The �rst ex
ited
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Transition (a → b) 1 → 3 (A) 1 → 4 (B)

Energy (meV) 10.7 14.9

Rel. Int. (arb. units) 6.6 2.1

Γab (meV) 1.0(1) 1.4(1)

Table 3.4: Results of the analysis of the inelasti
 neutron s
attering spe
trum of

Tb2Ti2O7 displayed in the right panel of Fig. 3.4. We give the CEF transitions be-

tween energy levels labelled (a → b) as indi
ated in the left panel of Fig. 3.4, their


al
ulated energy positions, and the linewidths of the Lorentzian fun
tions des
ribing

the CEF transitions. Relative intensities are also given.

Transitions (a → b) 1 → 3 (A) 1 → 4 (B) 2 → 3 (C) 2 → 4 (D)

Energy (meV) 10.7 14.9 9.1 13.3

Rel. Int. (arb. units) 4.0 1.4 8.6× 10−2
1.3

Lifetime Γab (meV) 1.2(F) 1(F) 1(F) 1(F) (left panel)/5(F) (right panel)

Table 3.5: Results of the analysis of the inelasti
 neutron s
attering spe
trum of

Tb2Ti2O7 displayed in Fig. 3.5. We give the CEF transitions between energy levels

labelled (a → b) as indi
ated in the left panel of Fig. 3.4, their 
al
ulated energy po-

sitions, and linewidths of Lorentzian fun
tions des
ribing CEF transitions. The letter

(F ) means that the variable is �xed to the indi
ated value. Con
erning the CEF tran-

sition 2 → 4 (D), two values of the linewidth are given 
orresponding to the analysis

displayed in the left or right panel of Fig. 3.5.

CEF energy level, labelled (2), is strongly dispersive, as revealed in Refs. [177�179℄.

Sin
e our model does not take into a

ount the dispersion of the CEF energy level,

we 
ould have imagined that at the measured waveve
tor value the experimental �rst

ex
ited CEF energy level 
ould be shifted and thus the transition 2 → 4 (D) hidden

with an other CEF ex
itation. However, measurements displayed in Fig. 3.5 have been

performed at q = 2 Å

−1
, a value at whi
h the �rst CEF energy level lies at ≈ 1.6 meV


orresponding to the 
al
ulated value. Therefore, the only way to �t the model to the

data is to introdu
e a short lifetime to smear out the transition 2 → 4 (D), see the right
panel of Fig. 3.5 and Tab. 3.5. Note that the CEF parameters proposed in Ref. [73℄

lead to the same problem.

Furthermore, looking at the inelasti
 neutron s
attering spe
trum [73℄ displayed

in the left panel of Fig. 3.6, a supplementary ex
itation seems to be lo
ated at ≈
16 meV. This ex
itation was better resolved in a re
ent work [170℄ where inelasti


neutron s
attering experiments were performed with a time-of-�ight spe
trometer on a

poly
rystalline sample of Tb2Ti2O7, see right panel of Fig. 3.6. Sin
e these experiments

were performed at low temperatures, this ex
itation would 
orrespond to a transition

from the ground state to an ex
ited one lo
ated at 16 meV. None of the published

CEF parameters 
an des
ribe this ex
itation. Therefore, a set of CEF parameters

listed in the fourth row of Tab. 3.3 was proposed and allows to des
ribe this ex
itation,

as shown in the right panel of Fig. 3.6. However, the 
orresponding 
omputed CEF

energy levels s
heme for the other titanate 
ompounds displayed in the right panel

of Fig. 3.3 is 
learly in
ompatible with other inelasti
 neutron s
attering experiments.

The nature of this ex
itation is debatable. From Raman spe
tros
opy experiments,
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Lummen et al. [176℄ identify this ex
itation to be a CEF transition arising from a

se
ond Tb

3+
site: this disorder would arise from stru
tural �u
tuations as premises

of a Jahn-Teller transition, see Chapter 5. However, this ex
itation is still observable

at high temperature [180℄ whi
h does not 
orroborate the explanation proposed in

Ref. [176℄. Therefore, the origin of this ex
itation remains un
lear: the authors of

Ref. [181℄ propose that this ex
itation originates from the 
oupling between an ele
tron

and a phonon. A re
ent paper [182℄ 
on�rms the presen
e of this additional ex
itation

with neutron time-of-�ight spe
tros
opy but also fails to in
lude it in a 
rystal-ele
tri
-

�eld analysis. The ex
itation lying around 70 meV and 
laimed to be of magneti


origin by the authors of Ref. [170℄ is shown in Ref. [182℄ to be of phononi
 nature.

Finally, in both papers, the authors agree to the existen
e of a 
rystal-ele
tri
-�eld

transition lying at 49 meV, supporting our predi
tion of a doublet at ≈ 47 meV. With

high temperature measurements, the authors of Ref. [182℄ argue that an energy level

should lie near 39 meV, also in agreement with our predi
ted level at ≈ 40 meV.

3.2.4 Analysis of Er2Ti2O7

Champion et al. have re
orded inelasti
 neutron s
attering spe
tra for a poly
rystalline

sample of Er2Ti2O7 at T = 1.8 K, see the right panel of Fig. 3.7. The analysis is

performed with our CEF parameters listed in the se
ond row of Tab. 3.3. The re�ned

CEF parameters providing a proper des
ription of the inelasti
 neutron s
attering spe
-

tra are given in the se
ond row of Tab. 3.6 and are 
losely related to the ones listed in
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Figure 3.5: Inelasti
 neutron s
attering spe
tra re
orded on a powder sample of

Tb2Ti2O7 at T = 38 K and q = 2 Å

−1
. Data are extra
ted from Fig. 5 (right) of

Ref. [73℄. In both panels, the blue dashed line is the ba
kground 
ontribution taken as

a 
onstant value. The bla
k solid line is a �t to the data using our CEF parameters

listed in the se
ond row of Tab. 3.3. Bla
k arrows indi
ate the CEF transitions: they

are labelled by letters in order to identify the CEF energy levels, see Tab. 3.5 and left

panel of Fig. 3.4. The di�eren
e between the analysis of the left and right panels lies in

the value 
hosen for the linewidth of the Lorentzian fun
tion des
ribing the transition

2 → 4. As shown in Tab. 3.5, Γ2→4 = 5 meV in the right panel in order to smear out

the supplemental CEF transition predi
ted by our CEF parameters, and eviden
ed in

the left panel of this pi
ture.
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Figure 3.6: Left: Inelasti
 neutron s
attering spe
tra re
orded on a powder sample of

Tb2Ti2O7 at T = 4.1 K and q = 3 Å

−1
. Data are extra
ted from Fig. 7 (right) of

Ref. [73℄. The bla
k solid line is a �t to the data using our CEF parameters listed

in the se
ond row of Tab. 3.3. Bla
k arrows indi
ate the CEF transitions: they are

labelled by letters in order to identify the CEF energy levels, see Tab. 3.4 and left panel

of Fig. 3.4. Right: Inelasti
 neutron s
attering spe
trum re
orded on a poly
rystalline

sample of Tb2Ti2O7 at T = 1.5 K. The ex
itation lo
ated at 16 meV is better resolved.

Data are extra
ted from the top left panel of Fig. 5 in Ref. [170℄. The bla
k solid line

is a �t to the data using CEF parameters of Zhang et al. [170℄ listed in the fourth row

of Tab. 3.3. In both panels, the blue dashed line is the ba
kground 
ontribution taken

as a 
onstant value.

Am
n (meV/an0 ) A0

2 A0
4 A3

4 A0
6 A3

6 A6
6

Er2Ti2O7 40.1(2) 23.6(1) 224(1) 1.078(3) -16.9(2) 14.4(2)

Ho2Ti2O7 40.8(8) 24.2(3) 210(7) 1.07(2) -16.0(8) 15.4(4)

Table 3.6: Re�ned CEF parameters Am
n res
aled for Tb2Ti2O7 and used to properly

des
ribe inelasti
 neutron s
attering spe
tra of Er2Ti2O7 (se
ond row), see right panel

of Fig. 3.7, and of Ho2Ti2O7 (last row), see Fig. 3.9. These parameters are 
losely

related to thoses listed in the se
ond row of Tab. 3.3 within the error bars.

Tab. 3.3 within the errors bars. The 
orresponding 
omputed CEF energy levels s
heme

is displayed in the left panel of Fig. 3.7 in order to not only 
ompare 
omputed and

experimental CEF energy levels but also in order to label the di�erent energy levels

for the identi�
ation of the CEF transitions involved in the inelasti
 neutron s
atter-

ing spe
trum, as reported in Tab. 3.7. The resolution of the instrument is taken as a

Gaussian with a FWHM equals to 4% of the energy transfer [183℄. Our set of CEF

parameters provide a very good analysis of the inelasti
 neutron s
attering spe
tra re-

vealing transitions from the ground state to the two lowest CEF energy levels lo
ated

at 6.3 and 7.3 meV. Our model predi
ts also an energy level eviden
ed by Shirai [171℄

at 15.4 meV a

ording to Ref. [184℄.
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Figure 3.7: Left: Energy levels s
heme of Er2Ti2O7 obtained with the CEF parameters

listed in the se
ond row of Tab. 3.6. The di�erent energy levels are labelled by numbers

in order to identify the CEF transitions involved in the inelasti
 neutron s
attering

spe
tra, see Tab. 3.7. The dotted lines indi
ate the experimental CEF transitions

revealed by inelasti
 neutron s
attering spe
tros
opy [96℄. The highest experimental

energy level is listed by Ref. [184℄ from the PhD dissertation of Shirai [171℄. Right:

Inelasti
 neutron s
attering spe
tra re
orded on a powder sample of Er2Ti2O7 at T =
1.8 K. Data are extra
ted from Fig. 3 of Ref [96℄. The blue dashed line is the ba
kground


ontribution taken as a 
onstant value. The bla
k solid line is a �t to the data using

our CEF parameters listed in the se
ond row of Tab. 3.6. Bla
k arrows indi
ate the

CEF transitions: they are labelled by letters in order to identify the CEF energy levels,

see Tab. 3.7 and left panel of this �gure.

3.2.5 Analysis of Ho2Ti2O7

Starting from our CEF parameters listed in Tab. 3.3, we analyse simultaneously two

inelasti
 neutron s
attering spe
tra of Ho2Ti2O7 re
orded by Rosenkranz et al. [168℄

at T = 10 K, as shown in Fig. 3.9. The re�ned CEF parameters are listed in the last

row of Tab. 3.6 and 
orrespond within the errors bars to those determined in Tab. 3.3.

The instrumental resolution has been determined with a vanadium sample for ea
h

in
ident energy in Ref. [168℄, but no further information is given. Therefore, we 
hoose

a Gaussian fun
tion for the instrumental resolution and take a FWHM HG = 1 and

3 meV for in
ident energies Ei = 35 and 120 meV, respe
tively. The linewidths of

the Lorentzian fun
tions a

ounting for CEF transitions are given in the right panel of

Fig. 3.8 and Tab. 3.8 for the left and right panels of Fig. 3.9, respe
tively.
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Transition (a → b) 1 → 2 (A) 1 → 3 (B)

Energy (meV) 6.4 7.3

Rel. Int. (arb. units) 9.9/1.8 6.0/0.11

Γab (meV) 0.35(4) 0.16(1)

Table 3.7: Results of the analysis of the inelasti
 neutron s
attering spe
trum of a

poly
rystalline sample of Er2Ti2O7 displayed in the right panel of Fig. 3.7. We give the

CEF transitions between energy levels labelled (a,b) as indi
ated in the left panel of

Fig. 3.7, their 
al
ulated energy positions, and the linewidths of Lorentzian fun
tions

des
ribing the CEF transitions. Relative intensities are also given: for a transition

involving two doublets, two neutron intensity values are provided.
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Transition (a → b) 1 → 2 (A) 1 → 3 (B)

Energy (meV) 21.4 22.3

Rel. Int. (arb. units) 3× 10−2
0.14/0.53

Γab (meV) - 0.8(F)

Transition (a → b) 1 → 4 (C) 1 → 5 (D)

Energy (meV) 25.6 26.8

Rel. Int. (arb. units) 0.36/0.14 0.18

Γab (meV) 0.6(F) 0.5(F)

Figure 3.8: Left: Energy levels s
heme of Ho2Ti2O7 obtained with the CEF parameters

listed in the third row of Tab. 3.6. The di�erent energy levels are labelled by numbers

in order to identify the CEF transitions involved in the inelasti
 neutron s
attering

spe
tra, see right panel of this pi
ture and Tab. 3.8. The dotted lines indi
ate the ex-

perimental CEF transitions revealed by inelasti
 neutron s
attering spe
tros
opy [168℄.

Right: Results of the analysis of the inelasti
 neutron s
attering spe
trum of Ho2Ti2O7

displayed in the left panel of Fig. 3.9. We give the CEF transitions between energy

levels labelled (a,b) as indi
ated in the left panel of this �gure, their 
al
ulated energy

positions, and the linewidths of Lorentzian fun
tions des
ribing the CEF transitions.

Relative intensities are also given. The symbol �−� means that no Lorentzian fun
tion

des
ribes the CEF transition sin
e its relative intensity is negligible 
ompared to other

CEF transitions.
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Figure 3.9: Inelasti
 neutron s
attering spe
tra re
orded on a powder sample of

Ho2Ti2O7 at T = 10 K and Ei = 35 meV (left) and 120 meV (right). Data are ex-

tra
ted from Fig. 2 of Ref. [168℄. The blue dashed line is the ba
kground 
ontribution

whi
h has been interpolated. The bla
k solid line is a �t to the data using CEF param-

eters displayed in the last row of Tab. 3.6. Bla
k arrows indi
ate the CEF transitions:

they are labelled by letters in order to identify the CEF transitions, see Fig. 3.8 and

Tab. 3.8.



86 CHAPTER 3. CEF STUDY OF THE PYROCHLORE SERIES R2M2O7

Transition (a → b) 1 → 6 (E) 1 → 7 (F) 1 → 8 (G)

Energy (meV) 61.0 69.7 71.2

Rel. Int. (arb. units) 1× 10−4
/4.0 0.10 (49/3.8)×10−3

Γab (meV) 2.5(F) 1.0(F) -

Transition (a → b) 1 → 9 (H) 1 → 10 (I) 1 → 11 (J)

Energy (meV) 71.2 76.3 79.6

Rel. Int. (arb. units) 0.20 1.4× 10−3
/0.77 3.6× 10−2

Γab (meV) 0.7(F) 4.0(F) -

Table 3.8: Results of the analysis of the inelasti
 neutron s
attering spe
trum of

Ho2Ti2O7 displayed in the right panel of Fig. 3.9. We give the CEF transitions between

energy levels labelled (a,b) as indi
ated in the left panel of Fig. 3.8, their 
al
ulated

energy positions, and the linewidths of Lorentzian fun
tions des
ribing the CEF tran-

sitions. Relative intensities are also given. The symbol �−� means that no Lorentzian

fun
tion des
ribes the CEF transition sin
e its relative intensity is negligible 
ompared

to other CEF transitions.

3.2.6 Con
lusions

For 
ompleteness, we give in Tab. 3.9 the values of the Bm
n parameters for 
ompounds

of interest in the pyro
hlore series R2Ti2O7 
omputed with our set of Am
n parameters

listed in the se
ond row of Tab. 3.3. The 
orresponding ground state wavefun
tions

φ±
0 are also provided in Tab. 3.10. This allows us to 
al
ulate the spe
tros
opi
 fa
tors

along and perpendi
ular to the lo
al trigonal z axis, g‖ and g⊥, respe
tively:

g‖ = 2gJ |〈φ±
0 |Jz|φ±

0 〉|,
g⊥ = gJ |〈φ+

0 |J+|φ−
0 〉| = gJ |〈φ−

0 |J−|φ+
0 〉|. (3.21)

These spe
tros
opi
 fa
tors are listed in Tab. 3.11. As expe
ted, Er2Ti2O7 and Yb2Ti2O7

have a strong planar CEF anisotropy and Tb2Ti2O7, Dy2Ti2O7 and Ho2Ti2O7 are Ising-

like. The g‖ value obtained for Yb2Ti2O7 is intermediate between the experimental

values 1.79 and 2.25 of Hodges et al. [83℄ and Cao et al. [185℄, respe
tively. This is

in agreement with the fa
t that the ratio g⊥/g‖ is expe
ted to be rather large, i.e.

g⊥/g‖ ≈ 2.4 [83℄ 
ompared to our value g⊥/g‖ = 2. Our g‖ result for Tb2Ti2O7 is 
on-

sistent with previous estimates [73, 179℄. When the ground state is well isolated from

the ex
ited ones, we 
an des
ribe it with an e�e
tive spin-1/2. Therefore, we 
al
ulate
the 
omponents of the 
rystal �eld magneti
 moment along and perpendi
ular to the

trigonal axis [111℄ su
h as:

µCF
‖ =

1

2
g‖µB and µCF

⊥ =
1

2
g⊥µB. (3.22)

The 
rystal-ele
tri
-�eld magneti
 moment is dedu
ed as:

µCF =
√

(µCF
‖ )2 + (µCF

⊥ )2. (3.23)

In the 
ase of the spin-i
e 
ompounds, we re
over µCF ≈ 10 µB whi
h is 
onsistent with

the literature, see Se
. 1.3.
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B0
2 B0

4 B3
4 B0

6 B3
6 B6

6

Tb −0.34(1) 4.9(2)× 10−3 4.3(3)× 10−2 −7.9(2)× 10−6 1.30(8)× 10−4 −1.08(8)× 10−4

Dy −0.20(1) −2.2(1)× 10−3 −1.9(1)× 10−2 6.6(2)× 10−6 −1.09(6)× 10−4 9.0(6)× 10−5

Ho −6.8(2)× 10−2 −1.13(5)× 10−3 −1.01(6)× 10−2 −7.4(2)× 10−6 1.23(7)× 10−4 −1.01(7)× 10−4

Er 7.5(2)× 10−2 1.41(6)× 10−3 1.25(8)× 10−2 1.09(3)× 10−5 −1.8(1)× 10−4 1.5(1)× 10−4

Tm 0.29(1) 4.8(2)× 10−3 4.3(3)× 10−2 −2.69(7)× 10−5 4.4(3)× 10−4 −3.7(3)× 10−4

Yb 0.87(2) −4.8(2)× 10−2 −0.43(3) 6.6(2)× 10−4 −1.09(6)× 10−2 8.9(6)× 10−3

Table 3.9: Values of Bm
n parameters for six 
ompounds of the R2Ti2O7 pyro
hlore series

given in meV.

Tb |φ±
0 〉 = 0.266| ± 5〉 ∓ 0.133| ± 2〉 − 0.129| ∓ 1〉 ∓ 0.946| ∓ 4〉

Dy |φ±
0 〉 = ∓0.981| ± 15

2
〉 − 0.190| ± 9

2
〉 ± 0.022| ± 3

2
〉+ 0.037| ∓ 3

2
〉 ∓ 0.005| ∓ 9

2
〉 ± 0.001| ∓ 15

2
〉

Ho |φ±
0 〉 = −0.979| ± 8〉 ± 0.190| ± 5〉 − 0.014| ± 2〉 ± 0.070| ∓ 1〉 − 0.031| ∓ 4〉 ± 0.005| ∓ 7〉

Er |φ±
0 〉 = ∓0.471| ± 13

2
〉 − 0.421| ± 7

2
〉 ± 0.569| ± 1

2
〉+ 0.240| ∓ 5

2
〉 ∓ 0.469| ∓ 11

2
〉

Tm |φ0〉 = 0.148|6〉 − 0.691|3〉 − 0.691| − 3〉 − 0.148| − 6〉
Yb |φ±

0 〉 = 0.374| ± 7
2
〉 ± 0.923| ± 1

2
〉 − 0.093| ∓ 5

2
〉

Table 3.10: Ground-state wavefun
tions for six 
ompounds of the R2Ti2O7 pyro
hlore

series.

The CEF parameter A0
2 
an be dedu
ed from the measurement of the nu
lear

quadrupole splitting ∆Q arising from the ele
tri
-�eld gradient in a gadolinium 
om-

pound from

155
Gd Mössbauer spe
tros
opy. From Refs. [117, 186℄, ∆Q = 1.62 ×

10−3
meV in Gd2Ti2O7. Sin
e the quadrupole moment of the ex
ited Mössbauer

state of

155
Gd is negligible (Qex = 0.18 barns [187℄) 
ompared to the ground state

(Qgs = 1.27 barns [160℄), we only 
onsider the splitting of the latter. The nu
lear spin

of the ground state is I = 3
2
yielding two doublets | ± 3

2
〉 and | ± 1

2
〉. From the point

symmetry at the rare earth site, Vzz is the prin
ipal 
omponent of the ele
tri
-�eld

gradient tensor and the asymmetry parameter vanishes. Therefore, the quadrupolar

Hamiltonian is written as:

HQ =
eQgsVzz

4I(2I − 1)
[3I2z − I(I + 1)]. (3.24)

Sin
e this Hamiltonian is diagonal, we dire
tly determine the nu
lear quadrupolar split-

ting between the two aforementioned Zeeman states ∆Q = −eQgsVzz/2. Besides, the

CEF parameter A0
2 is 
ommonly related to Vzz through the relation [188℄:

Vzz = −4A0
2

e

1− γ∞
1− σ2

, (3.25)

where γ∞ = −61 and σ2 = 0.67 are Sternheimer and s
reening 
oe�
ients [189℄. Using

Tb Dy Ho Er Yb

g‖ 9.6 19.6 19.6 2.1 2.04
g⊥ 0 0 0 7.7 4.09

Table 3.11: Spe
tros
opi
 fa
tors g‖ and g⊥ for the ground state doublets of �ve


ompounds of the R2Ti2O7 series using Am
n parameters listed in the se
ond row of

Tab. 3.3. For Tm2Ti2O7 the thulium ion has a singlet ground state and therefore

g‖ = g⊥ = 0.
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this formula, we 
ompute A0
2 = 95meV/a20 for Gd2Ti2O7. From the s
aling law given in

Eq. 3.16, we then get A0
2 = 97meV/a20 for Tb2Ti2O7. This is 2.4 larger than the value

listed in the se
ond row of Tab. 3.3. We do not have a reliable explanation a

ounting

for su
h a di�eren
e between our 
al
ulations and the value inferred from Mössbauer

experiment. We have tested if this large A0
2 
ould provide a des
ription of the inelasti


neutron s
attering data probing a relatively wide range of Am
4 and Am

6 without �nding

any solution.

To 
on
lude, we have introdu
ed a simple methodology using a s
aling law for a reli-

able determination of the rare-earth 
rystal-�eld parameters for a series of isostru
tural

rare-earth 
ompounds. This requires the availability of inelasti
 CEF neutron s
atter-

ing data for a su�
iently large number of 
ompounds of the series. We have found a

single set of CEF parameters within the interval probed, see last row of Tab. 3.3, whi
h

enables us to 
al
ulate CEF energy levels 
lose to the experimental ones revealed by

inelasti
 neutron s
attering spe
tros
opy, at least at low energy. Not only energy levels

are 
al
ulated, starting from the proposed CEF parameters we are also able to des
ribe

intensities of inelasti
 neutron s
attering spe
tra whi
h depend on the wavefun
tions.

This suggests that we have at least rea
hed a reasonable phenomenologi
al model for

the low-energy lo
al properties of the R2Ti2O7 series. However, we have made the

strong approximation to only 
onsider the splitting of the ground state multiplet. The

perturbation of the �rst ex
ited multiplet might not be negligible, espe
ially for the

lightest rare earth ions, see Tab. 3.1. This 
ould explain the mismat
h of the highest


omputed and experimental energy level of Tb2Ti2O7 for instan
e.

In the next se
tion, we intend to apply the same methodology in order to �nd a

single set of CEF parameters des
ribing the pyro
hlore series R2Sn2O7.

3.3 CEF of the stannate series R2Sn2O7

In order to determine the CEF parameters of the pyro
hlore stannate series R2Sn2O7,

we have performed measurements at the time-of-�ight spe
trometer MARI (ISIS fa
il-

ity), see Se
. 2.4, on three di�erent poly
rystalline samples: Ho2Sn2O7, Tb2Sn2O7, and

Nd2Sn2O7. An amount of about 20 g of powder sample was rolled in an aluminium

foil and pla
ed in an annular sample holder. Data were 
orre
ted for absorption e�e
ts

as explained in App. C. Inelasti
 neutron s
attering spe
tra are analysed following the

methodology introdu
ed in Se
. 3.1.3. The resolution of the spe
trometer is approx-

imated as a Gaussian fun
tion with a FWHM 
al
ulated as a fun
tion of the energy

transfer, as explained in Se
. 2.4, for ea
h 
on�guration of the experiment depending

on the in
ident energy Ei and on the Fermi 
hopper frequen
y νFC.

3.3.1 Published CEF parameters

Several sets of CEF parameters have been published in the literature. Some of the most

relevant are listed in Tab. 3.12: measurements on powder samples of Tb2Sn2O7 have

been 
ondu
ted by Mirebeau et al. [73℄ at a triple-axis spe
trometer and by Zhang et

al. [170℄ at a neutron time-of-�ight instrument. Guitteny et al. [104℄ measured at a

triple-axis spe
trometer a powder sample of Er2Sn2O7. Their data are fully 
onsistent

with those re
orded previously by Sarte et al. [105℄. The 
omputed CEF energy levels
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A0
2 A0

4 A3
4 A0

6 A3
6 A6

6

This work 53.2(1.4) 22.4(4) -155(9) 0.84(2) 13.4(6) 17.7(3)

Mirebeau et al. [73℄ 23.8 17.1 128.9 -0.34 -5.292 15.5

Zhang et al. [170℄ 23.6 17.3 13 -0.37 -8.17 15.1

Guitteny et al. [104℄ 38.9 24.7 -146.3 0.79 14.3 16.0

Interval probed [0,85.9℄ [-43,43℄ [0,344℄ [-1.7,1.7℄ [-43,43℄ [-43,43℄

Table 3.12: The Am
n parameters dedu
ed from the analysis of the inelasti
 neutron

s
attering spe
tra of a poly
rystalline sample of Ho2Sn2O7 are listed in the se
ond row.

The units for Am
n are meV/an0 , where a0 is the atomi
 unit. In the subsequent three rows

are listed the Am
n parameters derived from the works of Mirebeau et al. [73℄ and Zhang

et al. [170℄ on Tb2Sn2O7, and from the work of Guitteny et al. [104℄ on Er2Sn2O7. All

CEF parameters given here have been res
aled for Tb2Sn2O7 using Eq. 3.16. The last

row gives the intervals over whi
h the Am
n parameters have been varied in the global �t.

s
heme for some 
ompounds of the stannate series using CEF parameters of Mirebeau

et al. [73℄ and Zhang et al. [170℄ are displayed in the left and right panels of Fig. 3.10,

respe
tively. Notable dis
repan
ies are eviden
ed between 
al
ulated and experimental

CEF energy levels, ex
ept for Tb2Sn2O7 whi
h is the investigated 
ompound in those

referen
es. In Fig. 3.11, the CEF energy levels s
heme is 
omputed using CEF parame-

ters proposed by Guitteny et al. [104℄ and dedu
ed from the analysis of inelasti
 neutron

s
attering spe
tra of Er2Sn2O7. If the 
orresponden
e between 
al
ulated and exper-

imental CEF energy levels is roughly a

eptable, we 
annot analyse inelasti
 neutron

s
attering spe
tra of Ho2Sn2O7 and Tb2Sn2O7.
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Figure 3.10: Computed CEF energy levels drawn for the R ions in the R2Sn2O7 py-

ro
hlore series using CEF parameters listed in Tab. 3.12 proposed by Mirebeau et al. [73℄

(left panel) and Zhang et al. [170℄ (right panel). Solid thin and thi
k lines stand for sin-

glet and doublet states, respe
tively. All the theoreti
al CEF levels have been drawn.

They may not be resolved on the �gure be
ause of the limited graphi
al resolution.

The 
al
ulated energy levels are 
ompared to experimental data extra
ted from inelas-

ti
 neutron s
attering experiments presented in dashed lines. Data for Er2Sn2O7 are

reprodu
ed from Refs. [104, 105℄, and data for Ho2Sn2O7 and Tb2Sn2O7 are extra
ted

from our neutron time-of-�ight experiments.
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Figure 3.11: Computed CEF energy lev-

els drawn for the R ions in the R2Sn2O7

pyro
hlore series using CEF parameters

listed in Tab. 3.12 proposed by Guitteny et

al. [104℄. More details about the des
rip-

tion of this panel are given in the 
aption

of Fig. 3.10.

Rare earth Tb

3+
Dy

3+
Ho

3+
Er

3+
Tm

3+
Yb

3+

alat (Å) 10.4235(2) 10.3979(3) 10.3726(2) 10.3504(1) 10.3262(2) 10.3046(1)

Table 3.13: List of the latti
e parameters alat used in this work for the R2Sn2O7 series.

Data taken from Ref. [190℄.

3.3.2 Analysis of Ho2Sn2O7

We apply the same methodology introdu
ed in the aforegoing se
tion. We will see in

the following that the s
aling law given by Eq. 3.16 is still satisfa
tory in order to

des
ribe inelasti
 neutron s
attering spe
tra of di�erent 
ompounds of the stannate

series. Useful latti
e parameters are listed in Tab. 3.13. However, we have to note that

a global �t in
luding energy levels of three 
ompounds, i.e. Er2Sn2O7, Ho2Sn2O7 and

Tb2Sn2O7 is not fully 
on
lusive. We only extra
t solutions allowing to analyse inelasti


neutron s
attering spe
tra of a subset of aforementioned 
ompounds, namely two out

of the three 
ompounds. Nevertheless, we present here a set of CEF parameters listed

in the se
ond row of Tab. 3.12 whi
h gives a good 
orresponden
e between 
al
ulated

and experimental CEF energy levels, see the left panel of Fig. 3.12. This set of CEF

parameters has been used to analyse simultaneously inelasti
 neutron s
attering spe
tra

of a poly
rystalline sample of Ho2Sn2O7 and we will see in the following that the CEF

parameters allowing to des
ribe spe
tra of Er2Sn2O7 and Tb2Sn2O7 only di�ers from

the initial ones by three error bars at worst.

The set of CEF parameters proposed in the se
ond row of Tab. 3.12 allows to des
ribe

the CEF ex
itations of Ho2Sn2O7. The 
orresponding CEF energy level s
heme for this


ompound is shown in the right panel of Fig. 3.12. Not only the 
omparison between


omputed and experimental CEF energy levels is displayed, we also label the di�erent

energy levels in order to identify the CEF transitions involved in the analysis. With

neutron time-of-�ight experiments performed at low temperatures, we reveal energy

levels lying at 21.5 and 25.5 meV, whi
h are 
onsistent with published data of Ref. [21℄,

but also at 27.5, 55, 65, 68.5, and 74.5 meV. An inelasti
 neutron s
attering intensity

map of Ho2Sn2O7 re
orded at T = 5 K and showing the energy transfer versus the

waveve
tor q is displayed in the left panel of Fig. 3.13 in order to eviden
e the low

lying CEF energy levels. Integrations of these data over several waveve
tor ranges are

shown in the right panel of the same �gure. The following methodology, applied to all

our re
orded inelasti
 neutron s
attering spe
tra, allows to determine the phononi
 or
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Figure 3.12: Left: Computed CEF energy levels drawn for the R ions in the R2Sn2O7

pyro
hlore series using our CEF parameters listed in the se
ond row of Tab. 3.12 and


omparison with experimental values extra
ted from inelasti
 neutron s
attering mea-

surements. More details about the des
ription of this panel are given in the 
aption

of Fig. 3.10. Right: Zoom over Ho2Sn2O7. The di�erent energy levels are labelled by

numbers in order to identify the CEF transitions involved in inelasti
 neutron s
at-

tering spe
tra, see Tab. 3.14 and Tab. 3.15. The numbers in parentheses (1) and (2)

orrespond to a singlet and doublet states, respe
tively. The dotted lines indi
ate the

experimental CEF transitions revealed by inelasti
 neutron s
attering spe
tros
opy.

ele
troni
 nature of the observed ex
itations: sin
e the magneti
 form fa
tor de
reases

when q in
reases whereas the phonon intensity grows as q2, we 
an 
on
lude that the

two ex
itations revealed at 10 meV and 17 meV are attributed to phonons, whereas

those at 21.5, 25.5, and 27.5 are as
ribed to CEF transitions. Integration of these

data over the waveve
tor range 0.26 ≤ q ≤ 4 Å

−1
is shown in Fig. 3.14. Our set of

CEF parameters a

ounts very well for this spe
trum. Some details of this analysis are

summed up in Tab. 3.14 su
h as the CEF transitions involved, their relative intensities

and the linewidths of the Lorentzian fun
tion needed to properly des
ribe the peak

shapes.

An inelasti
 neutron s
attering intensity map of Ho2Sn2O7 re
orded at T = 5 K

and displayed in the left panel of Fig. 3.15 reveals the highest CEF energy levels ob-

served during the experiment. The right panel of Fig. 3.15 shows the analysis of these

Transition (a → b) 1 → 2 (A) 1 → 3 (B) 1 → 4 (C) 1 → 5 (D)

Energy (meV) 20.1 21.5 25.4 27.1

Rel. Int. (arb. units) 0.13 0.76/0.27 0.55/0.38 0.23

Γab (meV) 1.0(F) 0.25(2) 0.30(2) 0.20(3)

Table 3.14: Results of the analysis of the inelasti
 neutron s
attering spe
trum of

Ho2Sn2O7 displayed in Fig. 3.14. We give the CEF transitions between energy levels

labelled (a,b) as indi
ated in the right panel of Fig. 3.12, their 
al
ulated energy po-

sitions, and linewidths of Lorentzian fun
tions des
ribing CEF transitions. The letter

(F ) means that the variable is �xed to the indi
ated value. Relative intensities are also

given.
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Figure 3.13: Left: Inelasti
 neutron s
attering spe
trum of Ho2Sn2O7 re
orded at T =
5 K, Ei = 40 meV and νFC = 300 Hz. Right: Integrations of these data over 0.26 ≤ q ≤
4 Å

−1
(red empty 
ir
les), 4 ≤ q ≤ 8.1 Å

−1
(blue full 
ir
les) and 0.26 ≤ q ≤ 8.1 Å

−1

(bla
k empty squares) in order to determine the nature of the observed transitions.
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Figure 3.14: Integration of the data dis-

played in the left panel of Fig. 3.13 over

the waveve
tor range 0.26 ≤ q ≤ 4 Å

−1
.

The bla
k solid line is a �t to the data us-

ing CEF parameters displayed in the se
-

ond row of Tab. 3.12. Bla
k arrows indi-


ate the CEF transitions: they are labelled

by letters in order to identify the CEF en-

ergy levels, see Tab. 3.14 and right panel

of Fig. 3.12.

Transition (a → b) 1 → 6 (E) 1 → 7 (F) 1 → 8 (G) 1 → 10 (H)

Energy (meV) 55.1 65.1 67.5 74.6

Rel. Int. (arb. units) 3.4× 10−4
/4.2 0.18 0.11 3.0× 10−3

/0.30

Γab (meV) 0.50(2) 0.1(F) 0.1(F) 0.1(F)

Table 3.15: Results of the analysis of the inelasti
 neutron s
attering spe
trum of

Ho2Sn2O7 displayed in the right panel of Fig. 3.15. We give the CEF transitions between

energy levels labelled (a,b) as indi
ated in the right panel of Fig. 3.12, their 
al
ulated

energy positions and linewidths of Lorentzian fun
tions des
ribing CEF transitions.

The letter (F ) means that the variable is �xed to the indi
ated value: indeed most

of the Lorentzian linewidths were �xed to arbitrary values sin
e the 
al
ulated energy

resolution fun
tion dominates the width of the inelasti
 CEF transitions. Note that

the linewidths of the Lorentzian fun
tions des
ribing CEF labelled (A), (B), (C), (D)

have been blo
ked to 0.2 meV in this spe
trum. Relative intensities are also given to

show whether or not a CEF transition is observed in the inelasti
 neutron s
attering

spe
trum.
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Figure 3.15: Left: Inelasti
 neutron s
attering spe
trum of a poly
rystalline sample

of Ho2Sn2O7 re
orded at T = 5 K, Ei = 100 meV and a Fermi 
hopper frequen
y

νFC = 400 Hz. Right: Integration over the waveve
tor range 0.42 ≤ q ≤ 6 Å

−1
. The

bla
k solid line is a �t to the data using CEF parameters displayed in the se
ond row

of Tab. 3.12. Bla
k arrows indi
ate the CEF transitions: they are labelled by letters in

order to identify the CEF energy levels, see Tab. 3.15 and right panel of Fig. 3.12.
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Figure 3.16: Zoom over the ex
itation lying

at 55 meV extra
ted from an inelasti
 neutron

s
attering spe
trum of Ho2Sn2O7 re
orded at

T = 5 K, Ei=80 meV and νFC = 600 Hz.

Integrations over two waveve
tor ranges are

shown, 0 ≤ q ≤ 5 Å

−1
(red symbols) and

7 ≤ q ≤ 12 Å

−1
(blue symbols), in order to


hara
terise the phononi
 or ele
troni
 nature

of the observed ex
itations. The bla
k solid line

is a �t to the data re
orded over 0 ≤ q ≤ 5 Å−1

using CEF parameters listed in the se
ond row

of Tab. 3.12.

data integrated over the waveve
tor range 0.42 ≤ q ≤ 6 Å

−1
using our set of CEF

parameters. Details of the analysis are gathered in Tab. 3.15. However, fo
using on

the CEF transition lying at 55 meV, a se
ond CEF transition is lo
ated at ≈ 53 meV,

as illustrated in Fig. 3.16. The nature of the transition seems to be ele
troni
 sin
e its

intensity de
reases with q. Note that our CEF model does not predi
t any transition

at this spe
i�
 energy.
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Am
n (meV/an0) A0

2 A0
4 A3

4 A0
6 A3

6 A6
6

Tb2Sn2O7 50.0(2.0) 21.2(8) -159(7) 1.01(7) 14.4(2.0) 17.5(5)

Table 3.16: CEF parameters Am
n dedu
ed from the analysis of the inelasti
 neutron

s
attering spe
tra of Tb2Sn2O7 and given in units of meV/an0 , where a0 is the atomi


unit.

Transition (a → b) 1 → 2 (A) 1 → 3 (B)

Energy (meV) 1.2 10.6

Rel. Int. (arb. units) 7.0 3.6

Γab (meV) 0.60(2) 1.00(7)

Table 3.17: Results of the analysis of the inelasti
 neutron s
attering spe
trum of

Tb2Sn2O7 displayed in the right panel of Fig. 3.18. We give the CEF transitions between

energy levels labelled (a,b) as indi
ated in Fig. 3.17, their 
al
ulated energy positions,

and linewidths of Lorentzian fun
tions des
ribing CEF transitions. Relative intensities

are also given.

3.3.3 Analysis of Tb2Sn2O7

Starting from the CEF parameters listed in the se
ond row of Tab. 3.12, we analyse

inelasti
 neutron s
attering spe
tra of a poly
rystalline sample of Tb2Sn2O7. A new set

of CEF parameters is listed in Tab. 3.16, 
lose to the initial one, and the 
orresponding


omputed CEF energy level s
heme for this 
ompound is displayed in Fig. 3.17 in order

to 
ompare with experimental data and identify the di�erent observed CEF transitions.

Our measurements are 
onsistent with those of Refs. [73, 170℄.

An inelasti
 neutron s
attering intensity map of Tb2Sn2O7 re
orded at T = 5 K

is shown in the left panel of Fig. 3.18, revealing CEF transitions lying at 1.2 and

10.5 meV. In the right panel of the same �gure, data are integrated over the waveve
tor

range 0.16 ≤ q ≤ 2 Å

−1
and analysed using CEF parameters listed in Tab. 3.16. Some

details of the analysis are gathered in Tab. 3.17.

In the left panel of Fig. 3.19, we show an inelasti
 neutron s
attering intensity map

of Tb2Sn2O7, re
orded at T = 5 K, exhibiting the highest CEF transitions that we have

a

essed during the experiment, revealing ex
itations lying approximately at 10.5, 15
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Figure 3.17: Energy levels s
heme of

Tb2Sn2O7 obtained with the CEF param-

eters listed in Tab. 3.16. The di�erent en-

ergy levels are labelled by numbers in order

to identify the CEF transitions involved in

the inelasti
 neutron s
attering spe
tra, see

Tab. 3.17 and Tab. 3.18. The numbers

in parentheses (1) and (2) 
orrespond to

a singlet and doublet states, respe
tively.

The dotted lines indi
ate the experimental

CEF transitions revealed by inelasti
 neu-

tron s
attering spe
tros
opy.
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Figure 3.18: Left: Inelasti
 neutron s
attering spe
trum of a poly
rystalline sample of

Tb2Sn2O7 re
orded at T = 5 K, Ei = 15 meV and a Fermi 
hopper frequen
y νFC =
300 Hz. Right: Integration of these data over the waveve
tor range 0.16 ≤ q ≤ 2 Å

−1
.

The bla
k solid line is a �t to the data using CEF parameters displayed in Tab. 3.16.

Bla
k arrows indi
ate the CEF transitions: they are labelled by letters in order to

identify the CEF energy levels, see Tab. 3.17 and Fig. 3.17.

and 33 meV. In the right panel of Fig. 3.19, data are integrated over the waveve
tor range

0.32 ≤ q ≤ 4 Å

−1
and analysed using the set of CEF parameters listed in Tab. 3.16.

Some details of the analysis are given in Tab. 3.18. Ex
ept for the highest ex
itation

lo
ated at 33 meV, our set of CEF parameters a

ounts very well for the data.

3.3.4 Analysis of Er2Sn2O7

In the following, we intend to analyse inelasti
 neutron s
attering spe
tra re
orded by

Guitteny et al. [104℄ on a poly
rystalline sample of Er2Sn2O7 at the 4F2 triple-axis

spe
trometer lo
ated at the Léon Brillouin laboratory (LLB, Sa
lay). Starting from

the CEF parameters given in the se
ond row of Tab. 3.12, we su

essfully analyse a

spe
trum re
orded at T = 1.5 K, see left panel of Fig. 3.21 using the CEF parameters

listed in Tab. 3.19, whi
h are relatively 
lose to the initial ones. The 
orresponding

CEF energy levels s
heme for this 
ompound is shown in Fig. 3.20 in order to not only


ompare experimental and 
omputed CEF energy levels but also to label the di�erent

energy levels for the identi�
ation of the involved CEF transition. Details of the analysis

are gathered in Tab. 3.20. A simulation/
omparison of data re
orded at T = 100 K

is displayed in the right panel of Fig. 3.21, and additional information is provided in

Tab. 3.21.
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Figure 3.19: Left: Inelasti
 neutron s
attering spe
trum of Tb2Sn2O7 re
orded at T =
5 K, Ei = 60 meV and νFC = 600 Hz. Right: Integration over the waveve
tor range

0.32 ≤ q ≤ 4 Å

−1
. The bla
k solid line is a �t to the data using CEF parameters

displayed in Tab. 3.16. Bla
k arrows indi
ate the CEF transitions: they are labelled by

letters in order to identify the CEF energy levels, see Tab. 3.18 and Fig. 3.17.
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8(2) Figure 3.20: Energy levels s
heme of

Er2Sn2O7 obtained with the CEF parame-

ters listed in Tab. 3.19. The di�erent en-

ergy levels are labelled by numbers in or-

der to identify the CEF transitions, see

Tab. 3.20 and Tab. 3.21. The dotted

lines indi
ate the experimental CEF tran-

sitions revealed by inelasti
 neutron s
at-

tering spe
tros
opy [104, 105℄.

Transition (a → b) 1 → 3 (A) 1 → 4 (B) 1 → 5 (C) 1 → 6 (D)

Energy (meV) 10.6 15.5 31.5 34.0

Rel. Int. (arb. units) 3.7 0.3 0.18 1.5

Γab (meV) 1.2(F) 0.5(F) 0.5(F) 1.0(F)

Transition (a → b) 2 → 3 (E) 2 → 4 (F) 2 → 5 (G) 2 → 6 (H)

Energy (meV) 9.4 14.3 30.3 32.8

Rel. Int. (arb. units) 0.13 0.24 0.13 4.9× 10−2

Γab (meV) 0.1(F) 0.9(F) 0.5(F) -

Table 3.18: Results of the analysis of the inelasti
 neutron s
attering spe
trum of

Tb2Sn2O7 displayed in the right panel of Fig. 3.19. We give the CEF transitions be-

tween energy levels labelled (a,b) as indi
ated in Fig. 3.17, their 
al
ulated energy po-

sitions, and linewidths of Lorentzian fun
tions des
ribing CEF transitions. The symbol

�−� means that no Lorentzian fun
tion des
ribes the CEF transition sin
e its relative

intensity is negligible 
ompared to other CEF transitions. Relative intensities are also

given.
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Am
n (meV/an0) A0

2 A0
4 A3

4 A0
6 A3

6 A6
6

Er2Sn2O7 52.1(1.5) 24.6(3) -180(4) 0.89(1) 14.6(5) 15.9(4)

Table 3.19: CEF parameters Am
n res
aled for Tb2Sn2O7 and dedu
ed from the analysis

of the inelasti
 neutron s
attering spe
trum of Er2Sn2O7 re
orded at T = 1.5 K, see

left panel of Fig. 3.21.
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Figure 3.21: Inelasti
 neutron s
attering spe
tra of Er2Sn2O7 re
orded at T = 1.5 K

(left) and 100 K (right). Data are reprodu
ed from Fig. 3 of Ref. [104℄. The bla
k solid

line is a �t to the data (left) or a simulation and 
omparison to the data (right) using

CEF parameters displayed in Tab. 3.19. Bla
k arrows indi
ate the CEF transitions: see

Fig. 3.20, and Tab. 3.20 and Tab. 3.21 for the left and right panels, respe
tively.

Transition (a → b) 1 → 2 (A) 1 → 3 (B) 1 → 4 (C)

Energy (meV) 5.2 7.6 17.3

Rel. Int. (arb. units) 2.16/10.5 0.66/5.4 3.6× 10−3
/3.3

Γab (meV) 0.25(F) 0.3(F) 0.3(F)

Table 3.20: Results of the analysis of the inelasti
 neutron s
attering spe
trum of

Er2Sn2O7 displayed in the left panel of Fig. 3.21. We give the CEF transitions between

energy levels labelled (a,b) as indi
ated in Fig. 3.20, their 
al
ulated energy positions

and linewidths of Lorentzian fun
tions des
ribing CEF transitions. Relative intensities

are also given.

Transition (a → b) 1 → 2 (A) 1 → 3 (B) 1 → 4 (C)

Energy (meV) 5.2 7.6 17.3

Rel. Int. (arb. units) 1.0/5.0 0.3/2.5 1.7× 10−3
/1.6

Γab (meV) 0.2(F) 0.5(F) 0.4(F)

Transition (a → b) 2 → 3 (D) 2 → 4 (E) 3 → 4 (F)

Energy (meV) 2.4 12.1 9.7

Rel. Int. (arb. units) 0.7/2.6 2.4× 10−2
/0.5 1.8× 10−2

/2.0

Γab (meV) 0.1(F) 0.1(F) 0.2(F)

Table 3.21: Results of the simulation of the inelasti
 neutron s
attering spe
trum of

Er2Sn2O7 displayed in the right panel of Fig. 3.21. We give the CEF transitions between

energy levels labelled (a,b) as indi
ated in Fig. 3.20.
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Am
n (meV/an0) A0

2 A0
4 A3

4 A0
6 A3

6 A6
6

Ho2Sn2O7 53.2(1.4) 22.4(4) -155(9) 0.84(2) 13.4(6) 17.7(3)

Tb2Sn2O7 50.0(2.0) 21.2(8) -159(7) 1.01(7) 14.4(2.0) 17.5(5)

Er2Sn2O7 52.1(1.5) 24.6(3) -180(4) 0.89(1) 14.6(5) 15.9(4)

Table 3.22: Summary of the CEF parameters Am
n res
aled for Tb2Sn2O7 and dedu
ed

from the analysis of the inelasti
 neutron s
attering spe
tra of Ho2Sn2O7 (se
ond row),

Tb2Sn2O7 (third row), and Er2Sn2O7 (last row).

Tb |φ±
0 〉 = ±0.895| ± 5〉+ 0.224| ± 2〉+ 0.000| ∓ 1〉+ 0.386| ∓ 4〉

Dy |φ±
0 〉 = ±0.988| ± 15

2
〉 − 0.144| ± 9

2
〉 ∓ 0.041| ± 3

2
〉+ 0.030| ∓ 3

2
〉 ± 0.006| ∓ 9

2
〉 − 0.004| ∓ 15

2
〉

Ho |φ±
0 〉 = 0.981| ± 8〉 ± 0.156| ± 5〉+ 0.074| ± 2〉 ± 0.073| ∓ 1〉+ 0.053| ∓ 4〉 ± 0.007| ∓ 7〉

Er |φ±
0 〉 = ∓0.392| ± 13

2
〉+ 0.431| ± 7

2
〉 ± 0.566| ± 1

2
〉 − 0.266| ∓ 5

2
〉 ∓ 0.520| ∓ 11

2
〉

Tm |φ0〉 = 0.108|6〉+ 0.699|3〉+ 0.699| − 3〉 − 0.108| − 6〉
Yb |φ±

0 〉 = −0.269| ± 7
2
〉 ± 0.960| ± 1

2
〉+ 0.074| ∓ 5

2
〉

Table 3.23: Ground-state wavefun
tions for six 
ompounds of the R2Sn2O7 pyro
hlore

series 
omputed with the CEF parameters listed in the se
ond row of Tab. 3.12 ex
ept

for Tb2Sn2O7 and Er2Sn2O7 
omputed with those listed in Tab. 3.16 and Tab. 3.19,

respe
tively. Note that we do not in
lude Nd2Sn2O7 and Pr2Sn2O7.

3.3.5 Con
lusions

To 
on
lude, from a global �t in
luding energy levels of the three aforementioned 
om-

pounds, we �nd a set of CEF parameters des
ribing inelasti
 neutron s
attering spe
tra

of Ho2Sn2O7. This 
onstitutes a good starting point for the analysis of Tb2Sn2O7 and

Er2Sn2O7 sin
e the re�ned CEF parameters for ea
h 
ompound do not di�er very mu
h

from the initial ones, as summed up in Tab. 3.22.

For 
ompleteness, we give the ground state wavefun
tions and the spe
tros
opi


g fa
tors, 
omputed using Eqs. 3.21, of several 
ompounds of the R2Sn2O7 series in

Tab. 3.23 and Tab. 3.24, respe
tively. We �nd a similar anisotropy between titanate

and stannate 
ompounds sin
e we re
over a strong Ising anisotropy for the spin-i
e


ompound Ho2Sn2O7 and Dy2Sn2O7 and a 
rystal �eld magneti
 moment of order of

10 µB. The XY anisotropy of Yb2Sn2O7 is stronger than found in Yb2Ti2O7 (r =
g⊥/g‖ ≈ 2.7 and 2 for the stannate and titanate 
ompound, respe
tively), and the

spe
tros
opi
 fa
tors are 
onsistent with those dedu
ed from Mössbauer spe
tros
opy,

i.e. g‖ = 1.1 and g⊥ = 4.2 [92℄. Finally, we �nd that Er2Sn2O7 (r ≈ 19.3) has a stronger
planar anisotropy than Er2Ti2O7 (r ≈ 3.7).

Similarly to the titanate series, we use the nu
lear quadrupole splitting∆Q = 1.15×
10−3

meV measured by

155
Gd Mössbauer spe
tros
opy in Gd2Sn2O7 [117℄ to dedu
e

A0
2 = 67.7meV/a20. Using the s
aling law given in Eq. 3.16 with alat = 10.4644 Å for

Gd2Sn2O7, we then get A0
2 = 68.2meV/a20 res
aled for Tb2Sn2O7. This A

0
2 value is still

larger than the result of our model, although the dis
repan
y is smaller than in the

titanate 
ase. This value is in
luded in the range of explored CEF parameters given in

the last row of Tab. 3.12 and does not provide any solution.

Finally, note that inelasti
 neutron s
attering spe
tra of the pyro
hlore 
ompound

Nd2Sn2O7 were not dis
ussed in this se
tion. We fail to in
lude it in a global analysis.

As for the pyro
hlore 
ompound Pr2Sn2O7 [69℄, the e�e
t of the �rst ex
ited multiplet
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Tb Dy Ho Er Yb

g‖ 10.5 19.7 19.5 0.4 1.6
g⊥ 0 0 0 7.7 4.3

Table 3.24: Spe
tros
opi
 fa
tors g‖ and g⊥ for the ground state doublets of �ve


ompounds of the R2Sn2O7 series using Am
n parameters listed in the se
ond row of

Tab. 3.12 ex
ept for Tb2Sn2O7 and Er2Sn2O7 
omputed with those listed in Tab. 3.16

and Tab. 3.19, respe
tively. Note that we do not in
lude Nd2Sn2O7 and Pr2Sn2O7 sin
e

the hypothesis 
onsisting of negle
ting the e�e
t of the �rst ex
ited multiplets is not

valid anymore. For Tm2Sn2O7 the thulium ion has a singlet ground state and therefore

g‖ = g⊥ = 0.


annot be negle
ted and should be 
onsidered to 
orre
tly analyse inelasti
 neutron

s
attering spe
tra, see for instan
e Ref. [69℄, resulting in a J-mixing of the ground state

wavefun
tions.
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4.1 Introdu
tion

Whereas most of the pyro
hlore 
ompounds have been extensively studied, the ground

state of Nd2Sn2O7 is still unknown. Sin
e the neodynium possesses a total angular

momentum J = 9/2, it is 
lassi�ed as a Kramers ion. The sign of the Stevens multi-

pli
ative fa
tor Θ2, see Tab. B.1, tea
hes us about the Ising 
hara
ter of the magneti


moment. Blöte et al. [82℄ have studied this 
ompound with spe
i�
 heat measurements

and eviden
ed a se
ond-order magneti
 transition at Tc = 0.91 K. On the other hand,

Bondah-Jagalu and Bramwell [110℄ revealed with magneti
 sus
eptibility measurements

the antiferromagneti
 nature of the ex
hange intera
tions. The 
ombination of these

features has not been en
ountered yet in the pyro
hlore series of interest. Therefore,

looking for new magneti
 ground states, we have performed a full 
hara
terisation of

this 
ompound with a wide panel of te
hniques. Hen
e, we report in this 
hapter our

study of the pyro
hlore 
ompound Nd2Sn2O7 with spe
i�
 heat, magnetisation, neutron

and X-ray di�ra
tion, inelasti
 neutron s
attering and µSR measurements.

4.2 Powder synthesis

Powder samples of Nd2Sn2O7 were synthesised by C. Marin from CEA-Grenoble and

by A. Forget from CEA-Sa
lay. We brie�y dis
uss the pro
edure of C. Marin to get

powder sample of Nd2Sn2O7. A stoi
hiometri
 mixture of oxides Nd2O3 (quality 4N7,

i.e. 99.997 % pure) and SnO2 (quality 5N, i.e. 99.999 % pure) were 
arefully weighed

and ground with a
etone in an agate mortar in order to get an homogeneous mixture.

A heat treatment under air atmosphere in an alumina 
ru
ible (
hemi
ally inert at heat

treatment temperatures) ensures a solid phase di�usion a

ording to the rea
tion:

Nd2O3 + 2SnO2 → Nd2Sn2O7 (4.1)

To get a single phase poly
rystalline sample, su

essive heat treatments (2 days at

900◦C, 2 days at 1150◦C, and 4 days at 1300◦C) were intersperse with grindings. At

Sa
lay, the temperature for the heat treatment rea
hes 1400◦C, whi
h 
onstitutes the

main di�eren
e 
ompared to the method displayed here.

X-ray di�ra
tion measurements were performed at CEA-Grenoble, as des
ribed in

Se
. 2.3.5, to 
he
k the quality of our samples. Powder samples were pla
ed with a small

amount of grease on an almost transparent Pyrex plate, whi
h gives a very low di�use

s
attering at small angles. The single phase 
hara
ter of our samples was eviden
ed

sin
e only tra
es of Nd2O3 and SnO2 in the sample from Sa
lay and SnO2 in the sample

from Grenoble were dete
ted.

Note that single 
rystals 
annot be synthesised by verti
al 
rystal growth with an

image furna
e sin
e the SnO2 oxide is very volatile and evaporates at high temperature.

We 
ould imagine to get small 
rystals in a 
losed airtight 
ru
ible, withstanding to the

fusion temperature of the oxides of interest, in an atmosphere saturated with SnO2.

Results displayed in this 
hapter were a
quired with Sa
lay's sample, ex
ept for the

neutron time-of-�ight measurements.
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Figure 4.1: Left: X-ray di�ra
tion pattern of Nd2Sn2O7 re
orded at room temperature.

At large s
attering angle, the peaks are twinned, resulting from the presen
e of the Cu

Kα1 and Kα2 radiations in the in
ident beam. Right: Neutron di�ra
tion diagram of

Nd2Sn2O7 re
orded at T = 15 K with a neutron wavelength of λ = 1.1545 Å. For both
panels, the solid line is the result of a Rietveld analysis using the FullProf 
ode and the

blue solid line at the bottom gives the di�eren
e between the data and the model. The

verti
al markers indi
ate the positions of the Bragg peaks.

4.3 Crystal stru
ture analysis

An X-ray pattern re
orded at room temperature is shown in the left panel of Fig. 4.1.

Our 
ompound 
rystallises in the Fd3̄m fa
e 
entered 
ubi
 spa
e group. The des
ription

of its primitive 
ell is summed up in Tab. A.1. A Rietveld analysis is performed with

the FullProf suite [130℄, as detailed in Se
. 2.3.7, using a pseudo-Voigt fun
tion, see

Eq. 2.22. Here, the o

upation of the di�erent sites was �xed to their nominal values.

The latti
e parameter and the position x of oxygen atom O1 are gathered in Tab.4.1.

Type Di�ra
tometer Temperature (K) alat (Å) x Rp Rwp Rexp χ2

X-ray Xpert Panalyti
al 300 10.5744(1) 0.3274(3) 10.8 11.8 1.28 84

Neutrons D2B 300 10.5679(3) 0.33250(8) 11.5 10.5 4.51 5.1

Neutrons HRPT 15 10.5586(6) 0.33259(8) 7.28 7.22 4.90 2.2

Table 4.1: Latti
e parameter alat and position x of oxygen atom O1 determined by X-ray

and neutron di�ra
tion. R-fa
tors are listed as indi
ators of the analysis goodness, see

Se
. 2.3.7. Note that the di�
ulty to modelise the distribution of wavelength in the X-

ray beam indu
es slightly di�erent values from those determined by neutron di�ra
tion.

A slight redu
tion of the latti
e parameter dedu
ed from HRPT measurements arises

from the latti
e 
ontra
tion sin
e measurements were performed at T = 15 K. Results

are in good agreement with Ref. [190℄.

However, as mentioned in Se
. 2.3.5, the X-ray beam is not fully mono
hromati


whi
h forbids a deeper analysis of the data. Neutron di�ra
tion experiments were also

performed at the D2B di�ra
tometer of Institut Laue Langevin and at the high reso-

lution di�ra
tometer HRPT of the SINQ neutron sour
e at the Paul S
herrer Institute

(Se
. 2.3.6). A Rietveld analysis of data re
orded on HRPT at T = 15 K is displayed on

the right panel of Fig. 4.1. The shape of a Bragg peak was modelled with a Thompson-
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Atom U11(×10−3) U22(×10−3) U33 U12(×10−4) U13 U23(×10−3)
Nd 0.17(2) E(U11) E(U11) −0.2(2) E(U12) E(U12)

Sn 0.25(2) E(U11) E(U11) −0.5(2) E(U12) E(U12)

O1 0.64(3) 0.58(2) E(U22) 0(F) 0(F) −0.18(3)
O2 0.69(2) E(U11) E(U11) 0(F) 0(F) 0(F)

Table 4.2: The displa
ement parameters Uij in Å

2
units dedu
ed from the analysis of

the neutron di�ra
tion pattern re
orded at T = 15 K for Nd2Sn2O7. The o

upations

of the di�erent sites have been released as explained in the main text. When we write

0(F) the parameter was �xed to zero during the �t. E(Uij) means that the parameter

was taken equal to Uij .

Cox-Hastings pseudo-Voigt fun
tion, see Se
. 2.3.7. The Debye-Waller fa
tors were

expressed in terms of the symmetry-allowed anisotropi
 displa
ement parameters Uαβ ,

listed in Tab. 4.2. In a se
ond step we analysed our data in sear
h for a deviation of

the nominal stoi
hiometry of our sample. We have 
onsidered the possibility of stu�-

ing, i.e. a fra
tion of the Nd atom sitting at the Sn site or re
ipro
ally. This leads

to the 
hemi
al formula Nd2+ySn2−yO7+δ. Sin
e there are two 
rystallographi
ally non

equivalent oxygen sites, a stoi
hiometri
 
ompound is a
tually more expli
itly named

as Nd2Sn2(O1)6(O2) where O1 and O2 are the two oxygen sites [191℄. For our inves-

tigation of the non-stoi
hiometry of our sample we need to de
ide where to lo
ate the

ex
ess/la
k of oxygen. We have tried three models:

- Model 1: Nd2+ySn2−y(O1)6(O2)1+δ,

- Model 2: Nd2+ySn2−y(O1)6+δ(O2),

- Model 3: Nd2+ySn2−y(O1)6+ 6δ
7
(O2)1+ δ

7
.

Ele
tri
 
harge 
onservation enfor
es y = − δ
2
. Within the errors bars, these three

models provide equivalent �ts to the data with the following values y = 0.013 (7) and
δ = −0.006 (3). These are extremely small deviations from stoi
hiometry and we 
an

assume our sample to be stoi
hiometri
 thereafter.

4.4 Neutron time-of-�ight spe
tros
opy

In order to determine the 
rystal-ele
tri
-�eld energy levels s
heme of Nd2Sn2O7, we

report measurements performed at the MARI spe
trometer, see Se
. 2.4 for te
hni
al

details. We display in the left panels of Fig. 4.2 and Fig. 4.3 the whole (q, ~ω) spa
e
probed at T = 5 K. Spe
tra in the right panels result from an integration over a sele
ted

low-q range to avoid the phonon 
ontribution, sin
e the magneti
 form fa
tor de
reases

when q in
reases whereas the phonons intensity grows as q2. Furthermore, data have

been 
orre
ted for absorption e�e
ts as explained in App. C. Sin
e neodymium is a

Kramers ion (J = 9
2
), we expe
t �ve doublets. All the energy levels are resolved: four

ex
ited doublets lie at 26, 38.5, 39.8 and 110 meV. Therefore, the ground state doublet

is well isolated from the ex
ited ones.
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Figure 4.2: Left: Inelasti
 neutron s
attering spe
trum of a Nd2Sn2O7 powder sample

re
orded at T = 5 K with an in
ident energy Ei = 60 meV and a Fermi 
hopper

frequen
y νFC = 600 Hz. Right: Integration of the data on the left over waveve
tor

range 0.32 ≤ q ≤ 4.02 Å

−1
. Crystal-ele
tri
-�eld energy levels are observed at 26, 38.5

and 39.8 meV.

4.5 Bulk measurements

Spe
i�
 heat and magnetisation measurements reported here were performed at CEA-

Grenoble. One refers to Se
. 2.1.1 and Se
. 2.1.2 for more details on the te
hni
al

aspe
ts of the PPMS and the MPMS, respe
tively.

4.5.1 Spe
i�
 heat

The heat 
apa
ity measurements are displayed in Fig. 4.4, in good agreement with

those performed by Blöte et al. [82℄. A λ-type peak o

urs at Tc ≈ 0.91 K, 
onsistent

with a se
ond order phase transition. This goes in line with the peak in the magneti


sus
eptibility previously observed [33℄. There is no broad hump above Tc, as sometimes

found for geometri
ally frustrated magneti
 materials and interpreted as the signature

of short-range 
orrelations [192℄. To des
ribe the low temperature behaviour of the

spe
i�
 heat, we assume gapless ex
itations des
ribed by a linear dispersion law in a

three-dimensional system, similarly to the 
ontribution of antiferromagneti
 magnons

to the spe
i�
 heat [193℄:

ω(q) = vexq, (4.2)

where vex a

ounts for the ex
itation velo
ity and we have assumed an isotropi
 q
dependen
e of the dispersion law. We 
an write the density of states g(ω)dω =

1
(2π)3

4πq2( dq
dω
)dω. Therefore, the energy asso
iated to these ex
itations is written as:

Eex =

∫ ∞

0

~ωg(ω)nP

(

~ω

kBT

)

dω,

=

∫ ∞

0

~ω
1

2π2

(

ω

vex

)2
1

vex
nP

(

~ω

kBT

)

dω, (4.3)
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Figure 4.3: Left: Inelasti
 neutron s
attering spe
trum of a Nd2Sn2O7 powder sample

re
orded at T = 5 K with an in
ident energy Ei = 200 meV and a Fermi 
hopper

frequen
y νFC = 400 Hz. Right: Integration of the data on the left over waveve
tor

range 0.59 ≤ q ≤ 7 Å

−1
. This 
on�guration allows to dete
t the highest energy level

lying at 110 meV.

where nP

(

~ω
kBT

)

is the Plan
k distribution fun
tion, assuming here these ex
itations are

des
ribed by bosons, analogously to the magnons:

nP

(

~ω

kBT

)

=
1

exp
(

~ω
kBT

)

− 1
. (4.4)

Note that this fun
tion is the parti
ular 
ase of the Bose-Einstein fun
tion with the


hemi
al potential µ = 0. With x = ~ω
kBT

, Eq. 4.3 be
omes:

Eex =
1

2π2
(kBT )

4

(

1

~vex

)3 ∫ ∞

0

x3

exp(x)− 1
dx. (4.5)

Sin
e [194℄:

∫ ∞

0

x3

exp(x)− 1
dx = Γ(4)ξ(4) =

π4

15
, (4.6)

where Γ is the well-known Gamma fun
tion and ξ the Riemann zeta fun
tion. We get

the T 3
dependen
e of these magnon-like ex
itations to the spe
i�
 heat:

Cex =
dEex

dT
= N

2π2

30

k4
B

~3v3ex
T 3 = BT 3, (4.7)

where N is the number of magneti
 atoms, i.e. N = NA
a3latt
8
. This law a

ounts well

for the data at low temperatures with B = 11.0 (7) JK

−4
mol

−1
. Therefore, from

B = π2

120
NA

k4Ba
3
lat

~3v3ex
, we infer an ex
itation velo
ity vex = 55 (1) ms

−1
in line with the

value found for Er2Ti2O7 [195℄.

The uprise of the spe
i�
 heat above ≈ 10 K is attributed to the 
ontribution of the

phonons. Indeed, as the �rst ex
ited 
rystal-ele
tri
-�eld (CEF) doublet lies at 26 meV

above the ground-state doublet, see Se
. 4.4, no CEF 
ontribution to the spe
i�
 heat
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Figure 4.4: Left: Temperature dependen
e of the spe
i�
 heat of a Nd2Sn2O7 powder

sample. The bla
k solid, the purple dashed-dotted and the green dotted lines are the

phonons, 
rystal-ele
tri
-�eld and nu
lear 
ontributions to the spe
i�
 heat, respe
-

tively. For both panels, the transition temperature is indi
ated by a verti
al bla
k

dashed line. Our data are displayed with full red 
ir
les whereas those of Ref. [82℄ are

reprodu
ed with open blue 
ir
les. Right: Zoom over the lowest temperatures with a

double logarithmi
 s
ale. The bla
k solid line is a �t of Eq. 4.7 to the data.

is expe
ted in the displayed temperature range. The ele
troni
 spe
i�
 heat variation

provides us with a measure of the degenera
y of the ground state through the entropy.

Re
alling that the ele
troni
 entropy variation ∆Sel(T1, T2) between temperatures T1

and T2 is given by the well known formula

∆Sel(T1, T2) =

∫ T2

T1

Cel

T
dT, (4.8)

we obtain ∆Sel(T1 = 0.2 K, T ) as shown in the left panel of Fig. 4.5. Assuming the

Debye model to be valid, the latti
e 
ontribution Cph to the spe
i�
 heat has been

subtra
ted from Cp in the temperature range 5 ≤ T ≤ 20 K to obtain Cel following a

T 3
law [193℄:

Cph =
12π4

5
NkB

(

T

ΘD

)3

, (4.9)

We infer the Debye temperature ΘD = 385(2) K. We have also determined the nu
lear


ontribution Cnuc to the low temperature spe
i�
 heat whi
h should also be subtra
ted.

It originates from the nu
lear splitting arising from a Zeeman intera
tion between the

nu
lear spin and the hyper�ne �eld Bhyp 
reated by the unpaired ele
trons, and a

quadrupolar intera
tion whi
h is negligible, see Se
. 4.7. Note that two isotopes, labelled

by the index i, 143Nd and 145
Nd, with the same nu
lear spin I = 7

2
, need to be taken into

a

ount sin
e they have a di�erent gyromagneti
 ratio γi. Therefore, (2I + 1) energy
levels are equally separated by ∆N,i = ~γiBhyp where Bhyp is inferred from neutron

ba
ks
attering spe
tros
opy, see Se
. 4.7. Thus, the nu
lear 
ontribution to the spe
i�


heat is derived as:

Cnuc =
d

dT

{

∑

i

pi
Zi

∑

Ei

Ei exp[−Ei/(kBT )]

}

, (4.10)
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Figure 4.5: Left: Temperature dependen
e of the variation of the ele
troni
 entropy

∆Sel. The data are plotted in units of R ln 2 where R is the ideal gas 
onstant. Right:

Spe
i�
 heat plotted versus the redu
ed temperature τ = T−Tc

Tc
in the paramagneti


regime. The bla
k solid line is a �t to the data as explained in the main text.

where Ei = n~γiBhyp (0 ≤ n ≤ 2I) refers to the energy levels of the nu
lear spin of

isotope i with relative abundan
e pi and Zi denotes the partition fun
tion. We 
ompute

a value of Cnuc = 0.06 J/(K mol Nd) for the nu
lear spe
i�
 heat at 0.25 K. Sin
e Cnuc

de
reases as T−2
in the high-temperature limit whi
h applies in the temperature range

of interest here, we 
an safely negle
t it.

The left panel of Fig. 4.5 indi
ates that well above the transition temperature the

entropy per mole of Nd is R ln 2, a value expe
ted when only the ground state doublet is

populated. The ele
troni
 entropy de
reases to zero deep in the ordered magneti
 phase.

Therefore, no ma
ros
opi
 degenera
y is present 
ontrary to the spin-i
e pyro
hlore


hara
terised by a non vanishing entropy at zero temperature, see Se
. 1.3.1.

In the right panel of Fig. 4.5 is displayed the spe
i�
 heat versus the redu
ed tem-

perature τ = (T − Tc)/Tc in the paramagneti
 phase in order to investigate the 
riti
al

regime. A

ording to Refs. [196, 197℄, we expe
t to observe the power-law 
riti
al

behaviour:

Cel(T ) =
Csh

αc

[

(

T − Tc

Tc

)−αc

− 1

]

, (4.11)

where Csh is a 
onstant and αc a 
riti
al exponent expe
ted to be equal to 0.110, −0.015
and −0.134 for three-dimensional Ising, XY and Heisenberg magnets, respe
tively [198℄.

The �t displayed in the right panel of Fig. 4.5 
orresponds to the three dimensional

Ising 
ase (αc = 0.110). We found Csh = 0.88(2) J K

−1
mol

−1
and Tc = 0.913(1) K.

The 
riti
al regime is observed up to τ ≈ 0.1. In the 
ase of αc = −0.015 and −0.134,
a

eptable �ts lead to Tc = 0.917(1) and 0.926(1) K, respe
tively, su
h that we 
annot

determine with 
ertainty the spin symmetry with this analysis.

4.5.2 Magnetisation

As explained in Se
. 2.1.2, a sample pellet 
lose to an ellipsoidal shape is introdu
ed

in a weak diamagneti
 sample holder. The external �eld is applied along a major axis

of the ellipsoid. This geometry redu
es the demagnetising �eld. A

ording to Eq. 2.6,
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Figure 4.6: Left: Inverse of the magneti
 sus
eptibility at 0.95, 5, and 10 mT: eviden
e

of the �eld invarian
e below 5 mT. Right: Temperature dependen
e of the inverse of

the magneti
 sus
eptibility 1/χ measured in a �eld of 0.95 mT. The insert displays the

low temperatures data. In the two panels, the solid lines are results of �ts as explained

in the main text.

determining the weak �eld limit, i.e. M ∝ Happlied,
1

is of �rst importan
e to extra
t the

intrinsi
 magneti
 sus
eptibility. In the left panel of Fig. 4.6, we 
ompare measurements

for µ0Happlied = 0.95, 5, and 10 mT. The �eld invarian
e of the magneti
 sus
eptibility

is then no longer veri�ed for magneti
 �elds higher than 5 mT. However, we must note

that measurements at very low magneti
 �elds 
ould be more in�uen
ed by the presen
e

of magneti
 impurities than at higher magneti
 �elds, explaining the �eld dependen
e

of the magneti
 sus
eptibility re
orded at µ0Happlied = 5 and 10 mT.

In the right panel of Fig. 4.6 is displayed the inverse of the stati
 sus
eptibility 1/χ
measured in a �eld of 0.95 mT. In the temperature range 150 ≤ T ≤ 290 K χ follows

a Curie-Weiss law, i.e. χ = C/(T − θCW), with a Curie-Weiss temperature θCW =
−46.3 (1.9) K and a paramagneti
 moment mpm = gJµB

√

J(J + 1) = 3.57 (4) µB


omparable with the value mpm = 3.62 µB for a free Nd

3+
ion. As shown in the insert,

assuming χ to follow a Curie-Weiss law for 5 ≤ T ≤ 15 K we get θCW = −0.32 (1) K,
indi
ating a weak net antiferromagneti
 ex
hange intera
tion and mpm = 2.63 (3) µB, in

very good agreement with results of Ref. [110℄. As the �rst ex
ited 
rystal-�eld doublet

is lo
ated at ≈ 26 meV above the Kramers doublet ground-state of Nd

3+
, an e�e
tive

spin S ′
= 1/2 model is justi�ed for the ion des
ription at low temperatures. We dedu
e

a spe
tros
opi
 fa
tor geff = mpm/(
√

S ′(S ′ + 1)µB) = 3.04 (3). Assuming the Nd

3+

magneti
 moments to intera
t through nearest-neighbour Heisenberg intera
tion, the

ex
hange integral I 
an be 
omputed as [199℄:

I
kB

=
3|θCW|

znnS ′(S ′ + 1)
= 0.213(7) K, (4.12)

where znn = 6 is the number of nearest neighbour Nd

3+
ions to a given Nd

3+
ion.

The �eld dependen
e of the magnetisation in the paramagneti
 phase is displayed in

Fig. 4.7. In the paramagneti
 regime, i.e. in a system without any magneti
 intera
tions,

1

We refer to Se
. 2.1.2 for the de�nition of the real applied �eld Happlied at the sample
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Temperature (K) 2 5 10 25 100

msat(µB) 1.17(3) 1.35(5) 1.4(1) 1.4(1) 1.6(1)

Table 4.3: Saturation value of the magneti
 moment resulting from the analysis of the

magnetisation 
urves using Eq. 4.14 for several temperatures.
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Figure 4.7: Field dependen
e of the magneti
 moment in the paramagneti
 phase at 2

and 5 K (left) and at 10, 25 and 100 K (right). Solid lines are �ts of Eq. 4.14 to the

data.

the ground state multiplet arising from the spin-orbit 
oupling is split in (2J + 1)
energy levels by Zeeman e�e
t. Therefore, the �eld dependen
e of the magneti
 moment

follows [199℄:

m = gJJµBBJ(x), and x =
gJJµBBext

kBT
(4.13)

where msat = gJJµB is the saturation value of the paramagneti
 moment and BJ(x) is
the Brillouin fun
tion. This model is only valid for equally distributed energy levels,

whi
h is not the 
ase here looking at the 
rystal-ele
tri
-�eld energy levels, see Se
. 4.4.

However, the ground state energy level is well isolated from the ex
ited ones and we


an tentatively des
ribe it with an e�e
tive spin S ′ = 1
2
. Therefore, Eq. 4.13 be
omes

for a two energy levels system:

m = msat tanh(x), and x =
msatBext

kBT
. (4.14)

In Fig. 4.7, magnetisation 
urves are displayed for several temperature. Solid lines are

�ts of Eq. 4.14 to the data. Results are summed up in Tab. 4.3.

Note that the saturation values of the magneti
 moment are far below the value of

the paramagneti
 moment dedu
ed from the analysis of the inverse magneti
 sus
ep-

tibility in the low temperature region, i.e. mpm = 2.63(3) µB. However, as previously

mentioned, this model is valid in a system without any magneti
 intera
tions. As we

will see in the following se
tions, strong magneti
 
orrelations are at play sin
e spin

dynami
s is mu
h slower than expe
ted.



110 CHAPTER 4. EXPERIMENTAL STUDY OF Nd2Sn2O7

4.6 Determination of the magneti
 stru
ture

We performed magneti
 powder neutron di�ra
tion measurements at the D1B di�ra
-

tometer lo
ated at ILL, see Se
. 2.3.6, to determine the magneti
 stru
ture of Nd2Sn2O7.

A magneti
 di�ra
tion diagram re
orded at 60 mK is presented in the left panel of

Fig. 4.8. It was re
orded with neutrons of wavelength 2.524 Å using a 
ylindri
al


opper sample 
ontainer. Experimental data nearby 2θ = 74.4

◦
and 88.5

◦
are not

shown be
ause they are strongly in�uen
ed by neutrons s
attered from the 
ontainer.

Data re
orded in the paramagneti
 phase at 1.2 K were subtra
ted to only exhibit the

magneti
 signal. The presen
e of Bragg re�e
tions implies that a long-range stru
-

ture of the Nd

3+
magneti
 moments is established. The re�e
tions only o

urring at

the nu
lear Bragg peak positions, the magneti
 propagation ve
tor of the stru
ture is

kmag = (0, 0, 0). Among all the symmetry allowed operations, those leaving kmag in-

variant 
onstitute the little group Gk, the representation of whi
h 
an be de
omposed

in terms of irredu
ible representations (IR) Γ
(µ)
ν where ν labels the di�erent represen-

tations of dimension µ. For the Nd atomi
 Wy
ko� site 16d of symmetry .3̄m in the


ubi
 spa
e group Fd3̄m in whi
h Nd2Sn2O7 
rystallises:

Γ(Gk) = 1Γ
(1)
3 + 1Γ

(2)
5 + 1Γ

(3)
7 + 2Γ

(3)
9 . (4.15)

The Γ3, Γ5, Γ7, and Γ9 representations are one-, two-, three-, and three-dimensional IR

respe
tively. More details are given in App. D.1. We perform a Rietveld re�nement,

see Se
. 2.3.7, with the FullProf suite [130℄. The peak shapes are des
ribed with a

pseudo-Voigt fun
tion (Eq. 2.22). The results of the Rietveld analysis are summed up

in Tab. 4.4. The symmetry of the magneti
 phase is des
ribed by the Γ3 irredu
ible

representation with a basis ve
tor Ψ1,j tabulated in Tab. D.1. It 
orresponds to the

non
oplanar all-in-all-out magneti
 moment arrangement pi
tured in the right panel

of Fig. 4.8: 
orner-sharing tetrahedra possess alternatively four spins pointing into the

dire
tion of the 
enter of the tetrahedron and four spins pointing out. Not only the

Rietveld re�nement predi
ts the Γ3 IR, we have analyti
ally shown in App. D.3 that

only this IR 
an provide a proper des
ription of our data. This stru
ture should not give

IR Rp Rwp Rexp χ2

Γ3,Ψ1,j 16.5 7.46 4.64 2.59

Γ5,Ψ2,j 81.3 79.6 4.65 292

Γ5,Ψ3,j 81.4 79.6 4.65 292

Γ7,Ψ4,j 97.2 91.5 4.65 386

Γ7,Ψ5,j 97.2 91.5 4.65 386

Γ7,Ψ6,j 97.2 91.5 4.65 386

IR Rp Rwp Rexp χ2

Γ9,Ψ7,j 80.3 80.3 4.65 298

Γ9,Ψ8,j 106 95.8 4.65 423

Γ9,Ψ9,j 80.3 80.3 4.65 298

Γ9,Ψ10,j 106 95.8 4.65 423

Γ9,Ψ11,j 80.3 80.3 4.65 298

Γ9,Ψ12,j 106 95.8 4.65 423

Table 4.4: Indi
ators of the goodness of the analysis using basis ve
tors of ea
h possible

IR. See Se
. 2.3.7 for a de�nition of the R-fa
tors. Basis ve
tors Ψi,j are tabulated

in Tab. D.1. The sele
ted IR used to performed the analysis of magneti
 neutron

di�ra
tion patterns is highlighted in red. Note that for a given IR of dimension d > 1,
we should use a linear 
ombination of the basis ve
tors. However, su
h a 
ombination

of the resulting 
al
ulated intensity 
annot des
ribe the data.

rise to a stru
tural distortion, 
onsistently with the se
ond order nature of the magneti
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Figure 4.8: Left: Powder magneti
 neutron di�ra
tion diagram versus the s
attering

angle 2θ resulting from the di�eren
e between 60 mK and 1.2 K data sets. The bla
k

line results from a Rietveld re�nement assuming an all-in-all-out magneti
 stru
ture.

The positions of the magneti
 re�e
tions are indi
ated by the green verti
al markers.

The di�eren
e between the experimental data and the re�nement is shown by the blue

bottom line. Right: Illustration of the all-in-all-out magneti
 stru
ture. The (X,Y,Z)

frame refers to the 
ubi
 axis. The spheres represent the Nd

3+
ions and the arrows their

magneti
 moments oriented along the lo
al trigonal <111> axes of the 
ubi
 
rystal

stru
ture. Two 
orner-sharing tetrahedra are shown, one with the magneti
 moments

pointing inwards and an adja
ent tetrahedron with moments pointing outwards.

phase transition, sin
e this stru
ture belongs to the symmetri
 Ag group [200℄. This is

understood physi
ally be
ause the magneti
 moments are oriented along the trigonal

axes of the 
ubi
 
rystal stru
ture.

The left panel of Fig. 4.9 presents msp(T ) resulting from the Rietveld analysis. The

spontaneous magneti
 moment for T → 0 is msp(0) = 1.708 (3)µB. In the right panel of

Fig. 4.9, is displayed the analysis of msp(T ) 
lose to the transition using the equation:

msp(T ) = msp(0)

( |T − Tc|
Tc

)βc

. (4.16)

We �nd βc = 0.28 (2) and Tc = 0.916 (6) K. The exponent βc is smaller than for any

three-dimensional magneti
 system, i.e. βc = 0.325 (2), 0.346 (2), and 0.365 (3) for Ising,
XY, and Heisenberg systems, respe
tively [201℄. This may not be totally surprising sin
e

we did not approa
h Tc 
lose enough to probe the 
riti
al regime.

As introdu
ed in Se
. 4.5.1, we assume ex
itations to be responsible for the de
ay

of the magneti
 moment in the ordered phase, similarly to antiferromagneti
 magnons.

Although our system 
onsists of four non 
ollinear sublatti
es, let us 
onsider for sim-

pli
ity an Heisenberg 
ollinear antiferromagneti
 system whi
h 
an be des
ribed in the

most simple 
ase by two interla
ed sublatti
es d1 and d2, see Se
. E.2, where all the

spins of one sublatti
e point in the same dire
tion, the spins of the se
ond sublatti
e

being in the opposite dire
tion. Note that for an ion belonging to sublatti
e d1, all its
nearest neighbour belong to sublatti
e d2, and re
ipro
ally. In the following, we fo
us
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Figure 4.9: Left: Temperature dependen
e of the spontaneous magneti
 moment

msp(T ). Note that error bars are smaller than the symbols. The solid line is a �t

of Eq. 4.32 to the data. Right: Magneti
 moment versus the redu
ed temperature in

the 
riti
al regime in order to determine the 
riti
al exponent βc.

on sublatti
e d1. The z 
omponent of spin J lo
ated at site i is de�ned as, see Eq. E.41:

JZ
i = a†iai − J, (4.17)

where a† and a are the boson 
reation and annihilation operators. Using Eq. E.42, we

perform the following spa
e Fourier transform:

JZ
i =

1

nc

∑

qq′

a†q′aq exp[i(q− q′) · i]− J, (4.18)

where nc is the number of unit 
ells, i is the ve
tor linking the magneti
 ion at site i to
the origin of the sublatti
e.

JZ =
∑

i

JZ
i =

1

nc

∑

qq′

a†q′aq
∑

i

exp[i(q− q′) · i]−NJ,

=
∑

q

a†qaq −NJ, (4.19)

where N is the number of magneti
 ions in the sublatti
e. We have used the following

relation:

∑

i

exp[i(q− q′) · i] = ncδ(q− q′). (4.20)

Then introdu
ing the Bogoliubov transformation, see Eq. E.43, we derive:

JZ =
∑

q

u2
qα

†
qαq + v2qβqβ

†
q + uqvq(α

†
qβ

†
q + βqαq)−NJ. (4.21)

Sin
e βq 
ommutes with αq, re
alling that α†
qβ

†
q + αqβq = 0, see Se
. E.2, and using

the usual 
ommutation rules for boson operators, see Eq. E.44, we obtain:

JZ =
∑

q

u2
qα

†
qαq + v2q(1 + β†

qβq)−NJ. (4.22)
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We re
all that 〈α†
qαq〉 = 〈β†

qβq〉 = nP

(

~ωq

kBT

)

where 〈...〉 denotes the thermal average and

nP(x) is the Plan
k distribution fun
tion, see Eq. 4.4. Note that limT→0 nP

(

~ωq

kBT

)

= 0.

Therefore the temperature dependen
e of the sublatti
e magnetisation is:

−〈Jz〉T=0 + 〈Jz〉T =
∑

q

nP

(

~ωq

kBT

)

(u2
q + v2q). (4.23)

In App. E.2.2, we have introdu
ed a fun
tion xq su
h as:

uq = cosh(xq) and vq = sinh(xq), (4.24)

sin
e from the Bogoliubov transformation, we have u2
q − v2q = 1. Consequently, we get:

−〈Jz〉T=0 + 〈Jz〉T =
∑

q

nP

(

~ωq

kBT

)

cosh(2xq). (4.25)

Using the relation cosh(x) = [1 − tanh(x)]−
1
2
, 
ombined with Eq. E.51 where we have

assumed the gap of the ex
itations to be extremely small, i.e. tanh(2xq) = −γq, leads
to:

−〈Jz〉T=0 + 〈Jz〉T =
∑

q

nP

(

~ωq

kBT

)

(1− γ2
q)

− 1
2

(4.26)

On
e again, negle
ting the energy gap ∆ in Eq. E.48 give:

~ωq = ~ωex

√

1− γ2
q (4.27)

Finally, we get the temperature variation of the magneti
 moment as:

msp(0)−msp(T ) = gµB(−〈Jz〉T=0 + 〈Jz〉T ) =
∫

nP

(

~ωq

kBT

)

ωex

ωq

d3q

(2π3)
, (4.28)

where we have assumed the ex
itation energy ~ωq to only depend on the modulus of

q. Introdu
ing x = ~ωq

kBT
, and using a dispersion law valid at small q, see Eq. E.50 with

∆ = 0, Eq. 4.28 be
omes:

∆msp(T ) = msp(0)−msp(T ) =

√
2

4π2

gµB

D2
AF

(kBT )
2

∫ ∞

0

x

exp(x)− 1
dx, (4.29)

where we have introdu
ed DAF =
√
2~ωex = 2

√
2IznnJ and I the ex
hange integral

between the znn nearest neighbours. Following Ref. [194℄,

∫ ∞

0

x

exp(x)− 1
dx = Γ(2)ξ(2) =

π2

3
. (4.30)

Therefore we have eviden
ed the T 2
variation of the magneti
 moment in the 
ase of

spin-waves like ex
itations with a negligible energy gap:

msp(T ) = msp(0)

[

1−
√
2

12

gµB

D2
AFmsp(0)

(kBT )
2

]

(4.31)
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Fitting Eq. 4.31 to the data displayed in the left panel of Fig. 4.9 in a temperature

range up to 0.8 K allows us to determine DAF/kB = 0.70(1) K and the ex
hange

integral I/kB = 0.083(1) K,2 using an e�e
tive spin-1/2 and geff = 2.97, previously
determined in Se
. 4.5.2. Consequently, the solid line in the left panel of Fig. 4.9 is the

result of the �t with the phenomenologi
al formula:

msp(T ) = msp(0) [1− (T/Tc)
αc]βc , (4.32)

where αc = 2. It en
ompasses the 
riti
al behavior near Tc and the quadrati
 de
ay of

the magneti
 moment at low temperatures.

4.7 Neutron ba
ks
attering measurements

For an independent estimate of msp(0) and to gather information on spin dynami
s we

performed neutron ba
ks
attering measurements at the IN16 spe
trometer of ILL, see

Se
. 2.5. Neutrons intera
t with the unpaired ele
trons and the nu
lei of matter. As

far as ele
trons are 
on
erned we expe
t magneti
 s
attering from the un�lled shell of

the Nd

3+
ions. Sin
e we only 
onsider data outside the Nd2Sn2O7 Bragg s
attering

positions, only in
oherent s
attering pro
esses are relevant for the nu
lear 
ontribution

to the signal. In the following we will therefore des
ribe the spin Hamiltonian of the

neodymium nu
lei, examine the nu
lear and magneti
 s
attering 
ross-se
tions and

�nally, we will report our data analysis.

4.7.1 Spin Hamiltonian for

143
Nd

The only 
hemi
al element entering the 
omposition of Nd2Sn2O7 with a notable in
o-

herent s
attering 
ross-se
tion is Nd. Among the natural Nd isotopes two of them are to

be 
onsidered:

143
Nd and

145
Nd of abundan
e 12.2% and 8.3% and in
oherent s
attering


ross-se
tions 55 (7) and 5 (5) barns, respe
tively. The spin of both isotopes is I = 7/2.

Due to the presen
e of several isotopes, isotope-in
oherent as well as spin-in
oherent


ross-se
tions must be 
onsidered. We will write below the di�erential 
ross-se
tions

asso
iated with the two pro
esses. Before, we examine the s
attering intensity related

to the

143
Nd spin, negle
ting

145
Nd due to its relatively small 
ross-se
tion.

The

143
Nd isotope is 
hara
terised by a quadrupolar moment Q = −0.630 barn and

a gyromagneti
 ratio γ143 = −14.57 × 106 rad s

−1
T

−1
[202℄. The spin Hamiltonian

relevant for the

143
Nd nu
leus is the sum of two terms: one a

ounts for the Zeeman

intera
tion between the nu
lear spin and the magneti
 hyper�ne �eldBhyp, and the other

for the quadrupolar intera
tion between the nu
lear 
harge density and the ele
tri
 �eld

gradient at the nu
leus 
reated by the surrounding ele
troni
 shell and the neighbouring

ions. We write for the Zeeman Hamiltonian,

HZ = −~ωZIz with ωZ = γ143Bhyp, (4.33)

where the index z refers to the <111> lo
al axis at the Nd

3+
site. The hyper�ne splitting

~ωZ is related to the Nd

3+
magneti
 moment msp through the relation ~ωZ = mspA143

hyp

2

Note that this ex
hange 
onstant di�ers from the value inferred from the Curie-Weiss analysis of

the magneti
 sus
eptibility at low temperatures, and listed in Eq. 4.12.
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where the hyper�ne 
onstant of isotope

143
Nd, A143

hyp = 20.9 (3) mT has been a

urately

measured by ele
tron spin resonan
e measurements [203℄. The point symmetry at the

rare earth site di
tates that the lo
al <111> axis belongs to the eigen basis of ele
tri


�eld gradient tensor and that Vzz is the prin
ipal 
omponent of this tensor whi
h in

addition has a zero asymmetry parameter. Therefore the quadrupole Hamiltonian is

written as:

HQ = ~ωQ(3I
2
z − I2) and ~ωQ =

eQVzz

4I(2I − 1)
(4.34)

This means that H is diagonal and the eigenve
tors are the Zeeman fun
tions |m〉
asso
iated with the eigenvalues Em, H|m〉 = Em|m〉, with −I ≤ m ≤ I.

We estimate now the intensity of these two intera
tions. The analysis displayed

below leads to ~ωZ = 2.027 (7) µeV. Sin
e Nd2Sn2O7 is an insulator, Vzz is the sum of

two terms:

Vzz = V 4f
zz + V lat

zz , (4.35)

where the �rst and se
ond term a

ounts for the 4f -ele
tron and latti
e 
ontributions,

respe
tively. Estimates of these quantities to Vzz are V 4f
zz = 1.0 × 1022 Vm

−2
and

V lat
zz = −1.0 × 1022 Vm

−2
, whi
h lead to a vanishing ele
tri
 �eld gradient at the

nu
leus. Still, we note that a value Vzz = 1022 Vm

−2
for the total ele
tri
 �eld gradient

would lead to ~ωQ = −7.5 × 10−3 µeV, a value two orders of magnitude less than the

Zeeman intera
tion. Consistently, �tting the model to the neutron ba
ks
attering data

with ~ωQ as a free parameter also leads to a negligible value of this parameter.

4.7.2 In
oherent s
attering 
ross-se
tion

As stated earlier, the double di�erential in
oherent s
attering 
ross-se
tion is the sum

of the spin-in
oherent and isotope-in
oherent 
ontributions,

(

d2σ

dΩdE

)

inc

=
kf
ki

[

σNd
spinSspin(q, ~ω) + σNd

isoSiso(q, ~ω)
]

, (4.36)

where ki and kf are the in
ident and s
attered neutron waveve
tors. The transfer of

energy being extremely small we 
an safely set ki = kf . In the magneti
ally ordered

phase, i.e. for a �nite hyper�ne �eld, following Ref. [204℄, we write the spin-in
oherent

s
attering fun
tion,

Sspin(q, ~ω) =
NNd exp(−2W (q))

4πI(I + 1)

1

Z

×
I
∑

m=−I

e−Em/kBT

[

1

2
[I(I + 1)−m(m+ 1)]δ(~ω − (Em+1 − Em))

+
1

2
[I(I + 1)−m(m− 1)]δ(~ω + (Em − Em−1)) +m2δ(~ω)

]

,

(4.37)

where Z is the partition fun
tion:

Z =
I
∑

m=−I

exp(−Em/kBT ). (4.38)



116 CHAPTER 4. EXPERIMENTAL STUDY OF Nd2Sn2O7

NNd is the total number of
143

Nd nu
lei in the sample, and exp(−2W (q)) is the Debye-
Waller fa
tor. As dis
ussed above, we 
an safely negle
t the quadrupolar intera
tion and

set |Em±1−Em| = |~ωZ|, ∀m. In order to a

ommodate the small observed broadening

of the inelasti
 peaks due to a �nite lifetime of the nu
lear levels, the Dira
 delta

fun
tions in Eq. 4.37 are repla
ed by Lorentzian fun
tions 
entered at ±~ωZ or 0,

L(~ω ± ~ωZ) =
1

π

ΓZ

(~ω ± ~ωZ)2 + Γ2
Z

, (4.39)

where ΓZ is the half-width at half-maximum, whi
h 
orresponds to the inverse lifetime

of the nu
lear level. For simpli
ity, we assume that the lifetime is identi
al for all the

levels.

In the paramagneti
 phase, Bhyp is zero and the nu
lear levels are degenerate. It is

straightforward to 
he
k that Eq. 4.37 be
omes

Sspin(q, ~ω) =
NNd exp(−2W (q))

4π
δ(~ω) (4.40)

whi
h is the expe
ted expression for the spin-in
oherent s
attering fun
tion.

The isotope-in
oherent s
attering fun
tion is written as

Siso(q, ~ω) =
NNd exp(−2W (q))

4π
δ(~ω), (4.41)

a relation whi
h naturally holds both in the paramagneti
 and ordered phases.

The values of the σNd
spin and σNd

iso 
ross-se
tions are evaluated from Ref. [136℄. We

have σNd
spin = 6.8 barns and σNd

iso = 1.8 barns. At the temperature of our experiments

the Debye-Waller fa
tor is 
lose to 1 and was set to this value in the �tting pro
edure.

4.7.3 Magneti
 s
attering 
ross-se
tion

The double di�erential 
ross-se
tion for inelasti
 magneti
 s
attering is expressed as

(

d2σ

dΩdE

)

mag

=
kf
ki
(γr0)

2Smag(q, ~ω), (4.42)

where again kf/ki ≈ 1, |γr0| = −0.54×10−12 cm is the magneti
 s
attering length

3

, and

Smag(q, ~ω) the inelasti
 magneti
 s
attering fun
tion. From Refs. [205, 206℄, assum-

ing an isotropi
 dynami
 sus
eptibility and performing a spatial average for a powder

sample:

Smag(q, ~ω) =
2

3

[

1

2
gJfmag(q)

]2

NNde
−2W (q) 1

1− exp
(

− ~ω
kBT

)χ′′(q, ~ω), (4.43)

where gJ is the Landé fa
tor (g = 8/11 for Nd

3+
), and χ′′(q, ~ω) stands for the imaginary

part of χ(q, ~ω). This quantity is taken as

χ′′(q, ~ω) =
~ω

π

χ′(q)Γq

(~ω)2 + Γ2
q

, (4.44)

with χ′(q) being the q-dependent stati
 sus
eptibility and Γq the quasielasti
 Lorentzian

linewidth. Again the Debye-Waller fa
tor was set equal to 1.

3|γr0| = 2p a

ording to Eq. 2.15.
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Figure 4.10: Ba
ks
attering spe
tra re
orded at 0.60 K (left) and 1.2 K (right) The

bla
k full line is a �t of Eq. 4.45 to the data. The blue full, green dashed-dotted, purple

dotted and orange dashed lines are respe
tively the magneti
, isotope in
oherent, spin

in
oherent and sample environment in
oherent s
attering 
ontributions to the signal.

4.7.4 Data analysis

The 
ode BS_�t [207℄ was developed to analyse data from ba
ks
attering experiments.

The measurements were performed for a range of waveve
tors 0.38 < q < 1.95 Å

−1
ex-


luding the region between 1.60 and 1.725 Å

−1
whi
h 
orresponds to the (220) Nd2Sn2O7

Bragg peak. For the quantitative analysis of the spe
tra we express the total 
ross-

se
tion. Taking into a

ount the instrumental resolution R(~ω) measured with a vana-

dium spe
imen of the same geometry as the Nd2Sn2O7 sample, we have:

I(q, ~ω) = I0R(~ω)⊗
[

(

d2σ

dΩdE

)

mag

+

(

d2σ

dΩdE

)

inc

+

(

d2σ

dΩdE

)

se

]

+ Ibg, (4.45)

where the symbol ⊗ stands for the 
onvolution produ
t, I0 is a proportionality 
onstant
and Ibg is a small ba
kground 
ontribution. The �rst two terms in the bra
kets are

des
ribed by Eq. 4.42 and Eq. 4.36, respe
tively. The last term in the bra
kets is

the 
ontribution to the measured intensity arising from the sample environment, i.e.

essentially the sample 
ontainer, the inner 
alorimeter and the 
ryostat windows. The

last two, aluminium made, have a negligible 
ross-se
tion. The 
ross-se
tion asso
iated

with the Cu sample holder is in
oherent and is written as:

(

d2σ

dΩdE

)

se

=
kf
ki

[

NCu

4π
σCu
incδ(~ω)

]

, (4.46)

where NCu is the number of Cu nu
lei in the sample holder part impinged by the neutron

beam and σCu
inc the Cu in
oherent s
attering 
ross-se
tion. From the sample mass, we

estimate σCu
incNCu/(σ

Nd
spin + σNd

iso )NNd ≈ 11%. This ratio allowed us to link the amplitude

of the sample environment 
ontribution in Eq. 4.45 to that of the

143
Nd nu
lei. To

�nish with the quantitative analysis, a small energy o�set of the spe
trometer, of order

0.03 µeV, was an additional �tting parameter not appearing in Eq. 4.45 for the sake of

simpli
ity. Fig. 4.10 displays examples of data re
orded in the ordered and paramagneti


phases, together with the result of �ts a

ording to Eq. 4.45.
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Figure 4.11: Neutron ba
ks
attering spe
tra re
orded at sele
ted temperatures in a

±4 µeV energy window and integrated over all the available waveve
tors outside the

Bragg peak region. While at 1.2 K, i.e. in the paramagneti
 phase, the neutron intensity

is only observed near zero energy, for T < Tc inelasti
 in
oherent s
attering from the

143
Nd nu
lei is dete
ted. The bla
k solid lines 
orrespond to �ts as explained in the

main text, with the instrument resolution displayed by the blue dotted lines taken into

a

ount.
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Figure 4.12: Left: Temperature dependen
e of the spontaneous magneti
 moment

msp(T ) derived from the di�ra
tion measurements and of the hyper�ne �eld Bhyp(T )
obtained from the analysis of the ba
ks
attering spe
tra. Note that error bars are

smaller than the symbols. The bla
k solid line is a �t as explained in Se
. 4.6. Right:

Temperature dependen
e of the weighing fa
tors Ainc and Amag for the in
oherent nu-


lear and quasielasti
 magneti
 intensities. The bla
k solid line follows a Curie-Weiss

law.

Apart from a weak evolution of the quasielasti
 width in the paramagneti
 phase

whi
h will be dis
ussed below, the spe
tra are essentially independent of the waveve
-

tor in the available range 0.38 � 1.95 Å

−1
, ex
luding the waveve
tor region around the

(220) Bragg peak at 1.69 Å

−1
. Therefore the data shown in Fig. 4.10 and Fig. 4.11 are

integrated over this range. We present in Fig. 4.11 the di�erent ba
ks
attering spe
tra

re
orded at several temperatures in order to exhibit the nu
lear splitting progressively

vanishing as the temperature in
reases. Sin
e the magneti
 moment is proportional

to the nu
lear splitting ~ωZ, we extra
t the temperature dependen
e of the hyper�ne

�eld Bhyp(T ), see left panel of Fig. 4.12. The splitting ~ωZ(T → 0) = 2.027 (7) µeV

orresponds to msp(0) = ~ωZ(0)/A143

hyp = 1.68 (3) µB, 
onsistent with the one found with

neutron di�ra
tion experiments, see Se
. 4.6. Sin
e the di�ra
tion, whi
h measures a

volume average [208℄, and the lo
al probe determinations of msp(0) are in agreement,

no phase segregation o

urs in our sample. Surprisingly, Bhyp(T ) does not tra
k msp(T )
when approa
hing Tc. Although this di�eren
e 
alls for a more detailed interpretation,

it 
ould be understandable that the two te
hniques lead to di�erent values ofmsp(T ). It
may originate from the di�eren
e in the time s
ales at whi
h the two te
hniques probe

the system under study. However, the explanation does not go in the right way sin
e

the intera
tion time between the neutron and the system is around 10−12
s for di�ra
-

tion and 10−9
s for ba
ks
attering. Therefore, if the lo
al �eld was �u
tuating with a


hara
teristi
 time 
omprised between the typi
al time s
ale of the two te
hniques, the

magneti
 moment inferred from ba
ks
attering measurements will be lowered 
ompared

to the one dedu
ed from magneti
 di�ra
tion experiments. An alternative explanation

may lie from di�eren
es in the temperature dependen
es of the 4f and other ele
troni


shell magneti
 moments. While di�ra
tion essentially probes the 4f shell magneti


moment sin
e the magneti
 form fa
tor of the delo
alised 5d ele
troni
 shell vanishes

extremely rapidly with in
reasing Q, the latter ele
troni
 shell 
ontributes to Bhyp(T ).
In this 
ase, msp(0) inferred from the two te
hniques would be di�erent.

In addition to the in
oherent nu
lear 
ontribution, a quasielasti
 magneti
 signal
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Figure 4.13: Ba
ks
attering spe
tra re
orded at 1.2 K for a waveve
tor range 0.37 ≤ q ≤
0.59Å−1


entered around 0.48 Å

−1
(left) and for a waveve
tor range 1.87 ≤ q ≤ 1.95Å−1


entered around 1.91 Å

−1
(right). The full line is a �t to the data as explained in the

main text and the dotted line 
orresponds to the resolution of the spe
trometer.

arising from the Nd

3+
ele
trons is observed in neutron ba
ks
attering. Note that the

internal 
alibration provided by the

143
Nd in
oherent nu
lear s
attering gives a measure

of the magneti
 
ontribution, i.e. the sus
eptibility, in absolute value. Therefore, we

de�ne the weight of the nu
lear 
ontribution Ainc and of the magneti
 s
attering Amag

as:

Ainc = I0NNd, and Amag =
2

3
I0NNd

[

1

2
gJfmag(q)

]2

χ′(q). (4.47)

Fitting the in
oherent and quasielasti
 
ontributions to the data, see Se
. 4.7.2 and

Se
. 4.7.3, we �nd Ainc to be temperature independent within experimental un
ertain-

ties, and Amag de
reasing as the inverse temperature, as illustrated in the right panel of

Fig. 4.12. The result of the �t gives χ′(q) = C/(kBT ) with C = 26 (1), i.e. χ′(q) follows
a Curie law in the investigated waveve
tor range.

As already mentioned, no notable q dependen
e was noti
ed for the spe
tra re
orded
in the magneti
ally ordered phase. In the paramagneti
 phase, we observed a small

broadening of the spe
tra at small waveve
tors. It 
an be seen from a 
omparison of

the spe
tra displayed in Fig. 4.13. The waveve
tor dependen
e of the quasielasti
 half-

width at half-maximum Γq measured at 1.2 K is plotted in Fig. 4.14. A linear �t yields

a fair des
ription: Γq = Γ0 + aqq with Γ0 = 0.271 (9) µeV and aq = −0.070 (2) µeVÅ.
To Γ0 is asso
iated a �u
tuation time τ0 = ~/Γ0 = 2.43 (8) × 10−9

s. This value is

relatively large for a temperature outside the 
riti
al regime. We would have expe
ted

a value in the range of ~/(kB|θCW|) = 2.4 (1) × 10−11
s, where we take the θCW value

derived from the χ(T ) �t at low temperatures. Even slower paramagneti
 �u
tuations

are revealed by the µSR study dis
ussed in Se
. 4.8.

4.8 µSR spe
tros
opy

To get further information on the system, µSR measurements were performed at the

MuSR spe
trometer of the ISIS pulsed muon sour
e (Rutherford Appleton Laboratory,

United Kingdom) and at the GPS and LTF spe
trometers of the Swiss Muon Sour
e

(Paul S
herrer Institute, Switzerland), see Se
. 2.6. First, we will dis
uss the signature
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Figure 4.14: Waveve
tor dependen
e of the quasielasti
 half-width at half-maximum

(HWHM) Γq of the magneti
 s
attering in the paramagneti
 phase at 1.2 K. The solid

bla
k line is a �t as explained in the main text.

of a long-range order. Then, persisten
e of spin dynami
s in the ordered phase and

anomalously slow spin dynami
s in the paramagneti
 regime will be eviden
ed.

4.8.1 Eviden
e of long-range order

A µSR asymmetry spe
trum re
orded deep into the ordered phase is displayed in the

left panel of Fig. 4.15. The inset eviden
es the presen
e of spontaneous os
illations,

i.e. in the absen
e of external magneti
 �eld, up to T ≤ 0.65 K ≈ 0.7 Tc whi
h re�e
t

the Larmor pre
ession of the muon spin around a lo
al magneti
 �eld Bloc. This is a

signature of a magneti
 long-range order. Although a spontaneous muon spin pre
ession

is expe
ted and often observed in the ordered phase of magnets as for Gd2M2O7 with

M =Sn or Ti [112, 116℄, it is not present for Tb2Sn2O7 [75, 77℄, Er2Ti2O7 [2, 102℄,

and Yb2Sn2O7 [92, 94℄. In Fig. 4.16 is 
ompared the 
ase of Nd2Sn2O7 (left panel) and

Tb2Sn2O7 (right panel) whi
h both exhibit magneti
 Bragg peaks (kmag = (0, 0, 0)) as
a signature of a long-range order, see magneti
 neutron di�ra
tion pattern in the insets.

However, whereas spontaneous os
illations are observed in the neodymium 
ase, only

an exponential-like relaxation of the muon spin polarisation is eviden
ed in the 
ase

of Tb2Sn2O7. In the latter 
ase, the absen
e of spontaneous os
illations was explained

with the dynami
al nature of the lo
al �eld, jumping from a 
on�guration to an other.

A �u
tuation time τc = 8 × 10−11
s was inferred, 
onsistent with the observation of

magneti
 Bragg peaks with neutron di�ra
tion sin
e the magneti
 stru
ture is probed

with a time s
ale ∆t ≈ 10−12
s.

The measured asymmetry is a0P
exp
Z (t) where a0 is an experimental parameter and

P exp
Z (t) the muon polarization fun
tion whi
h re�e
ts the physi
s of the 
ompound under

study [160℄:

a0P
exp
Z (t) = asPZ(t) + abg, (4.48)

where the �rst term a

ounts for muons probing the sample and the time-independent

se
ond term re�e
ts muons implanted in the sample surroundings, essentially in the
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Figure 4.15: µSR spe
tra re
orded for a powder sample of Nd2Sn2O7 at the LTF spe
-

trometer (PSI) in zero �eld deep into the ordered phase at T = 0.06 K (left) and at

T = 0.800 K (right). The insets fo
us on the short time details in order to eviden
e the

presen
e of spontaneous os
illations or not. The bla
k solid lines are �ts as explained

in the main text.

silver ba
king plate. Spe
tra up to 0.65 K were well �tted with the e�e
tive following

fun
tion:

asPZ(t) = a1P⊥,1(t) + a2P⊥,2(t) + a3 exp(−λZt) (4.49)

= a1 exp(−λXt) cos(γµBloct+ ϕ) + a2 exp(−γ2
µ∆

2
Xt

2/2) + a3 exp(−λZt).

The �rst two terms, labelled P⊥,i, refer to the 
omponent of PZ(t) perpendi
ular to the
lo
al �eld Bloc. Introdu
ing two fun
tions 
an be understood as the existen
e of two

muon sites (1, 2) probing a di�erent �eld distribution. However, this equation remains

a purely phenomenologi
 des
ription sin
e the muon site is not pre
isely known. The

summation of their amplitude a

ounts for about 2/3 of the total amplitude. The third


omponent of amplitude a3 ≃ as/3 is as
ribed to the spin-latti
e relaxation 
hannel,

and will be dis
ussed in Se
. 4.8.2.

Let us fo
us on the 
omponents of PZ(t) perpendi
ular to the lo
al �eld Bloc. Con-

sidering an isotropi
, stati
, Gaussian �eld distribution, we 
an easily derive the 
orre-

sponding stati
 polarisation fun
tion [160℄:

P stat
⊥ (t) = exp

(

−γ2
µ∆

2
Gt

2

2

)

cos(γµBloct), (4.50)

where ∆2
G is the varian
e of the Gaussian �eld distribution. However, usually the �eld

distribution is not stati
 and assuming dynami
s with a single magneti
 
orrelation

time τc = 1/νc, the polarisation fun
tion is des
ribed by the Abragam fun
tion within

the weak 
ollision model [160℄:

P⊥(t) = exp

{

−γ2
µ∆

2
G

ν2
c

[exp(−νct)− 1 + νct]

}

cos(γµBloct). (4.51)

In the so-
alled motional narrowing limit, i.e. νc ≫ γµ∆G, we retrieve the �rst term of

the right-hand side of Eq. 4.49:

P⊥,1(t) = exp(−λXt) cos(ωµt), (4.52)
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Figure 4.16: Comparison of µSR spe
tra of Nd2Sn2O7 (left) and Tb2Sn2O7 (right)

re
orded in the ordered phase. The two 
oumponds exhibit magneti
 Bragg peaks

with kmag = (0, 0, 0) (see insets). However, spontaneous os
illations are resolved for

Nd2Sn2O7 whereas only an exponential relaxation of the muon spin polarisation is

observed for Tb2Sn2O7. Right panel is adapted from Ref. [75℄.

where the damping rate is λX = γ2
µ∆

2
Gτc and ωµ = γµBloc. By analogy with NMR

(nu
lear magneti
 resonan
e), the transverse relaxation rate λX is also 
alled spin-spin

relaxation rate sin
e the surrounding spins at the origin of the �eld distribution and

their dynami
s lead to a spread in muon frequen
ies. We have found λX ≈ 45 µs−1
at

low temperatures. The 
osine fun
tion des
ribes the Larmor pre
ession of the muon spin

around this lo
al �eld. The observation of these os
illations implies that the magnitude

of the �eld Bloc at muon site (1) is su�
iently large relative to the �eld distribution

width.

On the other hand, in the 
ase of νc ≪ γµ∆G, Eq. 4.51 be
omes:

P⊥,2(t) = exp

(

−γ2
µ∆

2
Gt

2

2

)

cos(ωµt),

= exp

(

−γ2
µ∆

2
Gt

2

2

)

, (4.53)

where the se
ond line is obtained 
onsidering the �eld distribution of the lo
al �eld at

the muon site (2) to be su�
iently large to not resolve any spontaneous os
illations,

i.e. ∆G ≫ ωµ/γµ. Hen
e, we re
ognise the se
ond term of the right-hand side of

Eq. 4.49 with ∆X = ∆G. This se
ond 
omponent is ne
essary in order to des
ribe the

fast depolarisation of a0P
exp
Z (t) at short times. The temperature dependen
e of ∆X and

Bloc are displayed in the left and right panels of Fig. 4.17, respe
tively, together with the

temperature dependen
e of the magneti
 moment inferred from magneti
 di�ra
tion.

We found Bloc(T → 0) = 127.5(1.3) mT and ∆X(T → 0) = 84.7(6.6) mT. Sin
e these

quantities arise from the spin distribution at the muon site, this is not surprising that

they follow the same temperature behaviour as the magneti
 moment.

For 
ompleteness, os
illations are not resolved for T ≥ 0.65 K, as shown in the right

panel of Fig. 4.15. This is probably due to the broadening of the �eld distribution arising

from sample inhomogeneities and dynami
al e�e
ts. Therefore, spe
tra are analysed
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Figure 4.17: Temperature dependen
e of the lo
al �eld inferred from the os
illations

frequen
y at muon site 1 (left) and of the varian
e of the �eld distribution ∆X (right).

The temperature variation of the magneti
 moment inferred from magneti
 di�ra
tion

is displayed by full blue 
ir
les.

with the following fun
tion:

asPZ(t) = aX exp(−γ2
µ∆

2
Xt

2/2) + a3 exp(−λZt), (4.54)

where aX = 2
3
aS.

Note that a phase ϕ ≈ −135◦ has been introdu
ed in the 
osine fun
tion of Eq. 4.49.

The magneti
 
ollinear stru
tures are usually asso
iated with a single value of Bloc, pro-

portional to the magneti
 moment and no phase shift should be introdu
ed. However,

an in
ommensurate modulation of the amplitude of the �eld 
ould introdu
e a shift of

the os
illations, as it is the 
ase for instan
e for in
ommensurate magneti
 stru
ture.

In Ref. [160℄, a generalised �eld distribution has been developed to 
ontrol the phase

shift ϕ. Note that it was pointed out that su
h a �eld distribution is not ne
essarily a

signature of an in
ommensurate magneti
 stru
ture, whi
h would be in
ompatible with

the 
ollinear all-in-all-out stru
ture eviden
ed in Se
. 4.6. In our 
ase, the following

�eld distribution leads to ϕ = −3π
4
:

Dc(Bloc) =
[1− (Bloc/Bmax)

2]1/2

π1/2Γ(1/2)Bmax
, (4.55)

where Bloc is modulated between −Bmax ≤ Bloc ≤ Bmax. This possible �eld distribution

is illustrated in Fig. 4.18. This will lead to to the polarisation fun
tion:

asPZ(t) = a1

(

2

γµBmaxt

)

J1(γµBmaxt) + a2 exp(−λZt), (4.56)

where J1 is a Bessel fun
tion of the �rst kind. Note that for t ≫ 1/(γµBmax), the latter
fun
tion 
an be expanded su
h as:

J1(γµBmaxt) ≈
√

2

πγµBmaxt
cos

(

γµBmaxt−
3π

4

)

, (4.57)

and we re
over the phase shift ϕ = −3π
4
introdu
ed above. More information is needed

to understand the �eld distribution leading to the observed muon spin polarisation
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Figure 4.18: Illustration of the possible �eld distribution at the muon site (1), depi
ted

by Eq. 4.55.
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Figure 4.19: Illustration of the Zeeman splitting of the two muon spin states. From

a fully polarised state, the system relaxes towards an equilibrium state where the two

muon states are equally populated. Reprodu
ed with kind permission from Ref. [160℄.

fun
tion. It is important to keep in mind that Eq. 4.49 is a phenomenologi
al equation

to analyse at best our data, sin
e introdu
ing two muon sites probing two di�erent

�eld distributions is purely spe
ulative and just a

ounts well spe
tra in the ordered

phase. The next step would be to 
al
ulate the a
tual muon site and simulate the �eld

distribution 
reated by our magneti
 stru
ture to derive a true polarisation fun
tion,

sin
e no usual ones derived from standard �eld distributions 
ould des
ribe our spe
tra.

Due to the positive ele
tri
 
harge, the muon should be lo
ated in a site 
lose to an

oxygen atom.

4.8.2 Persisten
e of spin dynami
s

We will fo
us here on the third term of Eq. 4.49. The spin-latti
e relaxation rate λZ

arises from ex
hange energy between the muon spin and the system. The spin muon

state is a two-level system (up and down) with a Zeeman splitting of ~ωµ = ~γµBloc ≈
70 neV where Bloc = 127.5 mT at 37 mK. At thermodynami
al equilibrium the two

states are equally populated as shown in Fig. 4.19 and λZ illustrates the relaxation from

the initial polarised muon state to this equilibrium. This is a dire
t probe of the spin

dynami
s in the system. The temperature dependen
e of the spin-latti
e relaxation

rate is displayed in Fig. 4.20, in zero �eld and 50 mT longitudinal �eld. At T ≪ Tc

we would expe
t λZ to vanish, see App. E.2. Nevertheless, a temperature independent
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Figure 4.20: Temperature dependen
e of the spin latti
e relaxation rate λZ in zero �eld

(empty symbols) and for Bext = 50 mT (full symbols). The data have been re
orded

at di�erent spe
trometers as indi
ated in the �gure. The Tc value is shown as a dotted

line and the full line emphasises the temperature independent zero-�eld λZ at low

temperatures. The dashed line is a �t of Eq. 4.72 to the data, illustrating an Orba
h

relaxation me
hanism, see Fig. 4.21, and involving the third ex
ited 
rystal-ele
tri
-�eld

energy level lying at 39.8 meV.

plateau is observed in the ordered phase. Sin
e the muon energy ~ωµ ≈ 70 neV for

Nd2Sn2O7 is mu
h lower than any energy gap expe
ted for ex
itations in the ordered

phase, a single ex
itation 
annot be at the origin of the muon spin relaxation pro-


ess. Therefore, this relaxation is des
ribed by a Raman pro
ess, i.e. a two ex
itation

s
attering, see Fig. E.1. In App. E.2, we have derived the expression of the spin lat-

ti
e relaxation rate for the 
ase of ferromagneti
 and antiferromagneti
 magnons, see

Eq. E.39 and Eq. E.54, respe
tively. We have shown that these 
onventional ex
itations

in the ordered phase 
annot be at the origin of a temperature independent behaviour

of λZ . For the des
ription of the ex
itations at the origin of this plateau, we generalise

Eq. E.54:

λZ = C
∫ ∞

∆

n

(

E

kBT

)[

n

(

E

kBT

)

± 1

]

g2m(E)dE, (4.58)

where C is a temperature independent 
onstant involving the 
oupling tensor between

the muon spin and the spins of the systems. Whereas the ex
itations are bosoni


(+) or fermioni
 (−), we introdu
e n(x) the Bose-Einstein or Fermi-Dira
 distribution

fun
tions, respe
tively. We re
all that:

nBE

(

E

kBT

)

=
1

exp
(

E−µ
kBT

)

− 1
,

nFD

(

E

kBT

)

=
1

exp
(

E−EF

kBT

)

+ 1
, (4.59)
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where EF and µ a

ounts for the energy Fermi level and the 
hemi
al potential of

bosons, respe
tively. Note that in the 
ase of magnons or photons the 
hemi
al potential

µ = 0 sin
e we do not need to limit the number of bosons. To these ex
itations

are asso
iated a magneti
 density of states gm(E) and an energy gap ∆. To get λZ

temperature independent, we need gm(E) = bE−1/2
and (∆−EF) or (∆−µ) proportional

to temperature, i.e. equal to akBT , where a and b are �nite 
onstants. For the bosoni


ase, within the approximation (E − µ) ≪ kBT , we derive [112℄:

λZ =
Cb2

a2
. (4.60)

The inverse square root form for gm(E) needs to be veri�ed only at low energy.

Expressing gm(E) in terms of the spin 
orrelation fun
tion 〈J(q, t)J(−q, 0)〉 we obtain
in the 
ase where a single energy mode is available for a given q waveve
tor:

gm(E) =
∑

q

∫ ∞

−∞

〈J(q, t) · J(−q, 0)〉
〈J(q, 0) · J(−q, 0)〉 exp

(

iEt

~

)

dt

2π~
. (4.61)

The sum runs over the �rst Brillouin zone ve
tors. We re
all that:

〈J(q, t) · J(−q, 0)〉 =
∑

i

exp(−iq · i)〈J0(t) · Ji(0)〉, (4.62)

where Ji and J0 are the spins at the latti
e point i and at the origin of the latti
e,

respe
tively. Sin
e muons probe the very low energy spin ex
itations it is justi�ed to


onsider the 
orrelation fun
tion at long times. In this limit it is governed by a di�usion

equation for a Heisenberg Hamiltonian system, [209�211℄:

〈J0(t) · Ji(0)〉 ∝ 1/(Ddiff |t|)d/2 (4.63)

where d is the dimensionality of the spin system and Ddiff a di�usion 
oe�
ient. We


al
ulate the following Fourier transform:

∫ ∞

−∞
exp(iωt)

1√
t
dt =

√

2π

ω
=

√

2π~

E
. (4.64)

It follows that for a magneti
 density of states gm(E) ∝ E− 1
2

orresponds unidimensional

spin 
orrelations (d = 1), at the origin of the observation of a temperature independent

behaviour of λZ . We tentatively asso
iate the low energy unidimensional ex
itations

inferred from the temperature independent relaxation rate to loop spin stru
tures. An

illustration for a possible spin loop stru
ture running on an hexagonal plaquette is

displayed in the left panel of Fig. 4.21. This reminds the introdu
tion of �ippable

plaquette to des
ribe the quantum spin-i
e state, see Se
. 1.4.

4.8.3 λZ behaviour in the paramagneti
 phase

In the 
ase of a stati
 isotropi
 Gaussian �eld distribution with a varian
e ∆2
G, the

longitudinal polarisation fun
tion is des
ribed by the well-known Kubo-Toyabe fun
-

tion [160℄:

P stat
Z (t) =

1

3
+

2

3
(1− γ2

µ∆
2
Gt

2) exp

(

−γ2
µ∆

2
Gt

2

2

)

(4.65)
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+ +

 ∆CEFE(q1) E(q2)

Figure 4.21: Left: Rare-earth ion latti
e in the pyro
hlore R2M2O7. The thi
ker

light blue (thinner dark blue) bold line represents a 6 (10)-site loop a

ounting for 1-

dimensional ex
itation possibly responsible for the non vanishing spin-latti
e relaxation

rate at low temperatures. Reprinted �gure with permission from Ref. [212℄. Copyright

2015 by the Ameri
an Physi
al So
iety. Right: Illustration of the Orba
h relaxation

me
hanism resulting from the magnetoelasti
 
oupling between the rare earth ion and

two real phonons and involving an ex
ited 
rystal-ele
tri
-�eld energy level. A mag-

neti
 ion lies in the doublet ground state de�ned by two wavefun
tions |Ψ0
+〉 and |Ψ0

−〉.
Dire
t transitions are forbidden between these wavefun
tions of the Kramers doublet,

i.e. 〈Ψ0
±|J±|Ψ0

±〉| = 0. Therefore, a phonon of energy E(q1) is absorbed, ex
iting the

magneti
 ion in an ex
ited CEF state, lo
ated here at ∆CEF = 38.9 meV, see Se
. 4.4.

Emitting a phonon of energy E(q2) = E(q1), the magneti
 ion relaxes to the ground

state. Therefore, the relaxation pro
ess of the magneti
 ion from the state |Ψ0
+〉 to

|Ψ0
−〉 involves a �ip of the muon spin. Sin
e both the muon spin states and the 
rystal-

ele
tri
-�eld ground state are not split by Zeeman e�e
t (in the paramagneti
 regime),

the relaxation of the muon spin is a zero energy pro
ess. Pi
ture adapted from Ref. [160℄.

In the extreme motional narrowing limit, we derive:

PZ(t) = exp(−λZt), (4.66)

where λZ = 2γ2
µ∆

2
Gτc. In the 
ase where a 
ontinuous distribution of relaxation 
hannels

is involved, the stret
hed exponential fun
tion needs to be introdu
ed:

PZ(t) = exp[−(λZt)
βse ], (4.67)

where 0 < βse ≤ 1. Above Tc, spe
tra are well a

ounted with Eq. 4.67 with here

0.7 ≤ βse ≤ 1. We refer to Se
. 4.8.4 for a dis
ussion on the �eld behaviour of λZ . In

zero �eld λZ(T ) displays a pronoun
ed maximum at Tc. This re�e
ts the slowing down

of the 
riti
al �u
tuations at the approa
h of a se
ond-order magneti
 phase transition.

We now fo
us our attention on the behaviour of λZ above the magneti
 transition. The

general expression of λZ is given by Eq. E.16. Thanks to the �u
tuation-dissipation the-

orem, paramagneti
 �u
tuations des
ribed by the symmetrised spin 
orrelation fun
tion

Λαβ(q, ω), see Eq. E.14, are related to the generalised sus
eptibility χαβ(q, ω) [213℄:

Λαβ(q, ω) =
~vc

µ0g2µ2
B

coth

(

~ω

kBT

)

Im{χαβ(q, ω)}
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=
2kBTvc
µ0g2µ2

B

Im{χαβ(q, ω)}
ω

(4.68)

where the se
ond line has been obtained in the limit ~ω ≪ kBT , valid sin
e the

Zeeman splitting of the two spin muon states is ~ωµ = 0 in zero �eld experiments,

i.e. only zero energy transfers are probed by the spin-latti
e relaxation rate. Fol-

lowing the de�nition introdu
ed for the imaginary part of the generalised sus
epti-

bility (Im{χαβ(q, ω)} = χ′′(q, ω)), see Eq. 4.44, and assuming the sus
eptibility to be

isotropi
, the spin 
orrelation tensor be
omes s
alar, i.e. Λαβ(q, ω) = Λ(q, ω)δα,β:

Λ(q, ω) =
2vc

µ0g2µ
2
B

kBTχ
′(q)

Γq

ω2 + Γ2
q

, (4.69)

where Γq is the linewidth of a Lorentzian fun
tion des
ribing the quasielasti
 ex
itations,

i.e. the spin 
orrelation fun
tion de
reases exponentially. Sin
e λZ probes here zero

energy ex
itations, Eq. 4.69 be
omes:

Λ(q, ω = 0) =
2vc

µ0g2µ
2
B

kBT
χ′(q)

Γq

(4.70)

In the paramagneti
 regime at high temperature, the sus
eptibility is expe
ted not to

depend on q, i.e. χ′(q) = χ′
, sin
e the thermal energy is mu
h higher than the ex-


hange energy [213℄. Within this approximation, only the spin auto
orrelation fun
tion

is probed, i.e. Γq = Γ and it is also temperature independent meaning that the 
har-

a
teristi
 time of the spin 
orrelations is temperature independent. Therefore Eq. E.16

simpli�es as:

λZ =
D
2

2vc
µ0g2µ2

B

kBT

Γ
χ′
∫

v⋆c

∑

β,γ

Aβγ(q)
d3q

(2π3)
(4.71)

Sin
e the sus
eptibility is expe
ted to follow a Curie-Weiss law, the spin latti
e relax-

ation rate should be found temperature independent, as it is the 
ase for the gallium

garnet 
ompound Yb3Ga5O12 [192℄. A temperature independent behaviour of the spin

latti
e relaxation rate appears when applying a small magneti
 �eld Bext = 50 mT in

the range 2 ≤ T ≤ 100 K, see Fig. 4.20. However, no plateau is eviden
ed in zero �eld

measurements. This is due to the development of spin 
orrelations in the low tempera-

ture region of the paramagneti
 regime whi
h unexpe
tedly extends up to about 30 K,

i.e. ≈ 30 Tc. The strong dependen
e of the relaxation rate on Bext will be dis
ussed in

the next se
tion.

An Orba
h lo
al relaxation me
hanism [192℄ 
ould be at the origin of an in�exion

point lo
ated at ≈ 100 K, i.e. the relaxation of the magneti
 moments through a real

two-phonons pro
ess with an ex
ited 
rystal-ele
tri
-�eld as intermediate state as ex-

plained and illustrated in the right panel of Fig. 4.21. Following Ref. [192℄, data are

des
ribed by the following equation:

λ−1
Z = A +Bme exp

[−∆CEF

kBT

]

, (4.72)

where ∆CEF = 39.8 meV is the energy splitting between the ground state and the

third ex
ited 
rystal-ele
tri
-�eld energy level

4

revealed in Se
. 4.4, A is the saturation

4

Analysis using other CEF energy levels leads to a worse χ2
.
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value of λ−1
Z expe
ted at low temperatures in the paramagneti
 regime, and Bme refers

to the strength of the spin-latti
e intera
tion. We �nd Bme = 118(6) µs and A−1 =
0.28(1) µs−1

, whi
h is the plateau value inferred from longitudinal �eld measurements.

4.8.4 Anomalously slow paramagneti
 �u
tuations

In order to evaluate the 
hara
teristi
 time of the magneti
 �u
tuations in the param-

agneti
 phase, experiments in longitudinal �eld geometry are performed. Within the

approximation that the applied magneti
 �eld has no in�uen
e on the system, in the

extreme motional narrowing limit, i.e. νc ≫ γµ∆G where νc is the 
hara
teristi
 spin

�u
tuations rate and ∆2
G the varian
e of the Gaussian �eld distribution at the muon

site, the spin-latti
e relaxation rate is given by the Red�eld formula [214℄:

λZ(ωµ = γµBext) =
2γ2

µ∆
2
Gνc

ω2
µ + ν2

c

,

⇔ λZ(ωµ = γµBext)

∆2
G

=
2νc

B2
ext +

(

νc
γµ

)2 . (4.73)

Spe
tra re
orded in the paramagneti
 phase in zero or longitudinal �eld geometry were

analysed with the stret
hed exponential fun
tion introdu
ed in Eq. 4.67. The results of

the �ts at Bext = 50 mT are displayed in Fig. 4.20. From ba
ks
attering experiments,

we have found a �u
tuation time τ0 ≈ 2×10−9
s. Following the se
ond line of Eq. 4.73,

the �eld dependen
e of the spin-latti
e relaxation rate λZ(Bext) is expe
ted to be a

Lorentzian fun
tion with a half width at half maximum (HWHM) ν0/γµ at 1.2 K, as

displayed in Fig. 4.22. Therefore, the expe
ted value of λexp
Z at low �eld should be very


lose to the zero-�eld value. Surprisingly, this small magneti
 �eld of 50 mT strongly

modi�es the response of the system. Its in�uen
e extends up to about 30 K, i.e. ≈ 30 Tc.

Be
ause of this strong Bext dependen
e of λZ at low �eld for 2 < T < 30 K, we infer

the presen
e of spin �u
tuations with a 
orrelation time τc in the 100 ns range. The

�eld dependen
e of the spin-latti
e relaxation rate λZ has been performed for several

temperatures, see Fig. 4.23. Data were analysed using the �rst line of Eq. 4.73 with

an additional 
onstant λZ,0 and the results are summed up in Tab. 4.5. They 
on-

�rmed the 100 ns time s
ale of the paramagneti
 �u
tuations introdu
ed above. In

T (K) τc (µs) ∆G (mT) λZ,0 (µs
−1
)

2 0.32(3) 1.64(41) 0.211(20)

2.3 0.28(4) 1.72(14) 0.321(28)

5 0.3(5) 1.12(9) 0.197(8)

20 0.12(2) 1.03(11) 0.190(12)

Table 4.5: Results of the analysis of the �eld dependen
e of λZ . The 
orrelation time

τc = 1/νc, the varian
e of the �eld distribution ∆2
G and λZ,0 are reported here.

the inset of the left panel of Fig. 4.23 is shown a possible maximum around 0.002 mT.

We should expe
t a slowing down of the spin �u
tuations as the �eld in
reases, and
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Figure 4.22: Field dependen
e of the spin-latti
e relaxation rate at 1.2 K modelled with

a Lorentzian fun
tion with a HWHM of ν0/γµ = 0.49 T expe
ted from ba
ks
attering

measurements where a �u
tuation time τ0 ≈ 2.4× 10−9
s has been inferred. Therefore,

as shown by the red dotted line, the in�uen
e of a small magneti
 �eld, i.e. Bext = 50mT

should not in�uen
e the value of λZ . This is not the 
ase experimentally, referring to

Fig. 4.20.

therefore a de
rease of λZ . A low-�eld maximum has already been reported for in-

stan
e in Tb2Sn2O7 [75℄ and Tb2Ti2O7 [215℄, but also in the spinel 
ompound�the

magneti
 ions form the same latti
e of 
orner-sharing tetrahedra as in the pyro
hlore


ompounds � CdHo2S4 [212℄, the gallium garnet 
ompound Yb3Ga5O12 [192℄ or the

Kagome antiferromagnet Nd3Ga5SiO14 [216℄. An avoided level-
rossing resonan
e might

be at play [217℄.However, this maximum was negle
ted in the analysis with a Lorentzian

fun
tion. Above 0.2 T, a slight in
rease is observed asso
iated with 
rystal-ele
tri
-�eld

e�e
t (not shown).

Hen
e, the zero-�eld �u
tuations probed by µSR are 
hara
terised by τc mu
h larger
than the time estimated from our quasielasti
 neutron s
attering data, i.e. τ0. Nd2Sn2O7

is not a unique example of this feature [85℄. In fa
t, a wide range of 
orrelation times
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Figure 4.23: Field dependen
e of λZ at 2 and 2.3 K (left) and 5 and 20 K (right). Solid

lines are �ts following Eq. 4.73 with an additional 
onstant λZ,0.
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seems to be a signature of geometri
ally frustrated magneti
 materials.

4.9 Con
lusions

Nd2Sn2O7 
rystallises in the Fd3̄m 
rystallographi
 stru
ture. It belongs to the geo-

metri
ally frustrated magneti
 family of the pyro
hlore 
ompounds where the frustrated

latti
e 
onsists of magneti
 ions sitting on a 
orner-shared tetrahedra network. No de-

viation of the stoi
hiometry has been shown by high resolution neutron di�ra
tion

attesting the good quality of our sample. Nd2Sn2O7 exhibits a se
ond order magneti


phase transition at Tc = 0.91 K. Neutron time-of-�ight measurements have revealed an

isolated Kramers ground state doublet. No residual entropy was found at low temper-

atures, 
ontrary to the spin-i
e 
ompound family. The study of magneti
 sus
eptibility

allows to extra
t a Curie-Weiss temperature mu
h larger than the transition tempera-

ture, whi
h is not surprising in frustrated magnets, and predominant antiferromagneti


intera
tions at play between the rare-earth ions. A long-range order has been eviden
ed

with the presen
e of spontaneous os
illations by zero-�eld µSR measurements and mag-

neti
 neutron di�ra
tion experiments reveal an all-in-all-out magneti
 stru
ture with

a spontaneous magneti
 moment at low temperatures mSP(T → 0) ≈ 1.7 µB. From

neutron ba
ks
attering measurements, we 
on�rm the value of the spontaneous mag-

neti
 moment at low temperatures as a proof of the absen
e of phase segregation in the

sample, but its temperature variation does not tra
k the one inferred from magneti


di�ra
tion. No reliable interpretation 
an explain this di�eren
e yet. The time range

probed by this te
hnique does not allow to exhibit the presen
e of spin dynami
s in

the ordered phase whereas a spin 
orrelation time τ0 ≈ 10−9
s is found in the paramag-

neti
 phase. With µSR experiments, a strong in�uen
e of a small longitudinal applied

magneti
 �eld Bext = 50 mT on the temperature variation of the spin-latti
e relaxation

rate λZ was not expe
ted and is a signature of magneti
 �u
tuations with a 
orrelation

time of order 100 ns in the paramagneti
 phase. Interestingly, the persisten
e of spin

dynami
s in the ordered phase as eviden
ed by the temperature independent plateau

in zero-�eld measurements was as
ribed to 1-dimensional spin �u
tuations. The T 3
de-

penden
e of the spe
i�
 heat at low temperatures and the T 2
de
rease of the magneti


moment in the ordered phase supports the existen
e of antiferromagneti
 spin waves-

like ex
itations. These results do not go in line with a purely Ising system and 
ould

be understood with the existen
e of anisotropi
 ex
hange intera
tions, as it has been

introdu
ed in the ex
hange Hamiltonian des
ribing the quantum spin-i
e, see Eq. 1.12.

Therefore, it 
an be pi
tured that quantum �u
tuations of the Ising spin lead to the

existen
e of a transverse spin 
oupling term. This hypothesis should be resolved with

the full 
hara
terisation of the 
rystal-ele
tri
-�eld Hamiltonian. The determination of

the ground state wavefun
tions will determine the type of Kramers ions we are dealing

with.
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Tb2Ti2O7 is one of the most extensively studied pyro
hlore 
ompound sin
e its mag-

neti
 ground state arouses questions: is it a realisation of a quantum spin-i
e or does

a Jahn-Teller transition o

ur at low temperatures? After an introdu
tion on previ-

ous experimental and theoreti
al results, we will report X-ray syn
hrotron radiation

di�ra
tion and µSR measurements.

5.1 Introdu
tion

The pyro
hlore titanate Tb2Ti2O7 has been one of the most intriguing 
ompounds over

the past few years. A Curie-Weiss law des
ribes the bulk sus
eptibility down to 50 K

with a Curie-Weiss temperature θCW = −19 K indi
ative of strong antiferromagneti


intera
tions and a Tb

3+
magneti
 moment of 9.6 µB [109, 179℄. The analysis of the


rystal-ele
tri
-�eld transitions measured by inelasti
 neutron s
attering shows that

this 
ompound is 
hara
terised by Ising spins, i.e. they are oriented along the trigonal

axis <111>, and the �rst ex
ited energy level is a doublet lo
ated at ≈ 1.5meV from the

ground state doublet, see Chapter 3. Usual Ising pyro
hlore models introdu
ed in Chap-

ter 1 
annot a

ount for the paramagneti
 di�use s
attering at T = 9 K [218℄. No long-

range magneti
 order was eviden
ed by µSR spe
tros
opy down to T = 50 mK [219℄, in

agreement with previous measurements [178, 220℄, or neutron di�ra
tion also down to

133
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Figure 5.1: Left: Neutron di�ra
tion pattern re
orded at T = 2.5 K (top) and neutron

di�ra
tion patterns at T = 2.5 K (
losed symbols) and 50 K (open symbols) where

data re
orded deep into the paramagneti
 state at 100 K (bottom) were subtra
ted:

sinusoidal-like neutron di�use s
attering is exhibited. Reprinted �gure with permission

from Ref. [178℄. Copyright 2015 by the Ameri
an Physi
al So
iety. Right: Normalised

intermediate s
attering fun
tion measured by neutron spin e
ho experiments on a pow-

der sample of Tb2Ti2O7. Reprinted �gure with permission from Ref. [221℄. Copyright

2015 by the Ameri
an Physi
al So
iety.

T = 50 mK [221℄. Powder neutron di�ra
tion data re
orded at T = 2.5 K eviden
e dif-

fuse magneti
 s
attering attributed to liquid-like spin 
orrelations restri
ted to a single

tetrahedron [178℄ as shown in the left panel of Fig. 5.1. Neutron s
attering experiments

on a single 
rystal of Tb2Ti2O7 reveal strong anisotropi
 di�use s
attering below 100 K

and down to 50 mK in the (hhl) s
attering plane, whi
h 
ontains the following high

symmetry dire
tions for a 
ubi
 system: <00l>, <hh0>, and <hhh> [222℄; a di�use

s
attering map re
orded at T = 9 K is displayed in the left panel of Fig. 5.8, whi
h will

be dis
ussed later. The observed magneti
 di�use s
attering 
overs a broad region in re-


ipro
al spa
e, with a very high intensity at the re
ipro
al point (0,0,2). Hen
e, the spin


orrelation length was dedu
ed to be mu
h smaller than the unit 
ell latti
e parameter

and assumed restri
ted to a single tetrahedra [221, 222℄. Therefore the name 
ooperative

paramagnet was 
oined, sin
e spin 
orrelations start to develop at high temperature and

persist down to the lowest ones. Sin
e then, the spin dynami
s of Tb2Ti2O7 was inves-

tigated, �rstly by neutron spin e
ho revealing a slowing down of the spin �u
tuations

in the nanose
ond time range [221℄ in a temperature range 400 ≤ T ≤ 600 mK, see

right panel of Fig. 5.1. At lower temperatures, a fra
tion of roughly 10% of the total

magneti
 moments is frozen. The neutron spin e
ho results are 
onsistent with µSR
spe
tros
opy measurements [178, 219, 220℄. Weak longitudinal-�eld µSR experiments

have been performed on a 
rystal of Tb2Ti2O7 in Ref. [219℄: 
ontrary to the work of

Refs. [178, 220℄, the spe
tra were analysed with an exponential-power fun
tion, see

Eq. 4.67. The temperature dependen
e of the spin-latti
e relaxation rate λZ and of the

exponent βse is displayed in Fig 5.2. An in
rease of λZ is found in the temperature range

1 ≤ T ≤ 10 K, whi
h illustrates a signi�
ant slowing down of the spin �u
tuations. The
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Figure 5.2: Investigation of the spin dynami
s in Tb2Ti2O7 with 13 mT longitudinal

�eld µSR measurements: temperature dependen
e of the spin-latti
e relaxation rate

λZ and the exponent βse. A slowing down of the spin �u
tuations is eviden
ed as

the system enters in a paramagneti
 state 
hara
terised by strong spin 
orrelations.

Reprinted �gure with permission from Ref. [219℄. Copyright 2015 by the Ameri
an

Physi
al So
iety.

temperature Tcp ≈ 2 K is indi
ated by a bla
k arrow in order to point out that the


ompound enters a strongly 
orrelated paramagneti
 state. An in
rease of the exponent

βse is also eviden
ed in the same temperature range, whi
h 
an be interpreted as an

additional proof of the progressive slowing down of the spin �u
tuations: indeed, in the

motional narrowing limit, i.e. if the spin dynami
s is su�
iently fast, spe
tra are usually

des
ribed with an exponential fun
tion (βse = 1) whereas a value of βse = 2 means that

the lo
al �eld at the muon site is stati
. Finally, the temperature independent plateau

of λZ is indi
ative of persistent spin �u
tuations.

Independently, this spin freezing has also been eviden
ed with neutron s
attering ex-

periments on a triple axis spe
trometer, where a redu
tion of the quasielasti
 linewidth

o

urs for T ≤ Tcp [219, 223℄ near the spe
i�
 q-value (0,0,2) where previous neutron
s
attering experiments found strong magneti
 di�use s
attering [222℄. The tempera-

ture dependen
e of the magnetisation shows an irreversibility between zero-�eld and

�eld 
ooling below ≈ 200 mK [109, 224, 225℄, indi
ative of a spin freezing. A peak is

revealed in the real part of the a.
. sus
eptibility at T ≈ 0.2 K [225, 226℄. The analysis

of the frequen
y dependen
e of this maximum 
annot be performed with usual rela-

tions 
hara
teristi
 of a spin-glass transition [225, 227℄. Therefore, this maximum was

asso
iated with a glassy behaviour rather than a spin-glass transition. The analysis of

the dissipative part of the sus
eptibility show two distin
t frequen
y regimes: at low

frequen
y, a peak o

urs at the same temperature as the one observed for the real part

of the sus
eptibility. However, in the high frequen
y regime, the dissipative part of

the sus
eptibility vanishes at temperatures larger than 4 K, whi
h is higher than the

freezing temperature Tcp: this behaviour is as
ribed to the existen
e of very slow spin

dynami
s. To 
on
lude, spins 
orrelations start to develop at T = 50 K. A wide panels

of te
hniques eviden
e a slowing down of the spin �u
tuations at a freezing tempera-

ture Tcp ≈ 2 K. Looking at the time s
ales probed by neutron s
attering (≈ 10−11
s),
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neutron spin e
ho (≈ 10−9
s), µSR (≈ 10−8

s) and a.
. sus
eptibility (≈ 10−2
s) experi-

ments, a broad range of spin 
orrelation times are involved whi
h is a 
ommon feature

of frustrated magnets.

The 
hallenge of the past few years was to determine the ground state of Tb2Ti2O7

and thus explain the la
k of magneti
 ordering. Two proposals have been re
ently

dis
ussed: the 
ompound would be an experimental realisation of the quantum spin-i
e

state, see Se
. 1.4, and the se
ond suggests a Jahn-Teller like stru
tural distortion at

low temperatures. Therefore in the following, we will dis
uss the two aforementioned

proposals.

5.2 Tb2Ti2O7: a Jahn-Teller transition?

5.2.1 Context

With the purpose to explain the la
k of magneti
 long-range order in Tb2Ti2O7, Cha-

puis et al. [228℄ �rstly suggest from the analysis of the variation in the magneti
 entropy

that the ground state doublet is split, a reasonable hypothesis sin
e terbium is a non-

Kramers ion. This assumption 
ould support the existen
e of a stru
tural distortion at

low temperatures. The left panel of Fig 5.3 displays the temperature dependen
e of the

spe
i�
 heat Cp, whereas the inset shows the ele
troni
 spe
i�
 heat, after subtra
tion

of the nu
lear and phonons 
ontributions to Cp. An anomalous minimum is 
learly

eviden
ed at Tt ≈ 0.15 K. The right panel of Fig. 5.3 displays the temperature depen-

den
e of the entropy derived from the ele
troni
 spe
i�
 heat. The overall variation

of the ele
troni
 entropy variation ∆Selec = Rln(4) is not 
onsistent with the predi
-

tions of the 
rystal-ele
tri
-�eld energy levels s
heme of Ref. [73℄ and Chapter 3 for

instan
e, sin
e the ele
troni
 entropy should saturate at R ln(2) at low temperatures,

see Fig. 3 in Ref. [228℄. A splitting δCEF ≈ 2 K of the low-lying 
rystal-ele
tri
-�eld

energy levels needs to be introdu
ed to des
ribe the magneti
 entropy, as illustrated by

the bla
k dashed line. The lifting of the degenera
y of the ground state has been inter-

preted as a signature of a stru
tural distortion, ruled by the perturbative Hamiltonian

Hper = −DtJ
2
Z , where Z refers to a 
ubi
 axis and Dt ≈ 0.27 K s
ales the strength of the

distortion [228℄. The latter value is 
onsistent with the one introdu
ed in Ref. [229℄ in

order to des
ribe the quasielasti
 signal in inelasti
 neutron s
attering measurements as

a CEF ex
itation lying at ≈ 2 K, and resulting from the splitting of the ground state.

The latter results were strongly debated in Ref. [230℄, 
laiming that the quasielasti


signal does not originate from a splitting of the ground state. They also argue that the

la
k of entropy resulting from the simulation of an unsplit ground state doublet 
ould

be 
ompensated by the introdu
tion of spins 
orrelations. This idea is supported by the

strong de
rease of the elasti
 
onstants with temperature [231, 232℄, as illustrated in

the left panel of Fig. 5.4. Therefore, a Jahn-Teller transition driven by magnetoelasti


e�e
ts has been suggested.

Additional transverse �eld µSR measurements report the temperature dependen
e

of the normalised muon spin frequen
y shift ∆ν/νext, where ∆ν = νµ − νext, νµ is

the frequen
y of the muon spin pre
ession around the lo
al �eld at the muon site

Bloc, and 2πνext = γµBext, with Bext being the transverse �eld applied along the [110℄

dire
tion. More details on this te
hnique are given in Se
. 2.6.6. The temperature
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Figure 5.3: Left: Temperature dependen
e of the spe
i�
 heat for a Tb2Ti2O7 
rystal.

The inset displays a zoom over the lowest temperatures in order to show the unusual

upturn of the ele
troni
 spe
i�
 heat, after subtra
tion of the nu
lear and phonons 
on-

tributions to Cp. Therefore this behaviour is as
ribed to additional degrees of freedom.

Right: Temperature dependen
e of the entropy of ele
troni
 origin Selec. The bla
k

dashed line is a predi
tion following the 
rystal-ele
tri
-�eld energy s
heme des
ribed

in the main text. The inset shows the low temperatures part of the magneti
 entropy.

A plateau is exhibited at Tt, to be 
onne
ted with the uprise of the spe
i�
 heat below

Tt. Reprinted �gures with permission from Ref. [219℄. Copyright 2015 by the Ameri
an

Physi
al So
iety.

dependen
e of the normalised frequen
y shift is shown in the right panel of Fig. 5.4.

The frequen
y shift is negative and de
reases with temperature from 10 K down to

the lowest temperatures, whi
h is 
onsistent with an in
rease of the mean value of the

lo
al �eld at the muon site. However, an extremum is eviden
ed at Tt = 0.15 K, as

a signature of an exoti
 transition. In the inset of Fig. 5.4 an irreversibility between

�eld 
ooling and zero-�eld 
ooling is shown, meaning the system enters a glassy state.

Moreover, the signi�
ant value of λZ at low temperatures, see Fig. 5.2, is not 
onsistent

with a spin-glass transition, supporting the results of a.
. sus
eptibility presented in

Se
. 5.1.

Looking for su
h a stru
tural transition, high resolution X-ray di�ra
tion has been

performed by Ru� et al. [233℄ on a single 
rystal of Tb2Ti2O7. As illustrated in the left

panel of Fig. 5.5, they found a broadening of the Bragg peaks from 20 K down to 0.3 K,

interpreted as the development of spatial 
orrelations. The temperature dependen
e of

the inverse 
orrelation lengths are displayed in the right panel of Fig. 5.5. Furthermore,

as illustrated in the right panel of Fig 5.6, an anomaly in the temperature dependen
e

of the latti
e parameter o

urs around T ≈ 15 K: the latter does not follow the usual

latti
e 
ontra
tion as the temperature is de
reased. The authors of Ref. [233℄ 
laim

that below T ≈ 20 K, the system develops spatial 
orrelations as a signature of a Jahn-

Teller transition o

urring at lower unrea
hable temperatures. On the other hand, X-ray

powder di�ra
tion on a poly
rystalline sample of Tb2Ti2O7 [234℄ shows no anomalous

negative latti
e expansion [234℄, and does not support the 
on
lusions of Ru� et al. [233℄.
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Figure 5.4: Left: Temperature dependen
e of the elasti
 
onstants of Tb2Ti2O7. Data

reprodu
ed from Ref. [232℄. Right: Temperature dependen
e of the normalised µSR
frequen
y shift ∆ν/νext re
orded for two applied magneti
 �elds along the [110℄ dire
-

tion. An exoti
 transition is exhibited at Tt ≈ 0.15 K, whi
h 
ould be a signature

of a stru
tural transition. The inset fo
uses on the lowest temperatures to exhibit

an irreversibility between zero and �eld 
ooling, 
hara
teristi
 of a glassy behaviour.

Reprinted �gure with permission from Ref. [219℄. Copyright 2015 by the Ameri
an

Physi
al So
iety.

Figure 5.5: Left: Bragg peaks of a 
rystal of Tb2Ti2O7 re
orded on a four-
ir
le X-ray

di�ra
tometer for T = 0.3 and 20 K. The broadening of the Bragg peaks lo
ated at

(12, 0, 0) (top) and (8, 8, 0) (bottom) is highlighted. Right: Temperature dependen
e of

the longitudinal and transverse parts of the inverse spatial 
orrelation lengths dedu
ed

from the broadening of the (12, 0, 0) and (8, 8, 0) Bragg peaks. Reprinted �gures with

permission from Ref. [233℄. Copyright 2015 by the Ameri
an Physi
al So
iety.



5.2. Tb2Ti2O7: A JAHN-TELLER TRANSITION? 139

5.2.2 X-ray syn
hrotron radiation measurements

In order to 
orroborate or refute the results provided in Refs. [233, 234℄, we performed X-

ray syn
hrotron radiation measurements at the high resolution powder di�ra
tometer of

the Material S
ien
e beamline (MS) at the Swiss Light Sour
e of PSI, see Se
. 2.2.4. An

X-ray beam of wavelength λ = 0.49646 Å was used, where the �ux was maximum [140℄.

For this experiment, we used a sample of Tb2Ti2O7 denoted "C" in Refs. [123, 225, 228℄.

Details of the synthesis of this 
rystal 
an be found in Ref. [123, 228℄. A 
rushed

fragment of the Tb2Ti2O7 
rystal and ≃ 18wt.% of sili
on powder was mixed and

ground to obtain a homogeneous mixture. The presen
e of sili
on helps in redu
ing the

Tb2Ti2O7 sample X-ray absorption. The spe
imen was loaded into a 0.3 mm diameter

glass 
apillary. The data were taken from room temperature down to 4K. A syn
hrotron

X-ray di�ra
tion pattern re
orded at T = 6 K is displayed in the left panel of Fig. 5.6.

Data were analysed with the FullProf 
ode [130℄ and Bragg peak shapes of both sili
on

and Tb2Ti2O7 were des
ribed by a Thompson-Cox-Hastings pseudo-Voigt fun
tion, see

Se
. 2.3.7. Note that an additional free parameter was introdu
ed and the se
ond line

of Eq 2.25 be
omes:

H2
L = X tan θ + Y/ cos θ, (5.1)

where HL is the FWHM of the Lorentzian fun
tion, and X and Y refer to isotropi


strain and size parameters, respe
tively. Note that the geometry of our sample holder

lead to a strong absorption in the 
enter of the 
apillary. This gives a strong asym-

metry to the Bragg peaks at small angles, whi
h 
onsequently were analysed using two

identi
al phases for both the sili
on and Tb2Ti2O7 
ompounds, introdu
ing opposite

o�set perpendi
ular to the beam. Furthermore, isotropi
 Debye-Waller fa
tors have

been used.

Results of the analysis of a spe
trum re
orded at 4 K are displayed in Tab. 5.1. We

have investigated the temperature dependen
e of the latti
e parameter looking for the

emergen
e of a Jahn-Teller like transition. The relative 
hange of the latti
e parameter

as a fun
tion of the temperature is shown in the right panel of Fig. 5.6. We de�ne:

∆alat
alat

=
alat(T )− alat(T = 20 K)

alat(T = 20 K)
, (5.2)

where alat(T = 20K) = 10.13681(7)Å. The 
ompound shows the expe
ted smooth ther-

mal 
ontra
tion as it is 
ooled down with a plateau below ≈ 25 K to alat ≃ 10.1368 Å.

This goes in line with the work of Goto et al. [234℄ and does not follow the uprise of

∆alat
alat

put forward in Ref. [233℄. Data of Ru� et al. [233℄ predi
t

∆alat
alat

≈ 0.4×10−4
at T = 4 K.

Therefore, the latti
e parameter would be at this temperature alat = 10.13700 Å. We

performed a Rietveld re�nement using this value (see Tab. 5.1) that shows that the

goodness of the analysis de
reased when �xing the latti
e parameter to this value.

This experiment was espe
ially designed to study the Bragg peak pro�les. In

Ref. [233℄, a broadening of the Bragg peak is 
laimed to appear at 20 K, whi
h in
reases

with temperature de
reasing down to 300 mK, see Fig. 5.5. This was interpreted as a

pre
ursor of a stru
tural transition. In Fig. 5.7, we 
ompare the pro�les of the (8, 8, 0)
(left panel) and (12, 0, 0) (right panel) Bragg peaks re
orded at 20 and 4 K, where 
learly
no broadening is shown. The full width at half maximum (FWHM) of the Bragg peaks

is of the order of 9 × 10−3
in re
ipro
al units, to be 
ompared with the Bragg peaks
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Figure 5.6: Left: Syn
hrotron X-ray powder di�ra
tion pattern of Tb2Ti2O7 re
orded

at T = 6 K with a photon energy of 25 keV. The red solid line is the result of a

Rietveld analysis using FullProf and the blue solid line at the bottom gives the di�eren
e

between the data and the model. Ti
ks below the graph show the 
al
ulated peak

positions for Tb2Ti2O7 and Si (upper and lower rows respe
tively). The intensities

beyond 2θ = 40◦ have been enlarged by a fa
tor of 10 in order to illustrate the quality of
the re�nement at higher angles. Pi
ture reprodu
ed from Ref. [235℄ with kind permission

of IOP Publishing. Right: Relative 
hange in the latti
e parameter alat as a fun
tion of

temperature. The green squares refer to data obtained by Ru� et al. [233℄ on a 
rystal

of Tb2Ti2O7 re
orded on a four-
ir
le di�ra
tometer X-ray di�ra
tometer. The blue full


ir
les are data from Goto et al. [234℄ re
orded on a poly
rystalline sample of Tb2Ti2O7

with a X-ray powder di�ra
tometer. Finally, our data are displayed by red open 
ir
les.

displayed in Fig. 5.5, having a FWHM ≈ 0.02 in the same units. Therefore, we 
an


on
lude that no broadening of the Bragg peaks is visible down to 4 K. Therefore, sin
e

the instrumental resolution is better in our 
ase rather than in Ref. [233℄, the response

of the samples used in Ref. [233℄ and here is di�erent. Consequently, no 
lear exper-

imental eviden
e 
an be brought to the existen
e or not of a Jahn-Teller transition.

5.3 Tb2Ti2O7: a quantum spin-i
e realisation?

Some re
ent theoreti
al works have been developed to des
ribe the ground state of

Tb2Ti2O7, and they 
on
lude that this 
ompound is a quantum spin-i
e, see Se
. 1.4.

First, we will present the ex
hange Hamiltonian introdu
ed by S. Curnoe [58, 237℄.

Then following these works, a magnetisation plateau has been put forward as a signa-

ture of spin-i
e 
orrelations, similarly to the 
lassi
al spin-i
e. Finally, we will dis
uss

experimental results on the existen
e or not of this pe
uliar feature.

5.3.1 The ex
hange Hamiltonian

Sin
e the simple Ising model with antiferromagneti
 isotropi
 intera
tions and the dipo-

lar spin-i
e model both fail to des
ribe the di�use magneti
 s
attering in the paramag-

neti
 phase [218℄, we present here some pie
es of the work of Curnoe [237℄, where an
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T (K) alat (Å) x Rp Rwp Rexp χ2

4 10.13688(5) 0.32777(9) 8.53 8.66 2.61 11.0

4 10.13700(F) 0.32779(12) 10.6 12.0 2.61 21.1

295 10.15735(10) 0.32720(11) 10.2 10.6 4.76 5.0

Table 5.1: Latti
e parameter alat and position x of the oxygen atom O1 determined by

syn
hrotron X-ray di�ra
tion at T = 4 and 295 K. R-fa
tors are listed as indi
ators

of the quality of the �t, see Se
. 2.3.7. The se
ond line refers to a Rietveld analysis

with the latti
e parameter alat �xed to the value expe
ted from the anomalous latti
e

expansion eviden
ed in Ref. [233℄. This value is not 
onsistent with a good quality of

the re�nement. Note that the value of alat is slightly larger than the one usually found

in the literature. Re
ently it was reported that alat = 10.15529(1) Å [236℄.
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Figure 5.7: Comparison of the (8, 8, 0) and (12, 0, 0) X-ray Bragg peak pro�les measured

at 20 and 4 K for our Tb2Ti2O7 powder sample. The full width at half maximum of the

Bragg peak is 9 × 10−3
in re
ipro
al latti
e units. Pi
tures reprodu
ed from Ref. [235℄

with kind permission of IOP Publishing.

e�e
tive spin-1/2 anisotropi
 ex
hange Hamiltonian has been developed, similar to the

one introdu
ed in Eq. 1.12:

Hex = J1X1 + J2X2 + J3X3 + J4X4, (5.3)

where Ji are four independent anisotropi
 ex
hange intera
tion 
onstants and Xi are

the ex
hange terms whi
h are invariants under spa
e group symmetries:

X1 = −1

3

∑

〈i,j〉
JizJjz,

X2 = −
√
2

3

∑

〈i,j〉
[Λij(JizJj+ + JjzJi+)

+Λ∗
ij(JizJj− + JjzJi−)

]

,

X3 =
1

3

∑

〈i,j〉

(

Λ∗
ijJi+Jj+ + ΛijJi−Jj−

)

,

X4 = −1

6

∑

〈i,j〉
(Ji+Jj− + Jj+Ji−), (5.4)
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where Λ12 = Λ34 = 1, Λ13 = Λ24 = exp(2iπ
3
) and Λ14 = Λ23 = exp(4iπ

3
). Note that for

X2, X3, X4 = 0, we re
over the 
lassi
al Ising 
ase where all spins are pointing into or

out of the 
enter of the tetrahedron (J1 > 0), or the spin-i
e 
ase with the two-in/two-

out spin 
on�guration (J1 < 0). The subs
ript z stands for the lo
al [111℄ axis and x, y
have been 
hosen to de�ne an orthonormal basis. The single tetrahedron approximation

is adopted here so that the summation over 〈i, j〉 in Eq. 5.4 is restri
ted to the four

magneti
 sites of a tetrahedron.

In order to understand the ground state of Tb2Ti2O7, four 
oupling 
onstants need

to be determined. This was su

essfully done for the 
ase of Yb2Ti2O7 by analysing

the spin-wave dispersion in a magneti
 �eld [60℄ and for Er2Ti2O7 using the same

methodology [17℄ as well as analysing the di�use s
attering intensity [195℄. In these

examples, the ground state doublet was des
ribed with an e�e
tive spin-1/2.
In the 
ase of Tb2Ti2O7, the total angular momentum is J = 6. Sin
e the ground

state is not well isolated from the �rst ex
ited 
rystal-ele
tri
-�eld energy level, the

ground state wavefun
tions 
an no longer be ±1
2
but those introdu
ed in Se
. 3.2. Fol-

lowing the notations of Ref. [237℄, the ex
hange Hamiltonian for Tb2Ti2O7 is des
ribed

by 
oupling 
onstants labelled Ii rather than Ji, the latter notations kept for the e�e
-

tive spin-1/2 
ase:

HTb
ex = I1X1 + I2X2 + I3X3 + I4X4. (5.5)

Sin
e we fo
us on a single tetrahedron, and sin
e only two states are available for a

magneti
 ion with a ground state doublet, it results 24 = 16 
olle
tive states. They are


ommonly written as [58, 238℄:

| ± ± ±±〉α ≡ |±〉1 ⊗ |±〉2 ⊗ |±〉3 ⊗ |±〉4, (5.6)

where α ≡ 1/2,Tb denotes whether we are using e�e
tive spin-1/2 or the whole wave-

fun
tions to des
ribe the ground state, and the indi
es (1,2,3,4) label the tetrahedron

magneti
 sites. An important property has been pointed out in Ref. [58℄: the de
om-

position in terms of irredu
ible representations of the symmetry group of a tetrahedron

in the pyro
hlore latti
e is the same using tetrahedron states de�ned by the e�e
tive

spin-1/2 or the ground state wavefun
tions of Tb2Ti2O7. This property holds for the

kind of non-Kramers ions involved here as it requires the Zeeman ket |1/2〉 to appear

in the ground state wavefun
tions. Therefore a map between the states | ±±±± >1/2

and | ± ± ± ±〉Tb 
an be established. Using the ground state wave fun
tions |±〉 de-
termined in Se
. 3.2, the matrix elements for J± vanish and therefore, 
omparing the

matrix elements of HTb
ex and Hex leads to:

J1 = 4I1j
2
1 , where j1 = 〈+|Jz|+〉 and J2,3,4 = 0. (5.7)

This 
orresponds to the 
lassi
al spin-i
e 
ase or the all-in-all-out 
ase if I1 < 0 or

I1 > 0, respe
tively: none of these two states are a

eptable for Tb2Ti2O7. However,


ontrary to the spin-i
e 
ompounds, the ground state is not well isolated and an ex
ited


rystal-ele
tri
-�eld energy level lies at ∆ ≈ 1.5 meV, see Se
. 3.2. Therefore, using

wavefun
tions of the ground state (|±〉) and �rst ex
ited ones (|↑↓〉), S. Curnoe [237℄

al
ulates the following matrix elements:

j1 = 〈+|Jz|+〉 = −3.21, j3 = 〈↑ |Jz|+〉 = −2.37,
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Figure 5.8: Left: Di�use s
attering map re
orded in the (hhl) plane at T = 9 K for

Tb2Ti2O7. Data at 100 K have been subtra
ted in order to only show di�use magneti


s
attering. Reprinted �gure with permission from Ref. [222℄. Copyright 2015 by the

Ameri
an Physi
al So
iety. Right: the 
orresponding 
al
ulated di�use s
attering map.

Reprinted �gure with permission from Ref. [237℄. Copyright 2015 by the Ameri
an

Physi
al So
iety.

j2 = 〈↑ |Jz| ↑〉 = 4.05, t = 〈↑ |J+|−〉 = 4.72. (5.8)

Note that the relative importan
e of the matrix element t is indi
ative of the signi�-


ant admixture of the �rst 
rystal-ele
tri
-�eld level to the ground state. Consequently,

four states need to be 
onsidered per magneti
 ion site, leading to 256 states per tetra-

hedron. The ex
hange Hamiltonian HTb
ex is treated as a perturbation of the Stevens

Hamiltonian HCEF introdu
ed in Se
. 3.1. Therefore an e�e
tive Hamiltonian HTb
eff is

inferred restri
ted to the 
rystal-ele
tri
-�eld ground state. The resulting ex
hange ma-

tri
es found using perturbation theory take the same form as the ones from the 1/2-spin
model. Consequently, a map between the 16 lowest energy eigenstates of HTb

eff and the

16 tetrahedron states of Hex is established. Analysing the di�use s
attering maps for

Tb2Ti2O7 provides the ex
hange 
onstants Ii involved in HTb
eff (and HTb

ex ). Using the

map established between HTb
eff and Hex, and the matrix elements 
al
ulated in Eq. 5.8,

lead to the ex
hange 
onstants involved in the spin-1/2 model. Consequently, due to

the property of the wavefun
tions of this kind of non-Kramers ion, the problem 
an be

mapped onto an e�e
tive spin-1/2 Hamiltonian.

The di�use s
attering map in the (hhl) plane re
orded at T = 9 K by Gardner

et al. [222℄ is displayed in the left panel of Fig. 5.8. In the right panel of the same

�gure is the 
orresponding 
al
ulated di�use s
attering [237℄, in good agreement with

experimental data. The dedu
ed ex
hange 
oupling 
onstants given in Kelvin units for

the spin-1/2 model in the single tetrahedron approximation are:

J1 = −10.2, J2 = −0.4,
J3 = 0.2, J4 = 0.6. (5.9)

Note that in the single tetrahedron approximation, half of the ex
hange paths are

omitted: the pyro
hlore latti
e 
an be de
omposed into two tetrahedra networks A and
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Figure 5.9: Left: Illustration of the pyro
hlore latti
e where the existen
e of two dif-

ferent network of tetrahedra is highlighted. The network labelled A (red tetrahedra)


an be rotated by

π
2
along a 
ubi
 axis to re
over the network labelled B (blue tetrahe-

dra). Reprinted �gure with permission from Ref. [2℄. Copyright 2015 by the Ameri
an

Physi
al So
iety. Right: Cal
ulated di�use s
attering map at T = 9 K to be 
ompared

with the experimental data displayed in the left panel of Fig. 5.8. Reprinted �gure with

permission from Ref. [239℄. Copyright 2015 by the Ameri
an Physi
al So
iety.

B di�ering from their orientation (a rotation of

π
2
along a fourfold 
ubi
 axis transform

a tetrahedra of network A into a tetrahedra of network B) as illustrated in Fig.5.9. A

magneti
 ion belongs to one tetrahedron of network A and one tetrahedron of network

B. Therefore, to 
ompensate for the missing ex
hange paths, it is a fair approximation

to divide the ex
hange 
oupling 
onstants in Eq. 5.9 by a fa
tor two. To 
on
lude,

Tb2Ti2O7 
an be des
ribed by an e�e
tive spin-1/2 model revealing a spin-i
e 
on�gu-

ration (J1 < 0). The existen
e of small transverse 
oupling terms are revealed that lift

the degenera
y asso
iated with the 
lassi
al spin-i
e state. These transverse terms are

at the origin of quantum spin �u
tuations, 
ontrary to the 
lassi
al spin-i
e where �ips

of the Ising spins only arise from thermal �u
tuations. To 
ompare with the e�e
tive

spin-1/2 nearest-neighbour ex
hange Hamiltonian introdu
ed in Ref. [65℄ and dis
ussed

in Se
. 1.4, the following equations relate the ex
hange 
ouplings given in Kelvin units

in the two Hamiltonians as:

Izz = −1

6
J1 = 1.7, Iz± =

1

3
√
2
J2 = −0.094,

I±± =
1

6
J3 = 0.033, I± =

1

12
J4 = 0.05. (5.10)

For non-Kramers ion, Lee et al. [66℄ have predi
ted a phase diagram by mean-�eld

theory at zero temperature as illustrated in Fig 5.10. With the ex
hange parameters

listed in Eq. 5.10, the quantum spin-i
e phase is predi
ted for Tb2Ti2O7.

Note that early work su

eeded in des
ribing the spin 
orrelations in the param-

agneti
 phase at T = 9 K. In Ref. [240℄, isotropi
 ex
hange and dipolar intera
tions

were taken into a

ount within the two �rst 
rystal-ele
tri
 �eld doublets. However,

this model predi
t the all-in/all-out magneti
 ordering at Tc = 1.8 K. For 
ompleteness,
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Figure 5.10: Zero-temperature phase diagram for non-Kramers ions predi
ted in

Ref. [66℄. Here J‖ ≡ Izz, Jz± ≡ Iz±, J± ≡ I±, and J±± ≡ I±±. Note that Jz±
is taken to be zero. The red sphere roughly indi
ates the position of Tb2Ti2O7 in

the quantum spin-i
e phase, using the parameters of Eq. 5.10. Pi
ture modi�ed from

Ref. [55℄.

a work very similar to the one of Curnoe [237℄ has been developed in Ref. [239℄, and

lead to the same 
on
lusions. The 
al
ulated di�use s
attering intensity at T = 9 K is

displayed in the right panel of Fig. 5.9, also in good agreement with experimental data

shown in the left panel of Fig. 5.8.

Experimental proofs of a spin-i
e 
on�guration have been brought out by Fennell

et al. [241℄ using polarised neutrons at T = 50 mK: pin
h points have been observed

in the �non-spin �ip� 
hannel 
orresponding to the Ising 
ontribution of the spin to the

neutron s
attering intensity. These pin
h points are 
hara
teristi
 of algebrai
 dipolar


orrelations, and usually observable in 
lassi
al spin-i
e 
ompounds, see Se
. 1.3. There-

fore, two-in-two-out spin 
on�gurations are at play in Tb2Ti2O7. Besides, anisotropi


ex
hange intera
tions slightly moving the spins out of the [111℄ dire
tion exist. These

transverse 
omponents have been eviden
ed in the �spin-�ip� 
hannel, also with alge-

brai
 
orrelations leading to pin
h points at the Brillouin zone 
enter and 
hara
terised

by a "two-up/two-down" spin 
on�guration. These observations have re
ently been


on�rmed in Refs. [242, 243℄.

5.3.2 Predi
tion of a magnetisation plateau

An interesting property of the spin-i
e 
ompounds has been established in Refs. [13,

244℄, whi
h predi
ts the presen
e of a plateau in the �eld dependen
e of the magnetisa-

tion when a magneti
 �eld is applied in the [111℄ dire
tion. To understand this property,

the pyro
hlore latti
e 
an be seen as a superposition of triangular and Kagome planes

when we are looking along the [111℄ dire
tion, see the left panel of Fig. 5.11. Let us


onsider a tetrahedron: the magnetisation plateau 
orresponds to the alignment of one
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[111]

Figure 5.11: Left: Proje
tion of the network of 
orner-sharing tetrahedra along the

[111℄ axis in order to eviden
e the su

ession of triangular and Kagome planes. Spheres

of same 
olour represents magneti
 ions belonging to the same plane. Right: Field

dependen
e of the magnetisation for the 
lassi
al spin-i
e Dy2Ti2O7 exhibiting a distin
t

plateau at low temperatures. Copyright IOP Publishing. Reprodu
ed from Ref. [245℄

by permission of IOP Publishing. All rights reserved.

of the Ising spins in the dire
tion of the applied magneti
 �eld. Sin
e this spin 
an

be viewed as belonging to a triangular plane perpendi
ular to the [111℄ dire
tion, the

three remaining spins of the tetrahedron belong to a Kagome plane. They ful�l the

i
e rule with two spins pointing into and two spins pointing out of the 
enter of the

tetrahedron. Therefore, the degrees of freedom live in the Kagome planes, de�ning the

so-
alled "Kagome i
e" state. This leads to a low temperatures residual entropy that

is lower than the one found in zero-�eld. As the �eld in
reases, the i
e-rule 
onstraint

is broken and the system 
hooses a 
on�guration where the magnetisation is saturated,

i.e. three spins pointing into and one pointing out of the 
enter of the tetrahedron, or


onversely. This property has been experimentally veri�ed in the 
ase of the 
lassi
al

spin-i
e 
ompound Dy2Ti2O7 [245, 246℄, see the right panel of Fig. 5.11.

As explained in Se
. 5.3.1, Tb2Ti2O7 
ould be a realisation of a quantum spin-i
e,

i.e. an i
e rule spin 
on�guration with the existen
e of transverse ex
hange 
oupling

terms. Therefore, similarly to the 
lassi
al spin-i
e, the observation of a plateau in the

�eld dependen
e of the magnetisation when a magneti
 �eld is applied along the [111℄

dire
tion would provide an experimental eviden
e of "two-in/two-out" spin 
orrelations

restri
ted to a single tetrahedron [247℄. Consequently, using the 
rystal-ele
tri
-�eld

parameters for Ho2Ti2O7 [168℄ and res
aled for Tb2Ti2O7, the wavefun
tions of the


rystal-ele
tri
-�eld states are 
al
ulated to de�ne a basis where the Hamiltonian of

interest is diagonalised. The latter takes into a

ount the Zeeman intera
tion due to the

applied magneti
 �eld, antiferromagneti
 isotropi
 ex
hange (
oupling I) and dipolar

intera
tions. Cal
ulations were restri
ted to a single tetrahedron (ITA approximation).

The 
al
ulated magnetisation 
urves are shown in the left panel of Fig. 5.12. An
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Figure 5.12: Left: Cal
ulated �eld dependen
e of the magnetisation of Tb2Ti2O7 in

the single tetrahedron approximation (ITA) when Bext is applied along the trigonal

axis [111℄ for several temperature T= 20, 50, and 100 mK. Right: Same quantity

at T = 20 mK for several values of the ex
hange integral I. Data reprodu
ed from

Ref. [247℄.

in�e
tion point is predi
ted for T = 50 mK whereas at T = 20 mK a magnetisation

plateau should appear. In the right panel of Fig. 5.12, the magnetisation plateau at

T = 20 mK is shown as a fun
tion of the applied �eld for di�erent values of the

antiferromagneti
 ex
hange 
oupling 
onstant. The Curie-Weiss temperature in the

paramagneti
 regime is θCW = −0.19 K. To dedu
e an isotropi
 ex
hange 
onstant

between nearest neighbours, the 
rystal-ele
tri
-�eld 
ontribution has been subtra
ted

of to give θexCW = −0.14 K, whi
h 
orresponds to I = −0.167 K [240℄. Note that a lower

value of the ex
hange 
oupling 
onstant, I = −0.083 K [73℄, has been put forward

from the analysis of the �eld dependen
e of the magnetisation and the temperature

dependen
e of the magneti
 sus
eptibility at high temperatures, i.e. negle
ting spin


orrelations. Nevertheless, a magnetisation plateau is expe
ted for values |I| ≤ |Ic| =
0.187 K [247℄. As for the 
lassi
al spin-i
e 
ase, the interpretation of this magnetisation

plateau is attributed to the transition from the two-in/two-out Ising spin 
on�guration

in a single tetrahedron to a saturated state with a "three-in-one-out" spin 
on�guration.

These predi
tions have generated a lot of experimental studies sear
hing for the

magnetisation plateau as a signature of spin-i
e like spin 
orrelations. Magnetisation

measurements have been performed by Lhotel et al. [225℄ and are reported in the left

panel of Fig. 5.13 for a single 
rystal of Tb2Ti2O7. The magneti
 �eld was applied in the

[111℄ dire
tion in the plane of a disk geometry to minimise demagnetisation e�e
ts. No

eviden
e of a magnetisation plateau is found down to 57 mK for a magneti
 �eld up to

8 T (not shown). Curves re
orded at 57 mK and 100 mK (not shown) are very similar,

whi
h is not predi
ted in Ref. [247℄ (see the left panel of Fig. 5.12). However, sin
e

anisotropi
 ex
hange is established, the isotropi
 ex
hange 
oupling I used in the left

panel of Fig. 5.12 to 
al
ulate the magnetisation 
urve 
ould be larger, and a

ording

to the right panel of Fig. 5.12, the predi
ted magnetisation plateau is expe
ted at lower

temperatures. These experimental results are 
on�rmed by the work of Legl et al. [224℄,

where a vibrating-
oil magnetometer was used in order to measure the magnetisation

down to 43 mK in applied magneti
 �eld along [111℄ up to 5 T. Further a.
. magneti
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Figure 5.13: Left: Field dependen
e of the magnetisation of a 
rystal of Tb2Ti2O7 with

a magneti
 �eld applied along the [111℄ dire
tion at T = 57 mK (open red 
ir
les)

and 500 mK (full blue 
ir
les). Data reprodu
ed from Lhotel et al. [225℄. Right:

Field dependen
e of the real part of the sus
eptibility for a 
rystal of Tb2Ti2O7 with

a magneti
 �eld applied along the [111℄ dire
tion at T = 16 mK. The bla
k arrows

lo
ate the two peaks in µ0dM/dBext that delimit the weak magnetisation plateau. Data

reprodu
ed from Yin et al. [226℄.

sus
eptibility measurements have been performed by Yin et al. [226℄ on a single 
rystal

of Tb2Ti2O7 with Bext parallel to the three-fold axis [111℄. The �eld dependen
e of

the real part of the sus
eptibility measured at T = 16 mK with an a.
. �eld amplitude

of 0.94 mT is displayed in the right panel of Fig. 5.13. This quantity is a measure

of µ0dM/dBext: the two bla
k arrows indi
ate an in�e
tion point in the magnetisation


urve and therefore the �eld range delimited by these arrows is as
ribed to the predi
ted

magnetisation plateau. However, this data should be integrated over Bext to give a more

signi�
ant insight onto the magnetisation 
urve, see Se
. 5.3.3.

5.3.3 µSR frequen
y shift measurements

In this se
tion, we report transverse-�eld µSR measurements performed at the LTF

spe
trometer of the SµS (PSI) in the temperature range 20 ≤ T ≤ 500 mK. We refer to

Se
. 2.6.6 for te
hni
al details. On a silver dis
 is deposited a mosai
 of 
rystal plates

whose normal axis is a [111℄ axis: their thi
kness is about 1/3 mm and their lateral

size is up to 6 mm. The external magneti
 �eld Bext is applied parallel to the muon

beam whi
h is along one of the threefold <111> axis of the 
rystal. Fig. 5.14 shows

a µSR spe
trum re
orded at T = 20 mK with a magneti
 �eld Bext = 800 mT. We

re
all that the muon polarisation fun
tion is des
ribed by the sum of two os
illating


omponents: one a

ounting for the muons implanted in the sample and pre
essing

around the lo
al �eld at the muon site Bloc, and the se
ond for the muons stopped

in the sample surroundings, essentially the silver sample holder, whi
h pre
ess around

a �eld 
lose to the external �eld. Therefore the data are des
ribed by the following

fun
tion:

a0P
exp
X (t) = a1 exp(−λX,1t) cos(2πν1t + ϕ) + a2 exp(−λX,2t) cos(2πν2t+ ϕ). (5.11)
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Figure 5.14: A typi
al transverse-�eld µSR asymmetry time spe
trum re
orded at T =
20 mK for a mosai
 of Tb2Ti2O7 
rystals with Bext applied along a three-fold axis and

Bext = 800 mT. The bla
k solid line is a �t of Eq. 5.11 to the data. Pi
ture reprodu
ed

from Ref. [235℄ with kind permission of IOP Publishing.

The transverse relaxation rates λX,1 and λX,2 illustrate the damping of the os
illations

and re�e
t the spread of muon frequen
ies arising from the �eld distribution, as already

explained in Se
. 4.8. The analysis of the measured spe
trum gives a1 = 0.192(13)
and a2 = 0.028(2). These initial asymmetries are found to be 
onstant when varying

the magneti
 �eld. Note that only ≈ 13% of the in
oming muons are stopped in the

surroundings of the sample with ν2 = 108.46(1) MHz. This value is very 
lose to the

pre
ession frequen
y νext = γµBext/(2π) = 108.43 MHz expe
ted for muons subje
t to

a �eld of Bext = 800 mT.

The purpose of this experiment was not to fo
us on the muon frequen
y ν1 but on the
normalised muon frequen
y shift Kexp = (ν1 − νext)/νext, introdu
ed in Se
. 2.6.6. The

�eld dependen
e of this quantity is displayed in Fig.5.15 at T = 20 and 500 mK. Below

Bext ≈ 0.6 T, an extra 
ontribution to Kexp appears for data re
orded at T = 20 mK,


ompared to data re
orded at 500 mK. This goes in line with the �rst magnetisation


urves re
orded in Ref. [225℄ and displayed in the left panel of Fig. 5.13.

Note that the 
orre
tions of the demagnetising �eld are 
ompli
ated in our 
ase

sin
e the sample is not a pure ellipsoid, leading to an inhomogeneous demagnetisation

�eld. Consequently, we refrain to do it for our data. However, we re
all the de�nition

of the frequen
y shift introdu
ed in Se
. 2.6.6, see Eq. 2.48:

Kexp = Kµ + µ0αD
M

Bext

, (5.12)

where αD is a 
onstant, M is the magnetisation, and Kµ = K ′
dip is the muon Knight

shift that arises only from the dipolar �eld 
reated by the magneti
 moments inside the

Lorentz sphere. This �eld 
an be de�ned in terms of a �eld dipole tensor Dαβ
ri

asso
iated

with site ri [160℄:

B′α
dip =

µ0

4π

1

vTb

∑

β

NL
∑

i=1

Dαβ
ri
mβ

i , (5.13)
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Figure 5.15: Field dependen
e of the normalised muon frequen
y shift Kexp re
orded

at T = 20 and 500 mK. The errors bars are smaller than the symbols. The data at

T = 20 mK shown by open blue 
ir
les have been measured after zero-�eld 
ooling in

in
reasing Bext up to 1.5 T. Further data (
lose blue 
ir
les) re
orded after de
reasing

Bext from 800 to 40 mT show no hysteresis. This is in 
ontrast to the temperature

dependen
e of Kexp measured at 60 mT after zero-�eld and �eld 
ooling, see inset of

the right panel of Fig. 5.4. Data at T = 500mK shown by red 
ir
les have been re
orded

after heating the sample from T = 20 mK and Bext = 40 mT to T = 500 mK, after

whi
h the �eld was gradually in
reased up to 1.5 T. Pi
ture reprodu
ed from Ref. [235℄

with kind permission of IOP Publishing.

where the sum runs over the NL magneti
 moments inside the Lorentz sphere, vTb is

the volume per terbium ion

1

and:

Dαβ
ri

= vTb

(

−δα,β
r3i

+
3rαi r

β
i

r5i

)

. (5.14)

The muon Knight shift 
an be expressed as:

Kµ = K ′
dip =

Bext ·B′
dip

B2
ext

. (5.15)

With our assumption,

1 mβ
i = vTbM

β
, where Mβ

is the β 
omponent of the total

magnetisation M per unit volume. In the paramagneti
 regime, Mβ = Mδβ,Z , where
the magneti
 �eld is applied along the Z axis. We derive:

Kµ = K ′
dip =

µ0

4π

(

NL
∑

i=1

DZZ
ri

)

M

Bext
, (5.16)

Therefore, 
ombining Eq. 5.12 and Eq. 5.16, the frequen
y shift 
an be written as:

Kexp = µ0

[

αD +
1

4π

(

NL
∑

i=1

DZZ
ri

)]

M

Bext
. (5.17)

1

Note that we assume all the terbium ions to be magneti
ally equivalent, i.e. we 
onsider only one

type of magneti
 ion per magneti
 unit 
ell. Therefore, we adopt formula valid for Bravais latti
es.
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Figure 5.16: Open 
ir
les and bullets: produ
t −BextKexp = −2π∆ν/γµ dedu
ed from

the 20 and 500 mK data displayed in Fig. 5.15, versus Bext. The experimental points

are linked by segments. Solid line: �eld dependen
e of the terbium magneti
 moment

measured at 16 mK for Bext applied along a [111℄ 
rystal dire
tion. As explained in

the main text, the latter 
urve is 
omputed from the data published by Yin et al [226℄.

Pi
ture reprodu
ed from Ref. [235℄ with kind permission of IOP Publishing.

Consequently, re
alling that Kexp < 0 here, we expe
t the produ
t −KexpBext to be

proportional to M . This quantity is displayed in Fig. 5.16. As dis
ussed in Se
. 5.3.2,

if there was a de�nitive plateau in the magnetisation, the produ
t would be �eld in-

dependent in a �nite �eld range. This is not observed. However, as indi
ated by the

up-arrow, a weak in�e
tion point is present for the 20 mK data at Bext ≃ 0.66 T. It

has disappeared at 500 mK. Yin et al. [226℄ have performed a.
. magneti
 sus
eptibility

measurements on a 
rystal of Tb2Ti2O7 with the external �eld applied along [111℄. The

real part of the sus
eptibility, outside the linear regime, is expressed as:

χ′
ac = µ0

dM

dBext

, (5.18)

and therefore the magneti
 moment (see the bla
k solid line in Fig. 5.16), is dedu
ed

by �eld integration of the data displayed in the right panel of Fig. 5.13 as:

m =

∫ Bmax

0

vTb

µ0
χ′
acdBext, (5.19)

where Bmax = 1.5 T. The bla
k down arrow indi
ates an in�e
tion point lo
ated at

Bext = 0.4 T. Note that the data were 
orre
ted from demagnetising e�e
ts a

ording

to Ref. [248℄. However, the real part of the sus
eptibility is plotted versus the external

�eld. Following the note 35 of Ref. [226℄, the internal �eld at Bext = 0.59 T, i.e. the

se
ond maximum in the 
urve of the magnetisation derivative, is Bint = 0.53 T, i.e. a

relatively small shift of 60 mT. The geometry of our experiments gives rise to a mu
h

more important demagnetising �eld. As we found an in�exion point at 0.66 T while it

is found at ≈ 0.4 T in Ref. [226℄, we assume a demagnetising �eld of ≈ 0.3 T so that the

in�e
tion point of our data and those of Ref. [226℄ would 
oin
ide. Therefore, our µSR
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measurements and a.
. sus
eptibility measurements of Ref. [226℄ reveal an in�e
tion

point lo
ated in terms of the internal �eld at Bint ≈ 0.3 T. However, this result 
annot
allow us to draw a de�nitive 
on
lusion whether the magnetisation plateau exists or

not.

5.4 Con
lusions

The pyro
hlore 
ompound Tb2Ti2O7 fails to order down to the lowest temperatures

despite a signi�
ant Curie-Weiss 
onstant. Spin 
orrelations restri
ted over a single

tetrahedron exist deep in the paramagneti
 regime. On 
ooling the sample, a slowing

down of the �u
tuations was revealed by a large panel of te
hniques 
overing an ex-

tended time range (neutron s
attering, neutron spin e
ho, µSR and a.
. sus
eptibility

measurements), suggesting that the 
ompound would enter a 
ooperative paramagneti


(or spin-liquid) state at roughly Tcp = 2 K.

Two di�erent ground states were proposed. One is that Tb2Ti2O7 would be an

experimental realisation of a quantum spin-i
e. Pin
h points eviden
ed by polarised

neutron s
attering are a proof of algebrai
 spins 
orrelations, 
hara
teristi
 of a spin-i
e


on�guration. An anisotropi
 ex
hange Hamiltonian, 
onsidering an admixture of the

ground state and the �rst ex
ited 
rystal-ele
tri
-�eld level, and within the approxi-

mation of non-intera
ting tetrahedra, leads to the predi
tion of Ising spins 
onstrained

to satisfy the i
e rule, with the existen
e of small transverse spin intera
tion terms

lifting the degenera
y expe
ted in a 
lassi
al spin-i
e, i.e. the quantum spin-i
e state.

This model a

ounts very well for the di�use neutron s
attering in the paramagneti


regime. A magnetisation plateau has been predi
ted when a magneti
 �eld is applied

along the [111℄ dire
tion, similarly to what is predi
ted and observed in the 
ase of

the 
lassi
al spin-i
e state. However, neither a.
. sus
eptibility nor transverse �eld µSR
measurements were able to 
on�rm this predi
tion. Only a weak in�e
tion point in the

�eld dependen
e of the magnetisation is found at ≈ 0.3 T. The model uses an isotropi


nearest-neighbour ex
hange 
onstant although the pyro
hlore 
ompounds are found to

intera
t strongly anisotropi
ally. As suggested in Ref. [225℄, in
reasing the mean value

of the ex
hange 
onstant might de
rease the temperature at whi
h the magnetisation

plateau is expe
ted.

A se
ond proposal is the existen
e of a low-temperature tetragonal distortion along

the 
ubi
 axis, as suggested by spe
i�
 heat and inelasti
 neutron s
attering measure-

ments. An anomaly in the frequen
y shift of the muon spin pre
ession revealed by

transverse µSR experiments and in the spe
i�
 heat o

urs at Tt ≈ 0.15 K. The 
om-

pound enters a glassy state, as 
on�rmed by d.
. and a.
. sus
eptibility measurements.

However, the latter experiments pre
ludes a spin-glass transition. This anomaly 
ould

be a signature of a Jahn-Teller transition. The broadening of the Bragg peaks observed

for T ≤ 20 K as well as an anomalous latti
e parameter expansion [233℄ support this

s
enario. However, these 
on
lusions are not 
on�rmed by our syn
hrotron measure-

ments and X-ray powder di�ra
tion results of Ref. [234℄. Therefore, no eviden
e of su
h

a transition is revealed, at least down to 4 K.

As pi
tured in the left panel of Fig. 5.4, the elasti
 
onstants de
rease below ≈
50 K [232℄. This property was also eviden
ed in Ref. [249℄ where the Young modulus

strongly de
reases in the same temperature range. Therefore strong magneto-elasti
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e�e
ts are at play in Tb2Ti2O7 and should be 
onsidered.



Chapter 6

General 
on
lusions

This work was dedi
ated to the study of geometri
ally frustrated magnets on a py-

ro
hlore latti
e of 
hemi
al formula R2M2O7, where R is a rare earth and M = Ti

or Sn. We have fo
used our attention in this manus
ript on the 
rystal-ele
tri
-�eld

a
ting at the rare earth site, the 
hara
terisation of the 
ompound Nd2Sn2O7 with a

large panel of bulk and mi
ros
opi
 measurements, and �nally added some information

on the puzzling 
ompound Tb2Ti2O7. In this �nal 
hapter, we sum up some important

results and dis
uss some perspe
tives of interest.

6.1 Beyond the Stevens Hamiltonian

We have �rst studied the 
rystal-ele
tri
-�eld a
ting at the rare earth site in the py-

ro
hlore series R2M2O7. The aim was to analyse simultaneously, using a simple s
aling

law, published inelasti
 neutron s
attering data and our own neutron time-of-�ight

measurements in the 
ase of the titanate or stannate 
ompounds, respe
tively, in order

to determine a single set of CEF parameters. The analysis of the CEF is important in

order to understand the low temperature properties of frustrated magnets: it provides

information on the magneti
 ground state through the CEF energy levels: in�uen
e or

not of the ex
ited energy levels as in the terbium 
ase. It also gives the 
hara
ter of the

spin anisotropy and the magnitude of the ground state magneti
 moment: redu
tion of

the magneti
 moment in the ordered phase, strength of the dipolar intera
tions. Finally,

it gives a

ess to the ground state wavefun
tions used to determine the presen
e or not

of transverse ex
hange 
ouplings involved in the anisotropi
 ex
hange Hamiltonian for

instan
e. In the 
ase of the titanate series, a reliable set of CEF parameters allows us

to des
ribe the full set of available inelasti
 neutron s
attering spe
tra and provides

spe
tros
opi
 fa
tors in agreement with the spin anisotropy proposed in the literature.

The 
ase of the stannate series is slightly less 
on
lusive: a single set of CEF parameters

predi
ts an energy level s
heme in agreement with the CEF transitions measured by

inelasti
 neutron s
attering spe
tros
opy and 
onstitutes a good starting point to the

analysis of the neutron intensities. However, we should note that a 
lose but di�erent

set of CEF parameters is ne
essary in order to analyse inelasti
 neutron spe
tra for ea
h

investigated 
ompound, namely Tb2Sn2O7, Ho2Sn2O7 and published data of Er2Sn2O7.

Neutron time-of-�ight measurements have also been performed on Nd2Sn2O7. We

did not su

eed to involve it in a global analysis with the aforementioned 
ompounds

154
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and also did not su

eed to analyse simultaneously inelasti
 neutron s
attering spe
tra


overing the full CEF energy levels. Sin
e the splitting between the ground state and the

�rst ex
ited multiplets arising from the spin-orbit 
oupling ∆so = 236 meV is roughly

of the same order of magnitude as the overall splitting of the ground state multiplets,

i.e. the highest CEF energy level lies at ≈ 110 meV, at least a mixing between the

4I9/2
ground state and the

4I11/2 �rst ex
ited multiplet

1

should be 
onsidered. Therefore, the

CEF Hamiltonian a
ting within both multiplets needs to be 
onsidered. Following the

work of Ref. [250℄, matrix elements within the two multiplets are 
omputed as:

〈J,mJ |H(J)
CEF|J,m′

J〉 =
∑

n,m

Bm
n 〈J,mJ |Om

n |J,m′
J〉, (6.1)

and,

〈(J + 1), m(J+1)|H(J+1)
CEF |(J + 1), m′

(J+1)〉 = ∆soδm(J+1),m
′

(J+1)
+

∑

n,m

Bm
n 〈(J + 1), m(J+1)|Om

n |(J + 1), m′
(J+1)〉, (6.2)

where H(J)
CEF and H(J+1)

CEF refer to the Stevens Hamiltonian determined in Eq. 3.12 and

a
ting on the ground state and �rst ex
ited multiplets within the Zeeman basis |J,mJ〉
and |(J + 1), m(J+1)〉, respe
tively.2 The J-mixing e�e
t arising from the 
oupling

between the two multiplets is a

ounted for with the mixing HamiltonianH(J),mix
CEF a
ting

on the ground state multiplet. However, we 
annot use anymore the CEF Hamiltonian

de�ned in terms of Stevens operators in Eq. 3.12, sin
e the operator equivalent method

derived from the Wigner-E
kart theorem used in App. B is only available within the

|J,mJ〉 basis. Here, we have to 
al
ulate o�-diagonal matrix elements between the

|J,mJ〉 and |(J + 1), m(J+1)〉 basis: we need to go ba
k to a general expression of the

CEF Hamiltonian introdu
ed in Eq. B.11, and 
ombining Eq. B.10 and Eq. B.12:

HCEF = − e

4πε0

∑

j

∑

n

n
∑

m=−n

γnmp
m
n f

m
n (xj, yj, zj), (6.3)

where pmn is a prefa
tor, fm
n (xj , yj, zj) a polynomial fun
tion, and the index j refers to

the sum over the 4f ele
trons (see App. B). Therefore, H(J),mix
CEF is 
omputed as:

〈J,mJ |H(J),mix
CEF |(J + 1), m′′

(J+1)〉 =

− e

4πε0

∑

n,m

γnmp
m
n 〈J,mJ |

∑

j

fm
n (xj, yj, zj)|(J + 1), m′′

(J+1)〉. (6.4)

The latter equation is simpli�ed using the Wigner-E
kart theorem in its more general

form:

1

For a given ion with a 4f ele
tri
 shell less than half-�lled, the total angular momentum of the

�rst ex
ited multiplet is equal to (J + 1) [163℄.
2

We re
all that −J ≤ mJ ≤ J and −J − 1 ≤ m(J+1) ≤ J + 1
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〈J,mJ |
∑

j

fm
n (xj , yj, zj)|(J + 1), m′′

(J+1)〉 =

(−1)J−mJ
√
2J + 1〈J ||f 0

n(xj , yj, zj)||J + 1〉
(

J n J + 1
−mJ m m′′

J+1

)

, (6.5)

where 〈J ||f 0
n(xj , yj, zj)||J + 1〉 are 
oe�
ients tabulated in Ref. [163℄, and the matrix

element is the 3j Wigner 
oe�
ient. These 
oe�
ients vanish if m′′
J+1 +mJ −m 6= 0.

Therefore, the total CEF Hamiltonian 
an be written in the following matrix form:







〈J,mJ |H(J)
CEF|J,m′

J〉 〈J,mJ |H(J,mix)
CEF |(J + 1), m′′

(J+1)〉

〈(J + 1), m(J+1)|H(J+1,mix)
CEF |J,m′

J〉 〈(J + 1), m(J+1)|H(J+1)
CEF |(J + 1), m′′

(J+1)〉






.

Note that in the 
ase of the neodymium 
ompound, the dimension of this matrix is

d = (2J + 1)(2J + 2) = 110. To 
ompare with the approximation made in Chapter. 3,

the highest matrix dimension is in the 
ase of the holmium ion where d = 2J +1 = 17.

6.2 Observation of spontaneous os
illations

We have reported in this work that the pyro
hlore 
ompound Nd2Sn2O7 exhibits a

se
ond-order magneti
 transition at Tc = 0.91 K. Neutron di�ra
tion experiments re-

veal an all-in-all-out spin 
on�guration. The long-range nature of the magneti
 order

is 
on�rmed by the observation of spontaneous os
illations in zero-�eld µSR measure-

ments. If the latter result is not surprising for a magneti
ally ordered 
ompound as seen

in Gd2Ti2O7 [112℄ and Gd2Sn2O7 [116℄, other pyro
hlore 
ompounds do not display any

spontaneous wiggles despite the presen
e of magneti
 Bragg peaks su
h as Yb2Ti2O7,

Yb2Sn2O7 and Tb2Sn2O7. An explanation for the latter 
ompound has been put for-

ward 
onsidering the dynami
al nature of the lo
al �eld jumping between two opposite


on�gurations [75℄. Following the pi
ture of the dumbell model introdu
ed in Chap-

ter 1, the authors of Ref. [251℄ generalise in a re
ent paper the 
on
ept of fragmentation

of the magneti
 �eld asso
iated to the magneti
 moments for Ising-like pyro
hlore 
om-

pounds. Fo
using on a single tetrahedron, the magneti
 moment density M 
an be

written a

ording to the Helmholtz de
omposition, i.e. a 
url-free � or divergen
e-full

� and a divergen
e-free 
omponents [251℄ that is to say a transverse and a longitudinal

part of the lo
al magnetisation:

M = ∇Ψ+∇×Q = Mm +Md. (6.6)

The �rst 
ontribution Mm arises from the gradient of a s
alar potential and repre-

sents the resulting magneti
 
harge of the dumbell model, and the se
ond one Md, the

divergen
e-free part, is a dipolar �eld. In the trivial 
ase of the i
e rule, i.e. the two-

in/two-out spin 
on�guration, the longitudinal part of the de
omposition vanishes, i.e.

Mm = 0 and we have ∇ ·B = ∇ ·M = 0. In the spin-i
e 
ase, an ex
itation 
onsists

on breaking the i
e-rule by �ipping a spin, and thus lead to the nu
leation of a pair

of magneti
 monopoles. The two 
omponents of the de
omposition of Eq. 6.6 do not
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Figure 6.1: Illustration of the three-in-one-out spin 
on�guration (left) in terms of the

dumbell model (middle) and Helmholtz de
omposition into a stati
 magneti
 
harge

modelling the long-range order and a �u
tuating dipolar �eld illustrating monopole

dynami
s. Pi
ture taken from Ref. [251℄.

vanish, as illustrated in Fig. 6.1, leading to the 
oexisten
e of a stati
 �eld arising from

the magneti
 
harge at the 
enter of the tetrahedron and a dipolar �eld illustrating the

dynami
al nature of a �uid of magneti
 monopoles. Then, when two monopoles are nu-


leated, i.e. the all-in-all-out spin 
on�guration, the divergen
e-free part is suppressed

and only the longitudinal part of the de
omposition survives, i.e. a lo
al stati
 �eld

arising from the 
entral magneti
 
harge leading to a magneti
 long-range order, with-

out a dynami
al dipolar �eld. Therefore, sin
e the muon spin pre
ession o

urs around

only a stati
 �eld, spontaneous os
illations are observed as in the 
ase of Nd2Sn2O7.

On the other side, the �u
tuations of the dipolar �eld driven by the magneti
 monopole

dynami
s 
ould lead to the absen
e of the expe
ted os
illations in zero-�eld µSR mea-

surements. Let us fo
us on the 
ase of Yb2Ti2O7 and Yb2Sn2O7 where the spontaneous

magneti
 moment msp(0) has been found to lie at 44◦ and 65◦ with a magnitude of 1.15

and 1.1 µB, respe
tively, see Chapter 1. The proje
tion of the spontaneous magneti


moment over the [111℄ axis lead to m111(0) = 0.83 and 0.46 µB, respe
tively. Hen
e,

the magnitude of the transverse part of the Helmholtz de
omposition is not negligible

and may explain the absen
e of spontaneous os
illations in the magneti
 ordered state.

In 
ontrast, m111(0) = 5.3 µB for Tb2Sn2O7 and the origin of the dynami
al nature of

the lo
al �eld 
ould not be supported with this interpretation.

Note that we do not dis
uss the 
ase of Er2Sn2O7 sin
e the long-range nature is

not fully established at the time of writing, and Er2Ti2O7 where the shape of the µSR
spe
tra is misunderstood and 
ould be asso
iated to a 
omplex �eld distribution at the

muon site.

6.3 Origin of spin dynami
s

In the 
ase of Ising spins with antiferromagneti
 intera
tions, the all-in-all-out magneti


stru
ture has been predi
ted with a magneti
 propagation waveve
tor kmag = (0, 0, 0),
see Chapter 1, in agreement with our neutron di�ra
tion analysis on Nd2Sn2O7. How-

ever, this pi
ture is barely 
ompatible with �rst, the persisten
e of spin dynami
s re-

vealed by the temperature independent behaviour of the spin-latti
e relaxation rate

inferred from µSR experiments and as
ribed to one-dimensional spin loops ex
itations,

and se
ondly with the magnon-like dependen
e observed in the low temperature range

of the spe
i�
 heat.

Nd2Sn2O7 is a Kramers ion, i.e. energy levels are at least double degenerate. Hen
e,
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the ground state doublet 
an be des
ribed by an e�e
tive spin Sµ
(µ = x, y, z) [163℄.

As mentioned in Chapter 3, wavefun
tions of a given doublet are related by an odd

time reversal operator. However, the nature of the Kramers ground state doublet is

de�ned by the symmetries of the lo
al point group at the rare earth site, here D3d whi
h

are generated by a threefold symmetry axis C3, a mirror M and an inversion 
enter I.
Looking how the e�e
tive spin operator is transformed under these symmetries de�nes

the nature of the doublet. In most 
ases, these transformations operate as follows:

C3, I : Sµ → Sµ

M : Sµ → −Sµ. (6.7)

Therefore, the e�e
tive spin behaves as a magneti
 dipole and the ground state doublet

is 
alled dipolar. The authors of Ref. [252℄ have 
onsidered an other kind of Kramers

doublet, the dipolar-o
tupolar doublet where the symmetries of the point group a
t on

the e�e
tive spin in the same manner as de�ned in Eq. 6.7 ex
ept for the y 
omponent

of the e�e
tive spin under a mirror operation:

M : Sy → Sy. (6.8)

The authors of Ref. [252℄ have expressed Sy
in terms of an o
tupolar tensor, hen
e

the doublet denomination. Moreover, they have shown that in the 
ase of the point

group D3d, if J = 9/2 or 15/2, if the 
rystal �eld parameter B2
0 < 0, and if this pa-

rameter is larger than the other 
rystal-ele
tri
-�eld parameters involved in the Stevens

Hamiltonian of Eq. 3.12, then the Kramers ground state is a dipolar-o
tupolar dou-

blet. As seen in Chapter 3, this is the 
ase of Dy2(Ti,Sn)2O7. Whether Nd2Sn2O7 is

a dipolar-o
tupolar ground state doublet or not is an open question. Despite the fa
t

that we do not su

eed to in
lude this 
ompound in our global analysis looking for

a single set of CEF parameters, and sin
e 
onsidering the e�e
t of ex
ited multiplets

was out of the s
ope of this work, we may assume that Nd2Sn2O7 is 
losely related to

Nd2Ir2O7, the latter 
ompound ful�lling the 
ondition of a dipolar-o
tupolar Kramers

ground state [253℄.

The aim is to diagonalise the general anisotropi
 ex
hange Hamiltonian introdu
ed

in Eq. 1.12 in the spe
i�
 
ase of a dipolar-o
tupolar doublet. This Hamiltonian 
an

be redu
ed by means of the symmetry properties of the e�e
tive spin to the so-
alled

XYZ model:

HXYZ =
∑

i,j

J̃xS
x
i S

x
j + J̃yS

y
i S

y
j + J̃zS

z
i S

z
j , (6.9)

where Izz = J̃z, I± = −1
4
(J̃x + J̃y), I±± = 1

4
(J̃x − J̃y), and Iz± = 0. Therefore, using

quantum Monte Carlo 
al
ulations, the authors of Ref. [252℄ have 
omputed the XYZ

phase diagram, illustrated in Fig. 6.2. In a spe
i�
 range of parameters the all-in-all-out

phase is predi
ted, thus 
oexisting with the presen
e of transverse ex
hange 
oupling


onstants and 
ould slightly tilt the spins away from its Ising dire
tion, explaining

the dynami
s observed in the ordered phase. Therefore, the determination of these

ex
hange parameters should be interesting for Nd2Sn2O7.
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Figure 6.2: Phase diagram resulting from the XYZ model. The dotted line refers to the

XXZ model introdu
ed by Hermele et al. [54℄, see Chapter 1. All-in-all-out, quantum

spin i
e, and o
tupolar antiferromagneti
 phases are predi
ted. Reprinted �gure with

permission from Ref. [252℄. Copyright 2015 by the Ameri
an Physi
al So
iety.

6.4 A magneto-elasti
 mode: solving the Tb2Ti2O7


ase

We have seen in Chapter. 5 that no broadening of Bragg peaks exist down to T = 4 K

and thus the Jahn-Teller transition expe
ted at lower temperatures is not 
on�rmed.

The s
enario proposing that Tb2Ti2O7 is a realisation of a quantum spin i
e is put in a

di�
ult position sin
e no 
lear eviden
e of a magnetisation plateau has been eviden
ed.

Using polarised neutrons on a triple-axis spe
trometer, a re
ent work [236℄ has revealed

the existen
e of a dispersive ex
itation slightly above the �rst ex
ited 
rystal-ele
tri
-

�eld energy level at T = 50 mK. This mode 
arries magneti
 transverse �u
tuations

in the waveve
tor region (220) whereas a transverse phonon-like mode 
ontributes at

higher q-values. Sin
e these two 
ontributions overlap, the authors of Ref. [236℄ suggest
they have a 
ommon origin, i.e. a magneto-elasti
 mode (MEM) as it 
arries both

magneti
 and stru
tural �u
tuations.

6.5 New perspe
tives: the spinel 
ompounds

An interesting dire
tion to prospe
t is the study of spinel 
ompounds of 
hemi
al for-

mula CdR2X4 where R is a lanthanide and X = S or Se. They have the same magneti


frustrated latti
e as the pyro
hlore 
ompounds, i.e. magneti
 ions sit on a 
orner-

sharing tetrahedra network, but the lo
al environment around the rare earth ion is dif-

ferent leading to di�erent 
rystal-ele
tri
-�eld properties, see the left panel of Fig. 6.3.

For instan
e, whereas the pyro
hlore 
ounterpart Er2Ti2O7 exhibits a magneti
 long-

range order at Tc = 1.2 K, see Chapter 1, a spin-i
e behaviour has been dis
overed in

CdEr2Se4 [254℄ sin
e no long-range order is eviden
ed by spe
i�
 heat measurements and

the residual magneti
 entropy is in agreement with the predi
tion of the two-in/two-out


lassi
al spin i
e ground state. Hen
e, the spin anisotropies in spinel 
ompounds that

arise from the 
rystal-ele
tri
-�eld seem drasti
ally di�erent to those of the pyro
hlore
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Figure 6.3: Left: lo
al environment at the rare earth site of spinel 
ompounds of 
hem-

i
al formula CdR2X4, where R is a lanthanide and X = S, Se. Cd, R, and X are

displayed by green, blue, and red spheres respe
tively. Right: temperature depen-

den
e of the spe
i�
 heat measured on CdHo2S4 showing the magneti
 transition at

Tc = 0.87 K, and displayed on the left ordinate axis by half-�lled blue 
ir
les. The

temperature behaviour of the spin-latti
e relaxation rate dedu
ed from zero and 5 mT

longitudinal �eld µSR measurements is reported on the right ordinate axis with empty

and full red 
ir
les, respe
tively. Pi
ture modi�ed from Ref. [212℄.


ompounds. Therefore, looking for new exoti
 magneti
 ground states, a systemati


study of the 
ompounds Cd2R2X4 (where R = Ho or Yb and X = S or Se) has been

undertaken during this PhD thesis in
luding bulk and µSR measurements. As an ex-

ample, if holmium based pyro
hlore 
ompounds are undoubtedly 
lassi�ed as 
lassi
al

spin-i
e, CdHo2S4 shows a magneti
 transition at Tc = 0.87 K. In addition, and simi-

larly to Nd2Sn2O7, unidimensional spin loops ex
itations are argued to be at the origin

of spin dynami
s, sin
e the spin latti
e relaxation rate inferred from µSR experiments

is temperature independent, as shown in the right panel of Fig. 6.3.



Appendix A

Crystallography of the pyro
hlore


ompounds

Details of the 
rystallographi
 stru
ture of the pyro
hlore 
ompounds are provided in

this appendix. We re
all that magneti
 ions lie at the verti
es of a 
orner-sharing tetra-

hedra network giving rise to a realisation of a three dimensional geometri
ally frustrated

latti
e. The generi
 
hemi
al formula is R2M2(O1)6(O2) � the two nonequivalent 
rys-

tallographi
 sites for oxygen atoms are labelled O1 and O2 � where R is a magneti


ion, a rare earth, and M = Ti or Sn in this work. The pyro
hlore 
ompounds 
rys-

tallise in the fa
e 
entred 
ubi
 latti
e (f

), labelled F in the Bravais notation. The

spa
e group is Fd3̄m, where the rare earth ions o

upy the trigonal Wy
ko� site 16c,

hara
terised by the lo
al point group D3d. We have 
hosen the origin of the latti
e at

the site symmetry .3̄m, and at the Wy
ko� site 16c of the atom M : this 
orresponds

to the origin 2 in the International Tables for Crystallography. The list of the atomi


positions in the Wy
ko� notations, the lo
al site symmetry and 
oordinates in the unit


ell are given in Tab. A.1. To re
over all the atomi
 positions in the unit 
ell, one has

to apply the latti
e translations asso
iated to the f

 stru
ture (1
2
, 1
2
, 0), (1

2
, 0, 1

2
), and

(0, 1
2
, 1
2
). The unit 
ell gathering all the atoms is shown in the left panel of Fig. A.1.

Oxygen atoms O1 lo
ated in the 48f site in Wy
ko� notations have a parameter x to be

de�ned, i.e. x ≈ 1/3 in our 
ase, and are rare-earth neighbours lo
ated in the vi
inity

of a plane perpendi
ular to the lo
al trigonal [111℄ axis, as illustrated in the right panel

of Fig. A.1, where the lo
al environment at the rare earth site is shown. We will de�ne

this dire
tion as the quantisation axis z. In Fig. A.2 is displayed a proje
tion along the

[111℄ axis of the pyro
hlore stru
ture revealing a sequen
e of alternatively triangular

and Kagome planes, where the magneti
 ions sit.
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Atoms Wy
ko� sites Site symmetry 
oordinates

R 16d .3̄m
1

2
,

1

2
,

1

2

1

4
,

3

4
,0

3

4
,0,

1

4
0,
1

4
,

3

4

M 16c .3̄m 0,0,0
3

4
,

1

4
,

1

2

1

4
,

1

2
,

3

4

1

2
,

3

4
,

1

4

x,
1

8
,

1

8
x̄+

3

4
,

1

8
,

5

8

1

8
,x,

1

8

5

8
,x̄+

3

4
,

1

8

1

8
,

1

8
,x

O1 48f 2.mm
1

8
,

5

8
,x̄+

3

4

7

8
,x+

1

4
,

3

8

7

8
,x̄,

7

8
x+

3

4
,

3

8
,

3

8

x̄+
1

2
,

7

8
,

3

8

7

8
,

3

8
,x̄+

1

2

3

8
,

3

8
,x+

3

4

O2 8b 4̄3m
3

8
,

3

8
,

3

8

1

8
,

5

8
,

1

8

Table A.1: Atomi
 positions in Wy
ko� notations, point symmetry and Cartesian 
o-

ordinates of atoms belonging to the primitive 
ell. The two types of oxygen atoms are

labelled O1 and O2. Note that x, whi
h is used to spe
ify the O1 oxygen 
oordinates, is

a free parameter. Both the rare earth ions R and the atoms M are lo
ated at positions

of symmetry 3̄m. We take the atom M at the origin of the latti
e.

[111]

R

M

O

Figure A.1: Left: Crystallographi
 stru
ture of the pyro
hlore 
ompound R2M2O7. The

blue, red and green spheres show the rare earth magneti
 ions, the atoms M =Ti or Sn,
and the oxygen atoms, respe
tively. Right: Lo
al environment at the rare earth site.

The threefold symmetry axis [111℄ is the quantisation axis.
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[111]

Figure A.2: Proje
tion of the pyro
hlore

stru
ture along the [111℄ axis: in this

panel is only shown magneti
 ions belong-

ing alternatively to triangular (red and

green spheres) and Kagome (blue spheres)

planes.



Appendix B

The point 
harge model

In this appendix, we fo
us our attention on the determination of the 
rystal-ele
tri
-

�eld Hamiltonian HCEF. The 
rystal-ele
tri
-�eld a
ting at the rare earth site results

from the surrounding ele
tri
 
harge distribution, see the left panel of Fig. 3.1. The

symmetry at the rare earth site is de�ned by the point group D3d. The z axis is taken

to be the lo
al trigonal axis [111℄. We will assume that the ele
tri
 �eld distribution

results from point 
harges surrounding the magneti
 ions. The CEF potential taken at

a latti
e point (r, θ, φ) 
lose to a magneti
 ion is 
al
ulated as:

VCEF(r, θ, φ) =
∑

i

qi
|Ri − r| , (B.1)

where the sum runs over the surrounding 
harges lo
ated at a distan
e Ri from the rare

earth site. The origin is taken at the rare earth site. Fig. B.1 sket
hes the di�erent spa-

tial variables of the problem. Thus, within the assumption that Ri ≫ r the Coulombi

potential 
an be developed as [255℄:

1

|Ri − r| =
∞
∑

n=0

rn

Rn+1
i

Pn(cosωi), (B.2)

where Pn(cosωi) are the Legendre polynomials, ωi is the angle between Ri and r and

related to their spheri
al 
oordinates as:

cosωi = cos θ cos θi + sin θ sin θi cos(φ− φi) (B.3)

Thus, using the formula known as the spheri
al harmoni
 addition theorem, see for

instan
e Ref. [256℄, Legendre polynomials are related to the spheri
al harmoni
s as:

Pn(cosωi) =
4π

(2n+ 1)

n
∑

m=−n

(−1)mY −m
n (θi, φi)Y

m
n (θ, φ). (B.4)

The Legendre polynomials are de�ned with the Rodriguez formula [256℄:

Pn(z) =
1

2nn!

dn

dzn
(z2 − 1)n, (B.5)

where here z = cosωi. The asso
iated Legendre polynomials are de�ned as:

Pm
n (z) = (−1)m(1− z2)m/2 dm

dzm
Pn(z). (B.6)
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z  || [111]

x

y

r
θ

φ

Ri

θ i

φ i

Figure B.1: Lo
al frame with the origin taken at the rare earth site. The z axis is

parallel to the [111℄ dire
tion, a lo
al trigonal symmetry axis at the rare earth site.

The 
rystal-ele
tri
-�eld potential is 
al
ulated at the latti
e point (r, θ, φ), displayed
in blue. The 
oordinates (Ri, θi, φi) of a surrounding ele
tri
 
harge are shown in red.

Note that Pn(z) ≡ P 0
n(z). Thus, the spheri
al harmoni
s result from the asso
iated

Legendre polynomials as [164℄:

Y m
n (θ, φ) = (−1)(m+|m|)/2

[

(2n+ 1)(n− |m|)!
2(n+ |m|)!

]
1
2 1

(2π)
1
2

P |m|
n (cos θ) exp(imφ). (B.7)

Therefore the CEF potential is written as:

VCEF(r, θ, φ) =
∑

n

n
∑

m=−n

rnγ′
nmY

m
n (θ, φ) where,

γ′
nm =

∑

i

4π

(2n+ 1)

qi

R
(n+1)
i

(−1)mY −m
n (θi, φi). (B.8)

Looking at Eq. B.7, imaginary 
oe�
ients are present. In order to avoid them later, we

re
ast Eq. B.8 in terms of tesseral harmoni
s Z l
n de�ned as:

Z0
n = Y 0

n ,

Z±|m|
n =

√

±1

2
[Y −|m|

n ± (−1)|m|Y |m|
n ], (B.9)

where we use the 
onvention

√
−1 = i. Therefore, Eq. B.8 transforms into:

VCEF(r, θ, φ) =
∑

n

n
∑

m=−n

rnγnmZ
m
n (θ, φ), where

γnm =
∑

i

4π

(2n+ 1)

qi

R
(n+1)
i

Zm
n (θi, φi). (B.10)
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Then, the perturbative CEF Hamiltonian a
ting on the magneti
 ion is:

HCEF = − e

4πε0

∑

j

VCEF(rj, θj , φj), (B.11)

where the summation runs over ele
trons of the un�lled 4f ele
troni
 shell.

We fo
us in the following on the ground state multiplet de�ned by the basis |L, S, J,mJ〉.
In order to 
al
ulate matrix elements of HCEF within this basis, we use the operator

equivalent method whi
h derives from the Wigner-E
kart theorem [163℄. The tesseral

harmoni
s 
an be expressed in terms of Cartesian 
oordinates:

∑

j

rnZm
n (θj , φj) =

∑

j

pmn f
m
n (xj , yj, zj), (B.12)

where pmn is a prefa
tor and fm
n (xj , yj, zj) a polynomial fun
tion (see Tab.8 of Ref. [164℄

for instan
e). The expressions of Zm
n 
an be found for instan
e in Ref. [164℄. The

method 
onsists in repla
ing 
oordinates x, y, and z by the operators Jx, Jy, and Jz.
1

Note that we must take into a

ount the non
ommutation of these operators. Therefore,

produ
ts involving for instan
e xy must be repla
ed by a linear 
ombination of JxJy.

Consequently, we have:

〈L, S, J,mJ |
∑

j

rnZm
n (θj , φj)|L, S, J,mJ〉 ≡ Θn〈rn〉〈L, S, J,mJ |Om

n |L, S, J,mJ〉,

(B.15)

where Θn (denoted in Ref. [164℄ as αJ , βJ and γJ for n = 2, 4, 6, respe
tively) are the
Stevens multipli
ative fa
tors given in Tab. B.1, 〈rn〉 is the expe
tation value of the

nth power distan
e between the nu
leus of the magneti
 ion and the 4f ele
troni
 shell.

The latter has been 
omputed in Ref. [257℄ and is listed in Tab. B.2.

The Stevens operators are labelled Om
n and are expressed in terms of powers of Jz,

J+, and J−. As example, we fo
us on Z0
2 :

∑

j

r2jZ
0
2 (θj, φj) =

∑

j

f 0
2 (xj , yj, zj) =

1

4

√

5

π
(3z2−r2) ≡ Θ2〈r2〉[3J2

z −J(J+1)]. (B.16)

Therefore, the CEF Hamiltonian 
an be expressed in terms of Stevens operators:

HCEF =
∑

nm

[Am
n 〈rn〉Θn]O

m
n (B.17)

1

Rather than using Jx and Jy, we introdu
e the raising and lowering spin operators de�ned as:

J+ = Jx + iJy,
J− = Jx − iJy. (B.13)

Therefore, matrix elements 
an be 
omputed as:

J+|L, S, J,mJ〉 =
√

J(J + 1)−mJ(mJ + 1)|L, S, J,mJ + 1〉,
J−|L, S, J,mJ〉 =

√

J(J + 1)−mJ(mJ − 1)|L, S, J,mJ − 1〉,
Jz|L, S, J,mJ〉 = mJ |L, S, J,mJ〉. (B.14)
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Rare earth Pr

3+
Nd

3+
Tb

3+
Dy

3+

Θ2(−) −2.101.10−2 −6.428.10−3 −1.010.10−2 −6.349.10−3

Θ4(−) −7.346.10−4 −2.911.10−4 1.224.10−4 −5.920.10−5

Θ6(−) 6.099.10−5 −3.799.10−5 −1.121.10−6 1.035.10−6

Rare earth Ho

3+
Er

3+
Tm

3+
Yb

3+

Θ2(−) −2.222.10−3 2.540.10−3 1.010.10−2 3.175.10−2

Θ4(−) −3.330.10−5 4.440.10−5 1.633.10−4 −1.732.10−3

Θ6(−) −1.294.10−6 2.070.10−6 −5.606.10−6 1.480.10−4

Table B.1: Stevens multipli
ative fa
tor Θn for some rare earths of interest [258℄.

〈rn〉(an0 ) Pr

3+
Nd

3+
Gd

3+
Tb

3+
Dy

3+
Ho

3+
Er

3+
Tm

3+
Yb

3+

〈r2〉(a20) 1.086 1.114 0.8671 0.8220 0.7814 0.7446 0.7111 0.6804 0.6522
〈r4〉(a40) 2.822 2.910 1.820 1.651 1.505 1.379 1.270 1.174 1.089
〈r6〉(a60) 15.73 15.03 7.831 6.852 6.048 5.379 4.816 4.340 3.932

Table B.2: List of the expe
tation values of the nth power distan
e between the nu
leus

of the magneti
 ion and the 4f ele
troni
 shell for some rare earths of interest. They

are expressed in atomi
 units (a0 = 52.9 pm). Data are taken from Ref. [257℄.

where we have introdu
ed:

Am
n = − e

4πε0
pmn γ

m
n = − e

4πε0
pmn
∑

i

4π

(2n + 1)

qi

R
(n+1)
i

Zm
n (θi, φi). (B.18)



Appendix C

Neutron absorption 
orre
tion

Here are presented how the neutron absorption has been taken into a

ount in the

neutron time-of-�ight experiments. The powder samples �ll an annular sample holder.

We �rst introdu
e the 
ase of a re
tangular sample sin
e, in the following, we will 
on-

sider an elementary re
tangular se
tion to 
al
ulate the absorption in a more 
omplex

geometry.

C.1 Re
tangular geometry

First we 
onsider a re
tangular sample of thi
kness d. An in
ident neutron with a

waveve
tor ki is s
attered at the position x with a waveve
tor kf , see Fig.C.1.

Assuming a s
attering angle φ = 0, the absorption 
orre
tion fa
tor is 
al
ulated as

the inverse of the transmission fa
tor A = I
I0
[259℄:

A =
1

d

∫ d

0

e−Σxe−Σ′(d−x)dx =
1

d

e−Σ′d − e−Σd

Σ− Σ′ , (C.1)

where Σ and Σ′
are respe
tively the in
ident and �nal total absorption 
ross se
tions

de�ned as:

Σ =
Nf

v0
f

λ

1.8

∑

i

ciσa,i, (C.2)

where Nf is the number of formula units in the 
ell of volume v0, f is the �lling fa
tor

de�ned as the ratio of the powder density over the 
rystal density, σa,i is the absorption


ross se
tion of atom i 
ontained ci times in the 
hemi
al formula. Note that λ = λi

(in Å in the formula) for the 
al
ulation of Σ and λ = λf for Σ
′
.

C.2 Annular geometry

One of the advantages to 
hoose a annular geometry is that the angular dependen
e of

the absorption 
orre
tion fa
tor is very small, as shown by simulations. We will negle
t

it in the following whi
h permits to 
al
ulate analyti
ally the absorption 
orre
tion

fa
tor. A se
tion of a half-
ylinder is displayed in Fig. C.2. We �rst 
onsider an

elementary area with a length d where the neutron s
attering pro
ess o

urs. The

sample mass has been 
al
ulated su
h that the probability of neutron s
attering is lower
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Figure C.1: Neutron s
attering in a re
tangular sample.

than 10 % and therefore multiple s
attering pro
esses are negle
ted. As Rin → Rout, we

estimate the elementary se
tion to be re
tangular and the absorption 
orre
tion fa
tor

is then 
al
ulated as the inverse of the transmission fa
tor α′ =
∫

α(y)dy, where α(y)
is the elementary re
tangular transmission fa
tor 
al
ulated with the help of Eq. C.1.

Two 
ases are 
onsidered, see Fig.C.2: either the neutron passes through the sample

without dis
ontinuity (1) or not (2). In the �rst 
ase, the neutron path is 
al
ulated as:

d1(y) = 2
√

R2
out − y2 (C.3)

In the se
ond 
ase, two situations have to be taken into a

ount whether the neutron

is s
attered in its �rst or se
ond path in the sample. In both 
ases the neutron path is


al
ulated as:

d2(y) = L =
√

R2
out − y2 −

√

R2
in − y2 (C.4)

Then, integrating over the half-
ylinder, we get the transmission fa
tor:

A′

2
=

2

π(R2
out −R2

in)

{
∫ Rin

0

dy
e
−Σ′

(√
R2

out−y2−
√

R2
in−y2

)

− e
−Σ

(√
R2

out−y2−
√

R2
in−y2

)

Σ− Σ′

×e
−Σ

(√
R2

out−y2−
√

R2
in−y2

)

+

∫ Rin

0

dy
e
−Σ′

(√
R2

out−y2−
√

R2
in−y2

)

− e
−Σ

(√
R2

out−y2−
√

R2
in−y2

)

Σ− Σ′ e
−Σ′

(√
R2

out−y2−
√

R2
in−y2

)

+

∫ Rout

Rin

dy
e−2Σ′

√
R2

out−y2 − e−2Σ
√

R2
out−y2

Σ− Σ′

}

(C.5)
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Figure C.2: S
heme of a se
tion of an half-
ylinder where neutron s
attering o

urs in an

elementary surfa
e (red). Rin and Rout are the internal and external radii, respe
tively.

The index (1) and (2) refer to the two possible neutron paths, as explained in the text.

The �rst and se
ond integrals of Eq. C.5 a

ount for the neutron path labelled (2)

in Fig.C.2. Two integrals are needed to take into a

ount whether the neutron is

inelasti
ally s
attered the �rst or se
ond time it en
ounters the sample. The third

integral a

ounts for the neutron path labelled (1). Thus Eq. C.5 is simpli�ed as:

A′

2
=

1

π(R2
out −R2

in)

{
∫ Rin

0

dy
e
−2Σ′

(√
R2

out−y2−
√

R2
in−y2

)

− e
−2Σ

(√
R2

out−y2−
√

R2
in−y2

)

Σ− Σ′

+

∫ Rout

Rin

dy
e−2Σ′

√
R2

out−y2 − e−2Σ
√

R2
out−y2

Σ− Σ′

}

(C.6)



Appendix D

Complements to magneti
 di�ra
tion

D.1 Elements of group theory

In this se
tion, some basi
 
on
epts of group theory applied to the determination of the

magneti
 stru
ture of a pyro
hlore 
ompound are introdu
ed.

In the paramagneti
 phase, magneti
 moments are disordered but magneti
 �u
-

tuations exist at short length and are 
lassi�ed by modes 
ompatible with the 
rystal

symmetries. When a 
ompound undergoes a se
ond-order magneti
 phase transition,

a

ording to the Landau theory, one of these modes is sele
ted while the others vanish.

Using group theory, to ea
h mode 
orresponds an Irredu
ible Representation (IR) of

the group symmetry. Thus the symmetry in the ordered phase is lowered to a subgroup

of the 
rystallographi
 group.

The pyro
hlore 
ompounds 
rystallise in the fa
e-
entred 
ubi
 latti
e (Fd3̄m spa
e

group). This spa
e group gathers 48 symmetry operations gi. Considering a magneti


propagation waveve
tor kmag = (0, 0, 0), the subgroup Gk, 
alled the little group is

determined by gathering all the symmetry operations leaving kmag invariant, i.e. it is

the whole spa
e group Fd3̄m. With the help of Kovalev's book [260℄, we �nd the IR

Γ
(µ)
ν where µ is the order of the representation and ν an arbitrary index to label the

di�erent IRs. Note that in this book are a
tually tabulated the loaded representations

Γ̂
(µ)
ν de�ned as:

d(µ)ν (gi) = d̂(µ)ν (gi) exp(−kmag.h), (D.1)

where d
(µ)
ν (gi) and d̂

(µ)
ν (gi) are respe
tively the matrix representation of the symmetry

element gi in the representation Γ
(µ)
ν and Γ̂

(µ)
ν , and h represents the translational part

of the symmetry operator to whi
h d
(µ)
ν (gi) is asso
iated [261℄. Gk 
an be de
omposed

into ten one-, two- or three-dimensional IR Γ
(µ)
ν (µ = 1, 2, 3). Cal
ulating the tra
e of

the matrix representations of all the symmetry operators written for a IR permits to

extra
t the 
hara
ter χ
Γ
(µ)
ν

of the 
onsidered IR.

On the other hand, we determine the magneti
 representation Γ(Gk) ofGk des
ribing

the results of the symmetry operators on the 
omponents of the magneti
 moments.

As the 
rystallographi
 
ell 
ontains four magneti
 ions, the 48 symmetry operators are

des
ribed by matri
es of dimension 4 × 3 = 12. To get the 
hara
ter table of Γ(Gk),
we 
al
ulate the tra
e χΓ for ea
h matrix representation of symmetry operators. This
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IR basis Atom j = 1 Atom j = 2 Atom j = 3 Atom j = 4
ve
tor

mx my mz mx my mz mx my mz mx my mz

Γ3 Ψ1,j 1 1 1 −1 −1 1 −1 1 −1 1 −1 −1

Γ5 Ψ2,j 1 e
4iπ
3 e

2iπ
3 −1 e

iπ
3 e

2iπ
3 −1 e

4iπ
3 e

5iπ
3

1 e
iπ
3 e

5iπ
3

Ψ3,j e
2iπ
3

1 e
4iπ
3 e

5iπ
3 −1 e

4iπ
3 e

5iπ
3

1 e
iπ
3 e

2iπ
3 −1 e

iπ
3

Γ7 Ψ4,j 1 −1 0 −1 1 0 1 1 0 −1 −1 0

Ψ5,j 0 1 −1 0 1 1 0 −1 −1 0 −1 1

Ψ6,j −1 0 1 −1 0 −1 1 0 −1 1 0 1

Γ9 Ψ7,j 1 1 0 −1 −1 0 1 −1 0 −1 1 0

Ψ8,j 0 0 1 0 0 1 0 0 1 0 0 1

Ψ9,j 0 1 1 0 1 −1 0 −1 1 0 −1 −1
Ψ10,j 1 0 0 1 0 0 1 0 0 1 0 0

Ψ11,j 1 0 1 1 0 −1 −1 0 −1 −1 0 1

Ψ12,j 0 1 0 0 1 0 0 1 0 0 1 0

Table D.1: The non-normalised basis ve
tors asso
iated to the IRs using the BasIREPS

program [130℄. The rare-earth atoms 1, 2, 3 and 4 are lo
ated respe
tively at positions

(x, y, z), (−x+ 3
4
,−y + 1

4
, z + 1

2
), (−x+ 1

4
, y + 1

2
,−z + 3

4
), and (x+ 1

2
,−y + 3

4
,−z + 1

4
).

representation is redu
ible if

1

d

∑

gi

|χΓ|2 6= 1, (D.2)

where d is the order of Gk (in our 
ase, d = 12). Expressing the matrix of Γ(Gk) in a

blo
k form permits to de
ompose it along the allowed irredu
ible representations Γ
(µ)
ν :

Γ(Gk) =
∑

ν

aνΓ
(µ)
ν , (D.3)

with

aν =
1

d

∑

gi∈Gk

χΓ(gi)χ
⋆

Γ
(µ)
ν

(gi), (D.4)

whi
h denotes the number of times a IR appears in the de
omposition. In the 
ase


onsidered, we get:

Γ(Gk) = 1Γ
(1)
3 + 1Γ

(2)
5 + 1Γ

(3)
7 + 2Γ

(3)
9 . (D.5)

IR Γ3, Γ5, Γ7 and Γ9 are respe
tively of dimension 1, 2, 3 and 3. Thus the basis ve
tors

Ψν,j (ν labelling the basis ve
tor and j referring to the atom 
onsidered) of ea
h IR

are 
al
ulated with the proje
tion operator formula [261, 262℄. These group-theory


al
ulations are a

omplished for instan
e by the BasIREPS [130℄ or SARAh [263℄

programs. The basis ve
tors Ψν,j of ea
h IR of interest are listed in Tab D.1.

The magneti
 moment mj at site j is a linear 
ombination of the basis ve
tors Ψν,j

of the IR of interest. Re
alling that kmag = (0,0,0), when the 
omponents of Ψν,j are

real numbers,

mj =
∑

µ

aµΨµ,j , (D.6)
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where aµ are real numbers to be determined. There are as many µ values as the number

of Ψµ,j ve
tors in the sele
ted IR. For example, µ runs from 4 to 6 for the Γ7 IR; see

Table D.1. In the 
ase where the 
omponents of Ψµ,j have imaginary parts, the magneti


moment being a real quantity, we have to introdu
e a 
orresponding basis ve
tor for

propagation ve
tor −kmag (see, e.g. Ref. [137℄) with

mj =
∑

µ

aµ
2

[

2Re{Ψkmag

µ,j } cos(−2πkmag · τ ) + 2Im{Ψkmag

µ,j } sin(−2πkmag · τ )
]

, (D.7)

where τ is a latti
e translation ve
tor. Sin
e here kmag = (0, 0, 0):

mj =
∑

µ

aµRe{Ψkmag

µ,j }, (D.8)

where aµ are real numbers.

D.2 BasIREPS vs SARAh

For the sake of 
larity, we report here some minor di�eren
es in the use of the two

programs previously 
ited.

For a magneti
 ion pla
ed in (x, y, z), BasIREPS 
al
ulates the positions of the three
other magneti
 ions in (−x+ 3

4
,−y+ 1

4
, z+ 1

2
) (−x+ 1

4
, y+ 1

2
,−z+ 3

4
), and (x+ 1

2
,−y+

3
4
,−z + 1

4
) for atomi
 sites labelled 1, 2, 3 and 4 respe
tively. Using SARAh, with the

same labelling, the three other magneti
 ions are lo
ated in (x + 1
2
,−y + 3

4
,−z + 1

4
),

(−x+ 1
4
, y+ 1

2
,−z + 3

4
) and (−x+ 3

4
,−y+ 1

4
, z+ 1

2
) (atomi
 sites 2 and 4 are inverted).

Furthermore, for IR Γ5, Γ7 and Γ9, the basis ve
tors Ψ
S
given by SARAh are a linear


ombination of basis ve
tors Ψ given by BasIREPS:































ΨS
2 = 1

3
(Ψ2 −Ψ3), ΨS

8 = −Ψ9 + 2Ψ10,
ΨS

3 = Ψ2 +Ψ3, ΨS
9 , = Ψ11 +Ψ12,

ΨS
4 = −Ψ5, ΨS

10, = −Ψ11 + 2Ψ12,
ΨS

5 = −Ψ6, ΨS
11, = Ψ7 +Ψ8,

ΨS
6 = −Ψ4, ΨS

12, = −Ψ7 + 2Ψ8,
ΨS

7 = Ψ9 +Ψ10.

(D.9)

D.3 Analyti
al eviden
e for IR Γ3 sele
tion in Nd2Sn2O7

In the following, using analyti
al 
omputations we show that only the Γ3 IR 
an provide

a proper des
ription of Nd2Sn2O7 magneti
 di�ra
tion data. Our derivation is based

on the experimental fa
t that a large magneti
 intensity is observed at Bragg re�e
tion

(220), while no magneti
 intensity is found at positions (111), (200), and (400) (see left

panel of Fig. 4.8).

1

We �rst re
all the de�nition of the magneti
 stru
ture fa
tor Fmag(q) introdu
ed in

Eq. 2.18, when only one type of magneti
 ion is present as in our 
ase,

Fmag(q) = pfmag(q)Smag(q), (D.10)

1

Magneti
 re�e
tions (111), (200), (220), and (400) are expe
ted at angles 2θ = 23.9, 27.7, 39.5,

and 57.1 degrees respe
tively.
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where the magneti
 s
attering length p is de�ned in Eq. 2.15, and we have introdu
ed:

Smag(q) =
∑

j

m
kmag

j exp(iq · rj) exp(−Wj(q)). (D.11)

Here rj labels the j magneti
 ion position in the unit 
ell. We have introdu
ed the mag-

neti
 form fa
tor fmag(q) of the magneti
 ion. The Fourier 
omponent of the magneti


moment m
kmag

j has been introdu
ed in Eq. 2.16. We will negle
t in the following the

Debye-Waller fa
tor exp(−Wj(q)). Obviously the 
omputed s
attered intensity does

not depend on the 
hoi
e of the origin for the atomi
 positions. Therefore, up to the

end of this se
tion we take a rare-earth ion at position (0,0,0). From the site positions

mentioned in the 
aption of Table D.1, and after applying the latti
e translation of the

fa
e-
entred-
ubi
 stru
ture, the three other magneti
 ions are in the relative positions

(1
4
, 1
4
, 0), (1

4
, 0, 1

4
), and (0, 1

4
, 1
4
). Note that for the sake of simpli
ity the dire
t latti
e


oordinates are given here in units of alat and those in the re
ipro
al latti
e will be

expressed in units of 2π/alat. We also re
all that the magneti
 
ross se
tion is only

sensitive to the 
omponents of Fmag(q) perpendi
ular to q, i.e. to the 
omponent of

Smag(q) perpendi
ular to q sin
e Fmag(q) and Smag(q) are 
ollinear.

We begin with the Γ5 IR. We note that the basis ve
tors asso
iated to this IR have


omplex number 
omponents; see Table D.1. Applying Eq. D.8 together with Eq. D.11

for q = (111) we 
ompute

Smag(111) =





2a2 − a3
−a2 + 2a3
−a2 − a3



 . (D.12)

Ex
ept for the trivial 
ase a2 = a3 = 0, Smag(111) is never 
ollinear to (111). Therefore,
a non vanishing magneti
 intensity is expe
ted at the s
attering ve
tor q = (111) in

ontrast to the experimental observation, ruling out the Γ5 IR.

Looking at the Γ7 IR, we write m
kmag

j = a4Ψ4,j + a5Ψ5,j + a6Ψ6,j (Eq. D.6). For

q = (200), we 
ompute

Smag(200) =





0
−4a4
4a6



 . (D.13)

Unless a4 = a6 = 0, the ve
tor Smag(200) is perpendi
ular to (200), yielding magneti


intensity. Sin
e no magneti
 intensity is experimentally observed at re�e
tion (200), we

must set a4 = a6 = 0. Then only the basis ve
tors Ψ5,j are involved. Let us 
ompute

Smag(q) at q = (111). We get

Smag(111) =





0
2a5
−2a5



 . (D.14)

Obviously, Smag(111) is not 
ollinear to (111). This implies a non vanishing magneti


intensity at this q-value, in 
ontrast to experimental result. Therefore the magneti


stru
ture 
annot be represented by the Γ7 IR.



D.3. ANALYTICAL EVIDENCE FOR IR Γ3 SELECTION IN Nd2Sn2O7 175

We now 
onsider the Γ9 IR. We write m
kmag

j = a7Ψ7,j + a8Ψ8,j + a9Ψ9,j + a10Ψ10,j +
a11Ψ11,j + a12Ψ12,j . Then at q = (200),

Smag(200) =





0
4a7
4a11



 . (D.15)

Sin
e no intensity is measured at this Bragg position, we set a7 = a11 = 0. Considering
now the q = (020) re�e
tion whi
h would give intensity at the same angle as q = (200)
in our powder measurement, we dedu
e a9 = 0.

At q = (400) we 
al
ulate

Smag(400) =





4a10
4a12
4a8



 . (D.16)

Sin
e no magneti
 intensity is dete
ted at this position, we derive a8 = a12 = 0. If we
add the 
ondition that no intensity is observed at q = (040) we have a10 = 0.

Altogether, the magneti
 moments m
kmag

j vanish. Hen
e the magneti
 stru
ture of

Nd2Sn2O7 
annot be des
ribed by the Γ9 IR.

We are left with the Γ3 IR. A

ording to Table D.1 and Eq. D.6, m
kmag

j = a1Ψ1,j.

For q = (111) we get,

Smag(111) = 2a1





1
1
1



 . (D.17)

Hen
e Smag(q = (111)) is 
ollinear to q. This is also the 
ase for all the waveve
tors

equivalent to q = (111), e.g. q = (1̄11). For the q = (200) and symmetry equivalent

positions we also �nd that Smag(q) is 
ollinear to q. Con
erning q = (400) and equiva-

lent re�e
tions, Smag(q) = 0. Therefore no magneti
 intensity is expe
ted at positions

(111), (200) and (400) in the 
ase of the Γ3 IR, in a

ord with the experimental result.

Now, for q = (220) we 
ompute

Smag(220) =





0
0
4a1



 , (D.18)

whi
h is perpendi
ular to q. A similar results holds for the Braggs re�e
tion equivalent

to (220). Therefore the magneti
 neutron intensity will not vanish for this waveve
tor

sin
e q is obviously perpendi
ular to Smag(q).



Appendix E

Complements to µSR

In this appendix, we give some details about the spin-latti
e relaxation rate λZ involved

in the analysis of µSR experiments. In the following, the Z axis refers to the dire
tion

of the muon polarisation, see Se
.2.6.

E.1 Derivation of the spin latti
e relaxation rate

From the strong 
ollision model, the polarisation fun
tion PZ(t) is 
ontrolled by the

following integral equation:

PZ(t) = P stat
Z (t) exp(−νct) + νc

∫ t

0

PZ(t− t′)P stat
Z (t′) exp(−νct

′), (E.1)

where νc is the �eld 
orrelation rate. In the 
ase of a stati
 Gaussian �eld distribution,

with a �eld varian
e ∆2
G, the longitudinal stati
 polarisation fun
tion is given by the

Kubo-Toyabe fun
tion [160℄:

P stat
Z (t) =

1

3
+

2

3
(1− γ2

µ∆
2
Gt

2) exp

(

−γ2
µ∆

2
Gt

2

2

)

, (E.2)

where γµ = 8.51616× 108 rad s

−1
T

−1
is the muon gyromagneti
 ratio. In the motional

narrowing limit, i.e. νc ≫ γµ∆G, Eq. E.1 be
omes:

PZ(t) = exp(−λZt), (E.3)

where the spin-latti
e relaxation rate is λZ = 2γ2
µ∆

2
Gτc and τc = 1/νc. A physi
al

interpretation of λZ is given in Se
. 4.8.2. In the 
ase where a longitudinal �eld Bext =
ωµ/γµ is applied, the longitudinal polarisation fun
tion remains an exponential fun
tion

within the extreme motional narrowing limit, i.e. νct ≫ 1 and the spin-latti
e relaxation
rate is given by the Red�eld formula:

λZ(ωµ = γµBext) =
2γ2

µ∆
2
Gνc

ω2
µ + ν2

c

, (E.4)

Within a quantum approa
h, the longitudinal polarisation fun
tion is expressed

as [160℄:

PZ(t) = exp[−ΨZ(t)], (E.5)

176
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where:

ΨZ(t) = 2π2γ2
µ

∫ t

0

(t− τ) cos(ωµt)[Φ
XX(τ) + ΦY Y (τ)]dτ, (E.6)

where (X, Y ) refers to the 
oordinates perpendi
ular to the Z axis. The symmetrised


orrelation fun
tion of the �u
tuating part of the lo
al magneti
 �eld at the muon site

is introdu
ed as:

Φαβ(t) =
1

2π
〈{δBα

loc(t)δB
β
loc}〉, (E.7)

where {α, β} = {X, Y, Z} and the symbol 〈{AB}〉 stands for the thermal average of

the symmetrised 
orrelation fun
tion of operators A and B de�ned as:

2〈{AB}〉 = 〈AB〉+ 〈BA〉. (E.8)

The �u
tuations of the lo
al �eld δBloc(t) are responsible for the transitions between the
two muon states, see Fig 4.19. From Eq.E.6, the approximation that the 
hara
teristi


time of the spin 
orrelation is mu
h shorter than the experimental time window, i.e.

τ ≪ t, and assuming that Φαα(t) are even fun
tions of time, leads to ΨZ(t) = λZt with:

λZ =
γ2
µ

2

∫ ∞

−∞
dτ [ΦXX(τ) + ΦY Y (τ)]. (E.9)

Therefore, Eq. E.9 
an be written in terms of a time Fourier transform:

λZ = πγ2
µ[Φ

XX(ω) + ΦY Y (ω)]. (E.10)

Following the work of Ref. [160℄, we express the �u
tuating part of the lo
al �eld at the

muon site in terms of a tensor G whi
h represents the 
oupling between the muon spin

and the spins of the system:

δBα
loc =

µ0

4π

gµB

vc

∑

i

∑

β

Gαβ
ri
δJβ

i , (E.11)

where only one type of magneti
 ion per unit 
ell is 
onsidered, vc is the volume of the

unit 
ell, g the spe
tros
opi
 splitting fa
tor, and µB the ele
troni
 Bohr magneton.

The index i runs over the latti
e sites, δJβ
i is the 
omponent of the �u
tuation of spin

Ji, lo
ated at site i and at a distan
e ri from the muon site. Therefore the symmetrised

�eld 
orrelation fun
tion 
an be expressed in terms of the symmetrised spin 
orrelation

fun
tion as:

Φαβ(ω) =
1

2π

(µ0

4π

)2 (gµB)
2

v2c

∑

γ,γ′

∑

i,i′

Gαγ
ri
Gβγ′

ri′
Λγγ′

i,i′ (ω), (E.12)

where {γ, γ′} = {X, Y, Z}. The symmetrised spin 
orrelation fun
tion has been de�ned

as:

Λγ,γ′

i,i′ (ω) = 〈{δJγ
i (ω)δJ

γ′

i′ }〉. (E.13)

The spin 
orrelation fun
tion in the (q, ω) spa
e is expressed as follows:

Λγγ′

(q, ω) =

∫ ∞

−∞
〈{δJγ(q, t)δJγ′

(−q)}〉 exp(iωt)dt, (E.14)
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→+ +
hωq- hωq’-

Sµ Sµ

Figure E.1: Illustration of the Raman pro
ess involved in the muon spin relaxation. A

magnon of energy ~ωq is absorbed allowing the spin �ip of the muon and the emission

of an other magnon with an energy ~ωq′. Pi
ture reprodu
ed with kind permission from

Ref. [160℄.

where the Fourier transformation of the 
omponent of the spin �u
tuation is set as:

δJγ
i =

1√
nc

∑

q

exp(iq · i)δJγ(q). (E.15)

Assuming q as a 
ontinuous variable leads to the following formula of the spin-latti
e

relaxation rate:

λZ =
D
2

∫

v⋆c

∑

β,γ

Aβγ(q)Λβγ(q, ω)
d3q

(2π3)
, (E.16)

where D = (µ0/4π)
2γ2

µ(gµB)
2/vc. The integration runs over the �rst Brillouin zone of

volume v⋆c and we have introdu
ed for simpli
ity:

Aβ,γ(q) = GX,β(q)Gγ,X(−q) +GY,β(q)Gγ,Y (−q). (E.17)

E.2 Relaxation by ex
itations

We will fo
us here on the temperature behaviour of λZ in the ordered phase. The

most 
ommon ex
itations are spin waves. We re
all that the energy splitting of the

muon spin states has been found to be ≈ 70 neV in Nd2Sn2O7, whi
h is mu
h lower

than the energy gap of spin waves. Thus, a single ex
itation 
annot be at the origin of

the relaxation of the muon spin. Therefore, a Raman s
attering pro
ess involving two

magneti
 ex
itations has been put forward, where a magnon is absorbed and an other

one is emitted to a
hieve the muon spin �ip, see Fig E.1.

E.2.1 Ferromagneti
 magnons

Let us 
onsider a ferromagneti
 system ruled by the following Hamiltonian [193℄:

HFM = −I
∑

〈i,i′〉
Ji · Ji′ +∆

∑

i

JZ
i , (E.18)

where I is the isotropi
 ex
hange integral between nearest neighbour, and ∆ is an

energy gap related to the anisotropy of the spin. We re
all the dispersion law at small

waveve
tor for ferromagneti
 magnons:

E(q) = DFMq
2 +∆, (E.19)

where DFM = 2IJa2lat. Following Eq. E.19, the magnon energy is minimum at small

waveve
tors. Re
alling that the energy splitting between the two states of the muon
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spin is extremely small, only magnons at low energy are involved during the relaxation

pro
ess, i.e. only magnons with a small waveve
tor. We will 
onsider the 
ase of q → 0
in the following. Let us fo
us now on the muon-system 
oupling tensor G(q). Sin
e

the pyro
hlore 
ompounds are insulators (no 
ondu
tion ele
trons), we negle
t the

hyper�ne intera
tion and therefore the muon spin and the spins of the system intera
t

only through a dipolar �eld. A

ording to Ref. [160, 264℄:

Gα,β(q → 0) = −4π

[

qαqβ

q2
− Cα,β(q = 0)

]

, (E.20)

where Cα,β(q) is an analyti
al fun
tion of q. Note that in fa
e-
entered 
ubi
 (f

)


rystal stru
ture, if the muon is lo
ated at a tetragonal or o
tahedral site, Cα,β(q = 0) =
1
3
δαβ [264℄. Be
ause of the energy 
onservation during a �ipping pro
ess, the 
omponents

of J perpendi
ular to Z do not 
ontribute to the muon spin �ip. Therefore, only ΛZZ

is needed. Furthermore, we will assume in the following that the symmetrised spin


orrelation tensor probes the relaxation at zero energy, i.e. ~ωµ = 0. The waveve
tor is
de�ned in spheri
al 
oordinates as:

qX = q sin θ cosφ, qY = q sin θ sin φ, qZ = q cos θ. (E.21)

Combining Eq. E.20 and Eq. E.16, with β = γ = Z in Eq. E.16, leads to:

λZ =
D
2

1

(2π)3

∫ qBZ

0

q2ΛZZ(q, ω = 0)dq

∫ π

0

dθ sin θ

∫ 2π

0

dφ(4π)2
{

sin2 θ cos2 θ − 2 sin θ cos θ

×[cos φCXZ(q = 0) + sinφCY Z(q = 0)] + [CXZ(q = 0)]2 + [CY Z(q = 0)]2
}

= 4D
{

2

15
+ [CXZ(q = 0)]2 + [CY Z(q = 0)]2

}
∫ qBZ

0

ΛZZ(q, ω = 0)q2dq, (E.22)

where it is assumed that ΛZZ(q, ω = 0) only depends on the modulus of q. We have


onsidered the �rst Brillouin zone to be a sphere with a radius qBZ. We will fo
us now

on the symmetrised spin 
orrelation tensor, re
alling its expression in the (q, ω) spa
e:

ΛZZ(q, ω = 0) =
1

2
[〈δJZ(q, ω = 0)δJZ(−q)〉+ 〈δJZ(−q)δJZ(q, ω = 0)〉]. (E.23)

Using the linear approximation of the Holstein-Primako� transformation:

δJZ(q) =
1√
nc

∑

q1,q2

δq+q1−q2,0a
†
q1
aq2 , (E.24)

where nc is the number of unit 
ells, a
†
q1
refers to the 
reation of a boson with waveve
tor

q1 and aq2 to the annihilation of a boson with waveve
tor q2. The Krone
ker symbol

δi,j is de�ned su
h as δi,j = 1 if i = j, and δi,j = 0 otherwise. It stands here for the


onservation of the momentum, i.e. q = q2−q1. Considering that aq(t) = exp(−iωqt)aq
and a†q(t) = exp(iωqt)a

†
q, we derive:

δJZ(q, ω = 0) =
2π√
nc

∑

q1,q2

δq+q1−q2,0δ(ωq1 − ωq2)a
†
q1
aq2 , (E.25)
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where δ(ω) = 1
2π

∫∞
−∞ exp(iωt)dt is the Dira
 distribution. It follows that:

〈δJZ(q, ω = 0)δJZ(−q)〉 =
∑

q1,q2

∑

q′

1,q
′

2

δq+q1−q2,0δ−q+q′

1−q′

2,0

×δ(ωq1 − ωq2)〈a†q1
aq2a

†
q′

1
aq′

2
〉. (E.26)

The mode 
oupling approximation states that:

〈a†q1
aq2a

†
q′

1
aq′

2
〉 ≈ δq1−q′

2,0
δq2−q′

1,0
〈a†q1

aq1〉〈aq2a
†
q2
〉

+δq1−q2,0δq′

1−q′

2,0
〈a†q1

aq1〉〈aq′

1
a†
q′

1
〉. (E.27)

The Krone
ker symbols in the se
ond term of Eq. E.27 lead to q1 = q2 and q′
1 = q′

2,


ombined with Krone
ker symbols of Eq. E.26 give q = 0 whi
h obviously is not of

interest. We fo
us on the �rst term of Eq. E.27. On the �rst hand, we have 〈a†qaq〉 =
nP(x) where nP refers to the Plan
k distribution, see Eq. 4.4, and x = ~ωq

kBT
. On the other

hand, the well-known 
ommutation relation [a†i , aj ] = δij leads to 〈aqa†q〉 = 〈a†qaq〉 + 1.
Consequently, we derive:

∫ qBZ

0

ΛZZ(q, ω = 0)q2dq = (E.28)

1

2

vc
(2π)3

∫

v⋆c

nP

(

~ω(q)

kBT

)[

nP

(

~ω(q)

kBT

)

+ 1

]{
∫

v⋆c

δ[ω(q)− ω(q1)]d
3q1

}

d3q.

An ingenious method is to introdu
e the magneti
 density of states su
h as:

gm[E(q)] =

∫

v⋆c

δ[E(q)− E(q1)]
d3q1

(2π)3
, (E.29)

where E(q) = ~ω(q) and therefore Eq. E.28 be
omes:

∫ qBZ

0

q2ΛZZ(q, ω = 0)dq =
~vc
2

∫

v⋆c

nP

(

~ω(q)

kBT

)[

nP

(

~ω(q)

kBT

)

+ 1

]

gm[E(q)]d3q.

(E.30)

For 
onvenien
e, we should pass from an integration over the �rst Brillouin zone to

an integration over the energy. Assuming a dispersion law of the form E = f(q) and
the usual relation for a density of states g(E)dE = 4πq2dq/(2π)3, we use the following
expression for a substitution of variables in a fun
tion A [160℄:

∫

v⋆c

A(q)d3q = (2π)3
∫

A[f−1(E)]g(E)dE. (E.31)

Therefore, Eq. E.28 be
omes:

∫ qBZ

0

q2ΛZZ(q, ω = 0)dq =
(2π)3~vc

2

∫

nP

(

E

kBT

)[

nP

(

E

kBT

)

+ 1

]

g2m(E)dE. (E.32)

We thus obtain the expression of the spin relaxation rate in the 
ase of a relaxation

indu
ed by ferromagneti
 magnons:

λZ = 2(2π)3~Dvc

{

2

15
+ [CXZ(q = 0)]2 + [CY Z(q = 0)]2

}
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×
∫

nP

(

E

kBT

)[

nP

(

E

kBT

)

+ 1

]

g2m(E)dE. (E.33)

From Eq. E.19 we derive the asso
iated magneti
 density of states:

gm(E) =
1

4π2

1

D
3
2
FM

√
E −∆. (E.34)

Assuming∆ ≪ kBT ≪ Emax, where Emax is the maximal energy of a magnon ex
itation,

and introdu
ing x = E/kBT , allows to 
al
ulate the following integral:

I =

∫ Emax
kBT

∆
kBT

n(x)[n(x) + 1)]g2m(x)kBTdx

=
1

(4π2)2
1

D3
FM

∫ Emax
kBT

∆
kBT

exp(x)

[exp(x)− 1]2
(kBTx−∆)kBTdx. (E.35)

We use the following equation:

∫

(ax− b) exp(x)

(exp(x)− 1)2
dx =

b− ax

exp(x)− 1
− ax+ aln[exp(x)− 1], (E.36)

to obtain:

(4π2)2D3
FM

kBT
× I = (∆−Emax)





exp
(

Emax

kBT

)

exp
(

Emax

kBT

)

− 1



+ kBT ln

[

exp

(

Emax

kBT

)

− 1

]

−kBT ln

[

exp

(

∆

kBT

)

− 1

]

. (E.37)

Sin
e kBT ≪ Emax, we set exp
(

Emax

kBT

)

/
[

exp
(

Emax

kBT

)

− 1
]

≈ 1 and

ln
[

exp
(

Emax

kBT

)

− 1
]

≈ Emax/kBT . Sin
e ∆ ≪ kBT , we negle
t the residual term ∆ and

with a linear expansion of exp
(

∆
kBT

)

≈ 1 + ∆
kBT

in the last logarithm expression, we

get:

I =
1

(4π2)2
(kBT )

2

D3
FM

ln

(

kBT

∆

)

, (E.38)

and we derive λZ in the 
ase of ferromagneti
 magnons:

λZ =
~Dvc
π

{

2

15
+ [CXZ(q = 0)]2 + [CY Z(q = 0)]2

}

k2
BT

2

D3
FM

ln

(

kBT

∆

)

∝ T 2ln

(

kBT

∆

)

. (E.39)

This result has some importan
e sin
e it predi
ts that the relaxation of the muon spin

indu
ed by ferromagneti
 magnons has a vanishing spin-latti
e relaxation rate when

T → 0.
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E.2.2 Antiferromagneti
 magnons

The derivation of λZ in the 
ase of antiferromagneti
 magnons is a bit more 
ompli
ated

and we only give some pie
es of the derivation of λZ , referring to the work of Ref. [160℄

for a 
omplete study. We will also introdu
e some equations that will be needed else-

where. For simpli
ity, we 
onsider an antiferromagneti
 latti
e whi
h 
an be viewed

as two interla
ed sublatti
es d1 and d2, ea
h 
ontaining magneti
 atoms with opposite

spins. This implies that all the nearest neighbours of a magneti
 ion belonging to a

magneti
 sublatti
e belong to the other magneti
 sublatti
e. We 
onsider the following

Hamiltonian:

HAF =
∑

i,i′

∑

d1,d2

Ii+d1,i′+d2Ji+d1 · Ji′+d2 + gµB

∑

i

∑

d1

Bani,d1 · Ji+d1 , (E.40)

where Ii+d1,i′+d2 ≡ I is the ex
hange integral. The notation i+ d1 and i′ + d2 refers to
two nearest neighbours belonging to ea
h sublatti
e.

The Holstein-Primako� transformations need to be introdu
ed for the two types of

magneti
 ions, i.e. two magnon modes are introdu
ed:

J+
i+d1

=
√
2Ja†i+d1

, J−
i+d1

=
√
2Jai+d1 , JZ

i+d1
= a†i+d1

ai+d1 − J,

J+
i+d2

=
√
2Jbi+d2 , J−

i+d2
=

√
2Jb†i+d2

, JZ
i+d2

= J − b†i+d2
bi+d2 ,

(E.41)

where a†, b† and a, b are the boson 
reation and annihilation operators for the magneti


sublatti
es d1, d2 respe
tively. The spa
e Fourier transform of the boson operators is

de�ned as:

ai+d1 =
1√
nc

∑

q

aq exp[iq · (i+ d1)],

a†i+d1
=

1√
nc

∑

q

a†q exp[−iq · (i+ d1)]. (E.42)

We also introdu
e the Bogoliubov transformation:

aq = uqαq + vqβ
†
q, bq = uqβq + vqα

†
q,

a†q = uqα
†
q + vqβq, b†q = uqβ

†
q + vqαq, (E.43)

where αq, α
†
q, βq, β

†
q are bosons operators ful�lling the relations:

[αq, α
†
q′ ] = δq−q′,0, and [βq, β

†
q′ ] = δq−q′,0. (E.44)

Note that αq1, α
†
q2


ommutes with βq3 , β
†
q4
. This leads to the relation:

u2
q − v2q = 1. (E.45)

Therefore, we 
an introdu
e a fun
tion xq su
h as:

uq = cosh(xq) and vq = sinh(xq). (E.46)
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The Hamiltonian de�ned in Eq. E.40 
an be redu
ed as:

HAF =
∑

q

~ωq(α
†
qαq + β†

qβq + 1). (E.47)

The most general dispersion law for antiferromagneti
 magnons is:

(~ωq)
2 = (~ωex +∆)2 − (~ωexγq)

2, (E.48)

where ∆ is the energy gap of the magnons due to the anisotropy of the spins, and

~ωex = 2IznnJ . We have introdu
ed:

γq =
1

znn

∑

dpair

exp(iq · dpair), (E.49)

where dpair is the ve
tor joining a magneti
 ion to one of its nearest neighbours. At small

wave ve
tors for a 
ubi
 
ompound, we simplify Eq. E.48 to the well-known dispersion

law for antiferromagneti
 magnons, assuming the energy to only depend on the modulus

of q:

(~ωq)
2 = D2

AFq
2 +∆2, (E.50)

where DAF = 4
√
3IJalat. Note that the Hamiltonian has been rendered diagonal with

α†
qβ

†
q + αqβq = 0 whi
h leads to:

tanh(2xq) = −γq
ωex

ωex +∆
, (E.51)

After the introdu
tion of these de�nitions, let us go ba
k to the derivation of the

spin-latti
e relaxation rate whi
h is rewritten as:

λZ =
D
2

1

V

∑

q

∑

d1d2

(GX,Z
d1

(q)GZ,X
d2

(−q) +GY,Z
d1

(q)GZ,Y
d2

(−q))ΛZZ
d1d2

(q, ω = 0). (E.52)

Note that we have dire
tly 
onsidered that only the spins 
orrelations along the Z axis


ome at play in the Raman pro
ess. To evaluate the spin 
orrelation tensor, we need

to introdu
e:

δJZ
d1
(q) =

1√
nc

∑

q1,q2

δq1+q2−q,0a
†
q1
aq2 ,

δJZ
d2
(q) =

1√
nc

∑

q1,q2

δq1+q2−q,0b
†
q1
bq2 , (E.53)

After some 
al
ulations, the following expression is derived [160℄:

λZ =
8

15
(2π)3~Dvc

∫

nP

(

E

kBT

)[

nP

(

E

kBT

)

+ 1

]

g2m(E)dE. (E.54)

From Eq. E.50, we infer the asso
iated magneti
 density of states as:

gm(E) =
1

2π2

E

D3
AF

√
E2 −∆2

(E.55)
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Introdu
ing x = E
kBT

, we derive:

λZ ∝ 2(2π)3~Dvc
1

4π4

1

D6
AF

kBT

∫ ∞

∆
kBT

{

exp(x)

[exp(x)− 1]2
(kBTx)

2[(kBT )
2x2 −∆2]

}

dx

∝ 1

π
~Dvc

(kBT )
3

D6
AF

[(kBT )
2I4 −∆2I2] (E.56)

where we have introdu
ed the following integral:

I2m =

∫ ∞

0

x2m exp(x)

[exp(x)− 1]2
dx (E.57)

Note that 
ompared to the ferromagneti
 
ase, we do not introdu
e a maximum energy

for the magnons sin
e no 
onvergen
e problem appears in the integral. We also assumed

that ∆ ≪ kBT , leading us to negle
t the term 
ontaining I2. Sin
e I4 = 4π2/15, we get
the expression of λZ in the antiferromagneti
 
ase:

λZ ∝ 4π3

15
~Dvc

1

D6
AF

(kBT )
5. (E.58)

On
e again, the muon spin relaxation driven by antiferromagneti
 magnons has a van-

ishing spin latti
e relaxation rate when T → 0.
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Abstra
t

This Phd thesis fo
uses on the study of magneti
ally frustrated 
ompounds where magneti


ions lie at the verti
es of a 
orner-sharing tetrahedra network: the pyro
hlore 
ompounds.

The two series of 
hemi
al formula R2M2O7, where R is a lanthanide and M = Ti, Sn, are of

pe
uliar interest sin
e they display a large variety of exoti
 magneti
 ground states. First, we

have studied the 
rystal-ele
tri
-�eld a
ting at the rare earth within the Stevens approximation

where only the ground state multiplet is 
onsidered. A single set of parameters for ea
h families

of interest has been determined through a global analysis in
luding several inelasti
 neutron

s
attering spe
tra of various 
ompounds. Then, we have 
hara
terised with a large panel of

te
hniques the low temperature physi
al properties of Nd2Sn2O7. This 
ompound enters a

long-range magneti
 order at transition temperature Tc = 0.91 K with an �all-in-all-out� spin


on�guration. A persisten
e of spin dynami
s has been found in the ordered phase, as
ribed

to one-dimensional spin loops ex
itations. Anomalously slow paramagneti
 spin �u
tuations

are also reported. Finally, we have brought information on the two proposed ground states of

the widely studied 
ompound Tb2Ti2O7: �rst, a Jahn-Teller transition is 
laimed to o

ur at

low temperatures but no broadening of the Bragg peaks is seen down to T = 4 K pre
luding

premises of a stru
tural transition. Se
ondly, this 
ompound 
ould be a realisation of a quan-

tum spin-i
e but no de�nitive eviden
e of a magnetisation plateau is found down to T = 20mK.

Key words: magnetism - geometri
al frustration - pyro
hlore - 
rystal-ele
tri
-�eld - spin

dynami
s - di�ra
tion - inelasti
 neutron s
attering - muon spin relaxation

Résumé

Cette thèse se 
on
entre sur l'étude de 
omposés magnétiques géométriquement frustrés où les

ions magnétiques se situent aux sommets d'un réseau de tétraèdres partageant leurs sommets:

les 
omposés pyro
hlores. Deux familles de formule 
himique R2M2O7, où R est un lanthanide

et M = Ti, Sn, sont parti
ulièrement intéressantes puisqu'elles présentent une grande variété

d'états magnétiques exotiques. Premièrement, nous avons étudié le 
hamp 
ristallin agissant

au site de la terre rare dans l'approximation de Stevens où uniquement le terme fondamental est


onsidéré. Un jeu unique de paramètres a été déterminé pour 
haque famille 
onsidérée grâ
e

à une analyse globale in
luant des spe
tres de neutrons inélastiques de plusieurs 
omposés.

Ensuite, nous avons 
ara
térisé ave
 un large éventail de te
hniques les propriétés physiques

à basse température de Nd2Sn2O7. En dessous de la température de transition Tc = 0.91 K,


e 
omposé possède un ordre magnétique à longue portée dans la 
on�guration de spins dite

�all-in-all-out�. Une persistan
e de la dynamique de spins a été révélée dans la phase ordonnée,

attribuée à des ex
itations unidimensionnelles de spins. Une dynamique de spins anormale-

ment lente est également reportée dans la phase paramagnétique. En�n, nous avons apporté

quelques informations sur les deux états fondamentaux proposés pour le 
omposé très étudié

Tb2Ti2O7: premièrement, l'apparition d'une transition Jahn-Teller à basse température est

suggérée mais l'absen
e d'élargissement des pi
s de Bragg réfute la présen
e d'une transition

stru
turale. En�n 
e 
omposé pourrait être un exemple d'une gla
e de spin quantique mais

l'existen
e d'un plateau d'aimantation n'est pas évident jusqu'à T = 20 mK.

Mots 
lefs: magnétisme - frustration géométrique - pyro
hlore - 
hamp 
ristallin - dynamique

de spins - di�ra
tion - di�usion inélastique de neutrons - relaxation du spin du muon


