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Glossary

Symbol Definition

aj, a; Boson creation and annihilation operators at rare earth site ¢

aqs(€) Asymmetry parameter varying with the kinetic energy e

bg Time-independent background term

aq Distance between the center of two neighbouring tetrahedra

QAlat Lattice parameter

Umag(d) Amplitude of the magnetic interaction

ao Initial muon asymmetry or Bohr radius,
depending on the context

Ap(= A) Absorption factor

Aine Weighing factor for incoherent nuclear intensity

Amag Weighing factor quasielastic magnetic intensity

A= A(R)) CEF parameters of rare earth R

ALy Hyperfine constant of isotope *3Nd

by Background intensity at the experimental point ¢

b; Fermi length of atom j

Baem Demagnetising field

Baip Dipolar magnetic field

Bii, Dipolar magnetic field arising from magnetic moments
inside the Lorentz sphere

Biyp Hyperfine magnetic field

Bt Internal field

B; Parameter describing the amplitude of the isotropict
displacemen around the atomic mean position,
and involved in the Debye-Waller factor

Bjy(x) Brillouin function

Bioe Local magnetic field

Bio: Lorentz magnetic field

Biax Maximum amplitude of the local field By,

B CEF parameters: B = A" (r")©,

Ca» Cx Heat capacity of the platform and of the sample, respectively

Cp Heat capacity at constant pressure

C Constant

Cy Electronic specific heat

Coex Specific heat of magnon-like excitations

Clhue Nuclear specific heat




Symbol Definition

C, Specific heat at constant pressure

Con Lattice contribution to the specific heat

Cyq Constant

C, Specific heat at constant volume

C*8(q) Analytical function of q

d Dimension of a system /matrix/representation

dna (= d) Interplanar spacing

dpair Vector joining a magnetic ion to one of its nearest neighbours

dy, ds Interlaced sublattices describing a Heisenberg
collinear antiferromagnet

d® (9:) Matrix representation of the symmetry element g;
in the representation I'")

4 (9:) Matrix representation of the symmetry element g;
in the representation I'}")

D Dipolar energy scale

D.(Bioc) Field distribution

Dgig Diffusion coefficient

Dpum Dzyaloshinskii-Moriya vector

Dy Dipolar energy scale between two nearest neighbours

Df}f Components of the field dipole tensor associated with site r;

D Constant

D, Scale of the distortion

et Positron

FEoy Excitation energy

E; Neutron final energy

E; Neutron incident energy or CEF energy levels,
depending on the context

E, Nuclear energy levels

FEoax Maximal energy of a magnon excitation

f Frustration index or filling factor, depending on the context

fi(q) Atomic form factor (Fourier transform of the electronic density)

Jimag () Magnetic form factor

F(x) Function describing a CEF transition and taken as the
convolution of a Gaussian and a Lorentzian function

Fia:(q) Magnetic structure factor

F.(q) Neutron structure factor

F(q) Unit-cell structure factor

F,(q) X-ray structure factor

g Spectroscopic splitting factor or order of Gy,
depending on the context

g(w) Density of states

Joff Effective spectroscopic factor

Ji Symmetry operation

Landé factor




GLOSSARY

Symbol Definition

gm(E) Magnetic density of states

q| Longitudinal spectroscopic factor

gL Transverse spectroscopic factor

G(z) Gaussian function

G Little group: subgroup of the space group leaving
the magnetic propagation wavevector invariant

G?f Components of the tensor G representing the coupling
between the muon spin and the spins of the system

h Label of the Bragg peaks positions at the angle 6y,,
or translational part of a symmetry operator,
depending on the context

h Reduced Planck constant (or Dirac constant)

H. plied Real applied magnetic field at the sample

H. Critical magnetic field inducing a phase transition

H... External magnetic field

Hg Full width at half maximum of the Gaussian function

Hy, Full width at half maximum of the Lorentzian function

Har Heisenberg collinear antiferromagnetic Hamiltonian

Hcrr CEF Hamiltonian

H(CJFZF CEF Hamiltonian acting on the multiplet defined by a
total angular momentum J

’Hgg;n 8 CEF Hamiltonian acting on the multiplet defined by a
total angular momentum J taking into account the J-mixing
effect arising from the coupling with other multiplets

Hesr Classical spin-ice Hamiltonian
(longitudinal exchange Hamiltonian)

Hps Dipolar spin-ice Hamiltonian in terms of
the dumbell model notation

Hpsm Dipolar spin-ice Hamiltonian

Hex Anisotropic exchange Hamiltonian

Heum Hamiltonian for a ferromagnetic system

Hper Perturbative Hamiltonian

Ho Quadrupolar Hamiltonian

Hasi Quantum spin-ice Hamiltonian (XXZ model)

Hxvy, Anisotropic exchange Hamiltonian of the XYZ model

Hyz Zeeman Hamiltonian

H, Transverse exchange Hamiltonian (XXZ model)

I Nuclear spin vector operator

Lg Background contribution

1. Critical current in a Josephson junction

Iy Intensity at the Bragg position h

T Isotropic exchange coupling constant

Lot Effective nearest-neighbour isotropic exchange coupling constant

Nearest-neighbour isotropic exchange coupling constant




Symbol Definition

Iy Scaling factor
{Z4,...., 7, } Anisotropic exchange constants involved in H
Notations {Z,,,Z+,Z++,Z.+} are also used
7 Transverse exchange coupling constant
J; Total angular momentum vector operator of rare earth at site ¢
Ji(x) Bessel function of the first kind
Jy Raising and lowering spin operators
{J;, jy, jZ} Exchange constants involved in Hxyz
{J, ., Tu} Anisotropic exchange constants involved
in the effective spin-1/2 exchange Hamiltonian
k Vector in the reciprocal space
kgp Boltzmann constant
ki, k¢ Incident and final wavevectors, respectively
Kinag Magnetic propagation wavevector
K Dissociation constant for the nucleation of magnetic monopoles
Kexp Normalised muon frequency shift
K, Muon Knight shift that arises only from the dipolar field
created by the magnetic moments inside the Lorentz sphere
K, Complex conjugation operator
K, Ky Thermal conductance between the cryostat and the platform,
and between the platform and the sample, respectively
K, Muon Knight shift
L Neutron flight path
L(z) Lorentzian function
L, Total orbital momentum vector operator of rare earth at site ¢
Lyn Lorentz factor
Me Electron mass
My, Neutron mass
Mpm Paramagnetic moment
Meat Saturation value of the magnetic moment
Mep Spontaneous magnetic moment
mii1 Projection of the spontaneous magnetic moment
over the [111] axis
my, Muon mass
M Bulk magnetisation
My Divergence-free part of the Helmholtz decomposition
My, Multiplicity of the reflection h
Mior Magnetisation inside the Lorentz sphere
M,, Curl-free part of the Helmholtz decomposition
M, (q) Projection of the Fourier transform of the

total magnetisation density
on a plane perpendicular to q

n Order of the operators or number of free parameters,
depending on the context

n(x) Distribution function




10 GLOSSARY

Symbol Definition

n(4f) Number of 4f electrons

ny Number of bound magnetic monopoles

npg(r) Bose-Einstein distribution function

ngp () Fermi-Dirac distribution function

np(x) Planck distribution

Ny Number of dissociated magnetic monopoles

no ng = Ny + Ny

N Number of magnetic ions in the system

N(t) Positron counts in a detector

N Demagnetising field tensor

N, Number of unit cells in the system

Ncu Number of Cu nuclei in the sample holder

Ny Number of formula unit in the unit cell

Ny, Number of magnetic moments inside the Lorentz sphere

Nag Number of magnetic cells

Nxa Total number of *3Nd nuclei in the sample

Np Number of experimental points

Ny Scale of the positron count

Ny Positron counts in the forward (+)/backward (-) detectors

N%Z Longitudinal component of the diagonal tensor N

Na Avogadro number

or Stevens operators

p Magnetic scattering length for a magnetic moment of 1 ug
at ¢ =0

P Pressure or proton, depending on the context

Di Relative abundance of isotope ¢

i Prefactor

P Thermal power

P(0) Polarisation factor

P,(z) Legendre polynomials

P (z) Associated Legendre polynomials

Px(t),Py(t) Transverse muon polarisation functions

PP(t) Experimentally measured transverse muon
polarisation function

Py(t) Longitudinal muon polarisation function

PP(t) Experimentally measured longitudinal muon
polarisation function

P5t(t) Static longitudinal muon polarisation function

q Scattering vector

qBz Radius of the first Brillouin zone considered as a sphere

i Electric charge

Gm Magnetic charge arising from the fragmentation of
the magnetic moment

Q Quadrupolar moment

Qex

Quadrupole moment of the excited Mdssbauer state




11

Symbol Definition
Qes Quadrupole moment of the Mdssbauer ground state
@Qn Heat input brought to the sample
Q.= Q) Total magnetic monopole charge in a tetrahedron «
Qott Effective magnetic charge carried by a magnetic monopole
r Spin anisotropy ratio: r = gl/g”
r; Vector linking the muon to the rare earth site ¢
rij Vector linking rare earth sites ¢ and j
T'in distance between nearest neighbours
(r™) Expectation values of the nth power distance between
the nucleus of the magnetic ion and the 4 f electronic shell
R Ideal gas constant or rare earth ion, depending on the context
R(z) Instrumental resolution function
Rexp, Ry, Ryp Profile, weight profile, and expected weight profile factors,
respectively
R; Distance between an electric charge and the rare earth
S(q,w) Scattering function
S'(= SH) Effective spin-1/2
Sel Electronic entropy
S; Total spin vector operator of rare earth at site ¢
Siso(q, Aw) Isotope-incoherent scattering function
Smag (4, hw) Magnetic scattering function
Sepin (4, Aw) Spin-incoherent scattering function
S, Muon spin
T Temperature
Tc Curie temperature
T Transition temperature
Ty, 1,,T, Temperatures of the cryostat, the platform, and the sample,
respectively
{U,V, W} Half-width free parameters describing the resolution function
Uap Anisotropic displacement parameters involved in
the Debye-Waller factor
ve(= 1) Volume of the unit cell
vy Volume of the first Brillouin zone
Up Doppler velocity
Vex Excitation velocity
V;, Vf Neutron incident and final velocity, respectively
Umag Volume of the magnetic cell
UTh Volume per terbium ion
V(rap) Magnetic Coulomb interaction between
two magnetic monopoles
separated by a distance r,g
Verr CEF potential
Ve(r) Fermi pseudo-potential at the r real space position
Vinag Potential of magnetic interaction

Vo(2)

Pseudo-Voigt function




12 GLOSSARY
Symbol Definition
V.. Principal component of the electric-field gradient tensor
W(0) Probability of the positron to be emitted in a direction 6
x Position of oxygen atom O1
X Isotropic strain parameter
Yei Calculated intensity at the experimental point ¢
Ye,0 Scaling factor
Yoi Observed intensity at the experimental point ¢
Y Isotropic size parameter
Y, () Spherical harmonics
z Quantisation axis [111]
Znn Number of nearest neighbours
Zi(=2) Partition function of isotope i
Z(0) Peak profile function
ZM(z) Tesseral harmonics
« Parameter set involving the n free parameters:
a=(ag,....0n)
Qe Critical exponent involved in the critical behaviour of Cy
Qq Instrumental balance parameter
Ol Qo = Ny /Mg
Be Critical exponent involved in the critical behaviour of mg,
ap Constant
Bs Exponent of the stretched exponential function
0; Unit vector belonging to a <<111> axis at rare earth site ¢
X Bulk magnetic susceptibility
x(q, hw) Dynamical susceptibility
Xhoe Real part of the a.c. magnetic susceptibility
X" (q, hw) Imaginary part of the dynamical susceptibility
= Im{x*(q,)}
X'(q) g-dependent static susceptibility
d(z) Dirac function
OCEF Energy splitting between the low-lying CEF energy levels
i j Kronecker symbol
A Anisotropic energy gap
A, Strength of the spin anisotropy
Ag Standard deviation of a Gaussian field distribution
AN Energy splitting between nuclear levels of isotope ¢
Ag Nuclear quadrupole splitting
Ago Energy splitting between the CEF ground state
and the first CEF excited energy level
ASelec Electronic entropy variation
At Time scale
Ax Standard deviation of the field distribution
n Mixing parameter involved in the pseudo-Voigt function
® Phase shift

Neutron flux
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Symbol Definition

P (t) Symmetrised correlation function of the fluctuating part
of the local magnetic field at the muon site

F Ground state wavefunctions

Vi Gyromagnetic ratio of isotope @

Yu Muon gyromagnetic ratio

Yoo Sternheimer coefficient

[(x) Gamma function

Ly Linewidths of the Lorentzian function accounting for the
lifetime of the ¢/ CEF energy level during the transition i — 4’

I, QQuasielastic Lorentzian linewidth

'y Inverse lifetime of the nuclear level

i )<E r,) Irreducible representation of order p
and labelled by the index v

piw Loaded irreducible representation

Ko, Magnetic conductivity illustrating
the motion of the magnetic monopoles

Aso Spin-orbit coupling constant

Ax Transverse (or spin-spin) relaxation rate

Az Spin-lattice relaxation rate

AP Expected spin-lattice relaxation rate

AZ,0 Constant

AP (q,w) Symmetrised spin correlation function

1 Magnetic moment or chemical potential,
depending on the context

140 Permeability of free space

UB Electronic Bohr magneton

ur CEF magnetic moment

,u|CF CEF magnetic moment along the 2 axis

,uéiF CEF magnetic moment perpendicular to the z axis

W Magnetic moment of the neutron

LN Nuclear Bohr magneton

ut Muon with positive electric charge

Ve Neutrino associated to the positron

Vext Muon precession frequency around the external
magnetic field Bey

VrC Fermi chopper frequency

UM Relaxation rate of the magnetisation

Vo Self energy accounting for the dipolar and exchange energy
between nearest neighbours

Ve Relaxation rate for recombination of the
nucleated magnetic monopoles

vy Muon neutrino or muon precession frequency
around the local magnetic field By, depending on the context

v Antineutrino associated to the muon
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Symbol Definition
Wy Muon precession angular frequency
Q Solid angle
O Number of microstates
(=T, Basis vectors of the irreducible representations taken at atom j
(the index 7 labels the different basis vectors)
s CEF wavefunctions of a given doublet state
Tt Positive pion
o Neutron spin
Oai Neutron absorption cross section of atom i
o; Standard deviation of y;
agpm, ol Spin-incoherent and isotope-incoherent cross sections of atom i
09 Screening coefficient
3, Incident and final total absorption cross sections, respectively
T Reduced temperature: 7 = T%CTC
Te Magnetic correlation time: 7. = 1/v,
7o Spin fluctuation time: 79 = 1/1g
T1 Relaxation time of the sample temperature
Ty Muon lifetime
0 Odd time-reversal symmetry operator
Ocw Curie-Weiss temperature
On Bragg peak angle
Op Debye temperature
O, Stevens multiplicative factors
&(x) Riemann function
|7) Eigenvectors of Hegr
|m) Zeeman states (—I < m < I, I nuclear spin)
|m.) Zeeman states (—J < my < J, J total angular momentum)
g—g Differential neutron cross section
dacgg(Q) Differential coherent neutron cross section
da‘(}‘é(q) Differential incoherent neutron cross section
da"ﬁ(q) Differential magnetic neutron cross section
dgil‘;ﬂ, Double differential neutron cross section
( df;&) Double differential incoherent neutron cross section
mc
( dcggE)mag Double differential magnetic neutron cross section
( dﬁ&) Double differential neutron cross section
- from the sample environment
[A, B] Commutator of operators A and B: [A,B] = AB — BA
{A,B} Symmetrised correlation function of operators A and B:

2{A,B} = AB +BA
Thermal average
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Introduction

Contents
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A general introduction on magnetic geometrical frustration and a non exhaustive
review of the different exotic magnetic states encountered in the two pyrochlore series
Ry M507 (M= Ti, Sn) of interest in this work are provided in the following. Moreover,
a brief description of the content of the manuscript is given at the end of this chapter.

1.1 Geometrical frustration

Magnetic compounds usually undergo a transition to establish at low temperatures a
long-range magnetic order and stabilise in a well-known magnetic state such as ferro-
magnetic order where all the spins are parallel, antiferromagnetic order where spins are
antiparallel or ferrimagnetism order where magnetic moments of different magnitudes

15



16 CHAPTER 1. INTRODUCTION

are antiparallel. For instance, the ferromagnetic order should appear below the Curie
temperature T ~ Ocw, where Ocw is the Curie-Weiss temperature characterising the
nature and strength of the magnetic interactions.

The notion of frustration in magnetism refers to the inability to simultaneously
satisfy all the magnetic interactions. This originates from the competition of several
exchange paths between two magnetic ions, i.e. frustration of interactions, or from the
topology of the lattice where the spatial arrangement of the magnetic atoms precludes
the satisfaction of the magnetic interactions simultaneously. The latter case, of interest
here, is called geometrical frustration. An example is given in Fig. [[LT] where Ising
spins, i.e. spins allowed to point up or down, with nearest-neighbour antiferromagnetic
interactions are located at the corner of a square and a triangle. In the former case, all
the antiferromagnetic interactions are satisfied whereas in the triangular case, if one an-
tiferromagnetic interaction is satisfied with two spins antiparallel, the orientation of the
third spin is uncertain since it cannot satisfy simultaneously the two antiferromagnetic
bonds with its two neighbours.

AF

AF AF AF AF

AF | AF '

Figure 1.1: Ising spins are located at the corner of a square lattice (left) where all the
antiferromagnetic interactions between the first neighbours can be satisfied and on a
triangle (right) where one of the AF bonds displayed by the blue bond is not satisfied.

Geometrical frustration has focused a lot of attention from an experimental and
theoretical point of view in the past decades in front of the richness of the magnetic
ground states. This concept leads to unconventional magnetic states, such as complex
magnetic structures or prevention of the long-range magnetic order. Frustration usually
forbids the establishment of a single state, and the lowest energy spin configuration is
realised by minimising the interaction energies in several manners, i.e. the ground states
of frustrated compounds are usually highly degenerated. The degree of frustration
can be evaluated through the ratio f = |0cw|/Te, where T. denotes the temperature
of the transition, if any, to a magnetic order or a glassy state. Among the various
lattices leading to frustration, the most popular two-dimensional structures are the
triangular and the Kagome lattice, illustrated in the left and right panels of Fig. [[.2]
respectively. Wannier [1] firstly introduced this concept noticing that ferromagnetic and
antiferromagnetic interactions between Ising spins have very different properties on a
triangular lattice: in the latter case, no magnetic transition is predicted down to the
lowest, temperatures. Three-dimensional geometrically frustrated lattice are displayed
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Figure 1.2: Two dimensional geometrically frustrated systems: the triangular (left) and
Kagome (right) lattice.

Figure 1.3: Examples of three-dimensional geometrically frustrated systems: the py-
rochlore lattice composed of corner-sharing tetrahedra. Magnetic ions are drawn by
black spheres located at the corners of tetrahedra. Reprinted figure with permission
from Ref. |2]. Copyright 2015 by the American Physical Society. Right: hyperk-
agomé lattice (corner-sharing triangles) as found in the gadolinium garnet compound
GdgGag,OlQ [3]

in Fig. [L3in the case of a corner-sharing tetrahedra (left) or triangles (right) network.

1.2 The pyrochlore compounds

A realisation of a three-dimensional frustrated network is the pyrochlore lattice, illus-
trated in the left panel of Fig. [L.3] where magnetic ions are located in the vertices of a
corner-sharing tetrahedra network. We will focus on insulator compounds of chemical
formula Ry M>0; where R is a rare earth magnetic ion, and M = Ti or Sn in this work.
They crystallise in the face centred cubic lattice of space group Fd3m. More details
of the unit cell crystallography are provided in App. [Al However, we need to notice
that the [111] direction is a local trigonal symmetry axis which will be taken as the
quantisation axis z in the following. Some rare earth properties will be given in the
introduction of Chapter [3l

The simplest model which can be considered is the classical isotropic nearest-neigh-
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Figure 1.4: The three spin configurations of the irreducible representation I'; defined
by the basis vectors W, (left), Vs (middle), and Vg (right), see Tab. [D.Il Picture
reproduced from Ref. ,@] with kind permission of IOP Publishing.

bour exchange Hamiltonian:

H=-I) S;-8; (1.1)
2

where 7 is the nearest-neighbour exchange coupling, i.e. Z > 0 in the case of ferromag-
netic interactions and Z < 0 for antiferromagnetic ones, and S; is a Heisenberg spin
located at site ¢. In the antiferromagnetic case, the authors of Refs. Mﬂ] show through
Monte Carlo simulations that the system remains disordered at any finite temperature,
i.e. a classical spin liquid. Note that the ferromagnetic case does not lead to frustration
since the minimal energy configuration is achieved when all the spins are parallel.

Nevertheless, still considering classical Heisenberg spins interacting through nearest-
neighbour antiferromagnetic interactions, and taking into account dipolar interactions,
Palmer and Chalker [7] show that the degeneracy associated to the infinite number
of spin configurations, previously predicted in Ref. [@], is lifted. For a specific range
of the ratio of the dipolar energy scale over the exchange energy, the system enters
a four-sublattice long-range magnetic order with a magnetic propagation wavevector
kimag = (0,0,0) and a coplanar spin configuration illustrated in Fig. [L4] by the three
basis vectors of the I'; irreducible representation (see Tab. [D.T]).

However other aspects need to be considered. One important feature of the investi-
gated pyrochlore compounds is the strong spin-orbit coupling, larger than the crystal-
electric-field acting at the rare earth site and created by the surrounding electric charges.
As we will see in Chapter B} the crystal field perturbation splits the ground state mul-
tiplet, leading in most cases to a ground state magnetic doublet. This enforces a strong
anisotropy of the spin. With regard to the local axis [111] at the rare earth site, spins
could lie along or perpendicular to this axis, i.e. the Ising or XY anisotropy, respectively.
Considering Ising classical spins, the Hamiltonian is written as:

Hex=—-TY Si-S;— A (5;-Si)°, (1.2)
@] A

where A, > 0 scales the strength of the anisotropy and d; is a unit vector belonging to
a <111> axis. Monte-Carlo calculations predict &, ], within the approximation that
a strong anisotropy enforces spins to lie along the <111> axis (|Z| < A,), that with
nearest-neighbour antiferromagnetic interactions a long-range magnetic order occurs at
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Figure 1.5: Spins configuration for a planar anisotropy in a single tetrahedron: the non
coplanar W, state (left) and the coplanar W3 state (right). Blue spheres indicate rare
earth ions sitting on the corner of a tetrahedron and red arrows show the orientation
of the spins. Reprinted figure with permission from Ref. @] Copyright 2015 by the
American Physical Society.

T, ~ |Z| with a magnetic propagation wavevector ky., = (0,0,0) and a configuration
where all the spins are pointing into or out the center of the tetrahedra; the first
experimental realisation of this magnetic order has been found in the corner-sharing
tetrahedra compound FeFs [@] On the contrary, in the case of nearest-neighbour
ferromagnetic interactions, the system does not display any long-range magnetic order:
two spins are pointing into and two spins are pointing out the center of a tetrahedron,
i.e. the classical spin-ice case (see below) ] This absence of order results from the
high degeneracy of the ground state since several energy equivalent spin configurations
fulfil the "two-in/two-out" constraint, see Sec. [[3

In the case of an XY spin anisotropy with nearest-neighbour antiferromagnetic inter-
actions, two magnetic structures can be achieved where spins lie in a plane perpendicular
to the local axis [111], as shown in Fig. a non coplanar spin configuration defined
as the Wy state (left panel) and a coplanar spin arrangement characterised by the W3
state (right panel). Note that these two states are the basis vector of the irreducible
representation I's allowed by the space group Fd3m, see Tab. [D.Il These states are
energy equivalent leading to the degeneracy of the ground state. However, in a so-called
order by disorder mechanism ﬂﬁ], thermal fluctuations select the W, states, i.e. whereas
the internal energy of the two states are equal, minimising the free energy which takes
into account thermal fluctuations will select the aforementioned state l%] Therefore
a first-order magnetic transition is predicted to occur with a magnetic propagation
wavevector Kyae = (0,0,0). When quantum fluctuations are considered, a second-order
magnetic transition is predicted [14, ]

In summary, the magnetic ground state of the pyrochlore is ruled by numerous
physical aspects: the nature of the nearest-neighbour exchange interaction and the
character of the spin anisotropy need to be considered, but also dipolar and further
neighbour interactions, anisotropic exchange interactions, and whether the spins are
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Figure 1.6: Ilustration of the analogy between the spin-ice and the water ice model.
Left: Water ice structure where the oxygen ions (O*~) are displayed by the empty
spheres and the protons (H") by the black ones. Arrows show the proton displacement
from the middle of two oxygen atoms where two are near the central oxygen ion whereas
the other two are far from it. Reprinted figure with permission from Ref. [24]. Copyright
2015 by the American Physical Society. Right: Single tetrahedron obeying the ice rule:
two Ising spins are pointing into the center of the tetrahedron and two spins are pointing
out. Reprinted figure with permission from Ref. [18]. Copyright 2015 by the American
Physical Society.

classical or quantum. The subtle balance between these considerations is at the origin of
the various exotic magnetic states encountered in the pyrochlore series. In the following,
we endeavour ourselves to summarise briefly different magnetic ground states at play
in the Ry M50~ families where M = Ti or Sn.

1.3 The classical spin-ice

The terminology of spin-ice was first introduced by Harris et al. [18] for the pyrochlore
compound HosTi,O7 where no long-range order was evidenced down to 50 mK by uSR
spectroscopy [19]. Other pyrochlore compounds, namely Dy, TisO7 [20], HoaSny O [21]
and Dy2Sn,O7 [22] have also been unambiguously classified as classical spin-ice. In the
following, we will present some peculiar properties of these compounds.

1.3.1 The water ice model

The crystal-electric-field acting on the rare earth site constrains the spins to lie along
the local [111] direction, i.e. defining the Ising model. The configuration on a single
tetrahedron is two spins pointing into the center of the tetrahedra and two spins pointing
out, defining the so-called ice rule. This denomination originates from the analogy made
with the model of the water ice Iy, originally proposed by Bernal and Fowler [23], as
illustrated in Fig. [L6, where two protons are close to the central oxygen position and
two far from it.

The degeneracy of the ground state of frustrated materials is a consequence of
the peculiar lattice topology. For a given tetrahedron obeying the ice rule, only six
configurations are available as illustrated in Fig.[I.7l The corresponding entropy can be
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Figure 1.7: The six possible spin configurations obeying the ice rule illustrate the
degeneracy of the ground state in a spin-ice compound.

calculated [25]: a system of N spins corresponds to % tetrahedra since a spin belongs
to two tetrahedra. As Ising spins are considered, i.e. up or down, 2* configurations
should be considered for a single tetrahedron but only 6 of them are available in order
to satisfy the ice rule. Thus the number of microstates accessible to the spin-ice is
calculated as €, = 2N(%)% and the entropy per spin is Sq/N = kgln (), = %B In %,
corresponding to Pauling’s result for water ice [26]. The magnetic entropy is deduced
from specific heat measurements down to 0.2 K on DysTiyO7 [20], illustrated in the
left panel of Fig. [[8, and down to 0.34 K on HosTiyO7 [27], after subtraction of the
nuclear contribution arising from strong hyperfine interactions acting on the nucleus,
and is in agreement with this prediction. The sibling stannate compounds present the
same residual magnetic entropy in HooSn,O7 [28] and DysSnaO7 [29)].

The spin-ice compounds do not exhibit any magnetic long-range order as for instance
in Ho,Ti;O7 where no spontaneous oscillations and no drop in the initial asymme-
try of the muon polarisation function are resolved by zero-field uSR experiments [19].
The electronic specific heat exhibits a broad hump roughly around 7" = 1 K below
which it drops to almost zero, indicative of a spin freezing in Ho,Ti,O; [27] and
Dy, TiyO7 [20]. This property was confirmed by magnetisation measurements with the
presence of an hysteresis effect between zero-field and field cooling procedures at 0.65 K
for Dy, TixO7 [30], and 0.75 K for HooSnyO7 [31], the latter case being illustrated in
the right panel of Fig.[L8 An additional proof of this spin freezing lies in the presence
of a peak in the real part of the a.c. susceptibility in Dy, Ti2O7 [30] and Dy2Sn,O7 [22]
indicative of the development of spin correlations.

1.3.2 The dipolar spin-ice model (DSM)

As discussed above, the case of classical spins with a strong Ising anisotropy, see the
Hamiltonian in Eq. [[L2] leads to the spin-ice configuration if ferromagnetic interactions
are at play, which is in agreement with the positive Curie-Weiss temperature deduced
from susceptibility measurements: Ocw ~ 1.9, 0.5, 1.8, and 1.7 K for Ho,Ti,O7 [18§],
Dy2Ti207 [20], HOQSHQO7 [31], and DyQSHQO7 [33], respectively.

However, magnetic ions carry a large magnetic moment of about =~ 10 pg. There-
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Figure 1.8: Left: Temperature dependence of the magnetic entropy of Dy, TisO; re-
vealing the same residual entropy as explained by Pauling in water ice [26]. A fit to
the data is achieved using the dipolar spin-ice model, see Eq.[.3 Experimental data
are from Ref. [20]. Reprinted figure with permission from Ref. |32]. Copyright 2015 by
the American Physical Society. Right: Temperature dependence of the magnetisation
of HoySny, O, recorded in ZFC-FC and showing a spin freezing behaviour. Copyright
IOP Publishing. Picture reproduced from Ref. [31] by permission of IOP Publishing.
All rights reserved.

fore, dipolar interactions are not negligible compared to the weak exchange interac-
tion inferred from the Curie-Weiss temperature. An estimation of the dipolar energy

scale between two nearest neighbours is given by D,, = 25_27%2 ~ 2.4 K [34], where

Pon = QlatV 2 /4 is the nearest-neighbour distance and g = 10 ug. Therefore, an effective
nearest-neighbour energy scale is put forward to take into account both the effect of the
exchange and dipolar interactions: Zog = Zy,,, + Dy, Where Z,,,, is the nearest-neighbour
exchange constant. Analysing specific heat data, a negative value of the exchange
constant is inferred indicative of nearest-neighbour antiferromagnetic exchange interac-
tions, i.e. Z,, = —0.52 and -1.24 K for Ho,Ti,07 [27] and Dy,TisO7 [32], respectively.
Therefore, dipolar interactions are of prime importance since they restore the ferro-
magnetic nature of the net nearest-neighbour interactions, a mandatory condition to
recover the spin-ice case.

The dipolar spin-ice Hamiltonian was introduced in order to describe the low tem-
perature properties of the classical spin-ice compounds [32]:

Hosu = I S SiSizi-2;+ Drd, 3 S8, (j;ﬂ _ 3lEry) (@, r])) . (13)
ij

5
re.
<i,j> j>i | i

where the first term accounts for the nearest-neighbour exchange interaction (Z = 3Inn)
and the vector z; refers to local (111) direction of spin S; located at the rare earth
site 3. The second term arises from the dipolar interaction (D = 3Dnn/5).|§ The

!The factor 3 comes from the scalar product between the local (111) directions of two nearest
neighbour Ising spins located at sites ¢ and j.

2The % factor comes from the scalar product between the (111) directions and the vector direction
connecting two nearest neighbours.
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Figure 1.9: Zero-field phase diagram of the dipolar spin-ice model predicted by Melko
et al. @] with Monte Carlo simulations. .J,, and D, have been defined in the main
text and refer to the nearest-neighbor exchange and dipolar energy scales, respectively.
Here, J,, = Z,,. Copyright IOP Publishing. Picture reproduced from Ref. @] by
permission of IOP Publishing. All rights reserved.

role of the long-range dipolar interactions was at stake for these frustrated systems to
understand why they do not lift the degeneracy to establish a long-range ordering. If
the first Monte Carlo simulations fail to describe the specific heat and magnetic entropy
results “ﬁ, @], due to a truncated sum over the dipolar term ﬂﬁ], bulk properties of the
spin-ice compound were finally consistent with simulations using the dipolar spin-ice
Hamiltonian for HoyTi,O7 @Tand Dy, TisO7 @], the latter case being illustrated in
the left panel of Fig. [[.8

The corresponding phase diagram of the Hamiltonian written in Eq. [[3] has been
computed in Refs. Nﬁ, &], see Fig.[L9 When the nearest neighbour exchange energy
becomes sufficiently large compared to the dipolar one, we recover the all-in-all-out
antiferromagnetic state with a magnetic propagation wavevector ky,ae = (0,0,0). Above
this value, the ferromagnetic spin-ice case is evidenced where the upper dotted line refers
to the broad peak in specific heat measurements corresponding to a slowing down of
the spin fluctuations. Decreasing the temperature, the spin-ice compound is predicted
to undergo a first order transition at 7'/D,, < 0.08 with k., = (0,0,1), which has
never been evidenced experimentally.

The experimental evidence of a signature of the existence of dipolar spin correlations
was a challenge over the past few years. Dipolar correlations in the real space are
characterised by a 1/r® decay, which corresponds in the reciprocal space by Fourier
transformation to Nﬁﬁ

(Si(—K)S; (K)) ox (5 - %) , (1.4)

where k is a vector of the reciprocal space. This leads to singularities at the Brillouin
zone centres, the so-called pinch points in neutron scattering measurements. Whereas

these pinch points were hardly seen with unpolarised neutron experiments on the spin-
ice compounds HoyTisO7 Mfr] and Dy,TiyO7 [|4_1|], Fennell et al. [@] succeeded to
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Figure 1.10: Diffuse magnetic scattering map recorded on the spin-ice compound
Ho,Tis O; at 1.7 K in the (hhl) plane in order to evidence pinch points. From Ref. ]
Reprinted with permission from AAAS.

evidence these peculiar pinch points on Ho, Ti5O7 using polarised neutrons, see Fig.[.10,
revealing the dipolar nature of the spin correlations. The comparison of data recorded
in the spin flip and non spin-flip channels explains why previous measurements could
not resolve these pinch points with unpolarised neutrons.

1.3.3 Magnetic monopoles

The notion of magnetic monopoles was firstly introduced by Ryzhkin [@] in order to
describe excitations in spin-ice. Then, the dumbbell model, see for instance Ref. @], has
been developped in order to illustrate the DSM Hamiltonian and to describe the thermal
fluctuations breaking of the ice rule with emergent quasiparticles, i.e. the magnetic
monopoles ﬂﬁ] The principle lies on the fragmentation of the magnetic dipole into
two magnetic monopoles of opposite charges +¢,, (dumbbell) as illustrated in Fig. [LTT]
and separated by a length a;, = \/galat/Q which is the distance separating the center
of two neighbouring tetrahedra. Thus, the magnetic moment carried by the dipole
[t = qmag is recovered. Therefore, the total magnetic charge in a tetrahedron « is
Qo = D_; ¢m,i, where the sum runs over the four magnetic charges inside the tetrahedra.
This resulting total magnetic charge is the so-called magnetic monopole. Note that in
the ice rule ground state @), = 0 and if a spin is flipped @, = +2q,. According to
Refs. [@, ], the magnetic Coulomb interaction between two monopoles is written as:

o Qs 4f #+
V(Taﬁ) = { 4m r%ﬁ (15)
Q3 ; _
e if o =0,
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Figure 1.11: (a) Two neighbouring tetrahedra obeying the ice rule. (b) The spin shared
by the two tetrahedra is thermally flipped to create a pair of magnetic monopoles of
opposite charge. Panels (c) and (d) are the illustration of panel (a) and (b) in terms of
the dumbbell model: a magnetic moment is replaced by two opposite magnetic charges
+¢m. (e) Propagation of two magnetic monopoles along a Dirac string. Reprinted by
permission from Macmillan Publishers Ltd: Nature @], copyright 2015.

where 7,43 denotes the distance between two monopoles. The first line of Eq. refers
to the dipolar interaction of the DSM and the introduction of the self energy 14 in the
second line accounts for the dipolar and exchange energy between nearest neighbours.
The DSM Hamiltonian can be rewritten in terms of the dumbbell notation such as:

- Ho QaQB 1%
Hpp = E% +3¥Qi (1.6)

Tap

When the ice rule is satisfied, the spin-ice state is defined as a Coulomb phase
since the three criteria stated by Henley ] are fulfilled: (i) the system is highly
disordered since no long-range order is established, (ii) each dumbbell is associated to a
magnetic flux, and (iii) the magnetic flux at the centre of the tetrahedron vanishes. The
last condition can be rewritten as a divergence free coarse-grained field, i.e. V- B =
to Y, Qo = 0 in the spin-ice ground state. We should notice that in a more usual
cooperative paramagnet, the system enters in a phase without long-range magnetic order
with spin correlations decreasing exponentially, whereas in the so-called Coulomb phase
spin correlations are algebraic.

Therefore, this model allows to describe spin dynamics in such a system: to a spin
thermally flipped corresponds the nucleation of two magnetic monopoles of opposite
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charge located in two corner-sharing tetrahedra. These monopoles interact through a
magnetic Coulomb potential. The divergence-free condition is broken, i.e. the ice rule
is not fulfilled anymore. Thus, once magnetic monopoles are nucleated, their diffusion
along a path of reversed spins, i.e. the so-called Dirac string, see panel (e) of Fig. [L11]
corresponds to the propagation of a zero energy cost spin reversal along the string, since
each tetrahedron tends to recover the ground state defined by the ice rule configuration.

1.3.4 Experimental evidence for magnetic monopoles

Bramwell et al. [47] have recently proposed by muon spectroscopy the presence of mag-
netic monopoles interacting through a magnetic potential in the spin-ice pyrochlore
compound Dy,TisO7. The principle lies on the increase of the magnetic monopoles
density when applying a magnetic field, inspired from Onsager’s work [48] on the second
Wien effect which predicts the increase of the dissociation constant of water molecule
into H;O™ and OH™ ions under an applied electric field which overcomes the Coulomb
energy barrier. Pursuing this analogy, the dissociation constant K for the nucleation
of magnetic monopoles was assumed to take a similar form as in Onsager’s theory for
weak magnetic field B [47]:

b2
K(B) = K(0) (1—1—6—1—3...) , (1.7)
where b = ;ng? A At the equilibrium, i.e. without applied magnetic field, the number

of bound magnetic monopoles ny, is predominant compared to the dissociated ones n,,.
According to Ref. [47], the dissociation constant is written as:

K(0) = = 1.8
(0) = mog 2, (1)
where ng = ny, + n, and o, = ny/ng. The recombination of nucleated magnetic

monopoles follows an exponential decay with a relaxation time 1/v,,_ . Since v,
Koy, Where ko is the magnetic conductivity (illustrating the motion of the magnetic
monopoles) proportional to the density of magnetic monopoles, and recalling that ay, <
1, it follows [47]:

b

Furthermore, Bramwell et al. [47] put forward that the fluctuations of the magnetic
monopole density produces fluctuations of the local field. Therefore after a magnetic
field perturbation, the relaxation rate of the magnetisation v is proportional to the
relaxation rate of the magnetic monopole density v, .

Vew(B) _ mu(B)
Ve (0) ~ aa(0)

3Note that the index « labelling a tetrahedron has been dropped now, Q refers to the magnetic
charge of an effective monopole.

(1.10)
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Figure 1.12: Temperature dependence of the calculated value of the effective mag-
netic charge Qe inferred from the field dependence of the muon spin relaxation rate
in the case of Dy, TiyO;. Reprinted by permission from Macmillan Publishers Ltd:
Nature [47], copyright 2015.

In the transverse field muon spin relaxation technique, see Sec. 2.6, the muon polari-
sation function is characterised by oscillations illustrating the precession of the muon
spin around the local field, and an envelope giving information on dynamics of the local
field at the muon site: in the case of slow fluctuations of the local field, the relaxation
rate )\ , characteristic of the exponential decay of the envelope, is proportional to 1.
Therefore, Bramwell et al. find an ingenious way to measure the magnetic charge car-
ried by the magnetic monopoles. Hence, measuring the field dependence of A allows to
extract the effective magnetic charge carried by the monopoles, see Fig. A typical
value of Qu¢ = 5 ug A~' has been inferred in good agreement with Ref. [44] within
the temperature range Tiower < T' < Typper Where Onsager’s theory remains valid. The
authors of Ref. [49] draw the same conclusions with uSR experiments on the spin-ice
compound Ho,Tis0r.

Whereas these results were strongly debated [50, [51] in a first instance, additional
experimental proofs evidenced a signature of magnetic monopoles in spin-ice as for
instance the observation of Dirac strings in Dy, TisO; with neutron scattering experi-
ments under a magnetic field applied along [100] [52]. Existence of such strings were
previously suggested in Ref. [42] from the broadening of pinch points. Furthermore,
the temperature dependence of the relaxation time inferred from a.c. susceptibility on
Dy, TisO7 [30], previously misunderstood, has been described in terms of the motion of
magnetic monopoles [53].

1.4 The quantum spin-ice

1.4.1 Beyond the classical spin ice

The quantum spin-ice is defined by the same properties as its classical counterpart:
Ising spins along the trigonal axis [111] fulfil the ice rule constraint, defining the same
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Figure 1.13: Illustration of the tunnelling between two spin configurations on an hexag-
onal plaquette, preserving the ice rule constraint. Reprinted figure with permission
from Ref. |56]. Copyright 2015 by the American Physical Society.

divergence free condition, i.e. V - B = 0. However, in the former case, additional
transverse nearest-neighbour exchange interaction Z, are at play with the usual lon-
gitudinal coupling Z,,. To these in-plane interactions result slight tilts of the spins
away from their initial direction, since Z, < Z,.. Note that the U(1) symmetry is pre-
served since a rotation around the local [111] axis leaves the system invariant. Hermele
et al. |54] firstly introduced this planar interaction as a perturbation of the classical
spin-ice ground state. Following notations of Ref. [55], the nearest-neighbour exchange
Hamiltonian with effective spin-1/2 (or XXZ model) is thus written:

Host = Hest +Hi  where,
Hest = L.y SiS; and,
(id)

M o= Iu) (SFS;7+87S)). (1.11)
(4,3)

The introduction of this small perturbation lifts the degeneracy associated to the clas-
sical spin-ice. Using perturbation theory on H, shows that the first and second order
terms lead to a vanishing or constant contribution to the energy. The third order term
involves, in order to preserve the ice rule constraint, a tunnelling between a specific
spin configuration: a ring exchange running on an hexagonal plaquette as illustrated
in Fig. [LI3] The authors of Ref. [54] show that, for a finite range of the ratio of the
strength of the tunnelling matrix element (which involves the transverse component of
the nearest-neighbour interaction) over the number of flippable plaquettes in the sys-
tem, the U(1) quantum spin liquid phase is predicted, the quantum spin ice state being
a peculiar case of the latter.

Since the ice rule is preserved, the divergence free condition of the magnetic field
allows to introduce a gauge field A, such as V x A = B. Therefore, the tunnelling
between ice configurations introduces time fluctuations of A resulting on the emergence
of an electric field E = —%—‘? [57]. Due to the U(1) symmetry, only transverse fluctua-
tions are allowed for this gauge field. This state supports several kinds of excitations:
magnetic monopoles, or spinons in the spin liquid literature, resulting from a spin flip
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breaking the ice rule constraint which, unlike the classical spin-ice, interact through
magnetic and electric fields. By construction of the spin loops on a hexagonal plaque-
tte, electric loops appear. Flipping a spin will not only generate magnetic monopoles
but also will break these electric loops: the extremities of these strings become source
of electric charges, the so called visons (see Ref. [55] and references therein). Finally,
at low temperatures, the emergence of a gapless magnetic photon resulting from the
transverse fluctuations of A is predicted in Ref. [56].

1.4.2 The exchange Hamiltonian

As we will see in Chapter [3], the crystal electric field acts as a perturbation of the spin-
orbit multiplet in the pyrochlore compounds, leading for most of them to a well isolated
magnetic ground state doublet which enforces a strong anisotropy of the spins. There-
fore, the low temperature properties can be described by an effective spin-1/2. Looking
for a realisation of the quantum spin ice state, compounds with a strong anisotropy
of the exchange interactions is an asset to the existence of quantum fluctuations, as
introduced above. Therefore, an anisotropic effective spin-1/2 Hamiltonian within the
ground state doublet was firstly derived on symmetry grounds in Ref. [58] and mostly
taken over in the quantum spin ice literature. Following the notations introduced in
Ref. [60], this exchange Hamiltonian takes the form:

Hee = Y T..S78; —Tu(S)S; +S;5)

(ig)

e[S ST + 7557 S 1+ La[S7 (655 + €587) +i e gl (L12)
where the effective spin is written in terms of local coordinates, i.e. the z direction is
taken along the trigonal axis [111] at the rare earth site, v is a 4 x 4 complex matrix (see
Ref. [60]), and £ = —~*. The space described by the four coupling constants constitutes
a challenge in order to theoretically describe the exotic magnetic phases observed in
the pyrochlore compound. Note that the case where Z,.. = Z,, = 0 has been treated
in Ref. [54] and presented in the former section. We recognise Z,,, the longitudinal or
Ising exchange constant. According to Refs. |55, 61, the three other exchange coupling
terms illustrate different interacting processes at play. Linear combinations of these
parameters allow to retrieve an isotropic exchange interaction, a pseudo-dipolar nearest-
neighbour interaction of the form S;S; — 3(S; - r;;)(S; - ri;) where r;; is a unitary vector
connecting two nearest neighbours and the Dzyaloshinskii-Moriya interaction of the
form Dpy - (S; X S;) 62, 163]. The latter interaction depends on the symmetry of the
crystal: Moriya’s rules |64] state that if the middle point between the two magnetic
sites is a center of inversion, there is no Dzyaloshinskii-Moriya interaction. The authors
of Refs. |62, 63] have shown that only two cases are allowed in the pyrochlore lattice:
in both cases, vectors Dpy must be perpendicular to the {110} planes.

The anisotropic exchange Hamiltonian in Eq. has been analysed by means of
gauge mean field theory gMFT in order to compute the phase diagram in the Kramers
(half-integer spin) [65] or non-Kramers (integer spin) [66] cases, illustrated in the left and

“Note that a similar Hamiltonian is derived based on the superexchange interaction —the hy-
bridization of the 4 f orbital of the magnetic ion and the 2p orbital of an oxygen— and calculating the
probability of an electron (or a hole) to hop between the aforementioned orbitals [59].
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Figure 1.14: Left: Zero temperature phase diagram resulting from gMF'T analysis of
the Hamiltonian written in Fq. in the case of Kramers (left) and non-Kramers ions
(right). Here J,, =7,., J.+ =74+, J =7., and Jyy = Z... Reprinted figures with
permission from Refs. E, [%’?] for left and right panels, respectively. Copyright 2015 by
the American Physical Society.

right panels of Fig. [ T4l respectively. In Ref. [@], Z.. > 0 has been taken, i.e. the spin
ice ground state manifold, and Z,4 = 0 to restrain the space to two parameters. FM
and AFM denote the Higgs ferromagnetic and antiferromagnetic long-range order, QSL
refers to the quantum spin liquid (or quantum spin-ice case since Z,, > 0) presented in
Sec. [L4.TI}— defined as a deconfined phase since Coulombic interaction between effective
particles is weak —, and CFM names the Coulomb ferromagnetic state which displays
the same excitations as in the quantum spin-ice and a dipolar long-range order %
Note that the non zero temperature phase diagram has been studied recently in Ref. [67].
On the other hand, the non-Kramers case has been treated in Ref. @], using Z,, > 0.
The coupling between the Ising and planar components of the effective spin does not
contribute to the Hamiltonian in the non Kramers case since |(¢Z|S*|¢d)| = 0, where
¢& are the wavefunctions of the ground state. The resulting phase diagram leads to
the quantum spin-ice state, and two ordered phases: an XY antiferroquadrupolar order
and a non coplanar ferroquadrupolar order.

The most propitious and studied compound over the past few years which could
exhibit a quantum spin liquid phase is ThyTisO7: we will present a non exhaustive
review of it in Chapter Bl Other candidates to the quantum spin-ice state are ProSnsO7
and PryZr,O7 @] The latter compound belongs to a pyrochlore series which will not
be discussed in this work. On the former compound, inelastic neutron scattering mea-
surements reveal a non Kramers ground state doublet well isolated from the excited
ones, and crystal field calculations taking account the low lying multiplets arising from
the spin-orbit coupling show an Ising anisotropy and a magnetic moment ~ 2.6 ug [@],
implying that dipolar interactions are much weaker than in the classical spin-ice. Fer-
romagnetic interactions are dominant since fcw = 0.3 K [@] The authors of Ref. @]
show a broad hump in the specific heat at 7' = 0.86 K indicative of the development of
short range correlations, as confirmed by neutron diffraction where no magnetic Bragg
peaks are evidenced down to 0.2 K but rather a diffuse magnetic scattering intensity.
The residual entropy at 0.37 K is higher than the one found in spin ice, attesting the dy-
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namical nature of the ground state. A characteristic correlation time ~ 2 ps is inferred
from the quasielastic signal observed by inelastic neutron scattering measurements. A
small hysteresis in the field dependence of the magnetisation at 7' = 90 mK indicates
a slowing down of the fluctuations, confirmed by a.c. susceptibility measurements [71].
Note that due to the non-Kramers nature of the ground state, fluctuations have been
proposed to originate from quadrupolar interactions |69, [72].

1.5 The pyrochlore series RyM>07: a large variety of
magnetic ground states

We present here a short review of the magnetic states existing in the pyrochlore com-
pounds RyM>07 (M=Ti, Sn) which were not discussed yet. Note that the case of
the thulium ion will not be discussed since it exhibits a non magnetic singlet ground
state, see Chapter Bl We first focus on compounds having an Ising anisotropy, namely
Tbo M50~ and then briefly describe those having a dominant planar anisotropy.

1.5.1 Tb2Ti207 VS TbQSl’l207

As already mentioned, ThyTi5O7 is a candidate for the quantum spin-ice phase and will
be largely discussed in Chapter Bl It does not display any magnetic order. On the con-
trary, ThoSnyO7 is characterised by a long-range magnetic order at T, = 0.87 K as seen
by magnetic susceptibility measurements. The high temperature range (100 < T <
300 K) of the susceptibility follows a Curie-Weiss law leading to fcw ~ —12 K, indica-
tive of antiferromagnetic interactionsﬁ and a paramagnetic moment close to the value of
the free ion [33]. Powder neutron diffraction experiments show that nearest-neighbour
antiferromagnetic correlations appearing below 100 K are progressively replaced by the
development of ferromagnetic correlations below 7" = 2 K. This reminds us the case
of the classical spin-ice compounds where dipolar interactions overcome the nearest-
neighbour antiferromagnetic exchange coupling resulting in an overall ferromagnetic
interactions. An ordered magnetic phase is evidenced with a magnetic propagation
wavevector kpy., = (0,0,0) at TC.|§| The magnetic structure is seen with magnetic
moments canted away from the local axis [111] with an angle of ~ 13° and their lon-
gitudinal components are arranged in the two-in/two-out configuration, i.e. an ordered
spin-ice state, see the left panel of Fig. A spontaneous magnetic moment of 5.9 ug
is found [74]. However, whereas a peak is observed at the transition in specific heat
measurements |74, [75], the analysis of the low temperature part raises some questions.
Tons Th** carry a nuclear spin [ = %, and nuclear levels are split by Zeeman effect
from the hyperfine field and a quadrupolar term arising from the electric field gradient
acting at the rare earth site. Estimation of the hyperfine field leads to a smaller mag-
netic moment, i.e. 4.5 up, compared to the one found by neutron diffraction |74, [76].
This feature was understood considering the spin fluctuations — or fluctuation of the

5Note that an estimation of the crystal-electric-field contribution yields a weaker but still antifer-
romagnetic Curie-Weiss constant fcw ~ —6 K [73]

6 Note that irreducible representations allowed by the pyrochlore space goup Fd3m cannot account
for the magnetic diffraction pattern and a solution was found by lowering the symmetry of the crystal
(space group I4;/amd), i.e. magnetoelastic effects distort the crystal [74].
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Figure 1.15: Left: Magnetic structure of ThySnyO7: spins are slightly canted away from
the [111] axis and their longitudinal components are in the "two-in/two-out" configu-
ration. All tetrahedra are identical, defining the ordered spin-ice state. Reprinted from
Ref. @], copyright 2015, with permission from Elsevier. Right: Temperature depen-
dence of the muon spin-lattice relaxation rate in zero-field uSR measurements and uSR
spectra recorded in zero-field at T = 0.17 and 2.4 K. No spontaneous oscillations are
seen in the ordered phase. Data reproduced from Fig. 2 of Ref. ,@]

hyperfine field — leading to the non thermal equilibrium of the nuclear levels, and
thus to a decrease of the nuclear specific heat |74]. Spin dynamics was confirmed by
1SR experiments where no spontaneous oscillations are observed in the ordered phase
and no clear evidence of a transition is seen in the temperature dependence of the
spin-lattice relaxation rate ﬂﬂ, @], see the right panel of Fig. [LT5l A characteristic
fluctuation time 7. ~ 107° s was found. Additional measurements with the neutron
spin-echo technique show the coexistence of static (¢ = 0.08 A) [@] and dynamical
spins [79] at larger wavevectors with a fluctuation time 7, = 2 x 10~'! s. Polarised
neutron diffraction experiments show that 60% of the spins remain static, contributing
to the observation of magnetic Bragg peaks, whereas the remaining are responsible for
the liquid-like diffuse magnetic background and fluctuating at 7. ~ 5 x 107'! s [@]
Finally, the analysis of the Bragg peak widths, the diffuse magnetic scattering and the
small angle neutron scattering at 7' = 0.1 K yield several spin correlation lengths [|&_1|],
using high-resolution neutron diffraction experiments. In the same reference, neutron
backscattering spectroscopy evidences a fluctuation time 7. = 1.3 x 1072 s. There-
fore, the ground state of ThySnyO7 is characterised by long and short-range correlation
lengths and a distribution of fluctuation times, attesting the presence of dynamic spins
coexisting with a long-range magnetic order.

1.5.2 YbyTi;O7 vs YbySnyOr

Yb,TisO7 is believed to be a realisation of a three-dimensional quantum spin-liquid sys-
tem. It possesses a Kramers ground state doublet well isolated from the excited ones
and a dominant planar anisotropy, see Chapter B A sharp peak in the temperature
dependence of the specific heat indicates a transition at 7, = 0.24 K ﬂﬁ] A broad
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hump is also observed at T' =~ 2 K, attributed to the development of short-range spin
correlations and not to a Schottky anomaly since the first excited crystal-electric-field
energy level is predicted to lie above 50 meV, see Chapter [8l Ferromagnetic interac-
tions are inferred from the Curie-Weiss temperature Ocw = 0.75(10) K [83|. From the
hyperfine field measured by Mossbauer spectroscopy, the magnetic moment carried by
the Yb3* moments is found to be equal to ~ 1.15 up and therefore, dipolar interactions
are negligible [84]. In the same reference, magnetic moments are shown to be canted
away from the local axis [111] with an angle of 44(5)°. The sharp transition observed
in the temperature dependence of the Yb3* magnetic moments, and the coexistence of
paramagnetic and static moments, are indicative of a first-order transition [84]. This
feature is confirmed by pSR and Mdossbauer spectroscopies since the spin fluctuation
rate undergoes a sharp decrease at T, of three orders of magnitude, with a persistence of
spin dynamics down to 40 mK with a characteristic fluctuation time 7. ~ 107% s [84], see
left panel of Fig. [L.16l However, originally unpolarised and polarised neutron diffrac-
tion experiments seem to preclude the existence of a long-range magnetic ordering, see
Refs. |84, 85]. Therefore, this candidate attracts a lot of attention in order to under-
stand its magnetic ground state as a possible candidate to a quantum spin-liquid. The
determination of the exchange couplings introduced in Eq. becomes of prime im-
portance. Analysing the spin wave dispersion measured by inelastic neutron scattering
at T = 30 mK under applied magnetic field, the authors of Ref. [60] find a set of values
given in meV, ie. 7., = 0.17(4), Z, = 0.05(1), Zoy = 0.05(1), and Z,, = —0.14(1),
putting this compound deep in the ferromagnetic statd]| shown in the left panel of
Fig. [L14l Note that despite the strong planar anisotropy, the Ising exchange coupling
is dominant. These results allow to well describe zero-field specific heat data above
0.7 K [86] and the temperature dependence of the magnetisation under different ap-
plied magnetic fields [87]. The prediction of a long-range ferromagnetic order state is in
agreement with some earlier measurements: Yasui et al. [88] have evidenced magnetic
Bragg peaks at ' = 0.03 K with a reduction of the magnetic moment (1.1 up) compared
to the saturation value of the magnetisation measured at T'=5 K (1.8 pp), indicative
of canted magnetic moments. These results were strongly debated at the time since
they contradict the conclusions of the aforementioned Refs. [84,185]. Besides, neutron
spin echo measurements at T = 0.18 K show that the relaxation of the intermediate
scattering function occurs out of the neutron spin echo time window, i.e. spin dynamics
characterised by a fluctuation time 7. < 4 ps [85] much faster than the one inferred
from pSR (7. &~ 107% s). However, polarised neutron experiments [89] supports the
existence of a ferromagnetic state since a magnetic Bragg peak has been undoubtfully
evidenced below T.. An explanation for such different experimental results could arise
from the possibility of stuffing, i.e. site exchange between ytterbium and titanium ions,
or evaporation of the titanium, while growing single crystals by the optical floating zone
technique [90]. This goes in line with specific heat measurements where a sharp peak
at T. is observed or not for powder samples or single crystals [91].

On the other hand, the sibling compound YbsSnyO7 exhibits very similar physical
properties: ferromagnetic interactions deduced from fcw = 0.51 K [33], a sharp tran-
sition at T, = 0.15 K [92] in the temperature dependence of the specific heat, together

TAccording to Ref. [65], the phase diagram shown in the left panel of Fig. [[14] is symmetric in
Iz:l: — *Iz:t-
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Figure 1.16: Left: Fluctuation rate of spin dynamics measured by puSR (v.,) and
Méssbauer (v.a) spectroscopies for YbyTixOr [83] (blue symbols) and YbySnsO; @]
(red symbols). Note that uSR experiments are necessary to probe slower spin dynamics
since the Mossbauer time windows is limited to timet < 1078 s. Right: Powder neutron
diffraction pattern of YbySn,O; recorded at 52 mK. Reprinted figures with permission
from Ref. [92]. Copyright 2015 by the American Physical Society.

with a broad hump around 2 K [@, @] The first-order nature of the transition is
confirmed by puSR and Mossbauer spectroscopies where, similarly to YbyTisO7, a sharp
increase in the temperature dependence of the Yb3T magnetic moments, the coexistence
of paramagnetic and static magnetic moments and an abrupt reduction of several orders
of magnitude of the spin fluctuation rate is observed at the transition [@], see left panel
of Fig. for the latter property. A persistence of spin dynamics down to the lowest
temperatures with a typical spin correlation time 7. ~ 3 x 107% s is also evidenced [@]
From the measurement of the hyperfine field with Mossbauer spectroscopy, the sponta-
neous magnetic moment mg, = 1.1 g is tilted away from the [111] axis with an angle
of 65°, leading to a stronger planar anisotropy compared to YbyTisO7 @, @] The
main difference compared to the titanate compound resides in the presence of magnetic
Bragg peaks with a magnetic propagation wavevector kyag = (0,0,0): the diffraction
pattern, see the right panel of Fig. [L16] is very well refined using the I'g irreducible
representation allowed by the Fd3m space group: a spontaneous magnetic moment
msp = 1.05(2) pp has been inferred, very close to the Mdssbauer value, with magnetic
moments canted away from the z axis with the aforementioned angle [@] Therefore,
the name of splayed ferromagnetic state is coined @] However, no spontaneous oscil-
lations are seen by uSR spectroscopy due to the persistence of spin dynamics [@, @]
The latter assumption is supported by a.c. susceptibility measurements where a be-
haviour of spin freezing rather than a magnetic long-range order is put forward from
the analysis of the imaginary part of the susceptibility, with a characteristic time of
spin fluctuations 7. ~ 1.5 x 107% s at 0.13 K, compatible with the value inferred from
1SR measurements [@] Therefore, the magnetic ground state of YbySnyO7 is one of
the ferromagnetic states (Coulomb ferromagnet or Higgs ferromagnetic state) predicted
in Ref. @], see left panel of Fig. [.LT4l The persistence of spin dynamics should place
YbySny,O7 close to the quantum spin liquid state [@]
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1.5.3 Er2Ti207 VS EI‘QSH207

Er,TisO7 has a strong planar anisotropy, i.e. spins lie in a plane perpendicular to the
local [111] axis, see Chapter Bl A sharp peak at 7" = 1.2 K in the temperature de-
pendence of the specific heat indicates a magnetic transition [82]. The analysis of the
high temperature range of the magnetic susceptibility yields strong antiferromagnetic
interactions deduced from the Curie-Weiss temperature 6cw = —15.9 K and a para-
magnetic moment close to the value of the free ion [95]. Powder neutron diffraction
reveals the second-order nature of the transition and a long-range magnetic order with
a magnetic propagation wavevector kp,, = (0,0,0) [96]. The magnetic structure is
characterised by the so-called W, state, see Tab.[D.1] basis vector of the irreducible rep-
resentation I's [97]. The corresponding spin configuration over a tetrahedron is shown
in the left panel of Fig. The authors of Refs. |96, 98] show that an order by dis-
order mechanism [15] through thermal fluctuations selects the Wy state. However the
transition is predicted to be first order in contradiction with experimental results. The
four symmetry-allowed exchange couplings introduced in Eq. are determined from
the analysis of spin wave dispersion under magnetic fields [17] and given in 1072 meV:
ZI..,=—25(1.8), 7. =6.5(8), Zo4 = 4.2(5), and Z,, = —0.88(1.5). Note here that the
transverse exchange constants are dominant. We can mention that these parameters are
roughly similar to those determined from zero-field diffuse neutron scattering intensity
maps [2]. More importantly, the second order nature of the phase transition is restored
with the introduction of quantum fluctuations [14, [17, 99]@

Coexistence of short-range spin correlations and long-range order has been evidenced
in Ref. |[101] from the sharpening of the magnetic Bragg peaks and reduction of the
diffuse scattering when applying a magnetic field. The presence of spin dynamics in the
ordered phase has been confirmed by the absence of spontaneous oscillations by puSR
spectroscopy [2, 1102|, similarly to the ordered compound ThySnyO;. However, zero-
field uSR spectra cannot be described by usual muon depolarisation functions, and the
origin of its shape remains mysterious. Applying strong longitudinal magnetic field —
but lower than the critical field H. = 2 T inducing a phase transition [103]— allows to
recover a usual exponential decay of the muon depolarisation sepctrum, as displayed in
the left panel of Fig. [L.I7

On the other side, the XY stannate counterpart ErsSn,O; does not display any
long-range magnetic order down to 7' = 0.13 K from magnetic susceptibility measure-
ments [33] and down to T" = 0.02 K from pSR experiments [102] which suggests a
dynamical nature of the ground state. In the former reference, the analysis of the high
temperature range of the magnetic susceptibility reveals that EroSnyO7 has a paramag-
netic moment very close to the value of the free ion while the Curie-Weiss temperature
fcw = —14 K indicates antiferromagnetic interactions smaller than those in EryTisO+.
The absence of magnetic order was also confirmed later by neutron diffraction down
to T'= 100 mK, but diffuse magnetic scattering was evidenced starting from 7' =5 K
down to the lowest temperatures, indicative of the apparition of short-range spin cor-
relations [105]. This freezing of spin dynamics is confirmed by the hysteresis effect in
field cooling/zero-field cooling below T' = 0.2 K in the temperature dependence of the

8We should mention that authors of Ref. [100] propose an alternative explanation to the order by
disorder mechanism selecting the ¥, state and stabilizing a long-range magnetic order by considering
an admixture of the low-lying excited crystal-electric-field energy levels.



36 CHAPTER 1. INTRODUCTION

400
L e R R R = 350
0251 . S
r v H =
- N Er2T|207 g 300 |
F 0200 T, 21 mK £
i T, m o 250
s 015 b8 S ! 3 O
- r ERCA n11s” fg,, Q 200 -
> E o 1.3 T 78 "', %00, =
‘d_,)' 0.10 C . 1T b3 Yy ‘0"‘000 . @
g C O TS E 150 -
= Fv075T Cule, Yoo T4 %t ] =
> 0.05p °s Y e, e o
7 Y o Yogv, T ttagy P E S 100
< L 009, Yo o 4 ) .‘ ; ¢¢¢ J ~—"
0.00f:02T ettty 1 2
rooT FERIET 2 50 ¢
[ N P B B S| 9
00 05 10 15 20 25 3.0 £ 0r
Time t (us)
-50 0

Figure 1.17: Left: Zero and longitudinal fields SR spectra of a Ery Tis O, crystal sample
recorded deep into the ordered phase at T' = 21 mK. For magnetic fields H > 0.5 T,
an exponential decay is recovered. Reprinted figure with permission from Ref. E]
Copyright 2015 by the American Physical Society. Right: Diffuse magnetic scattering
of ErySny O7 analysed following spin correlations described by the T's (green line) or
the T'; (blue line) irreducible representations, the latter corresponding to the Palmer-
Chalker state. Reprinted figure with permission from Ref. @] Copyright 2015 by the
American Physical Society.

magnetisation and the frequency dependence of the peak observed in the imaginary part
of the a.c. susceptibility |. In the latter reference, the magnetic diffuse scattering
recorded at 7" = 1.5 K is analysed in terms of spin correlations according to the spin
configuration corresponding to the three-dimensional I'; irreducible representation[]i.e.
the Palmer-Chalker state introduced in Sec.[.2], as shown in the right panel of Fig.[L.T7.
However, it should be noted that an experimental report from ILL | suggests from
neutron diffraction experiments on EryTis_,Sn,O; that ErsSnyO; enters a long-range
magnetic order at T, ~ 0.1 K.

1.5.4 GdgTigO’z VS Gngn207

The case of pyrochlore compounds with gadolinium ion is slightly apart from the other
rare earths since Gd does not posses an orbital momentum (the 4f electronic shell
is half-filled). Therefore, the spin anisotropy resulting from the crystal-electric-field
should not play any role: thus, spins are expected to be Heisenberg. Still, electron
paramagnetic resonance measurements reveal an XY anisotropy of the spins and with a
strength non negligible compared to exchange and dipolar energies for GdyTioO7 M]
and GdySnyO5 |. In the latter compound, the strength of the anisotropy is about
one-third lower than in the titanate one.

Both compounds display antiferromagnetic interactions with a Curie-Weiss temper-

9Note that this analysis does not allow to distinguish which basis vectors Wy 5 ¢ are involved.
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ature fcw ~ —9.5 and —9.4 K for Gd,TiyO7 [8, 109] and GdySnsO7 109, [110]. The
paramagnetic moment is very close to the expected value of the free ion, i.e. 7.94 ug.

GdyTiyO7 exhibits two transitions in specific heat measurements [8; [111), [112] at
T.1 = 1 K and T.o = 0.74 K. The computed magnetic entropy reaches ~ 90% of
the expected RIn(2S + 1) = RIn8 value for the free ion. Powder neutron diffraction
experiments initially revealed below T; a single k., = (%, %, %) magnetic structure
where magnetic moments lying in the Kagome planes are static whereas those belonging
to the triangular planes remain dynamic |1 13].@ However, the authors of Ref. [114] show
that the only possible configuration allowing to account for a supplementary magnetic
Bragg peak located at (%, %, %) and to be consistent with the correlation length deduced
from magnetic diffuse scattering intensity recorded with polarised neutrons is a 4-kpag
structure with spins perpendicular to the local [111] axis. Furthermore, 25% of the spins
are not ordered in the temperature range 7. o <7 < T¢; and this fraction of the spins
partially orders at 1" = T 5, i.e. they carry a magnetic moment of 1.9 up whereas the
fully ordered spins carry a magnetic moments close to the value expected for the free
ion. Hence, the magnetic ground state is very peculiar, exhibiting a partially ordered
magnetic structure with spins remaining strongly fluctuating. The latter property was
confirmed by pSR spectroscopy: whereas spontaneous oscillations are observed in zero-
field measurements as a signature of a long-range magnetic order, persistence of spin
dynamics is evidenced down to 20 mK with a characteristic fluctuation time 7, =
0.7(2) ns [112]. With the purpose of confirming the proposed magnetic ground state,
neutron spin echo measurements show at 7' = 110 mK that 80% of the intermediate
scattering function is constant as a proof of static spins behaviour. The remaining
20% of the signal is missing, meaning that spins fluctuate faster than the NSE window
time [115)].

On the other hand, GdySnyO7 undergoes a single transition at 7'~ 1 K [117]. From
Mossbauer spectroscopy, the spontaneous magnetic moment in the ordered phase is
found to be ~ 7 up, and its temperature dependence indicates a first order transi-
tion [117]. Neutron diffraction measurements reveals a magnetic structure with ky,, =
(0,0,0) and magnetic moments with an XY anisotropy lying parallel to the edges of the
tetrahedron |9]. This magnetic structure correspond to the Palmer-Chalker state [7]
described earlier in Sec. for classical Heisenberg spins interacting through nearest-
neighbour antiferromagnetic exchange and dipolar interactions. An explanation to the
difference observed between the magnetic ground states of these two gadolinium com-
pounds could arise from a different third-neighbour exchange coupling [9]. Despite the
magnetic long-range order confirmed by the presence of spontaneous oscillations ob-
served by pSR spectroscopy [116, [118], persistent spin dynamics down to ~ 20 mK is
deduced in Mossbauer spectroscopy from the analyis of the relative intensities of Mdss-
bauer lines leading to a population of the nuclear levels more even than predicted by
the Boltzmann population factor, indicative of spins fluctuations [119,120]. These spin
fluctuations are characterised by a characteristic time out of the Mdssbauer time win-
dow, i.e. 7, < 1.2x107% s for Gd3*. The latter feature is confirmed by the non vanishing

10We refer to Fig.[A2]to see that looking in the <111> directions, magnetic ions belong altenatively
to triangular and Kagome planes.

1A stretched exponential function is used to analyse uSR data with an exponent Bs, ~ 0.5 and
Bse = 0.75 for T < T2 and T < T 1, respectively [112].
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Figure 1.18: Left: Illustration of the 4-k,, magnetic structure in GdyTi;O;. The
green spheres show magnetic ions ordering for T,o < T' < I, and the orange ones
those remaining dynamics in this temperature range, and which partially order below
T:2. Copyright IOP Publishing. Picture reproduced from Ref. ] by permission
of IOP Publishing. All rights reserved. Right: zero field uSR spectrum of GdsSny Oy
recorded at 21 mK. A zoom over the shortest times displays the spontaneous oscillations
of the muon spin attesting from the long-range nature of the magnetic state, but still an
exponential decay is observed at longer times as a signature of persistent spin dynamics.
Reprinted from Ref. M], copyright 2015, with permission from Elsevier.

plateau of the spin-lattice relaxation rate revealed by puSR spectroscopy m, m]

1.6 Content of the manuscript

The present work focuses on low temperature properties of geometrically frustrated
magnetic compounds: the two pyrochlore series RyTisO7 and RoSnyO7 where R is a
rare earth. We will outline in this section the content of each following chapters.

The second chapter will introduce the different experimental techniques used in this
work in order to characterise the physical properties of the investigated compounds.
Laboratory experiments have been conducted at INAC, CEA-Grenoble, which include
X-ray diffraction and bulk measurements such as specific heat and magnetisation mea-
surements. Large scale facilities — the Institut Laue-Langevin (ILL), the Rutherford
Appleton laboratory (ISIS) and the Paul Scherrer Institut — allowed us to perform
experiments with a wide panel of techniques: X-ray synchrotron radiation, neutron
diffraction, neutron time-of-flight, neutron backscattering and SR experiments will be
described.

The third chapter is devoted to the study of the crystal-electric-field acting at the
rare earth site, which is of prime importance since it provides the energy levels scheme
of the rare earth, the spin anisotropy, and the wavefunctions of the different states for
instance. Within the approximation that only the ground state term arising from the
spin-orbit coupling needs to be taken into account, i.e. using the Stevens Hamiltonian,



1.6. CONTENT OF THE MANUSCRIPT 39

a global analysis of published and measured inelastic neutron scattering spectra aims
to characterise each pyrochlore series of interest with a single set of crystal-electric-field
parameters.

The fourth chapter will present numerous results obtained on the pyrochlore com-
pound NdySn,O; with a wide panel of techniques. This compound undergoes a second-
order magnetic transition at 7. = 0.91 K, with an all-in-all-out spin configuration. The
long-range order nature is confirmed by the observation of spontaneous oscillations in
1SR experiments. However, persistent spin dynamics is observed in the ordered state
and ascribed to low-energy spin loops excitations. Anomalously slow spin fluctuations
are also evidenced in the paramagnetic state.

The following chapter deals with one of the most intriguing pyrochlore compound
over the past few years: ThyTisO7. A review of its different physical properties will
be presented before a discussion on the two possible magnetic ground states: X-ray
synchrotron radiation and SR Knight shift measurements are brought to shed light if
a Jahn-Teller transition occurs or if this compound is a realisation of a quantum spin-ice
state.

General conclusions and some perspectives for future work are given in the last
chapter.

Finally, several appendices are provided in order to give further information on: (i)
the crystallography of the pyrochlore compounds, (ii) the point charge model support-
ing the existence of a scaling law between crystal-electric-field parameters of different
compounds and mandatory to a global analysis of the crystal-electric-field properties,
(iii) the correction of the neutron absorption included in the analysis of neutron time-of-
flight data, (iv) some basics of group theory for the determination of magnetic structures
and an analytical evidence confirming the selection of the irreducible representation for
NdsSny 07, and finally (v) some necessary theoretical tools to understand and analyse
1SR data.

We finish the overview of the manuscript by mentioning some other aspects inves-
tigated during this PhD thesis which are not included in the manuscript. The spin
dynamics of EryTisO7 in the ordered and paramagnetic states has been probed using
the neutron spin-echo technique and results are currently being analysed at the time
of writing. Spinel compounds of chemical formula Cds Ry Xy, where R = Ho or Yb and
X = S or Se, which present the same frustrated network as the pyrochlore compounds,
have been studied by means of X-ray diffraction, specific heat, magnetisation, and SR
measurements. These results are not discussed here in order to keep the coherence of
the manuscript, focusing on the pyrochlore series.
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In this chapter are detailed the different techniques used in this work: specific heat
and magnetisation measurements, X-ray and neutron diffraction, neutron time-of-flight
and neutron backscattering spectroscopies and finally positive muon spin relaxation
spectroscopy. The different facilities visited along this work will be briefly introduced.

2.1 Bulk measurements

Bulk experiments such as specific heat and magnetisation measurements are briefly
discussed in this section.

2.1.1 Specific heat

The specific heat experiments have been conducted at CEA-Grenoble, using a Quantum
Design PPMS (Physical Property Measurement System) to perform experiments down
to 0.4 K. The temperature of 1.9 K is reached with a first *He cooling equipment.
A 3He stick can be inserted in the sample space in order to extend the experimental
temperature down to 0.4 K. The system is kept adiabatic with a secondary vacuum
needed to ensure no heat losses by exchange gas.

The heat capacity characterises the amount of heat to bring to the sample to increase
its temperature and it is defined as follows [121]:

o [ 0@n
= 5171130 (5—T)p’ (2.1)

where (Jy, is a heat input brought to the sample, and the index p refers to constant
pressure. Since the heat capacity is an extensive quantity, one rather works with the
specific heat C),, being the heat capacity divided by the number of moles. Note that
difference between specific heat measured at constant volume (C,) or pressure (C,) is
not relevant due to the low compressibility of the studied compounds, i.e. C, — C, =

v
p (8_T) » “ﬂ]

The PPMS employs the thermal-relaxation technique by measuring the response
of the sample after a heat perturbation. In the left panel of Fig. 2.1] is shown the
puck used for *He measurements: the sample is placed at the centre of a platform
linked by four threads of thermal conductance K; to the cryostat. Apiezon N grease
ensures a good thermal conductivity between the sample and the platform. Its specific
heat temperature dependence is displayed in the left panel of Fig. 2.2l A simplified
experimental set up scheme is given in the right panel of Fig. 211 We denote T, T,
and Ty the temperatures of respectively the sample, the platform and the cryostat, P
the thermal power applied to the platform and ¢, and ¢, the heat capacity of the sample
and the platform. Performing the heat-balance [M] of the platform and sample, we
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Figure 2.1: Left: On the top panel is shown a picture of the puck used for He measure-
ments. The sample is placed on the centre of the platform as illustrated in the picture at
the bottom. Right: simplified scheme of the PPMS. The heat transfer between the sam-
ple and the platform is controlled by a thermal conductance Ky. The contact between
the platform and the cryostat is ensured by four threads of total thermal conductance
Kl.

derive:

dT,
P = CQE+K2(TQ—T23)+K1(T@—T0),
(2.2)
dT,
0 = CxE+K2(Tx _Ta)-

Considering the thermal conduction between the sample and the platform to be im-
portant, i.e. Ky > K7, see right panel of Fig. 2.1 it results T, ~ T,. Thus, Eq.
becomes:

dT’,
P = (Ca: + CQ)E + Kl(Tx - T()) (23)

A thermal power P is applied to increase the sample temperature from Tj to Ty + AT
at a time ¢y — 00. The solution of Eq. is then:

Tu(t) = Ty + ATV[1 — exp(—t/n)], (2.4)

where AT} = P/K; ~ 0.017y and 71 = (c,+c¢,)/ K7 is the relaxation time. Then, cutting
the heat power at a time ¢/, the sample temperature relaxes down to the temperature
set point from T, (t') = Ty + ATs to Ty. The solution of Eq. 2.3 becomes:

T.(t) = To + ATy exp(—(t — ') /1), (2.5)

As K; is determined by the estimation of AT; and ¢, is tabulated, the measure of
71 gives access to the specific heat of our sample. This technique is illustrated in the
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Figure 2.2: Left: Temperature dependence of the Apiezon N specific heat measured by
Y. Chapuis [123]. Right: Evolution of the temperature of a NdySnyO; sample powder
to illustrate the relaxation technique. Raw data are displayed by red circles, the full
blue line and the green dotted line are a fit using Eq. and Eq. respectively, the
black dashed line is the asymptotic value of Eq. 2.4, the purple dashed-dotted line is
the tangent at the origin allowing to determine 7.

right panel of Fig. 2.2l Practically, it is also checked that the relaxation time between
the platform and the cryostat is negligible which is indicative of the goodness of the
measurement as it justifies the hypothesis Ky > Kj.

It has been observed that in some temperature range where the specific heat of the
measured sample becomes small, the contribution of the grease should be taken into
account. Then, a preliminary measurement of the puck with an appropriate amount of
grease is performed. The grease contribution is then interpolated and subtracted from
the total specific heat.

2.1.2 Magnetometry

Magnetisation experiments have been performed with a Quantum Design MPMS (Mag-
netic Property Measurement System) at INAC, CEA-Grenoble. This magnetometer
gives access to a temperature range from 300 to 2 K thanks to a *He cryostat and a
magnetic field up to pugHey = 5.5 T. From this technique is obtained the magnetisation
curve M = f(H) and the bulk magnetic susceptibility defined in the linear approxima-
tion (weak magnetic fields) as:
) oM M

X= e~ How (2.6)

The MPMS is equipped with a SQUID sensor (Superconducting QUantum Inter-
ference Device) and it is illustrated in the left panel of Fig. 2.3 whereas the relevant
constituents are displayed in the right panel of Fig. 2.3 The magnetic moment is
measured thanks to the extraction method with a precision up to 1 x 107'* A.m?.

A superconducting electromagnet applies a static magnetic field in which the sample
is moved. The magnetic flux variation caused by the sample motion induces a current
in the three superconducting detection coils configured as a second order gradiome-
ter [124|, thus avoiding external magnetic fields perturbations. These detection coils
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Figure 2.3: Left: Schematic view of the Quantum Design MPMS [124]. Right: Insight
on the relevant constituents involved in the extraction method [126]: (1) Superconduct-
ing electromagnet applying a magnetic field jioHey at the sample. (2) Superconducting
detection coils. (3) Sample moving along the field direction. (4) Input coils and SQUID
Sensor.

are connected to the input coil of the SQUID sensor located outside from the sample en-
vironment. The sensor is constituted by an annular superconductor with two Josephson
junctions inserted in the loop as illustrated in the left panel of Fig. and providing a
high sensitivity for the detection of magnetic field.

This technique allows us to measure the magnetic susceptibility. As this quantity
is measured at small applied magnetic field pgHey to fulfil the linear approximation,
see Eq. 2.6 the real field poHappiiea at the sample need to be precisely known, since it
differs from the set up value due to the presence of a remanent field of several Oersted
in the superconducting magnet. The paramagnet octa-hydrate sulfate of gadolinium
(Gd2(S0O4)3.8H,0) permits to precisely determine the real field: magnetic interactions
are negligible between the spins of the gadolinium S = % as they are magnetically
isolated by the HyO molecules. Through the temperature dependence of its magnetic

moment, the real applied field can be measured.

The inverse magnetic susceptibility is plotted in the right panel of Fig. 2.4 We
compare preliminary measurements where two different weakly diamagnetic sample
holders were used: a cylindrical one in the first case whereas in the second case a flat
pellet was introduced in a straw, applying the magnetic field in the pellet plane. In
the latter case, the measured magnetic susceptibility is increased since the geometry
of our sample reduces the demagnetising field. Therefore, measurements displayed in
Chapter 7?7 are performed with an ellipsoidal pellet.
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Figure 2.4: Left: Schematic illustration of the SQUID sensor. A superconducting loop
is interrupted by two Josephson junctions. The Josephson effect is the ability to sustain
a current with a zero voltage through the tunnelling of Cooper pairs up to the critical
current I.. To a static magnetic flux, the Josephson junctions current is enslaved to I..
The concept is based on the quantisation of the magnetic flux (®g = 2—”6) To a variation
of the magnetic flux inside the loop will appear a sinusoidal screening current in the
superconducting ring with a period equal to the number of quantum flux changes, and
thus a voltage at the Josephson junction with same characteristics as the screening
current. Picture taken from Ref. [127]. Right: Inverse of the magnetic susceptibility
versus temperature: comparison of a powder filling a cylindrical sample holder and
the case where the field is applied in the plane of a flat pellet. In the latter case, the
magnetic susceptibility is increased.

2.2 Facilities for microscopic probe measurements

We briefly present the different facilities, illustrated in Fig. 2.5 where are located the
different instruments introduced in this chapter.

2.2.1 Institut Laue Langevin (ILL), a continuous neutron source

Located at Grenoble, the ILL is a nuclear reactor which provides a high neutron flux.
The neutron production is based on the fission of ?*U. A heavy water (D,0) moderator
at 300 K gives, through inelastic collisions of the neutrons with the nuclei of the mod-
erator, a continuous beam of thermal neutrons with a Maxwellian energy distribution
centred at A, = 1.2 A and a flux ¢, = 1.5 x 10" nem~2s~! [128]. The diffractome-
ters described here are supplied by these thermal neutrons, see Sec. 2.3.4], whereas the
backscattering spectrometer is fed with cold neutrons located in the guide H53, see
Sec. 2.5l using a liquid deuterium moderator at 25 K.
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Figure 2.5: View of the different facilities encountered during this work: the Institut
Laue Langevin (left), ISIS (middle), and the Paul Scherrer Institut (right).

2.2.2 ISIS, a muon and neutron pulsed source

ISIS is a neutron spallation and muon source of the Rutherford Appleton laboratory,
United Kingdom. To produce neutrons and muons, H™ ions are accelerated up to
70 MeV in a linear accelerator (Linac) with radiofrequency cavities providing a sinu-
soidal electric field, and are stripped through an aluminium oxide target to produce
protons. Then a continuous beam of protons is injected in the synchrotron. Protons
are accelerated up to 800 MeV with radiofrequency cavities where an oscillating field
is applied to create two bunches of particles separated by a time of 330 ns. Dipole
magnets bend the beam to ensure a circular trajectory in the cyclotron and multipo-
lar magnets focus the beam. Four out of five bunches are propelled to Target Station
1, where the neutron and muon spectrometers of interest are located. About 3 % of
the incident flux is dedicated to the production of muons, as explained in Sec. 2.6.2]
The remaining protons encounter a tantalum target to produce neutrons (= 4 x 10
neutrons produced per proton pulse) through a so-called spallation process.

2.2.3 A neutron and muon pseudo-continuous source at PSI

The Paul Scherrer Institut, located in Switzerland, owns a neutron spallation and muon
source. Three accelerators set up in cascade provide a high energy proton beam up to
590 MeV: a Cockeroft-Walton pre-accelerator (energy up to 870 keV) brings protons in a
4-sector injector cyclotron (energy up to 72 MeV) and then the main cyclotron permits
to reach the final energy up to 590 MeV to produce a high intensity beam with bunches
separated by a time approximately equal to 20 ns. The beam passes through two pion
targets to produce muons for the Swiss Muon Source (SuS), see Sec. 2.6.21 Thus, the
remaining protons are deviated to the neutron spallation source (SINQ facility) where
the incident protons interact with a lead target to provide high energy neutrons that

are slowed down in a heavy water moderator. The resulting thermal neutron flux is
¢n ~ x10" nem 27! -

2.2.4 A third generation synchrotron at PSI

Not only a muon and a neutron source, the Paul Scherrer Institut has a third-generation
synchrotron, the Swiss Light Source (SLS). A 288 m circumference storage ring produces
a very large light spectrum, from infrared to hard X-rays, thanks to an electron beam
reaching an energy of 2.4 GeV. The synchrotron light is produced either with bending
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magnets resulting in photons with a wide energy spectrum, or with undulators in the
straight part of the ring which are composed of a periodic arrangement of permanent
magnets, and select the desired wavelength by tuning the magnetic field. A much more
intense and narrow beam is achieved compared to the one resulting from the usual
bending magnet [129)].

2.3 Diffraction experiments

Powder diffraction is a well suited technique for the identification of crystalline phases
but also for a quantitative analysis of crystallographic structures. A brief introduction
to X-ray and neutron diffraction, to the diffractometers, and to the Rietveld method
employed to analyse data with the FullProf suite [130] will be presented.

2.3.1 Introduction to diffraction

2.3.2 Nuclear or charge scattering

Let us consider an X-ray or neutron beam as a plane wave diffracted by a periodical lat-
tice. The incident wavelength A must be of the same order as the inter-atomic distance.
Incident and scattered waves must be in phase to get constructive interferences. This
condition of diffraction is described by the Bragg law 2dj; sin @ = n\, where dpy; = 2?”
is the interplanar spacing and k = ha*+kb*+Ic* (h, k, [ integers) is a reciprocal lattice
vector, @ is the angle of the incident and diffracted beam with respect to the atomic
planes, and n is the order of diffraction. This diffraction condition is illustrated in the
left panel of Fig. 2.6l The scattering vector is defined as q = k; — k, where k; and ky

are the incident and final wavevector respectively (k; = k; = 27” in diffraction condi-
tion). The Bragg law can be rewritten as ¢ = 2™; the diffraction condition tells that

dhki
the scattering vector q must be a vector of the reciprocal lattice, defining the direction

of diffraction. This leads to the well-known Ewald construction, illustrated in the right
panel of Fig. [2.6] which is a geometrical representation of the diffraction condition.

The diffracted intensity is proportional to the square modulus of the structure factor

F,(q) where a takes the index n or p for neutrons or photons, respectively. Photons

interact with the electronic cloud of the atoms whereas neutrons interact with the
nucleus through the Fermi pseudo-potential:
2

Ve(r) = 20 50 — 1), (2.7)

Mmp

where b; is the Fermi length of atom j and m,, the neutron mass. Consequently, the
atomic form factor for photons is the Fourier transform of the electronic density f;(q)
whereas for neutrons it is the Fourier transform of the nuclear density taken as a Dirac
function in real space, since a nucleus is considered as a point object:

S sin? 4
Fy(a) = ; fi(q) exp(2imq.rj). exp (—BjT) 7

J

N 9
: 0
F.(q) = g b; exp(2imq.r;) exp (—Bj—)\2 ) : (2.8)

j=1
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Figure 2.6: Left: Schematic view of the Bragg law. Picture adapted from Ref. [131].
Right: Visualisation of the Ewald sphere with a radius 2w /). The incident beam passes
through the sample (green square) reaching the surface of the sphere at the origin of
the reciprocal lattice. A reciprocal lattice point must lie on the surface of the Ewald
sphere to be in diffraction condition. Picture adapted from Ref. [132].

where the summation runs over the NV atoms of the unit cell, rj is the position of atom

j and exp(—DB; Sir;je) = exp(—Wj;(q)) is the Debye-Waller factor, where B; oc (u3) is
the amplitude of an isotropic displacement around the atomic mean position. Ignoring
the Debye-Waller factor, the structure factor can be written as the product of two
summations, one over the lattice points (z;,y;, 2;) of the primitive cell and the second

over the basis of atoms r attached to a lattice point:

F.(q) = (Z ajq expl2im(h; + ky; + lzj)]> (Z exp|2im(h X, + kY, + lZﬁ]) ,
] T

(2.9)

where a, stands for the neutron or X-ray form factor, i.e. a;, = b; and a;, = f;(q).

Now looking at the first factor of the right hand-side of this equation, and considering

the face centred Bravais lattice F of interest where the coordinates of the lattice points

are (0,0,0), (3,%,0), (0,3,3), (3,0,2), it results a non vanishing structure factor only
if the Miller indexes (hkl) are of same parity.

The diffracted intensity is proportional to the differential cross section. In the X-ray

case, it is written as [133]:

= S bla -~ WIEQ)PO) (2.10)

where n.. is the number of unit cells, vy is the unit cell volume. P(f) = HL() is the
polarisation factor assuming the incident beam is unpolarised, i.e. the electrlc field is
in a plane perpendicular to the incident wavevector. Since the X-ray beam is polarised
during the scattering process, the polarisation factor results from the projection of the
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two components of the electric field in the direction 26 of the scattered beam [134,
135]. In the case of synchrotron radiation, when the incident polarised beam is set up
perpendicular to the scattering plane, P() = 1. The Dirac term refers to the diffraction
condition, i.e. the wavevector transfer must be a vector of the reciprocal lattice.

For neutrons, the Fermi length of an isotope j will depend on the isotope considered
and on the nuclear spin of the latter [136]. To the differential cross section will result a
coherent and incoherent contributions, the latter resulting in a background in diffraction
experiment. We define:

b = > cebje,
¢

B = ) celbiel (2.11)
¢

where & labels an isotope of atom j with concentration c;. The coherent and incoherent
differential cross sections are calculated as:

daT;OD _ nc%;am—km(q)ﬁ

daiiniscz((]) a ”c;(w‘|@|2)exp(—wj(@), (2.12)

with the so-called unit-cell structure factor:

F(q) = Zb_jexp(iq -1;) exp(=Wj(q)). (2.13)

J

2.3.3 Magnetic scattering

In the case where a compound undergoes a magnetic transition, the periodicity of the
magnetic moment resulting from the spin of the unpaired electrons leads to a magnetic
structure. This periodicity is described by a magnetic propagation wavevector Kpag.
The symmetry of the ordered phase is lowered compared to the one of the crystallo-
graphic group. Note that even if ke = (0,0,0), at least the time reversal symmetry
is broken. Omne has to find the symmetry operations leaving k., invariant in order
to constitute a subgroup Gy whose representation can be decomposed into irreducible
representations I',, where v labels the order of the representation. According to the
Landau theory, only one of these representations is selected if the transition is second
order, its basis vectors defining the orientation of the magnetic moment [137]. We refer
to App. [D.I] for more detailed information.

The neutron spin interacts with the magnetic field B = poH created by the distri-
bution of unpaired electrons. The potential of interaction is defined as:

Vmag = —HMn- MOHa (214)

where p, = —yuno is the magnetic moment of the neutron, v = —1.91, ux is the
nuclear Bohr magneton, o is the neutron spin, and H is expressed in A.m~!. Within
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the dipolar approximation, the amplitude of the magnetic interaction is deduced for
unpolarised neutrons as [138, [139]:

amag(q) = pfmag(q)o' : ML(q)a (2'15)

where 2p = |yrg| = 0.54 x 1072 cm is the magnetic scattering length for a magnetic
moment of 1 pup at ¢ = 0, fimae(q) is the magnetic form factor and M, (q) = g X
(M(q) x q) (with ¢ = q/q) is the projection of the Fourier transform of the total
magnetisation density (orbital and spin contributions) on the plane perpendicular to q.

In the case of a periodic magnetic structure with a magnetic propagation wavevec-
tor kpag, and considering only one type of magnetic ion, a magnetic moment can be
expanded in a Fourier series:

m; = Z m*™*% exp(—ikpyag - T;), (2.16)

km ag

Therefore, the elastic magnetic cross section is given by:

da%gz(q) = VoL D (=& — Kinag) [Frng (@), (2.17)

mag
[
mag K Kmog

where Ny, is the number of magnetic cells and vy,,, their volume. The Dirac func-
tion refers to the diffraction condition: if the magnetic propagation wavevector Ky, =
(0,0,0), the magnetic Bragg peaks are at the same positions as the nuclear ones, oth-
erwise satellites peak appear at positions q = k + ky,e. However, if ky,e - r; # n,
Eq. is no longer available since the magnetic moment need to remain a real quan-
tity. Therefore, the magnetic propagation vector —kp,, has to be taken into account,
see for instance Eq. [D.7] and consequently satellites peaks are observed at q = k£ Kyag-
The magnetic structure factor has been introduced as:

Friag (@) = Pfmag(q) Z m; exp(iq - ;) exp(—W;(q)), (2.18)

A~

where Frflag(Q) =q X (Frag(a) x q).

2.3.4 Powder diffractometers

An overview of the X-ray and neutron powder diffractometers is given here. As the
sample is constituted of small randomly oriented crystallites, the main advantage of a
powder diffraction experiment is that all the Bragg positions will be observed in the 20
position of the detector.

2.3.5 X-ray experiments

X-rays experiments were performed in the Bragg-Brentano configuration, see Fig. 2.7
with an Xpert Panalytical Phillips diffractometer at INAC, CEA-Grenoble. A poly-
chromatic X-ray beam is obtained with a copper anode. A nickel filter permits to
mainly keep the copper K, wavelength A = 1.5406 A. However a residual small wave-
length bandwidth persists taking into account the Ky; absorption edge of the nickel
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Figure 2.7: Left: illustration of the 6 — 20 geometry. Sample and detector are moved
concomitantly to ensure that the detector is always at 20 from the sample and the
sample surface is always at an angle 6 from the incident beam. Picture taken from
Ref. M] Right: schematic view of the high resolution powder diffractometer of the
MS beamline in the Debye-Scherrer configuration. Picture taken from Ref. 1@]

Ak ni = 1.4881 A and do not provide a purely monochromatic beam. This results in a
step in the right side of the tail of the Bragg peak precluding a quantitative analysis of
the diffracted intensity. The beam is focused with several sets of slits: the first diver-
gence slits with variable size are used to keep constant the irradiated area on the sample
and to restrict the beam to the sample size. Determining the size of the receiving slits
located in front of the detector is a stake to get better resolution without reducing the
diffracted beam intensity. Additional Soller slits limit the axial (vertical) divergence of
the beam and increase the resolution, especially at low scattering angles.

Experiments were also conducted using the high resolution powder diffractometer of
the Material Science (MS) beamline of SLS which is supplied by photons with an energy
raising up to 38 keV, see right panel of Fig. 2.7l It is equipped with a silicon microstrip
detector of second generation, MYTHEN II, made of more than 30000 Si-units to cover
a total angle from 2 to 120° with a maximum resolution of 3.7 mdeg ﬂ@, @] An x-ray
beam of wavelength A\ = 0.49646 A, corresponding to an energy FE = % = 24.98 keV,
was used.

2.3.6 Neutron experiments

Neutron powder diffraction experiments were performed at the ILL on the D2B and D1B
diffractometers, see Fig.[2.8] and at the PSI on the high resolution powder diffractometer
HRPT.

D1B is a two-axis powder diffractometer optimised for high resolution at low ¢ and
high neutron flux (¢, = 6.5 x 10° ncm=2s~" at the wavelength A\ = 2.52 A thanks to
three graphite (002) monochromators). A 3He multidetector covers a scattering angle
from 2° < 20 < 80°, which can be extended to 130° as the multidetectors can be moved.
Angular resolution reaches up to FWHM= 0.2° (FWHM: full width at half maximum)
at small angles. To determine the magnetic structure of our sample deep into the
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Figure 2.8: Illustration of the DIB (left) and D2B (middle) diffractometers, from
Ref. [12§], and of HRPT (right), from Ref. [14]].

ordered phase (down to 60 mK), we used a 3He-*He dilution cryostat. As the atomic
magnetic form factor decreases with increasing ¢, this diffractometer is well suited for
the determination of magnetic structures.

D2B is a high resolution two-axis powder diffractometer covering a scattering angle
5° < 20 < 165° thanks to 128 *He detectors. A germanium (115) monochromator
offers a wavelength A\ = 1.594 A with a neutron flux ¢, = 1 x 10° nem 257! in the
high resolution configuration. As a wide angular range is covered with a high neutron
flux and high resolution, this diffractometer is well adapted for the determination of a
crystal structure and to perform a quantitative analysis of the diffracted intensities.

Additional neutron diffraction experiments have been conducted on HRPT. A ger-
manium (822) monochromator selects a neutron wavelength of 1.154 A and as the *He
detectors cover a scattering angle up to 165° with an angular step of 0.1°, a wider
g-range has been explored compared to the D2B diffractometer. High resolution is
achieved for thermal neutrons up to 24 ~ 1 x 1073

Note that for the D2B and HRPT diffractometers, an additional oscillating radial
collimator reduces the scattering from the sample environment.

2.3.7 The Rietveld refinement

Analysis of diffraction data have been performed using the Rietveld method with the
FullProf code [@] The refinement routine minimises the function:

N,
21
X2 - Z F[yo,i - yc,i(a)]27 (219)

i=1

where the summation runs over the NV, experimental points, ¥, ; is the observed intensity,
o; is the standard deviation of y,;, and y.; is the calculated intensity where a =
(a1, ..., ) 18 the parameter set involving the n free parameters. The calculated intensity
is defined as

Yei =Yoo Y MnAnLpnInZ(0; — O3) + by, (2.20)
h
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where h labels the Bragg peak positions at the angle 0y, y.o is a scaling factor, b,; is
the background intensity, Z(6; —6y,) is the peak profile function modelling instrumental
and sample effects, My, is the multiplicity of the reflection h and Ay, is the absorption
correction. The intensity [y, is proportional to the differential cross section defined
in Eq. and in Eq. for X-ray and neutrons respectively. The Lorentz factor
Lynw = ﬁ describes the fact that at high angle diffracted intensity is increased as the
angular aperture of the Debye Scherrer cone is higher and the intersection between the
latter and the Ewald sphere is wider [134, [135].

For an estimate of the analysis goodness, we use three R factors and ngp. They are
defined as follows [145].

R — Zz |y0,i - yc,i‘ R2 _ Zz wi(yc,i - yo,i)z
P Y i Yosi ’ e > wz?/gz 7
, (2.21)
R — Ny —n 2 = > WilYei — Yoi)
P Zz wz‘?/g,z" P Ny —n .

R,, Ryp, and Ry, are respectively the profile, weight profile, and expected weight
profile factors, and w; = U% has been introduced for clarity in Eq. .21l

Two different profile functions have been utilised in the different diffraction experi-
ments. The pseudo-Voigt function describes the shape of the Bragg peaks as:

Vo) = nl(z) + (1 = n)G(x), (2.22)

where 7 is a free mixing parameter which defines the shape of the Bragg peak between
the Gaussian (G(x)) or Lorentzian (L(x)) limits,

ar,
L = —
<x) 1 + bLZL‘Q’
G(z) = agexp(—bgz?), (2.23)
with ag = IQJ%, b = 41%2, ap, = %, and by = 4H?, where Hy and Hg are the

FWHM (Full Width at Half Maximum) for the Lorentzian and the Gaussian functions,
respectively. They are here taken to be equal here and are related to the {U, V, W} half-
width free parameters which describe the resolution function of the instrument [144]:

H}: = H} =U%tan’6 + Vtan6 + W. (2.24)

Note that no strain or size effects have been considered.

The Bragg peak shape can alternatively be described by the convolution of a Thomps-
on-Cox-Hastings pseudo-Voigt function [146] with an asymmetric function resulting
from the intersection of the diffraction cones with the cylindrical detector [147|. In this
case, the Lorentzian and Gaussian functions have different FWHMs,

H(Z; = Utan?6+ Vtand + W,
H? = Y/cosf, (2.25)

where {U,V,W,Y} are free parameters and Y refers to the Lorentzian isotropic size
parameter. The mixing parameter 7 introduced in Eq.[2.22]is no longer a free parameter
in this case but it is calculated as a function of Hy and Hg [144).
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Figure 2.9: Schematic view of the MARI spectrometer [148] (left) and illustration of
the neutron path (right) in the time-of-flight technique, explained in the main text. A
methane moderator at 100 K thermalises incident high energy neutrons.

2.4 Neutron time-of-flight spectroscopy

The time-of-flight (TOF) spectrometer is an instrument well suited to explore exci-
tations since wide energy and momentum transfer ranges are covered. In the direct
geometry used here, where the incident energy of the neutron is fixed, the time of flight
of the scattered neutron over a known distance is measured to deduce the energy trans-
fer in a given direction. TOF spectrometers are optimal for pulsed source like the ISIS
facility, where our experiments have been conducted.

2.4.1 The MARI spectrometer

TOF experiments were performed on the MARI spectrometer. A simple scheme of this
instrument and the neutron path is given in the left and right panels of Fig. 2.0 re-
spectively. Background coming from high energy neutrons and ~ radiation is decreased
with a first nematic chopper. The incident energy is selected with a gadolinium Fermi
chopper by phasing the neutron transparent curved slits with the neutron pulse, and
illustrated by the dotted blue line. The frequency of this rotor raising up to 600 Hz
determines the resolution, i.e. the width of the elastic line. The chopper is magneti-
cally suspended to avoid mechanical contact via friction. Several rotor choppers exist
allowing us to select incoming energies up to 2 eV. We only use the gadolinium Fermi
chopper, allowing to reach an incident energy up to 200 meV. Neutron trajectories from
the sample to the detectors are displayed for inelastic (green dash dotted line) or elastic
(blue dotted line) processes. To determine precisely the neutron gain or loss of energy
and the resolution, the different distances separating the constituents must be precisely
known. In the MARI case, we have L; = 11.05 m, Ly = 4.02 m and L3z = 1.689 m. Low
and high angle detector banks, located close to the direct beam and under the sam-
ple respectively, are composed of cylindrical *He detectors, covering scattering angles
3° < 20 < 135°. Samples were cooled down to 5 K with a top loading CCR cryostat.

The left panel of Fig. 2101 illustrates the inelastic scattering process at the sample.
An incident neutron of energy E; and wavevector k; is scattered in the detector direc-
tion 20 with a final energy Ey and wavevector ky. From the momentum conservation
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Figure 2.10: Left: Neutron scattering triangle. Right: Illustration of the (q, hw) space
probed by detectors located in the 20 directions for neutrons of incident energy E; =
200 meV in direct geometry.

q = k; — k¢, we get:
¢ = kI 4 k} — 2k;ky cos(20). (2.26)

Using the energy transfer relation iw = E; — E, we get the (q, iw) space probed by a
detector in the direction 26, see right panel of Fig. 2.10

nq° 1

—— =2F; — hw — 2[E;(E; — hw)]z cos(20). (2.27)

2m

2.4.2 Energy resolution

The total energy resolution of the spectrometer arises from the convolution of several
contributions. The first one originates from the time distribution of neutrons in the
pulse. Whereas Gaussian functions are usually introduced to take into account the
resolution of spectrometers at a continuous source, they are no longer adequate for a
pulsed source where the moderator produces a strongly asymmetric time distribution
of the neutrons. The latter distribution has been modelled for a given incident energy
E; with the convolution of a slowing down term described by a y? distribution function
accounting for fast neutrons at short times which are not thermalised and a storage
term depicted by an exponential function to take into account neutrons emerging after
thermalisation ] As the distance between the moderator and the Fermi chopper is
significant, the initial pulse shape spreads out in time due to the different neutron ve-
locities. As explained above, phasing the Fermi chopper allows to select neutrons with
a specific energy and tuning the frequency to determines the wavelength spread. This
chopper introduces a second component to the resolution function due to the approx-
imately triangular transmission function which takes into account not only the phase
of the Fermi chopper but also the neutron speed and entry angle “@] An additional
component arising from size effects of the sample and detectors geometries has been cal-
culated through Monte Carlo simulations |. The efficiency of the detector depends
on the neutron speed [@] the probability of a neutron to be detected at a specific
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Figure 2.11: Examples of the resolution curves as a function of the transfer energy for
two configurations with an incident energy E; = 80 meV and a Fermi chopper frequency
vpc = 600 Hz, and E; = 80 meV and vpc = 400 Hz.

position within the detector thickness depends on its energy and adds a supplementary
broadening in the resolution function.
As explained in Refs. [153, [154], the energy resolution for elastic scattering AFE' is

calculated as:
AE

E;
where L (in meters) is the total neutron flight path, At (in ps) is the time width of the
pulse at the detector which is the quadratic sum of the aforementioned time dispersion
contributions, and E; the incident energy (in meV). The total resolution of the MARI
spectrometer has been calculated using the MSLICE code [155] supplied by ISIS. Some
plots are traced in Fig.2.T1l Note that the resolution is improved as the energy transfer
increases.

E;
= 8.7478 x 107 ° - At, (2.28)

2.5 Neutron backscattering spectroscopy

The backscattering experiments have been performed at the ILL with the IN16 spec-
trometer characterised by a high energy resolution. This section describes the IN16
spectrometer and discusses the backscattering process and energy resolution consider-
ations.

2.5.1 The IN16 spectrometer

The IN16 spectrometer is illustrated in Fig. 212l A first graphite (002) deflector scat-
ters a wide wavelength band of neutrons into a focusing neutron guide. A beryllium
filter prevents high energy neutrons to enter the spectrometer and a background chop-
per pulses the neutron beam. In the so-called primary spectrometer, a second rota-
tive deflector, which is composed alternatively of two open segments and two graphite
(002) monochromators, deflects the beam towards a spherically curved backscattering
monochromator, moved by a Doppler drive at a chosen frequency. Note that the same
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Figure 2.12: Schematic view of the IN16 spectrometer. The basic principle and the role
of each constituent is described in the main text. Picture taken from Ref. l@]

material is used for the first deflector and the second rotative deflector allowing to have
a backscattered beam parallel to the initial white beam in the neutron guide, simplify-
ing the setup of the spectrometer. Neutrons are backscattered onto the sample located
behind the second deflector thanks to the open segments of the rotative deflector, work-
ing as a chopper. In the so-called secondary spectrometer, several banks of silicon (111)
140 cm high analysers located at 2 m from the sample and covering an angular range of
8° < 6 < 155° select neutrons of an energy of about 2 meV scattered from the sample
and reflects these in exact backscattering geometry back through the sample to a set
of 320 *He detectors placed behind the sample. As the neutron beam being pulsed,
neutrons directly scattered by the sample towards detectors are not taken into account
since detectors are electronically closed when incident neutrons hit the sample.

2.5.2 The backscattering process

The first backscattering process occurs at the Doppler monochromator in the primary

spectrometer to select the incident neutron wavelength \; with a wavelength spread A\.
The energy resolution is A—EE = 2%. The aim is to reach the highest energy resolution.

By differentiating the Bragg law we get the relation:

% = cot A + % (2.29)
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Figure 2.13: Left: Darwin curve showing the neutron reflection coefficient of the
monochromator as a function of an arbitrary parameter y which could be a variation
of k, X or 0. Right: Picture taken from Ref. | illustrating the nearly backscattering
geometry where a small angular deviation of the incident beam is introduced. Here T
is a reciprocal lattice vector (T = k) and ko = k;.

In exact backscattering geometry (6 = 90°), the angular term of the right hand side
of Eq. vanishes. The quantity % = % can be calculated within the dynamical
theory of scattering, where interference effects between the incident and scattered waves
are taken into account. In the Bragg case, i.e. where incident waves are reflected, the
reflectivity coefficient R can be calculated [@, ], see the Darwin curve in the left
panel of Fig. 213l The so-called Darwin width % defines the plateau where R = 1,

i.e. the loss of neutron flux is minimised. It is calculated as @]

Ak 167FL(K)N

= 7" 2.
> LA (2.30)

where N is the number density of unit cells and F) (k) is the unit-cell structure factor
defined in Eq. .13 and calculated at the reciprocal lattice vector k. Then, the energy
resolution is:

_ 2EAk  W4xF(K)N

AFE
k my, ’

(2.31)

where £ = %. To ensure a minimised energy resolution, the choice of the material

constituting the monochromator is of first importance. For Si (111) crystals, we get
Ak

= = 1.86 x 10~° corresponding to an energy resolution of AE = 0.077 peV for A =

6.2709 A.

To calculate the true energy resolution, one has to consider also a small divergence
of the beam due to a small deviation of the backscattering geometry, i.e. ¢ = 90° — 0
as illustrated in the right panel of Fig. 213l This divergence is calculated as the
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difference between the minimum and maximum incident k; vectors denoted k,;, and
kax, respectively. Therefore, we derive:

k/2+ Ak/4 kE Ak k/2+ Ak/4
kmaxzi, min — &~ T ", d k’zzizka Ak/4. (2.32
cos(8 +¢) 2 4 M cos(€) [2+Ak[4. (2.32)
Assuming that Ak/(k + Ak/2) = Ak/k, we get:
Akl kmax - kmin 1 Ak
= N o m oy it
k; k; cos(57 +€) k
1 [ Ak Ak
~ 5 (7 + 6) + R (2.33)

where the last line is obtained assuming small values of % + e. Then, the energy
resolution is obtained as:
AE Ak (A6 > Ak
— =2 = — 2—. 2.34
E s ( > " 6) T (2:34)
The total energy resolution is then calculated as the convolution of the values of Eq. [2.34]
found for the primary and secondary spectrometers.

2.5.3 Spectroscopy

To perform spectroscopy measurements, one changes the incident neutron energy. This
can be accomplished by changing the lattice parameter via thermal cycling or through
the Doppler effect by moving the monochromator at a velocity vp parallel to the incident
neutron beam as set up on the IN16 spectrometer. The energy change JFE of the
backscattered neutrons is then linearly dependent of the Doppler velocity vp, assuming

vp < v; [159): 5
FE UD

T (2.35)
On IN16, the maximum amplitude of the Doppler velocity is 2.2 ms~!. Neutrons of
wavelength A = 6.2709 A have a velocity v; ~ 631 ms™!, which results in a maximum
energy change of the backscattered neutrons of 0 Fy,. = 14.5 peV. We recall that the
analysers and the Doppler monochromator are identical. Therefore neutrons scattered
by the sample will be analysed, i.e. backscattered in the secondary spectrometer, if
A = 6.2709 A. The velocity profile of the Doppler drive is sinusoidal-like around the
mean value vp = 0, corresponding to zero energy transfer. Neutrons detected with a
velocity different from v; will have been inelastically scattered by the sample to fulfil the
backscattering condition at the analysers. The variation of the position of the Doppler
monochromator is assumed negligible and thus the neutron flight time from the Doppler
monochromator to the detector typ is constant. Therefore, the final neutron energy at
a time t¢ is deduced from the Doppler velocity recorded at a time t; — typ.

2.6 Muon spectroscopy

A brief introduction on the muon spin relaxation spectroscopy (uSR) is presented here.
For more detailed information, one has to refer to Ref. [160].
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Figure 2.14: ITllustration of the muon spin precession around a local magnetic field By,..
Picture taken with kind permission from Ref. [160].

2.6.1 Introduction

This technique allows to probe the local magnetic field of a sample. Muon is an ele-
mentary particle of mass m,, = 1.88353 x 10~2® kg ~ 200m, where m, is the mass of
the electron. Here, muons posses a positive electric charge and a lifetime 7, = 2.2 us.

Polarised muons are implanted in the matter and due to their positive electric charge
they are localised at an interstitial site. The aim of this technique is to follow the time
evolution of the polarisation of these muons in a so-called time-differential measure-
ment. As they carry a spin S, = %, muons interact with the local magnetic field B,
of the sample. Thus the spin of the muon undergoes a precession motion around B,
as pictured in Fig. [2.14], described by the Larmor equation:

dS
d—tﬂ = ’YNSN X Bloca (236)

where v, = 8.51616 x 10°® rad s' T~! is the muon gyromagnetic ratio.

2.6.2 Experimental details

A high energy beam of protons provided by an accelerator hits a graphite target, see
Sec. Some reactions involved in the collisions of the incident protons p and neutrons
n and protons of the target are described by the following equations:

p+p — T +p+n,
p+n — 7t +n+n, (2.37)

where 7 is a pion, an instable particle with a lifetime 7, = 26 ns. This particle decays
into a muon p and a muon neutrino v,:

™ = ut 4, (2.38)

As we consider a pion at rest, i.e. with zero kinetic energy, the muon and the neutrino
are emitted in opposite direction due to momentum conservation. Since the neutrino
has a negative helicity — the helicity being defined by the projection of the spin over
the momentum — the spin of the muon is antiparallel to its momentum because of



2.6. MUON SPECTROSCOPY 61

Vu T l.l+
O

Py, 5 " S ® P.

Figure 2.15: Left: Decay of the pion ™ into a muon p* and a muon neutrino v,,. Right:
Probability of the positron emission direction with respect to the muon spin.

conservation of angular momentum. This is illustrated in the left panel of Fig. R.15l
The decay of the muon follows the reaction:

pt = et + v+, (2.39)

where v, and 7, are respectively the neutrino and antineutrino associated with the
positron and the muon. The positron is the particle of interest which is detected by
a plastic scintillator to produce a photon which is driven through a light guide to a
photomultiplier. As the emitted positrons have a large kinetic energy, up to 52 MeV,
they weakly interact with the sample and are weakly absorbed by the surrounding
cryostat and vacuum chamber walls.

The key point lies on the direction of the emitted positron, which is correlated to
the muon spin orientation as shown in the right panel of Fig.[2I5l This panel illustrates
the probability W (6) of the positron to be emitted in a direction making an angle 6
with the muon spin and calculated as:

W(0) o [1 + ags(e) cos b, (2.40)

where a,s is an asymmetry parameter varying with the kinetic energy ¢ of the positron
as (2¢ —1)/(3 — 2¢). Counting all the positrons and integrating over the energy range
available for the positron give (aqs) = 1.

2.6.3 Pseudo-continuous versus pulsed source

The SuS source at PSI is a pseudo-continuous source, see Sec. .23 A detector is
placed in the muon beam close to the sample, and a clock is started when a muon is
detected. The clock is stopped when the decay positron is detected to constitute a
so-called event. If a second muon is implanted before the positron arising from the first
implanted muon is detected, the electronic acquisition system pauses to avoid so-called
coincidence. As the detectors do not cover a 47 solid angle around the sample, there is
a non-negligible probability that the positron arising from the muon decay does not hit
the detector. As a result, a timeout of few muon lifetimes is introduced (= 10 us). In
spite of these electronic considerations, the presence of a constant residual background
due to the uncertainty to know the muon of origin of the detected positron cannot be
avoided.
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The ISIS source is a pulsed source described briefly in Sec. 2.2.2l The muon beam
has the same time characteristics as the high energy proton beam hitting the graphite
target: approximately Gaussian shaped muon pulses are separated by a time of 20 ms
and a width of about 100 ns limiting the time resolution of the experiment. Contrary
to the SuS source, a bunch of order thousands of muons is implanted in the sample
at a time taken at zero. The main advantages lie first that only a few background
particles are detected between the muons pulses which permits to characterise the
muon spin polarisation function to significantly longer times compared to the SuS
source as mentioned above, and thus to characterise slow relaxation process. However,
note that an electrostatic deflector has been set up on the SuS line which prevents any
additional muons to be implanted in the sample until its predecessor will be detected.
This Muons-On-REquest (MORE) concept significantly reduces the background of a
pseudo-continuous source without decreasing the intensity [161].

As a result, a pseudo-continuous source provides a high time resolution at short times
and allows to observe strongly damped signals but the detection of weak magnetic fields
giving a low muon frequency precession and the slow relaxation process are perturbed
by the residual background. At the opposite, the latter processes can be evidenced on
a pulsed source.

2.6.4 Muon spectrometers

The MuSR spectrometer, see Fig. 217, is one of the muon instrument located at ISIS.
To cope with the high intensity muons pulse, 32 positron detectors in forward position
and 32 positron detectors in backward position surround the sample environment. Only
a separator is present on the beam line to remove the background particles arising from
the interaction between the proton beam and the graphite target. The muon spin
is antiparallel to its momentum. Two possible configurations are available: zero or
longitudinal field geometry and transverse field geometry, where the magnetic field is
applied parallel or perpendicular to the muon spin, as shown in Fig.

The GPS (General Purpose Surface) and LTF (Low Temperature Facility) spectrom-
eters, see Fig. 217 have been utilised at the SuS. Their characteristics are summed
up in Tab. 21 These spectrometers are designed to work also in zero, longitudinal or
transverse field. However, in transverse geometry, the magnitude of the applied field is
limited since the Lorentz force will deviate the muon beam out of the sample. Therefore,
a spin rotator is placed between the muon production target and the spectrometers of
interest. Firstly, it is used as a separator to select muons with a certain velocity. The
aim is to remove background particles such as positrons arising from the pion decay
by deflecting particles with a transverse magnetic field to mainly select muons. In the
transverse field geometry, the spin rotator rotates the muon spin by about 50°. There-
fore, a component of the muon spin is perpendicular to its momentum. Note that now,
we apply the magnetic field parallel to the muon momentum, giving access to higher
field magnitude. However, the initial asymmetry detected in the detectors is reduced.

The zero-field compensation process enables to remove the remanent field at the

sample by applying hysteresis cycle of 10 mT, complemented with an active compensa-
tion device to reach a remanent field lower than 3 x 107* mT.
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Figure 2.16: Left: Illustration of the longitudinal (or zero) field geometry where a
magnetic field is applied along the direction of the muon spin. Right: Illustration of
the transverse geometry where a magnetic field is applied perpendicular to the muon
spin. Practically, intensity of transverse magnetic field is low to prevent the deflection
of the muon beam before implantation in the sample. Note that for both geometries,
the muon spin is antiparallel to its momentum. Pictures taken with kind permission
from Ref. [160)].

Spectrometer | Temperature | Maximal longitudinal field | Typical channel time
GPS 1.5-300 K 0.56 T 1 ns
LTF 10 mK-10 K 28 T 1 ns
MuSR 40 mK-1000 K 250 mT 16 ns

Table 2.1: Summary of the characteristics of muon spectrometers of interest. GPS and
LTF are respectively equipped with five (Forward, Backward, Up, Down, Right) and
four (Forward, Backward, Right and Left) positrons detectors.

2.6.5 Polarisation functions
The positron counts in a detector are modelled as:
N(t) = Noexp(—t/7,)[1 + aoPa(t)] + ang, (2.41)

where N is the scale of the positron count, the exponential term stands for the finite
lifetime of the muon, ag is the initial asymmetry, usually of order 0.25 and assumed
to be only dependent of the experimental conditions such as the solid angle covered
by the detector, P,(t) is the time dependent muon polarisation function of interest
measured in the X,Y, Z detector direction, and ayg is a time-independent background
term non negligible in the case of a pseudo-continuous source. In the longitudinal field
geometry, only Py(t) is of interest whereas Px(t) and Py (t) are accessible in transverse
field geometry.

Labelling the forward detector as “+” and the backward one as “—”, then the number
of positrons detected in each of one is written as:
Ni(t) = Noxexp(—t/7,)[1 £ agPu(t)] + abg,+- (2.42)

Then, assuming that a,e + = 0 and introducing a parameter g = Ny /Ny — taking
into account the difference of efficiency of the detectors, and usually determined ap-
plying a weak transverse field, the polarisation function of the muon is then obtained
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Figure 2.17: Pictures of the different muon spectrometers of interest in this work: GPS
(left), LTF (middle) and MuSR (right).

combining the counts of each detectors as:

Ny (t) — aaN_ (1)

agPu(t) = Ny (t) + agN_(t)’

(2.43)

where t refers to the discretized time channel. In the case of a pseudo-continuous source,
a time independent background must be introduced

The basic muons polarisation functions will be introduced. Let us first consider a
magnetic sample with a spontaneous local field B,.. If no external magnetic field is
applied, muon spins undergo a precession motion around the local field B, oriented
at an angle 6 with respect to the muon spin. Solving the Larmor equation displayed in
Eq. leads to:

Py(t) = cos® 0 + sin® 6 cos(w,t), (2.44)

where w, = 7,Boc is the Larmor pulsation. Performing a spatial average of Eq. [2.44]
since we are only interested in powder samples, we get:

1 2
Py(t) = 3 + 3 cos(wyt). (2.45)
In the paramagnetic case or if the spin fluctuations are sufficiently fast in the ordered
state not to keep a constant value of Bj,., the muon polarisation relaxes through an
exchange of energy between the muon spin and the system. The polarisation function
of the muon spin is then described by:

Pz(t) = exp[—(Azt)*], (2.46)

where Az is the so-called spin-lattice relaxation rate and Ss. = 1. In the case where
a continuous distribution of relaxation channels is involved, a stretched exponential
function is introduced with 0 < f < 1.
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Transverse field geometry at PSI

Bext
% [ muon beam

ypBloct

left right

positron positron
detector detector

Figure 2.18: Illustration of the transverse geometry used at the L'TF spectrometer (PSI).
A spin rotator flips the muon spin of about ~ 50° from its momentum. Note that the
initial asymmetry is slightly reduced in this configuration, i.e. ag ~ 0.22 compared to
the value expected in zero or longitudinal field geometry (ag ~ 0.25). The magnetic
field By is applied parallel to the incoming muon beam. Therefore, the muon spin
undergoes a precession motion around the local field By,.: the red arrow illustrates the
muon spin orientation at the muon implantation time in the sample t = 0 where it is
antiparallel and tilted from the muon beam direction. The blue arrow is the muon spin
at a time t > 0 with a phase shift ~,B,.t. The red and blue cardioids represent the
probability W (0) of positron emission along the muon spin axis, see Eq. 240, at times
t =0 and t > 0, respectively. The black parallelepipeds are the right and left positron
detectors of the muon spectrometer giving access to the transverse muon polarisation
function agPx (t).

2.6.6 Muon Knight shift measurements

We specify in this section some details about the muon Knight shift technique, used at
the SuS (PSI). In order to prevent the deflection of the muon beam out of the sample
and apply higher magnetic field, the usual transverse field mode described in Sec.
is not used here. We rather flip the muon spin S, of about 50° from its momentum
with a spin rotator and use the transverse-field geometry pictured in Fig. 2.18 The
external magnetic field Bey; is applied parallel to the muon beam and its direction
states the Z axis of the laboratory frame. The quantity of interest is the TF-uSR
asymmetry time spectrum agPy ' (t), where Py (t) describes the evolution of the muon
polarisation under Bey. The muon polarisation function is described by the sum of
two oscillating components: one accounting for the muons implanted in the sample and
precessing with a frequency v, around the local field at the muon site Bi,, and the
second for the muons stopped in the sample surroundings, essentially the silver sample
holder, which precess around a field close to the external field B, with a frequency
Vext- The normalised muon frequency shift K., is defined as [160]:
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Bext . (Bloc - Bext)
B? '

ext

Kexp = (2.47)

Usually measurements are performed in a field sufficiently large such as |Bjoc — Bey| is
small compared to B, and Eq. 2.47] becomes:

Bloc - Bext

Kexp = B .
ex

(2.48)
Note that the aforementioned condition means that K., is a measure of the magnetic
response of the system submitted to a magnetic field, i.e. the local magnetic suscepti-
bility at the muon site, along the direction of Bey. Since we have v, = v, B /(27)
and Vexy = 7, Bext/(27), we get:

— Vex A
Kexp = D Pext - v (249)

Vext Vext

Since we are dealing with insulators, only the dipolar field Bg;, arising from the rare
earth magnetic moments contributes to the local field at the muon site. The dipolar
field at the muon site is calculated as:

N .. . .
By, = Sh e U (2.50)

where r; is the vector linking the muon to the magnetic ion at site i. Although the
dipolar field created by a magnetic moment at a distance r decreases as r3, the number
of magnetic moments at this distance increase as r2. This statement implies that all
the magnetic moments of the sample need to be considered. This dipolar field at the
muon site can be decomposed in several contributions [160]:

Baip = By, + Bror + Baem (2.51)
where By is the dipolar field arising from a discrete sum over the magnetic moments
located in a so-called Lorentz sphere centered at the muon site and of radius sufficiently
large so that the sum convergence is reached. The remaining magnetic dipoles are
located outside the Lorentz sphere and can be described in a continuous approach.
Therefore, two additional terms to the dipolar field at the muon site contribute: the
Lorentz field By, and the demagnetising field Bge,, arising from the magnetic charges
located at the surface of the Lorentz sphere and of the sample, respectively. Since the
two latter contributions are macroscopic fields, the muon Knight-shift K, is usually
described as [160)]:

Bext : (BLor + Bdem)
BQ

ext

K, = Kexp — . (2.52)
Therefore, K, arises only from the dipolar field created by the magnetic moments inside
the Lorentz sphere, i.e. K, = K{; . Since the Lorentz field arises from magnetic charges
located on the surface of the Lorentz sphere, it is easily derived as:

My,
BLor = Ho 3 t 5 (253)
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where My, is the magnetisation per unit of volume inside the Lorentz sphere . Note that
we assume that the investigated compound is magnetically saturated and My, = M,
where M is the bulk magnetisation of the sample. Note that this equality does not
hold on anymore if magnetisation domains exist. In the case of an ellipsoidal sample,
the demagnetising field is uniform and can be derived:

Buem = —oNM (2.54)

where N is a diagonal tensor. Recalling that Bey is collinear to the Z axis so does
the magnetisation in a paramagnetic sample, and combining Eq. 2.53] and Eq. 2.54] in
Eq. 2.52] gives us:

1 M
Ky = Ky = Koy = i (= 877 ) 5 (2.55)
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Crystal-electric-field study of the
pyrochlore series RoM>0~

Contents
3.1 Introductionl . . . . vt e e 69
.11 Rare earth propertied . . . . . .. .. .. ... 69
[3.1.2  The Stevens Hamiltoniad . . . . . . . ... ... ....... 71
[3.1.3  Neutron cross section . . . . . . . i 74

The study of the crystal-electric-field (CEF) acting at the rare earth site is of central
importance in the pyrochlore compounds. It fixes the spin symmetry at the rare earth
site: Ising, XY, Heisenberg. The prediction of the CEF energy level scheme teaches us if
the ground state is well isolated from the excited energy levels as in the spin-ice case, or
if we should consider a mixing between the ground state and the low-lying energy level
as in ThyTisO7, see Chapter Bl Finally, the determination of the CEF wavefunctions is
necessary to provide a basis for the diagonalisation of the Hamiltonian of interest. We
will introduce in this chapter the Stevens Hamiltonian used in this work. Then, using

68
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7
— 0K —
— = 100-500 K
L,s) AL.S
= el - crystal field
free ion

Figure 3.1: Left: Local environment of a given rare earth ion in the pyrochlore lattice
structure. The rare earth atoms are pictured with the largest red spheres, oxygen atoms
with the smallest blue spheres, and the atoms M =Ti or Sn with green intermediate
size spheres. Reprinted figure with permission from Ref. ,@] Copyright 2015 by the
American Physical Society. Right: Illustration of the ground state multiplet arising
from the spin-orbit coupling split by the perturbative CEF Hamiltonian.

a simple model describing the whole family of the titanate pyrochlore RyTiyO7, we will
compare our results to previous work and finally we will apply the same methodology
on the stannate family of chemical formula R;Sn,O; analysing our inelastic neutron
scattering measurements.

3.1 Introduction

3.1.1 Rare earth properties

At the rare earth site, an electric field acts on the magnetic ion. This crystalline field
arises from all the electric charges carried by the surroundings ions as illustrated in the
left panel of Fig. 8.1l Magnetism in the rare earth compounds arises from the localised
4 f electronic shell. The electronic configuration of the ground state of the rare earth ions
is of the form [Xe|4"5d'6s%. The number n of electrons in the incomplete 4f electronic
shell is given in Tab. Bl The degeneracy associated to the ground state of the free
ion, characterised by the kinetic energy of the electrons and the electron-electron and
nucleus-electron coulombic interactions, is calculated by the number of possibilities to
place n electrons in the incomplete 4 f electronic shell, i.e. 14!/(n!(14—n)!). The Russel-
Saunders coupling, which arises from the interaction between the spin and the orbital
momentum of the electrons, splits the ground state of the free ion into multiplets.ﬂ The
spin-orbit Hamiltonian takes the following form:

Heo = AL - S, (3.1)

! This is valid in the case of the rare earth ions where the interaction between the orbital angular
momentum of the 4f electrons is weak. This assumption is not valid anymore for heavier elements for
which the j — j coupling should be considered.
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Rare earth | Pr3t | Nd3* | Gd3* | Tb3* | Dyt | Ho*t | Er3t | Tm3* | Yb3+
n(4f) > | 3 7 | 3 o | 10 | 11 | 12 | 13

S 1|32 72 3 |52 2 |32 1 |12

L ) 6 0 3 ) 6 6 5) 3

J 4 {92 72| 6 | 152] 8 |[152] 6 | 772

g7 4/5 | 8/11| 2 | 3/2| 4/3 | 5/4 | 6/5 | 7/6 | 8/7
Ground state | *Hy | *Io;e | 8S72 | "Fo | “Hizpo | °Is | Lispe | *He | *Frpe
Ay (meV) | 266 | 236 - 204 | 408 | 644 | 802 | 729 | 1271
Kramers ion | no | yes | yes no yes no | yes no yes

Table 3.1: Some rare earth properties: the number of electrons in the 4f electronic
shell, the total spin S, orbital momentum L and total angular momentum .J of the rare
earth ions, the Landé factor, the ground state multiplet arising from the spin-orbit
coupling, the energy difference between the latter and the first excited term [162], and
the Kramers character of the ion of interest are listed in this table. The ground state
term is labelled as ' X ; where X=(S, P, D, F, G, H, I) for L=(0, 1, 2, 3, 4, 5, 6).

where L and S are the total orbital and spin angular momenta of the rare earth,
respectively, and )g, is a constant taking into account the radial part of the electron
wavefunction. The matrix form of Eq. Bl is diagonal within the basis |L, S, J, m;),
where J = L + S is the total angular momentum and —J < my; < J. All these
quantum numbers are determined by Hund’s rules and are gathered in Tab. 3.1] as
well as the corresponding denomination of the ground state term, the energy splitting
between the ground state and the first excited term, and the Landé factor g;. The
latter is calculated as:

1+ JU D) - LL 1)+ S(S+1)
97 = 2J(J +1)

Each multiplet is characterised by a value of J with a degeneracy equal to (2J + 1).
The ground state multiplet is defined in Tab. B.I] The Kramers theorem should be
mentioned concerning ions having an odd number of electrons, i.e. for half-integer J
values (Kramers ions): the multiplets arising from the spin-orbit coupling can only be
split into at least doubly degenerated states, where the degeneracy can only be lifted
by a time-reversal symmetry breaking perturbation such as an external magnetic field.
A peculiar feature of the wavefunctions describing these states is that they are time
conjugated, i.e. if [U%) are the wavefunctions of a given doublet state, then |[¥~) =
0]T+) where 0 is the odd time-reversal operator [163]. On the other side, for non-
Kramers ions, i.e. for an even number of electrons, no rule governs the splitting of the
multiplets: accidental degenerated states exist and the degeneracy is susceptible to be
lifted by any perturbations.

We have introduced above the notion of localised magnetism. The reason lies in the
fact that the 4f electronic shell is more internal than the 5s, 5p, 5d and 6s electronic

. (3.2)

2 The three Hund’s rules are for a given electronic configuration:
@ The ground state term is defined with the maximum multiplicity, i.e. the highest value of S,

@ For a given multiplicity, the term with the lowest energy is the one maximising L,

The lowest energy term for atoms with an electronic shell equal or less than half-filled is the one
with J = |L — S| whereas for atoms with an electronic shell more than half-filled, J = |L + S].
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shells. Besides, the rare earth are usually in the 34 valence state meaning that two
electrons of the 5s shell and one of the 5p shell are missing. Therefore, 5s and 5p
electronic shells are involved in the chemical bondings and the 4f electronic shell is
shielded by the 5d and 6s external electronic shells: thus, crystal-electric-field effects
can be treated as a perturbation of the spin-orbit coupling. The multiplets are split into
crystal-electric-field states, e.g. (2J + 1) states for the ground state multiplet. These
successive splittings are illustrated in the right panel of Fig. Bl where an order of
magnitude of the overall energy splitting is given in units of temperature.

3.1.2 The Stevens Hamiltonian

The crystal-electric-field Hamiltonian Hcgr can be written in terms of Stevens operators
O™ (see App. B):

Howe = Y _[A7(r")©,]0;7, (3.3)
nm
where ©,, are the Stevens multiplicative factor listed in Tab. [B.I], (r™) are the expecta-
tion values of the nth power distance between the nucleus of the magnetic ion and the
4f electronic shell, listed in Tab. [B.2] and the crystal-electric-field parameters A are
defined by Eq.[B.I8 We note that the Stevens operators are polynomial functions of .J,
and Jy. The aim is to calculate the matrix elements of Hogr within the ground state
multiplet defined by the basis |L, S, J,m ), which we will denote |m) in the following
since L, S, and J are fixed values within a multiplet. We assume that the splitting
between the ground state and first excited multiplets is sufficiently large not to con-
sider the latter. This hypothesis may not be valid for the lightest rare earths, see A,
in Tab. 3.1
We need to determine which Stevens operators are involved in the CEF Hamiltonian.
First, all matrix elements for operators of order n > 2[ vanish, where [ is the orbital
quantum number of the electron (for the 4f electronic shell, I = 3) [164]. Besides, the
CEF Hamiltonian needs to remain invariant under time reversal symmetry. We focus
on the operators J7' involved in the Stevens operator O)'. The time reversal symmetry
operator is written within the |m;) basis as [163]:

A~

0 = exp(inJ,) Ko, (3.4)

where K is the complex conjugation operator acting on a wavefunction of the form
W) =>_,,, Qm,|mys), where a,, are constants, as:

Kol ¥) = 3" az, ). (3.5)
my
Therefore we calculate the commutator of J* and  within two wavefunctions defining
the ground state multiplet |m ) and |m/)):
iyl [ T2,0] lmg) = s 120 = 072 ). (3.6)
From Ref. [163|, the only non-vanishing matrix elements are:

(=my|exp(imJ,)|m;) = (—=1)7"™7. (3.7)
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This leads to:
(| [ T2,0] 15} = Gty an, ()" (=1) 7 (1) = 1], (3.)

In order to get the CEF Hamiltonian invariant under time reversal symmetry, we need
Eq. B8 to vanish. This condition is fulfilled only if n = 2k, where k is an integer.

We recall that the local point group symmetry at the rare earth site is D34. One of
the symmetry elements belonging to this group is the 2= rotatior] around the z axis

3
[111] and its associated operator is defined as:

1@(%):e@(_¥;k). (3.9)

The CEF Hamiltonian needs to remain invariant under the symmetry operators asso-
ciated to the local point group. We focus on the operators Ji* involved in the Stevens
operators O;". Therefore, we calculate the commutator of J* and the symmetry oper-

ator R, (%) within the |m,) basis:

2T 2 i
it e (2] o) = otz s (257 ) = exp (-257) )

29mm F2imm
= Qim0 (mytm) €XD (— 3 J) {1 —exp( 3 )] , (3.10)

where 4, is the Kronecker symbol (0, = 1 if a = b and 0 otherwise), and the constants
ot have been introduced such as:

J{my) = agm|mysE£m), with for instance
Jilmy) = /J(J+1) —my(ms+1)|my;£1). (3.11)

Therefore, the invariance of the Hamiltonian is preserved, i.e. Eq. B.I0 vanishes, if
m = 3p, where p is an integer.

In conclusion, we have shown with these geometrical considerations that the CEF
Hamiltonian at the rare earth site is written as{]

Hepr = Y _[AT(™M)O,]00 =" Bror,
= BIOY+ BOY + B3O3 + BYOY + BiO} + BSOS, (3.12)

where we have introduced:

B™ = A™(r™O,. (3.13)

The useful Stevens operators are expressed as:

30ther symmetry elements of this point group are not used here since they are not useful to
determine which Stevens operators are needed in the CEF Hamiltonian.
4We recall that m < n.
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0y = 3J2—J(J+1),

O = 35J)—30J(J+1)J2+25J2 —6J(J + 1)+ 3J*(J + 1)%

0f = 231J° —315J(J + 1)J* + 73572 + 1057 (J + 1)*J?
—525J(J + 1)J2 + 29402 — 5J3(J + 1)* + 40J%(J + 1)?
—60J(J 4 1),

1
0} = Z{ [11J2 = 3J(J + 1)J. = 59J.] (J3 + J?)

+(J2 4+ J2) 112 — 3J(J 4+ 1)J, — 59.J.] }

[T+ 7Y+ (2 + J2) 0],

DO = | =

0F = Z(JS+J°%). (3.14)
Note that in the |mj;) basis, the Stevens operators O° are diagonal, and applying
operators O3 and OS on a ket |mj), give us only |J;m; + 3), and |J,m; £+ 3) and
|J,m; £ 6), respectively. Therefore the matrix representation of the CEF Hamiltonian
of dimension (2J + 1) can be ordered in a block form.

From the point charge model introduced in App. [Bl using Eq. B.18 and expressing
the tesseral harmonics Z(0;, ¢;) in Cartesian coordinatesl the CEF parameters A"
are derived as:

1\?/5\ o~ 41 322 — R?
A0 — S Z ket M S
2 A, (4) (7?) 2 5 R
. e [ 3\2/1\ <~4r 3524 —3022R%+ 3R}
Al = — — ] = — i :
4 dteg \ 16 w) 4= 9 R?
3\* /70 4 zi(xd — 3zy?)
A3 = 2 (2) (& zilTy = STiyy)
4 47?50<8 (F); o RY ’
o o e (L (13 sz 23128 — 31522 R? + 10522 R} — 5RS
6 4reg \ 32 T 137 RP® ’
oo e (L1Y(230 "“ 4_7r (1123 — 32, R2) (23 — 3112
© dmg =] 37 R} ’
231 26 47T :c — 15zfy? + 1522y} — ¢
A6 - _ e Y- ) i [ 1
6 4reg ( 64 ) (2317r) Z 13% R} ’ (8.15)

®The useful tesseral harmonics are tabulated in Tab.IV of Ref. [164].
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where (x;,y;, 2;) are the Cartesian coordinates of the k electric charges located at a
distance R; = (22 +y2+422)'/2 from the magnetic rare earth. Therefore, for isostructural
compounds, i.e. belonging to the same family RyM>0; (M =Ti or Sn), a scaling law
allows to deduce the CEF parameters for a rare earth R’ from those of a rare earth
R |164]: )

A (R)

(R A™(R) (3.16)

lat

AN (R) =

where aj,(R) is the lattice parameter of the compound RyM;07. Note that we have
implicitly assumed that the free parameter x, see Tab. [A.1], which governs the position
of the oxygen atoms labelled O1, see Tab. [A.T], is approximatively constant within the
series considered. This is the case of the compounds of interest here, with x ~ 1/3 |165].

Within the framework of ab-initio calculations, the point charge model is clearly
not reliable. The exchange charge model (ECM) has been introduced by Malkin et
al. (see for instance Ref. [166]) to estimate the crystal-electric-field parameters. The
latter are calculated from two contributions: the first is the effect of the electric field
on 4f electrons arising from a point charge distribution taking into account shielding
effects of the external electronic shells. The second contribution takes into account the
exchange integrals arising from the overlap of the orbitals of 4f electrons and those of
the nearest neighbours. Note that the CEF Hamiltonian is described with the tensor
spherical operators C]" rather than the Stevens operators. This is the case for several
works in the literature. The two Hamiltonians are equivalent and only differ from a
prefactor in the CEF parameters. Relations between the two sets of parameters can be
found in Ref. [123]. However, our goal is not to perform ab-initio calculations, and we
assume the relation introduced in Eq. to be reliable.

3.1.3 Neutron cross section

The most common method to determine CEF parameters is to analyse the CEF tran-

sitions revealed by inelastic neutron scattering experiments. The neutron partial dif-

ferential scattering cross section is expressed in the dipole approximation as, see for
example Ref. [167]:

d*c _ ﬂ

dQdE' k;

where S(q,w) is the scattering function, (2 the solid angle, k;/k; the ratio of the mo-

menta of the scattered and incident neutrons and C a constant. For a polycrystalline

sample only the modulus ¢ of the scattering vector has to be considered. For a set of

CEF transitions {i — i’} at a constant scattering vector and at temperature 7', we have

S(q,w), (3.17)

S(q,w):% > ( 3 |<¢|Ja\¢'>|2> exp [~/ (keT)] F (B — Ev + hw),  (3.18)

a=T,Y,z

where Z =) exp [—E;/ (kgT)] is the partition function. Here I is a constant, |i) and
|i") are eigenvectors of Hcgp defined as:

J

iy = am,my). (3.19)

my=—J



3.2. CEF OF THE TITANATE SERIES R,Ti, O 75

Rare earth Th3* Dy3* Ho* Er’* Tm?* Yb3t
e (&) | 10.1475(1) | 10.1248(1) | 10.0086(1) | 10.0727(1) | 10.0537(2) | 10.0204(1)

Table 3.2: List of the lattice parameters ay,; used in this work for the Ry Tiy Oy series.
Data taken from Ref. [165].

The function F' (E; — Ey + hw) describes the i — ¢’ CEF transition with a neutron
energy transfer iw = Ey — E;. Tt is taken as the convolution of Gaussian and Lorentzian
functions. The Gaussian stands for the resolution of the spectrometer. The Lorentzian
function is written as:

1 T
T3, 4 (hw — (Ey — E;))?
where the FWHM TI'; ; accounts for the lifetime of the i CEF energy level during the
transition ¢ — 7',

Lijy(hw + E; — Ey) =

(3.20)

3.2 CEF of the titanate series R>,T1,0~

In this section, after a short review of published CEF parameters, we will present our
results of a global analysis leading to a single set of CEF parameters describing the
whole RyTi;07 series. The following sections will focus on the details of the analysis of
inelastic neutron scattering spectra for ThyTiyO7, EryTisO7, and HoyTisO5.

3.2.1 Published CEF parameters

Many sets of CEF parameters have been proposed in the literature to describe the CEF
properties of the titanate series. The most relevant are listed in Tab. 3.3l Mirebeau et
al. |73] and Rosenkranz et al. [168] have derived the CEF parameters analysing inelastic
neutron scattering spectra of a polycrystalline sample of ThyTisO; measured on a triple-
axis spectrometer, and of a powder sample of HosTioO7; measured on a time-of-flight
spectrometer, respectively. The corresponding CEF energy levels scheme are shown in
the top left and right panels of Fig. If computed and experimental CEF energy
levels match very well for the investigated compound, some notable discrepancies appear
looking at the other titanate compounds of the series: for instance, CEF parameters
of Mirebeau et al. [73| account very well for TbyTisO7; however, inelastic neutron
scattering spectra of EryTisO; and HosTisO; cannot be described with this set of
parameters. Malkin et al. [169] have derived a set of CEF parameters with ab-initio
calculations using the ECM model briefly introduced at the end of Sec. B.1.2l Looking
at the bottom left panel of Fig.[B.2] the mismatch between experimental and calculated
energy levels does not allow to analyse inelastic neutron scattering spectra of compounds
of the titanate series.

3.2.2 Proposal of a single CEF solution

Whereas crystal field parameters are determined in the literature for a single compound,
we endeavour ourselves here to describe CEF properties of the whole series of the ti-
tanate compounds Ry Ti;O7 with a single set of CEF parameters A" (related to the B
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Figure 3.2: Computed CEF energy levels drawn for the R ions in the Ry Ti; O; pyrochlore
series using CEF parameters listed in Tab. proposed by Mirebeau et al. ,@] (top
left), Rosenkranz et al. l@] (top right), Malkin et al. [E] (bottom left), and Hodges
et al. E] (bottom right). Solid thin and thick lines stand for singlet and doublet
states, respectively. All the theoretical CEF levels have been drawn. They may not be
resolved on the figure because of the limited graphical resolution. The calculated energy
levels are compared to experimental data extracted from inelastic neutron scatterin
experiments presented in dashed lines. These data are reproduced from Refs. @f]
for ThyTis O, Refs. @, ] for EryTis O7, Ref. @] for Ho, Tis O; and Ref. ] for
Tmy Tiy Os.

parameters through Eq. B.I3)) using the scaling law of Eq. B8l The lattice parameters
a1at used in this work are listed in Tab. 3.2l The perturbative CEF Hamiltonian is
restrained to the ground state multipletﬁ which allows us to significantly reduce the
dimension d of the matrix elements, i.e. d = (2J 4+ 1). The code CEF | has been
developed in order to diagonalise the CEF Hamilton and simultaneously analyse pub-
lished inelastic neutron scattering spectra of different rare earths with a single set of
B" parameters. The first step of the analysis was to find solutions allowing a match
between experimental and calculated energy levels. The interval over which the A
CEF parameters have been varied is displayed in the last row of Tab. [3.3]

6This assumption is valid for the heavier rare earth, but could be debatable, in the case of the lighter
rare earth since Ay, becomes of the same order of magnitude as the whole CEF energy splitting, see

Tab. B.11
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e A I I S
This work [173] | 40.5(1) | 24(1) | 213(13) | 1.03(3) | -17(1) | 14(1)
Mirebeau et al. [73] 37 22 184 0.88 -11.2 13.6
Zhang et al. [170| 87 20.3 289 1.55 65.0 110.4
Rosenkranz et al. [168] 45 27 201 0.96 -16.4 17.6
Hodges et al. [83] 514 | 8.1 310 31 | 207 | 23.8
Malkin et al. [169)] 45 27 201 0.96 | -164 | 17.6
Tnterval probed 0,85] | [-34,50] | [-300,455] | [-3,3] | [-34,34] | [-25,30]

Table 3.3: The A]' parameters obtained from a global fit of the CEF levels deter-
mined by inelastic neutron scattering experiments are shown for Thy Tiy O in the sec-
ond row. The CEF parameters for the other compounds of the series can be obtained
from Eq. 316 The units for A" are meV /aj, where ay is the Bohr radius. In the
subsequent four rows are listed the A]' parameters derived from the works of Mirebeau
et al. |73] and Zhang et al. [170] on Thy Tis O, from the work of Rosenkranz et al. [168]
on Ho, Tis O, and from the work of Hodges et al. |83] on Yby TiyO;. For comparison the
A™ values inferred from the exchange-charge model are listed in the seventh row [169].
All CEF parameters given here have been rescaled for Thy TiysO; using Eq. [3.16. The
last row gives the intervals over which the A]" parameters have been varied in our global
analysis.

A peculiar feature of the Hamiltonian given in Eq. should be noticed: in-
terchanging the A3 and A} signs, or equivalently the B3 and Bj signs, has no influ-
ence on its eigenvalues as well as on the neutron intensity of the CEF transitions.
As a consequence, this enables to reduce the numerical effort by a factor two when
scanning the CEF parameters looking for solutions diagonalising Hcgr. This can
be understood as follows. For the sake of the derivation, the CEF Hamiltonian de-
fined in Eq. is denoted here as Hcgr(BSY, BY, B3, BY, B3, BS). Tt can be eas-
ily shown that the matrix representation of this Hamiltonian in the Zeeman basis
{lmy; = J),...,Imy; = —J)} is the same as that of Hcgr(BSY, B}, —B3, BY, —Bg, BY)
in the basis {|m, = —J),...,|m; = J)}lﬂ Hence the eigenvalues, i.e. the energy levels,
are equal. As mentioned in Sec. B1.3, we need to consider |{i|J,|i')|* for the neutron
intensity, where |i) and [|i') are eigenvectors. If |i) = Z;]ngfJ Qi |my) is an eigenvec-
tor of the Hamiltonian with the B} and Bj parameters, the corresponding eigenvector
of the second Hamiltonian with —Bj and — B} is |j) = Z;]nJ:ﬁ, Qm,| —my). Since
(—my|Jo] —m/;) = p(mylJo|m}) withp =1if a =2z and p = =1 if @ = y or z, the
transition intensities associated with the two Hamiltonians are equal.

The advantage of fitting the whole set of available level positions rather than the
levels for a single compound is the increase in the number of levels involved. Even for
the most favorable case of Hoy TioO7 only five levels were experimentally measured. Our
global fit for four compounds includes twelve levels. The two highest CEF energy levels
of TbyTi,O7 revealed by Zhang et al. [170] are not included in the analysis since they
were not yet published. The second step was to simultaneously analyse the inelastic
neutron scattering spectra (details of the analysis are presented in the following section).
Within the probed CEF parameters interval, we find a single solution listed in the first

"Note the change in the vectors sequence in the two bases
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Figure 3.3: Computed CEF energy levels drawn for the R ions in the R, Ti; O; pyrochlore
series using our CEF parameters listed in the first row of Tab. (left) and CEF
parameters proposed in Ref. [170] listed in the third row of Tab. [33 (right). More
details about the description of these panels are given in the caption of Fig.[3.2

row of Tab.[B3leading to a fair description of the experimental data, see for instance the
corresponding computed CEF energy levels scheme given in the left panel of Fig. B3l

Hodges et al. |[83] have combined '™Yb Mgssbauer spectroscopy, "*Yb perturbed
angular correlation, magnetisation and susceptibility measurements of YbyTisO7 in
order to determine the CEF parameters. These parameters are listed in the fifth row of
Tab. and the computed CEF energy level scheme is displayed in the bottom right
panel of Fig. which clearly cannot account for the inelastic neutron scattering data.
However, the three excited Kramers doublets of YbyTisO7 are predicted to lie at ~ 53,
64, and 82 meV. Our set of CEF parameters listed in the first row of Tab. B.3 leads
to energy levels lying at ~ 57, 59, and 89 meV. These results are supported by the
work of Malkin et al. |[169] where optical measurements on a polycrystalline sample of
YbyTisOr revealed CEF energy levels at 58 and 81 meV. We recall that our model does
not take into account the influence of the first excited multiplet which can explain the
difference observed between the highest computed energy levels, as it is the case here
for YbyTisO7. On the other hand, Maczka et al. [175] performed Raman spectroscopy
on DyyTi;O7 and evidenced at low temperatures a CEF transition from the ground
state to an excited level lying at ~ 37.2 meV. This is consistent with our calculations
since we predict an energy level at 37.9 meV.

Concerning TmsTiO7, CEF excitations are predicted at around 10, 20, 27 and
51 meV; see the left panel of Fig. B3l Measurements by Zinkin et al. [172], indeed
observe a crystal field excitation at around 10 meV in an inelastic neutron scattering
spectrum recorded up to 14 meV. However, these authors claim that they looked for
other transitions up to a maximum energy of 54 meV, but fail to detect any. Our
simulation predicts that the two highest excitations at 27 and 51 meV have a negligible
intensity, (=~ 6% and 4% of the intensity of the peak at 10 meV) which certainly explains
that they could not be detected. Still the intensity of the transition at 20 meV is
predicted to be around 70% of the main peak and it should in principle be visible. A
short lifetime of the associated level could smear it out. In the following, we analyse
published inelastic neutron scattering spectra for several compounds using, within the
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Figure 3.4: Left: Energy levels scheme of Thy Ti;O; obtained with our CEF parameters
listed in the second row of Tab.[3.3. The different energy levels are labelled by numbers
in order to identify the CEF transitions involved in inelastic neutron scattering spectra,
see Tab. and Tab. [3.5l The numbers in parentheses (1) and (2) correspond to
singlet and doublet states, respectively. The dotted lines indicate the experimental
CEF transitions revealed by inelastic neutron scattering spectroscopy |73, 170]. Right:
Inelastic neutron scattering spectrum recorded on a powder sample of ThyTisO at
T =14 K and ¢ = 2 A~'. Data are extracted from Fig. 5 (left) of Ref. [73]. The
blue dashed line is the background contribution taken as a constant value. The black
solid line is a fit to the data using our CEF parameters listed in the second row of
Tab. 3.3 Black arrows indicate the CEF transitions: they are labelled by letters in
order to identify the CEF energy levels, see Tab. and left panel of this figure.

errors bars, our CEF parameters listed in the first row of Tab. B3

3.2.3 Analysis of Tb,Ti,O7

The computed CEF energy level scheme already shown in the left panel of Fig. B3] is
drawn in the left panel of Fig. B.4] for ThyTisO7 in order to label the CEF transitions
involved in the inelastic neutron scattering spectra of interest. First, we look at data
recorded by Mirebeau et al [73] on a polycrystalline sample of ThyTisO7: (i) at T =
1.4 K and ¢ = 2 A1, see the right panel of Fig. B4 and Tab. B4 for some details of
the analysis reporting the linewidths of the Lorentzian functions describing the CEF
transitions and their relative intensities, (ii) at 7= 38 K and ¢ = 2 A=, see Fig.
and Tab. BF and (iii) at 7 = 4.1 K and ¢ = 3 A=, see left panel of Fig. 36l The
instrumental resolution is taken as a Gaussian function with FWHM equal to 0.25 meV
for the right panel of Fig. and Fig. 3.5, and to 1.08 meV for the left panel of
Fig. [73]. Before discussing goodness of the analysis, we should notice that the
small peak observed at ~ 7 meV is attributed to two inequivalent Th3* sites [176].
However, we note two issues in the analysis of ThyTisO7. First, our model predicts
that a CEF transition located at 13.3 meV should be visible in the spectrum recorded
at T'= 38 K, as illustrated in the left panel of Fig. B.5 corresponding to the transition
2 — 4 (D) (from the first to the third excited energy level), see left panel of Fig. B.4]
which are not compatible with data recorded by Mirebeau et al. [73]. The first excited
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Transition (a - b) |1 —3(A)|1—4(B)
Energy (meV) 10.7 14.9
Rel. Int. (arb. units) 6.6 2.1
[ap (meV) 1.0(1) 1.4(1)

Table 3.4: Results of the analysis of the inelastic neutron scattering spectrum of
Thy Tis O, displayed in the right panel of Fig.[3.4 We give the CEF transitions be-
tween energy levels labelled (a — b) as indicated in the left panel of Fig. [3.4 their
calculated energy positions, and the linewidths of the Lorentzian functions describing
the CEF transitions. Relative intensities are also given.

Transitions (a - b) |1—-3(A) | 1—-4(B)|2—-3(C) 2—4 (D)
Energy (meV) 10.7 14.9 9.1 13.3
Rel. Int. (arb. units) 4.0 14 8.6 x 1072 1.3
Lifetime Ty, (meV) 1.2(F) 1(F) 1(F) 1(F) (left panel)/5(F) (right panel)

Table 3.5: Results of the analysis of the inelastic neutron scattering spectrum of
Thy Tis O, displayed in Fig. [3.5. We give the CEF transitions between energy levels
labelled (a — b) as indicated in the left panel of Fig.[3.4, their calculated energy po-
sitions, and linewidths of Lorentzian functions describing CEF transitions. The letter
(F) means that the variable is fixed to the indicated value. Concerning the CEF tran-
sition 2 — 4 (D), two values of the linewidth are given corresponding to the analysis
displayed in the left or right panel of Fig.[3.3.

CEF energy level, labelled (2), is strongly dispersive, as revealed in Refs. [177-179).
Since our model does not take into account the dispersion of the CEF energy level,
we could have imagined that at the measured wavevector value the experimental first
excited CEF energy level could be shifted and thus the transition 2 — 4 (D) hidden
with an other CEF excitation. However, measurements displayed in Fig. have been
performed at ¢ = 2 A~', a value at which the first CEF energy level lies at ~ 1.6 meV
corresponding to the calculated value. Therefore, the only way to fit the model to the
data is to introduce a short lifetime to smear out the transition 2 — 4 (D), see the right
panel of Fig. and Tab. Note that the CEF parameters proposed in Ref. [73]
lead to the same problem.

Furthermore, looking at the inelastic neutron scattering spectrum |[73] displayed
in the left panel of Fig. B.6] a supplementary excitation seems to be located at ~
16 meV. This excitation was better resolved in a recent work [170] where inelastic
neutron scattering experiments were performed with a time-of-flight spectrometer on a
polycrystalline sample of ThyTisO7, see right panel of Fig. Since these experiments
were performed at low temperatures, this excitation would correspond to a transition
from the ground state to an excited one located at 16 meV. None of the published
CEF parameters can describe this excitation. Therefore, a set of CEF parameters
listed in the fourth row of Tab. B.3] was proposed and allows to describe this excitation,
as shown in the right panel of Fig. B.6l However, the corresponding computed CEF
energy levels scheme for the other titanate compounds displayed in the right panel
of Fig. B.3 is clearly incompatible with other inelastic neutron scattering experiments.
The nature of this excitation is debatable. From Raman spectroscopy experiments,
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Lummen et al. |[176] identify this excitation to be a CEF transition arising from a
second Th3* site: this disorder would arise from structural fluctuations as premises
of a Jahn-Teller transition, see Chapter Bl However, this excitation is still observable
at high temperature [180] which does not corroborate the explanation proposed in
Ref. [176]. Therefore, the origin of this excitation remains unclear: the authors of
Ref. [181] propose that this excitation originates from the coupling between an electron
and a phonon. A recent paper |182| confirms the presence of this additional excitation
with neutron time-of-flight spectroscopy but also fails to include it in a crystal-electric-
field analysis. The excitation lying around 70 meV and claimed to be of magnetic
origin by the authors of Ref. [170] is shown in Ref. [182] to be of phononic nature.
Finally, in both papers, the authors agree to the existence of a crystal-electric-field
transition lying at 49 meV, supporting our prediction of a doublet at ~ 47 meV. With
high temperature measurements, the authors of Ref. [182] argue that an energy level
should lie near 39 meV, also in agreement with our predicted level at ~ 40 meV.

3.2.4 Analysis of Ery,Ti,Oy

Champion et al. have recorded inelastic neutron scattering spectra for a polycrystalline
sample of EryTi,O7 at T = 1.8 K, see the right panel of Fig. B The analysis is
performed with our CEF parameters listed in the second row of Tab. 3.3l The refined
CEF parameters providing a proper description of the inelastic neutron scattering spec-
tra are given in the second row of Tab. and are closely related to the ones listed in
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Figure 3.5: [Inelastic neutron scattering spectra recorded on a powder sample of
ThyTiyO; at T = 38 K and ¢ = 2 A~'. Data are extracted from Fig. 5 (right) of
Ref. [73]. In both panels, the blue dashed line is the background contribution taken as
a constant value. The black solid line is a fit to the data using our CEF parameters
listed in the second row of Tab.[3.3 Black arrows indicate the CEF transitions: they
are labelled by letters in order to identify the CEF energy levels, see Tab. and left
panel of Fig.[34. The difference between the analysis of the left and right panels lies in
the value chosen for the linewidth of the Lorentzian function describing the transition
2 — 4. As shown in Tab.[3.3 T's_,4 = 5 meV in the right panel in order to smear out
the supplemental CEF transition predicted by our CEF parameters, and evidenced in
the left panel of this picture.
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Figure 3.6: Left: Inelastic neutron scattering spectra recorded on a powder sample of
ThyTiyO; at T = 4.1 K and ¢ = 3 A~'. Data are extracted from Fig. 7 (right) of
Ref. [73]. The black solid line is a fit to the data using our CEF parameters listed
in the second row of Tab. [3.3. Black arrows indicate the CEF' transitions: they are
labelled by letters in order to identify the CEF energy levels, see Tab. and left panel
of Fig.[3.4. Right: Inelastic neutron scattering spectrum recorded on a polycrystalline
sample of ThyTisO7 atT' = 1.5 K. The excitation located at 16 meV is better resolved.
Data are extracted from the top left panel of Fig. 5 in Ref. [170]. The black solid line
is a fit to the data using CEF parameters of Zhang et al. [170] listed in the fourth row
of Tab.[3.3. In both panels, the blue dashed line is the background contribution taken
as a constant value.

AR (meV/ag) | A9 Aj Aj Ag A A
Er,Ti;07 | 40.1(2) | 23.6(1) | 224(1) | 1.078(3) | -16.9(2) | 14.4(2)
HoyTi,O; | 40.8(8) [ 24.2(3) [ 210(7) | 1.07(2) |-16.0(8) | 15.4(4)

Table 3.6: Refined CEF parameters A" rescaled for ThyTi,O; and used to properly
describe inelastic neutron scattering spectra of EryTiyOy (second row), see right panel
of Fig. [37, and of HoyTisO; (last row), see Fig. [3.9. These parameters are closely
related to thoses listed in the second row of Tab.[3.3 within the error bars.

Tab.B.3 within the errors bars. The corresponding computed CEF energy levels scheme
is displayed in the left panel of Fig. 3.7 in order to not only compare computed and
experimental CEF energy levels but also in order to label the different energy levels
for the identification of the CEF transitions involved in the inelastic neutron scatter-
ing spectrum, as reported in Tab. 3.7l The resolution of the instrument is taken as a
Gaussian with a FWHM equals to 4% of the energy transfer [183]. Our set of CEF
parameters provide a very good analysis of the inelastic neutron scattering spectra re-
vealing transitions from the ground state to the two lowest CEF energy levels located
at 6.3 and 7.3 meV. Our model predicts also an energy level evidenced by Shirai [171]]
at 15.4 meV according to Ref. [184].
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Figure 3.7: Left: Energy levels scheme of Er,TisO; obtained with the CEF parameters
listed in the second row of Tab.[3.6. The different energy levels are labelled by numbers
in order to identify the CEF transitions involved in the inelastic neutron scattering
spectra, see Tab. 37 The dotted lines indicate the experimental CEF transitions
revealed by inelastic neutron scattering spectroscopy ,@] The highest experimental
energy level is listed by Ref. ,@] from the PhD dissertation of Shirai |. Right:
Inelastic neutron scattering spectra recorded on a powder sample of EryTioO; at T =
1.8 K. Data are extracted from Fig. 3 of Ref @] The blue dashed line is the background
contribution taken as a constant value. The black solid line is a fit to the data using
our CEF parameters listed in the second row of Tab. [3.6. Black arrows indicate the
CEF transitions: they are labelled by letters in order to identify the CEF energy levels,
see Tab.[3.1 and left panel of this figure.

3.2.5 Analysis of Ho,Ti,Or

Starting from our CEF parameters listed in Tab. 3.3, we analyse simultaneously two
inelastic neutron scattering spectra of HoyTi,O; recorded by Rosenkranz et al. [@]
at 7' = 10 K, as shown in Fig. The refined CEF parameters are listed in the last
row of Tab. and correspond within the errors bars to those determined in Tab. 3.3l
The instrumental resolution has been determined with a vanadium sample for each
incident energy in Ref. [@], but no further information is given. Therefore, we choose
a Gaussian function for the instrumental resolution and take a FWHM Hg = 1 and
3 meV for incident energies E; = 35 and 120 meV, respectively. The linewidths of
the Lorentzian functions accounting for CEF transitions are given in the right panel of
Fig. 3.8 and Tab. 3.8 for the left and right panels of Fig. B.9] respectively.
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Transition (a - b) |1—2(A)|1—3(B)
Energy (meV) 6.4 7.3
Rel. Int. (arb. units) | 9.9/1.8 6.0/0.11

o (meV) 0.35(4) | 0.16(1)

Table 3.7: Results of the analysis of the inelastic neutron scattering spectrum of a
polycrystalline sample of Ery Tis O, displayed in the right panel of Fig.[3.7. We give the
CEF transitions between energy levels labelled (a,b) as indicated in the left panel of
Fig. [374, their calculated energy positions, and the linewidths of Lorentzian functions
describing the CEF transitions. Relative intensities are also given: for a transition
involving two doublets, two neutron intensity values are provided.

80 | Uy Transition (¢ - b0) |1 —2(A)|1—3(B)
< Wee) —— Energy (meV) 21.4 22.3
g 60 @ Rel. Int. (arb. units) | 3 x 1072 | 0.14/0.53
540 i Lap (meV) - 0.8(F)
o | S e Transition (a - b) |1 —4(C)|1—5(D)
Yool 2 Y —— Energy (meV) 25.6 26.8
Rel. Int. (arb. units) | 0.36/0.14 0.18
0= Q) ——— e T, (meV) 0.6(F) 0.5(F)

Figure 3.8: Left: Energy levels scheme of Ho, Ti; O; obtained with the CEF parameters
listed in the third row of Tab.[3.6l The different energy levels are labelled by numbers
in order to identify the CEF transitions involved in the inelastic neutron scattering
spectra, see right panel of this picture and Tab.[3.8. The dotted lines indicate the ex-
perimental CEF transitions revealed by inelastic neutron scattering spectroscopy [168§].
Right: Results of the analysis of the inelastic neutron scattering spectrum of Hoy Tiy Oy
displayed in the left panel of Fig.[3.9 We give the CEF transitions between energy
levels labelled (a,b) as indicated in the left panel of this figure, their calculated energy
positions, and the linewidths of Lorentzian functions describing the CEF transitions.
Relative intensities are also given. The symbol “—” means that no Lorentzian function
describes the CEF transition since its relative intensity is negligible compared to other
CEF transitions.
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Figure 3.9: Inelastic neutron scattering spectra recorded on a powder sample of
Ho,TisO; at T = 10 K and E; = 35 meV (left) and 120 meV (right). Data are ex-
tracted from Fig. 2 of Ref. [16§]. The blue dashed line is the background contribution
which has been interpolated. The black solid line is a fit to the data using CEF param-
eters displayed in the last row of Tab.[3.6. Black arrows indicate the CEF transitions:
they are labelled by letters in order to identify the CEF transitions, see Fig. and

Tab. 3.8
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Transition (a — b) 1 -6 (E) 1—7(F) 1—8(G)
Energy (meV) 61.0 69.7 71.2
Rel. Int. (arb. units) | 1 x 107%/4.0 0.10 (49/3.8)x1073
[ap (meV) 2.5(F) 1.0(F) -
Transition (a — b) 1 —9 (H) 1 — 10 (I) 1—11(J)
Energy (meV) 71.2 76.3 79.6
Rel. Int. (arb. units) 0.20 1.4 x1073/0.77 | 3.6 x 1072
[ap (meV) 0.7(F) 4.0(F) -

Table 3.8: Results of the analysis of the inelastic neutron scattering spectrum of
Hoy Tiy O; displayed in the right panel of Fig.[3.9. We give the CEF transitions between
energy levels labelled (a,b) as indicated in the left panel of Fig. 3.8, their calculated
energy positions, and the linewidths of Lorentzian functions describing the CEF tran-
sitions. Relative intensities are also given. The symbol “—” means that no Lorentzian
function describes the CEF transition since its relative intensity is negligible compared
to other CEF transitions.

3.2.6 Conclusions

For completeness, we give in Tab. 3.9 the values of the B)" parameters for compounds
of interest in the pyrochlore series R,Ti2O7; computed with our set of A" parameters
listed in the second row of Tab. B3l The corresponding ground state wavefunctions
gboi are also provided in Tab. This allows us to calculate the spectroscopic factors
along and perpendicular to the local trigonal 2 axis, g and g, respectively:

g = 291(e5 | :165)],
g1 = gil{og | T1log)| = gsl{en | T-|é3)]. (3.21)

These spectroscopic factors are listed in Tab.B.I1l As expected, EraTioO7 and YbyTisO7
have a strong planar CEF anisotropy and ThyTisO7, Dy, TisO7 and Ho,TisO7 are Ising-
like. The g value obtained for Yb,TiO7 is intermediate between the experimental
values 1.79 and 2.25 of Hodges et al. [83] and Cao et al. [185], respectively. This is
in agreement with the fact that the ratio g, /g is expected to be rather large, i.e.
g1/gy ~ 2.4 [83] compared to our value g, /g = 2. Our g result for ThyTi,O7 is con-
sistent with previous estimates [73, 179]. When the ground state is well isolated from
the excited ones, we can describe it with an effective spin-1/2. Therefore, we calculate
the components of the crystal field magnetic moment along and perpendicular to the
trigonal axis [111] such as:

1 1

MﬁJF = §9||MB and MEF = §QL/~LB- (3.22)

The crystal-electric-field magnetic moment is deduced as:

HOF = () 4 (uE)?. (3.23)

In the case of the spin-ice compounds, we recover u°¥ ~ 10 g which is consistent with
the literature, see Sec. [L.3l



3.2. CEF OF THE TITANATE SERIES R,Ti, O 87
BY BY B3 BY B? BY

Tb —0.34(1) 492) x107° | 43(3)x 102 | —7.9(2) x 10°° | 1.30(8) x 10 * | —1.08(8) x 10~ *
Dy ~0.20(1) —22(1) x 1073 | —1.9(1) x 1072 | 6.6(2) x 10°6 | —1.09(6) x 10~* | 9.0(6) x 105
Ho | —6.8(2) x 1072 | —1.13(5) x 10~% | —=1.01(6) x 1072 | —7.4(2) x 10~% | 1.23(7) x 10~* | —1.01(7) x 10~*
Er | 7.5(2)x 1072 | 1.41(6) x 107* | 1.25(8) x 1072 | 1.09(3) x 107° | —1.8(1) x 104 | 1.5(1) x 10~*
Tm 0.29(1) 48(2) x 107% | 4.3(3)x 1072 | —2.69(7) x 1075 | 4.4(3) x 107* | —3.7(3) x 1074
Yb 0.87(2) —4.8(2) x 1072 —0.43(3) 6.6(2) x 1074 | —1.09(6) x 1072 | 8.9(6) x 1073

Table 3.9: Values of B)" parameters for six compounds of the Ry Ti;O7 pyrochlore series
given in meV.

Th |6E) = 0.266] + 5) F 0.133] £ 2) — 0.129] F 1) F 0.946] F 4)

Dy | [¢g) = F0.981] £+ 2) — 0.190] & 9) £ 0.022] & 2) + 0.037] F 2) F 0.005] F 3) £ 0.001] F 2)
Ho | |¢5) = —0.979] £8) £ 0.190] & 5) — 0.014] &+ 2) + 0.070] F 1) — 0.031] F 4) £ 0.005| F 7)
Er |9g) = F0A71[+ ) — 0.421[ £ 1) £ 0.569] £ 1) + 0.240] F 3) F 0.469] F I)

Tm o) = 0.148]6) — 0.691]3) — 0.691] — 3) — 0.148] — 6)

Yb [60) = 0.374] £ ) + 0.923] £ 1) — 0.093] F 2)

Table 3.10: Ground-state wavefunctions for six compounds of the Ry Ti,O7 pyrochlore
series.

The CEF parameter A can be deduced from the measurement of the nuclear
quadrupole splitting Ag arising from the electric-field gradient in a gadolinium com-
pound from '»Gd Mdossbauer spectroscopy. From Refs. [117, 186], Ag = 1.62 x
1073 meV in GdyTiyO7. Since the quadrupole moment of the excited Méssbauer
state of '%°Gd is negligible (Qcx = 0.18 barns [187]) compared to the ground state
(Qgs = 1.27 barns [160]), we only consider the splitting of the latter. The nuclear spin
of the ground state is / = 2 yielding two doublets | + 2) and | &+ ). From the point
symmetry at the rare earth site, V., is the principal component of the electric-field
gradient tensor and the asymmetry parameter vanishes. Therefore, the quadrupolar
Hamiltonian is written as:

ngs‘/zz

"o =gt =0

312 —I(I +1)]. (3.24)
Since this Hamiltonian is diagonal, we directly determine the nuclear quadrupolar split-
ting between the two aforementioned Zeeman states Ag = —eQysV../2. Besides, the

CEF parameter AJ is commonly related to V., through the relation [188]:
4A(2) 1 - Voo

Ve = : 3.25
e 1— 09 ( )
where 7., = —61 and o9 = 0.67 are Sternheimer and screening coefficients [189]. Using

Tb | Dy | Ho | Er | Yb

g1 | 96 196|196 | 2.1 | 2.04

gL | O 0 0 7.7 | 4.09

Table 3.11:  Spectroscopic factors g and g, for the ground state doublets of five
compounds of the R,Ti,O7 series using A" parameters listed in the second row of
Tab. B3l For TmyTi;O; the thulium ion has a singlet ground state and therefore

g||:gL:O.
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this formula, we compute A = 95meV /a3 for GdyTipO7. From the scaling law given in
Eq. BI6, we then get A = 97meV /a2 for ThyTi,O7. This is 2.4 larger than the value
listed in the second row of Tab. B.3. We do not have a reliable explanation accounting
for such a difference between our calculations and the value inferred from Md&ssbauer
experiment. We have tested if this large A9 could provide a description of the inelastic
neutron scattering data probing a relatively wide range of A}* and Ay without finding
any solution.

To conclude, we have introduced a simple methodology using a scaling law for a reli-
able determination of the rare-earth crystal-field parameters for a series of isostructural
rare-earth compounds. This requires the availability of inelastic CEF neutron scatter-
ing data for a sufficiently large number of compounds of the series. We have found a
single set of CEF parameters within the interval probed, see last row of Tab. 3.3 which
enables us to calculate CEF energy levels close to the experimental ones revealed by
inelastic neutron scattering spectroscopy, at least at low energy. Not only energy levels
are calculated, starting from the proposed CEF parameters we are also able to describe
intensities of inelastic neutron scattering spectra which depend on the wavefunctions.
This suggests that we have at least reached a reasonable phenomenological model for
the low-energy local properties of the RyTisO7 series. However, we have made the
strong approximation to only consider the splitting of the ground state multiplet. The
perturbation of the first excited multiplet might not be negligible, especially for the
lightest rare earth ions, see Tab. 3.1l This could explain the mismatch of the highest
computed and experimental energy level of ThyTisO for instance.

In the next section, we intend to apply the same methodology in order to find a
single set of CEF parameters describing the pyrochlore series RoSnyOr.

3.3 CEF of the stannate series FySn,0O-

In order to determine the CEF parameters of the pyrochlore stannate series RySn,O7,
we have performed measurements at the time-of-flight spectrometer MARI (ISIS facil-
ity), see Sec. 24 on three different polycrystalline samples: HoaSnyO7, ThySnaO7, and
NdsSnyO7. An amount of about 20 g of powder sample was rolled in an aluminium
foil and placed in an annular sample holder. Data were corrected for absorption effects
as explained in App. [Cl Inelastic neutron scattering spectra are analysed following the
methodology introduced in Sec. B.1.3. The resolution of the spectrometer is approx-
imated as a Gaussian function with a FWHM calculated as a function of the energy
transfer, as explained in Sec. 2.4], for each configuration of the experiment depending
on the incident energy E; and on the Fermi chopper frequency vpc.

3.3.1 Published CEF parameters

Several sets of CEF parameters have been published in the literature. Some of the most
relevant are listed in Tab. B.12t measurements on powder samples of ThoSnyO; have
been conducted by Mirebeau et al. |[73] at a triple-axis spectrometer and by Zhang et
al. [170] at a neutron time-of-flight instrument. Guitteny et al. [104] measured at a
triple-axis spectrometer a powder sample of ErsSn,O7. Their data are fully consistent
with those recorded previously by Sarte et al. [105]. The computed CEF energy levels
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A Al A3 Al A} A
This work 53.2(1.4) | 22.4(4) | -155(9) | 0.84(2) | 13.4(6) | 17.7(3)
Mirebeau et al. [73| 23.8 17.1 128.9 -0.34 -5.292 15.5
Zhang et al. [170] 23.6 17.3 13 -0.37 -8.17 15.1
Guitteny et al. [104] 38.9 24.7 -146.3 0.79 14.3 16.0
Interval probed [0,85.9] | [-43,43] | [0,344] | [-1.7,1.7] | [-43,43] | [-43,43|

Table 3.12: The A" parameters deduced from the analysis of the inelastic neutron
scattering spectra of a polycrystalline sample of Ho,Sny O, are listed in the second row.
The units for A} are meV /af}, where ay is the atomic unit. In the subsequent three rows
are listed the A} parameters derived from the works of Mirebeau et al. [73] and Zhang
et al. [170] on ThySnyO;, and from the work of Guitteny et al. [104] on ErySnyO;. All
CEF parameters given here have been rescaled for ThySn,O; using Eq. [3.16. The last
row gives the intervals over which the A]" parameters have been varied in the global fit.

scheme for some compounds of the stannate series using CEF parameters of Mirebeau
et al. |73] and Zhang et al. [170] are displayed in the left and right panels of Fig. B0,
respectively. Notable discrepancies are evidenced between calculated and experimental
CEF energy levels, except for ThySnyO7 which is the investigated compound in those
references. In Fig. B.11] the CEF energy levels scheme is computed using CEF parame-
ters proposed by Guitteny et al. [104] and deduced from the analysis of inelastic neutron
scattering spectra of EroSnyO7. If the correspondence between calculated and exper-
imental CEF energy levels is roughly acceptable, we cannot analyse inelastic neutron
scattering spectra of HosSn,O7 and ThyoSnyOs.

150~ Pr Nd Tb Dy Ho Er  Tm Yb

1

150+ Pr Nd Tb Dy Ho Er Tm Yb —

T
1
T
1

100 | 100

Energy (meV)
|
Energy (meV)

50 [ 50

|

|
o
o
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Figure 3.10: Computed CEF energy levels drawn for the R ions in the RySn,O; py-
rochlore series using CEF parameters listed in Tab. proposed by Mirebeau et al. [73]
(left panel) and Zhang et al. [170] (right panel). Solid thin and thick lines stand for sin-
glet and doublet states, respectively. All the theoretical CEF levels have been drawn.
They may not be resolved on the figure because of the limited graphical resolution.
The calculated energy levels are compared to experimental data extracted from inelas-
tic neutron scattering experiments presented in dashed lines. Data for Er,Sn,O; are
reproduced from Refs. [104, 105], and data for HopSny O; and ThySnyO; are extracted
from our neutron time-of-flight experiments.
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Pr Nd Th Dy Ho Er Tm Yb
150F — — .

S i 1 Figure 3.11: Computed CEF energy lev-
g 100 1 els drawn for the R ions in the R;Sn,O;
5 L = = __ = 1 pyrochlore series using CEF parameters
g el - - - — —— 1 listed in Tab.[312 proposed by Guitteny et
o= _ al. [104]. More details about the descrip-

= - = tion of this panel are given in the caption

o === === 77 of Fig. 310
Rare earth Th3* Dy3* Ho3* Er3* Tm3* Yb3t

e (A) | 10.4235(2) | 10.3979(3) | 10.3726(2) | 10.3504(1) | 10.3262(2) | 10.3046(1)

Table 3.13: List of the lattice parameters a,; used in this work for the RoSn,O; series.
Data taken from Ref. [190].

3.3.2 Analysis of HoySn,O

We apply the same methodology introduced in the aforegoing section. We will see in
the following that the scaling law given by Eq. is still satisfactory in order to
describe inelastic neutron scattering spectra of different compounds of the stannate
series. Useful lattice parameters are listed in Tab. B.13l However, we have to note that
a global fit including energy levels of three compounds, i.e. ErsSnyO7, HoaSnyO; and
TheSny 07 is not fully conclusive. We only extract solutions allowing to analyse inelastic
neutron scattering spectra of a subset of aforementioned compounds, namely two out
of the three compounds. Nevertheless, we present here a set of CEF parameters listed
in the second row of Tab. which gives a good correspondence between calculated
and experimental CEF energy levels, see the left panel of Fig. This set of CEF
parameters has been used to analyse simultaneously inelastic neutron scattering spectra
of a polycrystalline sample of HoySn,O7 and we will see in the following that the CEF
parameters allowing to describe spectra of ErsSnsO7 and ThySnyO7 only differs from
the initial ones by three error bars at worst.

The set of CEF parameters proposed in the second row of Tab. allows to describe
the CEF excitations of HooSnyO7. The corresponding CEF energy level scheme for this
compound is shown in the right panel of Fig. B.12l Not only the comparison between
computed and experimental CEF energy levels is displayed, we also label the different
energy levels in order to identify the CEF transitions involved in the analysis. With
neutron time-of-flight experiments performed at low temperatures, we reveal energy
levels lying at 21.5 and 25.5 meV, which are consistent with published data of Ref. [21],
but also at 27.5, 55, 65, 68.5, and 74.5 meV. An inelastic neutron scattering intensity
map of HoySnyO7 recorded at T' = 5 K and showing the energy transfer versus the
wavevector ¢ is displayed in the left panel of Fig. B3l in order to evidence the low
lying CEF energy levels. Integrations of these data over several wavevector ranges are
shown in the right panel of the same figure. The following methodology, applied to all
our recorded inelastic neutron scattering spectra, allows to determine the phononic or



3.3. CEF OF THE STANNATE SERIES RyS5n;0, 91

Pr Nd Th Dy Ho Er Tm Yb 80 111
—_— 10(2) 1 ——— e
150 = ] [ gy —— S
- 60"
> > 6(2) e
) L 1 ) L
£ 100 — _ A E
> L — - ] > 40 -
2 = = o
I F — - =_ Q51 ..
< [ _ _ = = ] c 42) ———————————  izizzzzzizzii:i:
w 50 _ = —_ W 5g L3y ——
O o —— = — — E : — ; 0 %1(2) ...............

Figure 3.12: Left: Computed CEF energy levels drawn for the R ions in the RySn,O;
pyrochlore series using our CEF parameters listed in the second row of Tab. and
comparison with experimental values extracted from inelastic neutron scattering mea-
surements. More details about the description of this panel are given in the caption
of Fig.[3.10. Right: Zoom over HoySnyO;. The different energy levels are labelled by
numbers in order to identify the CEF transitions involved in inelastic neutron scat-
tering spectra, see Tab. and Tab. [313. The numbers in parentheses (1) and (2)
correspond to a singlet and doublet states, respectively. The dotted lines indicate the
experimental CEF transitions revealed by inelastic neutron scattering spectroscopy.

electronic nature of the observed excitations: since the magnetic form factor decreases
when ¢ increases whereas the phonon intensity grows as ¢, we can conclude that the
two excitations revealed at 10 meV and 17 meV are attributed to phonons, whereas
those at 21.5, 25.5, and 27.5 are ascribed to CEF transitions. Integration of these
data over the wavevector range 0.26 < ¢ < 4 A-1is shown in Fig. Our set of
CEF parameters accounts very well for this spectrum. Some details of this analysis are
summed up in Tab. [3.14] such as the CEF transitions involved, their relative intensities
and the linewidths of the Lorentzian function needed to properly describe the peak
shapes.

An inelastic neutron scattering intensity map of HosSnyO7 recorded at 7' = 5 K
and displayed in the left panel of Fig. reveals the highest CEF energy levels ob-
served during the experiment. The right panel of Fig. shows the analysis of these

Transition (a - b) |1—-2(A)|1—-3B)|1—-4(C)|1—5(D)
Energy (meV) 20.1 21.5 25.4 27.1
Rel. Int. (arb. units) 0.13 0.76/0.27 | 0.55/0.38 0.23
[y (meV) 1.0(F) 0.25(2) 0.30(2) 0.20(3)

Table 3.14: Results of the analysis of the inelastic neutron scattering spectrum of
HoySny O displayed in Fig. [314. We give the CEF transitions between energy levels
labelled (a,b) as indicated in the right panel of Fig.[3.12, their calculated energy po-
sitions, and linewidths of Lorentzian functions describing CEF transitions. The letter
(F') means that the variable is fixed to the indicated value. Relative intensities are also
given.
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Figure 3.13: Left: Inelastic neutron scattering spectrum of Ho,Sn,O; recorded at T' =
5 K, E; = 40 meV and vgc = 300 Hz. Right: Integrations of these data over 0.26 < q <
4 A=1 (red empty circles), 4 < q < 8.1 A=! (blue full circles) and 0.26 < ¢ < 8.1 A~
(black empty squares) in order to determine the nature of the observed transitions.
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ergy levels, see Tab. and right panel

15 20 25 30
of Fig.[312

Energy transfer (meV)

Transition (a — b) 1 -6 (E) 1-7(F)|1—-8(G) 1 — 10 (H)
Energy (meV) 55.1 65.1 67.5 74.6
Rel. Int. (arb. units) | 3.4 x 107%/4.2 0.18 0.11 3.0 x 1072/0.30
Lup (meV) 0.50(2) 0.1(F) 0.1(F) 0.1(F)

Table 3.15: Results of the analysis of the inelastic neutron scattering spectrum of
Hoy,Sny,O7 displayed in the right panel of Fig.[3.15. We give the CEF transitions between
energy levels labelled (a,b) as indicated in the right panel of Fig.[3.12, their calculated
energy positions and linewidths of Lorentzian functions describing CEF' transitions.
The letter (F') means that the variable is fixed to the indicated value: indeed most
of the Lorentzian linewidths were fixed to arbitrary values since the calculated energy
resolution function dominates the width of the inelastic CEF transitions. Note that
the linewidths of the Lorentzian functions describing CEF labelled (A), (B), (C), (D)
have been blocked to 0.2 meV in this spectrum. Relative intensities are also given to
show whether or not a CEF transition is observed in the inelastic neutron scattering
spectrum.
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Figure 3.15: Left: Inelastic neutron scattering spectrum of a polycrystalline sample
of Ho,SnyO; recorded at T = 5 K, E; = 100 meV and a Fermi chopper frequency
vpe = 400 Hz. Right: Integration over the wavevector range 0.42 < q < 6 A=l The
black solid line is a fit to the data using CEF parameters displayed in the second row
of Tab. 312 Black arrows indicate the CEF transitions: they are labelled by letters in
order to identify the CEF energy levels, see Tab. and right panel of Fig.[3.12

Figure 3.16: Zoom over the excitation lying
at 55 meV extracted from an inelastic neutron

| L I B S S IO S S S

300 IT_|_052§%07 4 scattering spectrum of Ho,Sny O recorded at
E, = 80 meV 4] 1T =5 K, E;=80 meV and vpc = 600 Hz.
200 - J | Integrations over two wavevector ranges are

shown, 0 < ¢ < 5 A~! (red symbols) and
7 < q¢ < 12 A= (blue symbols), in order to
characterise the phononic or electronic nature
of the observed excitations. The black solid line
is a fit to the data recorded over 0 < ¢ <5 A~

using CEF parameters listed in the second row
of Tab.[312

100
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data integrated over the wavevector range 0.42 < ¢ < 6 A~! using our set of CEF
parameters. Details of the analysis are gathered in Tab. However, focusing on
the CEF transition lying at 55 meV, a second CEF transition is located at ~ 53 meV,
as illustrated in Fig. B. 16l The nature of the transition seems to be electronic since its
intensity decreases with ¢q. Note that our CEF model does not predict any transition
at this specific energy.
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Ay (meV/ag) | AD Aj Aj AS A AR
ThySny0; | 50.0(2.0) | 21.2(8) | -159(7) | 1.01(7) | 14.4(2.0) | 17.5(5)

Table 3.16: CEF parameters A]' deduced from the analysis of the inelastic neutron
scattering spectra of TbeSnyO; and given in units of meV /af, where aq is the atomic
unit.

Transition (a - b) |1 —2(A)|1—3(B)
Energy (meV) 1.2 10.6
Rel. Int. (arb. units) 7.0 3.6
L'y (meV) 0.60(2) 1.00(7)

Table 3.17: Results of the analysis of the inelastic neutron scattering spectrum of
ThySny O; displayed in the right panel of Fig.[3.18. We give the CEF transitions between
energy levels labelled (a,b) as indicated in Fig.[3.17, their calculated energy positions,
and linewidths of Lorentzian functions describing CEF transitions. Relative intensities
are also given.

3.3.3 Analysis of TbySny,O

Starting from the CEF parameters listed in the second row of Tab. B.12] we analyse
inelastic neutron scattering spectra of a polycrystalline sample of ThoSnyO7. A new set
of CEF parameters is listed in Tab. B.16] close to the initial one, and the corresponding
computed CEF energy level scheme for this compound is displayed in Fig. B.I7in order
to compare with experimental data and identify the different observed CEF transitions.
Our measurements are consistent with those of Refs. |73, [170].

An inelastic neutron scattering intensity map of ThySnyO7 recorded at T = 5 K
is shown in the left panel of Fig. B.I8, revealing CEF transitions lying at 1.2 and
10.5 meV. In the right panel of the same figure, data are integrated over the wavevector
range 0.16 < ¢ < 2 A~! and analysed using CEF parameters listed in Tab. Some
details of the analysis are gathered in Tab. 3.17.

In the left panel of Fig. 319, we show an inelastic neutron scattering intensity map
of ThySnyO7, recorded at T' = 5 K, exhibiting the highest CEF transitions that we have
accessed during the experiment, revealing excitations lying approximately at 10.5, 15

Figure 3.17: FEnergy levels scheme of

T T025n;0 ThySny Oy obtained with the CEF param-
e R eters listed in Tab. [316. The different en-
> | ergy levels are labelled by numbers in order
\E; wol® T to identify the CEF transitions involved in
S sl the inelastic neutron scattering spectra, see
i 5 \ Tab. 3174 and Tab. 318 The numbers
s I in parentheses (1) and (2) correspond to

0 L1RQ) =— a singlet and doublet states, respectively.

The dotted lines indicate the experimental
CEF transitions revealed by inelastic neu-
tron scattering spectroscopy.
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Figure 3.18: Left: Inelastic neutron scattering spectrum of a polycrystalline sample of
ThbySny O7 recorded at T = 5 K, E; = 15 meV and a Fermi chopper frequency vpc =
300 Hz. Right: Integration of these data over the wavevector range 0.16 < ¢ < 2 A~1,
The black solid line is a fit to the data using CEF parameters displayed in Tab. [3.16.
Black arrows indicate the CEF transitions: they are labelled by letters in order to
identify the CEF energy levels, see Tab.[3.14 and Fig. [3.17.

and 33 meV. In the right panel of Fig.3.19] data are integrated over the wavevector range
0.32 < ¢ < 4 A~! and analysed using the set of CEF parameters listed in Tab. BI6!
Some details of the analysis are given in Tab. B.I8. Except for the highest excitation
located at 33 meV, our set of CEF parameters accounts very well for the data.

3.3.4 Analysis of Er,Sn,O

In the following, we intend to analyse inelastic neutron scattering spectra recorded by
Guitteny et al. M] on a polycrystalline sample of ErsSn,O7 at the 4F2 triple-axis
spectrometer located at the Léon Brillouin laboratory (LLB, Saclay). Starting from
the CEF parameters given in the second row of Tab. B12] we successfully analyse a
spectrum recorded at T' = 1.5 K, see left panel of Fig. B.21] using the CEF parameters
listed in Tab. .19 which are relatively close to the initial ones. The corresponding
CEF energy levels scheme for this compound is shown in Fig. in order to not only
compare experimental and computed CEF energy levels but also to label the different
energy levels for the identification of the involved CEF transition. Details of the analysis
are gathered in Tab. B20l A simulation/comparison of data recorded at T = 100 K
is displayed in the right panel of Fig. 3.21] and additional information is provided in
Tab. B.211
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Figure 3.19: Left: Inelastic neutron scattering spectrum of ThySny, O recorded at T' =
5 K, E; = 60 meV and vpc = 600 Hz. Right: Integration over the wavevector range
0.32 < ¢ < 4 A~'. The black solid line is a fit to the data using CEF parameters
displayed in Tab.[3168. Black arrows indicate the CEF transitions: they are labelled by
letters in order to identify the CEF energy levels, see Tab. and Fig. 317

I Er,Sn,0,

80 g1 Figure 3.20: Energy levels scheme of
s | ErySny, O, obtained with the CEF parame-
2 60 57(2)6(2) ters listed in Tab. [3.19. The different en-
\é 40 75(2) ergy levels are labelled by numbers in or-
% der to identify the CEF transitions, see

20 Fap) Tab. and Tab. [3.211  The dotted

. I ig;m) R E TR R lines indicate the experimental CEF' tran-

sitions revealed by inelastic neutron scat-

[104, 103].

tering spectroscopy

Transition (a »b) |1 —=3(A)|1—-4B)|1—-5(C)|1—6(D)
Energy (meV) 10.6 15.5 31.5 34.0
Rel. Int. (arb. units) 3.7 0.3 0.18 1.5
Loy (meV) 1.2(F) 0.5(F) 0.5(F) 1.0(F)
Transition (a - b0) |2—=3(E)|2—-4(F)|2—=5(G)|2—6 (H)
Energy (meV) 9.4 14.3 30.3 32.8
Rel. Int. (arb. units) | 0.13 0.24 0.13 |49 x 102
Loy (meV) 0.1(F) 0.9(F) 0.5(F) -

Table 3.18: Results of the analysis of the inelastic neutron scattering spectrum of
ThySny O, displayed in the right panel of Fig. [3.19. We give the CEF transitions be-
tween energy levels labelled (a,b) as indicated in Fig.[317, their calculated energy po-
sitions, and linewidths of Lorentzian functions describing CEF transitions. The symbol
“—” means that no Lorentzian function describes the CEF transition since its relative
intensity is negligible compared to other CEF transitions. Relative intensities are also
given.
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A" (meV/ap) Ag AZ Ai Ag Ag Ag
EroSn,07 | 52.1(1.5) | 24.6(3) | -180(4) | 0.89(1) | 14.6(5) | 15.9(4)

Table 3.19: CEF parameters A} rescaled for ThySn,O7 and deduced from the analysis
of the inelastic neutron scattering spectrum of Er,SnyO; recorded at T = 1.5 K, see
left panel of Fig. [3.21l
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Figure 3.21: Inelastic neutron scattering spectra of EroSnyO; recorded at T' = 1.5 K
(left) and 100 K (right). Data are reproduced from Fig. 3 of Ref. [104]. The black solid
line is a fit to the data (left) or a simulation and comparison to the data (right) using
CEF parameters displayed in Tab.[3.19. Black arrows indicate the CEF transitions: see
Fig.[3.20, and Tab. and Tab. 321 for the left and right panels, respectively.

Transition (¢ - b0) |1 —2(A)|1— 3 (B) 1 —4(C)
Energy (meV) 5.2 7.6 17.3
Rel. Int. (arb. units) | 2.16/10.5 | 0.66/5.4 | 3.6 x 10 2/3.3
Loy (meV) 0.25(F) 0.3(F) 0.3(F)

Table 3.20: Results of the analysis of the inelastic neutron scattering spectrum of
ErySny O displayed in the left panel of Fig.[3.21. We give the CEF transitions between
energy levels labelled (a,b) as indicated in Fig.[3.20, their calculated energy positions
and linewidths of Lorentzian functions describing CEF transitions. Relative intensities
are also given.

Transition (¢ —b0) | 1 — 2 (A) 1 —3(B) 1—4(C)
Energy (meV) 5.2 7.6 17.3
Rel. Int. (arb. units) 1.0/5.0 0.3/2.5 1.7x1073/1.6
[y (meV) 0.2(F) 0.5(F) 0.4(F)
Transition (a —»b) | 2 — 3 (D) 2 — 4 (E) 3—4 (F)
Energy (meV) 2.4 12.1 9.7
Rel. Int. (arb. units) | 0.7/2.6 | 2.4 x1072/0.5 | 1.8 x 1072/2.0
[y (meV) 0.1(F) 0.1(F) 0.2(F)

Table 3.21: Results of the simulation of the inelastic neutron scattering spectrum of
ErySny O displayed in the right panel of Fig.[3.21l. We give the CEF transitions between
energy levels labelled (a,b) as indicated in Fig.[320
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Ay (meV/ag) | AD Al Aj AS A AR
Ho,Sn,07 | 53.2(1.4) | 22.4(4) | -155(9) | 0.84(2) | 13.4(6) | 17.7(3)
ThySny0; | 50.0(2.0) | 21.2(8) | -159(7) | 1.01(7) | 14.4(2.0) | 17.5(5)
Er,Sny0; | 52.1(1.5) | 24.6(3) | -180(4) | 0.89(1) | 14.6(5) | 15.9(4)

Table 3.22: Summary of the CEF parameters A} rescaled for ThySnyO; and deduced
from the analysis of the inelastic neutron scattering spectra of HopSny Oy (second row),
TbySny O (third row), and ErySny O (last row).

Tb [65) = £0.895] = b + 0.224] = 2) + 0.000] F 1) + 0.336] T 4)
Dy | [¢2) = +0.988] £ Iy — 0.144]  J) 7 0.041] = 2) + 0.030[ T 2) % 0.006] T 2) — 0.004] T 1)
Ho | |ég) = 0.981] £ 8) =+ 0.156] &+ 5) + 0.074] £ 2) + 0.073] T 1) + 0.053] T 4) £ 0.007] F 7)

Er |9g) = F0.392] + ) 4+ 0.431] + 7) + 0.566] + 1) — 0.266] F 5) F 0.520] F )
Tm |po) = 0.108]6) + 0.699]3) + 0.699] — 3) — 0.108] — 6)

Yb |65) = —0.269] £ Ty £ 0.960] £ L) + 0.074] T %)

Table 3.23: Ground-state wavefunctions for six compounds of the RySn,O; pyrochlore
series computed with the CEF parameters listed in the second row of Tab. except
for ThySny,O7 and ErySn,O; computed with those listed in Tab. and Tab. B.19]
respectively. Note that we do not include NdySn,O7 and PraSnsyO-.

3.3.5 Conclusions

To conclude, from a global fit including energy levels of the three aforementioned com-
pounds, we find a set of CEF parameters describing inelastic neutron scattering spectra
of Ho,SnyO5. This constitutes a good starting point for the analysis of ThySnyO; and
Er,SnyO5 since the refined CEF parameters for each compound do not differ very much
from the initial ones, as summed up in Tab. [3.22l

For completeness, we give the ground state wavefunctions and the spectroscopic
g factors, computed using Eqs. B.2I of several compounds of the RySnsO7 series in
Tab. B.23 and Tab. B.24] respectively. We find a similar anisotropy between titanate
and stannate compounds since we recover a strong Ising anisotropy for the spin-ice
compound HosSnyO7 and Dy,SnyO; and a crystal field magnetic moment of order of
10 pup. The XY anisotropy of YbySnyO7 is stronger than found in YbeTizO; (r =
g1/g) ~ 2.7 and 2 for the stannate and titanate compound, respectively), and the
spectroscopic factors are consistent with those deduced from Md&ssbauer spectroscopy,
ie. gy =1.1and g, =4.2[92]. Finally, we find that Er,Sn,O7 (r ~ 19.3) has a stronger
planar anisotropy than EryTisO7 (r & 3.7).

Similarly to the titanate series, we use the nuclear quadrupole splitting Ag = 1.15 X
107 meV measured by ">Gd Mossbauer spectroscopy in GdySnyOy; [117] to deduce
AY = 67.7meV/a3. Using the scaling law given in Eq. with a, = 10.4644 A for
GdySnyO7, we then get AJ = 68.2meV /a2 rescaled for ThySnyO7. This A9 value is still
larger than the result of our model, although the discrepancy is smaller than in the
titanate case. This value is included in the range of explored CEF parameters given in
the last row of Tab. and does not provide any solution.

Finally, note that inelastic neutron scattering spectra of the pyrochlore compound
NdySnyO7 were not discussed in this section. We fail to include it in a global analysis.
As for the pyrochlore compound PrySnyO7 [69], the effect of the first excited multiplet
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Tb | Dy | Ho | Er | Yb ‘
g |10.5]19.7119.5 |04 | 1.6
gL | 0 0 0 | 7743

Table 3.24:  Spectroscopic factors g and g, for the ground state doublets of five
compounds of the Ry,SnyO7 series using A" parameters listed in the second row of
Tab. except for ThySnyO7 and EraSnoO7 computed with those listed in Tab.
and Tab. 319, respectively. Note that we do not include NdySn,O7 and PrySn,O7 since
the hypothesis consisting of neglecting the effect of the first excited multiplets is not
valid anymore. For TmsSnyO7 the thulium ion has a singlet ground state and therefore

g”:gJ_ZO.

cannot be neglected and should be considered to correctly analyse inelastic neutron
scattering spectra, see for instance Ref. [69], resulting in a J-mixing of the ground state
wavefunctions.
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4.1 Introduction

Whereas most of the pyrochlore compounds have been extensively studied, the ground
state of NdySnyO7 is still unknown. Since the neodynium possesses a total angular
momentum J = 9/2, it is classified as a Kramers ion. The sign of the Stevens multi-
plicative factor ©,, see Tab. [B.I], teaches us about the Ising character of the magnetic
moment. Blote et al. [82] have studied this compound with specific heat measurements
and evidenced a second-order magnetic transition at 7, = 0.91 K. On the other hand,
Bondah-Jagalu and Bramwell [110] revealed with magnetic susceptibility measurements
the antiferromagnetic nature of the exchange interactions. The combination of these
features has not been encountered yet in the pyrochlore series of interest. Therefore,
looking for new magnetic ground states, we have performed a full characterisation of
this compound with a wide panel of techniques. Hence, we report in this chapter our
study of the pyrochlore compound NdySnyO; with specific heat, magnetisation, neutron
and X-ray diffraction, inelastic neutron scattering and SR measurements.

4.2 Powder synthesis

Powder samples of Nd;SnyO7 were synthesised by C. Marin from CEA-Grenoble and
by A. Forget from CEA-Saclay. We briefly discuss the procedure of C. Marin to get
powder sample of NdySnyO7. A stoichiometric mixture of oxides NdO3 (quality 4N7,
i.e. 99.997 % pure) and SnO, (quality 5N, i.e. 99.999 % pure) were carefully weighed
and ground with acetone in an agate mortar in order to get an homogeneous mixture.
A heat treatment under air atmosphere in an alumina crucible (chemically inert at heat
treatment temperatures) ensures a solid phase diffusion according to the reaction:

ngOg + 281102 — ngSngO7 (41)

To get a single phase polycrystalline sample, successive heat treatments (2 days at
900°C, 2 days at 1150°C, and 4 days at 1300°C) were intersperse with grindings. At
Saclay, the temperature for the heat treatment reaches 1400°C, which constitutes the
main difference compared to the method displayed here.

X-ray diffraction measurements were performed at CEA-Grenoble, as described in
Sec. 2.3.5] to check the quality of our samples. Powder samples were placed with a small
amount of grease on an almost transparent Pyrex plate, which gives a very low diffuse
scattering at small angles. The single phase character of our samples was evidenced
since only traces of Nd,O3z and SnO, in the sample from Saclay and SnO, in the sample
from Grenoble were detected.

Note that single crystals cannot be synthesised by vertical crystal growth with an
image furnace since the SnO, oxide is very volatile and evaporates at high temperature.
We could imagine to get small crystals in a closed airtight crucible, withstanding to the
fusion temperature of the oxides of interest, in an atmosphere saturated with SnOs,.

Results displayed in this chapter were acquired with Saclay’s sample, except for the
neutron time-of-flight measurements.
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Figure 4.1: Left: X-ray diffraction pattern of NdySny O recorded at room temperature.
At large scattering angle, the peaks are twinned, resulting from the presence of the Cu
K., and K,y radiations in the incident beam. Right: Neutron diffraction diagram of
NdySny O7 recorded at T = 15 K with a neutron wavelength of A = 1.1545 A. For both
panels, the solid line is the result of a Rietveld analysis using the FullProf code and the
blue solid line at the bottom gives the difference between the data and the model. The
vertical markers indicate the positions of the Bragg peaks.

4.3 Crystal structure analysis

An X-ray pattern recorded at room temperature is shown in the left panel of Fig. [Tl
Our compound crystallises in the Fd3m face centered cubic space group. The description
of its primitive cell is summed up in Tab. [A. 1l A Rietveld analysis is performed with
the FullProf suite [130], as detailed in Sec. 237 using a pseudo-Voigt function, see
Eq. .22l Here, the occupation of the different sites was fixed to their nominal values.
The lattice parameter and the position z of oxygen atom O1 are gathered in Tab[J.Tl

Type Diffractometer | Temperature (K) | an; (A) x R, | Ryp | Rexp | X°
X-ray Xpert Panalytical 300 10.5744(1) | 0.3274(3) | 10.8 | 11.8 | 1.28 | 84
Neutrons D2B 300 10.5679(3) | 0.33250(8) | 11.5 | 10.5 | 4.51 | 5.1
Neutrons HRPT 15 10.5586(6) | 0.33259(8) | 7.28 | 7.22 | 4.90 | 2.2

Table 4.1: Lattice parameter a,,; and position x of oxygen atom O1 determined by X-ray
and neutron diffraction. R-factors are listed as indicators of the analysis goodness, see
Sec. 2.3 Note that the difficulty to modelise the distribution of wavelength in the X-
ray beam induces slightly different values from those determined by neutron diffraction.
A slight reduction of the lattice parameter deduced from HRPT measurements arises
from the lattice contraction since measurements were performed at T = 15 K. Results
are in good agreement with Ref. [190)].

However, as mentioned in Sec. 2.3.5 the X-ray beam is not fully monochromatic
which forbids a deeper analysis of the data. Neutron diffraction experiments were also
performed at the D2B diffractometer of Institut Laue Langevin and at the high reso-
lution diffractometer HRPT of the SINQ neutron source at the Paul Scherrer Institute
(Sec.2.3.6). A Rietveld analysis of data recorded on HRPT at 7' = 15 K is displayed on
the right panel of Fig. The shape of a Bragg peak was modelled with a Thompson-
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Atom U11<X10_ ) U22(X10_3) U33 U12(X10_4) U13 U23(X10_ )
Nd | 0.17(2) E(U1) [ B(Un) | —02(2) |BE(Un)| E(Uwn)
Sn | 0.25(2) E(Uy) | E(UL)| —052) |EUb) | E(Up)
01 0.64(3) 0.58(2) | E(Us) 0(F) O(F) | —0.18(3)
02 | 0.69(2) E(Un) | E(Un) 0(F) 0(F) 0(F)

Table 4.2: The displacement parameters U;; in A? units deduced from the analysis of
the neutron diffraction pattern recorded at T' = 15 K for NdySny O7. The occupations
of the different sites have been released as explained in the main text. When we write
0(F) the parameter was fixed to zero during the fit. E(U;;) means that the parameter
was taken equal to U;.

Cox-Hastings pseudo-Voigt function, see Sec. 2237 The Debye-Waller factors were
expressed in terms of the symmetry-allowed anisotropic displacement parameters U,g,
listed in Tab. In a second step we analysed our data in search for a deviation of
the nominal stoichiometry of our sample. We have considered the possibility of stuff-
ing, i.e. a fraction of the Nd atom sitting at the Sn site or reciprocally. This leads
to the chemical formula Nds,,Sny_,O75. Since there are two crystallographically non
equivalent oxygen sites, a stoichiometric compound is actually more explicitly named
as NdaSny(01)6(02) where O1 and O2 are the two oxygen sites [191]. For our inves-
tigation of the non-stoichiometry of our sample we need to decide where to locate the
excess/lack of oxygen. We have tried three models:

- Model 1: Nd2+ySn2_y(Ol)6(02)1+5,
- Model 2: Nd2+ySn2_y(Ol)6+5(02),

- Model 3: Nd2+ySn2,y(Ol)6+675(02)1+5

Electric charge conservation enforces y = —g. Within the errors bars, these three
models provide equivalent fits to the data with the following values y = 0.013 (7) and
9 = —0.006 (3). These are extremely small deviations from stoichiometry and we can
assume our sample to be stoichiometric thereafter.

4.4 Neutron time-of-flight spectroscopy

In order to determine the crystal-electric-field energy levels scheme of NdySnyO7, we
report measurements performed at the MARI spectrometer, see Sec. for technical
details. We display in the left panels of Fig. and Fig. the whole (q, Aiw) space
probed at T' = 5 K. Spectra in the right panels result from an integration over a selected
low-q range to avoid the phonon contribution, since the magnetic form factor decreases
when ¢ increases whereas the phonons intensity grows as ¢°. Furthermore, data have
been corrected for absorption effects as explained in App. [Cl Since neodymium is a
Kramers ion (J = %), we expect five doublets. All the energy levels are resolved: four
excited doublets lie at 26, 38.5, 39.8 and 110 meV. Therefore, the ground state doublet

is well isolated from the excited ones.
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Figure 4.2: Left: Inelastic neutron scattering spectrum of a NdySn,O7; powder sample
recorded at T' = 5 K with an incident energy F; = 60 meV and a Fermi chopper
frequency vpc = 600 Hz. Right: Integration of the data on the left over wavevector
range 0.32 < ¢ < 4.02 A~'. Crystal-electric-field energy levels are observed at 26, 38.5
and 39.8 meV.

4.5 Bulk measurements

Specific heat and magnetisation measurements reported here were performed at CEA-
Grenoble. One refers to Sec. 2.1.1] and Sec. B.1.2] for more details on the technical
aspects of the PPMS and the MPMS, respectively.

4.5.1 Specific heat

The heat capacity measurements are displayed in Fig. L4 in good agreement with
those performed by Blote et al. @] A A-type peak occurs at T, ~ 0.91 K, consistent
with a second order phase transition. This goes in line with the peak in the magnetic
susceptibility previously observed [@] There is no broad hump above T, as sometimes
found for geometrically frustrated magnetic materials and interpreted as the signature
of short-range correlations ﬂ@] To describe the low temperature behaviour of the
specific heat, we assume gapless excitations described by a linear dispersion law in a
three-dimensional system, similarly to the contribution of antiferromagnetic magnons
to the specific heat @]

w(q) = Vexq, (42)

where v., accounts for the excitation velocity and we have assumed an isotropic ¢
dependence of the dispersion law. We can write the density of states g(w)dw =
L 4wq2(%)dw. Therefore, the energy associated to these excitations is written as:

@
o hw
Ee = hw — | d )
| st (75 d

1 fw) 1 huw
= /0 hw% (v_ex> ,U—exnp (ij—T> du.), (43)
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Figure 4.3: Left: Inelastic neutron scattering spectrum of a NdySn,O7; powder sample
recorded at T' = 5 K with an incident energy E; = 200 meV and a Fermi chopper
frequency vpc = 400 Hz. Right: Integration of the data on the left over wavevector
range 0.59 < ¢ < 7 A~'. This configuration allows to detect the highest energy level
lying at 110 meV.

where np (ﬂ> is the Planck distribution function, assuming here these excitations are

ksT
described by bosons, analogously to the magnons:

(or) - o (1 > 3 -

Note that this function is the particular case of the Bose-Einstein function with the
chemical potential = 0. With z = k 7, Eq. .3 becomes:

By = — (k) [ — 3/00 oy (4.5)
ex Z. .
T o2 P RUex o exp(x)—1

Since [@] N \ \
/O ol =Tt = TWew = Iz (4.6)

where I" is the well-known Gamma function and ¢ the Riemann zeta function. We get
the T2 dependence of these magnon-like excitations to the specific heat:

dEy  27% kL 4 ,
= dT = N% h3U§XT — BT 5 (47)

Cex
3
where N is the number of magnetic atoms, i.e. N = NA%. This law accounts well

for the data at low temperatures with B = 11.0(7) JK *mol~!. Therefore, from
1

B = 120NA h%, 5‘“, we infer an excitation velocity vex = 55(1) ms™! in line with the
value found for Er,Ti,O; @]

The uprise of the specific heat above ~ 10 K is attributed to the contribution of the
phonons. Indeed, as the first excited crystal-electric-field (CEF) doublet lies at 26 meV

above the ground-state doublet, see Sec. [4.4l no CEF contribution to the specific heat
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Figure 4.4: Left: Temperature dependence of the specific heat of a NdySn,O; powder
sample. The black solid, the purple dashed-dotted and the green dotted lines are the
phonons, crystal-electric-field and nuclear contributions to the specific heat, respec-
tively. For both panels, the transition temperature is indicated by a vertical black
dashed line. Our data are displayed with full red circles whereas those of Ref. [82] are
reproduced with open blue circles. Right: Zoom over the lowest temperatures with a
double logarithmic scale. The black solid line is a fit of Eq. to the data.

is expected in the displayed temperature range. The electronic specific heat variation
provides us with a measure of the degeneracy of the ground state through the entropy.
Recalling that the electronic entropy variation ASg (T, T) between temperatures Ty
and T5 is given by the well known formula

E C(el
AS(T), Ty) = / —=dT, (4.8)

n T
we obtain ASq (77 = 0.2 K, T') as shown in the left panel of Fig. [L5 Assuming the
Debye model to be valid, the lattice contribution Cp), to the specific heat has been
subtracted from C), in the temperature range 5 < 7' < 20 K to obtain C following a

T3 law [193):
1274 T\*
= Nkp | — 4.
Cph 5 B (@D) ) ( 9)

We infer the Debye temperature ©p = 385(2) K. We have also determined the nuclear
contribution C\,. to the low temperature specific heat which should also be subtracted.
It originates from the nuclear splitting arising from a Zeeman interaction between the
nuclear spin and the hyperfine field By, created by the unpaired electrons, and a
quadrupolar interaction which is negligible, see Sec.[L.7l Note that two isotopes, labelled
by the index i, 1*Nd and **Nd, with the same nuclear spin I = £, need to be taken into
account since they have a different gyromagnetic ratio ;. Therefore, (21 + 1) energy
levels are equally separated by Ay, = hv;Bynyp, where By, is inferred from neutron
backscattering spectroscopy, see Sec. [4.7. Thus, the nuclear contribution to the specific
heat is derived as:

i
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Figure 4.5: Left: Temperature dependence of the variation of the electronic entropy
ASg. The data are plotted in units of RIn2 where R is the ideal gas constant. Right:
Specific heat plotted versus the reduced temperature 7 = % in the paramagnetic
regime. The black solid line is a fit to the data as explained in the main text.

where E; = nhv;Bpy, (0 < n < 2I) refers to the energy levels of the nuclear spin of
isotope 7 with relative abundance p; and Z; denotes the partition function. We compute
a value of Cpye = 0.06 J/(K mol Nd) for the nuclear specific heat at 0.25 K. Since Cye
decreases as T2 in the high-temperature limit which applies in the temperature range
of interest here, we can safely neglect it.

The left panel of Fig. indicates that well above the transition temperature the
entropy per mole of Nd is R1n 2, a value expected when only the ground state doublet is
populated. The electronic entropy decreases to zero deep in the ordered magnetic phase.
Therefore, no macroscopic degeneracy is present contrary to the spin-ice pyrochlore
characterised by a non vanishing entropy at zero temperature, see Sec. [.3.1]

In the right panel of Fig. is displayed the specific heat versus the reduced tem-
perature 7 = (T — T.)/T. in the paramagnetic phase in order to investigate the critical
regime. According to Refs. [196, 1197|, we expect to observe the power-law critical

behaviour:
(T_ﬂ) —4, (4.11)
T.

where Cy, is a constant and «, a critical exponent expected to be equal to 0.110, —0.015
and —0.134 for three-dimensional Ising, XY and Heisenberg magnets, respectively [198§].
The fit displayed in the right panel of Fig. corresponds to the three dimensional
Ising case (a, = 0.110). We found Cy, = 0.88(2) J K~! mol™! and T. = 0.913(1) K.
The critical regime is observed up to 7 & 0.1. In the case of a. = —0.015 and —0.134,
acceptable fits lead to T, = 0.917(1) and 0.926(1) K, respectively, such that we cannot
determine with certainty the spin symmetry with this analysis.

Csh

Q¢

Ca(T) =

4.5.2 Magnetisation

As explained in Sec. 2.1.2] a sample pellet close to an ellipsoidal shape is introduced
in a weak diamagnetic sample holder. The external field is applied along a major axis
of the ellipsoid. This geometry reduces the demagnetising field. According to Eq. 2.6,
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Figure 4.6: Left: Inverse of the magnetic susceptibility at 0.95, 5, and 10 mT: evidence
of the field invariance below 5 mT. Right: Temperature dependence of the inverse of
the magnetic susceptibility 1/y measured in a field of 0.95 mT. The insert displays the
low temperatures data. In the two panels, the solid lines are results of fits as explained
in the main text.

determining the weak field limit, i.e. M Happhed is of first importance to extract the
intrinsic magnetic susceptibility. In the left panel of Fig.[4.6] we compare measurements
for p1oHappliea = 0.95, 5, and 10 mT. The field invariance of the magnetic susceptibility
is then no longer verified for magnetic fields higher than 5 mT. However, we must note
that measurements at very low magnetic fields could be more influenced by the presence
of magnetic impurities than at higher magnetic fields, explaining the field dependence
of the magnetic susceptibility recorded at pioHappliea = 5 and 10 mT.

In the right panel of Fig. is displayed the inverse of the static susceptibility 1/y
measured in a field of 0.95 mT. In the temperature range 150 < T" < 290 K y follows
a Curie-Weiss law, i.e. x = C/(T — Ocw), with a Curie-Weiss temperature 0cw =
—46.3 (1.9) K and a paramagnetic moment my, = gyusy/J(J+1) = 3.57(4) pp
comparable with the value my,, = 3.62 up for a free Nd** ion. As shown in the insert,
assuming x to follow a Curie-Weiss law for 5 < T < 15 K we get Ocw = —0.32 (1) K,
indicating a weak net antiferromagnetic exchange interaction and my, = 2.63 (3) pg, in
very good agreement with results of Ref. [110]. As the first excited crystal-field doublet
is located at ~ 26 meV above the Kramers doublet ground-state of Nd3*, an effective
spin S = 1/2 model is justified for the ion description at low temperatures. We deduce
a spectroscopic factor geg = mpm/(1/S(S"+ 1)ug) = 3.04(3). Assuming the Nd*"
magnetic moments to interact through nearest-neighbour Heisenberg interaction, the
exchange integral Z can be computed as [199]:

T  3lbcwl

L Wewl _g913(7) K 4.12
Fo s 1) CHBOE (4.12)

where z,, = 6 is the number of nearest neighbour Nd** ions to a given Nd** ion.
The field dependence of the magnetisation in the paramagnetic phase is displayed in
Fig.[47 In the paramagnetic regime, i.e. in a system without any magnetic interactions,

'We refer to Sec. L2 for the definition of the real applied field H,pprica at the sample
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Temperature (K) 2 5 10 25 100
(T 1.17(3) | 1.35(5) | 1.4(1) | 1.4(1) | 1.6(1)

Table 4.3: Saturation value of the magnetic moment resulting from the analysis of the
magnetisation curves using Eq.[d.14 for several temperatures.
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Figure 4.7: Field dependence of the magnetic moment in the paramagnetic phase at 2
and 5 K (left) and at 10, 25 and 100 K (right). Solid lines are fits of Eq. to the
data.

the ground state multiplet arising from the spin-orbit coupling is split in (2J + 1)

energy levels by Zeeman effect. Therefore, the field dependence of the magnetic moment

follows [199]:

gJJ,uBBext
kgT

where mg,, = gsJpup is the saturation value of the paramagnetic moment and Bj(x) is
the Brillouin function. This model is only valid for equally distributed energy levels,
which is not the case here looking at the crystal-electric-field energy levels, see Sec. 4.4l
However, the ground state energy level is well isolated from the excited ones and we
can tentatively describe it with an effective spin S’ = % Therefore, Eq. becomes
for a two energy levels system:

m = g;JugBy(x), and =z = (4.13)

Mgat Bext

= Mgat tanh ) d =
M = Mgy tanh(z), and =z T

(4.14)
In Fig. [47], magnetisation curves are displayed for several temperature. Solid lines are
fits of Eq. to the data. Results are summed up in Tab. L3l

Note that the saturation values of the magnetic moment are far below the value of
the paramagnetic moment deduced from the analysis of the inverse magnetic suscep-
tibility in the low temperature region, i.e. mpy, = 2.63(3) up. However, as previously
mentioned, this model is valid in a system without any magnetic interactions. As we
will see in the following sections, strong magnetic correlations are at play since spin
dynamics is much slower than expected.
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4.6 Determination of the magnetic structure

We performed magnetic powder neutron diffraction measurements at the D1B diffrac-
tometer located at ILL, see Sec.2.3.6, to determine the magnetic structure of NdySnyO5.
A magnetic diffraction diagram recorded at 60 mK is presented in the left panel of
Fig. L8 It was recorded with neutrons of wavelength 2.524 A using a cylindrical
copper sample container. Experimental data nearby 20 = 74.4° and 88.5° are not
shown because they are strongly influenced by neutrons scattered from the container.
Data recorded in the paramagnetic phase at 1.2 K were subtracted to only exhibit the
magnetic signal. The presence of Bragg reflections implies that a long-range struc-
ture of the Nd*" magnetic moments is established. The reflections only occurring at
the nuclear Bragg peak positions, the magnetic propagation vector of the structure is
Kimag = (0,0,0). Among all the symmetry allowed operations, those leaving k., in-
variant constitute the little group Gy, the representation of which can be decomposed
in terms of irreducible representations (IR) ' where v labels the different represen-
tations of dimension p. For the Nd atomic Wyckoff site 16d of symmetry .3m in the
cubic space group F'd3m in which Nd,Sn,O; crystallises:

I'(Gy) =10 + 11 + 11 4 or®, (4.15)

The I's, T'5, I'7, and T’y representations are one-, two-, three-, and three-dimensional IR
respectively. More details are given in App. [D.Il We perform a Rietveld refinement,
see Sec. 237 with the FullProf suite [130]. The peak shapes are described with a
pseudo-Voigt function (Eq. 2.22]). The results of the Rietveld analysis are summed up
in Tab. L4l The symmetry of the magnetic phase is described by the I's irreducible
representation with a basis vector Uy ; tabulated in Tab. [D.l It corresponds to the
noncoplanar all-in-all-out magnetic moment arrangement pictured in the right panel
of Fig. [4.8: corner-sharing tetrahedra possess alternatively four spins pointing into the
direction of the center of the tetrahedron and four spins pointing out. Not only the
Rietveld refinement predicts the I's IR, we have analytically shown in App. [D.3] that
only this IR can provide a proper description of our data. This structure should not give

R | By | Rup | Rew | X2 TR | Ry | Rup | Rexp | X2
T3 Uy, | 165 | 7.46 | 4.64 [ 259 | [ Ty, W7, | 80.3 [ 80.3 | 4.65 | 298
s, Wy, | 81.3 | 79.6 | 4.65 | 202 | | Ty, Wg, | 106 | 95.8 | 4.65 | 423
s, Ws; | 81.4 | 79.6 | 4.65 | 202 | | Ty, Wy, | 80.3 | 80.3 | 4.65 | 208
T7, Wy, | 97.2| 91.5 | 4.65 | 386 | | Ty, Uyo, | 106 | 95.8 | 4.65 | 423
Ty, Ws,; | 97.2 [ 91.5 | 4.65 | 386 | | To, U1y, | 80.3 | 80.3 | 4.65 | 298
Ty, We,; | 97.2 [ 91.5 | 4.65 | 386 | | To, U1o; | 106 | 95.8 | 4.65 | 423

Table 4.4: Indicators of the goodness of the analysis using basis vectors of each possible
IR. See Sec. 2.3.7 for a definition of the R-factors. Basis vectors ¥, ; are tabulated
in Tab. [D.Il The selected IR used to performed the analysis of magnetic neutron
diffraction patterns is highlighted in red. Note that for a given IR of dimension d > 1,
we should use a linear combination of the basis vectors. However, such a combination
of the resulting calculated intensity cannot describe the data.

rise to a structural distortion, consistently with the second order nature of the magnetic
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Figure 4.8: Left: Powder magnetic neutron diffraction diagram versus the scattering
angle 20 resulting from the difference between 60 mK and 1.2 K data sets. The black
line results from a Rietveld refinement assuming an all-in-all-out magnetic structure.
The positions of the magnetic reflections are indicated by the green vertical markers.
The difference between the experimental data and the refinement is shown by the blue
bottom line. Right: Illustration of the all-in-all-out magnetic structure. The (X,Y,Z)
frame refers to the cubic axis. The spheres represent the Nd** ions and the arrows their
magnetic moments oriented along the local trigonal <111> axes of the cubic crystal
structure. Two corner-sharing tetrahedra are shown, one with the magnetic moments
pointing inwards and an adjacent tetrahedron with moments pointing outwards.

phase transition, since this structure belongs to the symmetric A, group [200]. This is
understood physically because the magnetic moments are oriented along the trigonal
axes of the cubic crystal structure.

The left panel of Fig. presents mg, (1) resulting from the Rietveld analysis. The
spontaneous magnetic moment for 7" — 0 is my,(0) = 1.708 (3) pp. In the right panel of
Fig.[49] is displayed the analysis of mg,(T") close to the transition using the equation:

w)ﬁc | (4.16)

() = ) (7
We find . = 0.28 (2) and T, = 0.916 (6) K. The exponent f. is smaller than for any
three-dimensional magnetic system, i.e. 8. = 0.325(2), 0.346 (2), and 0.365 (3) for Ising,
XY, and Heisenberg systems, respectively [201]. This may not be totally surprising since
we did not approach T close enough to probe the critical regime.

As introduced in Sec. 5.1l we assume excitations to be responsible for the decay
of the magnetic moment in the ordered phase, similarly to antiferromagnetic magnons.
Although our system consists of four non collinear sublattices, let us consider for sim-
plicity an Heisenberg collinear antiferromagnetic system which can be described in the
most simple case by two interlaced sublattices d; and ds, see Sec. [E.2] where all the
spins of one sublattice point in the same direction, the spins of the second sublattice
being in the opposite direction. Note that for an ion belonging to sublattice dy, all its
nearest neighbour belong to sublattice ds, and reciprocally. In the following, we focus



112 CHAPTER 4. EXPERIMENTAL STUDY OF NdySny O

— —
[ 2.0 - Ndzsnzo7 -
@ 15| - @
=2 r =2
= L = 15 1
g g
s 10 B S
€ + S
Q r © 10 -
2 05F : 2
(o)) r (o))
3 L 3
= F =
0.0 -
| L | L | L | L | L | L Lol L Lol
0.0 0.2 0.4 0.6 0.8 0.01 0.1 1
Temperature (K) [T-Tel/ Te

Figure 4.9: Left: Temperature dependence of the spontaneous magnetic moment
mep(T). Note that error bars are smaller than the symbols. The solid line is a fit
of Eq. to the data. Right: Magnetic moment versus the reduced temperature in
the critical regime in order to determine the critical exponent f3..

on sublattice d;. The z component of spin J located at site 7 is defined as, see Eq. [E.41k

JZ =ala; — J, (4.17)

7 i

where a' and @ are the boson creation and annihilation operators. Using Eq. [E.42 we
perform the following space Fourier transform:

1
Jf = 3 alagexplifa—d) -] — (4.18)

Ne 7
qq

where n, is the number of unit cells, i is the vector linking the magnetic ion at site 7 to
the origin of the sublattice.

J? = ZJZZ:%Zag,aneXp[i(q—q')-i]—NJ,
i ¢ qq’ i

= ) alaq— NJ, (4.19)
q

where NV is the number of magnetic ions in the sublattice. We have used the following
relation:

Z expli(q — q') - i| = n.d(q — q'). (4.20)
Then introducing the Bogoliubov transformation, see Eq. [E.43] we derive:

JZ = Z uaaaaq + véﬁqﬁg + uqvq(aaﬁg + Bqaq) — NJ. (4.21)
q

Since 4 commutes with ag, recalling that af 8] + aq8q = 0, see Sec. [E2] and using
the usual commutation rules for boson operators, see Eq. [E.44] we obtain:

JZ = Z uéaaaq +ui(1+ 5<§Bq) — NJ. (4.22)
q
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We recall that (af aq) = (B]8q) = np (Zg—%) where (...) denotes the thermal average and

np(z) is the Planck distribution function, see Eq. 44l Note that limp_onp (Z}:—;) = 0.
Therefore the temperature dependence of the sublattice magnetisation is:

—(J*)r=0 + (J*)r = Z np (Z:;) (ug +v2). (4.23)

In App. [E2.2] we have introduced a function x4 such as:
ugq = cosh(zq) and wvq = sinh(z,), (4.24)

since from the Bogoliubov transformation, we have u — v2 = 1. Consequently, we get:

hw
—(J ) =0 + (J*) = zq:np (kB—;) cosh(2z). (4.25)
Using the relation cosh(z) = [1 — tanh(z)] "2, combined with Eq. [E51 where we have
assumed the gap of the excitations to be extremely small, i.e. tanh(2z4) = —74, leads
to:
z z hwq 2y—1
o+ () = D (fa) -z (1.26

Once again, neglecting the energy gap A in Eq. give:

hwg = Mwexy /1 — 92 (4.27)

Finally, we get the temperature variation of the magnetic moment as:

(0) = () = gl (Yoo (7)) = [ () 2 29 (a2

where we have assumed the excitation energy fuwg to only depend on the modulus of

q. Introducing z = IZ:—;, and using a dispersion law valid at small ¢, see Eq. [E.50] with

A =0, Eq. [4.28 becomes:

V2 gu *
A, (T) = mgp(0) — may(T) = HD; (ksT)? /0 o =i (4.29)
F

where we have introduced Dap = V2hwe, = 2v2Z2,,.J and Z the exchange integral
between the z,, nearest neighbours. Following Ref. [194],

/ T T T = (4.30)
r = = —. .
o exp(x)—1 3

Therefore we have evidenced the 7?2 variation of the magnetic moment in the case of
spin-waves like excitations with a negligible energy gap:

\/é guB

T Dm0y 1)’ 430

msp(T') = Mg, (0) [1
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Fitting Eq. 43T to the data displayed in the left panel of Fig. in a temperature
range up to 0.8 K allows us to determine Dap/kg = 0.70(1) K and the exchange
integral Z/kg = 0.083(1) K using an effective spin-1/2 and gz = 2.97, previously
determined in Sec. [4£.5.2l Consequently, the solid line in the left panel of Fig. is the
result of the fit with the phenomenological formula:

map(T) = myp(0) [1 = (T/Te)™]™ (4.32)

where a. = 2. It encompasses the critical behavior near T, and the quadratic decay of
the magnetic moment at low temperatures.

4.7 Neutron backscattering measurements

For an independent estimate of mg,(0) and to gather information on spin dynamics we
performed neutron backscattering measurements at the IN16 spectrometer of ILL, see
Sec. 2.5l Neutrons interact with the unpaired electrons and the nuclei of matter. As
far as electrons are concerned we expect magnetic scattering from the unfilled shell of
the Nd3* ions. Since we only consider data outside the Nd,Sn,O; Bragg scattering
positions, only incoherent scattering processes are relevant for the nuclear contribution
to the signal. In the following we will therefore describe the spin Hamiltonian of the
neodymium nuclei, examine the nuclear and magnetic scattering cross-sections and
finally, we will report our data analysis.

4.7.1 Spin Hamiltonian for '**Nd

The only chemical element entering the composition of NdySn,O; with a notable inco-
herent scattering cross-section is Nd. Among the natural Nd isotopes two of them are to
be considered: *3Nd and ***Nd of abundance 12.2% and 8.3% and incoherent scattering
cross-sections 55 (7) and 5 (5) barns, respectively. The spin of both isotopes is I = 7/2.
Due to the presence of several isotopes, isotope-incoherent as well as spin-incoherent
cross-sections must be considered. We will write below the differential cross-sections
associated with the two processes. Before, we examine the scattering intensity related
to the 3Nd spin, neglecting *°Nd due to its relatively small cross-section.

The 3Nd isotope is characterised by a quadrupolar moment ) = —0.630 barn and
a gyromagnetic ratio yi43 = —14.57 x 10° rads™* T~! [202]. The spin Hamiltonian
relevant for the *3Nd nucleus is the sum of two terms: one accounts for the Zeeman
interaction between the nuclear spin and the magnetic hyperfine field By, and the other
for the quadrupolar interaction between the nuclear charge density and the electric field
gradient at the nucleus created by the surrounding electronic shell and the neighbouring
ions. We write for the Zeeman Hamiltonian,

HZ = _th[z with Wy = 714BBhyp7 (433)

where the index z refers to the <111> local axis at the Nd3T site. The hyperfine splitting

hwy, is related to the Nd** magnetic moment my, through the relation hwy = mq, Ajs?

2Note that this exchange constant differs from the value inferred from the Curie-Weiss analysis of
the magnetic susceptibility at low temperatures, and listed in Eq. [4.12
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where the hyperfine constant of isotope "*Nd, A% = 20.9 (3) mT has been accurately
measured by electron spin resonance measurements [203]. The point symmetry at the
rare earth site dictates that the local <111> axis belongs to the eigen basis of electric
field gradient tensor and that V., is the principal component of this tensor which in
addition has a zero asymmetry parameter. Therefore the quadrupole Hamiltonian is

written as:
eQV...

AI(21 — 1)

This means that H is diagonal and the eigenvectors are the Zeeman functions |m)
associated with the eigenvalues E,,, H|m) = E,,|m), with —1 <m < I.

We estimate now the intensity of these two interactions. The analysis displayed
below leads to Awy = 2.027 (7) peV. Since NdySnyO+ is an insulator, V., is the sum of
two terms:

Ho = hwg(312 —17) and hwg = (4.34)

V.. = VY p oyl (4.35)

zz )

where the first and second term accounts for the 4 f-electron and lattice contributions,
respectively. Estimates of these quantities to V.. are V2 = 1.0 x 1022 Vm~2 and
Vit = —1.0 x 102 Vm~2, which lead to a vanishing electric field gradient at the
nucleus. Still, we note that a value V., = 10?2 Vm~2 for the total electric field gradient
would lead to hiwg = —7.5 x 1072 peV, a value two orders of magnitude less than the
Zeeman interaction. Consistently, fitting the model to the neutron backscattering data
with Awg as a free parameter also leads to a negligible value of this parameter.

4.7.2 Incoherent scattering cross-section

As stated earlier, the double differential incoherent scattering cross-section is the sum
of the spin-incoherent and isotope-incoherent contributions,

d’c kf ot na Nd

<deE)inc - E [USPinSSPiH(q’ hw) + 035 Siso(Q hw)} ) (4.36)
where k; and k; are the incident and scattered neutron wavevectors. The transfer of
energy being extremely small we can safely set k; — k;. In the magnetically ordered
phase, i.e. for a finite hyperfine field, following Ref. [204], we write the spin-incoherent
scattering function,

Nxa exp(—2W(q)) 1

in 7h
Sepin(dl; e0) imI(I+1)  Z

X Z e~ Em/keT B[I(I +1) = m(m + 1)]§(hw — (Epyr — Ep))
+ %[I(I +1)—=m(m—1)]0(fw + (B, — Em-1)) + m%(hw)} :
(4.37)

where Z is the partition function:

Z = exp(—En/keT). (4.38)

m=—1
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Nxq is the total number of *3Nd nuclei in the sample, and exp(—2W (q)) is the Debye-
Waller factor. As discussed above, we can safely neglect the quadrupolar interaction and
set |Emt1 — Em| = |hwz|, Ym. In order to accommodate the small observed broadening
of the inelastic peaks due to a finite lifetime of the nuclear levels, the Dirac delta
functions in Eq. are replaced by Lorentzian functions centered at +hwy or 0,

1 PZ
7 (hw £ hwy)? + T2’
where I'; is the half-width at half-maximum, which corresponds to the inverse lifetime
of the nuclear level. For simplicity, we assume that the lifetime is identical for all the
levels.

In the paramagnetic phase, By, is zero and the nuclear levels are degenerate. It is
straightforward to check that Eq. 4.37 becomes

Nng exp(—2W
Sspin<q7 hw) _ Nd me (Q))

which is the expected expression for the spin-incoherent scattering function.
The isotope-incoherent scattering function is written as

NNd exp(—QW(q))
47

a relation which naturally holds both in the paramagnetic and ordered phases.
The values of the o)4 and oNd cross-sections are evaluated from Ref. [136]. We

spin iso

have o3¢, = 6.8 barns and ofiy = 1.8 barns. At the temperature of our experiments

the Debye-Waller factor is close to 1 and was set to this value in the fitting procedure.

L(hw =+ hwy) = (4.39)

5(hw) (4.40)

Solq, ) = 5 (hw), (4.41)

4.7.3 Magnetic scattering cross-section

The double differential cross-section for inelastic magnetic scattering is expressed as

d?c k
( ) )2 Sunaal, Fi), (4.42)
mag

dQWE ki

where again k;/k; ~ 1, |[yro| = —0.54 x 10~ '* cm is the magnetic scattering lengthﬁ, and
Smag(d, Aw) the inelastic magnetic scattering function. From Refs. [205, 206], assum-
ing an isotropic dynamic susceptibility and performing a spatial average for a powder
sample:

1
1 —exp (—kBﬂT

where g is the Landé factor (g = 8/11 for Nd*T), and x”(q, fiw) stands for the imaginary
part of x(q, hw). This quantity is taken as

ho  X'(@T
"(q, hw) = — 1
X'(g, hw) = — ()2 + 12

2 1 2
Smag<q7 hLU) =3 {angmag(Q)} NNd€72W(q)

3 )X”((L hw), (4.43)

(4.44)

with x’(¢q) being the g-dependent static susceptibility and I'; the quasielastic Lorentzian
linewidth. Again the Debye-Waller factor was set equal to 1.

3|yro| = 2p according to Eq.
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Figure 4.10: Backscattering spectra recorded at 0.60 K (left) and 1.2 K (right) The
black full line is a fit of Eq. to the data. The blue full, green dashed-dotted, purple
dotted and orange dashed lines are respectively the magnetic, isotope incoherent, spin
incoherent and sample environment incoherent scattering contributions to the signal.

4.7.4 Data analysis

The code BS _fit |207] was developed to analyse data from backscattering experiments.
The measurements were performed for a range of wavevectors 0.38 < ¢ < 1.95 A1 ex-
cluding the region between 1.60 and 1.725 A~! which corresponds to the (220) NdySn, O
Bragg peak. For the quantitative analysis of the spectra we express the total cross-
section. Taking into account the instrumental resolution R(hw) measured with a vana-
dium specimen of the same geometry as the NdySny,O7 sample, we have:

d*o d*o d*o
0dE) T \aaae). T \adE
ddd mag dQdd inc ddd se
where the symbol ® stands for the convolution product, Iy is a proportionality constant
and I, is a small background contribution. The first two terms in the brackets are
described by Eq. 4.42] and Eq. [4.36l respectively. The last term in the brackets is
the contribution to the measured intensity arising from the sample environment, i.e.
essentially the sample container, the inner calorimeter and the cryostat windows. The

last two, aluminium made, have a negligible cross-section. The cross-section associated
with the Cu sample holder is incoherent and is written as:

d20' k‘f Ncu Cu
(deE)Se - k_z |: A7 Uincé(hw)] ’

where N¢, is the number of Cu nuclei in the sample holder part impinged by the neutron
beam and oC" the Cu incoherent scattering cross-section. From the sample mass, we
estimate o " Ney /(0X9 4+ o) Nyg ~ 11%. This ratio allowed us to link the amplitude

(g, hw) = I,R(hw) ® + Iy, (4.45)

(4.46)

inc
inc spin iso

of the sample environment contribution in Eq. to that of the “*Nd nuclei. To
finish with the quantitative analysis, a small energy offset of the spectrometer, of order
0.03 peV, was an additional fitting parameter not appearing in Eq. for the sake of
simplicity. Fig.[LI0 displays examples of data recorded in the ordered and paramagnetic
phases, together with the result of fits according to Eq. [4.43
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Figure 4.11: Neutron backscattering spectra recorded at selected temperatures in a
+4 peV energy window and integrated over all the available wavevectors outside the
Bragg peak region. While at 1.2 K, i.e. in the paramagnetic phase, the neutron intensity
is only observed near zero energy, for T' < T, inelastic incoherent scattering from the
Y3Nd nuclei is detected. The black solid lines correspond to fits as explained in the
main text, with the instrument resolution displayed by the blue dotted lines taken into
account.
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Figure 4.12: Left: Temperature dependence of the spontaneous magnetic moment
mesp(T') derived from the diffraction measurements and of the hyperfine field By, (1)
obtained from the analysis of the backscattering spectra. Note that error bars are
smaller than the symbols. The black solid line is a fit as explained in Sec.[4.6. Right:
Temperature dependence of the weighing factors Aj,. and Ay, for the incoherent nu-
clear and quasielastic magnetic intensities. The black solid line follows a Curie-Weiss
law.

Apart from a weak evolution of the quasielastic width in the paramagnetic phase
which will be discussed below, the spectra are essentially independent of the wavevec-
tor in the available range 0.38 — 1.95 A=, excluding the wavevector region around the
(220) Bragg peak at 1.69 A~1. Therefore the data shown in Fig. &0 and Fig. EIT are
integrated over this range. We present in Fig. A.11] the different backscattering spectra
recorded at several temperatures in order to exhibit the nuclear splitting progressively
vanishing as the temperature increases. Since the magnetic moment is proportional
to the nuclear splitting hwy, we extract the temperature dependence of the hyperfine
field By (T'), see left panel of Fig. I2l The splitting hwz (T — 0) = 2.027(7) peV
corresponds to my,(0) = fiwz(0)/ A2 = 1.68 (3) up, consistent with the one found with
neutron diffraction experiments, see Sec. Since the diffraction, which measures a
volume average M], and the local probe determinations of mg,(0) are in agreement,
no phase segregation occurs in our sample. Surprisingly, By, (7") does not track mg,(7")
when approaching T,. Although this difference calls for a more detailed interpretation,
it could be understandable that the two techniques lead to different values of mg, (7). It
may originate from the difference in the time scales at which the two techniques probe
the system under study. However, the explanation does not go in the right way since
the interaction time between the neutron and the system is around 107!2 s for diffrac-
tion and 10 s for backscattering. Therefore, if the local field was fluctuating with a
characteristic time comprised between the typical time scale of the two techniques, the
magnetic moment inferred from backscattering measurements will be lowered compared
to the one deduced from magnetic diffraction experiments. An alternative explanation
may lie from differences in the temperature dependences of the 4f and other electronic
shell magnetic moments. While diffraction essentially probes the 4f shell magnetic
moment since the magnetic form factor of the delocalised 5d electronic shell vanishes
extremely rapidly with increasing @), the latter electronic shell contributes to By, (1').
In this case, mg,(0) inferred from the two techniques would be different.

In addition to the incoherent nuclear contribution, a quasielastic magnetic signal
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Figure 4.13: Backscattering spectra recorded at 1.2 K for a wavevector range 0.37 < q <
0.59 A=* centered around 0.48 A=" (left) and for a wavevector range 1.87 < ¢ < 1.95 A~
centered around 1.91 A= (right). The full line is a fit to the data as explained in the
main text and the dotted line corresponds to the resolution of the spectrometer.

arising from the Nd3* electrons is observed in neutron backscattering. Note that the
internal calibration provided by the 4*Nd incoherent nuclear scattering gives a measure
of the magnetic contribution, i.e. the susceptibility, in absolute value. Therefore, we
define the weight of the nuclear contribution A;,. and of the magnetic scattering Aaq
as:

2 1 2
Aine = IpNng, and  Apag = gIONNd {angmag(q):| X' () (4.47)

Fitting the incoherent and quasielastic contributions to the data, see Sec. and
Sec. [L.7.3] we find A;,. to be temperature independent within experimental uncertain-
ties, and Ap,g decreasing as the inverse temperature, as illustrated in the right panel of
Fig. The result of the fit gives x'(q) = C/(kgT) with C' = 26 (1), i.e. xX'(q) follows
a Curie law in the investigated wavevector range.

As already mentioned, no notable ¢ dependence was noticed for the spectra recorded
in the magnetically ordered phase. In the paramagnetic phase, we observed a small
broadening of the spectra at small wavevectors. It can be seen from a comparison of
the spectra displayed in Fig.[£13l The wavevector dependence of the quasielastic half-
width at half-maximum I'j measured at 1.2 K is plotted in Fig. A linear fit yields
a fair description: T, = Ty + a,q with [y = 0.271(9) peV and a, = —0.070 (2) peVA.
To Ty is associated a fluctuation time 79 = h/Ty = 2.43(8) x 107%s. This value is
relatively large for a temperature outside the critical regime. We would have expected
a value in the range of i/(kg|fcw|) = 2.4 (1) x 107!'s, where we take the fcw value
derived from the x(7) fit at low temperatures. Even slower paramagnetic fluctuations
are revealed by the uSR study discussed in Sec. [4.8

4.8 SR spectroscopy

To get further information on the system, uSR measurements were performed at the
MuSR spectrometer of the ISIS pulsed muon source (Rutherford Appleton Laboratory,
United Kingdom) and at the GPS and LTF spectrometers of the Swiss Muon Source
(Paul Scherrer Institute, Switzerland), see Sec. First, we will discuss the signature
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Figure 4.14: Wavevector dependence of the quasielastic half-width at half-maximum
(HWHM) T, of the magnetic scattering in the paramagnetic phase at 1.2 K. The solid
black line is a fit as explained in the main text.

of a long-range order. Then, persistence of spin dynamics in the ordered phase and
anomalously slow spin dynamics in the paramagnetic regime will be evidenced.

4.8.1 Evidence of long-range order

A SR asymmetry spectrum recorded deep into the ordered phase is displayed in the
left panel of Fig. [4.15. The inset evidences the presence of spontaneous oscillations,
i.e. in the absence of external magnetic field, up to T" < 0.65 K ~ 0.7 1. which reflect
the Larmor precession of the muon spin around a local magnetic field Bj,.. This is a
signature of a magnetic long-range order. Although a spontaneous muon spin precession
is expected and often observed in the ordered phase of magnets as for Gdy M;07 with
M =Sn or Ti |[L12, 116], it is not present for ThySnyO7 |75, (77|, Er,Ti2O7 [2, [102],
and YbySnyO~ [92,194]. In Fig. is compared the case of NdySnyO7 (left panel) and
ThySn,07 (right panel) which both exhibit magnetic Bragg peaks (kmag = (0,0,0)) as
a signature of a long-range order, see magnetic neutron diffraction pattern in the insets.
However, whereas spontaneous oscillations are observed in the neodymium case, only
an exponential-like relaxation of the muon spin polarisation is evidenced in the case
of ThySnyO7. In the latter case, the absence of spontaneous oscillations was explained
with the dynamical nature of the local field, jumping from a configuration to an other.
A fluctuation time 7. = 8 x 107! s was inferred, consistent with the observation of
magnetic Bragg peaks with neutron diffraction since the magnetic structure is probed
with a time scale At ~ 1072,

The measured asymmetry is agP, ™" (t) where aqo is an experimental parameter and
PZ®(t) the muon polarization function which reflects the physics of the compound under
study [160]:

agP;P(t) = asPy(t) + ang, (4.48)

where the first term accounts for muons probing the sample and the time-independent
second term reflects muons implanted in the sample surroundings, essentially in the
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Figure 4.15: uSR spectra recorded for a powder sample of NdySny O, at the LTF spec-
trometer (PSI) in zero field deep into the ordered phase at T = 0.06 K (left) and at
T = 0.800 K (right). The insets focus on the short time details in order to evidence the
presence of spontaneous oscillations or not. The black solid lines are fits as explained
in the main text.

silver backing plate. Spectra up to 0.65 K were well fitted with the effective following
function:

asPz(t) = a1 P 1(t) + aaPyo(t) + azexp(—Azt) (4.49)
= ayexp(—Axt) cos(y,Bioct + @) + as exp(—'yZAg(tZ/Q) + az exp(—Azt).

The first two terms, labelled P, ;, refer to the component of Pz(t) perpendicular to the
local field Bj,.. Introducing two functions can be understood as the existence of two
muon sites (1,2) probing a different field distribution. However, this equation remains
a purely phenomenologic description since the muon site is not precisely known. The
summation of their amplitude accounts for about 2/3 of the total amplitude. The third
component of amplitude a3 ~ ag/3 is ascribed to the spin-lattice relaxation channel,
and will be discussed in Sec.

Let us focus on the components of P(t) perpendicular to the local field Bjy.. Con-
sidering an isotropic, static, Gaussian field distribution, we can easily derive the corre-
sponding static polarisation function |160]:

2 A2 42
P (t) = exp (—%TG) cos(V, Bioct), (4.50)

where AZ is the variance of the Gaussian field distribution. However, usually the field
distribution is not static and assuming dynamics with a single magnetic correlation
time 7. = 1/v,, the polarisation function is described by the Abragam function within
the weak collision model [160]:
1AL
P, (t) = exp {_ My2 lexp(—v.t) — 1+ Vct]} cos(Y,Bioct). (4.51)

[

In the so-called motional narrowing limit, i.e. v. > v,A¢q, we retrieve the first term of
the right-hand side of Eq. [4.49]

Py 1(t) = exp(—Axt) cos(wt), (4.52)
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Figure 4.16: Comparison of uSR spectra of NdySnyO; (left) and TbySnyO; (right)
recorded in the ordered phase. The two coumponds exhibit magnetic Bragg peaks
with kmag = (0,0,0) (see insets). However, spontaneous oscillations are resolved for
NdySny O; whereas only an exponential relaxation of the muon spin polarisation is
observed for ThySny O7. Right panel is adapted from Ref. [75].

where the damping rate is Ax = "}/“AGTC and w, = 7,Bic. By analogy with NMR
(nuclear magnetic resonance), the transverse relaxation rate Ay is also called spin-spin
relaxation rate since the surrounding spins at the origin of the field distribution and
their dynamics lead to a spread in muon frequencies. We have found \x ~ 45 us~! at
low temperatures. The cosine function describes the Larmor precession of the muon spin
around this local field. The observation of these oscillations implies that the magnitude
of the field By,. at muon site (1) is sufficiently large relative to the field distribution
width.

On the other hand, in the case of v, < 7,A¢, Eq. d.51] becomes:

ALY
P o(t) = exp (—% 2G )cos(wﬂt),

ZAQ t2
~ e (_% ac ) 7 (4.53)

where the second line is obtained considering the field distribution of the local field at
the muon site (2) to be sufficiently large to not resolve any spontaneous oscillations,
ie. Ag > w,/v,. Hence, we recognise the second term of the right-hand side of
Eq. with Ax = Ag. This second component is necessary in order to describe the
fast depolarisation of ag P; () at short times. The temperature dependence of Ax and
By, are displayed in the left and right panels of Fig.[£.17] respectively, together with the
temperature dependence of the magnetic moment inferred from magnetic diffraction.
We found Bioo(T' — 0) = 127.5(1.3) mT and Ax (T — 0) = 84.7(6.6) mT. Since these
quantities arise from the spin distribution at the muon site, this is not surprising that
they follow the same temperature behaviour as the magnetic moment.

For completeness, oscillations are not resolved for 7' > 0.65 K, as shown in the right
panel of Fig. This is probably due to the broadening of the field distribution arising
from sample inhomogeneities and dynamical effects. Therefore, spectra are analysed
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Figure 4.17: Temperature dependence of the local field inferred from the oscillations
frequency at muon site 1 (left) and of the variance of the field distribution Ay (right).
The temperature variation of the magnetic moment inferred from magnetic diffraction
is displayed by full blue circles.

with the following function:
asPy(t) = ax exp(—7,A%1?/2) + az exp(—Azt), (4.54)

where ax = %as.

Note that a phase ¢ &~ —135° has been introduced in the cosine function of Eq. [4.49.
The magnetic collinear structures are usually associated with a single value of By, pro-
portional to the magnetic moment and no phase shift should be introduced. However,
an incommensurate modulation of the amplitude of the field could introduce a shift of
the oscillations, as it is the case for instance for incommensurate magnetic structure.
In Ref. [160], a generalised field distribution has been developed to control the phase
shift . Note that it was pointed out that such a field distribution is not necessarily a
signature of an incommensurate magnetic structure, which would be incompatible with
the collinear all-in-all-out structure evidenced in Sec. [£6. In our case, the following

field distribution leads to ¢ = —%’r:

[1 — (Bloc/Bmax)z]l/2
T2T(1/2) Boe

De(Bioc) = (4.55)

where B),. is modulated between — B .« < Bloe < Bmax. This possible field distribution
is illustrated in Fig. [£18 This will lead to to the polarisation function:

2

m) Jl (’}/“Bmaxt) “+ ag exp(—)\zt), (456)
pu?max

a,Py(t) = a; (

where J; is a Bessel function of the first kind. Note that for £ > 1/(,Bmax), the latter
function can be expanded such as:

2 3T
J1(VpBmaxl) = | ——=—— Broaxt — — |, 4.57
1V Brmaxt) Bt & (% 1 ) (4.57)
and we recover the phase shift o = —37” introduced above. More information is needed

to understand the field distribution leading to the observed muon spin polarisation
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Figure 4.18: Illustration of the possible field distribution at the muon site (1), depicted
by Eq. 453
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Figure 4.19: Illustration of the Zeeman splitting of the two muon spin states. From
a fully polarised state, the system relaxes towards an equilibrium state where the two
muon states are equally populated. Reproduced with kind permission from Ref. [160)].

function. It is important to keep in mind that Eq. is a phenomenological equation
to analyse at best our data, since introducing two muon sites probing two different
field distributions is purely speculative and just accounts well spectra in the ordered
phase. The next step would be to calculate the actual muon site and simulate the field
distribution created by our magnetic structure to derive a true polarisation function,
since no usual ones derived from standard field distributions could describe our spectra.
Due to the positive electric charge, the muon should be located in a site close to an
oxygen atom.

4.8.2 Persistence of spin dynamics

We will focus here on the third term of Eq. [£.49] The spin-lattice relaxation rate Az
arises from exchange energy between the muon spin and the system. The spin muon
state is a two-level system (up and down) with a Zeeman splitting of fw,, = iy, Bioc ~
70 neV where B, = 127.5 mT at 37 mK. At thermodynamical equilibrium the two
states are equally populated as shown in Fig.[4.I9and Ay illustrates the relaxation from
the initial polarised muon state to this equilibrium. This is a direct probe of the spin
dynamics in the system. The temperature dependence of the spin-lattice relaxation
rate is displayed in Fig. [4.20] in zero field and 50 mT longitudinal field. At T < T
we would expect \; to vanish, see App. [E.22l Nevertheless, a temperature independent
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Figure 4.20: Temperature dependence of the spin lattice relaxation rate Az in zero field
(empty symbols) and for Bey = 50 mT (full symbols). The data have been recorded
at different spectrometers as indicated in the figure. The T, value is shown as a dotted
line and the full line emphasises the temperature independent zero-field \; at low
temperatures. The dashed line is a fit of Eq. to the data, illustrating an Orbach
relaxation mechanism, see Fig.[4.2]] and involving the third excited crystal-electric-field
energy level lying at 39.8 meV.

plateau is observed in the ordered phase. Since the muon energy hw, ~ 70 neV for
NdySnyO7 is much lower than any energy gap expected for excitations in the ordered
phase, a single excitation cannot be at the origin of the muon spin relaxation pro-
cess. Therefore, this relaxation is described by a Raman process, i.e. a two excitation
scattering, see Fig. [El In App. [E22 we have derived the expression of the spin lat-
tice relaxation rate for the case of ferromagnetic and antiferromagnetic magnons, see
Eq.[E.39 and Eq. [E.54] respectively. We have shown that these conventional excitations
in the ordered phase cannot be at the origin of a temperature independent behaviour
of \z. For the description of the excitations at the origin of this plateau, we generalise

Eq. [E54
Ay = C/:, n (kBiT) {n (kBiT) + 1} g2 (E)dE, (4.58)

where C is a temperature independent constant involving the coupling tensor between
the muon spin and the spins of the systems. Whereas the excitations are bosonic
(+) or fermionic (—), we introduce n(x) the Bose-Einstein or Fermi-Dirac distribution
functions, respectively. We recall that:

mr) - =
n B — =
BE kBT exp (E*H) _ 1’

(—E ) (4.59)
nEp = ) .
ksT exp (E—EF) 1
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where Er and p accounts for the energy Fermi level and the chemical potential of
bosons, respectively. Note that in the case of magnons or photons the chemical potential
i = 0 since we do not need to limit the number of bosons. To these excitations
are associated a magnetic density of states g,(F) and an energy gap A. To get Az
temperature independent, we need g, (E) = bE~'/? and (A—Ef) or (A—pu) proportional
to temperature, i.e. equal to akgT’, where a and b are finite constants. For the bosonic
case, within the approximation (E — p) < kgT', we derive |[112]:

Ch?

a?

Ay = (4.60)

The inverse square root form for g,,(E) needs to be verified only at low energy.
Expressing ¢g,,(F) in terms of the spin correlation function (J(q,t)J(—q,0)) we obtain
in the case where a single energy mode is available for a given q wavevector:

= — ] —. 4.61
~ [ dao-aan (7)o o
The sum runs over the first Brillouin zone vectors. We recall that:

(J(q,t)-I(—q,0)) = Z exp(—iq - 1)(Jo(t) - J:(0)), (4.62)

where J; and J, are the spins at the lattice point ¢ and at the origin of the lattice,
respectively. Since muons probe the very low energy spin excitations it is justified to
consider the correlation function at long times. In this limit it is governed by a diffusion
equation for a Heisenberg Hamiltonian system, [209-211]:

(Jo(#) - 3i(0)) o< 1/(Dailt))*/? (4.63)

where d is the dimensionality of the spin system and Dgg a diffusion coefficient. We
calculate the following Fourier transform:

o 2 2
/ exp(iwt) —dt \/ T \/ mh (4.64)

It follows that for a magnetic density of states g,,(E) o< E -3 corresponds unidimensional
spin correlations (d = 1), at the origin of the observation of a temperature independent
behaviour of \;. We tentatively associate the low energy unidimensional excitations
inferred from the temperature independent relaxation rate to loop spin structures. An
illustration for a possible spin loop structure running on an hexagonal plaquette is
displayed in the left panel of Fig. [£.21] This reminds the introduction of flippable
plaquette to describe the quantum spin-ice state, see Sec. [L.4l

4.8.3 )7 behaviour in the paramagnetic phase

In the case of a static isotropic Gaussian field distribution with a variance A%, the
longitudinal polarisation function is described by the well-known Kubo-Toyabe func-
tion [160]:

1 9 ZAQ t2
P (t) = 5 + 5 (1 = 1At exp (—%‘Ta) (4.65)
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Figure 4.21: Left: Rare-earth ion lattice in the pyrochlore RyMyO;. The thicker
light blue (thinner dark blue) bold line represents a 6 (10)-site loop accounting for 1-
dimensional excitation possibly responsible for the non vanishing spin-lattice relaxation
rate at low temperatures. Reprinted figure with permission from Ref. ] Copyright
2015 by the American Physical Society. Right: Illustration of the Orbach relaxation
mechanism resulting from the magnetoelastic coupling between the rare earth ion and
two real phonons and involving an excited crystal-electric-field energy level. A mag-
netic ion lies in the doublet ground state defined by two wavefunctions | ) and |¥° ).
Direct transitions are forbidden between these wavefunctions of the Kramers doublet,
ie. (UY|JL|PY)| = 0. Therefore, a phonon of energy E(q;) is absorbed, exciting the
magnetic ion in an excited CEF state, located here at Acgr = 38.9 meV, see Sec. [4.4
Emitting a phonon of energy E(q2) = E(q1), the magnetic ion relaxes to the ground
state. Therefore, the relaxation process of the magnetic ion from the state |U%) to
|UY) involves a flip of the muon spin. Since both the muon spin states and the crystal-
electric-field ground state are not split by Zeeman effect (in the paramagnetic regime),
the relaxation of the muon spin is a zero energy process. Picture adapted from Ref. .

In the extreme motional narrowing limit, we derive:
Py (t) = exp(—Azt), (4.66)

where \; = 273Aé7’c. In the case where a continuous distribution of relaxation channels
is involved, the stretched exponential function needs to be introduced:

Py(t) = exp[—(\zt)%], (4.67)

where 0 < B, < 1. Above T, spectra are well accounted with Eq. with here
0.7 < Bse < 1. We refer to Sec. for a discussion on the field behaviour of ;. In
zero field \z(T') displays a pronounced maximum at 7... This reflects the slowing down
of the critical fluctuations at the approach of a second-order magnetic phase transition.
We now focus our attention on the behaviour of Az above the magnetic transition. The
general expression of Az is given by Eq.[E.16l Thanks to the fluctuation-dissipation the-
orem, paramagnetic fluctuations described by the symmetrised spin correlation function
A% (q,w), see Eq. [E14] are related to the generalised susceptibility xy**(q,w) ]:

hv hw
AP(q,w) = %coth(—)Im Bq,w
(a,w) e ot ) T @ w)}
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2kgTv. Im{x*?(q,w)}

1092115, w
where the second line has been obtained in the limit Aw < kgT', valid since the
Zeeman splitting of the two spin muon states is fiw, = 0 in zero field experiments,
i.e. only zero energy transfers are probed by the spin-lattice relaxation rate. Fol-
lowing the definition introduced for the imaginary part of the generalised suscepti-
bility (Zm{x**(q,w)} = x"(q,w)), see Eq. 44, and assuming the susceptibility to be
isotropic, the spin correlation tensor becomes scalar, i.e. A% (q,w) = A(q,w)da s:

2v r

2 Ty (@) ———
w5 +17

where I, is the linewidth of a Lorentzian function describing the quasielastic excitations,
i.e. the spin correlation function decreases exponentially. Since Az probes here zero
energy excitations, Eq. [4.69 becomes:

(4.68)

Ag,w) = (4.69)

/
21;(; kT (a)
Hog* 1 Iy
In the paramagnetic regime at high temperature, the susceptibility is expected not to
depend on q, i.e. X’(q) = X/, since the thermal energy is much higher than the ex-
change energy [213]. Within this approximation, only the spin autocorrelation function
is probed, i.e. Iy = I' and it is also temperature independent meaning that the char-

acteristic time of the spin correlations is temperature independent. Therefore Eq. [E.16l

simplifies as:
D 2v. kgT / d3q
A =55 X [ DA (Q) 4.71

=Yg T X ), 2 Vi) -

A(q,w=0) = (4.70)

Since the susceptibility is expected to follow a Curie-Weiss law, the spin lattice relax-
ation rate should be found temperature independent, as it is the case for the gallium
garnet compound YbsGazO1s [192]. A temperature independent behaviour of the spin
lattice relaxation rate appears when applying a small magnetic field B = 50 mT in
the range 2 < T < 100 K, see Fig.[4.20. However, no plateau is evidenced in zero field
measurements. This is due to the development of spin correlations in the low tempera-
ture region of the paramagnetic regime which unexpectedly extends up to about 30 K,
i.e. & 30 T.. The strong dependence of the relaxation rate on By will be discussed in
the next section.

An Orbach local relaxation mechanism [192] could be at the origin of an inflexion
point located at ~ 100 K, i.e. the relaxation of the magnetic moments through a real
two-phonons process with an excited crystal-electric-field as intermediate state as ex-
plained and illustrated in the right panel of Fig. Following Ref. [192|, data are
described by the following equation:

(4.72)

)\51 = A+ Bpeexp l_ACEF] ,

kgT
where Acgr = 39.8 meV is the energy splitting between the ground state and the
third excited crystal-electric-field energy level] revealed in Sec. [44], A is the saturation

4 Analysis using other CEF energy levels leads to a worse y2.
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value of )\21 expected at low temperatures in the paramagnetic regime, and By, refers
to the strength of the spin-lattice interaction. We find By, = 118(6) pus and A™' =
0.28(1) us™!, which is the plateau value inferred from longitudinal field measurements.

4.8.4 Anomalously slow paramagnetic fluctuations

In order to evaluate the characteristic time of the magnetic fluctuations in the param-
agnetic phase, experiments in longitudinal field geometry are performed. Within the
approximation that the applied magnetic field has no influence on the system, in the
extreme motional narrowing limit, i.e. v. > 7,Aq where v, is the characteristic spin
fluctuations rate and A% the variance of the Gaussian field distribution at the muon
site, the spin-lattice relaxation rate is given by the Redfield formula [214|:

PRAYAZS
)\Z(wu = ’YﬂBeXt) = W’
Az(wy = YuBext) 22U,
= MAZ = = ——. (4.73)
G 9 Ve
Bext +{—
T

Spectra recorded in the paramagnetic phase in zero or longitudinal field geometry were
analysed with the stretched exponential function introduced in Eq.[£.67. The results of
the fits at Beyy = 50 mT are displayed in Fig. From backscattering experiments,
we have found a fluctuation time 7y ~ 2 x 107 s. Following the second line of Eq. &3,
the field dependence of the spin-lattice relaxation rate Az(Bey) is expected to be a
Lorentzian function with a half width at half maximum (HWHM) 14/, at 1.2 K, as
displayed in Fig.[4.22] Therefore, the expected value of A7 at low field should be very
close to the zero-field value. Surprisingly, this small magnetic field of 50 mT strongly
modifies the response of the system. Its influence extends up to about 30 K, i.e. =~ 307T..
Because of this strong B dependence of A7 at low field for 2 < T" < 30 K, we infer
the presence of spin fluctuations with a correlation time 7, in the 100 ns range. The
field dependence of the spin-lattice relaxation rate Az has been performed for several
temperatures, see Fig. 123l Data were analysed using the first line of Eq. with
an additional constant Az, and the results are summed up in Tab. They con-
firmed the 100 ns time scale of the paramagnetic fluctuations introduced above. In

T (K) | 7 (us) | Ag (mT) | Az (ps™)
2 0.32(3) | 1.64(41) | 0.211(20)
23 | 0.28(4) | 1.72(14) | 0.321(28)
5 | 0.3(5) | 1.12(9) | 0.197(8)
20 | 0.12(2) | 1.03(11) | 0.190(12)

Table 4.5: Results of the analysis of the field dependence of Az. The correlation time
7. = 1/v,, the variance of the field distribution Aé and Az are reported here.

the inset of the left panel of Fig. .23l is shown a possible maximum around 0.002 mT.
We should expect a slowing down of the spin fluctuations as the field increases, and
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Figure 4.22: Field dependence of the spin-lattice relaxation rate at 1.2 K modelled with
a Lorentzian function with a HWHM of vy/7, = 0.49 T expected from backscattering
measurements where a fluctuation time 7y ~ 2.4 x 1072 s has been inferred. Therefore,
as shown by the red dotted line, the influence of a small magnetic field, i.e. By = 50 mT

should not influence the value of \;. This is not the case experimentally, referring to
Fig. 220

therefore a decrease of A;. A low-field maximum has already been reported for in-
stance in TbySnyO7 [75] and ThyTizO7 [215], but also in the spinel compound—the
magnetic ions form the same lattice of corner-sharing tetrahedra as in the pyrochlore
compounds — CdHoyS, [212], the gallium garnet compound Yb3GasOqo [192] or the
Kagome antiferromagnet Nd3GazSiOq4 [216]. An avoided level-crossing resonance might
be at play [217].However, this maximum was neglected in the analysis with a Lorentzian
function. Above 0.2 T, a slight increase is observed associated with crystal-electric-field
effect (not shown).

Hence, the zero-field fluctuations probed by uSR are characterised by 7. much larger
than the time estimated from our quasielastic neutron scattering data, i.e. 79. NdsSnyOy
is not a unique example of this feature [85]. In fact, a wide range of correlation times
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Figure 4.23: Field dependence of Az at 2 and 2.3 K (left) and 5 and 20 K (right). Solid
lines are fits following Eq. with an additional constant Az .
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seems to be a signature of geometrically frustrated magnetic materials.

4.9 Conclusions

Nd,Sn, 07 crystallises in the Fd3m crystallographic structure. It belongs to the geo-
metrically frustrated magnetic family of the pyrochlore compounds where the frustrated
lattice consists of magnetic ions sitting on a corner-shared tetrahedra network. No de-
viation of the stoichiometry has been shown by high resolution neutron diffraction
attesting the good quality of our sample. NdySnyO7 exhibits a second order magnetic
phase transition at 7, = 0.91 K. Neutron time-of-flight measurements have revealed an
isolated Kramers ground state doublet. No residual entropy was found at low temper-
atures, contrary to the spin-ice compound family. The study of magnetic susceptibility
allows to extract a Curie-Weiss temperature much larger than the transition tempera-
ture, which is not surprising in frustrated magnets, and predominant antiferromagnetic
interactions at play between the rare-earth ions. A long-range order has been evidenced
with the presence of spontaneous oscillations by zero-field ySR measurements and mag-
netic neutron diffraction experiments reveal an all-in-all-out magnetic structure with
a spontaneous magnetic moment at low temperatures mgp(7" — 0) ~ 1.7 pg. From
neutron backscattering measurements, we confirm the value of the spontaneous mag-
netic moment at low temperatures as a proof of the absence of phase segregation in the
sample, but its temperature variation does not track the one inferred from magnetic
diffraction. No reliable interpretation can explain this difference yet. The time range
probed by this technique does not allow to exhibit the presence of spin dynamics in
the ordered phase whereas a spin correlation time 75 ~ 107? s is found in the paramag-
netic phase. With ySR experiments, a strong influence of a small longitudinal applied
magnetic field Be, = 50 mT on the temperature variation of the spin-lattice relaxation
rate Az was not expected and is a signature of magnetic fluctuations with a correlation
time of order 100 ns in the paramagnetic phase. Interestingly, the persistence of spin
dynamics in the ordered phase as evidenced by the temperature independent plateau
in zero-field measurements was ascribed to 1-dimensional spin fluctuations. The T de-
pendence of the specific heat at low temperatures and the T? decrease of the magnetic
moment in the ordered phase supports the existence of antiferromagnetic spin waves-
like excitations. These results do not go in line with a purely Ising system and could
be understood with the existence of anisotropic exchange interactions, as it has been
introduced in the exchange Hamiltonian describing the quantum spin-ice, see Eq. [L.12]
Therefore, it can be pictured that quantum fluctuations of the Ising spin lead to the
existence of a transverse spin coupling term. This hypothesis should be resolved with
the full characterisation of the crystal-electric-field Hamiltonian. The determination of
the ground state wavefunctions will determine the type of Kramers ions we are dealing
with.
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ThsTisO7 is one of the most extensively studied pyrochlore compound since its mag-
netic ground state arouses questions: is it a realisation of a quantum spin-ice or does
a Jahn-Teller transition occur at low temperatures? After an introduction on previ-
ous experimental and theoretical results, we will report X-ray synchrotron radiation
diffraction and pSR measurements.

5.1 Introduction

The pyrochlore titanate ThyTisO7 has been one of the most intriguing compounds over
the past few years. A Curie-Weiss law describes the bulk susceptibility down to 50 K
with a Curie-Weiss temperature fcw = —19 K indicative of strong antiferromagnetic
interactions and a Th3" magnetic moment of 9.6 up ﬂm, ] The analysis of the
crystal-electric-field transitions measured by inelastic neutron scattering shows that
this compound is characterised by Ising spins, i.e. they are oriented along the trigonal
axis <111>, and the first excited energy level is a doublet located at ~ 1.5 meV from the
ground state doublet, see Chapter[Bl Usual Ising pyrochlore models introduced in Chap-
ter 1 cannot account for the paramagnetic diffuse scattering at 7'=9 K [@] No long-
range magnetic order was evidenced by uSR spectroscopy down to 1" = 50 mK HE], in
agreement with previous measurements , M], or neutron diffraction also down to

133
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Figure 5.1: Left: Neutron diffraction pattern recorded at T = 2.5 K (top) and neutron
diffraction patterns at T = 2.5 K (closed symbols) and 50 K (open symbols) where
data recorded deep into the paramagnetic state at 100 K (bottom) were subtracted:
sinusoidal-like neutron diffuse scattering is exhibited. Reprinted figure with permission
from Ref. @] Copyright 2015 by the American Physical Society. Right: Normalised
intermediate scattering function measured by neutron spin echo experiments on a pow-
der sample of Thy Ti,O;. Reprinted figure with permission from Ref. ] Copyright
2015 by the American Physical Society.

T =50 mK [M] Powder neutron diffraction data recorded at 7" = 2.5 K evidence dif-
fuse magnetic scattering attributed to liquid-like spin correlations restricted to a single
tetrahedron [@] as shown in the left panel of Fig. 0.1l Neutron scattering experiments
on a single crystal of ThyTisO7 reveal strong anisotropic diffuse scattering below 100 K
and down to 50 mK in the (hhl) scattering plane, which contains the following high
symmetry directions for a cubic system: <001>, <hh0>, and <hhh> @], a diffuse
scattering map recorded at T'= 9 K is displayed in the left panel of Fig. 5.8, which will
be discussed later. The observed magnetic diffuse scattering covers a broad region in re-
ciprocal space, with a very high intensity at the reciprocal point (0,0,2). Hence, the spin
correlation length was deduced to be much smaller than the unit cell lattice parameter
and assumed restricted to a single tetrahedra [@, @] Therefore the name cooperative
paramagnet was coined, since spin correlations start to develop at high temperature and
persist down to the lowest ones. Since then, the spin dynamics of ThyTi;O7 was inves-
tigated, firstly by neutron spin echo revealing a slowing down of the spin fluctuations
in the nanosecond time range ] in a temperature range 400 < 7" < 600 mK, see
right panel of Fig. 5. At lower temperatures, a fraction of roughly 10% of the total
magnetic moments is frozen. The neutron spin echo results are consistent with ©SR
spectroscopy measurements [@, @, @] Weak longitudinal-field SR, experiments
have been performed on a crystal of ThyTi,O7 in Ref. [‘E] contrary to the work of
Refs. ﬂﬂ, ], the spectra were analysed with an exponential-power function, see
Eq. The temperature dependence of the spin-lattice relaxation rate Az and of the
exponent [ is displayed in Fig[5.2l An increase of )z is found in the temperature range
1 < T <10 K, which illustrates a significant slowing down of the spin fluctuations. The
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Figure 5.2: Investigation of the spin dynamics in ThyTisO; with 13 mT longitudinal
field SR measurements: temperature dependence of the spin-lattice relaxation rate
Az and the exponent (.. A slowing down of the spin fluctuations is evidenced as
the system enters in a paramagnetic state characterised by strong spin correlations.
Reprinted figure with permission from Ref. ,@] Copyright 2015 by the American
Physical Society:.

temperature 7;, ~ 2 K is indicated by a black arrow in order to point out that the
compound enters a strongly correlated paramagnetic state. An increase of the exponent
[se 1s also evidenced in the same temperature range, which can be interpreted as an
additional proof of the progressive slowing down of the spin fluctuations: indeed, in the
motional narrowing limit, i.e. if the spin dynamics is sufficiently fast, spectra are usually
described with an exponential function (s = 1) whereas a value of S5 = 2 means that
the local field at the muon site is static. Finally, the temperature independent plateau
of Az is indicative of persistent spin fluctuations.

Independently, this spin freezing has also been evidenced with neutron scattering ex-
periments on a triple axis spectrometer, where a reduction of the quasielastic linewidth
occurs for T' < T, ﬂm, | near the specific ¢g-value (0,0,2) where previous neutron
scattering experiments found strong magnetic diffuse scattering The tempera-
ture dependence of the magnetisation shows an irreversibility between zero-field and
field cooling below ~ 200 mK [@, , @], indicative of a spin freezing. A peak is
revealed in the real part of the a.c. susceptibility at 7'~ 0.2 K “%, @] The analysis
of the frequency dependence of this maximum cannot be performed with usual rela-
tions characteristic of a spin-glass transition , ] Therefore, this maximum was
associated with a glassy behaviour rather than a spin-glass transition. The analysis of
the dissipative part of the susceptibility show two distinct frequency regimes: at low
frequency, a peak occurs at the same temperature as the one observed for the real part
of the susceptibility. However, in the high frequency regime, the dissipative part of
the susceptibility vanishes at temperatures larger than 4 K, which is higher than the
freezing temperature 7,: this behaviour is ascribed to the existence of very slow spin
dynamics. To conclude, spins correlations start to develop at 7' = 50 K. A wide panels
of techniques evidence a slowing down of the spin fluctuations at a freezing tempera-
ture T,, ~ 2 K. Looking at the time scales probed by neutron scattering (~ 107! s),
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neutron spin echo (~ 1072 s), uSR (=~ 1078 s) and a.c. susceptibility (=~ 1072 s) experi-
ments, a broad range of spin correlation times are involved which is a common feature
of frustrated magnets.

The challenge of the past few years was to determine the ground state of ThyTisO7
and thus explain the lack of magnetic ordering. Two proposals have been recently
discussed: the compound would be an experimental realisation of the quantum spin-ice
state, see Sec. [[L4l and the second suggests a Jahn-Teller like structural distortion at
low temperatures. Therefore in the following, we will discuss the two aforementioned
proposals.

5.2 TbyTi1,07: a Jahn-Teller transition?

5.2.1 Context

With the purpose to explain the lack of magnetic long-range order in ThyTi,O7, Cha-
puis et al. [228] firstly suggest from the analysis of the variation in the magnetic entropy
that the ground state doublet is split, a reasonable hypothesis since terbium is a non-
Kramers ion. This assumption could support the existence of a structural distortion at
low temperatures. The left panel of Fig[5.3 displays the temperature dependence of the
specific heat C},, whereas the inset shows the electronic specific heat, after subtraction
of the nuclear and phonons contributions to C,. An anomalous minimum is clearly
evidenced at T; ~ 0.15 K. The right panel of Fig. 5.3 displays the temperature depen-
dence of the entropy derived from the electronic specific heat. The overall variation
of the electronic entropy variation ASge. = RIn(4) is not consistent with the predic-
tions of the crystal-electric-field energy levels scheme of Ref. [73] and Chapter B for
instance, since the electronic entropy should saturate at RIn(2) at low temperatures,
see Fig. 3 in Ref. [228]. A splitting dcgr ~ 2 K of the low-lying crystal-electric-field
energy levels needs to be introduced to describe the magnetic entropy, as illustrated by
the black dashed line. The lifting of the degeneracy of the ground state has been inter-
preted as a signature of a structural distortion, ruled by the perturbative Hamiltonian
Hper = — Dy JZ, where Z refers to a cubic axis and D; ~ 0.27 K scales the strength of the
distortion [228]. The latter value is consistent with the one introduced in Ref. [229] in
order to describe the quasielastic signal in inelastic neutron scattering measurements as
a CEF excitation lying at &~ 2 K, and resulting from the splitting of the ground state.
The latter results were strongly debated in Ref. [230], claiming that the quasielastic
signal does not originate from a splitting of the ground state. They also argue that the
lack of entropy resulting from the simulation of an unsplit ground state doublet could
be compensated by the introduction of spins correlations. This idea is supported by the
strong decrease of the elastic constants with temperature [231, 232], as illustrated in
the left panel of Fig.[5.4l Therefore, a Jahn-Teller transition driven by magnetoelastic
effects has been suggested.

Additional transverse field uSR measurements report the temperature dependence
of the normalised muon spin frequency shift Av/vey, where Av = v, — Vey, v, is
the frequency of the muon spin precession around the local field at the muon site
Bioe, and 27Vey; = 7, Bext, With Bey being the transverse field applied along the [110]
direction. More details on this technique are given in Sec. 2.6.6l The temperature
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Figure 5.3: Left: Temperature dependence of the specific heat for a Thy Ti, O crystal.
The inset displays a zoom over the lowest temperatures in order to show the unusual
upturn of the electronic specific heat, after subtraction of the nuclear and phonons con-
tributions to C},. Therefore this behaviour is ascribed to additional degrees of freedom.
Right: Temperature dependence of the entropy of electronic origin Sge.. The black
dashed line is a prediction following the crystal-electric-field energy scheme described
in the main text. The inset shows the low temperatures part of the magnetic entropy.
A plateau is exhibited at T, to be connected with the uprise of the specific heat below
T;. Reprinted figures with permission from Ref. [219]. Copyright 2015 by the American
Physical Society:.

dependence of the normalised frequency shift is shown in the right panel of Fig. 5.4l
The frequency shift is negative and decreases with temperature from 10 K down to
the lowest temperatures, which is consistent with an increase of the mean value of the
local field at the muon site. However, an extremum is evidenced at 7 = 0.15 K, as
a signature of an exotic transition. In the inset of Fig. an irreversibility between
field cooling and zero-field cooling is shown, meaning the system enters a glassy state.
Moreover, the significant value of Az at low temperatures, see Fig.[5.2] is not consistent
with a spin-glass transition, supporting the results of a.c. susceptibility presented in

Sec. B.11

Looking for such a structural transition, high resolution X-ray diffraction has been
performed by Ruff et al. [233] on a single crystal of ThyTi,O7. As illustrated in the left
panel of Fig.[5.5] they found a broadening of the Bragg peaks from 20 K down to 0.3 K,
interpreted as the development of spatial correlations. The temperature dependence of
the inverse correlation lengths are displayed in the right panel of Fig. Furthermore,
as illustrated in the right panel of Fig (5.6l an anomaly in the temperature dependence
of the lattice parameter occurs around 7' =~ 15 K: the latter does not follow the usual
lattice contraction as the temperature is decreased. The authors of Ref. [233] claim
that below T' =~ 20 K, the system develops spatial correlations as a signature of a Jahn-
Teller transition occurring at lower unreachable temperatures. On the other hand, X-ray
powder diffraction on a polycrystalline sample of ThyTiyO7 [234] shows no anomalous
negative lattice expansion [234], and does not support the conclusions of Ruff et al. [233].
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Figure 5.4: Left: Temperature dependence of the elastic constants of ThyTisO;. Data
reproduced from Ref. @] Right: Temperature dependence of the normalised uSR
frequency shift Av/vey recorded for two applied magnetic fields along the [110] direc-
tion. An exotic transition is exhibited at Ty ~ 0.15 K, which could be a signature
of a structural transition. The inset focuses on the lowest temperatures to exhibit
an irreversibility between zero and field cooling, characteristic of a glassy behaviour.
Reprinted figure with permission from Ref. |. Copyright 2015 by the American
Physical Society.
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Figure 5.5: Left: Bragg peaks of a crystal of Thy TiyO7 recorded on a four-circle X-ray
diffractometer for T' = 0.3 and 20 K. The broadening of the Bragg peaks located at
(12,0,0) (top) and (8,8,0) (bottom) is highlighted. Right: Temperature dependence of
the longitudinal and transverse parts of the inverse spatial correlation lengths deduced
from the broadening of the (12,0,0) and (8,8,0) Bragg peaks. Reprinted figures with
permission from Ref. ] Copyright 2015 by the American Physical Society.
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5.2.2 X-ray synchrotron radiation measurements

In order to corroborate or refute the results provided in Refs. [233,1234], we performed X-
ray synchrotron radiation measurements at the high resolution powder diffractometer of
the Material Science beamline (MS) at the Swiss Light Source of PSI, see Sec. An
X-ray beam of wavelength A\ = 0.49646 A was used, where the flux was maximum [140)].
For this experiment, we used a sample of ThyTiyO7 denoted "C" in Refs. [123, 1225, [228§].
Details of the synthesis of this crystal can be found in Ref. [123, 1228]. A crushed
fragment of the ThyTi,O7 crystal and ~ 18 wt.% of silicon powder was mixed and
ground to obtain a homogeneous mixture. The presence of silicon helps in reducing the
ThsyTisO7 sample X-ray absorption. The specimen was loaded into a 0.3 mm diameter
glass capillary. The data were taken from room temperature down to 4 K. A synchrotron
X-ray diffraction pattern recorded at T'= 6 K is displayed in the left panel of Fig. 5.6l
Data were analysed with the FullProf code [130] and Bragg peak shapes of both silicon
and ThyTisO; were described by a Thompson-Cox-Hastings pseudo-Voigt function, see
Sec. 2.3.7. Note that an additional free parameter was introduced and the second line
of Eq becomes:

H} = X tanf + Y/ cos#, (5.1)

where H; is the FWHM of the Lorentzian function, and X and Y refer to isotropic
strain and size parameters, respectively. Note that the geometry of our sample holder
lead to a strong absorption in the center of the capillary. This gives a strong asym-
metry to the Bragg peaks at small angles, which consequently were analysed using two
identical phases for both the silicon and ThyTisO7; compounds, introducing opposite
offset perpendicular to the beam. Furthermore, isotropic Debye-Waller factors have
been used.

Results of the analysis of a spectrum recorded at 4 K are displayed in Tab. 5.1 We
have investigated the temperature dependence of the lattice parameter looking for the
emergence of a Jahn-Teller like transition. The relative change of the lattice parameter
as a function of the temperature is shown in the right panel of Fig. We define:

Aallat _ Qat (T) — Qat (T =20 K)
Alat ar (T = 20 K)

, (5-2)

where ap (T = 20 K) = 10.13681(7) A. The compound shows the expected smooth ther-
mal contraction as it is cooled down with a plateau below ~ 25 K to a;,; ~ 10.1368 A
This goes in line with the work of Goto et al. [234]| and does not follow the uprise of Aa?—l:t

put forward in Ref. [233]. Data of Ruff et al. [233] predict Aa‘ll—‘;“ ~04x10*at T =4 K.

Therefore, the lattice parameter would be at this temperature a,, = 10.13700 A. We
performed a Rietveld refinement using this value (see Tab. ) that shows that the
goodness of the analysis decreased when fixing the lattice parameter to this value.
This experiment was especially designed to study the Bragg peak profiles. In
Ref. [233], a broadening of the Bragg peak is claimed to appear at 20 K, which increases
with temperature decreasing down to 300 mK, see Fig. This was interpreted as a
precursor of a structural transition. In Fig. b7, we compare the profiles of the (8,8, 0)
(left panel) and (12,0, 0) (right panel) Bragg peaks recorded at 20 and 4 K, where clearly
no broadening is shown. The full width at half maximum (FWHM) of the Bragg peaks
is of the order of 9 x 1073 in reciprocal units, to be compared with the Bragg peaks



140 CHAPTER 5. INSIGHTS INTO TbyTiy O7

T T T T T T T T ‘ TT T T ‘ TTTT ‘ TTTT ‘ TT T T ‘ TT T T ‘ TT T T ‘
Tb,Ti,0,, 6K 1 20 [ o ]
Obs
. —— Calc i [ o
2 Diff 15 ]
c | Peak positions > F
g Y I 0
© - —
E % 10
§ < [ DDD ]
2 ‘ ““ L 50 o o Ruff etal ]
LLk Ll r Q ]
T u \uumuuwummmuummmmmmuummmmuuuummwmmummmmunmuuun\mlumummmmum|ummummmmmuumm L o ° * Gotoetal 1
1‘ ‘H‘ h\i‘uw“u'u‘uuuumuuwuuuu DT 0 } s o Our work E
\ T [ R B S B |
1'0 2'0 3'0 4'0 5'0 6IO 7'0 8IO 0 50 100 150 200 250 300
20 (deg) Temperature (K)

Figure 5.6: Left: Synchrotron X-ray powder diffraction pattern of T'by TisO; recorded
at T = 6 K with a photon energy of 25 keV. The red solid line is the result of a
Rietveld analysis using FullProf and the blue solid line at the bottom gives the difference
between the data and the model. Ticks below the graph show the calculated peak
positions for ThyTisO; and Si (upper and lower rows respectively). The intensities
beyond 26 = 40° have been enlarged by a factor of 10 in order to illustrate the quality of
the refinement at higher angles. Picture reproduced from Ref. |235] with kind permission
of IOP Publishing. Right: Relative change in the lattice parameter ay,; as a function of
temperature. The green squares refer to data obtained by Ruff et al. |233] on a crystal
of Thy Tiy O7 recorded on a four-circle diffractometer X-ray diffractometer. The blue full
circles are data from Goto et al. [234] recorded on a polycrystalline sample of Thy Tis O,
with a X-ray powder diffractometer. Finally, our data are displayed by red open circles.

displayed in Fig. 5.5, having a FWHM = 0.02 in the same units. Therefore, we can
conclude that no broadening of the Bragg peaks is visible down to 4 K. Therefore, since
the instrumental resolution is better in our case rather than in Ref. [233], the response
of the samples used in Ref. [233] and here is different. Consequently, no clear exper-
imental evidence can be brought to the existence or not of a Jahn-Teller transition.

5.3 TbyTi,O7: a quantum spin-ice realisation?

Some recent theoretical works have been developed to describe the ground state of
ThyTisO7, and they conclude that this compound is a quantum spin-ice, see Sec. [L.4l
First, we will present the exchange Hamiltonian introduced by S. Curnoe [58, [237].
Then following these works, a magnetisation plateau has been put forward as a signa-
ture of spin-ice correlations, similarly to the classical spin-ice. Finally, we will discuss
experimental results on the existence or not of this peculiar feature.

5.3.1 The exchange Hamiltonian

Since the simple Ising model with antiferromagnetic isotropic interactions and the dipo-
lar spin-ice model both fail to describe the diffuse magnetic scattering in the paramag-
netic phase [218], we present here some pieces of the work of Curnoe [237|, where an
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T (K) aras (A) x Ry, | Ryp | Rexp | X°
4 | 10.13683(5) | 0.32777(9) | 8.53 | 8.66 | 2.61 | 11.0
4| 10.13700(F) | 0.32779(12) | 10.6 | 12.0 | 2.61 | 21.1
95 10.15735(10) 0.32720(11) 10.2 | 106 | 4.76 | 5.0

2

Table 5.1: Lattice parameter ay,; and position x of the oxygen atom O1 determined by
synchrotron X-ray diffraction at T = 4 and 295 K. R-factors are listed as indicators
of the quality of the fit, see Sec.[2.370 The second line refers to a Rietveld analysis
with the lattice parameter ay; fixed to the value expected from the anomalous lattice
expansion evidenced in Ref. [233]. This value is not consistent with a good quality of
the refinement. Note that the value of ay, is slightly larger than the one usually found
in the literature. Recently it was reported that a, = 10.15529(1) A [236].
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Figure 5.7: Comparison of the (8,8,0) and (12,0, 0) X-ray Bragg peak profiles measured
at 20 and 4 K for our Thy TioO; powder sample. The full width at half maximum of the
Bragg peak is 9 x 1073 in reciprocal lattice units. Pictures reproduced from Ref. [234]
with kind permission of IOP Publishing.

effective spin-1/2 anisotropic exchange Hamiltonian has been developed, similar to the
one introduced in Eq.
Hex = 1 X1+ o Xo + T3 X5 + TuXy, (5.3)

where 7; are four independent anisotropic exchange interaction constants and X; are
the exchange terms which are invariants under space group symmetries:

1
Xo o= =3 i
()
V2
Xy = _?Z[Aij(Jinj-i-‘I“szJi—l—)

AL (S + Ty dil)]

1 x
X3 = 5; (AfjTis Tie + AigTiJ-)
5J

1
X = —¢ <Z)(Jw]j_ + JinJil), (5.4)
2y
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where Ajp = Agy = 1, A3 = Ay = exp(%) and Ay = Ay3 = exp(%). Note that for
X5, X3, X4 = 0, we recover the classical Ising case where all spins are pointing into or
out of the center of the tetrahedron (7, > 0), or the spin-ice case with the two-in/two-
out spin configuration (J7; < 0). The subscript z stands for the local [111] axis and z,y
have been chosen to define an orthonormal basis. The single tetrahedron approximation
is adopted here so that the summation over (i,7) in Eq. is restricted to the four
magnetic sites of a tetrahedron.

In order to understand the ground state of ThyTisO7, four coupling constants need
to be determined. This was successfully done for the case of YbyTisO; by analysing
the spin-wave dispersion in a magnetic field [60] and for EryTi;O7 using the same
methodology [17] as well as analysing the diffuse scattering intensity [195]. In these
examples, the ground state doublet was described with an effective spin-1/2.

In the case of ThyTiyO7, the total angular momentum is J = 6. Since the ground
state is not well isolated from the first excited crystal-electric-field energy level, the
ground state wavefunctions can no longer be j:% but those introduced in Sec. Fol-
lowing the notations of Ref. [237], the exchange Hamiltonian for ThyTi,O7 is described
by coupling constants labelled Z; rather than 7;, the latter notations kept for the effec-
tive spin-1/2 case:

HIY = T, X, + T Xy + Ty X3 + Ty Xy (5.5)

Since we focus on a single tetrahedron, and since only two states are available for a
magnetic ion with a ground state doublet, it results 2* = 16 collective states. They are
commonly written as [58, 123§|:

|+ 1) = |1 @ 1) ® |E)3 ® |E)4, (5.6)

where av = 1/2, Tb denotes whether we are using effective spin-1/2 or the whole wave-
functions to describe the ground state, and the indices (1,2,3,4) label the tetrahedron
magnetic sites. An important property has been pointed out in Ref. [58|: the decom-
position in terms of irreducible representations of the symmetry group of a tetrahedron
in the pyrochlore lattice is the same using tetrahedron states defined by the effective
spin-1/2 or the ground state wavefunctions of ThyTisO7. This property holds for the
kind of non-Kramers ions involved here as it requires the Zeeman ket |1/2) to appear
in the ground state wavefunctions. Therefore a map between the states | &+ 4+ 4+ 4+ > /2
and | & £ £ +)1, can be established. Using the ground state wave functions |£) de-
termined in Sec. [3.2] the matrix elements for J. vanish and therefore, comparing the
matrix elements of H;Fxb and H.x leads to:

jl = 411j12, Where jl = <+|Jz|+> and j27374 =0. (57)

This corresponds to the classical spin-ice case or the all-in-all-out case if Z; < 0 or
Z; > 0, respectively: none of these two states are acceptable for ThyTisO;. However,
contrary to the spin-ice compounds, the ground state is not well isolated and an excited
crystal-electric-field energy level lies at A ~ 1.5 meV, see Sec. Therefore, using
wavefunctions of the ground state (|£)) and first excited ones (|1])), S. Curnoe [237]
calculates the following matrix elements:

=+l = =321, js=(1|L|+) =—-237,
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Figure 5.8: Left: Diffuse scattering map recorded in the (hhl) plane at T = 9 K for
Thy TisO7. Data at 100 K have been subtracted in order to only show diffuse magnetic
scattering. Reprinted figure with permission from Ref. ] Copyright 2015 by the
American Physical Society. Right: the corresponding calculated diffuse scattering map.
Reprinted figure with permission from Ref. ,@] Copyright 2015 by the American
Physical Society.

o= (M1 = 405, t=(1|J]-) =472 (5.8)

Note that the relative importance of the matrix element ¢ is indicative of the signifi-
cant admixture of the first crystal-electric-field level to the ground state. Consequently,
four states need to be considered per magnetic ion site, leading to 256 states per tetra-
hedron. The exchange Hamiltonian HIP is treated as a perturbation of the Stevens
Hamiltonian Hcgr introduced in Sec. Bl Therefore an effective Hamiltonian HXEP is
inferred restricted to the crystal-electric-field ground state. The resulting exchange ma-
trices found using perturbation theory take the same form as the ones from the 1/2-spin
model. Consequently, a map between the 16 lowest energy eigenstates of H1P? and the
16 tetrahedron states of H., is established. Analysing the diffuse scattering maps for
ThyTiyO7 provides the exchange constants Z; involved in HLP (and HIP). Using the
map established between HIP and ., and the matrix elements calculated in Eq. 5.8
lead to the exchange constants involved in the spin-1/2 model. Consequently, due to
the property of the wavefunctions of this kind of non-Kramers ion, the problem can be
mapped onto an effective spin-1/2 Hamiltonian.

The diffuse scattering map in the (hhl) plane recorded at 7' = 9 K by Gardner
et al. ] is displayed in the left panel of Fig. 5.8 In the right panel of the same
figure is the corresponding calculated diffuse scattering [@], in good agreement with
experimental data. The deduced exchange coupling constants given in Kelvin units for
the spin-1/2 model in the single tetrahedron approximation are:

Ji = —102, Jy=-04,
Js = 0.2, Jy = 0.6. (5.9)

Note that in the single tetrahedron approximation, half of the exchange paths are
omitted: the pyrochlore lattice can be decomposed into two tetrahedra networks A and
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Figure 5.9: Left: Illustration of the pyrochlore lattice where the existence of two dif-
ferent network of tetrahedra is highlighted. The network labelled A (red tetrahedra)
can be rotated by 7 along a cubic axis to recover the network labelled B (blue tetrahe-
dra). Reprinted figure with permission from Ref. E] Copyright 2015 by the American
Physical Society. Right: Calculated diffuse scattering map at T'=9 K to be compared
with the experimental data displayed in the left panel of Fig.[5.8. Reprinted figure with
permission from Ref. ,@] Copyright 2015 by the American Physical Society.

B differing from their orientation (a rotation of 7 along a fourfold cubic axis transform
a tetrahedra of network A into a tetrahedra of network B) as illustrated in Figlp.9l A
magnetic ion belongs to one tetrahedron of network A and one tetrahedron of network
B. Therefore, to compensate for the missing exchange paths, it is a fair approximation
to divide the exchange coupling constants in Eq. by a factor two. To conclude,
ThyTi,O7 can be described by an effective spin-1/2 model revealing a spin-ice configu-
ration (J; < 0). The existence of small transverse coupling terms are revealed that lift
the degeneracy associated with the classical spin-ice state. These transverse terms are
at the origin of quantum spin fluctuations, contrary to the classical spin-ice where flips
of the Ising spins only arise from thermal fluctuations. To compare with the effective
spin-1/2 nearest-neighbour exchange Hamiltonian introduced in Ref. [@] and discussed
in Sec. [LL.4], the following equations relate the exchange couplings given in Kelvin units
in the two Hamiltonians as:

1 1
I, = ——~J=17 IT,=—=F=—-0.094,
: 6v.71 + 31/5\72

For non-Kramers ion, Lee et al. @] have predicted a phase diagram by mean-field
theory at zero temperature as illustrated in Fig [5.I0. With the exchange parameters
listed in Eq. 5.10) the quantum spin-ice phase is predicted for ThyTisO5.

Note that early work succeeded in describing the spin correlations in the param-
agnetic phase at T = 9 K. In Ref. ], isotropic exchange and dipolar interactions
were taken into account within the two first crystal-electric field doublets. However,
this model predict the all-in/all-out magnetic ordering at T, = 1.8 K. For completeness,
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Figure 5.10: Zero-temperature phase diagram for non-Kramers ions predicted in
Ref. l@] Here Jy = I.., J.+ = L4, J+ = T4, and Jyo = Iy4. Note that J..
is taken to be zero. The red sphere roughly indicates the position of ThyTiyO; in
the qﬁntum spin-ice phase, using the parameters of Eq. [5.10 Picture modified from
Ref. [54].

a work very similar to the one of Curnoe [@] has been developed in Ref. ﬂﬁ], and
lead to the same conclusions. The calculated diffuse scattering intensity at 7'=9 K is
displayed in the right panel of Fig. 5.9, also in good agreement with experimental data
shown in the left panel of Fig. (.8

Experimental proofs of a spin-ice configuration have been brought out by Fennell
et al. Lﬁ] using polarised neutrons at 7" = 50 mK: pinch points have been observed
in the “non-spin flip” channel corresponding to the Ising contribution of the spin to the
neutron scattering intensity. These pinch points are characteristic of algebraic dipolar
correlations, and usually observable in classical spin-ice compounds, see Sec.[I.3l There-
fore, two-in-two-out spin configurations are at play in ThyTisO7. Besides, anisotropic
exchange interactions slightly moving the spins out of the [111] direction exist. These
transverse components have been evidenced in the “spin-flip” channel, also with alge-
braic correlations leading to pinch points at the Brillouin zone center and characterised
by a "two-up/two-down" spin configuration. These observations have recently been
confirmed in Refs. [242, [243].

5.3.2 Prediction of a magnetisation plateau

An interesting property of the spin-ice compounds has been established in Refs. ﬂﬁ,
], which predicts the presence of a plateau in the field dependence of the magnetisa-
tion when a magnetic field is applied in the [111] direction. To understand this property,
the pyrochlore lattice can be seen as a superposition of triangular and Kagome planes
when we are looking along the [111]| direction, see the left panel of Fig. B.IT} Let us
consider a tetrahedron: the magnetisation plateau corresponds to the alignment of one
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Figure 5.11: Left: Projection of the network of corner-sharing tetrahedra along the
[111] axis in order to evidence the succession of triangular and Kagome planes. Spheres
of same colour represents magnetic ions belonging to the same plane. Right: Field
dependence of the magnetisation for the classical spin-ice Dy, Tis O exhibiting a distinct
plateau at low temperatures. Copyright IOP Publishing. Reproduced from Ref. [245]
by permission of IOP Publishing. All rights reserved.

of the Ising spins in the direction of the applied magnetic field. Since this spin can
be viewed as belonging to a triangular plane perpendicular to the [111] direction, the
three remaining spins of the tetrahedron belong to a Kagome plane. They fulfil the
ice rule with two spins pointing into and two spins pointing out of the center of the
tetrahedron. Therefore, the degrees of freedom live in the Kagome planes, defining the
so-called "Kagome ice" state. This leads to a low temperatures residual entropy that
is lower than the one found in zero-field. As the field increases, the ice-rule constraint
is broken and the system chooses a configuration where the magnetisation is saturated,
i.e. three spins pointing into and one pointing out of the center of the tetrahedron, or
conversely. This property has been experimentally verified in the case of the classical
spin-ice compound Dy, Ti,O7 [245, 1246|, see the right panel of Fig. 5111

As explained in Sec. 5.3, TbsTisO7 could be a realisation of a quantum spin-ice,
i.e. an ice rule spin configuration with the existence of transverse exchange coupling
terms. Therefore, similarly to the classical spin-ice, the observation of a plateau in the
field dependence of the magnetisation when a magnetic field is applied along the [111]
direction would provide an experimental evidence of "two-in/two-out" spin correlations
restricted to a single tetrahedron [247]. Consequently, using the crystal-electric-field
parameters for HopTi,O7 [168] and rescaled for ThyTisO7, the wavefunctions of the
crystal-electric-field states are calculated to define a basis where the Hamiltonian of
interest is diagonalised. The latter takes into account the Zeeman interaction due to the
applied magnetic field, antiferromagnetic isotropic exchange (coupling Z) and dipolar
interactions. Calculations were restricted to a single tetrahedron (ITA approximation).
The calculated magnetisation curves are shown in the left panel of Fig. 512l An
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Figure 5.12: Left: Calculated field dependence of the magnetisation of ThyTi;O7 in
the single tetrahedron approximation (ITA) when B is applied along the trigonal
axis [111] for several temperature T— 20, 50, and 100 mK. Right: Same quantity
at T' = 20 mK for several values of the exchange integral Z. Data reproduced from
Ref. |247].

inflection point is predicted for T" = 50 mK whereas at 7' = 20 mK a magnetisation
plateau should appear. In the right panel of Fig. 5.12, the magnetisation plateau at
T = 20 mK is shown as a function of the applied field for different values of the
antiferromagnetic exchange coupling constant. The Curie-Weiss temperature in the
paramagnetic regime is fcw = —0.19 K. To deduce an isotropic exchange constant
between nearest neighbours, the crystal-electric-field contribution has been subtracted
of to give 63y = —0.14 K, which corresponds to Z = —0.167 K [240]. Note that a lower
value of the exchange coupling constant, Z = —0.083 K [73|, has been put forward
from the analysis of the field dependence of the magnetisation and the temperature
dependence of the magnetic susceptibility at high temperatures, i.e. neglecting spin
correlations. Nevertheless, a magnetisation plateau is expected for values |Z| < |Z.| =
0.187 K |247]. As for the classical spin-ice case, the interpretation of this magnetisation
plateau is attributed to the transition from the two-in/two-out Ising spin configuration
in a single tetrahedron to a saturated state with a "three-in-one-out" spin configuration.

These predictions have generated a lot of experimental studies searching for the
magnetisation plateau as a signature of spin-ice like spin correlations. Magnetisation
measurements have been performed by Lhotel et al. [225] and are reported in the left
panel of Fig. .13 for a single crystal of ThyTioO7. The magnetic field was applied in the
[111] direction in the plane of a disk geometry to minimise demagnetisation effects. No
evidence of a magnetisation plateau is found down to 57 mK for a magnetic field up to
8 T (not shown). Curves recorded at 57 mK and 100 mK (not shown) are very similar,
which is not predicted in Ref. [247] (see the left panel of Fig. 5.12)). However, since
anisotropic exchange is established, the isotropic exchange coupling Z used in the left
panel of Fig. to calculate the magnetisation curve could be larger, and according
to the right panel of Fig.[5.12] the predicted magnetisation plateau is expected at lower
temperatures. These experimental results are confirmed by the work of Legl et al. |224],
where a vibrating-coil magnetometer was used in order to measure the magnetisation
down to 43 mK in applied magnetic field along [111] up to 5 T. Further a.c. magnetic
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Figure 5.13: Left: Field dependence of the magnetisation of a crystal of Thy TisO; with
a magnetic field applied along the [111] direction at T = 57 mK (open red circles)
and 500 mK (full blue circles). Data reproduced from Lhotel et al. [225]. Right:
Field dependence of the real part of the susceptibility for a crystal of ThyTioO; with
a magnetic field applied along the [111] direction at T = 16 mK. The black arrows
locate the two peaks in jgdM /d By that delimit the weak magnetisation plateau. Data
reproduced from Yin et al. |226].

susceptibility measurements have been performed by Yin et al. [226] on a single crystal
of ThyTi,07 with By parallel to the three-fold axis [111]. The field dependence of
the real part of the susceptibility measured at 7' = 16 mK with an a.c. field amplitude
of 0.94 mT is displayed in the right panel of Fig. 5.I3l This quantity is a measure
of podM /dBey: the two black arrows indicate an inflection point in the magnetisation
curve and therefore the field range delimited by these arrows is ascribed to the predicted
magnetisation plateau. However, this data should be integrated over B to give a more
significant insight onto the magnetisation curve, see Sec. .3.3l

5.3.3 uSR frequency shift measurements

In this section, we report transverse-field uSR measurements performed at the LTF
spectrometer of the SuS (PSI) in the temperature range 20 < 7' < 500 mK. We refer to
Sec. for technical details. On a silver disc is deposited a mosaic of crystal plates
whose normal axis is a [111] axis: their thickness is about 1/3 mm and their lateral
size is up to 6 mm. The external magnetic field B, is applied parallel to the muon
beam which is along one of the threefold <111> axis of the crystal. Fig. 5.14] shows
a uSR spectrum recorded at T = 20 mK with a magnetic field B, = 800 mT. We
recall that the muon polarisation function is described by the sum of two oscillating
components: one accounting for the muons implanted in the sample and precessing
around the local field at the muon site Bj,., and the second for the muons stopped
in the sample surroundings, essentially the silver sample holder, which precess around
a field close to the external field. Therefore the data are described by the following
function:

ag PP (t) = ay exp(—Ax1t) cos(2mvit + @) + agexp(—Ax2t) cos(2mnt + ).  (5.11)
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Figure 5.14: A typical transverse-field uSR asymmetry time spectrum recorded at T =
20 mK for a mosaic of Thy TiyO7 crystals with B, applied along a three-fold axis and
Beyi = 800 mT. The black solid line is a fit of Eq.[5.11] to the data. Picture reproduced
from Ref. |235] with kind permission of IOP Publishing.

The transverse relaxation rates Ax; and Ax o illustrate the damping of the oscillations
and reflect the spread of muon frequencies arising from the field distribution, as already
explained in Sec. The analysis of the measured spectrum gives a; = 0.192(13)
and ay = 0.028(2). These initial asymmetries are found to be constant when varying
the magnetic field. Note that only ~ 13% of the incoming muons are stopped in the
surroundings of the sample with v = 108.46(1) MHz. This value is very close to the
precession frequency vex, = ¥, Bext/(2m) = 108.43 MHz expected for muons subject to
a field of B.y = 800 mT.

The purpose of this experiment was not to focus on the muon frequency v; but on the
normalised muon frequency shift Koy, = (11 — Vext)/Vext, introduced in Sec. [2.6.6l The
field dependence of this quantity is displayed in Figls. 15 at 7" = 20 and 500 mK. Below
Beyi = 0.6 T, an extra contribution to K., appears for data recorded at 7' = 20 mK,
compared to data recorded at 500 mK. This goes in line with the first magnetisation
curves recorded in Ref. [225] and displayed in the left panel of Fig. 5.13

Note that the corrections of the demagnetising field are complicated in our case
since the sample is not a pure ellipsoid, leading to an inhomogeneous demagnetisation
field. Consequently, we refrain to do it for our data. However, we recall the definition
of the frequency shift introduced in Sec. 2.6.6] see Eq.

Kexp = KM + HoC&D (512)

)
B ext

where ap is a constant, M is the magnetisation, and K, = K is the muon Knight
shift that arises only from the dipolar field created by the magnetic moments inside the
Lorentz sphere. This field can be defined in terms of a field dipole tensor Dﬁ‘f associated
with site r; [160]:

NL

o = po 1 SN Defml, (5.13)

41 v
™ g =1
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Figure 5.15: Field dependence of the normalised muon frequency shift K., recorded
at T' = 20 and 500 mK. The errors bars are smaller than the symbols. The data at
T = 20 mK shown by open blue circles have been measured after zero-field cooling in
increasing Bey, up to 1.5 T. Further data (close blue circles) recorded after decreasing
By from 800 to 40 mT show no hysteresis. This is in contrast to the temperature
dependence of K., measured at 60 mT after zero-field and field cooling, see inset of
the right panel of Fig.[5.4. Data at T = 500 mK shown by red circles have been recorded
after heating the sample from T = 20 mK and Bey = 40 mT to T = 500 mK, after
which the field was gradually increased up to 1.5 T. Picture reproduced from Ref. [235]
with kind permission of IOP Publishing.

where the sum runs over the Nj, magnetic moments inside the Lorentz sphere, vy is
the volume per terbium io and:

Oa 37‘?7‘?
The muon Knight shift can be expressed as:
Bext . B:h
KM:Kéip:Tp. (5.15)

ext

With our assumption,’ mf = vpp,M?, where MP? is the B8 component of the total
magnetisation M per unit volume. In the paramagnetic regime, M? = M 03,7, Where
the magnetic field is applied along the Z axis. We derive:

Ny, M
K= Ky =" (Z D) o (5.16)

1=

Therefore, combining Eq. 5.12 and Eq. 5.16l the frequency shift can be written as:

1 [ M
Koy = — D% )| —. 5.17
p /’LO ap + 47T ; r; Bext ( )

INote that we assume all the terbium ions to be magnetically equivalent, i.e. we consider only one
type of magnetic ion per magnetic unit cell. Therefore, we adopt formula valid for Bravais lattices.
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Figure 5.16: Open circles and bullets: product —Bey;Kex, = —21Av /7y, deduced from
the 20 and 500 mK data displayed in Fig. [5.13, versus Bey. The experimental points
are linked by segments. Solid line: field dependence of the terbium magnetic moment
measured at 16 mK for Bey applied along a [111] crystal direction. As explained in
the main text, the latter curve is computed from the data published by Yin et al |226].
Picture reproduced from Ref. [235] with kind permission of IOP Publishing.

Consequently, recalling that K., < 0 here, we expect the product —Kex,Bexy to be
proportional to M. This quantity is displayed in Fig. 5.16. As discussed in Sec. [5.3.2]
if there was a definitive plateau in the magnetisation, the product would be field in-
dependent in a finite field range. This is not observed. However, as indicated by the
up-arrow, a weak inflection point is present for the 20 mK data at Bey =~ 0.66 T. It
has disappeared at 500 mK. Yin et al. [226] have performed a.c. magnetic susceptibility
measurements on a crystal of ThoTipO with the external field applied along [111]. The
real part of the susceptibility, outside the linear regime, is expressed as:

. dM
e T By

(5.18)

and therefore the magnetic moment (see the black solid line in Fig. B.I6]), is deduced
by field integration of the data displayed in the right panel of Fig. [5.13] as:

Pmax oy,
m :/ — X @Bext, (5.19)
0 Ho
where B.x = 1.5 T. The black down arrow indicates an inflection point located at
Byt = 0.4 T. Note that the data were corrected from demagnetising effects according
to Ref. [248|. However, the real part of the susceptibility is plotted versus the external
field. Following the note 35 of Ref. [226], the internal field at By, = 0.59 T, i.e. the
second maximum in the curve of the magnetisation derivative, is By, = 0.53 T, i.e. a
relatively small shift of 60 mT. The geometry of our experiments gives rise to a much
more important demagnetising field. As we found an inflexion point at 0.66 T while it
is found at ~ 0.4 T in Ref. [226], we assume a demagnetising field of ~ 0.3 T" so that the
inflection point of our data and those of Ref. [226] would coincide. Therefore, our uSR
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measurements and a.c. susceptibility measurements of Ref. |226] reveal an inflection
point located in terms of the internal field at B;,; ~ 0.3 T. However, this result cannot
allow us to draw a definitive conclusion whether the magnetisation plateau exists or
not.

5.4 Conclusions

The pyrochlore compound TbhyTiyO7 fails to order down to the lowest temperatures
despite a significant Curie-Weiss constant. Spin correlations restricted over a single
tetrahedron exist deep in the paramagnetic regime. On cooling the sample, a slowing
down of the fluctuations was revealed by a large panel of techniques covering an ex-
tended time range (neutron scattering, neutron spin echo, uSR and a.c. susceptibility
measurements), suggesting that the compound would enter a cooperative paramagnetic
(or spin-liquid) state at roughly Tt, = 2 K.

Two different ground states were proposed. One is that ThyTi,O; would be an
experimental realisation of a quantum spin-ice. Pinch points evidenced by polarised
neutron scattering are a proof of algebraic spins correlations, characteristic of a spin-ice
configuration. An anisotropic exchange Hamiltonian, considering an admixture of the
ground state and the first excited crystal-electric-field level, and within the approxi-
mation of non-interacting tetrahedra, leads to the prediction of Ising spins constrained
to satisfy the ice rule, with the existence of small transverse spin interaction terms
lifting the degeneracy expected in a classical spin-ice, i.e. the quantum spin-ice state.
This model accounts very well for the diffuse neutron scattering in the paramagnetic
regime. A magnetisation plateau has been predicted when a magnetic field is applied
along the [111] direction, similarly to what is predicted and observed in the case of
the classical spin-ice state. However, neither a.c. susceptibility nor transverse field uSR
measurements were able to confirm this prediction. Only a weak inflection point in the
field dependence of the magnetisation is found at =~ 0.3 T. The model uses an isotropic
nearest-neighbour exchange constant although the pyrochlore compounds are found to
interact strongly anisotropically. As suggested in Ref. [225], increasing the mean value
of the exchange constant might decrease the temperature at which the magnetisation
plateau is expected.

A second proposal is the existence of a low-temperature tetragonal distortion along
the cubic axis, as suggested by specific heat and inelastic neutron scattering measure-
ments. An anomaly in the frequency shift of the muon spin precession revealed by
transverse uSR experiments and in the specific heat occurs at T ~ 0.15 K. The com-
pound enters a glassy state, as confirmed by d.c. and a.c. susceptibility measurements.
However, the latter experiments precludes a spin-glass transition. This anomaly could
be a signature of a Jahn-Teller transition. The broadening of the Bragg peaks observed
for T'< 20 K as well as an anomalous lattice parameter expansion [233| support this
scenario. However, these conclusions are not confirmed by our synchrotron measure-
ments and X-ray powder diffraction results of Ref. [234]. Therefore, no evidence of such
a transition is revealed, at least down to 4 K.

As pictured in the left panel of Fig. [5.4] the elastic constants decrease below =
50 K [232]. This property was also evidenced in Ref. [249] where the Young modulus
strongly decreases in the same temperature range. Therefore strong magneto-elastic
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effects are at play in ThyTi,O7 and should be considered.



Chapter 6

(zeneral conclusions

This work was dedicated to the study of geometrically frustrated magnets on a py-
rochlore lattice of chemical formula RyM507, where R is a rare earth and M = Ti
or Sn. We have focused our attention in this manuscript on the crystal-electric-field
acting at the rare earth site, the characterisation of the compound NdySny,O7 with a
large panel of bulk and microscopic measurements, and finally added some information
on the puzzling compound Th,yTisO7. In this final chapter, we sum up some important
results and discuss some perspectives of interest.

6.1 Beyond the Stevens Hamiltonian

We have first studied the crystal-electric-field acting at the rare earth site in the py-
rochlore series RoM507. The aim was to analyse simultaneously, using a simple scaling
law, published inelastic neutron scattering data and our own neutron time-of-flight
measurements in the case of the titanate or stannate compounds, respectively, in order
to determine a single set of CEF parameters. The analysis of the CEF is important in
order to understand the low temperature properties of frustrated magnets: it provides
information on the magnetic ground state through the CEF energy levels: influence or
not of the excited energy levels as in the terbium case. It also gives the character of the
spin anisotropy and the magnitude of the ground state magnetic moment: reduction of
the magnetic moment in the ordered phase, strength of the dipolar interactions. Finally,
it gives access to the ground state wavefunctions used to determine the presence or not
of transverse exchange couplings involved in the anisotropic exchange Hamiltonian for
instance. In the case of the titanate series, a reliable set of CEF parameters allows us
to describe the full set of available inelastic neutron scattering spectra and provides
spectroscopic factors in agreement with the spin anisotropy proposed in the literature.
The case of the stannate series is slightly less conclusive: a single set of CEF parameters
predicts an energy level scheme in agreement with the CEF transitions measured by
inelastic neutron scattering spectroscopy and constitutes a good starting point to the
analysis of the neutron intensities. However, we should note that a close but different
set of CEF parameters is necessary in order to analyse inelastic neutron spectra for each
investigated compound, namely ThySnyO7, HooSny,O7 and published data of ErgSnyOy.

Neutron time-of-flight measurements have also been performed on NdySnyO7. We
did not succeed to involve it in a global analysis with the aforementioned compounds
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and also did not succeed to analyse simultaneously inelastic neutron scattering spectra
covering the full CEF energy levels. Since the splitting between the ground state and the
first excited multiplets arising from the spin-orbit coupling Ay, = 236 meV is roughly
of the same order of magnitude as the overall splitting of the ground state multiplets,
i.e. the highest CEF energy level lies at ~ 110 meV, at least a mixing between the *Ig/,
ground state and the I, /2 first excited multipleiﬂ should be considered. Therefore, the
CEF Hamiltonian acting within both multiplets needs to be considered. Following the
work of Ref. [250], matrix elements within the two multiplets are computed as:

(o[ Hegpl Tomly) =Y Br(J,my|O|J,m)). (6.1)

n,m

and,

J+1
(T + 1), m o MG (T + 1m0 1) = Doyt +

D BT+ 1), m | OF|( + 1), mi ), (6.2)

n,m

where ’HSEF and HEJJE'FU refer to the Stevens Hamiltonian determined in Eq. and
acting on the ground state and first excited multiplets within the Zeeman basis |.J, m )
and |(J + 1), m41)), respectively. The J-mixing effect arising from the coupling
between the two multiplets is accounted for with the mixing Hamiltonian H™™ acting
on the ground state multiplet. However, we cannot use anymore the CEF Hamiltonian
defined in terms of Stevens operators in Eq. [B.12] since the operator equivalent method
derived from the Wigner-Eckart theorem used in App. [Blis only available within the
|J,my) basis. Here, we have to calculate off-diagonal matrix elements between the
|J,my) and |(J + 1), m(s41)) basis: we need to go back to a general expression of the
CEF Hamiltonian introduced in Eq. [B.11l and combining Eq. [B.10l and Eq. [B.12:

471'80

Hopr = ——— 3D D Yl (5,95 %). (6.3)
J

n m=—-n

where p]" is a prefactor, f"(z;,v;, 2;) a polynomial function, and the index j refers to
the sum over the 4f electrons (see App. [B). Therefore, Hé‘g’lex is computed as:

J),mix
(g HEG (T + 1), m ) =

e

dre, Z%mpml my| Z S (g, 5, 2) (T + 1), m{y ) (6.4)
n,m j

The latter equation is simplified using the Wigner-Eckart theorem in its more general
form:

'For a given ion with a 4f electric shell less than half-filled, the total angular momentum of the
first excited multiplet is equal to (J + 1) [163].
*We recall that —J <m; < Jand —J =1 <my4) < J+1
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(Jomal Y Fi g, gz, z) (0 + 1), m{py) =
j

<—1>J-m"¢2u1<J||f,?<xj,yj,zj>|u+1>( S J“), (6.5)

"
—myome My

where (J||f2(x;,v;,2)||J + 1) are coefficients tabulated in Ref. [163], and the matrix
element is the 35 Wigner coefficient. These coefficients vanish if m’; , +m; —m # 0.
Therefore, the total CEF Hamiltonian can be written in the following matrix form:

J J,mix
(J,m | HEgp| T, mly) (g HEEEO N (T + 1), m{ )

J~+1,mix J+1
(T + 1) mgn [ Hege ™21 Tml) (T + 1), men | Hege |(+1),m{, )

Note that in the case of the neodymium compound, the dimension of this matrix is
d=(2J+1)(2J +2) = 110. To compare with the approximation made in Chapter. 3]
the highest matrix dimension is in the case of the holmium ion where d = 2J+1 = 17.

6.2 Observation of spontaneous oscillations

We have reported in this work that the pyrochlore compound Nd;Sn,O; exhibits a
second-order magnetic transition at 7. = 0.91 K. Neutron diffraction experiments re-
veal an all-in-all-out spin configuration. The long-range nature of the magnetic order
is confirmed by the observation of spontaneous oscillations in zero-field SR measure-
ments. If the latter result is not surprising for a magnetically ordered compound as seen
in GdyTio07 [112] and GdySnyO~ [116], other pyrochlore compounds do not display any
spontaneous wiggles despite the presence of magnetic Bragg peaks such as YbyTiyO7,
YbySnyO7 and ThyeSnyO7. An explanation for the latter compound has been put for-
ward considering the dynamical nature of the local field jumping between two opposite
configurations [75]. Following the picture of the dumbell model introduced in Chap-
ter[Il the authors of Ref. [251] generalise in a recent paper the concept of fragmentation
of the magnetic field associated to the magnetic moments for Ising-like pyrochlore com-
pounds. Focusing on a single tetrahedron, the magnetic moment density M can be
written according to the Helmholtz decomposition, i.e. a curl-free — or divergence-full
— and a divergence-free components [251]] that is to say a transverse and a longitudinal
part of the local magnetisation:

M=VU+VxQ=M, + M, (6.6)

The first contribution M,, arises from the gradient of a scalar potential and repre-
sents the resulting magnetic charge of the dumbell model, and the second one M, the
divergence-free part, is a dipolar field. In the trivial case of the ice rule, i.e. the two-
in/two-out spin configuration, the longitudinal part of the decomposition vanishes, i.e.
M,, = 0 and we have V- B = V - M = 0. In the spin-ice case, an excitation consists
on breaking the ice-rule by flipping a spin, and thus lead to the nucleation of a pair
of magnetic monopoles. The two components of the decomposition of Eq. do not
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Figure 6.1: Illustration of the three-in-one-out spin configuration (left) in terms of the
dumbell model (middle) and Helmholtz decomposition into a static magnetic charge
modelling the long-range order and a fluctuating dipolar field illustrating monopole
dynamics. Picture taken from Ref. [25]].

vanish, as illustrated in Fig. [6.1], leading to the coexistence of a static field arising from
the magnetic charge at the center of the tetrahedron and a dipolar field illustrating the
dynamical nature of a fluid of magnetic monopoles. Then, when two monopoles are nu-
cleated, i.e. the all-in-all-out spin configuration, the divergence-free part is suppressed
and only the longitudinal part of the decomposition survives, i.e. a local static field
arising from the central magnetic charge leading to a magnetic long-range order, with-
out a dynamical dipolar field. Therefore, since the muon spin precession occurs around
only a static field, spontaneous oscillations are observed as in the case of NdySnyOr.
On the other side, the fluctuations of the dipolar field driven by the magnetic monopole
dynamics could lead to the absence of the expected oscillations in zero-field pSR mea-
surements. Let us focus on the case of YbyTis0O7 and YboSnoO; where the spontaneous
magnetic moment mg,(0) has been found to lie at 44° and 65° with a magnitude of 1.15
and 1.1 ug, respectively, see Chapter [[l The projection of the spontaneous magnetic
moment over the [111] axis lead to mq11(0) = 0.83 and 0.46 up, respectively. Hence,
the magnitude of the transverse part of the Helmholtz decomposition is not negligible
and may explain the absence of spontaneous oscillations in the magnetic ordered state.
In contrast, mi11(0) = 5.3 up for TheSnyO7 and the origin of the dynamical nature of
the local field could not be supported with this interpretation.

Note that we do not discuss the case of EroSnyO7 since the long-range nature is
not fully established at the time of writing, and EryTisO; where the shape of the uSR
spectra is misunderstood and could be associated to a complex field distribution at the
muon site.

6.3 Origin of spin dynamics

In the case of Ising spins with antiferromagnetic interactions, the all-in-all-out magnetic
structure has been predicted with a magnetic propagation wavevector k., = (0,0, 0),
see Chapter [I, in agreement with our neutron diffraction analysis on NdsSnyO7. How-
ever, this picture is barely compatible with first, the persistence of spin dynamics re-
vealed by the temperature independent behaviour of the spin-lattice relaxation rate
inferred from pSR experiments and ascribed to one-dimensional spin loops excitations,
and secondly with the magnon-like dependence observed in the low temperature range
of the specific heat.

NdySnyO7 is a Kramers ion, i.e. energy levels are at least double degenerate. Hence,
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the ground state doublet can be described by an effective spin S* (u = x,y, z) |L63].
As mentioned in Chapter B, wavefunctions of a given doublet are related by an odd
time reversal operator. However, the nature of the Kramers ground state doublet is
defined by the symmetries of the local point group at the rare earth site, here D3y which
are generated by a threefold symmetry axis C5, a mirror M and an inversion center I.
Looking how the effective spin operator is transformed under these symmetries defines
the nature of the doublet. In most cases, these transformations operate as follows:

Cs, 0 S*— S*
M: S*— —5" (6.7)

Therefore, the effective spin behaves as a magnetic dipole and the ground state doublet
is called dipolar. The authors of Ref. [252] have considered an other kind of Kramers
doublet, the dipolar-octupolar doublet where the symmetries of the point group act on
the effective spin in the same manner as defined in Eq. except for the y component
of the effective spin under a mirror operation:

M: SY—Sv. (6.8)

The authors of Ref. [252| have expressed SY in terms of an octupolar tensor, hence
the doublet denomination. Moreover, they have shown that in the case of the point
group Dzg, if J = 9/2 or 15/2, if the crystal field parameter B2 < 0, and if this pa-
rameter is larger than the other crystal-electric-field parameters involved in the Stevens
Hamiltonian of Eq. B.I2, then the Kramers ground state is a dipolar-octupolar dou-
blet. As seen in Chapter Bl this is the case of Dys(Ti,Sn)207. Whether NdySnyO5 is
a dipolar-octupolar ground state doublet or not is an open question. Despite the fact
that we do not succeed to include this compound in our global analysis looking for
a single set of CEF parameters, and since considering the effect of excited multiplets
was out of the scope of this work, we may assume that Nd,SnyO7 is closely related to
NdsIrsO7, the latter compound fulfilling the condition of a dipolar-octupolar Kramers
ground state [253].

The aim is to diagonalise the general anisotropic exchange Hamiltonian introduced
in Eq. in the specific case of a dipolar-octupolar doublet. This Hamiltonian can
be reduced by means of the symmetry properties of the effective spin to the so-called
XYZ model:

Hxyz = Y JoS5ST + J,SYSY + 1.S7 S5, (6.9)
7

where Z,, = J,, . = —i(jx + jy), Tiy = i(jl, — jy), and Z., = 0. Therefore, using
quantum Monte Carlo calculations, the authors of Ref. [252] have computed the XYZ
phase diagram, illustrated in Fig.[6.2l In a specific range of parameters the all-in-all-out
phase is predicted, thus coexisting with the presence of transverse exchange coupling
constants and could slightly tilt the spins away from its Ising direction, explaining
the dynamics observed in the ordered phase. Therefore, the determination of these
exchange parameters should be interesting for NdsSn,O7.
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Figure 6.2: Phase diagram resulting from the XYZ model. The dotted line refers to the
XXZ model introduced by Hermele et al. [54], see Chapter[l. All-in-all-out, quantum
spin ice, and octupolar antiferromagnetic phases are predicted. Reprinted figure with
permission from Ref. [252]. Copyright 2015 by the American Physical Society.

6.4 A magneto-elastic mode: solving the ThbyTi,O7
case

We have seen in Chapter. [ that no broadening of Bragg peaks exist down to T'=4 K
and thus the Jahn-Teller transition expected at lower temperatures is not confirmed.
The scenario proposing that ThyTisO is a realisation of a quantum spin ice is put in a
difficult position since no clear evidence of a magnetisation plateau has been evidenced.
Using polarised neutrons on a triple-axis spectrometer, a recent work [236] has revealed
the existence of a dispersive excitation slightly above the first excited crystal-electric-
field energy level at T" = 50 mK. This mode carries magnetic transverse fluctuations
in the wavevector region (220) whereas a transverse phonon-like mode contributes at
higher g-values. Since these two contributions overlap, the authors of Ref. [236] suggest
they have a common origin, i.e. a magneto-elastic mode (MEM) as it carries both
magnetic and structural fluctuations.

6.5 New perspectives: the spinel compounds

An interesting direction to prospect is the study of spinel compounds of chemical for-
mula CdRy X, where R is a lanthanide and X = S or Se. They have the same magnetic
frustrated lattice as the pyrochlore compounds, i.e. magnetic ions sit on a corner-
sharing tetrahedra network, but the local environment around the rare earth ion is dif-
ferent leading to different crystal-electric-field properties, see the left panel of Fig. [6.3]
For instance, whereas the pyrochlore counterpart EryTisO; exhibits a magnetic long-
range order at T, = 1.2 K, see Chapter [Il a spin-ice behaviour has been discovered in
CdErsySey [254] since no long-range order is evidenced by specific heat measurements and
the residual magnetic entropy is in agreement with the prediction of the two-in/two-out
classical spin ice ground state. Hence, the spin anisotropies in spinel compounds that
arise from the crystal-electric-field seem drastically different to those of the pyrochlore
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Figure 6.3: Left: local environment at the rare earth site of spinel compounds of chem-
ical formula CdRyX,, where R is a lanthanide and X = S, Se. Cd, R, and X are
displayed by green, blue, and red spheres respectively. Right: temperature depen-
dence of the specific heat measured on CdHo,S, showing the magnetic transition at
T. = 0.87 K, and displayed on the left ordinate axis by half-filled blue circles. The
temperature behaviour of the spin-lattice relaxation rate deduced from zero and 5 mT
longitudinal field uSR measurements is reported on the right ordinate axis with empty
and full red circles, respectively. Picture modified from Ref. @]

compounds. Therefore, looking for new exotic magnetic ground states, a systematic
study of the compounds CdyR2X, (where R = Ho or Yb and X = S or Se) has been
undertaken during this PhD thesis including bulk and pSR measurements. As an ex-
ample, if holmium based pyrochlore compounds are undoubtedly classified as classical
spin-ice, CdHo,S, shows a magnetic transition at 7. = 0.87 K. In addition, and simi-
larly to NdySnyO7, unidimensional spin loops excitations are argued to be at the origin
of spin dynamics, since the spin lattice relaxation rate inferred from pSR experiments
is temperature independent, as shown in the right panel of Fig.



Appendix A

Crystallography of the pyrochlore
compounds

Details of the crystallographic structure of the pyrochlore compounds are provided in
this appendix. We recall that magnetic ions lie at the vertices of a corner-sharing tetra-
hedra network giving rise to a realisation of a three dimensional geometrically frustrated
lattice. The generic chemical formula is Ry M5(01)6(0O2) — the two nonequivalent crys-
tallographic sites for oxygen atoms are labelled O1 and O2 — where R is a magnetic
ion, a rare earth, and M = Ti or Sn in this work. The pyrochlore compounds crys-
tallise in the face centred cubic lattice (fcc), labelled F' in the Bravais notation. The
space group is F'd3m, where the rare earth ions occupy the trigonal Wyckoff site 16¢,
characterised by the local point group Ds;. We have chosen the origin of the lattice at
the site symmetry .3m, and at the Wyckoff site 16¢ of the atom M: this corresponds
to the origin 2 in the International Tables for Crystallography. The list of the atomic
positions in the Wyckoff notations, the local site symmetry and coordinates in the unit
cell are given in Tab. [A. 1l To recover all the atomic positions in the unit cell, one has
to apply the lattice translations associated to the fee structure (3,3,0), (3,0,3), and
(0,1,%). The unit cell gathering all the atoms is shown in the left panel of Fig. [A1l
Oxygen atoms O1 located in the 48 f site in Wyckoff notations have a parameter = to be
defined, i.e. x &~ 1/3 in our case, and are rare-earth neighbours located in the vicinity
of a plane perpendicular to the local trigonal [111] axis, as illustrated in the right panel
of Fig.[A.1l where the local environment at the rare earth site is shown. We will define
this direction as the quantisation axis z. In Fig. is displayed a projection along the
[111] axis of the pyrochlore structure revealing a sequence of alternatively triangular
and Kagome planes, where the magnetic ions sit.

161
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Atoms | Wyckoff sites | Site symmetry coordinates
_ 111 13 3 1 13
R 16d 3m 333 1,1,0 Z’O’Z 0,171
- 311 113 131
M 16¢ .3m 0,0,0 712 121 217
11 - 315 1 1 5 _+3 1 11
T,—,— T+-,=,— - T,= - T+ —,= 1
8’8 4’8’8 88 8’ 4’8 8’8’
15 3 7 13 7T 333
1 4 2. =T+ - - —,= =T, ErLr
© 8 mmn g3t ®'Tas ®Ts TTIwRE
L 173 T3 1 333
2’8’8 887 2 887 4
. 333 151
02 8b 43 — == — =y
" 88’8 88’8

Table A.1: Atomic positions in Wyckoff notations, point symmetry and Cartesian co-
ordinates of atoms belonging to the primitive cell. The two types of oxygen atoms are
labelled O1 and O2. Note that x, which is used to specify the O1 oxygen coordinates, is
a free parameter. Both the rare earth ions R and the atoms M are located at positions
of symmetry 3m. We take the atom M at the origin of the lattice.

Figure A.1: Left: Crystallographic structure of the pyrochlore compound Ry M5O7. The
blue, red and green spheres show the rare earth magnetic ions, the atoms M ='Ti or Sn,
and the oxygen atoms, respectively. Right: Local environment at the rare earth site.
The threefold symmetry axis [111] is the quantisation axis.
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Figure A.2: Projection of the pyrochlore
structure along the [111] axis: in this
panel is only shown magnetic ions belong-
ing alternatively to triangular (red and
green spheres) and Kagome (blue spheres)
planes.




Appendix B

The point charge model

In this appendix, we focus our attention on the determination of the crystal-electric-
field Hamiltonian Hcgp. The crystal-electric-field acting at the rare earth site results
from the surrounding electric charge distribution, see the left panel of Fig. Bl The
symmetry at the rare earth site is defined by the point group Ds,. The z axis is taken
to be the local trigonal axis [111]. We will assume that the electric field distribution
results from point charges surrounding the magnetic ions. The CEF potential taken at
a lattice point (r,0, ¢) close to a magnetic ion is calculated as:

q;
VCEF(T,Q, ¢) = Z |R — I'|’

(B.1)

where the sum runs over the surrounding charges located at a distance R; from the rare
earth site. The origin is taken at the rare earth site. Fig.[B.1lsketches the different spa-
tial variables of the problem. Thus, within the assumption that R; > r the Coulombic
potential can be developed as [255]:

1 ="
m = Z an«ios wi), (BZ)

n=0
where P,(cosw;) are the Legendre polynomials, w; is the angle between R; and r and
related to their spherical coordinates as:

cosw; = cos B cos B; + sin O sin ; cos(¢p — ¢;) (B.3)

Thus, using the formula known as the spherical harmonic addition theorem, see for
instance Ref. [256], Legendre polynomials are related to the spherical harmonics as:

n

D (=1, (6, 60) Y, (6, ). (B.4)

m=—n

47

P,(cosw;) = @t

The Legendre polynomials are defined with the Rodriguez formula [256]:
1
~2npldan

where here z = cosw;. The associated Legendre polynomials are defined as:

P,(2) (2 — 1), (B.5)

PM(z) = (—~1)™(1 — 22)m/26i—zpn(z). (B.6)
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Figure B.1: Local frame with the origin taken at the rare earth site. The z axis is
parallel to the [111] direction, a local trigonal symmetry axis at the rare earth site.
The crystal-electric-field potential is calculated at the lattice point (r,0, ¢), displayed
in blue. The coordinates (R;,0;, ¢;) of a surrounding electric charge are shown in red.

Note that P,(z) = P%(z). Thus, the spherical harmonics result from the associated
Legendre polynomials as [164]:

Y (0, ¢) = (—1)0mtimb2 [(Qnirjmn;')';"“!} 5 (271r)% P} (cos§) exp(img).  (B.T)

Therefore the CEF potential is written as:

Verr(r,0,¢) = Z Z ry Y0, ¢) where,

n m=-—-n

4 i _

()

7

Looking at Eq. [B.7, imaginary coefficients are present. In order to avoid them later, we
recast Eq. [B.8 in terms of tesseral harmonics Z!, defined as:

ZO — YO
+1
ZT:::|WL| _ 7[Ynflml 4 (_1)\m\yrlm|]7 (B.9)

where we use the convention y/—1 = i. Therefore, Eq. transforms into:

Vorr(r,0,6) = Y Y " umZi(0,¢),  where

n m=-—-n

am qi
= Z™(0;. d;). B.1
T = 3 Gy e o 6099 (B.10)
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Then, the perturbative CEF Hamiltonian acting on the magnetic ion is:

Hepr = (15,05, 8;), (B.11)

where the summation runs over electrons of the unfilled 4 f electronic shell.

We focus in the following on the ground state multiplet defined by the basis | L, S, J,m).
In order to calculate matrix elements of Hcgp within this basis, we use the operator
equivalent method which derives from the Wigner-Eckart theorem [163]. The tesseral
harmonics can be expressed in terms of Cartesian coordinates:

Z an ]7¢] Zp?fm x]ayjaz]) (B12)

J

where pI is a prefactor and f}(z;,y;, ;) a polynomial function (see Tab.8 of Ref. [164]
for instance). The expressions of Z™ can be found for instance in Ref. [164]. The
method consists in replacing coordinates z, y, and 2z by the operators J,, J,, and Jz
Note that we must take into account the noncommutation of these operators. Therefore,
products involving for instance xy must be replaced by a linear combination of J,J,,.
Consequently, we have:

(L, S, J,my| > "2 (05, ,)|L, S, Jymy) = O,(r") (L, S, J,my|OF| L, S, J,my),
j
(B.15)

where ©,, (denoted in Ref. [164] as «;, B; and ~; for n = 2,4, 6, respectively) are the
Stevens multiplicative factors given in Tab. [B.I (r") is the expectation value of the
nth power distance between the nucleus of the magnetic ion and the 4 f electronic shell.
The latter has been computed in Ref. [257] and is listed in Tab. [B.2l

The Stevens operators are labelled O] and are expressed in terms of powers of .J,,
Jy, and J_. As example, we focus on Z3:

Z r279(0;, ¢;) = Zf2 (%}, 95, %) i\/g(?)z)—r?) = 0,(r*)[3J2—J(J+1)]. (B.16)

Therefore, the CEF Hamiltonian can be expressed in terms of Stevens operators:

Hopr = Y _[A7(r™)0,]O7 (B.17)

nm

'Rather than using J, and .J,, we introduce the raising and lowering spin operators defined as:

J4
J_

Jo + iy,
Ty — i, (B.13)

Therefore, matrix elements can be computed as:

J4|L, S, J,m.)
J_|L, S, J,my)
Jz|LaSa Jam.]>

\/J(J+ 1) - mJ(mJ + 1)|L5 Sa Ja my+ 1>7
VI +1) —my(my —1)|L, S, Jmy —1),
mJ|L,S, J, mJ). (B14)
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Rare earth Pr3+ Nd3+ Th3* Dy3*
Oy(—) —2.101.1072 | —6.428.107% | —1.010.1072 | —6.349.1073
O4(—) —7.346.107% | —2.911.107* | 1.224.10~* | —5.920.107°
Os(—) | 6.099.10°5 | —3.799.10~° | —1.121.10~% | 1.035.10~°
Rare earth Ho*" Er’* Tm?" Yb3*
0,(—) | —2.222.10° | 2.540.10° | L.010.10°2 | 3.175.10 2
O4(—) | —3.330.107° | 4.440.10° | 1.633.10~* | —1.732.10°3
O¢(—) —1.294.107% | 2.070.107% | —5.606.107¢ | 1.480.10~*
Table B.1: Stevens multiplicative factor ©,, for some rare earths of interest [258].
(r"y(ag) | Pr3* | Nd* | Gd3* | Tb** | Dy*" | Ho®" | Er*"™ | Tm?" | Yb*"
(r?)(a2) | 1.086 | 1.114 | 0.8671 | 0.8220 | 0.7814 | 0.7446 | 0.7111 | 0.6804 | 0.6522
(rY(ad) | 2.822 | 2.910 | 1.820 | 1.651 | 1.505 | 1.379 | 1.270 | 1.174 | 1.089
(r%(a) | 15.73 | 15.03 | 7.831 | 6.852 | 6.048 | 5.379 | 4.816 | 4.340 | 3.932

Table B.2: List of the expectation values of the nth power distance between the nucleus
of the magnetic ion and the 4f electronic shell for some rare earths of interest. They

are expressed in atomic units (ap = 52.9 pm). Data are taken from Ref. |257].

where we have introduced:

AT = —

n

471'80

e

m

Pn Y

471’8

Z 2n—|—1 "+1)

( Z7¢Z)

(B.18)



Appendix C

Neutron absorption correction

Here are presented how the neutron absorption has been taken into account in the
neutron time-of-flight experiments. The powder samples fill an annular sample holder.
We first introduce the case of a rectangular sample since, in the following, we will con-
sider an elementary rectangular section to calculate the absorption in a more complex
geometry.

C.1 Rectangular geometry

First we consider a rectangular sample of thickness d. An incident neutron with a
wavevector k; is scattered at the position x with a wavevector kg, see FiglC.Il

Assuming a scattering angle ¢ = 0, the absorption correction factor is calculated as
the inverse of the transmission factor A = I—IO [259]:

1 [ , e ¥d_ g—xd
A== Yz -3 (d—a:)d - = C1
d/o ©° YU sy (C.1)

where ¥ and Y’ are respectively the incident and final total absorption cross sections
defined as: N X

L=—Lr= o, C.2

o 18 Z €%, (C.2)

where Ny is the number of formula units in the cell of volume vy, f is the filling factor
defined as the ratio of the powder density over the crystal density, o, ; is the absorption
cross section of atom ¢ contained ¢; times in the chemical formula. Note that A\ = A
(in A in the formula) for the calculation of ¥ and A = ¢ for Y.

C.2 Annular geometry

One of the advantages to choose a annular geometry is that the angular dependence of
the absorption correction factor is very small, as shown by simulations. We will neglect
it in the following which permits to calculate analytically the absorption correction
factor. A section of a half-cylinder is displayed in Fig. We first consider an
elementary area with a length d where the neutron scattering process occurs. The
sample mass has been calculated such that the probability of neutron scattering is lower
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ki

Figure C.1: Neutron scattering in a rectangular sample.

than 10 % and therefore multiple scattering processes are neglected. As Ry, — Roui, wWe
estimate the elementary section to be rectangular and the absorption correction factor
is then calculated as the inverse of the transmission factor o/ = [ a(y)dy, where a(y)
is the elementary rectangular transmission factor calculated with the help of Eq. [C1l
Two cases are considered, see FiglC.2t either the neutron passes through the sample
without discontinuity (1) or not (2). In the first case, the neutron path is calculated as:

di(y) = 2R3y — v? (C.3)

In the second case, two situations have to be taken into account whether the neutron
is scattered in its first or second path in the sample. In both cases the neutron path is

calculated as:
dZ(y) =L= V Rgut —y? - R12n - y2 (04)

Then, integrating over the half-cylinder, we get the transmission factor:

2 Ry d e_El(\/Rgut_yz_\/Rizn_y2) _ 6_2(\/R3ut_y2_\/Ri2n_y2)
m(R2, — R2) /0 Y > -

out ~ ‘Yn

% 6_2 (\/Rgut —y2— \/Ri:)n_y:))

(o)

[ W EVBTNET)  SVRTART) o m m

IR
0
Rous =20\ RZ,—y? _ =25/ R%,—y?
o[y (C5)
Ri =
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L d, 2

Ri ‘
Rout

Figure C.2: Scheme of a section of an half-cylinder where neutron scattering occurs in an
elementary surface (red). Ry, and R.y are the internal and external radii, respectively.
The index (1) and (2) refer to the two possible neutron paths, as explained in the text.

The first and second integrals of Eq. account for the neutron path labelled (2)
in FiglC2l Two integrals are needed to take into account whether the neutron is
inelastically scattered the first or second time it encounters the sample. The third
integral accounts for the neutron path labelled (1). Thus Eq. is simplified as:

2 (R DY,

out

A 1 { /Rin ] 2 (VB R) (VR R P)
2 p2y Y
- R12n) 0

dy (C.6)

Rowt  o=25'\/R2,—y® _ ,—28\/R%,—v°
_|_
Rin 2 - 2/



Appendix D

Complements to magnetic diffraction

D.1 Elements of group theory

In this section, some basic concepts of group theory applied to the determination of the
magnetic structure of a pyrochlore compound are introduced.

In the paramagnetic phase, magnetic moments are disordered but magnetic fluc-
tuations exist at short length and are classified by modes compatible with the crystal
symmetries. When a compound undergoes a second-order magnetic phase transition,
according to the Landau theory, one of these modes is selected while the others vanish.
Using group theory, to each mode corresponds an Irreducible Representation (IR) of
the group symmetry. Thus the symmetry in the ordered phase is lowered to a subgroup
of the crystallographic group.

The pyrochlore compounds crystallise in the face-centred cubic lattice (Fd3m space
group). This space group gathers 48 symmetry operations g;. Considering a magnetic
propagation wavevector ky., = (0,0,0), the subgroup Gy, called the little group is
determined by gathering all the symmetry operations leaving ky,,, invariant, i.e. it is
the whole space group Fd3m. With the help of Kovalev’s book [260], we find the IR
' where 1 is the order of the representation and v an arbitrary index to label the
different IRs. Note that in this book are actually tabulated the loaded representations
%) defined as:

dz(/“) (9:) = dl(/“) (9:) exp(—Kmag-h), (D.1)

where d%"” (g;) and d (g;) are respectively the matrix representation of the symmetry
element g; in the representation F,(,“ ) and fff‘ ), and h represents the translational part
of the symmetry operator to which ) (g:) is associated [261]. Gy can be decomposed
into ten one-, two- or three-dimensional IR i (n=1,2,3). Calculating the trace of
the matrix representations of all the symmetry operators written for a IR permits to

extract the character Xp of the considered IR.

On the other hand, we determine the magnetic representation I'(Gy,) of Gy, describing
the results of the symmetry operators on the components of the magnetic moments.
As the crystallographic cell contains four magnetic ions, the 48 symmetry operators are
described by matrices of dimension 4 x 3 = 12. To get the character table of I'(Gy),
we calculate the trace xr for each matrix representation of symmetry operators. This
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IR | basis Atom j =1 Atom j = Atom j = Atom j =
vector
My My My | My My My | My My My | My My My
Iy | Uy 1 1 1 -1 -1 1 -1 1 -1 1 -1 -1
I's | Wy, 1 e e | -1 eF 5 | -1 % F 1 e %
2im 4in | 5im dir | sim in 2im in
Vs |es 1 3 |es —1 es |es 1 es |es —1 es
Iz | Wy 1 -1 0 -1 1 0 1 1 0 -1 -1 0
W5 ;i 0 1 -1 0 1 1 0 -1 -1 0o -1 1
Wi | —1 0 1 -1 0 -1 1 0 -1 1 0 1
Ly | W7 1 1 0 -1 -1 0 1 -1 0 -1 1 0
Wg j 0 0 1 0 0 1 0 0 1 0 0 1
W j 0 1 1 0 1 -1 0 -1 1 0o -1 -1
Ui 1 0 0 1 0 0 1 0 0 1 0 0
Uy 1 0 1 1 0 -1 -1 0 -1 -1 0 1
\EPY 0 1 0 0 1 0 0 1 0 0 1 0

Table D.1: The non-normalised basis vectors associated to the IRs using the BasIREPS
program [13()]. The rare-earth atoms 1, 2, 3 and 4 are located respectively at positions
(@y.2), (v + T, —y+12+5), (ot pyt+g—z+]) and (@45, —y+ 3, -2+ 7).

representation is reducible if

S el A L 02)

where d is the order of Gy, (in our case, d = 12). Expressing the matrix of I'(Gj) in a
block form permits to decompose it along the allowed irreducible representations .

T(Gy)=> a,IP, (D.3)
with )
ay, = E Z XF<gi)X;l(/u) (gi)v (D4)
9i€GY,

which denotes the number of times a IR appears in the decomposition. In the case
considered, we get:
T(Gy) = 1T + 11?4118 4 o1®), (D.5)

IR T's, T's, I'; and I'g are respectively of dimension 1, 2, 3 and 3. Thus the basis vectors
U, ; (v labelling the basis vector and j referring to the atom considered) of each IR
are calculated with the projection operator formula [261, 262]. These group-theory
calculations are accomplished for instance by the BasIREPS [130] or SARAh [263]
programs. The basis vectors U, ; of each IR of interest are listed in Tab [D.1l
The magnetic moment m; at site j is a linear combination of the basis vectors ¥, ;
of the IR of interest. Recalling that ky.e = (0,0,0), when the components of ¥, ; are
real numbers,
m; = Zauq]w” (D.6)

I
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where a, are real numbers to be determined. There are as many p values as the number
of ¥, ; vectors in the selected IR. For example, ;1 runs from 4 to 6 for the I'; IR; see
Table[D.Il In the case where the components of ¥, ; have imaginary parts, the magnetic
moment being a real quantity, we have to introduce a corresponding basis vector for
propagation vector —Kk., (see, e.g. Ref. [137]) with

m; = Z % [QRG{\IIE‘"@} cos(—27mKpag - T) + QIm{\Ifl;m-ag} sin(—27mKpag - T)] , (D.7)

] 7.]
I

where T is a lattice translation vector. Since here kg = (0,0, 0):
kma
m; = Z a,Re{V "}, (D.8)
o

where a, are real numbers.

D.2 BasIREPS vs SARA

For the sake of clarity, we report here some minor differences in the use of the two
programs previously cited.

For a magnetic ion placed in (z, vy, z), BasIREPS calculates the positions of the three
other magnetic ions in (—z + %, —y+ i, z+ %) (—x+ i, Y+ %, —z+ %), and (z+ %, —y +
%, —z+ i) for atomic sites labelled 1, 2, 3 and 4 respectively. Using SARAh, with the
same labelling, the three other magnetic ions are located in (x + %, —y + %, —z+ i),
(—z+1,y+31,—2+2)and (—z+ 2, —y+1, 2+ 1) (atomic sites 2 and 4 are inverted).
Furthermore, for IR T's, I'; and TI'y, the basis vectors ¥* given by SARAh are a linear
combination of basis vectors ¥ given by BasIREPS:

(U5 = (¥, — Uy), Ug = =g+ 20y,
U = Wy + Uy, Ug, = Uy + Uy,
Uy = —Us, Uy, = —Uq + 20, (D.9)
\Ilg = _\1167 \Ilflu = \I,7 + \1187 '
\I/g = —Wy, \11‘192, = -V, 4 2Uq,

| U2 = Uy Ty,

D.3 Analytical evidence for IR I';5 selection in NdySn,O7

In the following, using analytical computations we show that only the I's IR can provide
a proper description of NdySn,O; magnetic diffraction data. Our derivation is based
on the experimental fact that a large magnetic intensity is observed at Bragg reflection
(220), while no magnetic intensity is found at positions (111), (200), and (400) (see left
panel of Fig. IZE)

We first recall the definition of the magnetic structure factor Fy,,5(q) introduced in
Eq. 28 when only one type of magnetic ion is present as in our case,

Fmag(q) = pfmag(q)smag(q)’ (DIO)

!Magnetic reflections (111), (200), (220), and (400) are expected at angles 20 = 23.9, 27.7, 39.5,
and 57.1 degrees respectively.
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where the magnetic scattering length p is defined in Eq. 215 and we have introduced:

Smag(q) = Z m;™* exp(iq - 1;) exp(—W;(q)). (D.11)

J

Here r; labels the j magnetic ion position in the unit cell. We have introduced the mag-
netic form factor fi..(q) of the magnetic ion. The Fourier component of the magnetic
moment m?mag has been introduced in Eq. We will neglect in the following the
Debye-Waller factor exp(—W;(q)). Obviously the computed scattered intensity does
not depend on the choice of the origin for the atomic positions. Therefore, up to the
end of this section we take a rare-earth ion at position (0,0,0). From the site positions
mentioned in the caption of Table[D.d] and after applying the lattice translation of the
face-centred-cubic structure, the three other magnetic ions are in the relative positions
(3,%.,0), (5,0,1), and (0,1,1). Note that for the sake of simplicity the direct lattice
coordinates are given here in units of ay,; and those in the reciprocal lattice will be
expressed in units of 27 /a;,. We also recall that the magnetic cross section is only
sensitive to the components of F,,.(q) perpendicular to q, i.e. to the component of
Smag(q) perpendicular to q since Fy,a.(q) and Sy..(q) are collinear.

We begin with the I's TR. We note that the basis vectors associated to this IR have
complex number components; see Table [D.1l Applying Eq. [D.8 together with Eq. [D.11]
for g = (111) we compute

2(12 — as
Sinag(111) = | —as + 2as | . (D.12)
—agy — asg

Except for the trivial case a; = a3 = 0, Syag(111) is never collinear to (111). Therefore,
a non vanishing magnetic intensity is expected at the scattering vector q = (111) in
contrast to the experimental observation, ruling out the I';5 IR.
Looking at the I'; IR, we write m;{m‘"‘g = a4V, + asVs; + ag¥s; (Eq. [D.0). For
q = (200), we compute
0
Smag(200) = | —4ay | . (D.13)
4(16

Unless ay = ag = 0, the vector Sy,(200) is perpendicular to (200), yielding magnetic
intensity. Since no magnetic intensity is experimentally observed at reflection (200), we
must set ay = ag = 0. Then only the basis vectors U5 ; are involved. Let us compute
Smag(q) at g = (111). We get

0
Smag(111) = | 2a5 | . (D.14)
—2&5

Obviously, Syag(111) is not collinear to (111). This implies a non vanishing magnetic
intensity at this g-value, in contrast to experimental result. Therefore the magnetic
structure cannot be represented by the I'; IR.
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We now consider the I'g IR. We write rn;(mag = a7Wr;+ag¥Wsj+agWo;+anVi; +
CLH\I/H’]' + &12111127]'. Then at q = (200),

0
Snag(200) = [ 4a; | . (D.15)

4(111

Since no intensity is measured at this Bragg position, we set a; = a;; = 0. Considering
now the q = (020) reflection which would give intensity at the same angle as q = (200)
in our powder measurement, we deduce ag = 0.

At q = (400) we calculate

4ayg
Smag(400) = 4(112 . (D]_G)
4(18

Since no magnetic intensity is detected at this position, we derive ag = a1 = 0. If we
add the condition that no intensity is observed at q = (040) we have a;o = 0.

mag

Altogether, the magnetic moments m;{ vanish. Hence the magnetic structure of
Nd,Sny,O7 cannot be described by the I'g IR.
We are left with the I's IR. According to Table [D.I] and Eq. [D.6] m;("‘ag =¥y,
For q = (111) we get,
1
Smag(111) =2a; [ 1| . (D.17)
1

Hence Syag(q = (111)) is collinear to q. This is also the case for all the wavevectors

equivalent to q = (111), e.g. @ = (111). For the q = (200) and symmetry equivalent

positions we also find that S,,,.(q) is collinear to q. Concerning q = (400) and equiva-

lent reflections, Sp.s(q) = 0. Therefore no magnetic intensity is expected at positions

(111), (200) and (400) in the case of the I'; IR, in accord with the experimental result.
Now, for q = (220) we compute

Smag(220) = 0 |, (D.18)
4(11

which is perpendicular to q. A similar results holds for the Braggs reflection equivalent
to (220). Therefore the magnetic neutron intensity will not vanish for this wavevector
since q is obviously perpendicular to Sy..(q).



Appendix E

Complements to uSR

In this appendix, we give some details about the spin-lattice relaxation rate Az involved
in the analysis of SR experiments. In the following, the Z axis refers to the direction
of the muon polarisation, see Sec2.6

E.1 Derivation of the spin lattice relaxation rate

From the strong collision model, the polarisation function Py(t) is controlled by the
following integral equation:

Py(t) = P (t) exp(—v.t) + I/c/o Py(t — )Py (1) exp(—v.t'), (E.1)

where v, is the field correlation rate. In the case of a static Gaussian field distribution,
with a field variance A%, the longitudinal static polarisation function is given by the
Kubo-Toyabe function [160]:

(E.2)

VALt
2 M

1 2
Py(t) = 3 + §(1 — fyiA?Gt?) exp (—

where ~y, = 8.51616 x 10® rad s™* T~! is the muon gyromagnetic ratio. In the motional
narrowing limit, i.e. v, > v,Aq, Eq. [El becomes:

Py (t) = exp(=Azt), (E:3)

where the spin-lattice relaxation rate is Ay = 2y.A%7, and 7, = 1/v,. A physical
interpretation of Az is given in Sec. In the case where a longitudinal field B =
wy/v, is applied, the longitudinal polarisation function remains an exponential function
within the extreme motional narrowing limit, i.e. v.t > 1 and the spin-lattice relaxation
rate is given by the Redfield formula:

Q’ViAZGVc

2 2
W;HFVC

)\Z<w,u = fY}LBEXt) = (E4)

Within a quantum approach, the longitudinal polarisation function is expressed
as [160]:
Pg(t) = exp[—¥z(1)], (E.5)
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where:

Uy(t) = 2%272/0 (t — 7) cos(wyt) (XX (1) + @YY (1)]dr, (E.6)

where (X,Y) refers to the coordinates perpendicular to the Z axis. The symmetrised
correlation function of the fluctuating part of the local magnetic field at the muon site
is introduced as:

(1) = <{5Bloc( D0Bjoc}), (E.7)

where {a,} = {X,Y,Z} and the symbol ({AB}) stands for the thermal average of
the symmetrised correlation function of operators A and B defined as:

2({ABY) = (AB) + (BA). (E.8)

The fluctuations of the local field § By, () are responsible for the transitions between the
two muon states, see Fig .19, From EqlE.6], the approximation that the characteristic
time of the spin correlation is much shorter than the experimental time window, i.e.
T < t, and assuming that ®*(¢) are even functions of time, leads to Uz (¢) = A\t with:

2

5 h dr [N (1) + @YY (7). (E.9)

—00

Az =

Therefore, Eq. [E.9 can be written in terms of a time Fourier transform:
Ay = W’yH[CI)XX( )+ &YV (w)]. (E.10)

Following the work of Ref. |160], we express the fluctuating part of the local field at the
muon site in terms of a tensor G which represents the coupling between the muon spin
and the spins of the system:

6B, = LCITBNTNT gess g2, (E.11)
t B

4T v,

where only one type of magnetic ion per unit cell is considered, v, is the volume of the
unit cell, g the spectroscopic splitting factor, and ug the electronic Bohr magneton.
The index 7 runs over the lattice sites, 5Jf is the component of the fluctuation of spin
J;, located at site ¢ and at a distance r; from the muon site. Therefore the symmetrised
field correlation function can be expressed in terms of the symmetrised spin correlation

function as:
B () = 1( ) g“B ZZG@}GWAW (w), (E.12)

2T
v i

where {7,7'} = {X,Y, Z}. The symmetrised spin correlation function has been defined
as:

AT (W) = ({677 (w)8T) }). (E.13)

The spin correlation function in the (q,w) space is expressed as follows:

AV aw = [ 8T (@ )5 (—)}) explist)dt, (E.14)

[e.9]
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hox hoxy
—’WW\1—>+T ER l"‘—’WWb—‘
Su Su

Figure E.1: Illustration of the Raman process involved in the muon spin relaxation. A
magnon of energy hw, is absorbed allowing the spin flip of the muon and the emission
of an other magnon with an energy hwy. Picture reproduced with kind permission from
Ref. [160].

where the Fourier transformation of the component of the spin fluctuation is set as:

! Zexp(iqd)éJ”(q). (E.15)

N

0J) =

Assuming q as a continuous variable leads to the following formula of the spin-lattice

relaxation rate: D B
N\, = = BY () APY q
7= 5 /* Z A" (@) A" (q,w) (27%)’

Ve By

where D = (uo/47)*y(gpus)?/ve. The integration runs over the first Brillouin zone of
volume v} and we have introduced for simplicity:

A% (q) = GY(q)G ¥ (—q) + G (a) G (—q). (E.17)

(E.16)

E.2 Relaxation by excitations

We will focus here on the temperature behaviour of Ay in the ordered phase. The
most common excitations are spin waves. We recall that the energy splitting of the
muon spin states has been found to be ~ 70 neV in NdySn,O7, which is much lower
than the energy gap of spin waves. Thus, a single excitation cannot be at the origin of
the relaxation of the muon spin. Therefore, a Raman scattering process involving two
magnetic excitations has been put forward, where a magnon is absorbed and an other
one is emitted to achieve the muon spin flip, see Fig [E.1l

E.2.1 Ferromagnetic magnons
Let us consider a ferromagnetic system ruled by the following Hamiltonian [193]:
(i) i

where 7 is the isotropic exchange integral between nearest neighbour, and A is an
energy gap related to the anisotropy of the spin. We recall the dispersion law at small
wavevector for ferromagnetic magnons:

E(q) = Demg” + A, (E.19)

where Dy = 2ZJai,. Following Eq. [E-19] the magnon energy is minimum at small
wavevectors. Recalling that the energy splitting between the two states of the muon
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spin is extremely small, only magnons at low energy are involved during the relaxation
process, i.e. only magnons with a small wavevector. We will consider the case of q — 0
in the following. Let us focus now on the muon-system coupling tensor G(q). Since
the pyrochlore compounds are insulators (no conduction electrons), we neglect the
hyperfine interaction and therefore the muon spin and the spins of the system interact
only through a dipolar field. According to Ref. [160, 264]:

Go8(q — 0) = —4r qqq —C™f(q=0)|, (E.20)

where C%#(q) is an analytical function of q. Note that in face-centered cubic (fcc)
crystal structure, if the muon is located at a tetragonal or octahedral site, C*#(q = 0) =
%50‘5 [264]. Because of the energy conservation during a flipping process, the components
of J perpendicular to Z do not contribute to the muon spin flip. Therefore, only A%%
is needed. Furthermore, we will assume in the following that the symmetrised spin
correlation tensor probes the relaxation at zero energy, i.e. iw, = 0. The wavevector is
defined in spherical coordinates as:

¢~ =gqsinfcosg, ¢° =gsinfsing, ¢% = qcosb. (E.21)

Combining Eq. [E20] and Eq. [E.16] with 8 = v = Z in Eq. [E.16] leads to:

aBZ ™ 27
Ay = gﬁ / A (qw = O)dq/ o sin@/ d¢(4m)? {sin” 6 cos* § — 2sin 6 cos §
0 0 0
x[cos pC*7(q = 0) +sin ¢C" (g = 0)] + [C*7(q = 0)]* + [C"#(q = 0)]}
_ 4 {f—5 Y% (q = 0)F 4+ [C"(q = o>]2} / A2 (g0 = 0)dg. (F.22)

where it is assumed that A%?%(q,w = 0) only depends on the modulus of q. We have
considered the first Brillouin zone to be a sphere with a radius ¢gz. We will focus now
on the symmetrised spin correlation tensor, recalling its expression in the (q,w) space:

1
(g = 0) = (077w = 057 (~a)) + (377 (~)s (@ = 0)].  (E.23)
Using the linear approximation of the Holstein-Primakoff transformation:

§J%(q

Z q+q1—qz2, Oa:-rUOJQW (E24)

q1,92

\/_

where n,. is the number of unit cells, afl , refers to the creation of a boson with wavevector
q; and aq, to the annihilation of a boson with wavevector q,. The Kronecker symbol
0; j is defined such as d;; = 1 if ¢ = j, and J;; = 0 otherwise. It stands here for the
conservation of the momentum, i.e. ¢ = qx—q;. Considering that aq(t) = exp(—iwqt)aq

and af (1) = exp(iwgt)al, we derive:

5JZ(an =0) = \/— Z dq+ar—qz, 05(‘*’(11 qu)aluaqm (E.25)

q1,92
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where §(w) = 5= [*_exp(iwt)dt is the Dirac distribution. It follows that:

(0J%(q,w = 0)8J%(— Z Z Oqtan—a2,00— a0

q1,92 q,q)

X0 (wgq, — wQQ)(aglanaL,lan. (E.26)

The mode coupling approximation states that:

<a111a‘I2aL’laq/2> ~ 5011*01'2705012 qa;, 0<a111a011><a012a112>
+0q1-q2,00q - <aquaql><aq’ aT > (E.27)
The Kronecker symbols in the second term of Eq. lead to q; = q2 and q} = dj,

combined with Kronecker symbols of Eq. [E.26] give ¢ = 0 which obviously is not of

interest. We focus on the first term of Eq. [E27 On the first hand, we have (afaq) =
np(x) where np refers to the Planck distribution, see Eq. 4] and z = Z:—; On the other
hand, the well-known commutation relation [a!, a;] = d;; leads to (agal) = (alaq) + 1.
Consequently, we derive:

4Bz
/ A??(q,w = 0)¢*dg = (E-28)
0

oy [ ow (5t) [ (B40) 4] { st - tania }

An ingenious method is to introduce the magnetic density of states such as:

mlE@] = | 31E() ~ Bla)l . (£.29)

[

where F(q) = hw(q) and therefore Eq. [E.228 becomes:

/Oqu PN (q,w = 0)dg = h;) / i (hl:’B(jéi)) {np (Z(j@)) N 1} ol E@)dq

(E.30)
For convenience, we should pass from an integration over the first Brillouin zone to
an integration over the energy. Assuming a dispersion law of the form F = f(q) and
the usual relation for a density of states g(F)dE = 4nq*dq/(27)3, we use the following
expression for a substitution of variables in a function A [160]:

| Aada=@np [ Ay @)la(Epe (E:31)
Therefore, Eq. [E.228 becomes:

[ 2 () o (5) e o

We thus obtain the expression of the spin relaxation rate in the case of a relaxation
induced by ferromagnetic magnons:

Az = 2(27)*hDu. {135 +[C*(q=0)2+ [CY?(q= 0)]2}
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X /np (kBiT) [np (%) 1 1} g2 (E)dE. (E.33)

From Eq. [E.19 we derive the associated magnetic density of states:

L 1 vg=a (B.34)

2
FM

Im(E)

47T2 D

Assuming A < kT < Ep .y, where E,., is the maximal energy of a magnon excitation,
and introducing z = E/kgT, allows to calculate the following integral:

Emax

kT
1= [ n@)n@ + ighehaTds
T
Emax
1 1 kT exp(z)
= ———————(kgTx — A)kgTdx. E.
(471'2)2 D%‘M /ﬁ [exp(x) _1]2( BL T ) BL AT ( 35)
B
We use the following equation:
(az — b) exp(x) b—ax
dx = — 1 -1 E.
/ (@) - 1)° x P pa— ax + alnfexp(x) — 1], (E.36)
to obtain:
(472)2 D3 exp (%) E
P TEM T — (A — Enax) + kgT'ln [exp ( max) - 1]
kJBT exp (%) -1 kJBT
kT 2y (E.37)
gTIn |exp T . :
Since kT <K Fpax, We set exp (%) / [exp (%) — 1} ~ 1 and

In [exp (%) — 1] A Fnax/kpT. Since A < kgT', we neglect the residual term A and

with a linear expansion of exp <,§BAT) ~ 1+ kBAT in the last logarithm expression, we

1 (kT)> (kBT)
= In , (E.38)
(472)2 D3y, A

get:

and we derive Az in the case of ferromagnetic magnons:

_ NIDv. | 2 XZ( (V2 YZ( o 2 kgT> kgl
v = 2RO 0P + 7@ = 0P} B (B
kgT
2 B
x T7In <—A ) (E.39)

This result has some importance since it predicts that the relaxation of the muon spin
induced by ferromagnetic magnons has a vanishing spin-lattice relaxation rate when
T — 0.
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E.2.2 Antiferromagnetic magnons

The derivation of Az in the case of antiferromagnetic magnons is a bit more complicated
and we only give some pieces of the derivation of Az, referring to the work of Ref. [160)]
for a complete study. We will also introduce some equations that will be needed else-
where. For simplicity, we consider an antiferromagnetic lattice which can be viewed
as two interlaced sublattices d; and d,, each containing magnetic atoms with opposite
spins. This implies that all the nearest neighbours of a magnetic ion belonging to a
magnetic sublattice belong to the other magnetic sublattice. We consider the following
Hamiltonian:

Har = Z Z Ii+d1,i’+d2Ji+d1 ’ Ji’+d2 + guB Z Z Bani,d1 ’ Ji+d17 (E40)
1 dy

i, dy,do

where Z; 4, #+4, = Z is the exchange integral. The notation i + d; and i’ + d5 refers to
two nearest neighbours belonging to each sublattice.

The Holstein-Primakoff transformations need to be introduced for the two types of
magnetic ions, i.e. two magnon modes are introduced:

V2 - ./ . z . _
Jz+d1 JaH_dl, itdy — 2Ja;tq,, Ji+d1 = Qi g, Aitdy J,

Z+d2 bl""d?’ Z+d v bz+d2’ Jl+d2 =J- b;'r-i-dQ bi+d27
(B.41)

where a', b' and a, b are the boson creation and annihilation operators for the magnetic
sublattices dy, ds respectively. The space Fourier transform of the boson operators is
defined as:

Qitdy, = expliq - (i+dy)],

NG

We also introduce the Bogoliubov transformation:

1 .
al,, = > " af exp[—iq - (i+dy)]. (E.42)
q

(g = uqaq + vqﬁ by = ugqfBq + vqall,
T = uqoz + Vgfq; b:r; = Uqﬁé + VqQyq; (E.43)

where aq, ail, Bqs le are bosons operators fulfilling the relations:

[O‘qaag'] = 0q-q'0, and [BCDB ] = dq-q0- (E.44)
Note that ag,, Ozim commutes with [, B(TM. This leads to the relation:
ul —va=1. (E.45)

Therefore, we can introduce a function x4 such as:

uq = cosh(zq) and wvq = sinh(zq). (E.46)
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The Hamiltonian defined in Eq. [E.40l can be reduced as:

Har = Z hwy(alaq + B18q + 1). (B.47)

The most general dispersion law for antiferromagnetic magnons is:
(hwq)? = (hwex + A)? — (hwevq)?, (E.48)

where A is the energy gap of the magnons due to the anisotropy of the spins, and
hwex = 2L 2y, J. We have introduced:

1 :
Vq = - dz exp(iq - dpair) (E.49)

pair
where d,,;, is the vector joining a magnetic ion to one of its nearest neighbours. At small
wave vectors for a cubic compound, we simplify Eq. [E.48 to the well-known dispersion
law for antiferromagnetic magnons, assuming the energy to only depend on the modulus
of q:

(hwy)?* = Dipg® + A% (E.50)

where Dap = 4v/3ZJay,;. Note that the Hamiltonian has been rendered diagonal with
o B + g Bq = 0 which leads to:

Wex
M
Wex + A

tanh(2z4) = —7q (E.51)

After the introduction of these definitions, let us go back to the derivation of the
spin-lattice relaxation rate which is rewritten as:

ZZ (G2 ()G (—a) + G2 ()G (—q)ATE (q,w =10).  (E.52)

q dide

Note that we have directly considered that only the spins correlations along the Z axis
come at play in the Raman process. To evaluate the spin correlation tensor, we need
to introduce:

5Jle (CI) = Z 5Q1+QQ qoaqlacuv
\/_ q1,92
§J%(q) = > Sqy+ar-a.0bl, bas. (E.53)

\/_

After some calculations, the following expression is derived [160]:

Ay = %(%)%Dvc / np (kBiT) { ( kET) + 1} g2 (E)dE. (E.54)

From Eq. [E50, we infer the associated magnetic density of states as:

— VET—A? (E.55)

q1,92

1 E

m(E
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Introducing = = we derive:

_E
EsT’

\s o 227 HDu.— 1mg/m{—f@@L—%J@m@n%%¢ﬂ}m

47t DS, o | [exp(z) — 1]
BT
1 kpT)?
x 4@%“1)MQYQ—A%] (E.56)
s DR}y

where we have introduced the following integral:

[ 2®exp(x) .
= || ot = (550

Note that compared to the ferromagnetic case, we do not introduce a maximum energy
for the magnons since no convergence problem appears in the integral. We also assumed
that A < kgT), leading us to neglect the term containing I5. Since I; = 47%/15, we get
the expression of A\ in the antiferromagnetic case:

473 1

Ay x —hDuv,

——(kgT)®. E.

Once again, the muon spin relaxation driven by antiferromagnetic magnons has a van-
ishing spin lattice relaxation rate when 7" — 0.
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Abstract

This Phd thesis focuses on the study of magnetically frustrated compounds where magnetic
ions lie at the vertices of a corner-sharing tetrahedra network: the pyrochlore compounds.
The two series of chemical formula RoM>O7, where R is a lanthanide and M = Ti, Sn, are of
peculiar interest since they display a large variety of exotic magnetic ground states. First, we
have studied the crystal-electric-field acting at the rare earth within the Stevens approximation
where only the ground state multiplet is considered. A single set of parameters for each families
of interest has been determined through a global analysis including several inelastic neutron
scattering spectra of various compounds. Then, we have characterised with a large panel of
techniques the low temperature physical properties of NdoSnaO7. This compound enters a
long-range magnetic order at transition temperature 7, = 0.91 K with an “all-in-all-out” spin
configuration. A persistence of spin dynamics has been found in the ordered phase, ascribed
to one-dimensional spin loops excitations. Anomalously slow paramagnetic spin fluctuations
are also reported. Finally, we have brought information on the two proposed ground states of
the widely studied compound ThoTisO7: first, a Jahn-Teller transition is claimed to occur at
low temperatures but no broadening of the Bragg peaks is seen down to T' = 4 K precluding
premises of a structural transition. Secondly, this compound could be a realisation of a quan-
tum spin-ice but no definitive evidence of a magnetisation plateau is found down to T' = 20 mK.

Key words: magnetism - geometrical frustration - pyrochlore - crystal-electric-field - spin
dynamics - diffraction - inelastic neutron scattering - muon spin relaxation

Résumé

Cette thése se concentre sur I’étude de composés magnétiques géométriquement frustrés ou les
ions magnétiques se situent aux sommets d’un réseau de tétraédres partageant leurs sommets:
les composés pyrochlores. Deux familles de formule chimique RoM>0O7, ot R est un lanthanide
et M = Ti, Sn, sont particuliérement intéressantes puisqu’elles présentent une grande variété
d’états magnétiques exotiques. Premiérement, nous avons étudié le champ cristallin agissant
au site de la terre rare dans ’approximation de Stevens ol uniquement le terme fondamental est
considéré. Un jeu unique de paramétres a été déterminé pour chaque famille considérée grace
a une analyse globale incluant des spectres de neutrons inélastiques de plusieurs composés.
Ensuite, nous avons caractérisé avec un large éventail de techniques les propriétés physiques
a basse température de NdoSnyO7. En dessous de la température de transition 7. = 0.91 K,
ce composé posséde un ordre magnétique & longue portée dans la configuration de spins dite
“all-in-all-out”. Une persistance de la dynamique de spins a été révélée dans la phase ordonnée,
attribuée a des excitations unidimensionnelles de spins. Une dynamique de spins anormale-
ment lente est également reportée dans la phase paramagnétique. Enfin, nous avons apporté
quelques informations sur les deux états fondamentaux proposés pour le composé tres étudié
TbhoTisO7: premiérement, 'apparition d’une transition Jahn-Teller & basse température est
suggérée mais l'absence d’élargissement des pics de Bragg réfute la présence d’une transition
structurale. Enfin ce composé pourrait étre un exemple d’une glace de spin quantique mais
I’existence d’un plateau d’aimantation n’est pas évident jusqu’a 7' = 20 mK.

Mots clefs: magnétisme - frustration géométrique - pyrochlore - champ cristallin - dynamique
de spins - diffraction - diffusion inélastique de neutrons - relaxation du spin du muon



