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Abstract

In the digital economy, the service/API approach of the collaboration of heterogeneous distributed systems,
applications and devices spreads rapidly. Effective and efficient testing of services and services architectures is
one of the few concrete means for improving the stakeholders’ trust and a critical challenge for researches and
practitioners. Service testing is difficult, hard to manage and expensive in terms of hardware and software
equipment, labour effort and time to market. Automation of test generation and of test run, accessible as a
service on cloud can help researchers and practitioners. The objective of this research, that is conducted today
in the context of a European project (MIDAS, Model and inference Driven — Automated testing of Services ar-
chitecture), is a method and tool for intelligent dynamic scheduling of test sessions on services architectures
that is deployed on the MIDAS platform as a service on cloud. Dynamic scheduling of test runs is the dynamic
choice of the next test case to run on the basis of the past test verdicts, for precocious detection of failures and
localisation of faulty elements (troubleshooting). Dynamic test scheduling is a complex task to be effected in an
uncertain environment whose purpose is to enable shorter and more frequent test sessions, in the context of
Test-Driven Development and Continuous Integration Testing. The research reported in this manuscript aims to
design and implement a test scheduling service that utilises a Bayesian Network model of the test environment
and algorithms of probabilistic inference. In order to cope with the high computational complexity problems to
which these methods and algorithms are confronted, an original inference by compilation algorithm (infdsat)
has been developed that compiles complex Bayesian Networks into compact Arithmetic Circuits. Compared to
its “competitors” (“classic” Bayesian network and Arithmetic circuit inference algorithm), inf4sat is more ro-
bust, less consuming in memory size, exhibits better inference speed and pushes further the practical tractabil-
ity limits of complex models. Conversely, it is not as good as its competitors in compilation speed, but this
trade-off (compilation speed vs. inference speed) is completely consistent with the proposed modus operandi
of the algorithm, which allows compiling once, saving the AC image and running fast (without any compilation
time) a large number of frequent test sessions on the same AC image, particularly for re-testing and regression
testing. The scheduler is utilised on the MIDAS platform to schedule automated test sessions on real world case
studies that are services architectures in the health and logistic domains. The feedback from the experience will
allow refining and tuning the architectural choices, the modus operandi and the scheduler policies. Future work
includes the enrichment of the test report with the results of probabilistic inference, the investigation of
scheduling policies dedicated to re-testing and regression testing, the Noisy-OR approach of Bayesian Reason-
ing (that can be easily integrated in the current implementation) and more ambitious projects about the dy-
namic management of the automated test generation activity by the scheduler probabilistic inference and a
technique of layered partitioning troubleshooting, with dynamic aggregation/disaggregation of regions of very
large services architecture.
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1. INTRODUCTION

‘ ~N

GENERAL OVERVIEW OF THE FIELD OF APPLICATION: SOA TESTING

The SOA/API design and implementation style [SoaML 1 0 1 2012] is particularly suitable for the digital
economy, where entities such as applications, systems, devices are connected and collaborate without human
intermediation (see section 2 - § ‘Services architecture’). The collaboration between these entities is based on
the exchange of service provisions through remote Application Programming Interfaces (APIs) and on the
mutual information hiding of the implementations, which is not only a confidentiality issue, but also a way of
mastering the complexity [Parnas et al. 1983].

Generally speaking, the service interface description (the APIs) is, by definition, well-defined, formal and
machine readable, while the functional and behavioural service descriptions are often partial and informal - in
general, they are supplied as APl informal documentation. In any case, the service specification is a black-box
model of the system that claims to provide the service. The service provider system implementation and its
white-box model, if any, are hidden and cannot be derived from the service black-box model, even the most
formal one. The fundamental problem of the service economy is: How can the stakeholders trust that a system
is able to provide the service that it claims to provide and that is described in the service
specification/documentation when its implementation is hidden? The only sustainable response to this
guestion is: by testing its actual visible behaviour against the service specification, i.e. by comparing the actual
behaviour with the definition of the behaviour that is compliant with the specification.

Services are the building blocks of the digital economy: modern applications aggregate services through their
APls. Services become enablers of critical business transactions and, potentially, the weakest links in these
transactions. The quality of the services that an organisation provides and consumes is now more important
than ever. Hence, service testing is not only an activity of service providers, but also of service users and starts
in the earliest phases of the life cycle of their applications. Approaches such as Test-Driven Development [Beck
2003] and Continuous Integration Testing [Huang et al. 2008] gain popularity.

Service testing is a technical activity conducted to supply stakeholders with information about the quality of
the systems that provide (and consume) the services. This activity includes the stimulation and the observation
of the system behaviour according to a specified procedure [NIST 02 3 2002]. In an historical perspective, there
are three distinctive “waves” of testing practices that are linked to corresponding engineering main trends: (i)
vertical application testing, (ii) component off-the-shelf testing, (iii) service testing (see section 2 - § ‘Towards
service testing’).

The testing of vertical applications - pieces of software that are utilised by business people through a Graphical
User Interfaces as a support of a business activity - is organised in two distinct phases: (i) the developer
practices white-box testing during the development phase, and (ii) the business user practices a kind of black-

box testing by manipulating the user interface in the beta-test phase.

At the end of the twentieth century, the practice of provisioning software in the form of components off the
shelf proliferates. A component off-the-shelf is a piece of software that implements a specific business or
technical function, is provisioned through the physical distribution of the executable code and is accessible only



through APIs. Components off-the-shelf are utilised as building blocks of applications, but their delivery
modality raises the trust problem and stimulates the black-box testing practice by the user/developer.

The service delivery mode allows businesses to get rid of the burden of installing and running the software on
their premises, but the service user loses definitively the control of the service software life cycle. The trust
problem is raised at an unprecedented scale and become really critical. Effective and efficient testing is the
main path to trust building.

A generally accepted categorisation classifies the testing practice in three main activities: (i) functional
conformance test, (ii) security/vulnerability test and (iii) quality of service test. The current focus of this
research on test scheduling through probabilistic inference is on functional conformance test, i.e. test of the
compliance of the Services Architecture Under Test (SAUT) with the services’ and service compositions’
functional specifications.

Functional conformance testing of services and service compositions (see section 2 - § ‘Functional conformance
test tasks’) is an activity composed of a number of tasks that manipulate and put in place respectively the
following objects and processes:

e Test case (object) - A test case is: (i) a collection of specifications of the initial states of the SAUT
stateful components; (ii) a collection of specifications of stimuli (messages) to be sent to the SAUT
components set to initial states.

e Test run (process) — A test run carries out the execution of a test case. It is the actual sequence of
interactions in the SAUT that is triggered by the transmission of the initiating stimulus after the
setting of the SAUT components’ initial states. After the end - or the interruption - of the test run,
good testing practices recommend the reset of the SAUT state [ETSI EG 202 810 2010].

* Test outcome (object) — A test outcome is a representation of the SAUT observable behaviours at the
interfaces and of the SAUT components’ final states that are produced by a test run.

* Test oracle (object) — A test oracle is the partial or complete specification of the compliant test
outcome of a test case run.

e Test sample (object) — A test sample is the couple formed by a test case and the associated test
oracle. It represents a specification of a compliant behaviour snapshot of the SAUT.

e Test suite (object) — A test suite is a collection of test samples on a SAUT that can be ordered statically
(prioritised) or scheduled dynamically (see below).

* Test session (process) — A test session is the sequence of test runs corresponding to the partial or total
running of a test suite on a SAUT.

Service functional conformance testing is checking the compliance of the actual behaviour of a system with its
service specifications. A comprehensive representation of the structural, functional and behavioural
specifications of a services architecture, in which the internal implementations of the components are not
observable, should include [Schieferdecker 2012] the following definitions:

* The service interfaces.



* The topology of the services architecture under test (components, services, provided and required
interfaces, service connections [De Rosa et al. 2014a]).

* The service interaction protocols between components (for instance through Harel state charts or
other similar formalisms [Harel and Politi 1998] [De Rosa et al. 2014b]).

* The pre/post conditions and invariants of the service interactions (for instance through the design-by-
contract approach [Meyer 1992] [De Rosa et al. 2014b]).

* The data-flow requirements on the service interactions, for single services and service compositions
[De Rosa et al. 2014b].

The functional conformance testing activity is decomposable in the tasks listed below that are organised in two
main cycles:

¢ Test generation cycle:

o test case generation,

o test oracle generation.
e Testrun cycle:

o test execution,

o test arbitration,

o testscheduling,

o testreporting.

The first objective of the execution of a test case is to expose a SAUT faulty behaviour that reveals hidden
defects (searching for failures). The second but not less important objective is to help localising faulty
functional and structural elements (troubleshooting) of the SAUT that are the source of failures. Methods and
tools of generation of test suites with characteristics such as effectiveness (they do the job), size efficiency (with
a minimum number of test cases), time efficiency (in the minimum number of test runs) have been the most
important challenge of the research on SOA testing from the beginning [Canfora and Di Penta 2009] [Bartolini
et al. 2011] [Bozkurt et al. 2013].

Manual production of test cases is a “creative”, labour and knowledge intensive process, needing both a deep
knowledge of the structural, functional and behavioural specifications of the SAUT and of the test case
generation strategies and methods. Automated production of test cases is necessarily model-based. The
model-based generation of test cases utilises techniques such as constraint propagation on pre/post-conditions
and control/data flow requirements, strategies such as boundary value analysis, equivalent class partitioning,
random, ad hoc, and combinatorial and statistical methods such as pairwise and orthogonal arrays.

|H

Test oracle generation is a “mechanical” process: given a test case, and the structural, functional and
behavioural specifications of the SAUT, the test oracle can be calculated “mechanically” (to be precise, it is a
true mechanical process - whether performed by a human or a machine - only if the SAUT specifications are

formal).

Manual production of test oracles is a labour intensive and knowledge intensive process. The producer must
possess a deep knowledge of the structural, functional and behavioural specifications of the SAUT. Automated
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production of test oracles is necessarily model-based. The test oracle generation software must be able to
calculate or emulate the external behaviour of the SAUT components as described in the SAUT model.

Test execution is the accomplishment, for each test case, of a test run. Test execution is the result of a number
of technical actions, such as: setting the SAUT components’ initial states, sending the stimuli, receiving,
observing and collecting the SAUT responses, getting the components’ final states and resetting the
component states. Other ancillary actions are the deployment of the SAUT and the configuration of the test
system (if any).

If an automated test execution system is not available, the tester must accomplish manually all the actions
listed above, and also the set up and configuration of the environment. In the domain of test execution
automation a significant progress has been made in the last fifteen years with the availability of the TTCN-3
language and its execution environments™. This language (and the environment) has been utilized for building

automated test execution environments for SOA testing [De Rosa et al. 2013].

Test arbitration is the production of a test verdict as results of the assessment of a test outcome. Generally
speaking a test verdict is the result of match (pass) / mismatch (fail) between the test outcome and the test
oracle. Test arbitration can be a tricky endeavour needing accurate analysis of the test execution context in
order to avoid false negatives, i.e. pass verdicts that hide SAUT failures, and false positives, i.e. fail verdicts that
shroud the correct behaviour of the SAUT.

“Eyeball” test arbitration is strongly dependent on the availability of test oracles. When test oracles are
available it is a labour intensive process that mobilises general “syntactic matching” abilities, but no specific
knowledge of the SAUT specifications. When test oracles are not available, it is both a labour intensive and a
knowledge intensive process. The needed knowledge is the same that is mobilised for the production of test
oracles. The TTCN-3 language and framework allows including oracles representations and programming
sophisticated mechanisms of test arbitration.

Test scheduling is arranging the test cases of a test suite in a specific order of running with the objective of
improving the fault detection rate, i.e. the early detection of faults through the early uncovering of failures and
localisation of related faulty elements, in order to speed and foster the test/debug/fix cycle and the more
general test/design/implement cycle.

Static scheduling is giving a static order to the test cases prior to running through priorities assigned to them
(prioritisation). The order cannot be changed at test run time. Manual static scheduling is a knowledge
intensive task, comparable to manual test case production.

Dynamic scheduling is choosing at run time the next test case to run. Dynamic scheduling requires the decision
by the (human or artificial) scheduler of the test case to run at each schedule/execute/arbitrate cycle on the
basis of some criteria. The test cases can be prioritized before the starting of the test session, but their order
(priority) changes dynamically during the session. Automatic test scheduling is an enabler for Test-Driven
Development and Continuous Integration Testing.

! http://www.ttcn-3.org/
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Manual dynamic scheduling is a labour and knowledge intensive task that requires deep knowledge of the
SAUT specifications and of the test context (the test suite) and a strategic reasoning capability. Automated test
scheduling requires the automation of inference methods applied to failure seeking and troubleshooting.
Dynamic scheduling applied to functional conformance testing is the main focus of this research.

While the test log is the detailed narrative of all the events of a test session, the test report is a concise account
for debugging purposes, supplying aggregate information that highlights the relations between the test cases,
the test verdicts and the SAUT functional and structural elements. The test report is the trade-union between
the test team and the design/implementation team.

Manual test reporting is a knowledge intensive task. It requires the same capabilities needed for manual test
scheduling and the ability of summarising information about complex and scattered issues. Automated test
reporting is still a poorly investigated research topic and it will be investigated in the MIDAS Project

AN EXAMPLE OF SERVICES ARCHITECTURE: THE INTERBANK EXCHANGE NETWORK

In this paragraph we introduce an example that is utilised in all the other sections of this manuscript and is
freely inspired by the InterBank Exchange Network (IEN) “business case” described in the Annex D of the OMG
UTP 1.2 Specification UML Testing Profile V.1.2 [UTP 1 2 2012]. The IEN example “... is motivated using an
interbank exchange scenario in which a customer with a European Union bank account wishes to deposit
money into that account from an Automated Teller Machine (ATM) in the United States.” [UTP 1 2 2012].

OTC Market Makers
/'J'#M-i' e -k\’vﬂ“-q! Clearing
/ ) —p*, Company
P H
( )
SWIFTBureau =-.>‘"~ SWIFTN et p :ﬂ
= 1: f/;
B S, - P l'.«-“
LA e ST SWIFTBwreay
A T L e YT T,
Y <7 T,
) \
- \ EU Bank -~
P Network ~ <
Uiy i i

linjiy i
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R

US Bank
SSSB Client EU Bank
SSSB Client

Figure 1. Overview of the Interbank Exchange Network (IEN).

The diagram in Figure 1, drawn from UML Testing Profile V1.2 [UTP 1 2 2012], gives an overview of the general
architecture of the system. The Automated Teller Machine (ATM) interconnects to the European Union Bank
(EU Bank), through the SWIFT network, which plays the role of a gateway between the logical networks of the
US Bank and the EU Bank.
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In the UTP specifications [UTP 1 2 2012] the example is presented as a collection of UML packages. In the
MIDAS project (see § ‘Background and context of the research’ of this section) the example has been
completely specified as a services architecture (WSDL, XSD) and implemented in modular service components
with “tabular” implementation (for each service operation, a data base table of stereotyped request/responses

entries) for documentation, training2 and test of the platform of the test methods.

The services architecture of the IEN example that is utilized in the remainder of the manuscript is presented

through a UML Component diagram in Figure 2.

cmp IEN Services Architecture/

:HW_Control :BankGate

:SWIFT_Network

«service»
SWIFT_NetworkServ’

«service|
BankGateServ

«service»
AccountMngtSe

— g

:AccountMngt

Figure 2. IEN Services Architecture.

The IEN services architecture includes five components:
¢ HW_Control - a human or artificial agent operating as an ATM (Automatic Teller Machine) user;
¢ ATM - an Automatic Teller Machine system;
* BankGate - the bank front office system;
¢ AccountMngt — the bank back office system, that manages the customers’ accounts;

e SWIFT_Network - the Swift gateway that allows interbank communication.

Except for HW_Control, that doesn’t expose any service and is used as a kind of “entry point” of the

architecture, all the other components expose services, whose list is presented below:

¢ ATM_Interface.wsdl is exposed by ATM through its port ATM_Serv;

* BankGatelnterface.wsdl is exposed by BankGate through its port BankGateServ;

?In the MIDAS project there are two real services architectures in the Health and Logistic domains that are
utilised as targets for testing with the MIDAS facility. The data structures exchanged in these architectures are
compliant to international standards and very complex, and their comprehension requires deep knowledge of
the domain. Of course, this is true also for real examples in the banking domain, but the IEN, as a “naive”

banking system, can be easily understood by any common bank customer.
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¢ AccountMngtinterface.wsdl is exposed by AccountMngt through its port AccountMngtServ;

e SWIFT _Interface.wsdl is exposed by SWIFT_Network through its port SWIFT_NetworkServ.

The services architecture depicted in Figure 2 allows running some families of service composition scenarios
such as:

e ‘“getBalance” —the user (HW_Control) inquires the balance of her/his account;

e “withdraw” —the user (HW_Control) requests to remove money from her/his account;

e “deposit” — the user (HW_Control) requests to put money in her/his account;

e “wire” — the user (HW_Control) requests to transfer money from her/his account to another account
in another bank.

These scenarios can be represented through UML Sequence diagrams. The scenario GetBalance_OK is depicted
in Figure 3, in which the user (HW_Control) asks ATM for its account balance amount through the
getBalance(GetBalanceln) request message. Note that SWIFT_Network is not actively involved in this scenario.

sd GetBalance_OK /

:HW_Control :ATM :BankGate :AccountMngt :SWIFT_Network

T
: getBalance(GetBalanceln)

T
|
|
|
checkAccountBalance(CheckAccountBalanceln) :
»
>

checkBalance(CheckBalanceln)

L

checkBalance(CheckBalanceOut)

< ________________

checkAccountBalance(CheckAccountBalanceOut)

G

getBalance(GetBalanceOut)

Figure 3. GetBalance_OK scenario.

The scenario Withdraw_OK is presented in Figure 4. It is quite similar to the preceding one, with some
differences: (i) pre/post-conditions are made explicit, (ii) the AccountMngt state changes. The pre-condition
controlled by the ATM is that, in order to run this scenario, the requested withdraw amount (the value of a
field of the input message) must be lesser than a withdraw threshold. The other pre-condition that is controlled
by AccountMngt states that the requested debit amount must be lesser than the current account balance
amount. Moreover, AccountMngt guarantees the post-condition that the account balance amount immediately
after the debit operation execution is equal to the account balance amount immediately before the debit
operation execution minus the debit amount (the value of the field of the debit input message).
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sd Withdraw_OK

:HW_Control ATM :BankGate :AccountMngt :SWIFT_Network

T T
: withdraw(Withdrawln)

withdrawTreshold]:

T
! !
L [withdrawAmount <= |
|
debitAccount(DebitAccountin) :

debit(Debitin)

»
\

[debitAmount <=
accountBalanceAmount]:

debit(DebitOut)
<_ ____________

accountBalanceAmount =
pastAccountBalanceAmount -
debitAmount
debitAccount(DebitAccountOut)
ke m e ]

withdraw(WithdrawOut) :
€ ——mm—m———— = — |
|
I

Figure 4. Withdraw_OK scenario.

The scenario in which the “threshold” pre-condition is not respected by the amount field of the withdraw input
message is presented in Figure 5. The immediate ATM response expresses the refusal of the withdraw request
because the requested withdraw amount is greater than the withdraw threshold. Note that service engineering
best practices allow designing service requesters that can legally violate the request pre-conditions, so that the
burden of enforcing these pre-conditions falls to the service responder. Hence, this scenario represents a
behaviour that is perfectly conformant to the functional specifications. Note also that BankGate, AccountMngt
and SWIFT_Network components are not actively involved in the scenario.

sd Withdraw_KO_Treshold /

:HW_Control :ATM :BankGate :AccountMngt :SWIFT_Network

: withdraw(Withdrawin) !

[withdrawAmount >
withdrawT reshold]:
withdraw(WithdrawFault)

Figure 5. Withdraw_KO_Threshold scenario.

The scenario in which the “threshold” pre-condition is respected but the “balance” pre-condition is violated is
presented in Figure 6. The requested debit amount is greater than the account balance amount. In this case
AccountMngt refuses the debit and the account balance amount doesn’t change: its value immediately after
the operation execution equals the value immediately before.
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sd Withdraw_KO_Balance /

:HW_Control

T
: withdraw(Withdrawln)

:ATM

I [withdrawAmount <=

withdraw(WithdrawFault)

withdrawT reshold]:

:BankGate

debitAccount(DebitAccountin)

:AccountMngt

debitAccount(DebitAccountFault)

debit(Debitin)

T
|
|
|
|
|
|
|
»l
L

[debitAmount >
accountBalanceAmount]:
debit(DebitFault)

accountBalanceAmount =
pastAccountBalanceAmount

:SWIFT_Network

Figure 6. Withdraw_KO_Balance scenario.

The Wire_OK scenario depicted in Figure 7 is utilized as an example in other sections of this manuscript. The

Wire_OK scenario is quite similar to the Withdraw_OK, except that in the latter a new post-condition is

implemented by SWIFT_Network that bear on the success of the transfer, which implies that elements of fault-

tolerance are introduced in the functional specifications. Note that the removal of the money from the

. 3
customer account is done before the transfer".

:AccountMngt

debitAmount

:SWIFT_Network

accountBalanceAmount =
pastAccountBalanceAmount -

sd Wire_OK
:HW_Control :ATM :BankGate
I I
| wire(Wireln) | |
L p1 [WireAmount <= |
wireTreshold]: |
wireMoney(WireMoneyln) |
L
debit(Debitln)
[debitAmount <=
accountBalanceAmount]:
debit(DebitOut)
e —————————
transfer(Transferin)
< — e — —
wireMoney(WireMoneyOut)
wire(WireOut) T
________ |
T T |
| | |

transfer(TransferOut)

transfer = OK

* The bank behaviour modelled in this scenario is pretty realistic.
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Figure 7. Wire_OK scenario.

The Wire_KO_Tranfer scenario depicted in Figure 8 represents the situation in which everything is OK until the
removal of the money to be transferred from the account, but the transfer fails. By representing explicitly the
possibility of technical failure at the functional level, the fault-tolerant behaviour is integrated in the functional
specifications of: (i) SWIFT_Network, that is able to recognize and communicate the transfer failure, and (ii)
BankGate, that performs the credit compensating operation4. In conclusion, the wire process has failed, but the

final situation is safe.

sd Wire_KO_Transfer /

:HW_Control :ATM :BankGate :AccountMngt :SWIFT_Network

T T

| |

| wire(Wireln) | [wireAmount <=
wireTreshold]:
wireMoney(WireMoneylIn)

S

debit(DebitIn)
[debitAmount <=
accountBalanceAmount]: accountBalanceAmount =
debit(DebitOut) pastAccountBalanceAmount -
<--—-——————--- debitAmount

transfer(Transferin)
»

transfer(TransferFault)
transfer = KO
credit(Creditin)

credit(CreditOut) accountBalanceAmount =
e - - ————— — pastAccountBalanceAmount +

wireMoney(WireMoneyFault) creditAmount

wire(WireFault) Ll

€ ——————— i
|

|

Figure 8. Wire_KO_Transfer scenario.

SOA functional conformance testing is stimulating and observing the behaviour of a services architecture in
order to: (i) seek for failures, and (ii) localise the functional and structural faulty elements of the architecture
that are responsible for the failures, at the lowest possible level of granularity. The general constraint is that

the service components are black-boxes and their behaviours are observable only at the service interfaces.

A test sample is the representation of a scenario snapshot that is compliant with the service component
architecture specifications. For instance, for the Wire_KO_Transfer scenario, the TS01 test sample is an ordered
collection of instantiated messages (wire(Wirelny;), wireMoney(WireMoneylng;) ....), of instantiated state
before variables’ values (wireThresholdy;, accountBalanceAmountg;,) and of instantiated state after variables’

*In the reality of bank systems, these kinds of compensations are mostly performed asynchronously through

batch procedures.
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values (accountBalanceAmounty,,). If the services architecture is solicited with a stimulus that corresponds, for
example to the wire(Wirelng;) sent to ATM, with wireThreshold set to wireThresholdg; and
accountBalanceAmount set to accountBalanceAmounty;,, it exhibits a behaviour that is conformant to the
specifications if the actual exchanged messages matches the TSO1 messages and the accountBalanceAmount
variable value after the exchange equals accountBalanceAmountg;,.

Testing for functional conformance the services component architecture whose topology (components,
services and service dependences) is represented in Figure 2 is producing and running a test suite made of a
number of test samples for each scenario that allow:

¢ checking that the actual behaviour of the service component architecture does not violate the pre-
conditions and the sequence diagram of the scenario, e.g. that, in a Wire-like scenario, when BankGate
receives the wireMoney(WireMoneylny;) message from ATM — when wireThreshold = wireThresholdy;
- it issues a debit(Debitln) message that matches debit(Debitlng;) towards AccountMngt (and, for
instance, neither a credit message towards AccountMngt, nor a transfer message towards
SWIFT_Network that is not preceded by a successful debit request towards AccountMngt, nor any
other interaction non-compliant with the sequence diagram);

¢ checking that the actual behaviour of the service component architecture does not violate the data
flow requirements, e.g. checking that ATM, when receiving wire(wirelny,), issues
wireMoney(WireMoneylng;) — this is an implicit check that the amount field of the
wireMoney(WireMoneyln) message equals the value (semantically speaking — the syntax could be
different) of the amount field of the just received wire(Wireln) message.

For stateful service components this level of checking is clearly not enough, and the test suite should also be
able to check the post-conditions that bear on internal state variables of the service components which, in
principle, are hidden. In any case, in order to test the stateful component behaviour the tester shall be able not
only to get but also to set the state variables that are referenced in the pre/post-conditions (e.g.
wireThreshold, accountBalanceAmount). For instance, checking the debit service operation in the
Withdraw_OK, Wire_OK, Wire_KO_Transfer ... scenarios needs the performance of the following actions:

1. seton AccountMngt a test case state view, with, for instance, a certain account balance state variable
set to 2000¢€;

2. send to AccountMngt the test case debit message for this account, with, for instance, the debit
amount field set to 1000€;

3. receipt the debit response message from AccountMngt and match it with the test oracle — in
particular match the account balance amount field value of the message with the test oracle value
(1000€);

4. get the AccountMngt state view and match it with the test oracle — in particular match the account
balance state variable with the test oracle (1000€);

5. reset the AccountMngt state view.

Note that the action 3 and action 4 are distinct: the combinations of values of the balance amount field of the
debit output message and of the state view account balance are a potential source of false positives and false
negatives. Action 5 follows from good practices that require to leave the system under test in the conventional
|II

“initial” state in which it was before running the test. This good practice allows the logical independence of test

cases and the execution of test runs in any order (which is essential for prioritising them).
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In this research, and in the surrounding MIDAS project, the black-box stance towards service components is
strict and the constraint that neither the tester nor the test system are able to put any probe, sensor, agent or
whatever inside the service component implementation, which is out of reach, is enforced. The solution of the
state visibility dilemma is to require, for each stateful component, the definition of a state view (the part of
internal state whose visibility is meaningful for the functional specification of the service provision) and the
related implementation of an ancillary state view management service (with set, reset and, optionally get

operations) accessible by the test system as a testability requirement.

In summary, in order to test services architectures, the tester (and the test system) is confronted with two
related but distinct hard challenges:

e consider the scenarios that are put in operation by the services architecture and produce for each of
them a number of instantiations (test samples); the number of scenarios, even in a services
architecture of limited complexity, can be explosively large; the number of test sample for each
scenario can be practically unlimited; in conclusion, the quality (size, coverage, test effectiveness and
test efficiency) of the test suite (collection of test samples) is a main research challenge;

e execute and arbitrate in the best way a given test suite, whose testing capability is not necessarily
guaranteed a priori, and produce a meaningful report of the test session; faced to the quality
challenge about the test suite, whatever the test generation methods, strategies and procedures have
been employed, and in order to shorten the test sessions and increase their frequency, put in place
test sample prioritisation strategies, better if run-time and dynamic, that reduce the fault detection

rate.

INTELLIGENT DYNAMIC SCHEDULING OF SERVICE COMPOSITION TESTING

In summary, the only means for increasing the trust of the stakeholders in the dependability of the digital
service ecosystems are appropriate testing procedures and processes (see section 2 — § ‘The rationale for
service testing automation’). But service and service composition testing is undoubtedly a difficult, hard and
expensive activity [Canfora and Di Penta 2009] [Bartolini et al. 2011] [Bozkurt et al. 2013]. Furthermore, the no-
testing stance can be even more costly for service businesses [NIST 02 3 2002]: if the service is the business,
non-dependable service is non-dependable business.

First of all, service testing is intrinsically difficult because of information hiding about component internals.
Moreover, the engineering methods, tools and technologies that are employed by the service developers and
providers are hidden too, and cannot be trusted a priori. The establishment and management of inter-
organisational service testing (collaborative testing) cycles, procedures and sessions on a multi-owner services
architecture is a complex organisational task per se.

The cost of service testing has three components: (i) equipment expense, (ii) labour effort, (iii) time-to-market.

The equipment costs of service testing, including hardware, facilities, software licenses and maintenance, for
the SAUT and the test system, are very high, especially for an activity that has traditionally been intermittent.
The equipment cost has been a major concern of the research about testing. A solution of this problem is the
adoption of cloud computing for testing [Maesano et al. 2013b], which is chosen in the MIDAS project. On the
cloud, the marginal cost of computing resources tends to zero.
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The labour effort is very high on critical tasks such as (i) production of test cases / oracles, (ii) configuration and
set up of test environments, (iii) scheduling and monitoring the test runs, (iv) arbitration of test outcomes, (v)
production of meaningful test reports, but also, generally speaking, planning and management of the overall
testing cycle. Moreover, most of these tasks require: (i) deep knowledge of the target services architecture
specifications and (ii) and high-level skills on testing approaches, methods, strategies and tools. Both
competences are really scarce resources. Last but not least, manual testing requires sustained continuous
attention and critical stance by the human tester and is error prone.

The last component of the testing cost is time-to-market. Service providers and users are confronted to the
dilemma between: (i) long, painful and costly testing procedures that can provoke the missing of the market
momentum and do not guarantee necessarily the service quality and (ii) precocious delivery of insufficiently
tested services, with high business risks. The true solution of the cost and effectiveness problems of service
testing is extreme automation [Maesano 2013], i.e. pushing the automation of all the testing tasks as far as
possible.

Service functional conformance test automation is by definition model-based: what can be automated is the
test of the compliance of the SAUT with its formal model. The idea behind extreme automation is that the only

|II

“manual” task for the developer is the production of the SAUT models that, once built reduces the marginal

cost of human effort to zero.

The subject of this research is dynamic scheduling of service and service composition functional conformance
test. Its objectives and constraints are (see section 2 - § ‘Objectives and constraints for test scheduling
automation’):

1) The test activity to be scheduled is grey-box, functional conformance testing of service compositions.

2) Automated dynamic scheduling has the objective of improving test time efficiency, i.e. the early
detection of failures and localisation of faulty elements (fault detection rate), in order to allow more
frequent automatic testing and shorter focused test session and to enable Test-Driven Development
and Continuous Integration Testing.

3) The dynamic scheduler shall be implemented as-a-service, i.e. as a component of the testing facility
that can be invoked for scheduling services.

4) The dynamic scheduling approach must be model-driven: the scheduler must be aware of the SAUT
structural and functional model and of the structure of the test suite to be scheduled.

5) The scheduler shall be able to manage the uncertainty of the failure seeking and troubleshooting
process by means of a probabilistic inference capability. Furthermore, it shall be able to take into
account in its decision process evidences from the test run cycle and from other sources (e.g. the
design/implementation team) and to manage the computational complexity of the inference.

6) Probabilistic reasoning about testing and troubleshooting shall be piloted by testing objectives, that
are expressed through policies.

In summary, the objective of this work is a tool that, on the basis of efficient probabilistic inference, supplies
dynamic scheduling services to test sessions of services architectures.

EXISTING APPROACHES
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SOA TESTING

The research on SOA testing has flourished in the last fifteen years (see section 3), with a spectacular rise of the
number of publications - from 21 in 2004 to 177 in 2010 [Bozkurt et al. 2013] - even if the SOA testing problem
has not been explicitly taken into account by the service orientation research mainstream, where SOA testing is
not taken into account as a specific activity/problem [Papazoglou et al. 2008].

An important characteristic of research about SOA testing is the lack of real-world case studies (between the
papers mentioned above, only four of them relate experimentation with real services architectures [Bozkurt et
al. 2013]).

From the beginning, the research has correctly recognised some fundamental issues that limit the testability of
services architectures and confer to the SOA testing problem its specificity [Canfora and Di Penta 2009]
[Bartolini et al. 2011] [Bozkurt et al. 2013]:

¢ limitations in observability of service code and structure due to information hiding of the
implementations;

* lack of control of the services architecture component development life cycles.
The fundamental criticisms about the research thread on service unit and composition testing are:

* many works bear of white-box testing of the software implementing service providers and consumers,
falling into the general trend about white-box program testing;

* the WSDL/XSD/SOAP paradigm has been privileged, and the spread of REST/XML and REST/JSON
paradigms has been taken into account only very recently and in terms of white-box testing;

* service composition has been taken into account as orchestration (BPEL)5 for a majority of works,
sometimes as choreography [Bucchiarone et al. 2007], never as direct composition by program, which
corresponds to the reality of the APl economy. Direct composition between service components
(without any superstructure) is utilised in the overwhelming majority of business cases. Furthermore,
with the emergence of the APl economy, generally based on the REST/JSON technical approach, the
BPEL paradigm is on a side residual track.

Research on model-based testing (MBT) is based on the same approaches listed above, so its real applicability
is limited. In particular, all the approaches of MBT of service composition emphasise the behavioural models
(activity diagrams, state machines, BPEL scripts, etc.) without taking into account the necessity of a separated
independent structural model of the services, components and services dependences. The SAUT structural
model as independent from the functional and behavioural models is a missing topic in the current MBT

> Strictly speaking, BPEL scripting has no exclusive relationship with service composition. A BPEL script runs on a
participant of a services architecture (the orchestrator) and can be replaced by a plain program written in a
usual programming language running on a standard server. Testing BPEL scripts utilises techniques from
software white-box testing.
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research. The SAUT Construction model is an original result of this research. In the context of this research, it is
applied to test execution, arbitration and scheduling, and is also applied to test generation in the MIDAS
project (see section 4, § ‘The SAUT Construction model’).

The research topics that are directly relevant for the subject of this work are: (i) Test run automation
frameworks; (ii) Regression testing.

The related work on test run automation frameworks can be classified in two categories: (i) service unit test
automation equipped with virtualisation techniques, (ii) service integration test automation.

A service composition, realised explicitly by orchestration or choreography or implicitly by direct service
exchange can be performed incrementally by service component virtualisation, i.e. by using stub, mock or
surrogate services to test the behaviour of the service component nestled in the business process. Apart from
the usual dominance of the research on orchestrated (BPEL) service composition, the automated generation of
virtual service components in the test system is still poorly investigated, the majority of environments requiring
the user to program “by hands” the virtual component.

The first challenge of integration testing framework is the localisation in the service composition architecture of
the component whose behaviour is the source of the failure (troubleshooting). The majority of the approaches
focus on modelling scenarios of service coordination and exchange (e.g. sequence diagrams, activity diagrams,
other) but not explicitly the SAUT structural model, and they are unable to locate precisely the failure and the
fault service component at an acceptable level of granularity.

One of the main innovations of the last fifteen years in the domain of test run automation has been the
“invention” of TTCN-3, an international standardised complete programming language that has been designed
with powerful traits that are specific for testing automation. The research on the utilisation of TTCN-3 for
service testing has started early, but its spread remains very limited, because of the technical difficulty of the
realisation ad utilisation of effective adapters for SOAP, WSDL, XSD and of the lack of adapters for the JSON
format. The author of this manuscript has participated to the specification and implementation of a generic
framework that implements the complete automation of the test execution/arbitration of web services and
web service compositions that is integrated in the MIDAS platform and supports the test executor and arbiter
whose activity is driven by the dynamic scheduler presented in this manuscript [De Rosa et al. 2013].

There has been an important work on SOA regression testing, i.e. testing unintended side effects of a change of
the services architecture implementation or model. The work has been concentrated on: (i) test case selection
(selection) techniques — that select test cases from a given test suite to test the modified parts of the system
and (iii) test case prioritisation (prioritisation) techniques that schedule test cases for running in an order that
attempts to meet some desirable properties. These techniques can be distinguished as version-specific (they
apply to a specific version of the test/fix/debug cycle) and general (they select and/or prioritise in a manner
that is independent from the specific version).

Unhopefully, the overwhelming majority of selection techniques are dedicated to service composition through
orchestration (BPEL), so they are BPEL script white-box testing methods and require the identification the
modified part of the script.

The main goal of test case prioritisation is that of increasing a test suite’s fault detection rate (time efficiency),
i.e. the early exposure of failures and localisation of faulty elements as the sources of the failures. The
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prioritisation techniques are based on the analysis of the coverage of service functional and structural elements
and on the evaluation of the fault-exposing potential of the test cases.

In the author’s best knowledge, all the coverage-based prioritisation techniques are non-version-specific
(general) and a majority of them is white-box and targets service composition through BPEL orchestration. They
target structural coverage of a BPEL script and the prioritisation of test cases with the highest coverage on the
basis of some coverage criterion, by an algorithm that implements a coverage strategy and without any
consideration for the modified part of the SAUT.

The fault-exposing potential of a test case would be measured as the probability of the test case of provoking a
failure that reveals the faulty component responsible for the failure [Elbaum et al. 2002]. The calculation of
these probabilities can be only the result of approximations, and is based either on statistical data from group
testing - testing several competing implementations of the same service specification - or on the measure of
sensitivity of test case to specification and implementation mutation. The weak point of the approaches based
on the statistical evaluation in group testing is that it is dubious that the frequency of failure of the test case on
a collection of independently designed and implemented service components could be an effective prior
probability of failure on a newly implemented service component. The sensitivity of test cases to mutation
seems a more promising approach.

This work introduces the dynamic scheduling of functional conformance test sessions as a new research topic
in the testing domain and proposes a generalised approach to the dynamic prioritisation of test cases based on
probabilistic inference, beyond the current application of static prioritisation to regression testing and re-
testing.

PROBABILISTIC INFERENCE AND ITS APPLICATION ON TESTING AND TROUBLESHOOTING

The probability theory has shown to be the most promising framework for representing uncertainty within the
decision mechanism, thanks to its ability of modelling with maximum accuracy and minimum number of
parameters a complex reality. The hypothesis behind this research is that probabilistic inference can drive
dynamic test scheduling that improves failure seeking and troubleshooting (see section 5).

PROBABILISTIC INFERENCE

The most popular models for probabilistic inference are the Markov Network and the Bayesian Network
models. Their objective is to map conditional independence so that it is possible to factorize joint probability
distributions in a framework that allows iterative and interactive calculation of marginal probability
distributions through probabilistic inference.

Probabilistic Inference is method of calculating an updated state of the probabilistic model according to the
observation or not of evidence realizations, the evidence over a variable being a measure of likeliness of an
instantiation of the variable. It is possible to distinguish between hard and soft evidence. Hard evidence
expresses total knowledge over the state of the variable: the likeliness of one instantiation is equal to 1
(maximised) and all other instantiations equal to 0. Soft evidence expresses a belief or a partial knowledge of
the state of the variable and permits a distribution over all instantiations with at least two instances’ likeliness
different from 0.
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When inserting evidence in a BN or a MN the result is the transformation of respectively the variable
probability distributions and the factors.

There are several (families of) algorithms implementing probabilistic inference. The “classical” inference
algorithms are those belonging to the variable elimination family and to the junction tree inference family.

The variable elimination (VE) inference is a simple but powerful and efficient algorithm that exploits the
factorization from the joint probability distribution and try to eliminate random variables by considering only a
sub-set of factors algorithm [Zhang and Poole 1994] [Zhang and Poole 1996] [Dechter 1998]. Between the
methods variants and extensions there are: (i) bucket elimination [Dechter 1996] [Dechter 1998] [Darwiche
2010], (ii) generalisation to junction trees [Cozman 2000], (iii) value elimination [Bacchus et al. 2003]. Variable
elimination is query-sensitive (the entire data structure must be re-initialised at each new query), whereas the
generalisation to junction tree avoid re-runs.

The junction tree is a data structure represented by a cluster graph. Each cluster is initialized by knowing its
local potential and its neighbours and sends one message, which is a potential function, to each of its
neighbours. It is able to compute the marginal probability of its variables by combining its local potential with
the messages it receives.

The Shafer-Shenoy inference algorithm transforms MN into junction trees and computes marginal probabilities
using a message-passing scheme [Shenoy and Shafer 1986] [Shenoy and Shafer 1988]. Junction tree algorithms
were among the first inference schemes for BNs. Currently, the most performant junction tree algorithm is lazy
propagation [Madsen and Jensen 1999].

Junction trees algorithms and VE share the same complexity limitation due to the MNs tree-width. One
approach to overcome the limitation induced by high tree-width for exact inference is to exploit local
structures, i.e. alternate representations of factors exploiting local symmetries in the probability distribution.

A new family of inference algorithms compile MNs into Arithmetic Circuits (AC) via the transformation into a
Conjunctive Normal Form (CNF) [Darwiche 2003] [Chavira and Darwiche 2005] [Chavira et al. 2006] [Chavira
and Darwiche 2007].

A hypothesis of this research is that Bayesian inference by AC compilation is the best suited for dynamic
scheduling applied to SOA testing, in particular for the advantages in terms of data structure size and inference
time. The compilation time could be important, but its result can be saved (AC image) on disk and reused as
many times as needed. Generally speaking, in services architectures the service functional and behavioural
model doesn’t change slowly and, in the Continuous Integration Testing, it is possible to retest modified
implementations towards the same SAUT and with the same Test Suite, i.e. to schedule the test session with
the same AC image on a daily (nightly) basis with zero compilation costs and a rapid inference time. The AC
image can also be used to suspend and resume a test session. This research has developed an alternative
approach of the compilation that is presented in section 6 and whose experimental results are presented
section 7.

PROBABILISTIC INFERENCE FOR TESTING AND TROUBLESHOOTING
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In their position paper at FSE/SDP workshop on Future of software engineering research (2010), Namin and
Sridharan make the following claim: Bayesian reasoning methods provide an ideal research paradigm for
achieving reliable and efficient software testing and program analysis [Namin and Sridharan 2010]. Building on
prior seminal work, they consider the efficiency and effectiveness test case generation and the test
prioritisation the most important application fields for Bayesian reasoning methods. The research on
probabilistic inference in software testing and related domains such as software quality assessment is still in its
infancy and is made of a few disparate tentative works on the different aspects of the discipline.

A seminal work about the use of probabilistic inference based on a BN framework to support input partitioning
test methods [Rees et al. 2001] [Wooff et al. 2002] [Coolen et al. 2007] is aimed at understanding which kind of
stimuli provokes software failures. The BN allows the tester to quickly discover what partition or combination
of partitions can be associated with a failure. On re-testing, since the model identifies which parts of the
system are unconnected to those where the test has failed, it can also indicate which tests can continue to be
run before the fault needs to be located.

A novel approach to prioritizing test cases in order to enhance the fault detection rate within white-box testing
is based on Bayesian Networks [Mirarab and Tahvildari 2007]. The idea is to incorporate source code changes,
software fault-proneness, and test coverage data into a unified model. In this approach, dynamic scheduling
(incorporating as evidence the feedback from the test system for each test run) is considered as one of the
most important subject of their future research. In the author’s best knowledge, there are not yet published
results of this further research.

In diagnosing defective systems, the primary goal is to isolate the faults that best explain the symptoms in the
most efficient way possible. Decision systems are useful in this context because they can model real world
problems with high accuracy and can be designed in a transparent way, facilitating the coordination between
experts and users.

Several methods and techniques (rule-based reasoning, case-based reasoning, neural networks, decision trees,
Bayesian Networks, others ...) can be used for troubleshooting complex systems. The Bayesian Network model
presents several advantages: (i) well-founded explicit modelling of uncertainty in complex real-world domains
where exact inference is intractable [Mirarab and Tahvildari 2007]; (ii) mathematically well-defined mechanism
for representation and results that can be mathematically proven [Dechter 1996]; (iii) management of multiple
hypotheses about the state of the target; (iv) capability of incremental integration of additional information
about the state of the system; (v) knowledgeable mechanisms, in contrast with other black-box methods
(neural networks, genetic algorithms); (vi) absence of combinatorial problems of the formulation (in contrast
with decision trees); (vii) utilisation in industrial applications [Cooper et al. 1998] [Jensen et al. 1995].

Any complex system can be defined as a set of components, where any component can be a potential source of
failures. In order to determine which component may be faulty, a set of actions is performed on each
component. Actions can be defined as passive or active. Passive actions (Observing, Questioning, Testing ...)
involve information gathering and do not affect the system itself. Active actions (Repair...) influence the system
by making changes. These actions are invoked based on the results of the passive actions. A strategy is a set of
actions executed in a specific order.
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Troubleshooting is an iterative and interactive process, which continually integrates and applies new
information, or evidence, in order to determine the next action. A good strategy minimizes the time and cost
(of testing) required to isolate and to fix the faulty components.

The structure of any system to be diagnosed can be represented as a directed acyclic graph (DAG), which shows
causal relationships between symptoms, components and troubleshooting actions. Causes and effects can be
connected using two main model categories: (i) the Naive model (single fault assumption), (ii) the Causal
Independence model (allowing multiple faults).

By using a BN, the relationships between the different elements of the analysis are probabilistic rather than
deterministic, allowing a greater simplification of the system. Stochastic methods are considered appropriate
for failure detection and diagnosis of complex systems in cases where there is no complete knowledge of the
system, i.e. the detection and diagnostic process is undertaken in presence of uncertainty and the evidence
data domain is too large to be completely analysed [Nielsen et al. 2000].

Troubleshooting of complex system with BN is henceforth a well-established discipline and practice and some
significant realisations are presented in section 5. The hypothesis of this work is that, in the domain of grey-box
testing of services architectures, the discipline of troubleshooting of complex system with BN and probabilistic
inference can support the dynamic choice of test samples to expose failures and the localisation the faulty
structural and functional elements that are the sources of the revealed failures.

This work contributes to the research on the application of Bayesian reasoning methods to the “reliable and
efficient software testing and program analysis” [Namin and Sridharan 2010] that is considered an “ideal
research paradigm” and a promising future research thread on software testing. In fact, the author thinks that
the problem of intelligent dynamic scheduling of test sessions can be posed and solved only through
probabilistic inference, because it is too complex for exact inference.

THE BAYESIAN TEST SCHEDULER AS A SERVICE

The Dynamic Scheduler is packaged as a Web service on the MIDAS platform that is able to provide scheduling
services to different MIDAS test methods.

The MIDAS testing facility (see section 4, § ‘The MIDAS testing facility’), targets black-box testing of single
services and grey-box testing of services architectures. Its key features are:

Testing-as-a-service implemented on a public cloud infrastructure.
Programmable testing facility through service APls.
Open platform equipped with an evolutionary registry/repository of test methods.

AW e

Extreme automation of SOA/API testing tasks.

The end users of MIDAS are service developers that utilise the MIDAS facility to automate the test of the
services architectures. They are able to integrate the MIDAS facility in a unified Service Development Life Cycle
characterised by: (i) Model-based design and test of services and services architectures; (ii) Test-Driven
Development (iii) Incremental Integration and Continuous Integration Test.

Dynamic scheduling can be understood as a schedule/execute/arbitrate cycle, whose description is detailed in
section 4, § ‘The logical architecture of the dynamically scheduled test run cycle’). The Scheduler chooses the
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next test case to be executed - starting from a first one that it chooses on the basis of a prioritisation policy -
and communicates it to the Executor. The Executor runs the test case, collects/logs the test outcome and
communicates this outcome to the Arbiter. The Arbiter evaluates the test outcome with the test oracle and
produces a test verdict that is communicated back to the Scheduler. The Scheduler: (i) either chooses another
not yet executed test sample from the test suite, communicates its identifier to the Executor and the cycle
continues, (ii) or decides to halt the cycle even if there are still test samples to run, (iii) or ends the cycle - there
are no more test samples to run in the suite. This conceptual architecture of the schedule/execute/arbitrate
cycle has been proposed by this research as a framework for the implementation of probabilistic methods and
tools for test scheduling and is implemented in the MIDAS facility.

The implementation architecture of the MIDAS facility is generic and service oriented (see section 4, § ‘The
scheduled test run services architecture pattern’). All the components that implement test methods are
realised as service providers in a flat (non-hierarchical) architecture that includes the basic components that
realise the basic test tasks (test case generator, test oracle generator, test executor, test arbiter, test reporter,
test scheduler) as well as the intermediate drivers (test generation workflows, test run managers) and the top
driver.

With automated and intelligent dynamic scheduling available on a testing platform as a service [Maesano and
De Rosa 2011] [Maesano et al. 2011] [Maesano et al. 2013] that already implements automated test execution
and arbitration, the entire test run cycle can be automated and programmable. This automated test run cycle
can be executed in background, allowing service developers to focus on their primary mission: design and
implement appropriate services. This research is focused on the design and development of an automated
intelligent scheduler that can unburden the service developer of the test run cycle implementation and
management.

The Scheduler is a component that exposes a service interface (see section 4, § ‘The Scheduler interface’). It is
considered by the other components as a scheduling service. The concrete architecture of the automated test
run cycle is composed of a Runner that receives from the Front End the test task requests and orchestrates the
activity of the Scheduler service, the Executor/Arbiter service and the Reporter service. The execution and
arbitration tasks are carried out by a unified service that, after an initialisation phase, is able to receive the
indication of the test case(s) to run and to return the test verdicts. In summary, the Runner implements the
logical architecture of the schedule/execute/arbitrate cycle by orchestrating the activities of the Scheduler and
the Executor/Arbiter (see the sequence diagram in Figure 15).

The test scheduling approach of this work is model-based. In order to initialise and configure its embedded
inference engine, the Scheduler utilise the structural model of the SAUT (SAUT Construction model) the model
of the test scenarios (the Test Suite Definition model) and the Test Suite data set (see section 4, § ‘The
Scheduler configuration models and data sets’).

The SAUT model (see section 4, § ‘The SAUT Construction model’) is a simple and powerful model that
integrates the structural model of the SAUT (descriptive model) and the configuration model of the test system
(prescriptive model). It is utilised (with the Test Suite Definition Model and the Test Suite data set) to configure
and initialise both the Executor and the Scheduler and to bind the deployed SAUT with the test system (the
Executor).
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The SAUT model is built with a limited number of elements: components, references, services, wires.
Components are nodes of a directed graph that expose services (provided interfaces), declare references
(required interfaces) and are linked by wires that are edges from references to compatible services.
Components are actual — actually deployed as components of the SAUT - or virtual — mock-up components that
are put in place by the test system. Other elements of the SAUT Construction meta-model (Atomic Participant,
Compound Participant) allow modelling component structures, i.e. declared references and exposed services
and the pointers to the service specifications (e.g. WSDL/XSD documents) and, for Compound Participants,
their recursive composition as a graph of actual components with declared references and exposed services
that are linked by wires. A complete example of SAUT Construction model that applies to the services
architecture depicted in Figure 2 p. 12 is developed in section 4, § ‘The SAUT Construction model’.

The test scenario model contains the definition of scenarios, such as those depicted with sequence diagrams in
the preceding § ‘An example of services architecture: the Interbank Exchange Network’, that are sampled in the
associated Test Suite data set. Generally speaking, the scenarios sampled in the Test Suite are a subset of all
the possible scenarios of service interactions in the associated SAUT model. The Test Suite data set contains a
number of test samples for each scenario of the Test Suite Definition. Each couple test scenario modell / test

suite data set has a test coverage measure of the SAUT.

An appropriate model of the problem domain is a crucial element for the success of the probabilistic inference
application. This work proposes a simple but deep model of the problem domain, the grey-box functional
conformance testing of distributed services architectures, that is able to take into account both the fault-
exposing potential of the test cases and the test coverage of structural and functional decompositions of
services architecture at the lowest possible level of granularity, given the black-box/grey-box stance of service
testing.

The Scheduler decision module is an Arithmetic Circuit inference engine (see section 6 ). The construction of
the Arithmetic Circuit is the job of the Scheduler initialiser (see section 4, § ‘Initialisation request’) and

produces the Arithmetic Circuit structure through three logical steps:

1. It extracts a view of the SAUT model, of the scenario model and of the test suite data set (called a Test
Scheduling Context model — TSC), that includes: (i) a structural/functional decomposition of the SAUT
and (ii) a model of the Test Suite data set (see section 6, § ‘Building the Test Scheduling Context model
),

2. It builds a virtual Bayesian Network (vBN) from the TSC model by associating random variables to TSC
elements and stochastic dependences to TSC relationships (see section 6, § ‘Building the virtual
Bayesian Network by model transformation’).

3. It compiles the vBN into an Arithmetic Circuit (AC) by using an original compilation algorithm (see
section 6, § ‘Building the Arithmetic Circuit by compilation’).

The vBN includes variables corresponding to the structural/functional decomposition of the SAUT, such as
components, ports (references/services), message types, and to the test suite: test samples (collections of
message oracle), the messagte oracles. These variables ore organised by the statistical dependences. The
model allows the finest granularity of the test coverage and the evaluation of the fault-exposing potential of

each elementary oracle of a test sample.
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This research propose an original algorithm for the technique of the inference by compilation [Darwiche 2001],
which seems particularly suitable for mastering the computation complexity problem of test scheduling. The
principle of inference by compilation is straightforward: from the chain rule [Darwiche 2003] follows that any
Bayesian Network (BN) can be represented by a multi-linear function (MLF) with specific properties. An MLF is
the sum of an exponential number of terms: there is a term for each possible instantiation of the network
variables and the term is the product of the evidence indicators and the network parameters of the
instantiation. The Arithmetic Circuit (AC) is a representation of such a function that facilitates its inference
computing.

An interesting feature of the AC is that it allows avoiding re-computations of operations within sub-circuits. The
MLF contains all the information about the variables and the dependences, so that, all the answers to
probabilistic queries can be obtained by evaluating and differentiating the function. The structure of the
Arithmetic Circuit with respect to the compiled vBN is detailed in section 6. The compilation method proposed
in this research is a recursive dynamic algorithm detailed in section 6, § ‘The first steps of the Scheduler
initialization phase end with the construction of the vBN that is in fact a model of a BN (in the sense that the
representation does not correspond with any optimized representation of “executable” BNs). The vBN model is

stored in a light XML representation. Figure 41 sketches an example of vBN .

The classical Bayesian inference approach reaches its limits in size and computation speed very quickly with the
increase of the number of: (i) Participants, (ii) SendingPorts, (iii) InteractionTypes, (iv) Interactions and (v)
TestSamples. The proposal of this research is to “compile” the classical representation of the Bayesian Network
in a more compact structure (the Arithmetic Circuit), adapted to more efficient inference computation. A
concise description of an original model-driven method for compiling a BN into an AC follows.

As it was explained in chapter 4 a BN uses is a graphical representation of a joint probability distribution that
can be viewed as a MLF. The AC is a factorized version of the MLF that avoids redundancies like repeating sub-
circuits. A MLF is the sum of an exponential number of terms where each term is an instantiation of all network

variables multiplied by the probability parameters expressing their mutual dependences.

Returning to Figure 41, it is important to highlight that the TestSample, InteractionType, SendingPort,
Participant and System BN nodes are OR nodes (they are instantiated to the value 1 if at least one of the
parent nodes is instantiated to 1). This implies that the probability tables of the dependences contain values
equal to 1 and 0. Consequently, some of the terms of the MLF vanish due to a value equal to 0.

After this initial simplification it is possible to observe that all remaining terms express all possible instantiation
of the observed Interactions, the input information, and the consequences on the state of the rest of the
network variables.

FO) = Amgdimy - A HAg, A5, 0o Oy - O} + -+ + {AmgAmy o A HAg; - Agy HOmo Omy -+ Omy}
Each term of the function can clearly be organized in three groups of variables:

{Ami ; lﬁli} - Interaction evidence indicators that represent the two possible instantiations of Interaction

(expressing the verdicts pass or fail).

{Agi i Agi} - Evidence indicators for the other variables (System, Participants, SendingPorts, InteractionTypes

and TestSamples). They also represent the two possible state of the related Bayesian Network variable.
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0m; — Network parameter consistent with the state of the interaction m; and the topology of the vBN. Instead
of the network parameters of the other BN variables, those network parameters are not removed during the
simplification because their value is different from 0 and 1. For each interaction, the network parameter can
belong to one of two categories:

* 0(m;|U) — U being the state of all parents node, in the case of non-observed Interactions the values of the
Interaction instantiations influence the values of the preceding non-observed Interactions.

* O(m;) -Inthe case of observed Interactions the value is defined by the expert as an a priori opinion on the
state probability of failure of the Interactions.

The morphology of the MLF can be explained by transition properties of the BN. In fact, since the state of the
System depends of the state of the Participant, the state of the Participant depends of the state of the
SendingPort and so on (see Figure 41), the state of any element of the SAUT can be determined by the state of
the cluster of Interactions that are linked to it.

’. At the end of the initialisation phase, the Scheduler is equipped with an Arithmetic Circuit that allows it to
behave as a Bayesian agent.

The inference engine on the AC is an internal module of the Scheduler. To each execute/arbitrate cycle (with
test samples as inputs and test verdicts as outputs) corresponds a schedule inference cycle (with test verdicts
as inputs and test samples as outputs). The Scheduler manages its internal inference engine by setting: (i) prior
probabilities on its top variables at the initialisation and (ii) assumptions/beliefs/observations (evidence
realisations) on the other variables potentially at any inference cycle.

At each inference cycle, the AC engine utilises a “double traversal” algorithm [Darwiche 2003] to calculate: (i)

P(e)and P(X,e — X)in a first traversal and (ii) P(X]|e) in the second traversal, X being any variable not
instantiated in the evidence e.

The Scheduler can put in place, on the basis of the AC inference, different “generic” scheduling policies based
on different evaluations of the fitness probability distribution of the test samples that produced by the
inference cycle, and different “generic” halting policies, based on the objectives of the test session related to
the test/design/development cycle.

Three “generic” scheduling policies are put in place by the Scheduler for the choice of the next test sample to
run: (i) max-entropy policy — the test sample with the maximum entropy [Khinchin 1957] of its fitness
probability distribution (ii) max-fitness policy — the test sample with the max fit probability, which can be
interpreted as a measure of the test sample fault-exposing potential, (iii) min-fitness policy — the test sample
with the min fit probability.

Four generic halting policies are put in place by the Scheduler: (i) n-fail-halt policy — halt at the n-th test sample
execution whose global verdict is fail, (ii) n-misfit-halt policy — halt at the n-th test sample execution whose
global verdict is pass, (iii) entropy-threshold-halt policy — halt when the entropy of all the variables of a
collection is less than an established threshold; (iv) no-halt policy — the test session stop only when there are no
more non-executed test samples.
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Some experimental results of the original algorithm presented in this manuscript, conventionally called inf4sat
and some comparisons through simulation campaigns with classical probabilistic inference algorithms (e.g.
Lazy-Propagation and Gibbs Algorithme) and the Darwiche algorithm of inference by compilation have been
collected in terms of: (i) AC size, (ii) inference speed, (iii) compilation speed. The inf4sat algorithm is better that
its “competitors” in memory size, robustness and inference speed, and pushes further the limits in terms of
tractability of the network complexity. It is less performant than its competitors in terms of compilation speed.
This trade-off is adapted to the testing domain where the service specifications are generally stable, but the
service implementations are built through software engineering iterative processes such as Test Driven
Development and Continuous Integration Testing, and is extremely well adapted for continuous re-testing
(checking that the failures exposed in the last test session have been fixed) and regression testing (testing that
the new implementation version doesn’t produce non-compliant side effects). The compilation result (the AC
image) is compiled once, and can be compiled asynchronously with respect to the test sessions, saved and
reused in hundreds, thousands ... of test sessions, where the probabilistic inference could be an effective tool
for improving the test detection rate (the early exposure of failures and the localisation of the faulty
components that are the sources of these failures), and the inference speed is a critical factor for shortening
the test session duration and for augmenting the test frequency.

This Scheduler is integrated in the MIDAS platform and its utilisation within test sessions on the MIDAS Pilots is
ongoing. The MIDAS Pilots are real and complex services architectures in the health and in the logistics domain
that are used as real-world case studies for the MIDAS platform. The author is confident that the Scheduler
implementation and usage (policies) in relationships with different testing objectives and approaches on two
real world case studies will be confirmed and improved.

BACKGROUND AND CONTEXT OF THE RESEARCH

This research has been initiated within a joint project (BN4SAT — Bayesian Networks for Services Architecture
Testing) of the Université Pierre et Marie Curie — Sorbonne Universités (UPMC), the Centre National de la
Recherche Scientifique acting within the Laboratoire Informatique de Paris 6 (LIP6) and Simple Engineering
France (SEF), a small company specialised on SOA engineering. The project was partially funded by the ANRT
(Association Nationale de la Recherche et de la Technologie — Convention CIFRE n° 314/2009).

Sometime before the beginning of the BN4SAT project, Simple Engineering France had started utilising the
TTCN-3 language [Willcock et al. 2011] for the automation of the test of complex services architectures. Today,
the powerful features of the TTCN-3 language and of the associated tools® allow considering the automation of
test execution and test arbitration tasks with TTCN-3 programming as a solved problem [De Rosa et al. 2013].
However, the specific characteristics of the services architectures make their testing hard, costly and difficult-
to-manage, even when the full automation of the testing execution and arbitration is attained.

On the other hand, with the accelerated development of the digital service economy, SOA testing becomes
more and more compulsory. It is the only means for increasing the stakeholders’ trust in the services
architectures that automate the processes of the digital economy. Hence, the decision was taken to go further

6 http://www.testingtech.com/
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to the automation of higher level tasks such as the dynamic prioritisation of test cases, i.e. dynamic test
scheduling, to facilitate and to shorten the test/design/implement cycle in a context of Test-Driven
Development and Continuous Integration Testing. In order to satisfy this requirement, the DECISION team of
the LIP6 has proposed to investigate the application of probabilistic inference to the automation of the SOA
test dynamic scheduling. The BN4SAT project has produced and a first prototype [Maesano and De Rosa 2011]
[Maesano et al. 2011] and a positive assessment on the possibility of applying Bayesian inference to the test
scheduling automation problem.

These first results have permitted to enlarge the perspective on SOA testing automation to all the testing tasks
and to the full Model-Based Testing (MBT) approach. UPMC and SEF have promoted a European Consortium,
including: (i) Academic and Research institutions such as Fraunhofer Fokus Institute (DE), University of
Goettingen (DE), Consiglio Nazionale delle Ricerche (IT), ITAINNOVA - Instituto Technologico de Aragon (ES), (ii)
Companies such as Dedalus S.p.A. (IT) and T6 (IT) and (iii) Non-profit organisations such as Sintesio (Sl). This
Consortium has issued a proposal for the EC FP7 Call 8 (Activity: ICT-8-1.2 - Cloud Computing. Internet of
Services and Advanced Software Engineering) and has obtained a grant for a three year STREP Project MIDAS
(Model and Inference Driven Automated testing of Services architectures - Project Number 318786).

The MIDAS project aims at developing a SOA testing facility delivered as Testing as a Service on cloud [Candea
et al. 2010] [Floss and Tilley 2013] [Maesano 2013], enabling the model-based automation [Schieferdecker
2012] of all the SOA testing tasks (test case/oracle generation, test execution, test arbitration, test reporting,
test scheduling and test planning). The focus is on functional conformance testing, security/vulnerability testing
and usage-based testing.

A specific characteristic of the MIDAS project is the presence in the Consortium of two partners - ITAINNOVA
and Dedalus - whose specific task is to put in place real complex services architectures (the pilots), respectively
in the logistic (supply chain management) and health domains, and to utilise directly the MIDAS facility to test
the pilots. These partners play the role of users of the MIDAS testing facility from the beginning, when it is still
work in progress. The double advantage is that the MIDAS test methods are confronted to the complexity of
the real services architectures — double complexity of the service composition network and of the data
structures that are exchanged — and that the very early integration of the users in the project fosters the
effectiveness and usability of the MIDAS testing facility. It must be said that one of the great problems of the
SOA testing research is the lack of real-world case studies [Bozkurt et al. 2013] and that one of the main
reasons that have pushed UPMC/LIP6 and SEF to build a Consortium and to candidate for a grant with the
MIDAS project is the search for real-world case studies for the research that has started with the preceding
BNA4SAT project.

Hence this research has continued in the context of the MIDAS project, where UPMC is leading the Work
Package 5 (Intelligent planning and scheduling of SOA test campaigns), with the financial support of the
European Commission.

THE STRUCTURE OF THE MANUSCRIPT

Section 2 provides a description of the problem statement concerning SOA testing and SOA test scheduling.
After a general introduction of the service approach of distributed applications as the main design paradigm of
the digital economy, the importance and peculiarity of SOA testing, as black-box testing of single services and
grey-box integration testing of service compositions, is highlighted. The section claims that effective and
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efficient testing is the only means for service developers and service users to improve the stakeholders’ trust
on the service digital ecosystem. In particular, functional conformance testing, i.e. checking the actual
behaviour of single services and service compositions towards structural, functional and behavioural models,
that are shared between service designers, providers, integrators and users is motivated as a basic step of trust
building. This section introduces key concepts and defines main terms of SOA testing (test case ...), and also key
model concepts and terms such as service interface, service composition topology, service interaction
protocols, service pre/post-conditions, data flow requirements. These definitions introduce the SOA testing
task decomposition. The testing tasks, such as test generation, execution, arbitration, scheduling, reporting and
planning are described and discussed as human as well as automated processes, in relations with the service
life cycle, and in particular with the cycles that put in place Test-Driven Development and Continuous
Integration Testing. The section highlights the difficulty and cost of SOA testing, the benefits of SOA test
automation and, in particular, of the automated dynamic scheduling of test sessions and summarises the
objectives and constraints that have driven this research.

Section 3 presents and discusses the related work about SOA testing. After a general presentation of the
research on SOA testing and on the impact of the more recent paradigm of model-based testing on SOA
testing, it focuses on the research threads that are directly related to this work on automated dynamic
scheduling, i.e. (i) the test run automation thread and (ii) the regression testing thread. In the test run
automation is shown that the research on TTCN-3 and some TTCN-3 frameworks pushes very far the
automation of the test execution/arbitration on services and services architectures. There is no specific thread
on dynamic test scheduling (the test run automation frameworks of the literature implement static scheduling)
but the section presents relevant research about test case selection and prioritisation (static scheduling) of test
cases in regression testing, always with the objective of improving the fault selection rate and the test
coverage, in relation with the test regression main objective that is checking that maintenance and evolution
actions on the services architecture under test do not produce unwanted side effects - but also with the other
important objective that the implemented modifications are effective in correcting known faults. The research
review shows that the efforts on regression testing share with this research some objectives (the early
exposure of failures and the early detection of faults provoking the failures) and some concepts (fault index of
service structural and functional elements, fault-exposing potential of test cases).

Section 4 presents the general architecture of the test run automation in the context of the MIDAS project, the
place of the scheduler in this general architecture and its relationships with the other components, the
scheduler service behaviour and interface and, in particular, the modelling elements that have been proposed
by this research (the SAUT Construction model and the Test Suite data model) and are utilised to initialise the
scheduler for a specific test session. These modelling approach is today adopted in the more general project
(MIDAS) in which this research is integrated. After a short presentation of the MIDAS facility, and of the MIDAS
internal services architecture, the logical architecture of the schedule/execute/arbitrate cycle and its
realisation as services architecture on the MIDAS platform are presented. The scheduler service interface is
presented and its operations are illustrated (with reference to the scheduler WSDL in the annex — section 0).
The section ends with a detailed description (including a formal definition) of the SAUT Construction model and
of the Test Suite data structure model and a some hints about the test system configuration, the test run and
the structure and meaning of the test verdicts, that are the main input to the probabilistic inference cycle that
drives the dynamic scheduling service.
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Section 5 presents the related work about the probabilistic approach of the test dynamic scheduling. The
section is composed of four parts. In the first part, the general approach related on the use of conditional
independence and of probabilistic models (Bayesian networks, Markow networks) is presented and discussed.
In the second part, the probabilistic inference is introduced, and its methods and algorithms are detailed and
discussed, in particular variable elimination and its variants, junction tree algorithms and variants, the so-called
Shafer-Shenoy and other approaches. In the third part, the motivations, methods and algorithms of the
inference by compilation approach are presented and discussed. The last part of the section documents the use
of probabilistic inference in testing and troubleshooting. The use of Bayesian models in different testing
activities is still at its infancy but, on the basis of some interesting realisations an influential position paper
published in 2010 [Namin and Sridharan 2010] considers Bayesian reasoning methods “an ideal research
paradigm” for the future of the testing research. This inspiring work, in particular the applications on selection
and prioritisation of test cases, is presented and discussed, with the fact that dynamic selection and
prioritisation are considered important topics of future research. The section ends with the presentation and
discussion of the troubleshooting approach through probabilistic inference that constitutes today a well-
established research discipline.

Section 6 presents the central element of this research that is the probabilistic inference engine core
implementation. The inference engine implements inference by compilation that is based on an Arithmetic
Circuit representation (inf4sat). The section starts with a description of the model mapping and transformation
process that, starting from the SAUT Construction model and the Test Suite model and data set end with an
intermediate structure, the virtual Bayesian Network and shows how the Scheduler initialiser builds a view (the
Test Scheduling Context model) of the aforementioned models that exhibits the structural and functional
decomposition of the SAUT, the individual test samples of the test suite and their relationships. Then it
associates to the elements of this model the appropriate random variables and to their relationships the
stochastic dependences. In the second part the compilation step that transforms the virtual Bayesian Network
into the Arithmetic Circuit is presented and the compilation methods as well as the target structure are
detailed.

Section 7 presents the use of the inference engine as a driver of the test schedule/execute/arbitrate cycle by
the scheduler and introduces and discusses the concept of scheduling and halting policies. In particular, the
peculiarities of the inference mechanism and of its utilisation by the scheduler are presented, together with the
three “benchmark” scheduling policies (the max-entropy policy, the max-fitness policy and the min-fitness
policy) and the three main halting policies (n-fit-halt policy, n-misfit-halt policy and entropy-threshold-halt
policy). Experimental results and comparison of the inf4sat algorithm of inference by compilation detailed in
the section 6 and its main “competitors” is described in the second part of the section. The results of
evaluation campaigns, in terms of Arithmetic Circuit size, inference speed and compilation speed.
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2. SOA, SOA TESTING AND SOA TEST SCHEDULING

SERVICES ARCHITECTURE

In the digital economy tens, hundreds, thousands, ... applications, systems, devices are connected and
collaborate without human intermediation, putting in place the automation of business processes that support
economic, social and administrative activities. The dependability and security of such digital ecosystem become
more and more a critical issue [Brian Arthur 2011].

Service orientation is a design and implementation style [SoaML 1 0 1 2012] that allows organizations to put in
place dynamic and automatic collaborations of distributed, autonomous, heterogeneous and loosely coupled
systems, applications and devices in order to achieve flexible, dependable and secure business process
automation.

Within the service oriented style, the collaboration among distributed systems, applications and devices is
carried out automatically — without human intermediation - via the exchange of service provisions through
remote Application Programming Interfaces (APIs). A service can be defined as an activity that has an effect in
the real and/or digital world (the service provision) carried out by a system acting as a service provider for or in
behalf of another system acting as a service consumer [SoaML 1 0 1 2012]. The service provision is coordinated
by the interaction between the provider and the consumer through the service APIs. A services architecture is a
network of participant systems, applications and devices that exchange service provisions in order to achieve
business goals.

A service can be intended as described by a service specification. A service specification is a description of: (i)
interfaces — required and provided by the provider and the consumer; (ii) behaviours - the protocols and
contents of the interactions between the provider and consumer, i.e. the behaviours that are observable at the
interfaces; (iii) functions — the service provisions. The service specification should also include security and
quality of service aspects. Generally speaking, the interface description (the APIs) is, by definition, well-defined,
formal and machine readable, while the functional and behavioural descriptions are often partial and informal
(in general, they are supplied as APl documentation).

Whether complete or partial, formal or not, a service specification is a black-box model of the system that
claims to implement it, either as a service provider or as a service consumer. It does not include any
information about the system implementation. Systems that are built following different constructional (white-
box) specifications and that are implemented on different technological platforms can be able to fulfil the
provider or consumer role of the same service specification.

Specifications can be represented by models of the specified object or process. Service engineering, as several
other engineering activities, is always model-based, either implicitly or explicitly. Analysts and designers always
build a mental model of the service that they have either to specify/design (prescriptive model) or to
analyse/assess (descriptive model). When a model is represented explicitly, even informally, it is potentially
communicable between humans. When a model is represented through a formal system of signs (the meta-
model), it is also communicable to a machine [Bézivin 2005]. Formal models can be processed in different ways.
They can be: (i) checked for some relevant properties, (ii) transformed until automatic generation of parts of
the digital system, (iii) utilised to generate automatically test cases, test oracles, test system components. For
example, a WSDL document [WSDL 1 1 2001] is a partial service specification - only the interfaces are
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concerned - that describes through a machine readable model the service APls on a specific interoperability
platform [SOAP 1 1 2000]. It can be used to generate code such as the consumer proxy and the provider
skeleton’ and to generate templates of compliant SOAP messagesg.

The service oriented approach of the cooperation between distributed systems is characterized by a sharp
separation between service specifications (service models), system specifications (system models) and system
implementations. A service model can be considered a black-box model of the system that claims to implement
the service, whereas the system model is a white-box model of the system. The service, black-box model is
made accessible to the stakeholders - the service providers and the service consumers - and works as a
“contract” between them, whereas the system, white-box models are concealed and private to the system
owners. Note that hiding the system white box model and the system implementation is not only a
confidentiality issue, but also and, we can say, mostly, a way of mastering the complexity of the
implementation of large systems [Parnas et al. 1983].

Furthermore, the system white-box model and implementation cannot be derived mechanically from the black-
box models of the services that the system implements. This impossibility constitutes the true limitation of the
model-driven approach of software and system engineeringg: the analyst can build a formal black-box
(functional) model of the service; the designer can build a formal white-box (constructional) model of the
system that is supposed to implement the service; possibly, the software implementation can be derived
mechanically from the constructional model™. The problem is that, in the most general case, the white-box
model and its implementation cannot be derived mechanically from the black-box model, and the fact that a
white-box model implements correctly a black-box model cannot be formally proved [Dietz 2010]. In a situation
in which the implementation is hidden and cannot be mechanically derived from the service specification, how
can we increase the stakeholders’ trust in the conformance of the system behaviour to the service
specification?

What can be done with a formal black-box model is to sample its behaviour, i.e. to generate (manually or
automatically) an extension of it [Rapaport 2012]. A collection of samples of the behaviour of the system at the
interfaces (service samples) that are compliant with the model can be used to check the actual system
behaviour, by comparing them with snapshots of the actual behaviours at the interfaces. As the service user is
unable to inspect the implementation and to prove the compliance of the implementation with the service
specification, the only way at her/his disposal to increase its trust in the system conformance to the service
specification is testing the system implementation against the service specification.

7 http://axis.apache.org/
® http://www.soapui.org/
? http://www.omg.org/mda/

%n any case, AIT (Algorithmic Information Theory) confirms that a complete constructional model cannot be
significantly shorter than its software implementation [Lewis 2001].
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Services are the building blocks of the digital economy. Modern applications are composites aggregating not
only their own internal components but also private, partner and public services through their APls. Legacy
systems are more and more equipped with service wrappers and adapters that allow them to interact directly
with other applications and systems through APIs. In the Software Development Life Cycle (SDLC) a progressive
shift from software development - specify, design and implement components — towards service integration -
select, evaluate and integrate services through APIs - can be observed.

Services become enablers of critical business transactions and, potentially, the weakest links in these
transactions. The quality of the services that an organisation provides and consumes is now more important
than ever. The business impact of any application failure is the same regardless of whether the fault lies within
the components developed by the organization or in the implementations of the services that its components
use.

Hence, service testing is not only an activity of service providers, but also and mostly of service users.
Furthermore, service providers and service users are roles of developers whose software consumes services in
order to implement the services that it provides (service composition). Hence, a service developer has to test
the services that her/his software uses, in addition to test the services that it provides, in the earliest phases of
the SDLC.

Test-Driven Development style is a popular option for software development [Beck 2003], and is mandatory for
service composition where, in principle, a service that is selected to be used should be tested (as a part of its
evaluation) before its integration. As a consequence, testing is no more a singular event but a continuous
activity from the beginning of the SDLC (Continuous Integration Testing — CIT [Huang et al. 2008]).

Technically speaking, services architectures are built on interoperability platforms between distributed systems
that are mainly based on a limited number of technologies:

e SOAP[WSDL112001] [SOAP 11 2000];
*  REST/XML [Fielding and Taylor 2002] [XML 1 1 2006];
*  REST/JSON [Fielding and Taylor 2002] [JSON 2013].

All these platforms ensure the syntactic interoperability of the participant systems. They can be mixed within
services architecture. Service components using these interoperability platforms are loosely coupled and there
are no technical limitations to the “mixed” composition of SOAP, HTTP/XML, HTTP/JSON services.

Historically, SOAP is the first service technology/standard and also the most complex one. More recently, the
exponential growth of non-XML services, in particularly those based on HTTP and the JSON format of the
interaction payloads, has been witnessed.

TOWARDS SERVICE TESTING
Service testing is a technical activity conducted to provide stakeholders with information about the quality of

the system providing (and consuming) the service. This activity includes the stimulation and the observation of
the behaviour of the system according to a specified procedure [NIST 02 3 2002].
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In an historical perspective, there are three distinctive “waves” ™ of testing practices that are linked to
corresponding engineering main trends:

1. vertical application testing,
2. component off-the-shelf testing,
3. service testing.

VERTICAL APPLICATION TESTING

Vertical application testing was the most common testing activity at the end of the twentieth century. Within
this first wave, the object of development and test is a vertical application, i.e. piece of software built to be
utilised directly by business people through a Graphical User Interface (GUI) as a support of a business activity.
Application developers are in charge of requirement gatheringu, design, development and deployment of the
application.

In principle, developers perform white-box testing13 during the development phase: they check by analysis and
observation of the running code that the software is free from technical errors (e.g. infinite loops). At a certain
stage of the engineering cycle, the application is delivered to a group of selected end users that “test” its
compliance with the business needs (beta test phase). In this phase, a sort of black-box testing14 activity is
performed manually by end users: they stimulate, observe and assess the behaviour of the application without
any access to its implementation.

COMPONENT OFF THE SHELF TESTING

At the end of the twentieth century, enters the component-based engineering approach. The idea is that
software can be provisioned in the form of components off the shelf. A component is a piece of software:

* that implements specific business and/or technical functionalities;
* thatis provisioned through the physical distribution of its executable code to be installed on the user
premises;

" The term ‘wave’ seems more appropriate than ‘phase’ for activities that continue today.

12 Requirement gathering is often lead by business consultants, who operate as trade-unions between the end
users and the technical developers.

B “White-box testing (also known asclear box testing, glass box testing, transparent box testing,
and structural testing) is a method of testing software that tests internal structures or workings of an
application, as opposed to its functionality (i.e. black-box testing).”
http://en.wikipedia.org/wiki/White-box_testing

4 “Black-box testing is a method of software testing that examines the functionality of an application without
peering into its internal structures or workings.”
http://en.wikipedia.org/wiki/Black-box_testing
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¢ whose functionalities are accessible only through APIs, the source code being not available.

The component-based approach introduces some important changes in the development practices and in the
testing needs [Briand et al. 2006]. First of all, the component users are no more business people — they are
developers that utilise components as building blocks of more complex applications and systems. Very soon,
the problem is posed of the user trust in the functional and non-functional reliability of components that: (i)
are black-box executable artefacts developed elsewhere and (ii) are to be used as building blocks of the user

applications.

The rise of the component-based approach has stimulated the rise of black-box testing as a technical activity to
be conducted by a diversified population that includes:

¢ component developers;
* components users that are implementers of composite applications/systems;

* independent testers (including certification authorities).

At its dawn, the component-based approach has raised all the challenges and problems that are encountered
today with the service oriented style of provisioning of business and technical functionalities.

SERVICE TESTING

The service testing wave has followed closely the component-based one at the beginning of the twenty-first
century. From the user point of view, a service is a business and/or technical functionality that is accessible at
some network endpoint through a published API.

Compared to the component-based approach, the service oriented approach brings advantages for the user
and for the implementer. For the user, the main advantage is that s/he has not the burden of gathering and
installing on her/his premises the piece of software (and its updates) that implements the service as the
business and technical functions are only accessible through APIs exposed at a network endpoint managed by
the service provider. A counter effect is that the user loses definitively the control of the software life cycle.
Within the component-based approach, if a new version of a component is available, the user can choose,
under certain conditions, not to adopt it because the new version imposes adaptation costs that s/he doesn’t
want to afford. Within the service oriented approach, the provider can decide unilaterally to stop the provision
of an ancient version of the service, and the user is obliged to “migrate” the applications that consume it.

For the provider, the trade-off between the component and service approaches is between the costs of
packaging and distributing new versions of the component and the costs of the infrastructure that provides
directly the service. Thanks to the increased availability of cloud computing that allows easy and cheap
deployment of software systems, the latter costs had already decreased of at least one order of magnitude and
continue to shrink™. Moreover, the generalization of the APl paradigm allows the construction of large scale

> Amazon Web Services (https://aws.amazon.com), the first provider and the market leader of cloud services,

has reduced its prices 43 times since the year of its inception (2006).
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systems through service composition. The essential problem of trust in the functional and non-functional

reliability of services as building blocks of the digital economy is raised today at an unprecedented scale.

The Table 1 shows the different perspectives of the service implementer and the service user on service

testing. Service implementer and service user are both roles that the service developer plays in the SDLC.

Service implementer

Service user

Availability of the source/executable code that
implements the service.

Unavailability of the source/executable code that
implements the service.

Testing practice: white box testing of the code and
black box testing of the service.

Testing practice: black box testing of single services and
grey box testing16 of interactions between services.

Context-independent view of the service provided
by the implemented code.

Context-dependent view of the used services.

All configurations or aspects of the implemented
code behaviour should be tested.

Only subsets of configurations and aspects of the
service behaviour that are related to context-
dependent use are tested.

Play the testee role - deployment of the service
component for internal and external use - perform

Perform context dependent unit test and incremental
integration test on services that are deployed by their

extended coverage unit test.

providers for testing purposes.

Table 1. Perspectives on service testing.

It must be noticed that testing does not give the proof of the absence of incorrect behaviour and, for this
reason, testing is a potentially never-ending activity, because the absence of revealed failures does not ensure
the absence of concealed faults. The obvious reason is that, in general, testing cannot demonstrate the
absence of faults - this can only be achieved by code correctness proofs. In the scientific sense, black-box
testing does not verify the service compliance and the software quality. As B. Meyer expresses vividly: “The
only incontrovertible connection between testing and quality is negative, a falsification in the Popperian sense:
a failed test gives us evidence of non-quality” [Meyer 2008]. Hence, in general, successful testing (tests that
fail) falsifies service conformance and software quality. So, effective testing can be a means for improving the
stakeholders’ confidence in the compliance and quality of the service implementations, not a means for
proving this compliance and quality.

On the other hand, Aichernig and Salas [Aichernig and Salas 2005] claim that, giving up the “in general” and
under specific hypothesis, testing can serve as a verification tool: “Testing can show the absence of faults, if we
have knowledge of what can go wrong”. Fault-based test case generation is an approach where testers
“anticipate” defects in order to generate test cases, i.e. test case generation is driven by the search of
“anticipated” faults. The idea is to have enough test cases capable of detecting these anticipated faults. Test
case generation takes place in two steps: (i) business rule individuation — individuating the business rule
(pre/post condition, invariant, control and data flow requirements) that can be violated as a means of
modelling the mistakes that may have been done during the development process; and (ii) test cases

1o Grey-box testing of services architecture is based upon the knowledge of the structure of these architectures
- their components and the relationships between them - and the observation of the interaction between these
components, that are seen as black-boxes.
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generation that will cover the modelled mistake, i.e. test cases that would certainly fail if the mistake were
implemented.

Effective testing practices permit highlighting defects and vulnerabilities of the service implementation by
stimulating the service under test in a manner that instigates these defects and vulnerabilities to provoke
failures. Within service testing, the only testing means are mechanisms that allow stimulating, reacting to and
observing the behaviours situated at the accessible interfaces of the components of the services architecture
under test. Service unit testing is black-box testing of a single service provider component/service/operation.
Service integration testing is grey-box testing of service compositions, i.e. distributed architectures of software
components that cooperate through service provision/consumption, where the interactions between these
components are observable. In the remainder of this manuscript, when the distinction is not relevant, the

|II

“canonical” term ‘Services Architecture Under Test’ (SAUT) is used for both a single component under test and

a multi-component architecture under test.

The testing activities are classified in several ways [Canfora and Di Penta 2009] [Bartolini et al. 2011] [Bozkurt
et al. 2013]. A generally accepted classification proposes three main categories:

¢ functional conformance testing,
*  security/vulnerability testing,
e quality of service testing.

Functional conformance testing is testing the compliance of the SAUT behaviours with the services’ functional
specifications”. Security testing is, on one side, testing the compliance of the SAUT behaviours with the
security policies (this activity is comparable with functional testing) and, on the other side, testing the
vulnerability of the SAUT implementations to malicious attacks. Quality of service testing is testing the
compliance of the SAUT behaviours with Service Level Agreements (SLAs) about performance, reliability,

Iu

availability, continuity, integrity and other “non-functional” characteristics of the service™.

This research focuses on functional conformance testing of services and service compositions, more specifically
on model-based test scheduling methods and automated tools, applied on the grey box testing of multi-
component services architectures ¥ In the remainder of this manuscript, the term ‘testing’ without
qualification shall be understood as ‘functional conformance testing’. In the next section the tasks that are

involved in the functional conformance testing of services and services architectures activity are detailed.

v Conventionally, the service “functional” specifications are not limited strictly to the service abstract
functions, independently from any interaction protocol, but include the specification of the interfaces and of
the interactional protocols. Functional testing is also used as a synonym of black-box testing, while structural
testing is used as a synonym of white-box testing.

18 . . . epe . . . . . .
For real time systems, the service functional specifications include also time constraints. Real-time services
architectures, if any, are not in the scope of this research.

n this research, black-box testing of a single service component is seen as a particular instantiation of the
general SOA testing problem.
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FUNCTIONAL CONFORMANCE TEST TASKS

This section hosts a description of the service functional conformance test tasks. This description and the
associated taxonomy have been elaborated within the MIDAS project as a generally acceptable description of
the testing practices [Maesano et al. 2013]. This description is preceded by the concise sketch of the objects
and processes involved in the functional conformance testing activity, and of the model elements that allows
model-based functional conformance testing.

TEST OBJECTS AND PROCESSES

A test case is the specification of: (i) a collection of states of the SAUT - for each stateful actual component of
the SAUT (see below) - and (ii) a collection of stimuli (messages) to be sent to the SAUT. The states represent
the initial states in which the SAUT components are supposed to be when one of them receives the initiating
stimulus that triggers the execution of the test case. The initiating stimulus and the other subsequent stimuli
(that are sent as reactions to messages received from the SAUT as responses to previous stimuli) are sent to
the SAUT from the test system.

A test run is the performance of a test case. It is the actual partially ordered collection of interactions in the
SAUT that is triggered by the transmission of the test case initiating stimulus after the configuration of the test
case initial states. This collection of interactions constitutes a finite or infinite” exchange of messages between
components and between the components and the test system. Each message issued by a component is a
(SAUT) response and each message issued by the test system after the initiating stimulus is a delayed stimulus.
After the end - or the interruption - of the test run, good testing practices recommend the reset of the SAUT
[ETSI EG 202 810 2010], i.e. the setting of the SAUT to the state before the test run. In fact, each fair test run
should be an auto-compensated transaction [Gray 1981] that leaves the SAUT in the state before the test run,
and is realized through the invocation by the tester (that can be an automated test system) of the appropriate
state management functions on each stateful component. These ancillary functions shall be implemented as
services and are utilised by the tester in order to ensure the independence and repeatability of each test run
and to support the arbitration of the test outcomes by getting state views.

A test outcome is a representation of the partially ordered collection of the SAUT responses and of the
collections of the SAUT components’ final states that are produced by a test run. Since test runs that are
correctly implemented (see the preceding point) are independent from each other and can be performed in
any order, each run of the same test case on the same SAUT always produces the same test outcome.

A test oracle is associated to one and only one test case. It is a specification of: (i) a partially ordered collection
of responses and (ii) a collection of final states. The test oracle responses and states define the expected
behaviours associated to the running of the test case. Oracles can be passive or active. A passive test oracle is
able to check partially the behaviour of the component, but is not able to reproduce this behaviour. For
instance, a partial specification (a fragment) of a SOAP message issued by the SAUT component as a response

2 The expected exchange of messages constitutes a finite sequence. An actual unlimited sequence of messages
is the expression of a failure (of the SAUT) or an error (of the Test System).
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to a stimulus is a passive oracle. An active oracle can reproduce the behaviour of the SAUT component. For
instance, a complete specification of a SOAP message instance issued by the SAUT component as a response to
a stimulus is an active oracle. Active oracles allow the test system to emulate the component behaviour.

A test sample is the couple of a test case and the associated test oracle. It is a specification of: (i) the collection
of the initial states the SAUT stateful components (the test case initial states), (ii) the partially ordered
collection of the messages (stimuli and responses) that, starting from the initiating stimulus, are exchanged
between the components (the test case stimuli and the test oracle responses), (iii) the collection of the final
states of the SAUT stateful components (the test oracle specifications of final states). A test sample represents
an instance (possibly specified partially with passive oracle) of the extension of the SAUT model, i.e. it models a
snapshot (a family of snapshots for passive oracles) of the SAUT behaviour that is compliant with the SAUT
specification.

A test suite is a collection of test samples on a SAUT that can be ordered statically (prioritised) or scheduled
dynamically (see below).

A test session is the sequence of test runs corresponding to the performance on a SAUT of part or the totality
of the test samples of a test suite.

SAUT MODEL REQUIREMENTS

In order to describe the testing tasks, and to compare the manual and automated executions of this tasks a
sketch of the requirements for structural, functional and behavioural specifications of the SAUT, and of the
model (meta-model) that constitutes a formal representation of these specifications must be provided. The
automated and manual processes that implement the testing tasks are deeply dependent on the availability of
formal (structural, functional and behavioural) models of the SAUT.

A comprehensive formal representation of the structural, functional and behavioural specifications of a
services architecture for model-based black-box/grey-box testing should include:

¢ A formal definition of the service interfaces. This part of the model is available “by definition” of the
service oriented approach (e.g. WSDL document). The interface model is part of the structural model
of the SAUT.

¢ A formal definition of the topology of the services architecture under test. This topology includes the
components their provided and required interfaces’’ and the actual service dependences between
them, i.e. the connections between the required and provided interfaces that carry out the
component interactions. The topology is part of the structural model of the SAUT [De Rosa et al.
2014al.

e A formal definition of the service interaction protocols between components (for instance through
Harel state charts or other similar formalisms [Harel and Politi 1998] [De Rosa et al. 2014b], i.e. of the

message types (defined in the interface model) that each service component can send and receive in

! The terms ‘provided interface’ and ‘required interface’ are intended to have the meaning used in UML [UML
2412011].
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each state of the “conversation” with the other components. The interaction protocols are part of the
functional/behavioural model of the SAUT. Note that the modelled behaviour is the external

behaviour observable at the components’ interfaces.

* A formal definition of pre/post conditions and on the invariants of the service operations (for instance
through the design-by-contract approach [Meyer 1992] [De Rosa et al. 2014b]). These conditions are
Boolean expressions on the states of the “conversation” between the components. They are part of
the functional/behavioural model of the SAUT.

¢ A formal definition of the data-flow requirements of the interaction, i.e., for each component, the
definition of the functional relationships between the content of the received messages and the
content of the subsequent, protocol-dictated, emitted messages [De Rosa et al. 2014b]. The definition
of the data-flow requirements is part of the functional/behavioural model of the SAUT. The interaction
protocols and the data-flow requirements are the building blocks of the service composition
specification.

The production of these SAUT models is a labour intensive and knowledge intensive process that shall be
performed by someone with a deep knowledge of the SAUT specifications and of the modelling techniques. In
the model-based Test-Driven SDLC, the early production of models drives both the implementation and testing
concurrent processes.

TASK DECOMPOSITION

The service functional testing activity is decomposable in the tasks listed below organised in two main test
cycles:

¢ Test generation cycle:

o test case production,

o test oracle production.
e Testrun cycle:

o test execution,

o testarbitration,

o testreporting,

o testscheduling.

The test tasks listed above can be organised in test plans. Generally speaking, test planning is intended as a
management activity that organises in time and space the testing tasks and their related resources. In this
research a more restricted and operational definition of test planning is given in the paragraph below.

The service testing current practice is generally limited to service unit testing and is backed by popular tools
(such as SoapUl) that:

* support the tester activity of construction of SOAP messages (stimuli and responses) by proposing
SOAP templates that are generated by the tool from the interface specification (WSDL/XSD) and that
the tester has to fill with appropriate texts and values;
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* propose a built-in client that is able to send requests to the service under test and to collect the
responses;

* propose a built-in server that is able to receive requests and send stereotyped responses defined by
the tester (service virtualization).

Within the current practice, with the exception of the limited support described above, the tester carries all the
testing tasks out “by hand”. Furthermore, the aforementioned category of tools supplies no support for
integration testing, i.e. for the grey-box testing of multi-component services architectures implementing
service com positionszz.

 TEST CASE PRODUCTION

The number of test cases for functional conformance testing of a SAUT is potentially unlimited. The objective of
the test case production task is the construction of a finite effective and efficient collection of test cases. The
effectiveness of a collection of test cases is its ability to reveal failures and to localise faulty SAUT elements
(troubleshooting). Its efficiency is its ability to reveal failures and to localise faulty SAUT elements with a
minimum number of test cases (size efficiency) or with a minimum number of test runs (time efficiency or fault
detection rate).

Methods and tools of generation of effective and efficient test suites have been the main focus of the research
effort on testing from the beginning (see section 3). In the domain of vertical application testing, some of these
strategies and methods are implemented as automated generation tools in sophisticated, off-the-shelf
products that are commercially available. Automated test case generation for service testing has been an
academic research target for fifteen years, but there are not yet commercially available tools for service
composition test case generation (except for orchestrated service compositionza).

The test case production processes are categorised and described in the Table 2 on the basis of the availability
of structural, functional and behavioural SAUT models and of the degree of automation of the testing task.

# Process title Process description

TCI1 | Manual production | Creative, labour intensive and knowledge intensive unstructured process. The
without the support of | producer must possess both a deep knowledge of the implicit structural,
the SAUT model. functional and behavioural specifications of the SAUT and of the test case
generation strategies and methods.

2 Generally speaking, the tools that support the run cycle for service composition test are dedicated to specific
composition paradigms such as service orchestration (e.g. BPEL) and service choreography (e.g. WS-CDL).

> The editors of orchestration engines (BPEL) and development environments supply white-box testing tools
for BPEL scripts.
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TC2 | Manual production | This is a labour intensive task that shall be performed by someone that is able
with the support of the | to apprehend the SAUT models and has knowledge of test case generation
SAUT model. methods and strategies (from this point of view, it is also knowledge intensive).

Conversely, the producer is not obliged to possess “first-hand” knowledge of
the functional and behavioural specifications of the SAUT that are objectified
in the SAUT models.

TC3 | Automated production | The automated production of test cases is necessarily model-based. The model-

of test cases,
necessarily based on
the availability of the

based generation of test cases utilises fechniques such as constraint propagation
on the pre/post-conditions, control and data flow requirements and strategies
and methods, such as boundary value analysis, equivalent class partitioning,

SAUT model. random, ad hoc, and combinatorial and statistical methods such as pairwise

and orthogonal arrays.

Table 2. Production of test cases.

TEST ORACLE PRODUCTION

Test oracles can be produced either at generation time (static oracles) or at run time (dynamic oracles). The

In

production of a test oracle is a “mechanical” process: given a test case, and the structural, functional and

behavioural specifications of the SAUT, the test oracle can be calculated ”mechanically"“.

Test oracles can be passive or active. A passive oracle can only be used to check the SAUT behaviour. An active
oracle is also able to reproduce the SAUT behaviour. The active oracle can be produced only from a complete
SAUT structural, functional and behavioural model®.

The test oracle production processes are categorised and described in the Table 3. They are categorized on the
basis of the availability of the SAUT model and the degree of automation.

# Process title Process description

TO1 | Manual production
without the support
of the SAUT model.

Labour intensive and knowledge intensive unstructured process. The producer
must possess a deep knowledge of the implicit structural, functional and
behavioural specifications of the SAUT.

TO2 Given a test case and the SAUT model, the calculation of the test oracle is labour
intensive and knowledge intensive and shall be performed by someone that is able
to apprehend the SAUT model and to manually “generate” a snapshot of its
functioning. Conversely, the producer is not obliged to hold “first-hand”
knowledge of the structural, functional and behavioural specifications of the

SAUT that are objectified in the SAUT models.

Manual production
with the support of
the SAUT model.

*To be precise, it is a true mechanical process (whether performed by a human or a machine) only if the SAUT
specifications are formal. If the specifications are informal or implicit (in the head of the service designer) we
cannot speak of a true mechanical process.

> The completeness of the SAUT model should be intended relatively to the test context and, in any case
concerns only the external observable behaviour of the SAUT.




46

TO3 | Automated The process is performed by test oracle generation software that is able to

production of test | calculate or emulate the external behaviour of the SAUT components as described
oracles, necessarily | in the SAUT model. The automated production of test oracles is necessarily
on the basis of the | model-based.

availability of the
SAUT model.

Table 3. Production of test oracles.

 TEST EXECUTION

The core of the test execution task is the accomplishment, for each test case, of a test run. In order to perform

a test run, the tester, directly or with the help of a test system, shall be able to perform the following actions:

vk wnN

setting the SAUT components’ states to the test sample initial states through the state-view
management ancillary services,

issuing the test case stimuli towards the SAUT,

receiving the SAUT responses,

observing the SAUT responses,

possibly getting the SAUT components’ final states through the state-view management ancillary
services,

resetting the SAUT components’ states through the state-management ancillary services.

In order to run the test cases, the test execution task comprehends other enabling and accompanying actions

such as:

the SAUT components deployment, that shall conform the SAUT construction model;

the test system deployment — a crucial capability of the test system is the emulation of the SAUT
virtual components that are responsible for sending the stimuli to the deployed SAUT actual
components and for receiving the SAUT responses; another crucial capability of the test system is the
deployment of observers, that are able to watch the interactions between actual components that are
triggered by the test case stimuli; more advanced test system are able to automate other test tasks
such as test arbitration, test scheduling, dynamic test case/oracle generation, test planning (see
below);

the pre-run configuration and the setup of the test system and of the SAUT components, including the
binding of the test system with the SAUT components;

the detailed logging of the test run and of all the actions listed above.

A collection of test cases (a test suite) can be executed either in batch mode or in interactive mode. Within

batch execution, the execution of all the test cases of a test suite is effected in a predetermined sequence, and

the tester (a human or a test system) regains control only when the sequential execution is either ended (all

the test cases are executed) or is stopped by the verification of some halting condition. Within interactive

execution the tester launches the run of test cases one by one (or by small groups) and regains the control at

the end of each test run, the test outcome being available immediately after the execution.
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The end user tools for service testing that are proposed today can perform only unit test execution (batch and
interactive) and the logging of the test outcomes (with the exception of the TTCN-3-based tools, see next

paragraph).

In the domain of test execution automation a significant progress has been made in the last fifteen years with
the availability of the TTCN-3 language and its execution environments®®. The language have been specified by
a standard body (ETSI) and has the traits of a general purpose programming language with specialized
constructs and built-in facilities for programming black-box test execution and arbitration. Some commercial
off-the-shelf and open source implementations of the language and the environment are currently available”’.
The TTCN-3 language (and the accompanying environment) has been utilized for building automated test
execution environments for embedded software and industrial applications (automotive, telecom). It has also
been utilized for building automated test execution environments for SOA testing [De Rosa et al. 2013]. In the

context of this research, a TTCN-3 engine is employed for service test execution and arbitration automation®®.

If an automated test execution system is not available, the tester must accomplish manually all the actions
listed above. Developers/testers are often accustomed to implement dedicated test systems that are the
results of composition of off-the-shelf products, open source components and home-developed software
components. Generally speaking, these systems support clerical tasks for the interactive and batch execution of

the test suites and the logging of the test outcomes.

TEST ARBITRATION

Test arbitration is the production of a test verdict as results of the assessment of a test outcome. The core
action of the test arbitration is the comparison between the test outcome and the test oracle associated with
the executed test case. Test verdicts are usually organized in four general categories [UTP 1 2 2012]:

1. pass - the test outcome matches the test oracle and the match is evaluated as a manifestation of the
compliance of the SAUT actual behaviour with the SAUT modelled behaviour — the test passes;

2. fail — the test outcome mismatches the test oracle and the mismatch is evaluated as a manifestation of a
SAUT failure (the SAUT actual behaviour is not compliant with the SAUT modelled behaviour) - the test
fails;

3. error — whatever the test outcome, it is evaluated as a manifestation either of a defect of the test system
or of an error of the SAUT configuration/initialization, including the binding with the test system;
inconclusive — the evaluation cannot conclude with one of the preceding verdicts;

5. none —there is no test outcome (verdict meta-value).

26 http://www.ttcn-3.org/
7 http://www.ttcn-3.org/index.php/tools, https://projects.eclipse.org/projects/tools.titan

?® http://www.testingtech.com/products/ttworkbench.php
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When testing complex services architectures, test arbitration can be a tricky endeavour needing accurate
analysis of the test execution context in order to avoid false negatives, i.e. pass verdicts that hide SAUT failures,
and false positives, i.e. fail verdicts that shroud the correct behaviour of the SAUT.

Test arbitration, such as test execution, can be performed either in “batch” or in “interactive” mode. With
batch arbitration, the test cases of a test suite are executed as a lot in a predetermined sequence and, at the
end, the test log is analysed for arbitration. With interactive arbitration, the test outcome of each test run is
arbitrated immediately after the execution of the test case. The latter modality allows: (i) the interruption of
the batch execution of the test cases when a certain condition is verified (for instance, at the first failure); (ii)
dynamic scheduling of test cases, i.e. the dynamic choice of the next test case to run on the basis of the
verdicts of the past test runs (with the prerequisite of interactive — manual or automated — execution).

A classification in ten categories of the test arbitration processes is detailed in Table 4. The categorisation is
made on the basis of the batch/interactive modality, of the availability of test oracles, of the availability of the

SAUT model and on the degree of automation.

# Process title Process description

AO1 | Batch manual “eyeball” | This is an unstructured, labour intensive and knowledge intensive process.
arbitration without the | Part of this process could be the same as TO1 (Manual production of the test
support of static test | oracles without the support of the SAUT model - see Test oracle production).
oracles and without the | Furthermore, the human arbiter shall be able to evaluate test outcomes
support of the SAUT | documented in the test log against test oracles that has been derived from
model. implicit specifications.

AQ2 | Interactive manual | The process can be described as A01. Moreover, the oracle derivation and the
“eyeball” arbitration | outcome evaluation are effected on the fly for each test run. This interactive
without the support of | manual testing mode is useful if the tester is able to perform some strategic
static test oracles and | reasoning about the next test case to run.
without the support of
the SAUT model.

A03 | Batch manual “eyeball” | Part of this process is structured as TO2 (Manual production of test oracles
arbitration without the | with the support of functional and behavioural models of the SAUT - see Test
support of static test | oracle production). The human arbiter shall be able to “calculate” test oracles
oracles but with the | from the test cases and the SAUT model and to evaluate the SAUT outcomes
support of the SAUT | documented by the test log against the calculated oracles.
model.

A04 | Interactive manual | The process can be described as A03 and the ability described in A02 applies
“eyeball” arbitration | too. Moreover, it can be said as for A02 that this interactive manual mode is
without the support of | useful if the tester is able to perform some strategic reasoning.
static test oracles but
with the support of the
SAUT model.

AO05 | Batch manual “eyeball” | This is a labour intensive process that mobilises general “syntactic matching”
arbitration ~ with  the | abilities, but no specific knowledge of the SAUT speciﬁcationszg. The arbiter
support of static test | shall be able to match the test outcomes documented in the test log to test
oracles. oracles and the test context.

?° This kind of job is frequently “crowdsourced” (https://www.mturk.com/mturk/welcome).
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A06 | Interactive manual | The process can be described as A0S5. Interactive arbitration is interesting if
“eyeball” arbitration with | the arbiter is also able to perform strategic reasoning, as in A02 and A04.
the support of static test

oracles
A07 | Batch automated | It combines in batch mode automated matching of the test outcomes (test log)
arbitration to the test oracles and automated evaluation of the test run context. The

prerequisite for batch automated arbitration are either the availability of static
test oracles (manually or automatically calculated) or the capability of the
arbiter to invoke the automated generation of oracles (dynamic oracles). Note
that automated execution is not a prerequisite of batch automated arbitration
(the test runs can be handled manually and the test outcomes can be collected
and assembled manually).

AO08 | Interactive automated | It combines in interactive mode automated matching of each test outcome to
arbitration the appropriate test oracle and automated evaluation of the test run context.
The prerequisites for interactive automated arbitration are (i) interactive
execution (possibly automated) and (ii) either the availability of static test
oracles (manually or automatically calculated) or the capability of the arbiter
to invoke the automated generation of test oracles (dynamic oracle).
Interactive automated arbitration is useful if utilised by an intelligent
scheduler (human or machine) that is able to perform strategic reasoning.

A09 | Batch automated | It combines the automated execution of the test cases (see preceding
execution/arbitration paragraph) with automated matching of each test outcome to the appropriate
test oracle and automated evaluation of the test run context in batch mode. In
this configuration, the batch processing of a test suite carries out, for each test
case, both execution and arbitration. The batch executor/arbiter takes as input
a test suite, i.e. an ordered collection of test samples, and produces a test log
in which are documented, for each executed test case, both the test outcome
and the test verdict. The batch executor/arbiter may be able to process a
halting condition, possibly bearing on the test verdicts.

A10 | Interactive automated | It combines the automated execution of the test cases (see preceding
execution/arbitration paragraph) with automated matching of each test outcome to the appropriate
test oracle and automated evaluation of the test run context in interactive
mode. The interactive executor/arbiter takes as input a test sample, executes
the test case, arbitrates the test outcome and returns as output the couple test
outcome / test verdict. Interactive automated execution/arbitration is a
prerequisite for automated dynamic test scheduling (see below).

Table 4. Test arbitration processes.

The TTCN-3 language and framework allows programming sophisticated mechanisms not only of test execution
(see the preceding section), but also of test arbitration. The automated test execution environments for SOA
testing [De Rosa et al. 2013] mentioned in the preceding paragraph perform also interactive automated
arbitration and is the automated execution/arbitration environment that is dynamically scheduled in the
context of this research.

 TEST SCHEDULING

Test scheduling is giving to the test cases of a test suite a specific order of running. There is a distinction
between (i) static and (ii) dynamic scheduling.

Static scheduling is batch scheduling, which is also known as prioritisation. The test cases of a test suite are
ordered prior to execution through priorities assigned to them. The priorities can be assigned manually, by test
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case production methods or by the test system on the basis of different criteria. At run time, test cases are run
in batch mode in the priority order that cannot be changed dynamically. When a test suite is prioritized and
runs in batch mode, the batch execution system should be able to stop (or suspend) the test session when a
halting condition is verified. Generally speaking, static scheduling can be carried out by batch
execution/arbitration systems that are able to take account of the priorities and of the halting conditions - no
specific scheduler agent is needed. Examples of static scheduling are the prioritisation techniques employed in
regression testing [Rothermel et al. 2001].

Dynamic scheduling is the choice at run time of the next test case to run. Dynamic scheduling requires the
action of a human or artificial agent that is able to decide at each test/execute/arbitrate cycle the test case to
run on the basis of a decision that takes into account the context in which the cycle is situated and the history
of the past cycles. In principle, the scheduler should decide the next test case to run on the basis of its “fitness”
to different criteria (for instance the fault-exposing potential [Elbaum et al. 2002]). With dynamic scheduling
the fitness of each not-yet-performed test case can change at each schedule/execute/arbitrate cycle on the
basis of the evolving test session context and the past test verdicts. The result of the execution/arbitration of a
test case can change the fitness distribution on the not-yet-executed test cases with respect to the original
testing objectives, or even change the testing objectives and the related fitness distribution of the test cases.

Automated test scheduling requires the automation of methods for strategic reasoning and troubleshooting.
An automated scheduler could be coupled as a question answering system (what is, given the last test verdicts,
the next test case to run?) with manual test execution and arbitration. If the automated test
execution/arbitration is available, the complete automation of the dynamically scheduled test run cycle is
possible.

TEST REPORTING

Test reporting is the production of a meaningful account of the execution of a test session for debugging
purposesao. The test report is the trade-union between the testing team and the debugging/fixing team. It
should contain and organise all the information that can be gathered from the test session and that is useful to
improve the debugging process.

While the test log is the detailed narrative of all the execution actions and of the test outcomes/verdicts, the

test report is a concise story, supplying aggregate information that highlights the failure (and error) test

verdicts, the relationships between failures and the relationships between failures and passes (tests that
31 . . .

pass)”” with the goal of enhancing the debugging process.

The manual production of a test report from the test log or the direct observation of the test session is a
difficult task that requires skills such as:

0 Test reporting systems collect data for administrative purposes that are very useful. This research considers
the report as a debugging tool.

> When looking for a specific failure, the fact that a test passes could be meaningful information, for the
scheduler but also for the debugger.
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¢ the ability to summarize meaningfully (for the debugger) the content of a bulky journal without
information loss,

* the ability to find meaningful correlations (for the debugger) between data that are sparse in the log.

The automatic production of a meaningful test report is not a trivial task, because it requires the automated
comprehension and assessment of all the information included in the log, e.g. the explanations and the
justifications of the test verdicts. The explanations and justifications of the choices of a dynamic test scheduler
driven by strategic reasoning can be interesting information too.

The twin of the test report is the fix report from the debugging/fixing team. In order to insure the tractability of
the test/debug/fix process, he test report should allow identifying: (i) the test session, (ii) the involved SAUT
(the build numbers that must be supplied by the testers) and SAUT model, (iii) the test suite and (iv) the
discovered failures. If the fix report that accompanies the deployed new build includes: (i) the new build
number, (ii) the identification of one (or more) test report(s) and (iii) the identifiers of the failures published in
these test reports that the new build is intended to have fixed, this information can be exploited to schedule
enhanced regression testing.

ETEST PLANNING AND MANAGEMENT

Test planning and management shall be intended in the context of this research as the arrangement and
timetabling of the tasks described above. In particular, test planning and management organises the test
generation cycle, the test run cycle and the relationship between them.

In principle, the test generation cycle and the test run cycle can be separate and managed independently. The
test generation cycles produce collections of test samples (test suites) that are stocked for future use. These
test suites are inputs of the test run cycle that is performed asynchronously.

Advanced test scheduling can supply inputs to test planning, by indicating, on the basis of the verdicts of past
test runs, some specifications about the production of new test cases (see the section of future works). Test
planning should supply directives and data to the test case production task, for example by focusing the test
generation activity on the coverage of:

* specific service operations,
* specific services,
* specific components,

* specific regions of the service component architecture.
or, on the contrary, by conducting a breadth-first search for failures.

Automated test planning and management is the last step in test automation and requires a testing
infrastructure in which all the test tasks described above are automated, programmable (callable through APIs)
and interoperable. In this case, the test planner is an intelligent system that is able to drive all the test tasks on
the basis of a general testing and troubleshooting activity. This automated planner

SERVICE ENGINEERING CYCLES
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The Test-Driven Development [Beck 2003] and Continuous Integration Testing [Huang et al. 2008] approaches
structure the service engineering process in three nested cycles, as sketched in Figure 9: the test generate/run
cycle is driven by the service test/debug/fix cycle that is part of the more general service
design/implement/test cycle. Roughly speaking, the test/debug/fix cycle targets the tuning of the service
implementation without changes of the service specifications (structural, functional, behavioural), whereas in
the design/implement/test cycle the service specifications (and the related implementations) are changed.

generate
run
cycle

design

implement
test

cycle

Figure 9. Service engineering cycles.

THE RATIONALE FOR SERVICE TESTING AUTOMATION

In summary, the only means for increasing the trust of the stakeholders in the dependability and security of the
digital service ecosystems are appropriate testing procedures and processes. The problem is that service
testing is undoubtedly a difficult, heavy and expensive activity. Paradoxically, some of the peculiarities that
make service testing mandatory make also it hard. Many researchers [Canfora and Di Penta 2009] [Bartolini et
al. 2011] [Bozkurt et al. 2013] highlight issues related to the complexity, difficulty and cost of service testing. A
famous study [NIST 02 3 2002] has set the agenda, putting into evidence the costs of the lack of an adequate
infrastructure for testing that makes the endeavour particularly problematic.

First of all, service testing is intrinsically difficult because of the specific characteristics of the service
component architectures as test targets. The service oriented approach of information hiding about system
internals, on one side allows managing the complexity of the digital economy, but, on the other side, increases
the difficulty of the testing tasks. Moreover, information about the internal states of systems that are relevant
for assessing the compliance of the implementations with the service specifications can be obtained only by
indirect means (e.g. the implementation of ancillary state view management services for stateful components)
that make the testability requirements heavier.
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The lack of observability of implementations cannot be replaced by the trust in the engineering methods, tools
and technologies that are employed by the service implementers, because, in the general case, also these
methods and tools are not visible, and cannot be realistically assessed. A further difficulty relates to the lack of
direct control of the service implementation lifecycles. The implementations’ life-cycles in multi-owner service
component architectures are out of each other control, even when very strict policies are agreed between
independent stakeholders, such as rigorously controlled change management procedures concerning both
service contract updates and service implementation new releases. In general, the services architecture
stakeholders are independent organizations that have no hierarchical relationships among them. The
establishment and the management of inter-organisational service testing (collaborative testing) cycles,
procedures and sessions on a multi-owner services architecture is a complex organisational task per se.

All the difficulties depicted above grow with the increasing scale factor of the services architectures. The
service approach facilitating the availability of powerful business functionalities in the Internet, it is easy to
predict the viral development of very large scale services architectures, supporting structured and unstructured
digital processes that involve huge numbers of participant systems, applications, devices and “objects”
[Brian Arthur 2011]. Testing scenarios of end-to-end service exchanges will require the design and the
implementation of dedicated strategies able to master the complexity of the task.

Testing does not prove the absence of faults. At best, it can either reveal that past failures that seem correlated
to some defects or weaknesses that have been corrected do not happen anymore or improve the confidence in
the absence of anticipated errors or susceptibilities. Because of the increasing complexity of the SAUT
initialization, configuration and reset procedures and of the test system configuration, binding and initialization
processes, the verdicts gathered from the arbitration of test outcomes can be flawed or uncertain (risk of false
positives and false negatives, inconclusive assessments ...).

The cost of service testing has three components: (i) equipment expense, (ii) labour effort, (iii) time-to-market.

The equipment costs of service testing, including hardware, facilities, software licenses and maintenance, for
the SAUT and the test system, are very high. The adoption of Test-Driven SDLC brings more continuity to the
testing activity in the early stages of the cycle, but the equipment needs are still discontinuous. This elasticity of
demand for testing equipment raises also logistic and organizational problems. A possible solution of this
problem is the adoption of cloud computing for testing [Maesano et al. 2013b].

The labour cost of manual testing is high, whatever the testing task involved and the labour skill required, for
several reasons. First of all, the level of automation of the current testing practice is low. Commercially
available tools®” offers limited functionalities related to the mechanisation of few clerical tasks and are strongly
limited to single-service testing. Even if some clerical tasks can be mechanised, service testing remains a human
based activity for critical tasks such as: (i) production of test cases and test oracles, (ii) configuration and set up
of test environments, (iii) scheduling of test runs, (iv) arbitration of test outcomes, (v) production of meaningful
reports.

32 http://www.soapui.org/, http://www.parasoft.com/,
http://www.crosschecknet.com/products/soapsonar.php
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Moreover, as already highlighted in the preceding section, these tasks are not only labour intensive, but also
knowledge-intensive. At least two kinds of knowledge are mobilised by the testing tasks: (i) knowledge of the
SAUT structural, behavioural and functional specifications and (ii) knowledge of approaches, methods and tools
to be applied to the testing tasks. They are both scarce resources. Even when they are available, manual testing
(generation, execution, arbitration, scheduling) is difficult and error prone (useless test cases, wrong oracles,
false positives, false negatives ..) and requires sustained continuous attention and critical observation

capabilities.

Paradoxically, the availability of partially automated test execution tools that make easier clerical tasks such as
the storage, management and execution of test suites incites the brute force execution of massive test
sessions, short of any consideration of their efficacy in terms of failure seeking, troubleshooting and confidence
improving. This approach finally increases the human effort needed for the eyeball assessment of large
numbers of test outcomes, without measurable amelioration of the effectiveness of the overall process.
Manual testing is not only difficult and expensive, but also its efficacy is questionable, above all for large scale
services architectures. Last but not least, the efficacy of manual testing, all things being equal, is diminished by
the lack of motivation for an activity that is considered boring and low rewarding. The difficulty of manual
testing in front of the explosion of the digital service ecosystem cannot be overcome by the mere diffusion of
methodological recommendations and training programmes. The true solution is test automation.

The last component of the testing cost is time-to-market. Time-to-market allows comparing testing costs with
the risk of insufficient testing. Service providers and users are confronted to the dilemma between: (i) long and
painful testing procedures that can provoke the missing of the market momentum and, as seen above, do not
guarantee necessarily the service quality and (ii) precocious delivery of insufficiently tested services, with high
business risks. The duration of the testing processes and procedures compared to the constraints of the time-
to-market pushes to automate the testing tasks, but also to shorten the test cycles and to increase their
frequency.

Testing automation, especially functional conformance testing, is forcefully model-based. All the testing
automation modules take as inputs the structural, behavioural and functional models of the SAUT and the
service implementations are tested against these models. Hence, the only “manual” task for the developer is
the production of the SAUT structural, functional and behavioural models [De Rosa et al. 2014a] [De Rosa et al.
2014b]. This task is not labour intensive, but is neither trivial. It requires modelling skills, and the availability,
during the modelling process, of a deep knowledge of the SAUT structural, functional and behavioural
specifications. The adoption of the Test-Driven SDLC facilitates the approach: the early production of models
drives concurrently the implementation of the services architecture and the test generation and run cycles that
are implemented by automated processes running in background. Once the SAUT model is built, the marginal
cost (in terms of human effort) of the fully automated testing tasks approaches zero. Furthermore, the testing
automation modules embed the knowledge of test strategies, methods and practices.

Test automation should be considered not only the automation of the testing tasks, but also as the automation
of the synchronisation between the test cycle and the service engineering cycles (Figure 9).

This research is focused on the automation of test scheduling. This automation is implemented on the basis of
probabilistic inference mechanisms that take into account the SAUT structural model and the test suite in order
to perform efficient failure seeking and localisation of faulty operations/services/components.
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OBJECTIVES AND CONSTRAINTS FOR TEST SCHEDULING AUTOMATION

As a conclusion of this section, this paragraph summarises some very general objectives and constraints that
have driven this research, whose main goal is the automation of dynamic scheduling of the test run cycle.

1. Grey-box functional conformance testing of service composition

The fundamental idea of composition testing (other same-meaning terms: ‘grey-box testing of services
architecture’, ‘service integration testing’) is that what must be checked is not only the response to a service
request from a single service component (unit testing), but (i) all the messages exchanged among the
components of a services architecture during the entire end-to-end service transaction that is triggered by the
first request (the stimulus) and (ii) all the states after of the stateful components.

The automated dynamic scheduler shall be able to cope with grey box testing of multi-component services
architectures. This means that it shall be fully aware of the structural model of the service component
architecture under test, of the test system configuration and of the test suite to be scheduled and it shall take
into account, in order to schedule the test runs, the composite verdicts issued by the arbitration of the past
test outcomes.

2. Automated dynamic test scheduling in TDD and CIT life cycle

The automated dynamic scheduler shall be a tool that improves the Test-Driven Development and the
Continuous Integration Testing approaches of the SOA engineering life cycle. It shall allow complete
automation of the test run cycle. Not only shall the test run cycle be automated, but also its invocation shall be
effected automatically. The idea is that the development environment of the design/implementation team
receives test reports and invokes automatically test sessions, possibly sending back change reports. In this
context the main objective of the automated scheduler is to foster the early detection of faults (fault detection
rate), through the improvement of early failure detection and faulty component localisation.

3. Test Scheduling as a service

The automated dynamic scheduler shall be a component of a more general architecture of testing automation.
Test execution and arbitration automation are prerequisites for automated dynamic test scheduling. In order to
automate the scheduling task the automated scheduler must cooperate with the logic of the process that
combines automated interactive execution with automated interactive arbitration. In any case, the automated
dynamic scheduler must be loosely coupled with the surrounding test system and testing environment.

The automated dynamic scheduling function shall be provided as scheduling-as-a-service. The scheduler shall
be a scheduling service provider module that exposes an API that allows the initialization with the SAUT model
and the test suite, and the request to supply the next test case to be run by furnishing the past test verdicts.

4. Model-based Dynamic test scheduling
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In order to improve its failure exposure and fault localisation capabilities, the scheduler shall “acquire” and
maintain a detailed knowledge of (i) the structural and functional decomposition of the SAUT and (ii) of the
Test Suite. This information must supplied by the same SAUT model and the Test Suite data that are used by
the other modules of the test run cycle. Moreover, it must be able to integrate in the model the information
coming from the progress of the test session, such as the test verdicts, but also other information about the
SAUT structural and functional elements. It must be able to suggest to the test system the most appropriate

test cases to be executed.
5. Probabilistic inference for test scheduling

The scheduler shall be able to “reason” on an uncertain situation and to manage the uncertainty of the decision
process. Moreover, the scheduler shall be able to take into account in its decision process new information
coming from the test execution/arbitration, i.e. new observations (test verdicts) and new beliefs about the
structural and functional elements of the SAUT.

The fundamental advantages of the usage of the probabilistic inference for decision are well-known, and seems
particularly appropriate for test scheduling: (i) probability theory is able to model with maximum accuracy and
minimum number of parameters a complex situation; (ii) the intermediate steps and the results of probabilistic
inference can be mathematically proven; (iii) new assumptions, beliefs and observations can be integrated in
the inference steps, (iv) the inference results are knowledgeable and can be explained in the context of a well-
established mathematical theory. The use of probability models and probabilistic inference on these models
bring a concise, sound and knowledgeable approach to test scheduling.

The limitations of the approach are fundamentally in the fact that many calculating procedures that support
the probabilistic inference have high computational complexity, and managing this complexity is a research
challenge. Automated test scheduling based on probabilistic inference is a new domain of investigation and the
main focus of this research.

6. Scheduling and halting policies

The Scheduling service shall be able to implement different scheduling and halting policies on the results of its
inference engine. These policies shall allow utilising the same probabilistic inference mechanism when pursuing
different testing goals in different testing contexts.
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3. RELATED WORK ABOUT SERVICE FUNCTIONAL CONFORMANCE TESTING

In the last fifteen years, the spread of the service orientation as a paradigm for the design and implementation
of distributed architectures has changed the traditional understanding of software application design, delivery
and utilisation [Vinoski 2002] [Vogels 2003] and has stimulated the emergence of a research thread about
Service-Oriented Computing (SOC) and Service-centric Systems (ScS) [Papazoglou 2003] [Singh and Huhns
2006] [Bichier and Lin 2006].

The trend of the number of publications on Service-centric System Testing and Verification, drawn from
[Bozkurt et al. 2013] is depicted in Figure 10. Bozkurt and colleagues declare that the total number of
publications has risen from 21 in 2004 to 177 in 2010.

Service-Centric System Testing & Verification Research Trend
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Figure 10. Total number of publications from 2002 to 2010, drawn from [Bozkurt et al. 2013].

In addition to research papers and communications, there are also a number of research surveys that give an
overall sight of the various aspects of the SOA testing problem [Canfora and Di Penta 2009] [Bartolini et al.
2011] [Bozkurt et al. 2013], and in particular of issues related to the complexity, difficulty and cost of service
testing.

Figure 11, always drawn from [Bozkurt et al. 2013] presents the type of case studies used by the researchers for
experimentation and validation of their approaches and highlights one of the great problems in service testing
research: the lack of real-world case studies. Let’s speak Bozkurt and colleagues: “Unfortunately, 71% of the
research publications provide no experimental results. The synthetic service portion of the graph mainly
includes approaches for testing Business Process Execution Language (BPEL) compositions. The most common
examples are the loan approval and the travel agency (travel booking) systems that are provided with BPEL
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engines. There are also experiments on existing Java code that are turned into services such as javaDNS, JNFS
and Haboob. The real services used in experiments are generally existing small public services that can be
found on the Internet. There are four experiments performed on existing projects such as government projects,
Mars communication service and a human resources (HR) system”.

Types of Case Studies Used in Experiments

e H%
AAa ey
P Using Real,
& Services Z
£ 4 18%
/
& " Synthetic
f 2 Services
No e—
\ Experimental .

\ Validation \J
\ 118 )
N\ v
\ o

71% \\\v__//

Figure 11. Distribution of case study types used in experimental validation drawn from [Bozkurt et al. 2013].

There are many plausible reasons for this lack of real-world case studies. The first is probably the fact that, in
spite of the hype on SOA, only very recently the “APl economy” phenomenon is going to make real the original
dream of service orientation, i.e. the implementation of massively distributed architectures for business
process automation through the loose coupling of independently designed systems, applications and devices
on the basis of shared service specifications and mutually hidden implementations. The second reason is that
SOA testing is complex and hard to put in place in real contexts, from the technical and organisational points of
view, especially for multi-owner services architectures. The third reason is that, generally speaking, testing is a
hot topic: businesses are reluctant to communicate about their testing practices and to expose their systems as
targets of research approaches and tools for testing [NIST 02 3 2002]. In the MIDAS project, two real and
complex services architectures under test, in the domains of Health and Logistics [Maesano et al. 2014], have
been put in place by two business professional partners and the test campaign with the MIDAS platform,
including the scheduler that is the product of this work, has started in October 2014.

The work that is reviewed in this manuscript is related to this research in different ways. First of all, the domain
is functional conformance testing of services architectures. In this domain we analyse the research threads on
test run automation and on regression testing.

In the author’s best knowledge, there is no evidence of a specific research thread about scheduling, but static
scheduling (test case prioritisation) has been largely investigated as a technique of regression testing. The
authors of a systematic study on Web service regression testing research [Qiu et al. 2014] enumerate 48
prioritisation techniques.

Test generation has been the main research topic of SOA testing, but it is not related directly to the subject of

this research. Test case generation and dynamic scheduling of test execution/arbitration have different but
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associated objectives: the former targets the effectiveness and space efficiency of the test suites, whereas the
latter pursues the fault detection rate of a given test suite. The integration of test scheduling and test
generation is a topic of future work (see the section of future works).

Model-based testing (MBT) is a research thread that emphasizes the use of formal models in testing. In the 1%
generation of MBT studies, the main target is the automated generation of test cases from the SAUT functional
and behavioural model. There is no specific consideration for a specific and independent SAUT structural
model, that is utilised in this research for the configuration/generation of the test execution/arbitration
environment and for the generation of the Bayesian Network whose inference drives the scheduling task. The
structural model enables the model-based automation of test scheduling and allows both structural and
functional localisation of faulty elements.

The research about the automation of the test run (execution and arbitration) is more directly related to
dynamic scheduling automation. The automation of test execution and test arbitration are prerequisites for the
automation of the test run cycle driven by an automated dynamic scheduler. The author of this manuscript has
participated to a research program correlated to this work that had the objective of complete automation of
test execution and arbitration on the basis of the TTCN-3 technology [De Rosa et al. 2013], and this test system
has been deployed on the cloud platform of the MIDAS project [De Rosa et al. 2014d)] .

Research about regression testing - the retesting of the SAUT after specification and/or implementation
changes to check that these changes have not unintended side effects — has been focused in how to maximise
the value of existing test suites for regression testing and minimise the costs of regression test execution,
through techniques such as test case selection and test case prioritisation. Work about regression testing is
related to this research in at least two ways: (i) test case prioritisation is a form of static scheduling for
regression testing but the prioritisation criteria (coverage, fault-exposing potential) can be utilised for general
testing and their relationships with dynamic scheduling have to be investigated and (ii) the role of dynamic
scheduling in regression testing is a subject of investigation too.

TEST RUN AUTOMATION FRAMEWORKS

On the side of test run automation, an important step has been taken with the “invention” of TTCN-3 [Willcock
et al. 2011]. TTCN-3 is an international standardised test language for defining executable test specifications
for a wide range of computer and telecommunication systems. TTCN-3 is a complete programming language
that has been designed with powerful traits that are specific for testing automation. It allows complete
automation by programming of the test execution and arbitration tasks. The research on the utilisation of
TTCN-3 for service testing has started early [Schieferdecker and Stepien 2003] [Xiong et al. 2005] [Werner et al.
2008] [Peyton et al. 2008]. Today De Rosa and colleagues [De Rosa et al. 2013] propose a generic TTCN-3
framework for testing services and service compositions that integrates the XSD mapping standard [ETSI ES 201
873-9 V4.5.1 (2013-04)]. This framework implements the execution/arbitration automation of the scheduled
test run cycle in which the scheduler result of this research takes place.

The related work on test run automation frameworks can be arranged in two groups: (i) service unit test run
automation frameworks, equipped with virtualisation techniques, (ii) service integration test run automation
frameworks.
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UNIT TEST AUTOMATION FRAMEWORKS (VIRTUALISATION TECHNIQUES)

A service composition, realised explicitly by orchestration or choreography or implicitly by chained invocation,
may also be considered, as a whole, as a service unit. Unit testing of service compositions can be performed by
simulation (real-world testing of service compositions with access to actual services is unrealistic), i.e. by using
stub or mock services (virtualisation) to test the business process [Li et al. 2005].

Mayer and Libke [Mayer and Libke 2006] present a BPEL unit testing framework for repeatable, white-box
BPEL unit testing. This framework uses a specialized BPEL-level testing language to describe interactions with a
BPEL process to be carried out in a test case. The framework supports automated test execution and offers test
management capabilities via well-defined interfaces.

Huang and colleagues [Huang et al. 2008] propose a simulation framework that addresses the service
availability problem by using Continuous Integration and Testing (CIT) approach. The proposed framework
automates the testing by using a surrogate generator that generates platform-specific code skeleton from
service specifications and a surrogate engine that simulates the component behaviour according to skeleton
code. Huang and colleagues claim that the proposed surrogates are more flexible than the common simulation
methods such as stubs and mocks and that the simulation is platform independent.

llieva and colleagues [llieva et al. 2010] introduce a tool for end-to-end testing of BPEL processes called TASSA,
that offers virtualisation, an injection feature, a data dependency analysis module and a test case generation
tool.

INTEGRATION TEST AUTOMATION FRAMEWORKS

The first challenge of integration testing framework is the exposition of failures that facilitate the localisation,
in the service composition architecture, of the components whose behaviour is the source of the failures
(troubleshooting). Integration testing approaches are based on models of test scenarios (e.g. sequence
diagrams, orchestration scripts, choreography models), but, to author’s best knowledge, never on structural
models of the services architecture that support the scenarios.

Peyton, Xiong and colleagues [Peyton et al. 2008] [Xiong et al. 2005] present an integration test framework for
composite applications able to localise faults within the architecture. The test framework: (i) is based on
defining test cases of expected behaviour for the applications and the web services used, and (ii) is
implemented in TTCN-3 using a test agent architecture that supports coordinated grey-box testing of
application behaviour and web service interaction. The test agents are intended to place themselves between a
the composite application and the services that it invokes, and the authors consider implementing concurrent
execution of requests from more that one user and mechanisms such as (i) caching of responses and
sequencing and interleaving of requests and responses. Their mechanisms are limited to services whose state is
initialised once and to non update operations. The result of the research is a TTCN-3 framework that allows
programming by hand test cases and test architectures on the basis of a library of TTCN-3 elements.

Liu and colleagues [Liu et al. 2009] propose a Continuous Integration Testing (CIT) approach with which
executable test cases carry information on their behaviour and configuration. Integration test cases are
generated from sequence diagrams and run on a test execution engine to support this approach. The
information of an executable test case is separated into two layers: the behaviour layer and the configuration
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layer. The behaviour layer represents the test logic of a test case and is platform independent, while the
configuration layer contains the platform specific information. Liu and colleagues report the design of a test
execution engine specially designed to execute the integration test cases. They utilize a global test case
identifier to correlate the distributed test case execution traces that are captured by ITCAM - an IBM integrated
management tool. A verification approach supporting Boolean expression and back-end service interaction
verification is proposed to verify the test execution result.

Full integration functional testing can be generated only by a control and data flow model of the service
composition [Mei et al. 2008] [Mei at al. 2009a] [Marconi et al. 2006] that specifies not only the control flow
between interactions, but also the data flow requirements that are expressed as transfer functions, i.e. the
formal correspondences (functional relationships) between the data involved in ingoing and outgoing
interactions for each component. XPath is utilized for implementing transfer functions in BPEL applications. But
XPath may extract wrong data from the XML messages received, resulting in erroneous results in the integrated
process. In [Mei et al. 2008] Mei and colleagues utilise the mathematical definitions of XPath constructs as
rewriting rules, and propose a data structure called XPath Rewriting Graph (XRG), which not only models how
an XPath is conceptually rewritten but also tracks individual rewritings progressively. The mathematical
variables in the applied rewriting rules are processed as if they were program variables, and are used to analyse
how information may be rewritten in an XPath conceptually. The authors develop an algorithm to construct
XRGs and a novel family of data flow testing criteria to test WS-BPEL applications. In [Mei at al. 2009a] the
authors reuse the methods and techniques in order to test choreographies specified in WS-CDL. They utilise
Labelled Transition Systems to specify message interactions for scenario-based specifications. By applying XRG
patterns, they identify new data flow associations in choreography applications and develop related data flow
testing criteria.

Bertolino and colleagues [Bertolino et al. 2011] present (role) CAST, a framework for on-line service testing.
(role)CAST supports on-line testing of access policies of SOAP services whose roles have been defined by means
of SAML assertion. The idea is to test a service composition within its real execution context. On-line testing
consists of proactive service invocations designed by testers, and foresees the execution of such test
invocations on a service while it is engaged in serving real requests (not be confused with run-time monitoring
or passive testing. The authors “are aware though that such an approach poses big challenges, in terms of costs
and potential impact, which may undermine its acceptance. Such challenges mainly account for possible testing
side effects, in particular when stateful resources are considered. Nevertheless, in some contexts on-line
testing can be regarded as a useful technique to increase trust among organizations interacting via deployed
services.” (role)CAST is intended to test role —based access control and is made of four main components: (i)
the Test Driver that configures and runs instances of Test Robots, (ii) the Test Robot that loads the test cases
from a repository (iii) the Tester Backport, a component that extends the interface of a generic ldentity
Management Provider and and is used to collaborate with the test Robot, (iv) the Oracle, an abstract
component that defines the minimal assumptions to be tested (partial oracle. (role)CAST provides the APls that
can be used to program the Tester Robot.

Besson and colleagues [Besson at al. 2011] [Besson et al. 2012] present Rehearsal, a framework for Test-Driven
Development (TDD) on choreographies, that allows automating unit, integration, and scalability testing, and is
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available under the LGPL license®. Rehearsal uses SoapUl to automatically build a set of XML-Soap request
envelopes to test service operations at runtime. Rehearsal provides features such as: (i) the WSClient, a
dynamic generator of web service clients. With this feature, the developer can interact with a service without
creating stub objects; (ii) message interceptor, a collection of mechanisms to intercept, store and then forward
the messages exchanged between the services in the composition; (iii) WSMock, a feature for mocking
services; with this feature, real services can be easily simulated by mock objects; (iv) Scalability Explorer that
aims to support automated scalability tests by providing features for executing the choreography in different
scenarios, collecting performance metrics, manipulating resources and reporting execution results.

REGRESSION TESTING

According to the systems and software engineering vocabulary34, regression testing is selective retesting of a
software system to verify that modifications do not cause unintended effects and that the software still
complies with its specified requirements. Sometimes, re-testing, i.e. testing that the past failed test cases do

not fail now, is considered as regression testing.

Yoo and Harman [Yoo and Harman 2012] investigate the utilisation of a number of different techniques to
maximize the value of a regression test suite and to minimize the testing cost: (i) test suite minimization or test
case reduction (reduction) techniques - that aim to eliminate redundant test cases in order to reduce the
number of test runs, (ii) test case selection (selection) techniques — that select test cases from an existing test
suite to test the modified part of the system and (iii) test case prioritisation (prioritisation) techniques that
schedule test cases for running in an order that attempts to increase their effectiveness at meeting some

desirable properties.

Reduction techniques try to eliminate redundant test cases in order to reduce the number of test runs. More
precisely, reduction techniques aim at obtaining a minimal subset of a test suite that preserves a specified
adequacy criterion (e.g.: coverage). Test suite minimization techniques are not really specific to regression
testing and are often integrated into the process of test case generation as an optimization step and, in the
service testing domain, has attracted less attention than others.

TEST CASE SELECTION

Regression testing based on large test sets accumulated over time, this is a costly process, especially if testing is
manual. Often, changes made to a system are local, arising from fixing bugs or specific additions or changes to
the functionality. Re-running the entire test set in such cases is wasteful. Instead, we would like to be able to
identify the parts of the system that were affected by the changes and select only those test cases for rerun
which test functionality that could have been affected.

33 http://ccsl.ime.usp.br/baile/VandV

3 ISO/IEC/IEEE 24765:2010 - http://www.iso.org/iso/catalogue_detail.htm?csnumber=50518
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Selection techniques concern reusing test cases from an existing test suite to test the modified part of the
system. The majority of test case selection techniques are modification aware [Yoo and Harman 2012], i.e. they
require the identification of the modified parts of the SAUT.

Qiu and colleagues [Qiu et al. 2014] propose a universal framework to cover all possible change types in
services architectures:

e Build change
o Implementation change (ImC)
o Binding change (BC)
¢  Model change
o Interface change (IC)
o Process changes (PC)

With build change, the implementations are changed, without any change of the structural, functional and
behavioural model of the SAUT (corrective maintenance). The implementation change is a modification (new
version) of a component implementation of a service provider with no change of the services’ interfaces and of
the SAUT structural, functional and behavioural models [Tarhini et al. 2006a]. Binding change is a replacement
of a service component without any changes of the service interfaces and of the SAUT structural, functional
and behavioural models — this is similar to the implementation change, with the difference that the service
component is replaced with a component from another provider, instead of a new version of the component
from the same provider [Li et al. 2012] [Di Penta et al. 2007].

With model change, the service models and processes change. Interface change is a change in the service
interfaces (and the related implementations) [Li et al. 2012] — the interface change can be backward
compatible (e.g. adding to the interface a new operation leaving the operational semantics of the other pre-
existing operations unchanged) or not. Process change is a change in the service composition structure, control
flow and data flow, without change of the service interfaces and implementations [Tarhini et al. 2006a] [Li et al.
2012].

A concrete change can mix several of the change types listed above.

All selection techniques reviewed in this section are dedicated to service composition. An important dimension
of selection techniques is their safeness. With a safe technique, every test case from the original test suite that
can expose faults in the modified program is still selected, i.e. all faults found with the full test suite are also
found with the selected test cases [Rothermel and Harrold 1997].

Selection techniques are classified [Qiu et al. 2014] as: (i) Path analysis selection techniques; (ii) Graph walk
selection techniques; (iii) Modification-based selection techniques; (iv) Dependency-based selection
techniques.

Li and colleagues [Li et al. 2008] [Li et al. 2012] take the set of service paths in both old version S and new
version S’ as input, which are expressed as BFG (XBFG) paths generated from the BFG (XBFG) model, and
compare the paths from S and S’ to identify paths as new, modified, deleted, or unmodified. In particular, Liu
and colleagues [Liu et al. 2007] address the consequences of concurrency in BPEL scripts for regression testing
by proposing a test case selection technique based on impact analysis that identify the changes to the process
under test and discover paths that are impacted by these changes.
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Ruth and colleagues [Ruth et al. 2007] apply Rothermel’s method [Rothermel and Harrold 1997] to general
composite services. Their tool takes global control flow graphs of the original and of the modified systems,
compares them, identifies the “dangerous” edges and selects the test case to be rerun. This approach assumes
that the CFGs of participating services are provided by their developers via WS-Metadata Exchangea5 [Ruth and
Tu 2007a]. In particular, Ruth and Tu [Ruth & Tu 2007b] propose an automated extension to the selection
technique that tackles the concurrency issues. The multiple modified service problem is treated by using call
graphs that make possible to determine the execution order of the modified services. A strategy called
‘downstream services first’ is applied in order to achieve fault localization. In this strategy, if a fault is found in a
downstream service, none of the upstream services are tested until the fault is fixed. Ruth improves the
approach by considering privacy issues on the edges (sensitive implementation details of participating services
that service providers do not want to share) [Ruth 2008] [Ruth 2011]. In [Ruth and Rayford 2011], Ruth and
Rayford expose an approach using only locally available information at each service and a publish/subscribe
mechanism.

Wang and colleagues [Wang et al. 2008] propose an utilisation of the BPEL Flow Graph [Yuan et al. 2006] to put
in place a BPEL regression testing framework that can generate and select test cases for regression testing
using Rothermel and Harrold’s selection technique [Rothermel and Harrold 1997].

Tarhini and colleagues [Tarhini et al. 2006a] identify modifications from generated Timed Labelled Transition
Systems (TLTSs) [Tretmans 2008] and select test cases that would cover the modified part. This approach can
also generate test cases for the new and existing services and operations.

Khan and Heckel [Khan and Heckel 2011] propose a model-based approach to the selection problem. In their
approach service interfaces are described by visual contracts, i.e., pre and post conditions expressed as graph
transformation rules [Heckel and Lohmann 2005]. Dependency-based selection techniques select test cases
based on an analysis of the dependences and conflicts between visual contracts specifying the preconditions
and effects of operations. The analysis of conflicts and dependences between these rules allows assessing the
impact of a change of the signature, contract, or implementation of an operation on other operations, and thus
deciding which of the test cases is required for re-execution. The approach is evaluated on a case study of a
bug tracking service in several versions.

TEST CASE PRIORITISATION

Prioritisation techniques schedule test cases for running in an order that attempts to increase their
effectiveness at meeting some desirable properties. The main goal of test case prioritisation is that of
increasing a test suite fault detection rate (time efficiency), i.e. the early exposure of failures and localisation of
source faulty elements. An improved fault detection rate can provide precocious and relevant feedback to the

33 http://www.w3.0org/TR/ws-metadata-exchange/
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development team and can enable earlier debugging [Rothermel et al. 2001]. Test time efficiency is a must for
Test-driven Development and Continuous Integration Testing.

Generally speaking, test cases are ordered by assigning a priority to each of them through some primary rule,
and, possibly, test cases with the same priority are reordered through some additional rule.

Benchmark prioritisation techniques provide the lower and upper bound of the effectiveness of the other heu-
ristics: (i) randomly ordered technique, (ii) optimally ordered with maximum fault rate detection technique. The
latter technique is considered only as a theoretical upper-bound of effectiveness.

The prioritisation techniques are classified in two categories: (i) Coverage-based prioritisation techniques and
(ii) Fault-exposing potential prioritisation techniques.

COVERAGE-BASED PRIORITISATION TECHNIQUES

Coverage-based prioritisation techniques are inspired from the traditional software testing goal of covering the
whole program under test, and a quantitative measure of test coverage is considered an indirect measure of
system quality. In service testing, coverage-based techniques rely on the coverage of service-related elements.
Hence test cases are ordered on the basis of some coverage criterion, by an algorithm that implements a cov-
erage strategy.

In the reviewed works, Service Activities (SAs) (with possibly a weight — Weighted SA [Chen et al. 2010]) and
Service Transitions (STs) are the most commonly used coverage criteria. Other criteria are: invoked Services (Ss)
[Askarunisa et al. 2010b], WSDL tag (any XML element defined in in WSDL/XSD) [Mei et al. 2009], WSDL occur-
rences (as a secondary rule to differentiate cases with the same WSDL tag coverage) [Mei et al. 2011]. For or-
chestrated architectures, other elements such as workflow branches (WBs), XPath Rewriting Graph branches
(XRGBs), WSDL elements (WEs) and combinations of these preceding elements are used as coverage criteria,
possibly for additional rules [Mei et al. 2009] [Mei et al. 2009] [Mei et al. 2013a] [Mei et al. 2013b]. The cover-
age strategy algorithms are in general variants of the Greedy search algorithm.

These prioritisation techniques can be compared by three dimensions. The first dimension is whether the cov-
erage criterion is functional or structural (or both), i.e. if the service related elements that are covered are part
of the structural architecture (white-box) or of the functional architecture (black-box) of the SAUT.

Another (complementary) dimension is the coverage level of granularity of the test case, i.e. the smallest ele-
ment type that is taken into account to calculate the coverage. Generally speaking, more the coverage is fine-
grained, more the time required for prioritising the test suite is longer.

Las but not least, coverage-based prioritisation technique can be classified as general or specific [Rothermel et
al. 2001]. The key difference between them is the usage of a specific version’s modification information on pri-
oritising test cases. In the former case (general) the test case priority order will be useful over a series of sub-
sequent modified versions of the SAUT. In the latter case, the order will be useful on a specific version of the
SAUT. All the coverage-based techniques mentioned in this paragraph are general.

Chen and colleagues [Chen et al. 2010] propose a model-based test case prioritisation approach based on
impact analysis of BPEL processes. The authors introduced a model called BPEL flow graph (BPFG) into which
BPEL processes are translated for change impact analysis. Test cases are prioritized according to the proposed
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weighted dependence propagation model. Li and colleagues [Li et al. 2010] extend the BFG model into another
graph called eXtensible BFG that they claim is better suited to regression testing.

Mei and colleagues [Mei et al. 2011] provide a strategy for black-box service-oriented testing. They formulate
new test case prioritisation strategies using tags embedded in XML messages to reorder regression test cases
and reveal how the test cases use the interface specifications of web services. Furthermore, they propose [Mei
et al. 2012] Preemptive Regression Testing (PRT), for the regression testing of (dynamic) web services. A
dynamic web service is a web service that can dynamically change its own processing logic or bind to and use
new external services during the course of an execution (late change). Whenever a late-change on the service
under regression test is detected, PRT pre-empts the currently executed regression test suite, searches for
additional test cases as fixes, runs these fixes, and then resumes the execution of the regression test suite from
the pre-emption point.

Athira and Samuel [Athira and Samuel 2010] depict a model-based test case prioritisation approach for service
compositions. The approach discovers the most important activity paths using a UML activity diagram of the
service composition under test. Athira and Samuel technique identifies the differences between original model
and modified model. The information activity paths for each test case are plotted and the most promising
paths are identified. The test cases which cover these paths are considered as the most beneficial test cases.

FAULT-EXPOSING POTENTIAL (FEP) BASED PRIORITISATION TECHNIQUES

The fault-exposing-potential (FEP) of a test case measures its ability of stimulating the execution of a faulty
component in a manner that exposes the failure that reveals the fault [Elbaum et al. 2002]. These measures
can be considered only as probabilities, and the calculation of these a priori probabilities can be only the result
of approximations.

Tsai and colleagues propose the application of their group-testing approach [Tsai et al. 2004] to regression test-
ing [Tsai et al. 2005] by using the test case potency. Group-testing is testing of several implementations of the
same service interface, and the potency of a test case is its capability of revealing faults in a number of imple-
mentations. In [Tsai et al. 2007] [Tsai et al. 2008] [Tsai et al. 2009] they improve the computation of potency to
combine potency and a coverage relationship model (CRM) between test cases as an additional test case rank-
ing criterion. In group testing, test-case selection and ranking are the key factors in enhancing testing efficien-
cy. Statistical data can be utilised [Whittaker and Thomason 1994] to rank test cases using two criteria:

*  Potency — it is the probability that a test case can detect a fault (for example, if a test case fails 30
services out of 100, its potency is 0.3); and
*  (Coverage relationship model (CRM) — it is the amount of additional coverage one test case can bring

given that we’ve applied other test cases.

Instead of evaluating how test cases are derived, CRM evaluates the test case coverage by learning the
previous results. Because CRM is based totally on test results, two test cases derived from two different testing
techniques and addressing two different code segments might have identical coverage in the CRM. Tsai and
colleagues define multiple rules that guarantee the selection of the most potent test cases. The approach can
be applied to regression testing when a new version of a service with the same specifications is created..
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Other approaches [Bai and Kenett 2009] prioritise test cases on the basis of the risk of the targeted service fea-
ture, i.e. the products of the probability to fail of the feature and a measure of the impact of the consequence
of the failure. The risky features should be tested earlier and with more tests.

Change sensitivity [Nguyen et al. 2011] measures the importance of test cases based on the assumption that
sensitive test cases that potentially stimulate more service changes have a higher ability to reach the faults
caused by changes. The method is based on the idea that the most important test cases are those that have the
highest sensitivity to changes injected into the service responses (mutations). Nguyen and colleagues adopted
several mutation operators to mutate services and calculate the change sensitivity based on the proportion of
mutants that are “killed” (if mutated response of service differs from the original response).

Askarunisa and colleagues [Askarunisa et al. 2011] propose an automated testing framework for composite
web services where the domain knowledge of the web services is described using Protégé tool*® and the
behaviour of the entire business operation flow for the composite web service is described with OWL-S.
Prioritisation of test cases is performed based on various coverage criteria for composite web services. They
simulate the capability of detecting faults by seeding faults. Test cases are prioritized by their fault rate, that is,
detected seeded faults with regard to the execution time. In addition, fault severity was also proposed based
on the combination of fault rate and fault impact (importance of a fault).

DISCUSSION

From the beginning, the research has correctly recognised the true fundamental issues that limit the testability
of services architectures and confer to the SOA testing problem its specificity [Canfora and Di Penta 2009]
[Bartolini et al. 2011] [Bozkurt et al. 2013]:

¢ limitations in observability of service code and structure due to information hiding of the
implementations, the only exception being the observability of the orchestration scripts in
orchestrated service compositions (BPEM) that encourage the use od white-testing techniques. This
issue limits the testing of services architecture to black-box testing of single components and grey-box
testing of multi-component architectures;

¢ lack of control of the services architecture component development life cycles, due to independent
ownership of these components and to the independent infrastructure on which these components
run.

The two issues above are not so different from those that characterise component off-the-shelf testing
[Rehman et al. 2007].

From the beginning, the most important research thread in SOA functional conformance testing has been test
case generation. In contrast, the automated generation of test oracles, that is a key point of functional
conformance test automation, is still the focus of a minority of investigations and approaches. The difficulty of
the test oracle generation task is related to the fact that, by definition, it can start only from a formal
specification/model of the structure, functions and behaviours of the services architecture components.

*® http://protege.stanford.edu/
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The important emerging trend in the SOA testing research domain is model-based testing (MBT). Firstly, MBT
has redesigned the test generation panorama, integrating previous approaches (specification-based, contract-
based, category partition) in a more coherent and uniform vision. Whereas test automation replaces manual
test execution with automated test scripts, MBT replaces manual test designs with automated test designs and
test generation. The first-generation MBT showed various shortcomings such as failing to distinguish between
white-box and black-box models. The white box model can be used for code generation and white-box test
case generation, but only the black-box model of a single service component and grey-box models of service
component architectures can be used for black-box and grey-box test case generation.

“Second-generation” MBT uses specific black-box and grey-box models (called also scenario, usage or
environmental models) and a three-phase-process for functional conformance testing: (i) design black-box and
grey-box models that must be precise and rich enough to allow automated derivation of functional
conformance test cases and oracles from them; (ii) determine test generation criteria, either on the basis of
structural model of the services architecture under test (coverage), or on the basis of expected or known faults
(fault index), or driven by risk (the product between fault index and fault gravity) and ; (iii) generate the tests
[Schieferdecker 2012]. But all the approaches reviewed lacks surprisingly of an effective structural (meta-
Jmodel of the SAUT as a distributed service component architecture that is necessary for fault localisation.

About service composition testing, a very important effort is concentrated on testing service orchestrations
(BPEL). The main reasons are that the service composition is driven by a program (e.g. a BPEL script) whose
source text is available (allowing white-box testing techniques), that is run by a special agent (the orchestrator)
whose internal behaviour (the execution of the script) is accessible too. Hence, the same white-box test
methods that have been applied to program testing are applicable to orchestration testing. This research
thread should not be overestimated for two reasons: (i) the utilisation of the orchestration paradigm has not
spread over the development of the web service technology and is confined in a niche market; (ii) the
development of the APl economy and the emergent popularity for REST-based and JSON-based service
approaches has made the aforementioned niche even smaller. The competing choreography decentralised
paradigm has been the target of interesting research and experimentation [Wieczoreck et al. 2008]
[Wieckzorek et al. 2009], but is also a small market niche, even less significant than orchestration. Basic service
composition, i.e. direct service exchange between service components without orchestration and
choreography, is the prevalent service composition approach in the APl economy, but has drawn the attention
of a limited number of researchers.

So, the test case generation for basic service composition is now an important research thread. In the MIDAS
project, service component behaviour is modelled through Protocol State Machines represented in the
emerging standard SCXML [De Rosa et al. 2014b] based on Harel’s state charts [Harel and Politi 1998]. This
approach is independent from the service exchange technology platform and can represent service
compositions in which all the interoperability platforms (SOAP, REST/XML, REST/JSON) are utilised. The control
flow requirements are represented by the states/transitions of the PSM, the pre/post-conditions are
represented by Boolean expressions on elements and values of the messages and the component state view
resources, and data flow requirements are represented by transfer functions expressing the elements and
values of an outgoing message as functions of the elements and values of the ingoing messages and state view

resources. Boolean expressions and transfer functions are expressed in ecmascript.

The fundamental weakness of all (in the author’s best knowledge) the MBT research works applied to SOA

testing is (i) the lack of a clear distinction between the structural, functional and behavioural models of the
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SAUT, and (ii) the weakness of the structural modelling elements that are essential for fault localisation,
especially in gey-box testing. All the approaches utilise as models sequence diagrams, activity diagrams,
orchestration (BPEL) scripts, choreography models, states machines and variants that mix the structural,
behavioural and functional information about the SAUT. In particular, there is no autonomous structural model
of the SAUT that expresses the topology of the components, their required and provided service interfaces,
how the components are “wired” through these interfaces, independently from the scenarios of service
exchange, orchestration, composition. The lack of this specific model prevents the effective localisation of
faulty elements. As explained in section 4 (§ ‘The SAUT Construction model’), the SAUT structural meta-model
allows enabling the test system, through the Scheduler probabilistic inference, with troubleshooting (location
of faulty elements) capability.

Speaking about test run automation, an important step has been taken with the “invention” of TTCN-3
[Willcock et al. 2011]. TTCN-3 is an international standardised test language for defining executable test
specifications for a wide range of computer and telecommunication systems. TTCN-3 is a general programming
language that has been designed with powerful traits that are specific for test automation. It allows complete
automation by programming of the test execution and arbitration tasks. The research on the utilisation of
TTCN-3 for service testing has started early [Schieferdecker and Stepien 2003] [Xiong et al. 2005] [Werner et al.
2008] [Peyton et al. 2008].

Hence, the only environment that pushes as far as possible the automation of the execution and arbitration
tasks in grey-box testing is that based on the powerful TTCN-3 technology [Peyton et al. 2008] [Xiong et al.
2005]. TTCN-3 allows implementing complete test systems for grey-box testing of complex services
architectures very easily. These systems are easily provided with “agents” playing emulators (as requesters and
responders) of service components (for service virtualisation) and interceptors for observing the interaction
between service components. Also the problems related to the automated management of the state of stateful
components, i.e. setting, getting and resetting the visible state variables (state view) could be easily solved by
TTCN-3 programming. As already noticed, also this environment lacks singularly of tools for building and using
the structural model of the SAUT. This absence prevents the full automated generation of the test system.

De Rosa and colleagues [De Rosa et al. 2013], including the author of this manuscript, have implemented a
generic and complete model-based TTCN-3 framework for testing services and service compositions. This
framework is able to integrate not only a formal representation of the test scenarios (message sequences) and
of the test suite, but also a structural model of the SAUT. Starting from these formal representations, the
framework implements the execution/arbitration automation of the scheduled test run cycle, including (i) the
configuration/generation of the test system, containing the test components (proxies and emulators of the
service components, interceptors on the channels between SAUT components) (ii) the integration of the test
suite, (iii) the management of the SAUT component state variables, (iv) the binding of the test system with the
SAUT components. This framework allows the scheduler to drive the automated dynamic scheduling of the
execution and arbitration tasks. The same elements (SAUT structural model, test suite) allow configuring,
generating and initialising the TTCN-3 executor/arbiter and the Bayesian agent that realises the dynamic
scheduler.

Research about test scheduling is still at its infancy. The few papers that treat the issue are in the section on
regression testing. Apart from test reduction, which should be considered as an optimisation step of the test
case generation process, the works on regression testing propose either test case prioritisation, or test case
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selection. The majority of regression testing techniques that are proposed in the literature are adapted to
white-box testing, which is out of the scope of this research.

Selection techniques for implementation change (change of the component implementation, without any
change of the structural, functional and behavioural model of the SAUT) require the identification of the
modified parts of the SAUT. With grey-box testing of service component architecture, we have seen that the
structural description of the SAUT stops at the atomic component level — the atomic component being the
component that cannot be described as a service sub-component architecture - the further sublevels (service
interface, service interaction type, message) are functional. Hence, the smallest modified part of the SAUT is
the atomic component, and regression testing (looking for unexpected side effects) should maximise the
functional coverage of the component, where re-testing should focus on the functional elements (service
interfaces, interaction types) that has failed in the “last” test session and whose fixing should have been
achieved with the new implementation version. An interesting situation could be when the test system can
obtain from the SAUT deployment system not only the identity of the component whose new build is deployed,
but also the trace of the failures revealed in the past test sessions that are in principle fixed by the new build.
What is the possible usage of such information is a matter of future investigation.

Regression testing on binding change is a kind of acceptance test of the new component implementation. With
black-box or grey-box testing, the selection criteria should be the maximum functional coverage of the atomic
component or the maximum structural/functional coverage of the composite component (whose service sub-
component architecture is observable).

In case of interface / process change, there are two different situations: (i) the interface / process change is
backward compatible (new operations are added to the service definition without modifying the existing
operations, new processes are designed on the basis of the existing services) — the existing test suite can be
reused as such, for instance to test the impact of the change; (ii) the interface/process change is not backward
compatible and some test cases are no more applicable — it depends on the breadth of change, and, in the
author’s best knowledge, there are no automated treatments available for the problem when it is considered in
its generality.

All the coverage-based prioritisation techniques reviewed in the preceding section and are non-version-specific
(general) and a majority of them are white-box, allowing structural coverage. All these techniques allow
prioritising test cases with the highest (structural or functional) coverage without any consideration for the
modified part of the SAUT.

The fault-exposing potential based prioritisation techniques utilise the ability of the test case in detecting faults
that is measured as a probability of stimulating a faulty component in a manner that reveals the fault. The
techniques reviewed are all general (non-version-specific): estimation of the test case potential do not consider
the specific modifications present in the modified version of a program; however, they attempt to factor in the
potential effects of modifications in general.

The weakness of the approaches based on the statistical evaluation of the fault-exposing potential in group
testing is that it is dubious that the frequency of failure of a test case on a collection of independently designed
and implemented service components is a measure of the prior probability of failure on the next service com-
ponent. Other approaches based on risk and change sensitivity seem more realistic but are always white-box
approaches.
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This work introduces the dynamic scheduling of functional conformance test sessions as a new research topic
in the testing domain and proposes a generalised approach to the dynamic prioritisation of test cases, beyond

the current application of static prioritisation to regression testing and re-testing, based on probabilistic
inference.
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4. THE SCHEDULER ARCHITECTURE

The Bayesian Scheduler is packaged as a Web service on the MIDAS platform and is able to provide its services
to different MIDAS test methods. This section situates the Scheduler in the more general architecture of the
test cycle and documents its interface and behaviour.

THE MIDAS TESTING FACILITY

The MIDAS testing facility, which is the main result of the MIDAS project, targets black-box testing of single
services and grey-box testing of services architectures®’. Its key features are:

Testing-as-a-service implemented on a public cloud infrastructure.

Programmable testing facility through service APlIs.

Open platform equipped with an evolutionary registry/repository of test methods.
Extreme automation of SOA/API testing tasks.

pwNRE

The end users of MIDAS are service developers that utilise the MIDAS facility to automate the test of the
services architectures that they implement and utilise.

TESTING-AS-A-SERVICE IMPLEMENTED ON A PUBLIC CLOUD INFRASTRUCTURE

The MIDAS testing facility is implemented on a public cloud infrastructure’® and is delivered as a service. The
user has nothing to install on premises: s/he interacts with the MIDAS test functionalities through Application
Programming Interface (APIs) on the Internet (Web services). Furthermore, the MIDAS portal provides
utilitarian (documentation, learning, ancillary tools ...), administrative (accounting, billing ...) and community
services through a Graphical User Interface (GUI).

The MIDAS facility exhibits all the features of an advanced software-as-a-service:

* self-provisioning - the user selects the testing services that s/he wants to utilise;
¢ scalability and elasticity of computing and storage resource allocation;

e control and security of access;

* integrity and privacy of data (models and test data);

* pay per use and transparent accounting and billing;

¢ documentation and e-learning;

. user community tools.

> Other terms generally utilised with the same meaning: ‘service integration testing’, ‘service composition
testing’. The service unit test can be seen as a “collapsed” case of service integration test.

* The MIDAS underlying cloud infrastructure is Amazon Web Services (http://aws.amazon.com/).
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Once the end user has obtained her/his credentials, s/he has access to the MIDAS functionalities. The
accounting and billing policies are based on the metering of the utilisation of the underlying public cloud
computing resources, third party resources and MIDAS “logical” resources (testing services, ancillary services).

One important concern of testing and troubleshooting research is the testing cost. The cloud implementation
of the testing facility lowers substantially (at least one order of magnitude) the global cost of physical
computing resources, guarantees the scalability and elasticity of these resources and reduce to zero their
marginal cost. Of the three cost components - equipment expense, labour effort, time-to-market (section 2, §
‘The rationale for service testing automation’), the latter two become the most important cost issues.
Paradoxically, the easy availability of cheap computing resources on cloud makes the computing complexity of
several automated testing tasks (for instance, test generation and test prioritisation) more critical.

PROGRAMMABLE TESTING FACILITY THROUGH SERVICE APIS

MIDAS is not a site, it is a service. The MIDAS test methods and functionalities are fully accessible through
public Application Programming Interfaces (APls) that are documented on the MIDAS portal. Thus, the MIDAS
facility is programmable: the service developer carries out client software that invokes the MIDAS testing
services. The MIDAS APIs allows the service developer to integrate the MIDAS testing services with her/his
Service Development Life Cycle (SDLC) environment.

More specifically, the interaction through API allows the developers of:

*  Modelling tools,

* Integrated Development Environments (IDEs),
*  Application Lifecycle Management (ALM) tools,
¢ Computer-Aided Software Testing (CAST) tools,
* SOA governance tools,

* APl management tools,

to build testing processes that integrate the MIDAS services within their environments. As a proof of concept, a
MIDAS-profiled Eclipse Modelling Framework™ that is able to access the MIDAS facility is downloadable from
the MIDAS portal.

The MIDAS APIs allow invoking testing services are asynchronous and non-blocking. They enable not only
automatic invocation but also asynchronous and background execution.

OPEN EVOLUTIONARY PLATFORM

The MIDAS facility is built on an open platform. The researchers and experts on testing and the developers of
testing tools usually produce test components that automate testing tasks (test case/oracle generation, test
execution, test arbitration, test reporting, test scheduling, test planning) following specific approaches. In the
MIDAS terminology, these contributors are called test method developers.

39 http://www.eclipse.org/modeling/emf/
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The test method developers are able to upload, register and install their test components on the MIDAS
platform. The functionalities implemented by the test components, or by the combination of these
components (test composites), that are installed on the MIDAS platform are published on the MIDAS facility
and are made accessible to end users as test methods. The relationship between test methods and the test
components/composites is similar to that occurring between services and the systems that implement them.
Thus, test components are loosely coupled with the test methods that they implement. A test component that
provides a specific service (for instance, test scheduling) can be reused within the implementation architecture
of several test methods.

Moreover, the MIDAS API that allows MIDAS users to invoke test methods is generic. It offers a restricted
number of generic operations that are the same for all the test methods, but are able to convey input and
output documents whose schemas are specific to the test method. The generic APl is implemented by the
MIDAS gateway, which is a front-end that selects the test method on the basis of its identifier, allocates the
resources needed for its execution, deploys the components that implement the method, routes the request
with its specific content to the front component and manages the exchanges with the client.

The test method developers implement test components, and embed them on virtual machines on their
premises. Afterwards, they upload the virtual machine images on the platform, register them on the test
component repository and register the related test methods on the test method registry. This process is
executed in a MIDAS sandbox that allows safely checking, verifying and testing in isolation the method and its
components. Once a certification process is achieved successfully, these test methods are published on the
registry and made available to the MIDAS users.

The objective of the MIDAS open platform is to “capture” new advances in the research and practice of
SOA/API testing and to make them available for the MIDAS users as new enhanced test methods that foster the
automation of effective test cycles.

EXTREME AUTOMATION OF SOA/API TESTING TASKS

The proof of concept of the full automation of all the testing tasks is the main objective of the MIDAS project.
The MIDAS features described in the preceding paragraphs are instrumental for this objective. The MIDAS
partners “play” the role of test method developers and develop test methods in the domains of: (i) functional
testing; (ii) security and vulnerability testing; (iii) usage-based testing. These test methods aim at putting in
place automation tools for:

* the basic testing tasks (test case production, test oracle production, test execution, test arbitration
and test reporting),

* the test generation cycle as a whole,

* thetest run cycle as a whole,

* the test cycle as a whole, and its interaction with the debugging/fixing cycle.

The components that bring the automation the testing tasks are presented in a tree diagram sketched in Figure
12. The basic test tasks are automated by specific components (test case generator, test oracle generator, test
executor, test arbiter, test reporter). The test generation cycle is driven by a generation workflow. The test run
cycle is driven by a test Scheduler. A test planner drives the overall test cycle.
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Figure 12. Test cycles and tasks and test automation components.

This automation approach is model-based. Advanced test automation is driven by the availability of SAUT
structural, functional and behavioural models. The degree of test automation is related directly to the model
richness.

The objective of test extreme automation available on a programmable TAAS facility is a unified Service
Development Life Cycle characterised by:

* Model-based service design and test — services and services architectures models drive both the
development cycle and the test cycle;

* Test-Driven Development — tests can be produced from models automatically, concurrently with the
development of the implementation code, and can be executed automatically as soon as the code is
released; tests can repeated automatically against each new implementation build (regression testing
automation);

* Incremental Integration and Continuous Integration Test — partial service integrations can be put in
place and tested as soon as integrated; tests can be automatically enriched and reiterated at each
incremental integration step of new service components.

We have seen that the cloud implementation of the MIDAS facility lowers the testing equipment expenses of at
least one order of magnitude. Extreme automation and programmability of the test system contribute to lower
the other two cost component of test: the labour effort and the time to market.

THE LOGICAL ARCHITECTURE OF THE DYNAMICALLY SCHEDULED TEST RUN CYCLE
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The dynamic Scheduler chooses the next (n+1) test case to run on the basis of the past (1..n) test verdicts. The
implementation of automated dynamic scheduling requires the establishment of a test run cycle architecture
that involves modules implementing the execution and the arbitration tasks.

The conceptual schema of the automated schedule/execute/arbitrate cycle proposed by this research is
depicted in Figure 13, where a diagram sketches a dynamic scheduler (Scheduler), an interactive executor
(Executor) and an interactive arbiter (Arbiter) and the logic of data exchange between them.

The dynamic scheduling cycle can be described as follows. The Scheduler chooses the next test case to be
executed - starting from a first one that is choses on the basis some initialisation procedure - and
communicates it to the Executor. The Executor runs the test case, collects/logs the test outcome and
communicates this outcome to the Arbiter. The Arbiter evaluates the test outcome with the test oracle and
produces a test verdict that is communicated back to the Scheduler. The Scheduler: (i) either chooses another
not yet executed test case from the test suite, communicates it to the Executor and the cycle continues, (ii) or
decides to halt definitely or suspend temporarily the cycle even if there are still test cases to run — possibly, the
cycle can be resumed, (iii) or ends the cycle - there are no more test cases to run.

Scheduler

Arbiter S Executor

Figure 13. Conceptual schema of the automated schedule/execute/arbitrate cycle.

This scheduling architecture is logical in the sense that its primary goal is to clarify the logical relationships
between abstract entities (Scheduler, Executor and Arbiter) and the abstract objects that are exchanged among
them in a way that is independent from any concrete implementation of these entities and of their
interactions. This conceptual architecture of the schedule/execute/arbitrate cycle has been proposed by this
research as a framework for the implementation of probabilistic inference for test scheduling. Both the
conceptual and the concrete architectures are adopted by the MIDAS project [Maesano et al. 2013b].
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With automated and intelligent dynamic scheduling available on a testing platform as a service [Maesano and
De Rosa 2011] [Maesano et al. 2011] [Maesano et al. 2013] that already implements automated test execution
and arbitration, the entire test run cycle is automated and programmable. This automated test run cycle can be
executed in background, allowing service developers to focus on their primary mission, i.e. design and

implementation of appropriate services.
THE SCHEDULED TEST RUN SERVICES ARCHITECTURE PATTERN

The internal architecture of the MIDAS platform is generic and service oriented. All the test components that
implement test methods are realised as service providers in a flat (non-hierarchical) architecture that includes
the test components that realise the basic test tasks (test case generators, test oracle generators, test
executors, test arbiters, test reporters) as well as the intermediate drivers (test generation workflows, test

schedulers) and the top drivers (test planners).

A specific test method interface instantiates the generic interface with the method-specific input/output
document schemas. A specific test method implementation realises the test method specific interface and is
built as a service composite. In this architecture the test components providing test task specific services (test
execution services, test arbitration services, test scheduling services ...) are orchestrated by a main component
that: (i) implements the test method interface and interacts with the test method consumers and (ii) drives the
execution of the specialised test components.

The generic test run method pattern proposed by the MIDAS project has the prototypical internal architecture
sketched in Figure 14", The operating environment is organised in three regions: (i) the User environment in
which operates the user client software, (ii) the MIDAS Gateway in which operates the MIDAS Front-end and
(iii) the MIDAS internal execution environment for test methods, in which the services architecture of test

components that implement the run test method is deployed and executed.

*The sketched architecture is generic and many technical details are dropped from the real one that is
available on the MIDAS facility in order to highlight the relevant features.
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Figure 14. MIDAS scheduled run test method architecture pattern.

The generic test run method is implemented by a service component architecture pattern with four
components (Runner, Scheduler, Executor/ Arbiter and Reporter). The Runner exposes to the Front End the
generic service APl (core Run API) specialised to this run test method and the other internal components
expose to the Runner their specialised service APIs (Sched, Exec/Arb and Rep). Note that the task specific test
components do not interact directly: they exchange information indirectly via the Runner. Furthermore, thanks
to the MIDAS services architecture, each specific component is not reserved to the exclusive use of a specific
method but can be reused in other test method implementations.

The sequence diagram of the scheduled test run cycle realised by the services architecture sketched in Figure
14 is illustrated in Figure 15. The user client software (Client) invokes the run test method on the MIDAS front
end (Front End) through the generic invokeTestTask operation with, as parameters, the method universal
identifier and an input document, which is compliant with the Input schema associated to the method. The
Input document contains information such as SAUT Construction model locator, the Test Suite Definition model
locator, the Test Suite data set locator and other parameters. The Front End controls the credentials of the
client, looks for the run test methods on the test method registry using the test method identifier, gets the
description of component architecture that implements the method, locates in the test component repository
the test components that implement the method. If these actions are successful, the Front End allocates the
cloud resources for the test composite architecture deployment and installs the architecture. When everything
is configured and ready to go, the Front End invokes the method deployed entry point (the Runner), passing to

it the Input document through the core Run interface.

The Runner invokes the initialisation operations on the Executor/Arbiter and the Scheduler and supplies them
the appropriate information taken from the Input document, in particular the locators of the SAUT
Construction model, the Test Suite Definition model and the Test Suite data set. This initialisation phase is
complex: (i) the Scheduler utilises this phase to build in two sequential steps the virtual Bayesian Network and
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the Arithmetic Circuit that handles the probabilistic inference. The Executor / Arbiter component configures the
Test Execution System and perform the binding between the Test Execution System and the SAUT. When the
Scheduler and the Executor / Arbiter are initialised, the schedule/execute/arbitrate cycle can start. The Runner
journalises in the test log all the exchanges with the test components.

This pattern is able to implement the schedule/execute/arbitrate cycle that operates as described in the
preceding section: the Runner interrogates the Scheduler about the next test case to execute, then invokes the
Executor / Arbiter with the returned test case. The Executor / Arbiter drives the execution/arbitration of the
test case and returns the corresponding test verdict and the cycle is repeated until the Scheduler returns either
a halting directive or the end of the test suite, together with information about the test session and the state of
the SAUT. Afterwards, the Runner invokes the Reporter, passing to it the returned information from the
Scheduler and the test log. The Reporter builds a meaningful test report that is intended for the
debugging/fixing team.

sd Scheduled test run pattern /
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Figure 15. Sequence diagram of the scheduled test run pattern.
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THE SCHEDULER INTERFACE

As already stated, the implementation architecture of a MIDAS test method is service oriented: the internal
test components that implement a test method cooperate by service exchange through APlIs.

The Scheduler automates the test scheduling task for a family of functional conformance test methods. It
specialises the generic scheduling core interface, whose WSDL/XSD document is in the section 0.

In fact, the Scheduler service interface (Sched) is bidirectional: both the provider (the Scheduler) and the
consumer (the Runner) must expose an interface. The Scheduler service operations that are coordinated
through the Sched service interface are listed in the Table 5.

Service operation Provider interface Consumer interface
Initialisation initTestSched notifylnitTestSchedOutcome
Test sample request requestTestSched notifyTestSchedOutcome
Abort abortTestSched notify AbortTestSchedOutcome

Table 5. Scheduler service operations.

INITIALISATION REQUEST

The Scheduler launches the Initialisation phases when receiving the initTestSched operation request. The
request provides the TestSessionld and the SAUT/TSD/TS files’ URIs.

The initialisation is effected in two steps:

* the creation of a virtual Bayesian Network (vBN) from the SAUT Construction model and the Test Suite
Definition model and the Test Suite data set;

¢ the generation of an Arithmetic Circuit (AC) from the vBN.

This process is described in detail in the following section 6. Once the initialisation is accomplished successfully
or failed (an exception is raised) the Scheduler returns notifylnitTestSchedOutcome.

If the AC can be built successfully, it contains the probability distributions and dependences that are utilised in
the Scheduler decision process (see section 6).

The Scheduler saves the AC data structure on disk in a lightweight XML format called the AC Image. The
Scheduler initialisation can be supplied with the AC Image URI, instead of the SAUT/TSD/TS files’ URIs. A typical
utilisation of the AC Image is for re-testing and regression testing.

TEST SAMPLE REQUEST
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The invocation of the requestTestSched from the Runner on the Scheduler starts a new
schedule/execute/arbitrate cycle. The Runner takes as input the TestSessionID and a set of test verdicts
collected from the Arbiter during the previous schedule/execute/arbitrate cycle.

In order to identify the next test sample to execute, the Scheduler inserts the collection of local verdicts in the
corresponding AC Interaction nodes as observations. More specifically, the verdicts at scheduling cycle n (V},)
are added to the collection of past evidences (e,_;) to form the actual knowledge of the system behaviour:
e, = e,_1 UV,. The insertions of V, in the AC consist in changing the evidence nodes into permanent
constants nodes valued to 0 or 1 (pass or fail).

The Scheduler returns a notifyTestSchedOutcome message that provides one (or more) test sample identifier(s)
selected on the basis of the policies described in the next section.

| ABORT REQUEST
The requestTestSchedAbort erases the AC that is built by the initialization procedure and modified by the
inference. The completion of the task is confirmed by a notifyTestSchedAbortOutcome message.

|THE SCHEDULER STATE MACHINE

With respect to its internal inference engine, the Scheduler can be seen as an automaton with two states: Non-
Initialized and initialized (see Figure 16). The Scheduler changes its state according to the operation request
that it receives. Note that in the Initialised state the Scheduler can be re-initialised.

stm scheduler automaton /
sched
Non-initialised init Initialised
abort
init

Figure 16. Scheduler inference engine protocol state machine.

THE SCHEDULER AS A STAND-ALONE SYSTEM

The Scheduler is implemented as an independent service that is loosely coupled with its interlocutors: it is an
“oracle” system based on a probabilistic inference engine. Hence, it can be used stand-alone as a support of a
user that either interacts directly with the test system (the executor/arbiter), or utilises the Scheduler as a
support for simulation and what-if reasoning.

Note that the Scheduler suggests the next test case to run on the basis of the past test verdict, but does not
expect the interlocutor’s acceptance of its suggestion. In the next request for test samples, the user can supply
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to the Scheduler test verdicts related to the execution/arbitration (actual or virtual) of test samples that are
different from those suggested in the last cycle, and the Scheduler is able to perform perfectly the probabilistic
inference step on those “unexpected” evidences. This is true also for the automated scheduled test run cycle
described above: a “smart” Runner can decide to give to the Executor instructions that are different from the
suggestions of the Scheduler and, in the next step, to supply to the Scheduler test verdicts related to the
execution of other test samples. This mechanism can be interesting for the development of the scheduling

policies (see section 7) and for other usages that will be investigates in the future (section 0).

The stand-alone utilisation mode described above is utilised to “test”: the scheduler mechanism, (ii) the
scheduler functionality and its policies (with respect to a specific SAUT/TSD model and TS data). The
investigation of its utilisation as a simulation and what-if analysis tool will be investigated in the future (section
9).

THE SCHEDULER CONFIGURATION MODELS AND DATA SETS
The test scheduling approach of this work is model-based. In the initialisation phase, in order to build its

embedded inference engine, the Scheduler uploads the SAUT Construction model, the Test Suite Definition
model and the Test Suite data set.

THE SAUT CONSTRUCTION MODEL

The SAUT Construction model is a structural model of the services architecture under test and its surrounding
environment. It describes the SAUT as a construction made of components that are connected by wires that
represent active service dependences (connections between required and provided interfaces). It can be
represented by a directed graph (components = nodes, wires = edges). The diagram in Figure 17 presents a

graph of an example of SAUT construction.

A SAUT construction is made of: (i) the SAUT composition, i.e. the set of components (called actual
components) that are part of the actually deployed services architecture - in the diagram they are represented
by the black nodes inside the SAUT composition boundary; (ii) the SAUT environment, i.e. the set of
components (called virtual components) that are not part of the deployed services architecture but that are
linked through at least one wire with at least one actual component - in the diagram they are represented by
the grey nodes situated between the SAUT composition boundary and the SAUT environment boundary; (iii)
the SAUT structure, i.e. the collection of all the wires between the components of the union of the composition
set and the environment set — that are represented by the directed links between nodes. Note that between
two components there could be more than one wire. In Figure 17 the white nodes, outside the SAUT
environment boundary, represent components that are not part of the SAUT construction.

In a SAUT construction there are as many wires as many active service dependences, each wire linking a
required service interface (reference) to a provided service interface (service). The wires of the SAUT structure
are classified as (i) ActualToActual (between two actual components) wires — for instance between comp01 and
comp03, (ii) VirtualToActual wire (from a virtual component to an actual component) — for instance between
comp08 and compO01, (iii) ActualToVirtual wires (from an actual component to a virtual component) — for
instance between comp04 and comp07.
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Figure 17. Generic example of SAUT construction.

FORMAL DEFINITION OF SAUT CONSTRUCTION

A formal definition of SAUT and SAUT construction is presented below. It is inspired by the Dietz’s ‘enterprise

ontology’ [Dietz 2010]:

let K be a class of components

let x € K, let P, the class of references declared by x
and let X, the class of services exposed by x
let Py = { UX P, } be the class of references of the components of K

let £ = { UK 2.} be the class of services of the components of K
let ™ be a binary, non-reflexive and non-transitive relationship between component references and

component services:
forx,yeK,rep,se Z,, x(r) ~

means 'there is a wire from the r reference of x (source) to the s service of y (target)’

y(s)

let = be a binary relationship between components

forx,y € K,xe>yifand onlyifar,s:ir € P, As€Z, aAx(r) ™ y(s)

x >y means 'there is at least one wire from x to y'
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& is obviously non-reflexive and non-transitive

let X be a class of SAUTs

let < be a binary relationship between a component and a SAUT

for x € Kand o € X, x < 0 means 'x is part of ¢’

letoc €X

the construction of o is a triple < C(0), E(0), S(c) > where

the composition C of ¢ is defined as

C(o)={x€eK|x<oa}

the environmentE of o is defined as

E(o) ={y€K|y &C(0) A Ix:(x€C(0) A (x> y) v (y > X))}

the structureS of o is defined as

letS;(0) = {<x(r),y(s)>€Pk @k |xEC(0) A(yEC(0) vy EE(0)) ATEP ASEZ, AX(T) ~y(s)}
letS;(0) = {<y(r)x(s)>€EPk @Ik |[xEC(c) AyEE(0) ATEP, ASEZ, Ay(r) ~x(s)}
5(6) = $1(0) U S, (0)

The statements below allow a precise definition of region:

let = be a binary, non-reflexive and non-transitive relationship between SAUTSs:
let 04, 0, € X be two SAUTs whose constructions are

<C(04),E(01),S(01)> and <C(0;),E(0,),S(0o, )> then

0, C 04, that means 'o, is a region of o, if and only if

C(o3) € C(o4) and

E(02) € (C(01) \ C(02)) U E(0y) and

S(o0;) € S(0y).

The formal notion of region allows establishing the definitions of compound component and of two operators:
aggregation (V) and disaggregation (A). The definition of compound component and of aggregation operator V
is presented below:

let 04,0, € Xand 0, C 04

let x, € Ksuch thatx, € C(04), X, € E(07)

let P, the class of references declared by x,

let X, the class of services exposed by x,

X, = 0y (X4 is a compound of 0,") and

o0 =V(0,,x,)04 (‘o is an aggregation of o, by replacing the region o, of o;with the compound x,")

if and only if

C(0) = (C(01) \ C(02)) U {X4}

E(o) = E(01)

S(0) = (S(o1) \ S(o2)) U
{<Xa(r1),y(s)> EP ® Zx | (y € C(0) vy EE(0)) As €Ty A ((Xa(r1) P y(s)) &
(3x3r, (x€ C(0y) A1y, € P, A <x(r,),y(s)> € S(01)))} U
{<y(Mxq(s1)> EPK®EZ, |y €C(0) vy €EE(0) AT ER A ((¥(X) ™ Xe(s1)) &
(3x 3s, (x€ C(0y) A1y € P A <y(r),x(s2)> € S(01)))}

The definition of the disaggregation operator A is straightforward:

let 0,04, 0, €X,x, € Ksuch that
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X, < 0,0, = 0q,X, = 0y and 0 = V(0,,X,)01
then o; = A(x4, 0,)0 (‘o4is a disaggregation of o by replacing a compound x,with its region o, in ¢")
01 = A(Xq, 02)V(02,X)01

Roughly speaking, a compound component of a SAUT is a non-atomic component whose internal architecture
is a region of the SAUT. The application of the A (disaggregation) operator to a SAUT region with a compound
that have the structure of the region replace the region with the compound that have the same region
boundary structure.

THE SCA4SAUT NOTATION

In the MIDAS project, the SAUT Construction model is represented through a SCA Assembly Model XML
document [SCA_AM _V1_2 2011]. Service Component Architecture (SCA) is a set of specifications that describe
how to build applications and systems as services architectures. SCA extends and complements prior
approaches to implementing services, and it is built on open standards. Thus, it is a standard specification for
building and deploying services architectures whose component systems are implemented in different
technologies. An important characteristic of the SCA V1.0 Assembly Model is that it is machine readable and
allows the effective configuration of a service component architecture by a SCA run time frameworks such as
Apache Tuscany“.

The MIDAS Service Component Architecture for Services Architecture Under Test (SCA4SAUT) notation is a
restriction of the SCA V1.0 Assembly Model language [De Rosa et al. 2014a]. Hence, the SCA4SAUT model is a
standard SCA V1.0 Assembly Model. The main elements of the SCA4SAUT model are:

s SAUTs,
*  Atomic Participants,
e Compound Participants.

These elements are modelled with the SCA ‘composite’ root XML element. The UML representation of the
SCA4SAUT meta-model is presented in three partial views (Figure 18, Figure 19 and Figure 20)

A SAUT construction is modelled through a SCA composite that has a specific composition and environment
arrangement:

e The SAUT composition is made of at least one (for unit test) or more (for integration test) actual
components.

¢ The SAUT environment is made of at least one virtual component. Each virtual component must either
declare one reference that must be wired with an actual component service or expose one service
that must be wired with an actual component reference. In a SAUT construction, at least one service
exposed by one actual component MUST be wired to a reference declared by a virtual component.

The structure of each SAUT component, i.e. the references that it declares and the services that it exposes, is
defined by designating a Participant composite as a structure specification.

* http://tuscany.apache.org/
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Participants can be Atomic or Compound: (i) the Atomic Participant composite is the basic building block of the
SCA4SAUT model - it represents a combination of references and services and their bindings with their service
interface definition in the Service model, i.e. the portType/port defined in the WSDL document; (ii) the
Compound Participant composite represents a combination of references and services but also an aggregation,
i.e. a collection of sub-components linked by wires that “implements” the references and services that are
respectively declared and exposed by the Compound; the structures of these sub-components is recursively
specified by Atomic and Compound Participants composites; the references and services of each sub-
component can be either wired with the compatible ones of other sub-components or promoted as interfaces
of the Compound Participant as a whole.

A reference and a service can be wired if and only is they are bound to the same service interface definition.
Note that the wire source (reference) and target (service) must belong to different components — the wire
relationship is non-reflexive, hence loops are not allowed in the component/wire directed graph. The
ActualToActual wires are also called actual wires, and the VirtualToActual and ActualToVirtual wires are also
called virtual wires. The SAUT actual components (composition) are used to represent entities that are
aggregations of physically deployed, localized reference and service endpoints. These endpoints are the
observation/stimulation points of the service testing activity, i.e. the locations where the behaviour of the
deployed actual components can be stimulated and observed. Conversely, the SAUT virtual components
(environment) are used to model virtualized systems that carry out the stimulation and the observation of the
actual components’ behaviours at their interfaces. They shall be implemented by the test system.

class SAUTview /

SAUT
Actual Wire Virtual Wire
Virtual Component <7
\B Component Wire
Actual Component /7 - is source of
o
= Reference
Q
<
@
o
- 4
v 3
=
i)
Participant Port ®
ﬂ \ Service
Compound Participant Atomic Participant

Figure 18. SCA4SAUT meta-model — SAUT view.



class Atomic Participant view /

Participant
Atomic Participant

Pseudo Component Port
o
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Service Reference
Figure 19. SCA4SAUT meta-model — Atomic Participant view.
class Compound Participant view /
Compound Participant
Conponent Port Wire
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Figure 20. SCA4SAUT meta-model — Compound Participant view.
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AN EXAMPLE OF SAUT CONSTRUCTION MODEL

In this paragraph an example of SAUT Construction model is illustrated that applies to the IEN example services

architecture described in section 1 (§ ‘An example of services architecture: the Interbank Exchange Network’)

and depicted Figure 2. The UML Component of the SAUT Construction model example is presented in Figure

21.

cmp BankSystem.saut/

8] z]

«virtual» aT™ :ATM
virtual_HW_Control :

«service»
HW_Control «VMWO—[] .
«reference» «reference»

ATM_Ref BankGateRef

«actual»

«service»
BankGateServ

«virtual»

virtual_SWIFT_Network :

SWIFT_Network “"y
«reference»

SWIFT_NetworkServ

bankGate :BankGate

«reference»
SWIFT_NetworkRef

«reference»
AccountMngtRef

«actual»

«service»
AccountMngtServ

accountMngt :
AccountMngt

Figure 21. BankSystem.saut - an example of a SAUT Construction model.

The BankSystem SAUT Construction model includes three actual components (SAUT Composition):

aTM: it represents an Automated Teller Machine; it is equipped with a service (ATM_Serv) and a
reference (BankGateRef);

bankGate: it represents a component of the bank system that acts as a front-office between the bank
and its environment; it is equipped with a service (BankGateServ) and two references
(SWIFT_NetworkRef and AccountMngtRef);

accountMngt: it represents a back-office component that manages the bank accounts; it is equipped
with a service (AccountMngtServ).

The BankSystem SAUT Construction model includes two virtual components (SAUT Environment):
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* virtual_HW_Control: it represent a virtual agent (a bank customer) that operates the ATM; it is
equipped with a reference (ATM_Ref);

*  virtual_SWIFT_Network: it represents a virtual Swift network that allows transactions with other
banks; it is equipped with a service (SWIFT_NetworkServ).

The virtual components shall be implemented by the test system as emulators that are utilised to stimulate the
actual components to which they are wired and to collect and check their responses with the oracles.

The SAUT comprehends two actual wires:

* source: aTM/BankGateRef
target: bankGate/BankGateServ;

* source: bankGate/AccountMngtRef
target: accountMngt/AccountMngtServ.

For each actual wire the test system shall implement an interceptor that is able to receipt and to forward the
messages forth and back, to arbitrate them and, if the oracles are active, to emulate the issuers of these
messages (see § ‘The logical structure of the global test verdict’).

Avirtual wire (virtualToActual) links a virtual component/reference to an actual component/service:

*  source: virtual_HW_Control/ATM_Ref
target: aTM/ATM_Serv.

Another virtual wire (actualToVirtual) links an actual component/reference to a virtual component/service:

* source: bankGate/SWIFT_NetworkRef
target: virtual_SWIFT_Network/SWIFT_NetworkServ.

The SAUT Construction model sketched with the UML Component diagram in Figure 17 is described as a SCA
composite in the snippet below.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<sca:composite xmlns:sca="http://www.osoa.org/xmlns/sca/1.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:am="urn:BankNet:AccountMngt"
xmlns:atm="urn:BankNet :ATM"
xmlns:bg="urn:BankNet:BankGate"
xmlns:hwc="urn:BankNet:HW Control"
xmlns:swift="urn:BankNet:SWIFT Network"
name="BankSystem.saut"
targetNamespace="urn:BankNet:BankSystem.saut">
<sca:property name="saut"/>
<sca:component name="virtual HW_ Control">
<sca:property name="virtual"/>
<sca:property name="init"/>
<sca:implementation.composite name="hwc:HW Control.composite"/>
<sca:reference name="ATM Ref"/>
</sca:component>
<sca:component name="aTM">
<sca:implementation.composite name="atm:ATM.composite"/>
<sca:service name="ATM Serv"/>
<sca:reference name="BankGateReference"/>
<sca:property name="stateViews">
<sca:value name="ATM StateView0O1"/>
</sca:property>
</sca:component>
<sca:component name="bankGate">
<sca:implementation.composite name="bg:BankGate.composite"/>
<sca:service name="BankGateServ"/>
<sca:reference name="SWIFT NetworkReference"/>
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<sca:reference name="AccountMngtRef"/>
</sca:component>
<sca:component name="accountMngt">
<sca:implementation.composite name="am:AccountMngt.composite"/>
<sca:service name="AccountMngtServ"/>
<sca:property name="stateViews">

<sca:value name="AccountMngtStateView01"/>
</sca:property>
</sca:component>
<sca:component name="virtual_ SWIFT_Network">
<sca:property name="virtual"/>
<sca:implementation.composite name="swift:SWIFT Network.composite"/>
<sca:service name="SWIFT NetworkServ"/>
</sca:component>
<sca:wire source="virtual HW Control/ATM Ref"
target="aTM/ATM_Serv"/>
<sca:wire source="aTM/BankGateRef"
target="bankGate/BankGateServ"/>
<sca:wire source="bankGate/AccountMngtRef"
target="accountMngt/AccountMngtServ"/>
<sca:wire source="bankGate/SWIFT NetworkRef"
target="virtual SWIFT Network/SWIFT NetworkServ"/>

</sca:composite>

Snippet 1. BankSystem.saut.composite.

The virtual component virtual HW control iS an initiator (init property). Its structure is specified by

HW_Control.composite.

The actual component arm is stateful. Its structure is specified by aru.composite. Its state view (state
management operations and resources) is specified by the view atv stateviewo1 defined in the atu.composite.
The state view definition is not detailed herein because it is out of the scope of the Scheduler (it is utilised by
the Executor to manage the state view of the stateful component — see § ‘The logical structure of the global
test verdict’).

The structure of the actual stateless component bankaate is specified by BankGate.composite.

The actual component accountMngt is stateful. Its structure is specified by accountMngt.composite. Its state view
(state management operations and resources) is specified by the view accountMngtstateviewo1 defined in the

AccountMngt.composite.

The virtual component virtual SWIFT Network IS @ responder. Its structure is specified by

SWIFT_ Network.composite.
The wires connect the component references and services in the way sketched in Figure 21.

The snippet below shows an example of definition of an Atomic Participant. It the Atomic Participant Bankcate
contained in the XML document BankGate.composite, that specifies the structure of the actual component
pankGate Shown in the Snippet 2.

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<sca:composite xmlns:sca="http://www.osoa.org/xmlns/sca/l.0"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:wsdli="http://www.w3.0org/ns/wsdl-instance"
name="BankGate"
targetNamespace="urn:BankNet:BankGate">
<sca:component name="BankGate.component">
<sca:service name="BankGateServices">
<sca:interface.wsdl
interface="urn:ien:bank:services:wsdl#wsdl.porttype (BankGatePortType)"/>
<sca:binding.ws
wsdlElement="urn:ien:bank:services:wsdl#wsdl.port (BankGateSOAP11HTTPPort)"
wsdli:wsdlLocation="urn:ien:bank:services:wsdl BankGateInterface.wsdl"/>
</sca:service>
<sca:reference name="AccountMngt4BankGatePortTypeService">
<sca:interface.wsdl
interface="urn:ien:account:services:wsdl#wsdl.porttype (AccountMngt4BankGatePortType)"/>
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<sca:binding.ws
wsdlElement="urn:ien:account:services:wsdl#wsdl.port (AccountBankSOAP11HTTPPort)"
wsdli:wsdlLocation="urn:ien:account:services:wsdl AccountMngtInterface.wsdl"/>
</sca:reference>
<sca:reference name="SWIFT Network4BankGateService">
<sca:interface.wsdl
interface="urn:ien:swift:services:wsdl#wsdl.porttype (SWIFT Network4BankGatePortType)"/>
<sca:binding.ws
wsdlElement="urn:ien:swift:services:wsdl#wsdl.port (SwiftBankSOAP11HTTPPort)"
wsdli:wsdlLocation="urn:ien:swift:services:wsdl SWIFTInterface.wsdl"/>
</sca:reference>
</sca:component>
<sca:service name="BankGateServ" promote="BankGate.component/BankGateServices"/>
<sca:reference name="AccountMngtRef"
promote="BankGate.component/AccountMngt4BankGatePortTypeService"
multiplicity="0..1"/>
<sca:reference name="SWIFT NetworkRef"
promote="BankGate.component/SWIFT Network4BankGateService"
multiplicity="0..1"/>
</sca:composite> </sca:composite>

Snippet 2. BankGate.composite.

The bindings of the references AccountMngtaBankGatePortTypeService and SWIFT_Network4BankGateService and of the service
BankGateServices t0 the appropriate WSDL portType/port(s) are specified in the (unique — it is an Atomic
Participant!) component BankGate.component. The specified services and references are promoted to the level of
the composite root element sankGate respectively through the references AccountMngtref and swiFT_Networkref and the

service BankGateServ.

In the preceding Snippet 1 the references and services respectively declared and exposed by the component
pankGate, Whose structure is specified by the Atomic Participant BankGate.composite (Snippet 2), refer by name
to the references and services promoted therein.

THE TEST SUITE REPRESENTATION

The Test Suite Definition / Test Suite (TSD/TS) specification [De Rosa et al. 2014c] defines a couple of XML-
based descriptive notations (XSD) for the representation of respectively the Test Suite Definition model and of
the Test Suite data set. The Test Suite data set is made of data structures that contain SOAP payloads (test case
stimuli and active oracles), SOAP payload fragments42 (passive oracles) and XML resources (state-before and
state-after views).

ETHE TEST SUITE DEFINITION MODEL

A TSD document is a definition of a family of test suites. Several TSD documents can be associated to the same
SAUT Construction model, and each TSD document is associated to one and only one SAUT Construction
model.

A TSD XML document root element testSuiteDefinition includes three types of elements:

* The passive oracles are represented as SOAP payload fragments compliant with the W3C specification Web
Services Fragment (WS-Fragment) - W3C Recommendation 13 December 2011 -
http://www.w3.0rg/TR/2011/REC-ws-fragment-20111213/
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* interactionClass(es),
* componentStateView(s),
* testSampleClass(es).

For each wire / operation that is involved in one of the testSampleClasses (see below) that are instantiated in
the Test Suite, there shall be defined the corresponding interactionClass(es). There are three interaction class
categories:

e {operation.input} — defined for each involved operation (request/reply and one-way) — it is issued by
the reference;

* {operation.output} — defined for request/reply operations — it is issued by the service;

e {operation.fault} — optionally defined for request/reply and one-way operations — it is issued by the

service.

An interactionClass is universally identified by name and designates: (i) the addresser, i.e. the
component/reference or component/service that issues the message; (i) the addressee, i.e. the
component/service or component/reference that receipts the message; (iii) the messageClass, i.e. the class of

the transmitted message - of one of the three categories listed above.

For instance, the interaction class that corresponds to the wire(WireOut) message in Figure 23 is documented
in the TSD as in the snippet below.
<interactionClass name="wireOutputClass"

addresser="aTM/ATM Serv"

addressee="virtual HW Control/ATM Ref"
messageClass="wire.output"/>

Snippet 3. The wireOutputClass interactionClass.

The componentStateViews define the state views that are involved in the test samples of the Test Suite.
componentStateViews are classified in Component Stateless Views, Component Statebefore Views and
Component Stateafter Views, depending on the availability of the restState, setState, getState operations
(specified in the SAUT model). Table 6 summarises the characteristics of the three view categories.

resetState setState getState
empty view NO NO NO
stateless view YES NO NO
statebefore view YES YES NO
stateafter view YES YES YES

Table 6. componentStateView categories and the implemented state view management operations.

Components without views (empty) do not need any state management. Components with Stateless view
implements only a resetState operation to be performed by the test system at the end of the test run.
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Components with Statebefore view are stateful and shall implement also a setState operation to be performed
by the test system at the beginning of the test run that allow them to be in a state consistent with the run of
the test sample. Components with Stateafter view implement also a getState operation that allows the test
system to retrieve their current state. This information item is not more detailed because it is not utilised by
the Scheduler (only by the Executor/Arbiter).

The UML representation of the TSD meta-model elements and of their associations with the SAUT Construction
meta-model elements (Figure 18) is sketched in Figure 22.

class Test Suite Definition meta-model /

SAUT meta-model TSD meta-model
SCA4SAUT meta-model:: Test Suite Definition Test Sample Class
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Case Interaction
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Component S
Stateless View £
@
SCA4SAUT meta-model:: — Component State View State View §
Comp < Component 3

< is a state view of Statebefore View
Component
Stateafter View

< isa placeholder of

Figure 22. Test Suite Definition meta-model and its associations with the elements of the SAUT Construction meta-model.

The testSampleClass allows classifying the test samples. The sequence diagram of an example of
testSampleClass (Wire_OK_SampleClass) is depicted in Figure 23. The Wire_OK_SampleClass defines a class of
test samples for the Wire_OK scenario depicted in Figure 7, that can be executed on the BankSystem.saut,
whose SAUT Construction model definition is in the Snippet 1 and whose UML component diagram is in Figure
21 (this SAUT Construction model is defined on the IEN Services Architecture whose UML component diagram is
depicted in Figure 2 p. 12).

In the Wire_OK_SampleClass Sequence diagram in Figure 23 the interactions issued by the actual components
are represented with thick arrows, whereas the stimuli issued by the virtual components are represented with
thin arrows.
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The testSampleClasses are either calculated automatically and checked by the MIDAS functional conformance
test case/oracle generation - from the SAUT construction model [De Rosa et al. 2014a] and the Service
component protocol state machine model [De Rosa et al. 2014b] - or they are directly defined by the tester.

sd Wire_OK_SampIeCIass/

«virtual» aTM :ATM bankGate accountMngt «virtual»
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Figure 23. The Sequence diagram of the Wire_OK_SampleClass testSampleClass.

The snippet below gives a sketch of the testSampleClass Wire_OK_SampleClass.

<testSampleClass name="Wire OK_SampleClass">

<interactionPathNode name="wire_ input"
class="wireInputClass" use="case”
first="true">
<next id="wireMoney input"/>

</interactionPathNode>

<interactionPathNode name="wireMoney input"
class="wireMoneyInputClass" use="oracle”>
<next id="debit input"/>

</interactionPathNode>

<interactionPathNode name="debit input"

</interactionPathNode>
<stateView id="ATM StateView01"/>

<stateView id="AccountMngtStateView01l"/>
</testSampleClass>

Snippet 4. The Wire_OK_SampleClass testSampleClass.

A testSampleClass is universally identified by name and includes: (i) a collection of interactionPathNodes and

(i) a collection of stateViews.

The interaction Path Nodes are classified (by means of the use attribute) in Case Interaction Path Nodes, the
stimulus specifications, and Oracle Interaction Path Nodes, the response specifications.
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The interactionPathNodes are organised in a lattice (represented by the next child element that includes the
identifier of a next interactionPathNode). Each interactionPathNode is universally identified by name and is a
placeholder of an interactionClass.

Each stateView is a placeholder of a componentStateView that is identified by name through the id attribute.
The collection of stateViews designates the resources schemas that represent the state view of the stateful
components that are relevant for the testSampleClass.

;THE TEST SUITE DATA SET

A Test Suite (TS) data set is a structured collection of test samples in their native format, e.g. as XML, SOAP,
SOAP fragment elements. The structure and content of a Test Suite data set is described in the associated Test

Suite Definition model.

The TS data set model and its associations with the TSD meta-model elements are presented in Figure 24.

class Test Suite data model/
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next
next
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Figure 24. The Test Suite data model elements and their associations with the elements of the TSD meta-model.

A testSuite, the root document of a TS XML file, includes a collection of testSampleSets, each testSampleSet
being a collection of testSamples. A testSuite is associated with one and only one defining TSD XML document.
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Each testSampleSet is associated with one and only one testSampleClass of the defining TSD and all the
included testSamples instantiates this testSampleClass.

Each testSample element represents a collection of test case/oracle message payloads organised in the
interaction path and a collection of resources representing the states of the involved stateful components.

A testSample element includes: (i) a collection of interactionTokens (at least a singleton), (ii) a collection of
stateBefores (possibly empty) and (iii) a collection of stateAfters (possibly empty).

In each testSample there is an interactionToken for each defining TSD testSampleClass/interactionPathNode.
The interactionToken instantiates the TSD/interactionPathNode and contains a payload that instantiates the
appropriate TSD interactionClass/messageClass. The payload contains the instantiated message or message
fragment. The testSample includes also stateBefore and stateAfter child elements, and each stateAfter
element refers to the interactionToken that it double-checks. Their content is not detailed because it is not
utilised by the Scheduler (only by the Executor/Arbiter), that uses only their identifiers.

For instance, a testSample that instantiates the testSampleClass Wire_OK_SampleClass whose sequence
diagram is in Figure 23 includes:

* two Case interactionTokens, instances of: wire(Wireln), transfer(TransferOut);

* six Oracle interactionTokens, instances of: wireMoney(WireMoneyln), debit(Debitin),
debit(DebitOut), transfer(Transferin), wireMoney(WireMoneyOut), wire(WireOut);

*  two Before states, instances of: aTM_StateBefore, accountMngtStateBefore,
e one After state, instance of accountMngtStateAfter that double-checks debit(DebitOut),

implementing the post-condition enforcement.

THE TEST SYSTEM, THE TEST RUN AND THE TEST VERDICT

THE TEST EXECUTION/ARBITRATION SYSTEM CONFIGURATION

The SAUT Construction model is utilised not only by the Scheduler to configure the internal probabilistic
inference engine, but also by the Executor/Arbiter to configure the Test Execution/Arbitration System — called
also the ‘test system’ in the remainder of the manuscript. A glance of the test system configuration is necessary
to understand the logical structure of the test verdict, which is the input of the Scheduler in the
schedule/execute/arbitrate cycle.

The SAUT Construction model sketched in Figure 21 allows the configuration of the test system illustrated in
Figure 25. Test system configuration for BankSystem.saut.. The SAUT components are in grey color, whereas

the test system components are white.
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cmp Test System Configuration for BankSystem.saut/
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Figure 25. Test system configuration for BankSystem.saut.

The Executor/Arbiter initialisation process creates four test components and a test monitor that coordinates
them. It creates two emulator test components, one for each virtual component:

* virtual_HW_Control requester emulator test component, representing the eponym SAUT virtual
component — when initialised by the test monitor, it issues a stimulus request to aTM/ATM_Serv
service, waits for the response (test outcome), receipts the response, arbitrates the test outcome and
returns the verdict (pass or fail) to the test monitor (the global test run stops) — the generic behaviour
of a requester emulator is depicted in the UML Activity diagram in Figure 26;

*  virtual_SWIFT_Network responder emulator test component, representing the eponym SAUT virtual
component - when initialised by the test monitor, it waits for a request message (test outcome) from
bankGate/SWIFT_NetworkRef, receipts the message and arbitrates it; if the verdict equals pass then
the emulator issues a stimulus response to bankGate/SWIFT_NetworkRef and returns the verdict to
the test monitor; otherwise (the local verdict equals fail), it returns the verdict to the test monitor (the
global test run stops) — the generic behaviour of a responder emulator is depicted in the UML Activity
diagram in Figure 26;
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Figure 26. Emulators generic behaviour.

The Executor/Arbiter initialisation process creates two interceptor test components, one for each actual

wire:

o aTM_bankGate interceptor test component — when initialised by the test monitor, it is able to
intercept the interactions forth and back between the aTM/BankGateRef reference and the
bankGate/BankGateServ service related to the operations of the BankGatePortType
portType — the generic behaviour of an interceptor is depicted in the UML Activity diagram in

Figure 27;

o bankGate_accountMngt interceptor test component — it is able to intercept the interactions
between the bankGate/AccountMngtRef reference and the accountMngt/AccountMngtServ

service related to the operations of the AccountMngt4BankGatePortType portType.
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Figure 27. Interceptor generic behaviour.

The

aTM_bankGate interceptor test component behaviour is detailed

bankGate_accountMngt interceptor behaviour is similar.

Table 7.
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When initialised by the
test monitor:

1. wait for a request
message from
aTM/BankGateRef

2. receipt the request
message

3. arbitrate it

[request verdict = pass]

1. send the request
message to
bankGate/BankGate
Serv

2. wait for the response
message

3. receipt the response
message

4. arbitrate it

[response verdict = pass]

1. send the
aTM/BankGateRef

response

message  to  the

return the two verdicts - the test run continues

[response verdict = fail]

[active oracle]

1. sends the response
oracle message to
aTM/BankGateRef

return the two verdicts -
the test run continues

[passive oracle]

returns the two verdicts -
the test run stops

[request verdict = fail]

[active oracle]

e send the request
oracle message to
bankGate/BankGate
Serv

* wait for the response
message

* receipt the response
message

* arbitrate it

[response verdict = pass]

return the two verdicts -
the test run stops

[response verdict = fail]

return the two verdicts -
the test run stops

[passive oracle]

return the request verdict (response verdict = none) -

he test run stops

Table 7. Behaviour of the aTM_bankGate interceptor.

In order to simplify the description, the treatement of the timeouts is not detailed. The test monitor collects the

local test verdicts from the test components and the Executor/Arbiter sends the global test verdict, i.e. the

collection of local test verdicts, via the Runner, to the Scheduler. The Scheduler utilizes the pass/fail local

verdicts as observations to instantiate the corresponding variables - the none local verdicts (the test has not

been performed) do not instantiate the corresponding variables.
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THE TEST RUN - AN EXAMPLE

The sequence diagram in Figure 28 depicts the test run of a test sample that instantiates the testSampleClass
Wire_OK_SampleClass (Figure 23) in which there are no local failures, i.e. all the SAUT responses match the
test oracles and the retrieved state matches the state after.

sd Wire_OK_SampleClass /

«emulator» aTM :ATM «interceptor» bankGate «interceptor» accountMngt «emulator»
virtual_HW_Control aTM_bankGate :BankGate bankGate_accountMngt :AccountMngt virtual_SWIFT_Network
:HW_Control :BankGatePortType :AccountMngt4BankGatePortType :SWIFT_Network
T T T
I«stimulus» : :

Iwire(WireIn) |

wireMoney(Wi reMt:JneyIn)

| ———

wireMoney(Wi reMon'eyIn)

debit(Debitin)

debit(Debitin)
L

debit(DebitOut)

debit(DebitOut

«stimulus»
transfer(TransferOut)

wireMoney(WireMoneyOut)

e = = =

wireMoney(WireMoneyOut)

wire(WireOut)

—m—
[

Figure 28. Sequence diagram of the execution of a test sample that instantiates the Wire_OK _SampleClass with no local failures.

The interlocutors of the sequence diagram are the SAUT components and Test System components sketched in
Figure 25. The interactions issued by the SAUT components (outcomes) are represented with thick arrows,
whereas the interactions issued by the Test System components (stimuli and forwards) are represented with
thin arrows.

The test run of a Wire_OK_SampleClass instance (test sample) that conforms to the Sequence diagram in
Figure 28, is described below:

1. the test monitor begins the test run and sets aTM with ATM_StateBefore State Before and
AccountMngt with AccountMngtStateBefore State Before through their respective setState
operations;

2. the virtual_HW_Control emulator issues the wire(Wireln) stimulus towards the aTM SAUT
component;

3. aTM receipts the stimulus and issues the wireMoney(WireMoneyln) message towards the bankGate
SAUT component that is intercepted by the aTM_bankGate interceptor;
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10.

11.

12.

13.

14.

15.

the aTM_bankGate interceptor arbitrates the intercepted message, sets the local verdict to pass,
communicates it to the test monitor and forwards the message to bankGate;

bankGate receipts the message and issues the debit(Debitln) message towards the accountMngt
SAUT component that is intercepted by the bankGate_accountMngt interceptor;

the bankGate_accountMngt interceptor arbitrates the message, sets the local verdict to pass,
communicates it to the test monitor and forwards the intercepted message to accountMngt;
accountMngt receipts the message and issues the debit(DebitOut) message towards bankGate that is
intercepted by the bankGate_accountMngt interceptor;

the bankGate_accountMngt interceptor arbitrates the message (pass), gets the accountMngt state
with  the appropriate accountMngt getState, arbitrates the retrieved state with
accountMngtStateAfter State After (pass), sets the local verdict to pass, communicates it to the test
monitor and forwards the intercepted message to bankGate;

bankGate receipts the message and issues the transfer(Transferln) message towards the
virtual_SWIFT_Network emulator;

the virtual_SWIFT_Network emulator receipts the message, arbitrates it, sets the local verdict to pass,
communicates it to the test monitor and issues a transfer(TransferOut) stimulus towards bankGate;
bankGate receipts the stimulus and issues the wireMoney(WireMoneyOut) message towards aTM
that is intercepted by the aTM_bankGate interceptor;

the aTM_bankGate interceptor arbitrates the message, sets the local verdict to pass, communicates it
to the test monitor and forwards the intercepted message to aTM;

aTM receipts the message and issues a wire(WireOut) message towards the virtual_HW_Control
emulator;

the virtual_HW_Control emulator receipts the message, arbitrates it, sets the local verdict to pass and
communicates it to the test monitor;

the test monitor resets the aTM and accountMngt states through their respective resetState
operations, communicates the global verdict to the main Executor/Arbiter and ends the test run.

THE LOGICAL STRUCTURE OF THE GLOBAL TEST VERDICT

In the schedule/execute/arbitrate cycle, the Executor/Arbiter job is to perform test runs (see the example of

the preceding paragraph) and to produce test verdicts. The test verdicts have a simple structure and an

intuitive meaning, but also some subtle properties that are highlighted in this paragraph.

The global verdict following a Test Sample execution is a collection of local verdicts, one for each Oracle

Interaction Token.

The local verdict value may be:

pass —there is a test outcome (collected message) and it matches the oracle;

fail — there is a test outcome (collected message) and it mismatches the oracle;
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* none —there is no test outcome (no collected message - the test run has been stopped before)43

The Oracle Interaction Token specifies:

* single-check oracle: it is the content of the Oracle Interaction Token - the test outcome is arbitrated by
matching the message with the Oracle Interaction Token content; if the match succeeds, then the local
verdict is set to pass, otherwise it is set to fail;

* double-check oracle: it is the couple formed by the Oracle Interaction Token content and the content
of the State After that is linked to it (by the double-checks association) - the test outcome is arbitrated
(i) by matching the message with the Oracle Interaction Token content and (ii) by retrieving the state
of the component that issued the message through the appropriate getState operation and by
matching the retrieved state with the State After content; if both matches succeed the local verdict is

set to pass, otherwise it is set to fail.

The double-check oracle allows to check not only the message, but also the service operation post-condition.
Note that there are four possible results of the arbitration with a double-check oracle:

* both the collected message and the retrieved state match the respective oracles — the service
operation was correctly executed and the message reported correctly its execution; the message local
verdict is set to pass;

* the message matches its oracle but the state mismatches its oracle — the message reports the
incorrect execution of the operation as it were correct; the message local verdict is set to fail,

* the message mismatches its oracle but the state matches its oracle — the message reports incorrectly
the correct execution of the operation; the message local verdict is set to fail;

* both the message and the state mismatch the respective oracles — the service operation is
implemented incorrectly (the message report can be “consistent” or not with the service operation

implementation); the message local verdict is set to fail.

The relationships of the single-check and double-check local verdicts with the message and state arbitrations

are summarised in Table 8.

message matching state matching single-check verdict double-check verdict
match match pass pass

match mismatch pass (false negative) fail

mismatch match fail fail

mismatch mismatch fail fail

Table 8. Single-check and double-check verdicts.

* The Scheduler does not yet treat the inconclusive and error values of the test verdict. Intuitively, these values
should be processed as the none value, because they do not add information from the strict point of view of

testing and troubleshooting.
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If, for a transformative service operation, i.e. an operation that updates the component state (for instance, the
operation invoked through the debit(DebitOut) message), the test generation process (whether manual or
automated) does not produce an accountMngtStateAfter State After specification that is able to double-check
the debit(DebitOut) Interaction Token specification, the Executor/Arbiter is obliged to adopt the single-check
oracle arbitration process that does not prevent false negatives. The single-check oracle for state-change
operation can be characterised as partial oracle that augments the uncertainty of the arbitration process.

As previously introduced, the message oracles can be classified as active oracles and passive oracle. A passive
oracle can only be used to check the SAUT behaviour, while an active oracle is also able to reproduce the SAUT
behaviour. An active Oracle Interaction Token content is a message structure (e.g. a SOAP message) that, after
TTCN-3 compilation, can be utilised by the Executor as a TTCN-3 template for total matching of the incoming
SOAP message from the SAUT, but also as a TTCN-3 record type for filling TTCN-3 record that are encoded in
SOAP message and sent to the SAUT. The message active oracle is utilised by an interceptor to emulate the
correct behaviour of the component that issues a mismatch message.

The usage of oracles for emulation must be managed carefully. For instance, if we suppose, in the example of
the preceding paragraph at the step 4, that the aTM_bankGate interceptor arbitrates the received
wireMoney(WireMoneyln) message to fail (local verdict), and it sends the oracle message in place of the inter-
cepted message (the oracle is active), and the test run can continue until the reception by the aTM_bankGate
interceptor of the wireMoney(WireMoneyOut) message from bankGate, it arbitrates the intercepted message,
sets the local verdict, communicates it to the test monitor but the test run cannot continue, because respond-
ing to aTM that sent a wireMoney(WireMoneyln) message non conformant to the test sample with a
wireMoney(WireMoneyOut) message conformant to the test sample is non sense.

A passive Oracle Interaction Token content is an incomplete specification that is represented by a message
fragment structure (e.g. a SOAP message fragment“) that, after TTCN-3 compilation, can be utilised by the
Executor as a TTCN-3 template for partial matching of the incoming SOAP message from the SAUT (after TTCN-
3 encoding), but not as a TTCN-3 record type to generate TTCN-3 records that, after being decoded to SOAP
messages, are sent to the SAUT.

Oracles, including also state views, may be specified incompletely for a number of reasons (e.g. insufficient
knowledge of the tester). Incomplete (passive) oracles and single-check oracles of state-change components
maintain the uncertainty of testing and, primarly, of troubleshooting. In this situation, the failure of a message
may be loosely coupled with the fault index of the component/port (reference or service) that issues it (fault
propagation). For example, if in the preceding example we suppose that the oracles are passive and in step 12
the aTM_bankGate interceptor arbitrates the wireMoney (WireMoneyOut) message to fail, it is not certain
that this is not a false positive. In fact, in the preceding step 7, accountMngt issued a debit (DebitOut) message
towards bankGate that was arbitrated to pass and forwarded by the bankGate_accountMngt interceptor. But
some parts of the message, unchecked by the oracle, contained information that provoked the issuance by
bankGate of the failed wireMoney(WireMoneyOut) message. In fact, the behaviour of bankGate was correct
with respect to the receipted debit(DebitOut) message. So, a false negative debit(DebitOut) provoked a false
positive wireMoney(WireMoneyOut). The test system tends to localise the fault in bankGate/BankGateServ

“ http://www.w3.org/TR/ws-fragment/
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that performs correctly, while it is actually localised in accountMngt/AccountMngtServ and the test report, if it
does not take into account the uncertainty of the fault localisation, deceives the accountMngt and bankGate
debugging/fixing teams, which, in addition, may be independent.

These kinds of problems highlight the difficulty of service component architecture testing, and the fundamental
uncertainty of the task. It is clear that the results of the execution/arbitration tasks must be treated with the
support of a probabilistic reasoner. This work does not yet take into account this aspect of the passive oracles,
but the author think that the proposed probabilistic model is the basis for taking into account this aspect and
other aspects in future research.
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5. RELATED WORK ABOUT THE PROBABILISTIC APPROACH

The artificial intelligence research is interested in representing the uncertainty within the decision mechanisms.
At this effect, the use of the probability theory is considered to be one of the most promising frameworks
[Pearl 1988]. Probability theory, through its various Bayesianist approaches, allows modelling conditional
independences and stochastic relation between events and inferring on the state of a subgroup of those events
according to observations.

In this work, the focus is on the Bayesian Networks (BN). But, to gain a good comprehension of the field and its
applications, it is important to review the related work on Markov Networks (MN), a counterpart of the BNs,
because they play an important role in probabilistic inference.

Taking into account uncertainty through probability and assumptions, beliefs and observations permit the
decision-making despite incomplete knowledge: confronted to a complex reality that is impossible to fully
represent and for which the exact logical inference is untreatable, the stochastic approach enables the decision
process. Furthermore, the probabilistic framework provides a knowledgeable representation of the relations
and of the influences between events.

Moreover, this representation is understandable even for people outside of the field of expertise. One can
resume the success of BN in the industrial world to three facts: (i) simplicity and concision of the
representation, (ii) understandability, with low requirements in probability theory knowledge and (iii)
knowledgeability of the representation and reasoning mechanisms. This is why there are many examples of the
use of probabilistic line of action in many business and technical activities (see § ‘Probabilistic approach to
testing and troubleshooting’).

The hypothesis of this research is that probabilistic reasoning can enhance dynamic scheduling of SOA testing
(grey-box testing of distributed services architectures) by improving the fault detection rate, i.e. the precocious
expositions of failures and the localisation of faulty components. The intent of this section is to provide the
reader with a state of the art on the probability theory models (BNs and MNs), their implementation, their
exploitation for probability inference and the use of those models in the domain of testing (seeking for failures)
and troubleshooting (fault localisation).

The following notation is used in this section:

* X isarandom variable,

* X ={X,,..,X,}is asetof random variables,

® X is an instantiation (a value) of X,

* Xxis a set of instantiations for the set of variables X,

* The notation m(X) is used to represent the parent nodes of X in a directed acyclic graph.

® Let X be a variable and U be the set of parents of X, 8(x|u) is the probability of the state of the value x
given the instantiation u of the parent nodes U.

* Let e be a set of instantiations of one or more variables, e — X is the subset of e without any instantiation of
X.
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PROBABILISTIC MODELS

One of the uses of probability theory is to model with maximum accuracy and minimum number of parameters
a complex reality. The intent of the models presented below is to map conditional independence so that it is
possible to factorize joint probability distributions. The result is the creation of an easy to use framework that
permits computation of marginal probability distributions and probabilistic inference.

INDEPENDENCE NOTION

Beginning with an example allows facilitating the comprehension of the concept of independence among
events. Let’s first consider an experiment where a fair coin C; is flipped twice in sequence X,Y. The coin used
is fair and has two sides head and tail V(X) =V (Y) = {H,T}. When flipped the coin can return with equal
probability any of its two sides: X — V(X). After the first coin flip, it is evident that it is impossible to know
what would be the result of the second flip before it happens on the basis of the result of the first one. The
singular events X and Y are independent from one another and are mathematically denoted X][Y. Now, let’s
consider the possibility of the use of a gaffed coin C, with only one output H. Let’s redefine the sequential
flipping of X and Y as such: depending on the result of X the second flip Y can use C; or C, according to the
rule ‘If X = H then C; else C,". It is evident that in this case the events X and Y are not independent. In fact
you can now infer that if the first flip returns T then the second will obligatory return H and also if the second
flip returned a T then the first had to return H.

Marginal independence is an intuitive notion corresponding to the fact that not all events are interconnected.
There is a second kind of independence that has proven to be more useful in the field of uncertain reasoning
when representing related events: the conditional independence.

To have a better understanding of the conditional independence it is useful to present another example.
Considering two machines represented by two random variables M;, M, (Val(M,) = Val(M,) = {OK,NOK})
connected to the same source of energy represented by the random variable P (Val(P) = {on,off}). It is
possible to observe that M, is NOK, which can be the result of two cases: i) the Pis of f or ii) M, is NOK
because of some random failure. It is possible to check if the fault relies in P being of f by looking at M,. If M,
is NOK there is a strong probability that P is of f. It is possible to say in this case that M; and M, are
correlated. However if P is observed (wheter its state is on or of f) then looking at M, states is irrelevant for
troubleshooting M;. This means that if P is observed then M; and M, becomes independent. Henceforth M,
and M, are conditionally independent knowing P.

Conditional independence is very useful to model correlation between random variables. This key concept is at
the core of the BN and allows merging the graphical representation part with the probabilistic part of the
model.

A more formal definition of the conditional independence states that two sets of random variables X and Y are
conditionally independent given a third set of random variables Z, if and only if the conditional probability
distribution shows their independence given all value z € Val(Z): P & (X]IY|Z = 2). In the case that Z is
empty it is possible to speak of marginal dependence between X and Y.

A result of the conditional independence is that P(X,Y|Z) = P(X|Z) = P(Y|Z). Conditional independences
satisfy the graphoid axioms of: i) Symmetry, ii) Decomposition, iii) Weak Union and iv) Intersection (only in the
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case P >0) [Pearl 1988]. The definition of conditional independences allows factorising probability distributions
and the factorisation permits the model analysis and the development of algorithms for probabilistic inference.

According to the used probabilistic model there are different graphical representations of conditional
independences. The main representations are: (i) the undirected graph and (ii) the directed graph
representations. Figure 29 sketches these representations applied to a classical example of probabilistic
network well known as Asia model (whose BN graph representation is fully developed Figure 33).

VisitAsia | True smoker | True
False False

Tuberculo
sis

Lung
Cancer

Present
Absent

Present
Absent

A 4

Tube or
Lung C

True Bronchitis | present
False Absent

X-ray Normal Dyspnoea | Present
Abnormal Absent

Figure 29. Undirected (left graph) and directed (right graph) representations of the ASIA model.

The relation between the graphical representation and the theory of the probabilistic model can be understood
with the concepts of active paths and separations for undirected graphs and active trail and d-separations for
directed graphs.

Let G(V,E) be an undirected graph, let X; — -+ — X,, be a path in G and Z c V. The path X; — -+ — X,, is active
given Z if and only if VX € {X,, ..., X,}, X € Z. In Figure 29 the undirected representation shows that the path
V —T — C — Sis active given {B, 0} contrary to the path V — T — O — X, which is not active given {B, 0}.

Considering three disjoint sets of nodes X, Y and Z in G, a separation by Z of X and Y is when there aren’t any
active paths in G, linking X to ¥ given Z. The notation for the separation of X, Y by Z is sep(X ; Y|Z). In the
left graph depicted in Figure 29 sep({T, X}; {S, B, D}|{0, C}) is a possible separation.

Equivalent concepts exist for the directed representation. Let’s consider the directed graphs E(V, E).

Atrail X; & - X, in G is considered active givenasetZ c V,ifandonlyif:

1. Whenever there is a v-structure X; = X;,1 < X;j4, (such asT — O « C in the example Figure 29)
along the trail X; <> -+ < X,,, only X;,, or one of his descendants must € Z.
2. Otherwise, no node X € Z must be present on the trail. [Pearl 1988]

In the right representation of Figure 29 V- T — O « C « Sis an active trail given {O,X,D}and C « S — Bis
not an active trail given {S}.

Considering three disjoint sets of nodes X, Y and Z in 5, a d-separation by Z of X and Y in 5, denoted
dsepz(X; Y|Z), occurs if and only if there aren’t any active trail given Z linking any nodes X € XandY €Y.

The directed separations associated with G are defined as such: 7(5) = {dsepz(X; Y|Z)}.
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Looking to the right graph in Figure 29 it is possible to distinguish dsep({D}; {S}|{B,0}) and
dsep({V}; {S}H{T, C}) but O does not d-separate V from S.

The separation between variables described for the two types of graphs permits to map the conditional
independences between probability distributions. In the following sections it is shown how the BN and the MN
use respectively the directed graph and the undirected graph representations of conditional independence
among the probability distributions. Before highlighting the differences between the two representations it is
important to precise the difference between the various types of independences mapping:

Gisl —mapof P © [sep(X,Y|Z) > X LY|Z]
GisD—mapof P [X LY|Z = sep(X,Y|Z)]

GisP—mapof P [X LY|Z © sep(X,Y|Z)]

MARKOV NETWORK (MN)

A Markov Network is a probability distribution that uses an undirected graph as I-map. The probability
distributions are encoded as factors. They are determined by the dependences represented in the undirected
graph. Calculation over them is required for probabilistic inference.

Considering a set of variables X, a factor is considered to be a function ¢p: Val(X) - R. A factor is non
negative. When used in MNs factors do not map random variables values to probability. In most cases, they
assign some nonnegative value that represents the amount of belief that an outcome may realize itself.

To be able to calculate inference, operators over factors are needed.
Multiplication operator

Considering three disjoint sets of variables X,¥Y and Z, the multiplication of two factors ¢, (X = x,Y = y) *
¢, (Y = y,Z = z) return a third factor ¢p;(X = x,Y = y,Z = z): Val(X,Y,Z) - R such that:

V,y,z2 p:X=xY=yZ=2)= p;X=xY=y)xp,(Y =y,Z =2)
Marginalization operator
Considering a set of variable X = {X,, ..., X,,} and its factor ¢(X) the marginalization over the variable X; € X

d_i(X\X}) = Zvaixy P(X), d_i: Val(X\X;) - R such that:

()b—i(Xl'""Xi—l'Xi+1""'Xn) = Z ¢(X1,...,Xi = x,...,Xn)

x€Val(X;)

The two operators are required for the probabilistic inference. Even if factors are not always assigned
probabilities values, Markov Networks are used to calculate inference and to do so they are coupled with
specific probability distributions called Gibbs distributions.

Gibbs Distribution
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Considering a set of variables X, Pg is the probability distribution over X. Py Is a Gibbs distribution
parameterised by a set of factor ® = {¢,(C1), ..., P (C;)} such that U}‘=1 C; if and only if:

1.
Pa(X) = 7 Pa(X)

where

k
Pp(X) = 1_[¢j(cj)
j=1
is a un-normalized measure and

Z= Z I%(X)
Val(X)

Z is called the partition function that is a normalizing constant.

Computing the partition function is a very demanding task for the Markov inference algorithm. This research
will explain how the compilation of the MLF permits a very fast computation of the function [Darwiche 2003]. A
Gibbs distribution Pg(X) factorize over a Markov Network if in the graph every C; belonging to
® = {¢p,(Cy), ..., px(Ci)} is a sub-graph of the original Markov Network graph. Each C; is called a cliqgue and
each factor, that parameterizes the Markov Network, is called a clique potential.

A Markov Network can be defined as a pair noted 7 = (Pg, G), where Py is a Gibbs distribution over the graph
G, where G is an undirected graph mapping and an I-map of Py. The previous section explains how the
separations determine a structure equivalent to independences in a probability distribution. Hence, if a
probability distribution factorizes over an undirected graph then the graph is an I-map of the probability
distribution.

It is theorized that for any probability distribution P and Markov Network ', both over set of variables X, if P
is a Gibbs distribution that factorizes over H', then { maps independences for P (Soundness theory) [Koller
and Friedman 2009]. This theory demonstrates not only the fact that a probability distribution factorizes over
an undirected graph gives us information about independences existing in it, but it also provides the guarantee
that some dependences represented by edges can exist.

It is also possible to ascertain that if two variables X and Y are not separated by a set of variables Z, then X and
Y are dependent over Z in some probability distribution P that factorizes over H'. Mapping the independences
between variables leads to map their dependences (completeness theory). The Hammersley-Clifford theorem
states that if P is a positive distribution® then the opposite of the soundness theory is also true. Hence if H'
maps independences for P then P is a Gibbs distribution that factorizes over H [Koller and Friedman 2009].

** positive distribution is strikly positive.
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All the previous listed theorems establish the bases that permit to use the Markov Network as valid
factorization of the joint probability distributions. Let’s introduce a last notion: Markov Blanket.

For a given graph Hand a random variable X in H, we define the Markov Blanket of X over H, denoted
MBj:(X), as the collection of all the neighbours of X in H. A Markov Blanket of X contains all the nodes that
separates X form the rest of the graphs node. Thus, a Markov Blanket is the only knowledge required to predict
the node’s possible outcome [Pearl 1988]. Markov Networks are useful for optimizing inference calculation
(see § ‘Inference Algorithms’).

BAYESIAN NETWORK (BN)

A BN is a probability distribution that uses a directed graph as I-map, where an MN relies on an undirected
graph. This difference may not seem important, but it differentiates the applications of MNs and BNs. A first
noticeable difference is the use of conditional probability distributions for the BN instead of a combination of
factors and partition functions for the MNs.

A Bayesian Network is a representation of a probability distribution over a set of variables V. The model uses a
graphic representation to map the conditional independences between variables using d-separations [Pearl
19838]. Let:

e V={X,X, .., X,} be aset of random variables,

* G = (V,E) be a Directed Acyclic Graph (DAG) where V are the vertexes and E are the edges. G
encodes a comprehensive representation of the complex relationships between the variables V

e  P(X;|m(X;)) be the probability parameter for each node X; of V that allows quantifying the stochastic
dependence relationship between the states of the variables. For each variable X; all the probability
parameters of P(X;|m(X;)) are arranged in a Conditional Probability Table (CPT). Each CPT contains as
much parameters as there are instantiations of variables Xi and m(X;) combinations. In the case
where the node does not have any parent, P(X;|m(X;)) becomes P(X;), i.e. a prior probability
distribution.

The conditional independences mapped in the DAG allow the factorisation into the joint law according to the
local Markov property that is also defined as the chain rule for the BN [Pear| 1988]:

PO K X) = [ | PO

BNs differ from MNs in two ways: i) they rely on DAGs where MNs use undirected graphs; ii) the probability
distributions associated with a BN factorize differently than those associated with a MN. These differences
have a noticeable impact on the use of these frameworks. The first one is the ease for outsiders to model
knowledge using BNs. Eliciting conditional probability distributions (CPD) as Conditional Probability Tables is
more intuitive than eliciting factors, simply because CPTs are filled with probabilities, which are a more
universally known mathematical object. This is the first reason why in this research the choice was made to
utilize the BN framework over the MN. However, it will be show that both frameworks return similar results.

Active trail in BNs are more complex than their undirected counterpart. This is mainly due to the treatement of
the v-structure (see Independence). To understand their role it is useful to intepretate active trails as flows of
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information. Depending on the graph topology the flow can be blocked or activated given evidences. There are
three structures that can be found in a BN:

* Chains X > Z - YorX « Z < Y:When evidence on Z is given the trail is blocked between X and Y.
* Common parents X < Z — Y: When evidence on Z is given the trail is also blocked between X and Y.
*  V-structure X — Z « Y: When evidence on Z is given the trail is not blocked between X and Y.

In the first two cases, the middle node blocks the flow of information given the evidence Z. An easy way to
visualize the effect of observed evidences on the flow of information is to remove outgoing arcs from
evidenced nodes. The third case behaves in a different manner. In fact the flow is blocked in X - Z « Y if Z is
not observed. The probability of X doesn’t change the belief of Y when Z is not observed, but if Z is observed,
then X affects the belief of Y.

The fact that d-separation correctly represents conditional independence assumptions for probability
distributions that factorize over a BN is less intuitive than separation is for MNs. To justify the assumption the

following theorems are necessary. First the d-separation soundness explains that for a directed graph 5, which
nodes are a set of random variables X and P, which is a joint distribution over X. If P factorizes according to 5,

then G maps some of the conditional independencies for P. This theorem is very useful from a modelling
perspective. Indeed the modelling of a valid BN passes through the specification of direct dependencies
between the variables then filling the resulting CPT. The result is a factorized probability distribution for which
the DAG maps the conditional independences. Consequently, defining a BN is a simple intuitive task.

The second theorem that justifies the relation between the d-separation and the conditional representation
assumptions is the d-separation completeness. This theorem shows that for a directed graph 5, which nodes
are a set of random variables X, if X and Y are not d-separated given Z in C_f, then the X and Y are dependent

given Z in some distribution P that factorizes over G.

Both theorems’ proofs can be found in [Koller and Friedman 2009]. They state that d-separation is a valid
graphical representation of conditional independences. With this understanding of both theorems it is possible
to understand the following results.

The d-separation soundness theorem implies its reverse: for a directed graph 5, which nodes are a set of
random variables X and P, which is a joint distribution over the same space, if G maps the conditional
independences for P, then P factorises according to G. For almost all distribution P that factorise over G that is,
for all distributions, except for a set of measure zero in the space of conditional probability distribution
parametrizations, we have that J(P) = 7(5) The meaning of tha last statement is is that almost all probability

distributions that factorize over a BN graph are perfectly represented in terms of independence assumptions.

It is also possible in the BN framework to define the Markov Blanket for a random variable X. For a directed

graph G the Markov Blanket for X € V, denoted MBz(X) is defined to be X’s parents, children and children’s
parents. In opposition with the Markov blanket in undirected graphs, a markov blanket of some node X in a
direted graph includes nodes that are not direct neighbours of X. It is due to the particularity of v-structure
present in directed graphs and the fact tha those structurs induces dependences between parents of same
nodes. Hence the Markov Blanket for X includes all nodes that share a child node with X.
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As the MN model use the factors to calculate marginal the BN model benefit from similar operations:

The use of the prior joint law allow to calculate the marginal probability of any subset Y of V:

P = ) BV

V\Y

When certain variables are observed to have specific values it is possible to calculate the marginal probability

which is the goal of inference algorithms.

P](Y,W = W())

POIW = wy) = s

FROM BAYESIAN NETWORK TO MARKOV NETWORKS

The two model detailed in the previous sections are closely related, but they cannot necessarily represent
independences that the other can. To illustrate that assertion the following examples will provide a case where
the dependences are correctly translated form a BN to a MN, and another case where dependences are

obligatory lost in the translation.

For the first example let’s consider the BN:A — B — C. It represents the factorization of the probability
distribution: P(4,B,C) = P(A) = P(B|A) = P(C|B). The equivalent dependence representation into a MN
could be M:A— B — C. The joint probability distribution of the MN would be P(4,B,C) = %qbl(A, B) =
¢,(B,C). In this case the possible value for the MN’s factors could be ¢,(4,B) = P(A) * P(B|A) and
¢,(B,C) = P(C|B) with Z=1. The example shows perfectly that both model encodes the same
dependences: dsep(4; C|B) and sep(4; C|B). This example illustrates a situation in which both a BN and MN
encode the same set of independences. However, in most situations BNs and MNs with similar graphical
structures encode different dependences.

Oéﬁ Oéﬁ Géﬁ

Figure 30. BNs misrepresentations (Figure 30.b and Figure 30.c) of dependences expressed by MN (Figure 30.a).

The following example proves the previous statement. Let’s consider the following dependences concerning
the variables V = {A4,B, C,D}: A]IC|{D, B} and DI]]|B|{A,C} as represented in a MN graph by the first
illustration (Figure 30.a). The second illustration (Figure 30.b) is a first attempt of representing the same
independences with a BN graph. The graph represents the dsep(4;C|{B,D}) but does not succeed in
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representing the d-separation of B and D given {4,C}.The third illustration (Figure 30.c) is not able to
represent the d-separation of A and C given {B, D}. The joint probability distribution induced by the graph
Figure 30.b returns P(A4,B,C,D) = P(A) * P(B|A) * P(D|A) = P(C|B,D). The one induced by the graph
Figure 30.c returns P(4,B,C,D) = P(A) * P(B|A,C) = P(D|A,C) = P(C). By considering those probability
distributions as factors, it is possible to see that they induce links non-visible in the MN (B — C for Figure 30.b
and A — C for Figure 30.c). Conversely, one can notice that it is impossible for a MN to represent the
independences expressed by the BN graph in Figure 30.b.

In most cases, we can transform a model into the other by losing independence assumptions - this usually
implies that we add links or arcs. As it will be explained later, transforming a BN into a MN is simple: each pair
of nodes that belong to the same CPT are linked by an edge. CPTs can then directly be used as factors and the
partition function is equal to 1. The process is important since several inference algorithms reason over MNs.
However, transforming an MN into a BN is more difficult and will not be discussed in this manuscript [Koller
and Friedman 2009]. CPTs are normalized factors, thus they can be used to infer a MN from BN. In the BN
illustrated in Figure 30.b the joint probability distribution factorizes according to the following CPTs:
{P(A),P(B|A),P(D|A),P(C|B,D)}. We know that factors in MN are also called clique potentials because all
random variables in a same factor form a clique in the MN graph. This is not the case for Figure 30.b since
variables B,D and C do not form a clique in the BN graph. Given how BNs are defined, such missing links only
occurs among parents of the same node. Adding such edges is called moralization. The moral graph of a DAG G
over X is the undirected graph over X that contains an undirect edge between X and Y if:

1. X—- YorY—)Xexistsiné
2. thereisanodeZsuchthat X — Z « Y existsin G

Of course some BNs are already moral (example Figure 30.c). Adding edges to moralize a BN remove
independences. This entails a certain property for the moralized graphs. The moral graph of a DAG offers the
minimal mapping of the independences represented by the BN graph. This is obvious, since the moralization
create links where there are no edges before [Koller and Friedman 2009].

The moralization of a DAG is the first step in two major inference algorithms: (i) variable elimination and (ii)
junction tree (see the respective sections in the same chapter).

MODELING USING BAYESIAN NETWORKS

When using BN to model specific domains, experts usually require specific functionalities that are presented in
this paragraph. In BNs local structures are used to represent conditional probability distributions. It is
important to differentiate the data structure used for the probabilistic computations from the one used for
modelling purpose. Different data structures induce different costs for constructing a BN. CPTs are a
straightforward representation of a discrete conditional probability distribution and are considered as the
classic data structure used to encode probabilities in BNs. However the difficulty to fill CPTs grows
exponentially with the number of random variables. Regarding ergonomics, there has been a considerable
amount of research carried out by the different software companies selling BN oriented products. However, in
our case we are more interested in alternative data structures that require fewer parameters, which help
reducing the memory consumption of large CPTs and the number of computations. A glimpse will be taken to



115

probabilistic and deterministic functions that are a must-have feature when dealing with expert knowledge.

These functions span from standard probability distributions to logical operators.

Contextual Specific Independences. Multidimensional tables prevent from exploiting any structure in the
conditional probability distribution, i.e. exploiting the fact that conditional probability distributions are
constant for different instantiations of random variables. Such independence is called context specific
independence and can be represented by using trees or rules [Boutilier and al. 1996][Koller and Friedman
2009]. In many cases, context specific independence can be exploited to reduce CPTs memory consumption. An
example showing representation of a local structure expressing Z and Y are independent ginve X = x and

dependent otherwise in a classic CPT (left) and in a tree (right) is shown in Figure 31.

X Y Z Z
x oy |09 01
X y 0 1
X y 099 001
. Yy 099 001 P(Z1x,y)=(09,0.) P(Z1x,y)=(00,10)

Figure 31. CPT and tree exposing local structure within the conditional probability distribution.

Deterministic Functions.

When confronted to real world applications, we frequently encounter deterministic relationship, i.e. cases
where the state of a random variable is known with no uncertainty if its parents are known. Such variables are
called deterministic variables and are easily identifiable by the fact that probability values are equal either to
one or to zero. A deterministic function is a triple (X, f, ;) where X is a discrete random variable in a BN, f a
function such that f: n(Xf) - Val(Xf) and ¢, a CPT that maps T[(Xf) to zeros or ones. Deterministic functions
can be considered observed if all their parents are observed. Classic deterministic functions are logical or,
logical and and logical xor. There are also many specific functions, such as K-gates that are true only if at least

K parents are true:

1if {Y = True,Y e n(X)}| = K
0 otherwise

P(X|m(0) = {

Parametric Distribution.
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Another classic conditional probability distribution variation is to use parametric distributions i.e. conditional
distributions dependent over a parameter usually constant or context dependent. Formally, such parameters
are considered as observed random variables and thus they do not require a prior distribution, which can be
problematic if the parameter is not discrete. Usually the parameter is directly part of the CPT specification:
PX)=(01-22).

Noisy-or, Noisy-and and generalized linear models.

Figure 32. Noisy-Or gate in the case where causes can be independent

In many situations, a consequence can have multiple independent causes. Such situations are represented
using a Noisy-or function. Figure 32 illustrates a Noisy-or with n + 1 parameters where Y and X; are binary
discrete random variables. Each 4; is the probability P(Y = true|X; = xi,X]- = fj),j =1,..,i—1,i+1,..,n,
except for leak probability, 1,, representing an unknown cause. Since causes are supposed to be independent
each other, the probability distribution P(Y|X,, ..., X,,) can be inferred using the following equation (each x; is
supposed to be equal to 0 or 1):

n
P(Y = truelxy, ., x,) = 1 — (1 = Ay) 1_[(1 Rt
i=1

There have been considerable works on Noisy-or and Noisy-and [Cozman 2004] [Xiang 2010]. Noisy-or
functions are part of a more general class of probabilistic functions called generalized linear models [Koller and
Friedman 2009].

Probabilistic Functions and Discrimination.

In contrast with deterministic functions, probabilistic functions are functions that return probability values
different from zeros and ones. They are usually classic discrete probability distributions: the Poisson
distribution, the Bernoulli distribution, the binomial distribution, the geometric distribution, and the negative
binomial distribution are the most used ones. We can also proceed with the discretization of continuous
distributions, since exponential or normal distributions are often useful to model some continuous random
variable behaviour.

THE ASIA EXAMPLE
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The graphical representation of ASIA, which is a classic example of a BN, is depicted in Figure 33. ASIA supports
the diagnosis of respiratory diseases. Note that in the following descriptions the term ‘node’ is used for

variable and the term ‘link’ for dependence.
In this example it is possible to separate the following nodes into 3 different categories:

e “Medical Cause”: Visit Asia, Smoker
*  “Diagnostic”: Tuberculosis, Lung Cancer, Tuberculosis or Lung Cancer and Bronchitis

* Indicator”: X-ray, Dyspnoea

Note that each node can be instantiated into two possible states as it is shown in the Figure 33. For each node
there is a distribution of probability for each state according to the state of the parent nodes, for instance
P(Tuberculosis | Visit Asia)

”

The ASIA example allows intuitively guessing the relationships between “Medical Causes” and “Diagnostics
and between “Diagnostics” and “Indicators” by looking at the links. For instance, visiting Asia increases the
chance of contracting tuberculosis and tuberculosis or lung cancer can be diagnosed by looking at X-rays and
patient signs of dyspnoea. By transitivity, the graph represents the relationships between Causes and
Indicators: visiting Asia increases the chance of having signs of dyspnoea. It also highlights conditional
independences: for example, Causes have no mutual relations in this model (smoking has no influence with
visiting Asia and vice versa). With such BN it is possible to infer the distribution of any marginal probability
according to any observations (example P(Visit Asia | Dyspnoea = Present) or

P(Dyspnoea | Visit Asia = True)).

Tuberculo
sis

True
False

Present
Absent

Tube or
Lung C

Normal
Abnormal

Lung
Cancer

Present
Absent

Present
Absent

Figure 33. ASIA BN.

BN VS. MN

BNs and MNs exploit independences present in probability distributions to factorise them and offer a tractable
representation for uncertain reasoning. BNs can be transformed in MNs that are their undirected counterpart

playing an important role in probabilistic inference.
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In spite of their theoretical similarity, MN and BN differ greatly in their applications. The most notable
difference lays in the fact that BN utilise conditional probability distributions where MN combine factors with a
partition function. The probability distribution associated with a BN factorises differently than the one
associated with a MN. These subtle differences have huge impact in the use of these frameworks. The most
notable one is the ease for experts to model knowledge using BNs: eliciting conditional probability distributions
as CPTs is an easier task that eliciting factors, because probabilities are mathematical objects commonly
known. This remains true even if the active trails in BN are more complex that their undirect counterparts.

INFERENCE ALGORITHMS

Probabilistic inference is a family of methods for calculating an updated state of the network (MN or BN)
according to the observation or not of evidence realizations denoted e. The inference computation permit to
return the probability P(X|E = e). In the remainder of this manuscript, the plain term ‘inference’ refers to
probabilistic inference.

An evidence over a variable X is a measure of likelihood e(X) = p(E = e|X). It is possible to distinguish
between hard and soft evidence. Hard evidence expresses total knowledge over the state of the variable: the
likelihood of one instantiation is equal to 1 (maximised) and those of all the other instantiations are equal to 0.
Soft evidence expresses the belief or partial knowledge of the state of the variable. Soft evidence is
represented by a distribution of likelihood over the variable with at least two instances’ likelihood different
from 0.

A result of probabilistic inference when inserting evidence in a BN and in a MN is the transformation of
respectively the variable probability distributions and the factors. The effect is also visible in the graphic
representation for hard evidence. For the BN, the nodes representing the observed variables are modified by
removing the outgoing edges - the new probability distributions if X is observed with an evidence e(X) are
P'(X|nx)) = P(X|1(X)) * e(X). Each child node Y of the observed node X (Y € child (X)) retains a new
distribution P’(Y[TI(Y)\X) = P(Y|H(Y)) * e(X). In the MN graphical representation the node and the links to

the other variable are simply removed and all concerned factors are projected over sub-factors ¢’ = Y5 ¢ * e.

There are several methods for calculating inference such as most probable explanation (MPE), maximum a
posteriori (MAP) and maximizes the expected utility (MEU). These methods are implemented by different
algorithms detailed in [Pearl 1988] [Jordan 1999] [Koller and Friedman 2009] [Darwiche 2009].

Probabilistic inference calculation is an NP-hard problem [Cooper 1987] [Cooper 1990] [Dagum and Luby 1993].
There are two categories of inference methods: i) exact and ii) approximated. This research utilises exact
inference.

Many practical and non-trivial probabilistic inference applications are confronted with the issue of the
computational complexity. The most important parameter for inference complexity is the MN tree-width,
whose computation is also NP-hard. In fact, every method for inference shows an NP-hard complexity in at
least one of its tasks.

This section will focus on the description of the “classical” inference methods: in particular the variable
elimination method family and the junction tree inference method family - the method of the latter family
detailed hereby is the so-called Shafer-Shenoy [Shafer and Shenoy 1990].
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EVARIABLE ELIMINATION

The variable elimination (VE) inference algorithm [Zhang and Poole 1994] [Zhang and Poole 1996] [Dechter
1998] is a simple but powerful and efficient algorithm. Variables can be eliminated from the joint probability
distribution that calculates the target probability P(Y|E = e):

P(Y,X,E =
P(Y|E=e) = 2x P((E=e) 2

The direct computation of the joint probability distribution is demanding in memory and time. VE exploits the
factorization from the joint probability distribution and tries to eliminate variables by considering only sub-sets
of factors.

In the ASIA example (Figure 33) it is possible to factorize the joint probability distribution as follow.
P(V,T,L,B,0,X,D,S) = P(V) = P(S) x P(T|V) = P(L|S) = P(B|S) = P(OIT, L) » P(X|0) = P(D|0, B)

Removing the variable S would consist of calculating

P(V,T,L,B,0,X,D) = Z P(V) = P(S) * P(T|V)  P(L|S) » P(B|S) » P(O|T, L) * P(X|0) = P(D|0, B)
S

Since the variable S is localized to the factor ¢(S,L,B) = P(S) = P(L|S) = P(B|S), the sum over S can be
calculated as such:

P(V,T,L,B,0,X,D) =P(V)*P(T|V)«*P(O|T,L) x P(X|0) « P(D|0, B) *Z ¢(S,L,B)
s

It is possible to eliminate other variables until the remaining subset of variables that is relevant to the target
probability distribution. Note that the order of elimination is essential to the VE inference performance,
because computing optimal order of variable elimination is a NP-hard problem [Kjeerulff 1990] [Bodlaender
1993].

VARIABLE ELIMINATION VARIANTS

There exist several extensions and variations of VE. One of the most notable is the bucket elimination
framework that extends the application of VE to other inference methods (MPE and MAP) and to other
algorithmic problems (constraint satisfaction among others) [Dechter 1996] [Dechter 1998] [Darwiche 2010]. A
generalization of VE to junction trees has been proposed in [Cozman 2000], where VE is changed to save
intermediate computation results in a structure similar to a junction tree. Finally, an optimization of VE has
been proposed that focuses on eliminating values instead of variables: at every iteration individual factor
entries, instead of variable entries, are eliminated [Bacchus et al. 2003].

The VE algorithm is query sensitive, i.e. the queried variable must be specified in advance; hence, the entire
data structure must be re-initialised at each new query. The junction tree algorithms generalize VE to avoid re-
runs - it compiles the probabilities into a data structure (junction tree) that supports the execution of a large
class of queries.
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JUNCTION TREES INFERENCE ALGORITHMS
The junction tree is a data structure represented by a cluster graph that follows the following rules:

1. Single connection: there is only one path between each pair of clusters.
Coverage: for each clique there is a cluster covering it.

3. Running intersection: for each pair of clusters B and C that contain X, each cluster on the unique path
between B and C also contains X.

The first step in building a junction tree is to triangulate the MN’s graph. The § ‘From Bayesian Network to
Markov Networks’ already explains how a BN can be encoded into an MN (at the cost of probable
independences loss). The following MN must be triangulated.

In order to define the triangulation, the notion of chordal graph is introduced.

Let G = (V,E) be an undirected graph. G is chordal if all cycles of length > 3 have a chord, i.e. for all cycles
=X, —--—X, (n>3)twonodes X; and X; exists in [ such that the edges X; — X; exists in E but notin L.

Transforming a graph G into a chordal graph is called triangulating G.

A naive graph triangulation algorithm will choose randomly nodes, remove it form the graph and connect
between them all its neighbours with new connections called fill-ins. The graphical representation of this action
corresponds to the VE node elimination. The number of fill-ins added by the elimination of a node is a good
estimator of the elimination quality. Ideally this value needs to be low but finding minimal triangulation is NP-
hard. This is why triangulation relies mostly on approximate algorithms based on different heuristics. The
complexity of this type of algorithm is independent of the complexity of the inference algorithm and the fact of
finding an optimal solution for triangulation does not guaranty the feasibility of the inference. The
contributions on triangulation are numerous [Rose et al. 1976] [Robertson and Seymour 1986] [Kjzerulff 1990]
[Bodlaender 1993] [Koller and Friedman 2009].

Cliques in a triangulated graph represent any intermediate factor created by VE and can be represented using a
clique graph. Considering an undirected graph G, a clique graph U of G is an undirected graph where nodes
represent cliques C; of nodes of G. C; € U if there is not any C; such that ; < C;. An edge (; — (; exists in U if
Ci N C; # @. Conversely if C; N C; # @, then a path linking C; to C; exists in U.

Hence building a clique tree U from a triangulated undirected graph G consist basically in two step:

Remove node n from G;
Add a clique node Cin U, representing n and its direct neighbours in G, making sure that another
clique doesn’t already exists including the new clique C and link the clique C to cliques with nodes in

common.

What remains to do is to extract a clique tree from the clique graph. Not all clique trees are junction trees since
junction trees must respect the running intersection property (see above). Hence not all clique trees are
suitable for inference. The running intersection property ensures the correctness of junction tree based
algorithms. A possible solution for junction tree extraction is to use a maximum spanning tree algorithm over a
weighted clique graph. A weighted clique graph is a clique graph for which each edge C; — (; has a weight

|C; — C]-| [Shibata 1988] [Jensen 1988].
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In order to present the junction tree algorithm, the notion of tree-width needs to be introduced. The tree-
width of a tree is the size of the largest clique minus one. The tree-width of a graph is the minimum width

among all possible junction tree of a graph.

Different junction trees are obtained with different elimination orders. Finding the junction tree with the

smallest clusters is an NP-hard problem.

( xo)
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Figure 34. ASIA example transformation from BN to Junction Tree: a. BN, b. MN, c. triangulated chordal graph and d. Junction Tree.

Junction tree algorithms take as input a decomposable probability and its junction tree. They have the same
distributed structure. Each cluster knows its local potential and its neighbours and broadcasts one message,
which is a potential function, to its neighbours. Each cluster is able to compute the marginal probability of its
variables by combining its potential with the messages it receives. These algorithms obey the message passing
protocol: a cluster A is allowed to send a message to a neighbour B only after it has received messages from all

neighbours except B.
A procedure compliant with the protocol is:

1. Choose one cluster R to be the root.
2. Execute collect(R) — collect(C): for each child B of C recursively call collect(B) and pass a message from
BtoC
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3. Execute distribute(R) — distribute(C): for each child B of C, pass a message to B and then recursively call
distribute(B).

SHAFER-SHENOY ALGORITHM

The Shafer-Shenoy inference algorithm transforms MN into junction trees and computes marginal probabilities
using a message-passing scheme [Shenoy and Shafer 1986] [Shenoy and Shafer 1988].

The message sent from a cluster B to a neighbour Cis:

@2 > g o) || masualvy)

‘UEXB\C (A,B)EE,A%C

Cluster B computes the product of its local potential and the message from all clusters except C, marginalises
all variables that are not in C, and then sends the result to C. All messages are well defined because of the
single connection property of the junction tree.

The cluster belief at C is defined as:

Bew) 2 9 [ | mac(un)

(B,C)EE

EOTHER JUNCTION TREE BASED ALGORITHMS

Historically, junction tree algorithms where among the first inference implementations. Among them, there are
different axiomatizations and message passing schemes that are variants of Shafer-Shenoy [Lauritzen and
Spiegelhalter 1990] [Shafer and Shenoy 1990] [Lepar and Shenoy 1998]. Currently, the most performant
junction tree algorithm is lazy propagation [Madsen and Jensen 1999]. Lazy propagation exploits d-separation
to prevent unnecessary computation. There have been efforts to produce variants of junction tree algorithms
without resort to graphical concepts [Draper 1995][Darwiche 1998], but these efforts have not produced a
variable elimination-like scheme for inference.

 OTHER APPROACHES

Probabilistic inference algorithms are not limited to the two approaches presented in this section. Other
approaches exploiting distinct features of Bayesian Networks and Markov Networks have been proposed.

Belief propagation, also called the polytree algorithm, is a polynomial inference algorithm for polytree Bayesian
Networks [Pearl 1982] [Kim and Pearl 1983] [Pearl 1988]. It can be understood as a message-passing algorithm
that reasons on the Bayesian Network’s graph. Belief propagation cannot be applied to non-polytree BNs for
exact inference, but, if applied several times to non polytree BNs, it functions as an efficient approximate
algorithm, and is called generalized belief propagation [Yedidia et al. 2001]. The reason is that cycles induce a
repetition of messages sent by nodes in the same cycle. A solution called global conditioning or loop cutset
conditioning cuts the cycles by conditioning over DAG’s cutset [Pearl 1986] [Pearl 1988] [Suermondt and
Cooper 1990].
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Finding the minimal cutset in a graph is NP-hard [Garey and Johnson 1979] [Hao and Orlin 1994] [Becker et al.
2000]. However, it is possible to avoid conditioning the network over every cutset variables and to limit the
conditioning to smaller and sometimes distinct portions of the DAG. Such technique is called local conditioning
and is by order of magnitude faster than global conditioning [Diez 1996] [Fay and Jaffray 2000].

Recursive conditioning is another inference algorithm using the message passing scheme that relies on
recursive splitting of the graph [Darwiche 2001] [Allen and Darwiche 2003] [Grant 2010] [Grant and Horsch
2005]. In the current state of the art, global and local conditionings are not considered efficient inference
algorithms. Conversely, recursive conditioning offers interesting time-space trade-offs that can be crucial when
computing inference on limited resources. This advantage is emphasized by the fact that conditioning can be
applied with the popular VE inference algorithm.

BAYESIAN NETWORK COMPILATION

Junction trees algorithms and VE share the same complexity limitation due to the MNs tree-width. One
approach to overcome the limitation induced by high tree-width for exact inference is to exploit local
structures. Local structures are alternate representations of factors exploiting local symmetries in the
probability distribution. However, junction trees and VE algorithms can exploit specific operators for these local
structures, but do not exploit them from a graphical point of view.

This shortcoming has led to the development of a new family of inference algorithms that compile MNs into
Arithmetic Circuits (AC) via the transformation into a Conjunctive Normal Form (CNF) [Darwiche 2003] [Chavira
and Darwiche 2005] [Chavira et al. 2006] [Chavira and Darwiche 2007].

A hypothesis of this work is that Bayesian inference by AC compilation is the technique that gives a solution to
the specific computation complexity challenges raised by the use of probabilistic inference for dynamic
scheduling applied to SOA testing, in particular the presence of large tree-width.

ECOI\/IPOSITION OF AN ARITHMETIC CIRCUIT

The principle of inference by compilation is straightforward: the chain rule [Darwiche 2003] states that the
probability of the set of instantiations x of all the network variables X is the product of all the network
parameters consistent with x.

n
P(xq, ., %) = 1_[ P(x;|u;)
i=1

where u; is the (possibly empty) set of values for the parents of X; in X.

It follows that any Bayesian Network (BN) can be represented by a multi-linear function (MLF) with specific
properties (see below for more details).

The MLF is composed of two types of variables:

® Evidence indicator A,: it is a Boolean variable - there is one evidence indicator for each instantiation of the
network variable;
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* Network parameter 6,,: it is a variable that refers to the probability distribution of the state of the value x
given the state of the parent nodes u - there is one network parameter for each different value of a

conditional probability table.

The MLF is the sum of an exponential number of terms. There is a term for each possible instantiation of the
network variables. The term is the product of the evidence indicators and the network parameters of the
instantiation. The Arithmetic Circuit (AC) is a representation of such a function that facilitates its computing.

An AC over a set of variables X is a rooted directed acyclic graph whose leaf nodes are labelled with numeric
constants or variables and intermediate nodes are labelled with arithmetic operations. The root of the circuit is

the output of the function. The number of edges that it contains measures the size of an AC.
An interesting feature of the AC is that it allows avoiding re-computations of operations within sub-circuits.

In our case, the AC is used to represent the multi-linear function expressed by the BN, so the only used

arithmetic operations are additions and multiplications.

The MLF contains all the information about the variables and the dependences, so that, all the answers to

probabilistic queries can be obtained by evaluating and differentiating the function.

A BN is a graphical representation of a joint probability distribution that can be viewed as a MLF. The AC is a

factorized version of the MLF that avoids redundancies like repeating sub-circuits.

A MLF is the sum of an exponential number of terms where each term is an instantiation of all network

variables multiplied by the probability parameters expressing their mutual dependences.

The following Figure 35 sketches a very simple example of BN.

Figure 35: Example of a Bayesian Network.
The MLF corresponding to this BN is:
f(B,0) =

AapAcAaOcian)0aO 10y Oa + AatpAedaO (clan)PaOmia)Pa + AadsAcAab clab)Pab B1a)Pa +
Aal5A:2a0 (61a5)0aO 510)0a + 2atpAcdab(clan)PaObia)Pa + AadvAitaOcan)Pabwia)fa +
AaApAcAa0 c1an) a0 biayPa + AarsAcAab an)0ab b1ayPa + AatvAcAab clan)0abwiarba +
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Aadp 2230 c1ap)0ab mi@y0a + 2adsAcAal clab)0a0513)0a + AatbAcral ab)Pab B1a)Pa +
AaApAcAa0 cjany0at wiaya + AarvAcdabeian)0ab wia)Pa + AarsAcAabl cjan)Pabpayfa +
AgA5A:A30 (¢1ab)0a0 b1y Pa

The corresponding AC is presented in Figure 36. Note that it is possible that node | and node Il are roots of sub-
circuits that should have been duplicated, but are built only once avoiding calculation redundancy.

Figure 36: Example of an Arithmetic Circuit.

EOPERATIONS OVER AC FOR INFERENCE

The probability of the observations of evidence e (collection of variable instantiations) can be calculated with
the MLF by replacing all evidence indicators consistent with the observations with the value 1 and all evidence
indicators contradicting the observations with the value 0.

f(e) = Pr(e)

The partial derivative of a MLF in respect to evidence indicator 1, gives the probability P r(x,e — X) of a new
observed evidence in which x is the only difference with a previous observation. The partial derivative is
calculated replacing all evidence indicators A, with the value 1 and all terms not containing A, with 0. The
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a
differentiating the polynomial with respect to the evidence indicator of x and evaluating the result at evidence

result is equivalent to conditioning the function to the event X =x, i.e. Tf=f(x). Thus, when
X

e the result is equal to:

T (€)= Pr (e X
—(e) =Pr(x,e —
0,
The computation of the probability of an event x given an observation e, when x & e, is straightforward — it
can be obtained from the Bayes theorem
Prixle) = — L ()
r(xle) = ——=—/(e
f(e) 04,
An AC can be evaluated and differentiated in time and space that are linear to its size. The evaluation traverses
the circuit upward computing the value of a node after computing its children. After the evaluation it is
possible with one downward traversal to calculate all the first differentials of all variables given evidence e.

In [Darwiche 2003], the author gives a description of an algorithm for evaluation and differentiation that is
implemented in this inference-based test Scheduler.

COMPILATION ALGORITHMS

The premise of the BN compilation is that every BN can be expressed into a MLF, whose evaluation and
differentiation solves the exact inference over its variables. An exponential sized MLF can be compiled into a
non-exponential sized AC. For the authors of [Shaafer and Shenoy 1986] and [Jensen et al. 1990] the
compilation of the MLF consists in the factorisation of the MLF that can be reduced to the factorisation of the
encoded CNF. Park and Darwiche [Park and Darwiche 2003] show that building a jointree for a Bayesian
Network consists basically in transforming a MLF into an AC.

Darwiche [Darwiche 2002] has been the first to propose a method that compiles efficiently a MLF into an AC.
This method avoids to be confronted with the exponential size of the MLF because uses first an encoder that
transforms a BN into a CNF. The CNF permits to process the MLF in the Boolean domain. The CNF is factored by
all its variables one at a time by using Boolean algebra until a result that is similar to a decision diagram. This
diagram has the specificity of being a smooth deterministic Decomposable Negational Normal Form (d-DNNF).
The particularity of this diagram is that it can be easily translated into an AC.

Different solutions for factoring the CNF have been proposed. Darwiche [Darwiche 2002] presents a first
approach to encode a MLF into a CNF. This approach introduces the concept of Context Specific Independences
that are different from structural independences and can be exploited for the compilation.

In Chavira and Darwiche [Chavira and Darwiche 2005] propose the use of the DPLL algorithm [Davis and al.
1962] [Darwiche 2004] to factorize the encoded CNF. The algorithm chooses one by one the variables, e.g. x,
and factorises the CNF by x and X, adds the two factors and recursively processes them. It also keeps track of
the factorisation into a cache to avoid redundant future calculation. At the beginning of this investigation the
author has used the CNF encoding approach to directly encode the SAUT structural model into a d-DNNF.
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Other methods exist that do not use CNF encoding. Compiling Bayesian Networks using Variable Elimination
Chavira and Darwiche [Chavira and Darwiche 2007] propose a method using Variable Elimination as a basis for
compilation with Algebraic Decision Diagrams (ADD). The method exploits local structures and transforms a
large body of research (CPT) into a more structured representation of factors (ADD) and uses a recursive
algorithm that allows compiling the BN into an AC by-passing the CNF encoding. Other method exists that do
not use CNF encoding such as Recursive conditioning [Darwiche 2000].

PROBABILISTIC APPROACH TO TESTING AND TROUBLESHOOTING

TESTING AND PROBABILISTIC INFERENCE

In their position paper at FSE/SDP workshop on Future of software engineering research (2011), Namin and
Sridharan make the following claim: Bayesian reasoning methods provide an ideal research paradigm for
achieving reliable and efficient software testing and program analysis [Namin and Sridharan 2010]. They
provide a brief overview of some popular Bayesian reasoning methods (Bayesian classification, Markov
decision processes, BN, stochastic sampling etc.), along with a justification of why they are applicable to
different software testing tasks.

Namin and Sridharan illustrate the well-known advantages of the usage of probabilistic inference - intractable
exact inference in complex real-world domains, mathematically well-defined mechanism for representation,
explicit modelling of uncertainty, management of multiple hypothesis about the state of the target, capability
of integrating additional information about the state of the system. Furthermore, the Markov assumption (a
key principle in Bayesian reasoning) - given the system state S;.; at time t — 1, the current action and the
current observation, the state S; at time t can be estimated conditionally independent of all prior states, actions
and observations - is well suited for testing: the presence/absence of a fault does not change during the test
session and each test run does provide an independent test verdict. The Markov assumption is the basis of the
two step iterative Bayesian inference process where a prediction step updates the belief of all possible
hypotheses of system state based on the prior belief and the actions taken since then and a further correction
step “corrects” the updated belief based on the correspondence between the expected and actual
observations. Such an adaptive procedure is well-suited for exposing failures and determining the location of
faults that are source of the failures.

Namin and Sridharan consider test case generation a major software testing challenge that can be formulated
using Bayesian reasoning methods. Efficiency and effectiveness are the main concerns in this domain. Prior
research has already resulted in strategies of test case generation (see below [Rees et al. 2001] [Wooff et al.
2002] [Gras et al. 2006]) and in approaches of test cases prioritization for regression testing (see below
[Mirarab and Tahvildari 2007]) that are based on BN. Other domains of applicability are (i) mutation testing, (ii)
representing and measuring the reliability of program component (defect density, time to failure) and (iii)
software economics and metrics. Furthermore, Namin and Sridharan discuss some practical challenges to the
widespread use of Bayesian methods - such as sensitivity to prior probabilities and the steep learning curve for
users - along with possible solutions to these challenges.

Rees, Wooff and colleagues [Rees et al. 2001] [Wooff et al. 2002] present a seminal work about the use of
probabilistic inference based on a BN framework to support input partitioning test methods that are aimed at
understanding which kind of stimuli provokes software failures. Indeed, starting from a partitioning of the input
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domain, the BN allows the tester to quickly discover what partition or combination of partitions can be
associated with a failure. In the BN, probabilities of the cause of failure being in some nodes would increase
substantially, leading the tester to those areas most likely to contain the fault. Further work is to be done on
re-testing in such cases. Since the model identifies which parts of the system are unconnected to those where
the test has failed, it can also indicate which tests can continue to be run before the fault needs to be located.
The probabilistic model can be used either to generate and prioritise the test suite in a purely automatic
fashion or to function as a decision support system for evaluating and choosing how to sequence a suite
suggested by the tester and to check for additional tests which may have been overlooked [Coolen et al. 2007].

Gras and colleagues [Gras et al. 2006] present the Motorola Labs’ Bayesian test assistant (BTA), an advanced
decision support tool to optimize all verification and validation activities, in development and system testing.
Motorola Labs built a library of causal models to predict, from key process, people and product factors, the
quality of artefacts at each step of the software development. BTA links the predictions from development
models by mapping dependences between components or subsystems to predict the level of risk in each
system feature. As a result BTA generates a test strategy that optimizes the writing of test cases. During system
test, BTA scores test cases to select an optimum set for each test step, leading to a faster discovery of defects.

An important aspect of regression testing is to prioritize the test cases on the basis of specific criteria. Mirarab
and Tahvildari [Mirarab and Tahvildari 2007] present a novel approach to prioritizing test cases in order to
enhance the rate of fault detection. Their approach is based on probability theory and utilizes Bayesian
Networks (BN) to incorporate source code changes, software fault-proneness, and test coverage data into a
unified model. The performance of this technique is evaluated by using APFD (Average Percentage Faults
Detected) measure on eight consecutive versions of a large-size Java application augmented with hand-seeded
faults. The results show that when there are reasonable numbers of faults in the source code, this proposed
novel technique is capable of achieving better values of APFD in the comparison with other techniques. The
obtained results indicate a significant increase in the rate of fault detection when a reasonable number of
faults are available. In the pursuit of future research, the authors consider the possibility of interactive
prioritization incorporating feedback by simply making evidence nodes in BN after each test run. In the author’s
best knowledge, there are not yet published results of this further research.

The selection of software tests is a very important activity to ensure that the software reliability requirements
are met. Generally tests are run to achieve maximum coverage of the software code and very little attention is
given to the achieved reliability of the software. Using an existing methodology, Periaswamy and McDaid
[Periaswamy and McDaid 2006] describe how to use Bayesian Networks to select unit tests based on their
contribution to the reliability of the module under consideration. In particular, the work examines how the
approach can enhance test-first development by assessing the quality of test suites resulting from this
development methodology and providing insight into additional tests that can significantly challenge the
achieved reliability. In this way, the method can produce an optimal selection of inputs and the order in which
the tests are executed to maximize the software reliability. To illustrate this approach, a belief network is
constructed for a software system that incorporates the expert opinion, expressed through probabilities of the
relative quality of the elements of the software, and the potential effectiveness of the software tests.

Ziv and Richardson [Ziv and Richardson 1997] present an approach that allows developers' beliefs regarding
software components to be modelled and updated directly. This approach is part of an overall strategy that
calls for explicit modelling of software uncertainties using BN. The authors present several kinds of software
uncertainty, how they may be modelled and how BN may be used to confirm, evaluate or predict software
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uncertainties. The case study concerns an existing software system under development at Beckman
Instruments. The BN models, once built, may be used by developers and managers in future software
understanding, evolution and maintenance activities. The Beckman study gives a feedback about the factors
that may affect confidence.

Fenton and colleagues [Fenton et al. 2002] argue that quality control of software has not reached the same
levels of sophistication as it has with traditional manufacturing because insufficient thought is being given to
the methods of reasoning under uncertainty that are appropriate to this domain. They describe a large-scale
Bayesian network built to overcome the difficulties that have so far been met in software quality control. This
approach exploits a number of recent advances in tool support for constructing large networks. The authors
describe how the network has been validated and illustrate the range of reasoning styles that can be modelled
with this tool.

In spite of the Namin and Sridharan’s plea for Bayesian reasoning methods [Namin and Sridharan 2010], the
research on probabilistic inference in software testing and related domains such as software quality
assessment is still in its infancy and is made of disparate tentative works on different subjects of the discipline.
In particular, the usage of probabilistic inference as a support of test scheduling is put in place, in the author’s
best knowledge, only by Mirarab and Tahvildari [Mirarab and Tahvildari 2007]. Their approach is static
(prioritization for regression testing) but they consider dynamic scheduling (incorporating as evidence the
feedback from the test system for each test run) as one of the most important subject of their future research.

TROUBLESHOOTING AND PROBABILISTIC INFERENCE

In diagnosing defective systems, the primary goal is to isolate the faults that best explain the symptoms in the
most efficient way. For complex systems, determining which components are causing troubles is not always
straightforward and often prone to inaccuracies. Decision systems are useful in this context because they can
model real world problems with high accuracy and can be designed in a transparent way, facilitating the
coordination between experts and users. Troubleshooting system failures can be approached with several
methods and techniques such as rule-based reasoning, case-based reasoning, neural networks, decision trees,

probabilistic models and others.

The Bayesian Network approach to troubleshooting bestows several advantages. First of all, the BN inference
results are probabilistic, allowing managing the uncertainty in the decision process and the intractability of
exact inference. Moreover, they can be mathematically proven [Dechter 1996]. In addition, its results are
knowledgeables, in contrast to other approaches, such as Neural Networks, which act as black boxes.
Furthermore, the Bayesian Network approach does not present the combinatorial problems of other methods
such as Decision Trees, and is more suitable for large systems. Last but not least, Bayesian Networks have
already been proven to work in real world applications, such as a system developed by NASA for pilot-aircraft
interaction [Cooper et al. 1998] and a network printer troubleshooting system developed by Hewlet Packard
[Skaanning et al. 2000] [Jensen et al. 2001].

Generally speaking, a troubleshooting system is able to choose actions of two categories:

*  Passive actions (information gathering, observation, non-intrusive testing...);

*  Active actions (repair actions...).
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Complex troubleshooting problems are often modelled using various simplifying assumptions and
approximations in order to make them computationally feasible. Common basic assumptions include:

e System Failure - The system is assumed to be defective at the start of the troubleshooting process.

* Single Fault - There is exactly one component of the system that is faulty.

e Component Faulty State - Each component has exactly one faulty state.

*  Observable Components - All components are observable with deterministic states.

*  Repair Action Success - Repair actions on faulty components are always successful.

*  Unique Repair Action - All repair actions uniquely correspond to specific faulty components.
These assumptions can be loosened or modified. Because Bayesian Networks are probabilistic, further
assumptions can be made in order to reduce the number of parts under consideration to those with the
highest probability of failure.

Any complex system can be defined as a set Cp of n components {Cp,, Cp,, ..., Cp,}, Where any component
Cp; can be a potential source of the problem. In order to determine which Cp; may be faulty, passive and active
actions are performed. Passive actions, such as Observing, Questioning and Testing, gather information from
the system without affecting the system itself and are required in order to understand the state of
components. Active actions (Repair, Solution) are invoked on the basis of the results of the passive actions and
impact the system by making changes. A strategy is a set of actions executed in a specific order. Generally
speaking, actions have costs. Given a cost structure of the actions, the goal of a troubleshooting system is to
find an optimal strategy for testing, i.e. a strategy having an Expected Minimal Cost (ECR).

Troubleshooting is iterative and interactive. It is done in a stepwise process, which continually integrates and
applies new information, or evidence, in order to determine the next troubleshooting action. In the first step,
the determination is done without information. Generally speaking, strategies begin with passive actions to
determine the state of a component, and then enact any active action required if the component is deemed
faulty. The information produced by each action is fed back into the system, a new determination is made and
the strategy (next actions to be performed) is modified accordingly. In this way, the strategy is continually
being updated and executed. A good strategy minimizes the time required to isolate and fix the faulty
component or components (if the Single Fault assumption is abandoned).

The structure of any system to be diagnosed can be represented as a directed acyclic graph (DAG), which shows
causal relationships between symptoms, components and troubleshooting actions. Causes and effects can be
connected using two main models:

1. The Naive model that requires the Single Fault assumption, where effects are independent from each
other. This model is used in simple situations but is not realistic for complex problems. Different
causes are represented as states of the parent variable cause. A cause may have several effects and
one effect to only one cause, leading to a non-realistic representation of real world problems.

2. The Causal Independence model allows for multiple faults within a single system. This model requires
that the troubleshooting actions have effective relations to the faults, in contrast with the Naive
model. Faults can be dependent or independent, and the actions themselves can be dependent (linked
to more than one fault) or independent as well [Heckerman and Breese 1996] [Breese and Heckerman
1996]. The causal independence model is closer to reality of complex systems.
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The goal of the troubleshooting process is to isolate and repair any faults within the system as efficiently as
possible. In order to determine the most efficient set and order of actions, the cost and/or efficiency of each
action must be evaluated (belief in the fitness of the action). A good troubleshooting algorithm should take into
consideration a number of criteria including the probability of failure and the cost of repair.

By using a BN, these relationships are probabilistic rather than deterministic, allowing a greater simplification
of the system. Stochastic methods are considered appropriate for failure detection and diagnosis of complex
systems in cases where there is no complete knowledge of the system, i.e. the detection and diagnostic process
is undertaken in presence of uncertainty and the evidence data domain is too large to be completely analysed
[Nielsen et al. 2000].

Decision-theoretic troubleshooting was firstly extended to BNs by Heckerman and colleagues under the Single
Fault assumption [Heckerman et al. 1994] [Heckerman et al. 1995]. They consider observations of a component
after and before a repair as base observations. Costs of repair and observation are independent from previous
repairs and observations. They propose three troubleshooting algorithm: (i) the first algorithm stops at the
detection of the first fault and does not update the knowledge provided by of the test cycles; (ii) the second
algorithm also follows the Single Fault assumption but updates the knowledge at each test cycle; (iii) the third
algorithm outplays the Single Fault assumption.

Skaanning, Jensen and colleagues [Skaanning et al. 2000] [Jlensen et al. 2001b] model the problem of
troubleshooting printing systems under the Single Fault assumption. They present the SACSO system for
troubleshooting of printing systems that represents the relationships between three types of variables: i) fault
ii) action and iii) query for fault identifications. They propose a heuristic method based on a two step look-
ahead analysis to obtain a quasi-optimal strategy. The method is based on the greedy algorithm proposed by
Heckerman and colleagues [Heckerman et al. 1994] [Heckerman et al. 1995].

An alternative BN approach to diagnose complex system proposes the use of fault trees [Bobbio et al. 2001].
Fault trees, a well-known diagnostic technique, allow locating the faulty components by means of inquiries.
Bobbio and colleagues propose the use of fault trees for system troubleshooting. Fault trees allow locating the
faulty components by means of inquiries. The construction of the fault tree for a complex system proceeds in a
top-down fashion, from events to their causes, following the system breakdown, until elements revealing faults
of basic components are reached. The authors use fault trees to define the minimal cut set - minimal set of
components that need to be all defective to cause the system failure. The fault tree is transformed into a
Bayesian Network, which is able, starting from a failure evidence, to locate the component or set of
components with the highest fault probability.

Wang and colleagues [Wang et al. 2006] seize an innovative approach to service level management for network
enterprise systems by using integrated monitoring, diagnostics, and adaptation services in a service-oriented
architecture. The autonomous diagnosis for troubleshooting of web service interruptions is based on BN
models. In this paper, Wang and colleagues present a method for building the diagnostic models. In particular,
they focus on two types of Bayesian network models of different structural complexity (two-layer vs. three —
layer). The results show that the two-layer model outperforms the three-layer model. This challenges the
common belief that adding unnecessary nodes in a Bayesian network and growing its structural complexity
does not deteriorate performance. Hence such practice of building more complex models than necessary
should be approached cautiously within the context of the applied domain.
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In the domain of service composition testing, i.e. grey-box testing of services architecture, troubleshooting
helps locating the faulty element that is the source of the failure. Troubleshooting of complex system with BN
is henceforth a well-established discipline and practice and some remarkable realisations are presented in this
section. BNs and probabilistic inference seems to be good candidates to manage the relationship between
passed/failed test runs (passive actions in the troubleshooting language, they do not change the state of the
system under test) and faulty/faultless SAUT elements. These elements are organized in a hierarchy and are
structural — in the higher levels of the hierarchy, atomic or compound components of the service architecture —
and functional — in the lowest two levels, component’s required/provided interfaces and interface’s operation
interactions. The latter elements (interfaces and interactions) are functional because, by definition, we do not
know where, inside the component, is located the software that implements them. A key enabler of
troubleshooting is the SAUT construction model (see section 4, § ‘The SAUT Construction model’) that allows
the association of random variables with the SAUT elements. On the other hand, identified passive actions (e.g.
test cases), with known links with the SAUT elements, allow iterative and interactive evaluation of their fitness
(fault exposing potential), i.e. their capability of provoking a failure that reveals a fault.

This work contributes to the research on the application of Bayesian reasoning methods to the “reliable and
efficient software testing and program analysis” [Namin and Sridharan 2010] that is considered an “ideal
research paradigm” and a promising future research thread on software testing. In fact, the author thinks that
the problem of intelligent dynamic scheduling of test sessions can be posed and solved only through
probabilistic inference, because it is too complex for exact inference.
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6. THE SCHEDULER IMPLEMENTATION: THE PROBABILISTIC INFERENCE ENGINE

An Arithmetic Circuit (AC) that is obtained by transformation of a virtual Bayesian Network (vBN) supports the
probabilistic inference engine that drives the scheduler. The vBN is built on the basis of the specific topology of
the services architecture under test (SAUT Construction model) and of the test scenarios (Test Suite Definition
model) and data (Test Suite data set). The reasons of this transformation method and of the final
representation are essentially mastering the size and time complexity of the utilisation of the Bayesian network
approach and are discussed theoretically in this section, with some experimental results presented in the next
section 7.

The Scheduler initialization phase implements a M2M (model-to-model) transformation phase from the SAUT
Construction model, the Test Suite Definition model and the Test Suite data set to a virtual Bayesian Network
(vBN) model (passing through the constitution of a Test Scheduling Context model) and a compilation phase
from the virtual Bayesian Network to the Arithmetic Circuit.

BUILDING THE TEST SCHEDULING CONTEXT MODEL AS A VIEW

As discussed in the previous section, the information contained in the SAUT Construction model, in the Test
Suite Definition model and in the Test Suite data set is utilised to configure the Test Execution/Arbitration
system as well as for the construction of the vBN. In fact, only part of this information is utilised for building the
vBN, that is called the Test Scheduling Context (TSC) model. The UML representation of the TSC meta-model is
presented in Figure 37 as a view of the SCA4SAUT/TSD/TS meta-model.

The TSC meta-model is a composite view of (i) the SAUT construction (SCA4SAUT) meta-model — involving the
SAUT, Actual Component, Port (Service, Reference) elements, (ii) the TSD meta-model — involving the
Interaction Class element, and (iii) the TS data model — involving the Oracle Interaction Token, Test Sample
elements.

The Test Scheduling Context (TSC) meta-model is conceptually splitted in two parts. The first part allows the
description of the structural and functional decomposition of the SAUT. Starting from the root SAUT element,
the first level of the tree decomposition represents the SAUT composition, i.e. the SAUT Actual Components.
This first level represents a structural decomposition of the SAUT and the lowest possible level of granularity of
the structural coverage of the SAUT. At this level, the potential structural coverage is complete. The second
level includes all the References and the Services respectively declared and exposed by each Actual
Component. This second level represents a functional decomposition step, whose potential coverage extent is
complete at this granularity level. The decomposition is functional since it does not allow locating directly the
component software parts of the Actual Component that implement a Port, due to information hiding of the
component implementations. The third level of decomposition is supplied by the TSD model and is always
functional — it represents the Interaction Classes that are issued by Port. Note that there are three categories
of Interaction Classes: (i) {operation.input} issued by a Reference, (ii) {operation.output} issued by a Service
and (iii) {operation.fault} issued by a Service. This information is supplied by the TSD model. For this level of
granularity, the Test Scheduling Context model has the coverage extent of the corresponding TSD Model.
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Figure 37. Test Scheduling Context meta-model.

The second part of the TSC meta-model (Test Suite data set model) allows the representation of the Test Suite.
The model integrates a reduced view of the elements of the Test Suite data set — the Test Samples and their
Oracle Interaction Tokens — that are shared with the Test System and that enable the data exchange in the
schedule/execute/arbitrate cycle. The important information for the Test Sample is if it has been executed or
not, and for each of its Oracle Interaction Tokens is if it is observable, if it have been executed and the local
verdict. The next link between Oracle Interaction Tokens is the instantiation of the next association between
the Interaction Path Nodes that are instantiated by these Oracle Interaction Tokens (passing through the Case
Interaction Tokens). The link is established in the TSC model only if the source Oracle Interaction Token
(according to the next association) is non-observable (see below). Note that a local verdict is not necessarily
available (value = none) even if the Oracle Interaction Token is observable, and its Test Sample has been
executed (but not completely).

An example of TSC model is sketched in Figure 38. The example SAUT (BankSystem) is that detailed in the
Snippet 1 and depicted in Figure 21. The Interaction Classes that are modelled are those involved in the
Wire_OK_SampleClass depicted in Figure 23. The unique Test Sample (Wire_OK_01) is an instantiation of the
Wire_OK_SampleClass. The next association between Oracle Interaction Tokens is not modelled in this Test
Scheduling Context, because, according to the Test System configuration, all the SAUT responses related to the

Test Sample Oracle Interaction Tokens are observable (see below).
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Figure 38. Test Scheduling Context model — BankSystem example.
BUILDING THE VIRTUAL BAYESIAN NETWORK BY MODEL TRANSFORMATION

The vBN is an acyclic directed graph whose nodes are typed random variables and whose links represents
stochastic dependence between the variables. The random variable types and their relationships of stochastic
dependence are associated to the elements and relationships of the TSC meta-model. The Figure 39 depicts the
vBN meta-model and the Table 9 details the correspondence between the TSC model and the vBN model.



136

class vBN meta-model /

«random variable» «random variable» «random variable»
System Participant SendingPort
o dependson B dependson B 9
1 1
tags tags tags
values = faultless/faulty values = faultless/faulty values = faultless/faulty

1

<duo spuadap

«random variable»
InteractionType

tags
values = faultless/faulty

1

<duo spuadap

«random variable»
Interaction

«random variable»

TestSample dependson B

tags tags
values = fit/misfit values = pasg/fail

{non-observable}

dependson B

Figure 39. vBN meta-model.

Note that the “canonical” BN parent relationship is the inverse of the depends on relationship. The model
mapping from the TSC model to the vBN model (variables and relationships between variables) is detailed in

the Table 9.
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TSC elements and relationships

vBN variables and dependences

SAUT

root element,

has a universal identifier (SAUT id),
aggregates (composition) Actual Components.

System

DAG bottom node,

denotes the SAUT fault index,

Boolean variable (faultless = 0 / faulty = 1),
is identified by the corresponding SAUT id,
depends on all the Participants,

is instantiated (assumption) to faulty in the
initialization phase.

Actual Component

SAUT structural element,

has a universal identifier (component id),
is part of a SAUT,

owns Ports,

(declares References, exposes Services).

Participant

denotes the Actual Component fault index,

Boolean variable (faultless = 0 / faulty = 1),

is identified by the corresponding component id,

is parent of System,

depends on all the SendingPorts, corresponding to
the Ports (References, Services) of its corresponding
Actual Component,

can be instantiated with a belief at any inference
cycle.

Port (Reference, Service)

SAUT functional element,

has a universal identifier (port id),

is a Reference of the Actual Component that is in a
Wire source OR

is a Service of the Actual Component that is in a Wire
target,

issues Interaction Classes.

SendingPort

denotes the Port fault index,

Boolean variable (faultless = 0 / faulty = 1),

is identified by the corresponding port id,

is parent of the Participant corresponding to the
Actual Component in which its corresponding Port is
specified,

depends on all the InteractionTypes, corresponding
to the Interaction Classes that are issued by the
corresponding Port,

can be instantiated with a belief at any inference
cycle.
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Interaction Class

SAUT functional element,

has an universal identifier (interaction class id),
is issued by a Port,

is of one of the three categories:

1. {operation.input} issued by a Reference,

2. {operation.output} issued by a Service,

3. {operation.fault} issued by a Service.

InteractionType

denotes the interaction class fault index,

Boolean variable (faultless = 0 / faulty = 1),

is identified by the corresponding interaction class id,
is parent of the SendingPort corresponding to the
Port that issues the corresponding Interaction Class,
depends on all the Interactions corresponding to the
Oracle Interaction Tokens that are instances of the
corresponding Interaction Class,

can be instantiated with a belief at any inference
cycle.

Oracle Interaction Token

elementary oracle/outcome/local verdict

has an universal identifier (interaction token id),

is an instance of an Interaction Class,

belongs to one and only one Test Sample,

represents

1. an oracle,

2. the related outcome in a test session,

3. the local verdict associated to the outcome,

may be non-observable,

may have previous non observable Oracle Interaction
Token of the same Test Sample,

when the owner Test Sample is executed

if it is executed (there is an outcome) its local verdict is
arbitrated to pass or fail,

otherwise (when the execution of the owner Test
Sample stops before its elementary outcome) it is not
arbitrated (local verdict = none).

Interaction

DAG top node,

denotes the local verdict associated with the
response of the SAUT for the corresponding Oracle
Interaction Token,

Boolean variable (pass = 0/ fail = 1),

is identified by the corresponding interaction token
id,

is parent of the InteractionType corresponding to the
Interaction Class of the corresponding Oracle
Interaction Token,

is parent of the TestSample corresponding to the
Test Sample that owns the corresponding Oracle
Interaction Token,

if non-observable, is parent of the Interaction
corresponding to next Oracle Interaction Token,

is initialised with a prior probability once

when the owner Test Sample is executed,

if the local verdict is pass/fail, it is instantiated with
the corresponding observation,

otherwise (the verdict is none, or possibly
inconclusive or error) it is not instantiated.
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Test Sample

compound oracle/outcome/global verdict,

has an universal identifier (test sample id),

is an instance of a Test Sample Class,

owns Oracle Interaction Tokens,

when it is executed, if all the owned Oracle Interaction
Tokens have an outcome and all the local verdicts are
set to pass, the global verdict is set to pass,
otherwise, if there at least one Oracle Interaction
Token local verdict set to fail, the Test Sample global
verdict is set to fail

TestSample

DAG bottom variable,

denotes the test sample fitness,

Boolean variable (misfit =0/ fit = 1),

is identified by the corresponding test sample id
depends on all the Interactions corresponding to the
Oracle Interaction Tokens that are elements of the
corresponding Test Sample,

if the corresponding Test Sample has not been
executed, it can be instantiated with a belief,

when the corresponding Test Sample has been

executed:

if the global verdict is fail, the fit dependent
probability is calculated to 1 (the Test Sample
certainly fits),

otherwise (the global verdict is pass) the fit
dependent probability is calculated to 0 (the Test
Sample certainly misfits).

Table 9: Correspondence between the TSC elements and relationships and the vBN random variables and dependences.

The vBN constructor of the Scheduler creates one and only one System random variable whose name is the
SAUT id of the corresponding SAUT. The System variable is Boolean (faultless = 0 / faulty = 1) and represent
the probability of being faulty of the SAUT. The unique System variable establishes the links between the
different Participant variables of the vBN that are used by the vBN inference logic. These links are realised by
the stochastic dependence on the vBN Participant variables that, when created (see below), become parents of
the System variable.

For each TSC Actual Component, the vBN constructor creates a Participant stochastic Boolean variable
(faultless = 0 / faulty = 1) whose name is the component id of the corresponding Actual Component. The
Participant variable represents the probability of a SAUT Actual Component of being faulty. The vBN
constructor establishes a parent link from the created Participant variable and the System variable,
establishing a stochastic dependence of the latter on the former.

For each Actual Component / Port (Reference / Service) the vBN constructor creates (i) a SendingPort
stochastic Boolean variable (faultless = 0 / faulty = 1) whose name is the port id of the corresponding Port and
(ii) a parent link from the created SendingPort to the Participant variable that corresponds to the Actual
Component that owns the Port, establishing a stochastic dependence of the latter on the former. A
SendingPort variable represents the probability of being faulty of the aforementioned Port, i.e. that a fault is
localised in the Actual Component implementation of the Port.

For each Actual Component / Port / Interaction Class, the vBN constructor creates: (i) an InteractionType
stochastic Boolean variable (faultless = 0 / faulty = 1) whose name is the interaction class id of the

corresponding Interaction Class and (ii) a parent link from the created variable to the SendingPort variable that
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corresponds to the Port issuing the Interaction Class. The parent link from the Participant to the SendingPort
variable establishes a stochastic dependence of the latter on the former. The InteractionType variable is used

to localise the failure on the issuance of a specific message type.

For each Test Sample of the TS data set, the vBN constructor creates a TestSample stochastic Boolean variable
(misfit = 0 / fit = 1) whose name is the test sample id of the corresponding Test Sample. The TestSample
variable represents the probability distribution of the Test Sample to “fit” the search for failures and the
localisation of faulty elements, on the basis of specified criteria (see below).

For each Oracle Interaction Token of each Test Sample, the vBN constructor creates an Interaction stochastic
Boolean variable (pass = 0 / fail = 1) whose name is the interaction token id of the corresponding Oracle
Interaction Token. The VBN constructor creates: (i) a parent link from the created Interaction to the
InteractionType that corresponds to the Interaction Class of the Oracle Interaction Token, establishing a
stochastic dependence of the latter on the former; (ii) a parent link from the created Interaction to the
TestSample that corresponds to the Test Sample that owns the corresponding Oracle Interaction Token; (iii) if
the created Interaction is non-observable, a parent link from it to the Interaction that corresponds to the next
Oracle Interaction Token, if any.

The vBN model corresponding to the TSC model depicted in Figure 38 is presented in Figure 40. The links

between variables are the canonical BN parent link.

object vBN model - example /

BankSystem :Systenp

N\

bankGate :Participant

aTM :Participant accountMngt :

Participant
ATM_Serv : BankGateRef : BankGateService : AccountMngtRef : ISWIFT_Netw orkRef AccountMngtServ :
SendingPort SendingPort SendingPort SendingPort SendingPort SendingPort
wire(WireOut) : ireMoney(WireMoneyin ireMoney(WireMoneyOut) | debit(Debitln) : transfer(Transferin debit(DebitOut) :
InteractionType InteractionType InteractionType InteractionType InteractionType InteractionType

it06 :Interaction

it02 :Interaction

it04 :Interaction

it03 :Interaction

N

Wire OK 01 :
TestSample
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Figure 40. vBN model — BankSystem example.

In the test run cycle, the Scheduler supplies a test sample id to the Executor/Arbiter (through the Runner). The
Executor/Arbiter executes/arbitrates the corresponding Test Sample and returns a global verdict data structure
whose identifier is the test sample id (see section 4, § ‘The test system, the test run and the test verdict’).

The vBN considers each Oracle Interaction Token pass/fail verdict of the executed Test Sample as an
observation (evidence realisation) that instantiates the interaction token id Interaction variable. The
Interaction variables corresponding to the non-arbitrated Oracle Interaction Tokens (verdict = none) — because
either of the halting of the Test Sample execution/arbitration cycle or of the lack of observers in the Test
System — are not instantiated. Filling the vBN with the evidence realisations triggers the vBN inference step that
updates the probability distribution (fitness) of the test sample id TestSample variable (in fact to 1 if fail, to 0 if
pass) and of all the TestSample variables corresponding to the still not executed Test Sample. The Scheduler
exploits this information in order to choose, on the basis of some criteria that can be indicated through
scheduling policies and directives, the next test sample id to be supplied to the Executor/Arbiter (see the next
section 7).

The vBN constructor creates a parent link between Interactions that are parents of the same TestSample, on
the basis of the next relationship between the corresponding Oracle Interaction Tokens, which is derived from
the next relationships between the Interaction Path Nodes in the Test Sample Class that classifies the
corresponding Test Sample. A parent link is established for each non-observable Interaction to the Interaction
corresponding to the next Oracle Interaction Token owned by the same Test Sample. Those non-observable
Interactions correspond to Oracle Interaction Tokens that are not monitored by the Test System. Hence, the
probability distributions of each Interaction variable is: (i) either an a priori probability distribution if the
Interaction has no previous (non-observable) Interactions, or (ii) a conditional probability table that represents
the stochastic dependence of this Interaction on the previous (non-observable) ones. This kind of probabilistic
inference is intended to manage the concrete and difficult situation of fault propagation: the outcome
corresponding to an Oracle Interaction Token doesn’t match the oracle, and the conclusion could be the fail
verdict and that the chain InteractionType / SendingPort / Participant is faulty, but in fact the preceding
message addressed to that Actual Component and corresponding to a previous non-observable Oracle
Interaction Token failed, whereas the “reaction” of the Participant to this message was correct. Another
“generic” example of vBN is presented in Figure 41. Note the probabilistic dependence that is derived by the
next link: Is is observable, but I, 1, I, are not, and the evidence of |5 allows inferring the probability distribution
of the preceding Interactions.



142

TestSamples

-

Interactions X0,

InteractionT ypes

Sending Ports €7) €9 re,

Participants

System

Figure 41: Graphical representation of an example of virtual Bayesian Network.

III

The System variable is instantiated to faulty (1) in the initialization phase in order to represent the “classica
troubleshooting hypothesis that the SAUT is faulty.

An appropriate model of the problem domain is a crucial element for the success of the probabilistic inference
application. This work proposes a simple but deep model of the problem domain, the grey-box functional
conformance testing of distributed services architectures, that is able to take into account both the fault-
exposing potential of the test cases and the test coverage of structural and functional decompositions of
services architecture at the lowest possible level of granularity, given the black-box/grey-box stance of service
testing.

BUILDING THE ARITHMETIC CIRCUIT BY COMPILATION

The first steps of the Scheduler initialization phase end with the construction of the vBN that is in fact a model
of a BN (in the sense that the representation does not correspond with any optimized representation of
“executable” BNs). The vBN model is stored in a light XML representation. Figure 41 sketches an example of
vBN .

The classical Bayesian inference approach reaches its limits in size and computation speed very quickly with the
increase of the number of: (i) Participants, (ii) SendingPorts, (iii) InteractionTypes, (iv) Interactions and (v)
TestSamples. The proposal of this research is to “compile” the classical representation of the Bayesian Network
in a more compact structure (the Arithmetic Circuit), adapted to more efficient inference computation. A
concise description of an original model-driven method for compiling a BN into an AC follows.

As it was explained in chapter 4 a BN uses is a graphical representation of a joint probability distribution that
can be viewed as a MLF. The AC is a factorized version of the MLF that avoids redundancies like repeating sub-
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circuits. A MLF is the sum of an exponential number of terms where each term is an instantiation of all network
variables multiplied by the probability parameters expressing their mutual dependences.

Returning to Figure 41, it is important to highlight that the TestSample, InteractionType, SendingPort,
Participant and System BN nodes are OR nodes (they are instantiated to the value 1 if at least one of the
parent nodes is instantiated to 1)46. This implies that the probability tables of the dependences contain values
equal to 1 and 0. Consequently, some of the terms of the MLF vanish due to a value equal to 0.

After this initial simplification it is possible to observe that all remaining terms express all possible instantiation
of the observed Interactions, the input information, and the consequences on the state of the rest of the
network variables.

FO) = Amgdimy - A A, A5, 100 Oy - O} + -+ + {AmgAmy o A HAg; - Agy HOmo Omy -+ Omy}
Each term of the function can clearly be organized in three groups of variables:

{Ami ; lﬁli} - Interaction evidence indicators that represent the two possible instantiations of Interaction

(expressing the verdicts pass or fail).

{Agi i Agi} - Evidence indicators for the other variables (System, Participants, SendingPorts, InteractionTypes

and TestSamples). They also represent the two possible state of the related Bayesian Network variable.

0m; — Network parameter consistent with the state of the interaction m; and the topology of the vBN. Instead
of the network parameters of the other BN variables, those network parameters are not removed during the
simplification because their value is different from 0 and 1. For each interaction, the network parameter can
belong to one of two categories:

* 0(m;|U) — U being the state of all parents node, in the case of non-observed Interactions the values of the
Interaction instantiations influence the values of the preceding non-observed Interactions.

* O(m;) -Inthe case of observed Interactions the value is defined by the expert as an a priori opinion on the
state probability of failure of the Interactions.

The morphology of the MLF can be explained by transition properties of the BN. In fact, since the state of the
System depends of the state of the Participant, the state of the Participant depends of the state of the
SendingPort and so on (see Figure 41), the state of any element of the SAUT can be determined by the state of
the cluster of Interactions that are linked to it.

For the following explanations, the use of the Binary Decision Diagram (BDD) will allow a much easier
understanding of the topology of the AC.

*In section on future works the limitation of such approach is explained and a possible improvement using
Noisy-OR nodes is proposed [Pearl 1988].
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Taking in consideration everything explained previously, it is possible to represent the instantiation of an
Interaction variable of the MLF by the following Figure 42.

f(v) f(v)

fWV)=0,/'(X=0)+0,f'(X=1)
VRN

f(X=0)  f(X=1)

f'(X=0) f'(X=1

Figure 42: CA representation of a BDD (instantiation of X).

Here the instantiation of the network variable X to the value 1 implies that the evidence indicator x equals 0.
When solving the MLF with the value x = 0 some terms of the function vanish, returning a shorter MLF. The
same happens with the instantiation of X to the value 0, except that it is the evidence indicator x that equals 0.

Looking deeper, by resolving the MLF with the instantiation of a BN variable, a set of evidence indicators,
common to all the terms of the remaining function, can be factorized. Here they are symbolized by Q.

fEX=1)= Quuf' X =1)

Q;is a set of evidence indicators of the MLF, which nodes can be inserted in the Arithmetic Circuit with a
multiplying node like in Figure 42.

f'is a simplified function, in which all evidence indicators that are common to all terms are moved in Q; by the
factorization.

Later it will be explained that the AC location where to insert the Q evidence indicator nodes depends on
different factors and will influence the size of the AC. For clarity, we will consider for now that the Q nodes are
inserted at the root of the sub-circuit as shown in Figure 42.

Using BDD representation (each path from the root to any leaf of the BDD is a term of the MLF) it is achievable
to draw the coarse representation of the AC regardless of the Interaction order and without worrying about
redundancies.

One of the purposes of the AC is to avoid the redundancies of calculation represented by sub-circuits. When
two simplified MLFs are equal, only one sub-circuit needs to be built. For instance, the two paths of the circuit
presented in Figure 43 are merged together.
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Figure 43: Merging two paths in a sub-circuit.

One of the objectives of this research is to minimize the size of the AC by finding an order of Interactions that
maximizes the redundancies. There are two easy conclusions that can be drawn at this point:

1. For two simplified functions to be equal and cause a merging of two circuit paths they need to contain the
same terms, which implies that the same Bayesian Network variables must have been eliminated (regardless
of their instantiation value) in the paths before the merging. Since all MLF variables depend on the
instantiation of a cluster of Interactions, it is logical to deduce that whatever path is followed on the AC the
same cluster of Interactions must be instantiated so that paths can merge. A global order of Interactions to
instantiate must be common to each circuit path.

2. When choosing the global order it is not interesting to take sequentially Interactions belonging to different
clusters since it only delays the elimination of the BN variables and consequently the merging of paths.
When choosing an Interaction to instantiate you actually choose a cluster, instantiate all Interactions and
restart with another cluster.

Splitting a cluster of Interactions means that in the middle of instantiating the Interactions of the cluster other
Interactions from another cluster are instantiated. The only moment where it is useful to do that is when the
second cluster eliminates a variable and allows path merging. Clusters related to the SAUT component
variables include normally other clusters, for instance the cluster of the Participant A includes the clusters of all
SendingPorts related to Participant A. Splitting the super-clusters delays only the instantiation of the
corresponding BN variable.

The proposed solution is a recursive dynamic program: first you select the order between the super-clusters
and then you select the order of the sub-clusters. This operation is repeated recursively until there are no
more sub-clusters. The implementation of this algorithm can be compared to the creation of an oriented lattice
where the nodes represent a set of instantiated Interactions. The nodes are linked to a value that is an upper
bound of the sub-circuit size and to an ordered list of Interactions. Each lattice edge represents the choice of a
cluster and, consequently, a partial order of instantiated Interactions. Each edge bears 2 values that represent
a lower bound and upper bound of the sub-circuit size that is specific to the Interactions partial order.

The calculation of those values will be explained below, but they represent an ideal size of the sub-circuit
(lower bound) and a boundary not to cross (upper bound) when trying to find the smallest sub-circuit. The
process works recursively: with any set of Interactions we first select the enclosing super-cluster. Those



146

clusters must not be mutually included. The root node represents the initial state where none of the cluster
Interactions is instantiated and whose surface size equals 0.

The lattice is traversed breadth-first. A traversed node can be processed once all paths linking to it have been
checked and it remains at least one path. As soon as it is the case for a node, we create one edge per remaining
cluster that still contains non-instantiated Interactions, and evaluate the edge lower bound and upper bound.
The edges are created in an order such that the clusters with the largest number of non-instantiated
Interactions are evaluated first. When instantiating an Interaction, the size of the overlapping clusters
containing the Interaction is reduced causing some clusters to end up included in other previously overlapping
clusters.

Absorbed clusters are then processed recursively. Nodes are needed for each edge. If the node does not yet
exist, it is created and the upper-bound value M is inserted as the node value SumM. When a node already
exists we compare the edge upper-bound value (M) to the node value (SumM). The node value is replaced by

the lower of the two values.

When all possible nodes have been processed then the algorithm looks for the non-checked edge with the

lowest upper bound M.

To test an edge, the lower-bound value of the edge (m) must be less than the node value SumM otherwise the
edge is removed. If m is lower that SumM then we recursively apply the entire algorithm to the set of
Interactions representing the cluster of the edge. Descending recursively causes re-evaluation of the upper
bound and the lower bound of the edge, reducing the range between them and reducing the number of
possible combinations for the partial order of the Interactions in the cluster. When the recursive application
ends, we obtain an exact value for the node and a total order of Interactions for the cluster.

An example is sketched in Figure 44, where:
1 - the edge with the lowest upper bound is the edge C going from AB to ABC.
2 — after recursive testing the best value for instantiating the cluster Cis v..

3 — the next best cluster to process recursively is B from AC to ABC the value vz recovered is lower than v¢ The
new value of the node ABC is v;.

4 — the last edge A has a lower bound that is superior to vg, the edge is removed. All paths going to ABC are
tested the node ABC can be processed creating the new edges and evaluating them. The best partial order of
interaction is the one provided by AC concatenated with the best ordered solution instantiating the cluster B.



147

M <My <M, V>V, m,>vy
AB AC BC AB AC BC AB AC BC AB AC BC
L% [ M o S N : M o S ] o S | >
e, m,,, R4 s, R V, o* V o
v, e Lo m M, S P m M, S 7 o m M, S 7 m,M,
m. M e, : o 2 V. S : Lo 2 V. S 1 * # V.S 1 o i
i e, B o N f S b S K
Nt S St
ABC ABC ABC ABC
Ve Vg _."?".):n
My Mpe™ 3 T
'.°"' m MI 111,.1\/1.;.".,
ABCD ABCE ABCF  ABCD ABCE ABCF  ABCD ABCE ABCF  ABCD ABCE ABCF

Figure 44: Checking the edges leading to the lattice node ABC.

The recursive action on an edge must respect the boundary imposed on the node value during the previous
iterations to avoid processing useless cluster combinations. At the end, if the value obtained from the recursive
processing is inferior to the node value, the node has a new order and a new value. When all paths ending on a
same node have been removed or checked the node has an accurate value of the size of the sub-circuit for a
specific order of Interactions to instantiate. Then the node can be processed. At the end of the algorithm, the
last node of the lattice returns the value of the size of the sub-circuit corresponding to a specific order of
Interaction variable instantiations.

As shown in Figure 42, every node of the BDD corresponds to three nodes in the AC. So, after instantiating a
group in a specific order, every layer of the BDD informs on the number of different function states after each
Interaction instantiation. The layer width takes into account all of the instantiated Interactions and the
modification of the number of the unique MLF states are tracked. The number of leaves of the diagram
represents the number of unique MLF states for the future selection of Interaction, i.e. each path leads to a
leaf that reveal the information of the element not fully investigated. The elements can be faulty or unknown.
Once all the instances belonging to a cluster of an element are instantiated the state of the element is known
and does not influence the result of the instantiation of the remaining Interactions. This fact allows saying that
for any cluster of Interactions, regardless of the order in which they are instantiated, we will have the same
number of leaves. The layer width is always the same for a specific group of instantiated Interactions
regardless of their relation to each other and regardless of the order of instantiation, because solving the MLF
for a group of Interactions doesn’t depend of the Interaction order.

The layer width is used to calculate the upper bound and the lower bound related to the selection of a cluster.
The upper bound is the number of nodes for a random selected order of Interactions of the cluster. It is
obtained by the sum of the widths after each instantiation of Interactions. The lower bound is an
approximation of the minimum value of the size of the sub-circuit. When calculating the upper bound, the
width (w;) of the last instantiation is obtained and this value is used to calculate the lower bound. The width
before instantiation of the cluster is used to calculate a lower estimation for the instantiation of the cluster.
The last value that is needed to obtain the lower bound is the minimal width w,,. It represents the minimum
number of MLF states that ideally would be present if all possible BN variables were instantiated.

Then the transition surface, which is the number of nodes that are needed when passing from the minimum
wi

layer width to the final width is calculated. Its equationis S, = Y. w, <wy) ZHT
m.

GaFt
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The height n of the transition surface is obtained through the equation below:

wy

on+1 < Wm

Figure 45 shows how the lower bound becomes more and more accurate when iterating recursively.

Figure 45: Example of the evaluation of the lower bound when iterate recursively.

Figure 46 gives illustrates an example of the lower bound calculation. Looking to the figure it is possible to
distinguish three different sections of the orange surface when instantiating the cluster C:

¢ Surface 1is function of the previous width.
e Surface 3 is the transition surface.

Surface 2 is the minimum strip which is the S, = w,, * 3 * (|m,| —n — 1) m, is the list of non-
instantiated Interactions of C.



149

Figure 46: Lower bound calculation.

Roughly speaking, the idea behind the lower bound is to imagine the perfect situation where all the possible
merging are done at the beginning of the cluster instantiation. This returns a number of MLF states that is
inferior or equal to the actual circuit.

Building the AC with a given order of Interactions is fairly simple. Figure 42 shows the mapping between the
BDD and the AC, when instantiating an Interaction. Creating the AC consists in repeating the operation
respecting the Interaction order and keeping track of the sub-circuit to avoid redundancies. But still there are a
few more optimizations that can be provided to improve inference time.

Even though the previous algorithm avoids redundancy between the simplified MLFs, the same product of the
Q evidence indicators can be performed several times. The algorithm looks at all multiplication nodes and
counts the occurrences for the different grouping of the evidences indicators. Then for every repeated sub-
circuit a unique instance is kept and the other nodes are linked to it. For every group of evidence indicators the
number of nodes passes from m * s to m + s, where m is the number of the occurrences of the multiplication
for the giving group and s the size of the group.

The second optimization is related to the place where the Q evidence indicators must be inserted. It was
explained above that as soon as the evidence indicators could be factorized then their nodes should be
inserted. It is true for the evidence indicators expressing non-faulty SAUT elements, but for the other evidence
indicators, the nodes can be inserted at the same layer where there opposite are inserted (in for m). It does
not change the topology of the circuit and doesn’t change the method described above.

For every evidence indicator the number of links that are needed when inserting the nodes at the root of the
sub-circuit is computed and compared with the number of links that are needed when inserting the nodes at
the layer where the opposite evidence is inserted. The nodes should be inserted where the minimum links are
required.

The first step of the construction of the Arithmetic Circuit by compilation of the virtual Bayesian Network
performs the search for the best sequence of Interactions. This first step is essential because the size of the
Arithmetic Circuit depends heavily on it. The heuristics that is used in this first step is evaluated through
experimental results presented in the section 7. Other heuristics will be investigated in the future (see the
section of future works). The second step uses the Interactions sequence to build a compact Arithmetic Circuit
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without sub-circuit redundancies. At the end of the initialisation phase, the Scheduler is equipped with an
Arithmetic Circuit that allows it to behave as a Bayesian agent.
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7. THE SCHEDULER BEHAVIOUR: DESCRIPTION AND EXPERIMENTAL RESULTS

The inf4sat algorithm of inference by compilation presented in the preceding section has been designed and
implemented in compliance with some requirements issued from its utilisation as an inference engine for a
scheduler of functional conformance test sessions on services architectures. The requirements are resumed
below.

The first requirement is that the inf4sat algorithm shall be capable of generating and processing inference
engines (ACs) able to schedule test sessions on large SAUT with big Test Suites. In other terms, compared with
other existing solutions, the infdsat algorithm shall be able to push further the boundaries of tractability.

The second requirement is that the AC compilation and the AC execution shall be asynchronous and that the
inference engine, once compiled and generated (the AC Image, see section 4) shall be reusable without
recompilation. A peculiarity of software and service testing is that the same Test Suite is executed on the same
SAUT several times, in development (test-driven development) and maintenance (re-testing and regression
testing).

The third requirement is that the each inference step shall cover all the SAUT and Test Suite elements, i.e. shall
impact all the variables of the vBN/AC, re-computing the fault proneness of the SAUT structural and functional
elements and the fault-exposing potential of each test sample. The global coverage of the inference enables its
use in the formulation of generation requests by the Runner towards the Generator (see the section on future
works.

The fourth requirement is that the inference step shall be fast, compared to the other existing solutions. A
faster inference enables shorter and frequently repeated test sessions, which are needed by the Continuous
Integration Testing approach.

This section firstly illustrates the concrete behaviour of the inference engine in the schedule/execute/arbitrate
cycle. In the second part, some experimental results and comparisons with the other approaches are
presented, in relationship with the requirements stated above.

SCHEDULER BEHAVIOUR DRIVEN BY THE INFERENCE ENGINE

The inference engine is an internal module of the Scheduler. To each execute/arbitrate cycle (with test samples
as inputs and test verdicts as outputs) corresponds a schedule inference cycle (with test verdicts as inputs and
test samples as outputs). The Scheduler manages its internal inference engine by setting prior probabilities on
its DAG top variables (Interactions) and assumptions/beliefs/observations (evidence realisations) on the other
variables:

* the System bottom variable is instantiated with the faulty assumption before the first inference cycle
— this behaviour implements the classic troubleshooting approach (see section 5, § ‘Troubleshooting
and probabilistic inference’);

¢ the Participant variables (is parent of System - corresponding to SAUT structural element Actual
Component) can be instantiated with a faulty belief at any inference cycle — there is no necessary
initial or default instantiation;
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* the SendingPort variables (is parent of Participant - corresponding to SAUT functional elements Port)
can be instantiated with a faulty belief at any inference cycle - there is no necessary initial/default
instantiation;

¢ the InteractionType intermediate variables (is parent of SendingPort - corresponding to TSD
functional elements Interaction Class) can be instantiated with a faulty belief at any inference cycle -
there is no necessary initial/default instantiation;

* the Interaction top variables (is parent of InteractionType and TestSample - corresponding to
elementary oracles/outcomes) are initialised with a prior probability — the prior fail probability
influences the fitness of the child TestSample — there is a default initialisation of the prior
probabilities; these variables are instantiated with pass/fail observations following the feedback of the
execute/arbitrate cycle that has observed their actual outcome and evaluated their local verdict;

¢ the TestSample bottom variables — before the execution of the corresponding test sample, they can
be instantiated at any moment with a fit belief — there is not initial/default instantiation; at the
beginning, and at any cycle, the fit belief distribution can be used in order to enter a statically
computed priority following a number of criteria (examples of static prioritisation techniques for
regression testing can be found in section 3, § ‘Test case prioritisation’). When the corresponding Test
Sample is executed, if at least one of the local verdicts is fail, then the inference calculates the value 1
for the TestSample fit dependent probability, otherwise (all the local verdicts are pass) the inference
calculates the value 0 for the TestSample fit dependent probability.

As anticipated in the sections above, the collection of the evidence indicators e is initialised with the hypothesis
that the System = faulty. In a test run cycle, the Scheduler selects one or more test samples that it suggests for
execution, on the basis of a policy that takes into account the TestSample fitness. The Executor/Arbiter
executes and arbitrates the test samples and returns collections of test verdicts (pass / fail), one for each
monitored Oracle Interaction Token. The test verdicts of the observed Oracle Interaction Tokens are recorded
as instantiations of the Interaction variables in the collection of the evidence indicators e.

The AC engine utilises a “double traversal” algorithm [Darwiche 2003] to calculate: (i) P(e) and P(X,e — X)in
a first traversal and (ii) P(X|e) in the second traversal, X being any variable not instantiated in the evidence e.

POLICIES

There are several parameterised scheduling policies that the scheduler can put in place: (i) Generic scheduling
policies, (ii) Halting policies.

EGENERIC SCHEDULING POLICIES

Once the inference is done, the Inference Engine supplies the Scheduler with the collection of remaining test
samples with their fitness probability distribution. The Scheduler transmits to the Runner through
notifyTestSchedOutcome the identifier of the next test sample to run. This test sample is chosen through the
application by the Scheduler of a policy to the results (probability distributions) of the inference cycle. The
Scheduler can put in place different configurable policies about the utilisation of these probability distributions.
The three “extreme” generic policies: (i) max-entropy policy, (ii) max-fitness policy, (iii) min-fitness policy,
constitute the benchmarks for other policies that can be considered through the usage of the Scheduler in
specific situations.
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The max-entropy policy can be described roughly as “the least informed the first”. The choice of the test
sample will be done on the basis of the Shannon entropy [Khinchin 1957]. The Scheduler selects the test
sample to be executed/arbitrated whose fitness probability distribution presents the maximum of entropy, i.e.
the lowest amount of information (roughly speaking, the test sample whose variable has a fit/misfit
distribution that is the nearest to fifty-fifty) and communicates its identifier to the Runner (that re-routes the
information to the Executor). The entropy-based policy drives a breadth-first search that checks initially the
elements of the services architecture under test about which the information is minimal.

The max-fitness policy can be described roughly as “the fittest the first”. This policy basically suggests test
samples prioritised on the basis of their maximum fit probability. In this case the fit probability can be
interpreted as a prioritisation measure of the test sample fault-exposing potential. The Scheduler chooses the
test sample that has the maximum fit probability and notifies it to the Runner (that re-routes the information
to the Executor).

The min-fitness policy can be described roughly as “the least fit the first”. This policy basically suggests test
samples prioritised on the basis of their minimum fit probability. The Scheduler chooses the test sample that
has the minimum fit probability and notifies it to the Runner that re-routes the information to the Executor.

EGENERIC HALTING POLICIES

The Scheduler drives the test run cycle, by giving the appropriate directives to the Runner. It can put in place
four different “generic” halting policies: (i) n-fit-halt policy, (ii) n-misfit-halt policy, (iii) entropy-threshold-halt
policy, (iv) no-halt policy.

With the n-fit-halt policy, the scheduler suggest to stop the test session after the n-th TestSample dependent
probability is calculated to 1, i.e. after the n-th test sample arbitration with at least one fail local (Oracle
Interaction Token) verdict.

With the n-misfit-halt policy, the Scheduler suggest to halt the test session after the n-th TestSample variable
fit dependent probability is calculated to 0, i.e. after the n-th test sample arbitration with all pass local (Oracle
Interaction Token) verdicts.

With the entropy-threshold-halt policy, the Scheduler suggests to stop the test session when the entropy of a
specific group of variables (the groups can be composed of variables of the same type, of variables of different
types ...) is lower than a given threshold.

With the no-halt policy, the Scheduler does not suggest any stop of the test session until the “end” of the test
suite, i.e. while remaining non-executed test samples.

The Scheduler suggests stopping the session with a notifyTestSchedOutcome to the Runner with a halt
directive and all the information it possesses in order to establish a meaningful test report (in particular, the
probability distributions). If the Runner, which is a consumer of the Scheduling service, decides to execute
other non-executed test samples and supplies their verdicts to the Scheduler, these verdicts are integrated as
new observations in the inference engine and the inference step is executed. The Scheduler continues to
supply all the reporting information at each schedule/execute/arbitrate cycle, modified by the new inference
cycles suite to the new execution/arbitration cycles, until the reception of the abort command.
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SCHEDULING BEHAVIOR EXAMPLES

This section offers a description of the scheduling behavior generated by the inference engine. In order to
facilitate the understanding the “functional” behavior of the AC, this paragraph presents a simplified and more
intuitive description of the inference engine states and transitions. Firstly, the inference engine is presented in
its virtual Bayesian Network form (the AC representation states and behaviors have no intuitive semantics).
Secondly, in a first picture, only the System, Participant and Interaction layers of the vBN are highlighted, i.e.
the intermediate SAUT decomposition layer (SendingPort and InteractionType), representing the lower levels
of functional coverage granularity, as well as, temporarily, the TestSample layer are not displayed. The
exhibition of the intermediate SendingPort and InteractionType levels do complexify the picture without
bringing useful information on the behavior.

Let’s remind that, at the beginning of the test session, the top DAG nodes (Interactions) are initialized with
prior probabilities. In each “normal” inference cycle (the last one identified by the halting policy is not
considered), at the beginning the inference engine is informed of the local test verdicts and, at the end, it
proposes a test sample.

For the purpose of the explanation let’s consider a simplified SAUT S () composed of 4 components p0, pl, p2
and p3. The component issues the interaction tokens m0,...,m9, “through” the intermediate structures (ports,
interaction classes) whose variables (SendingPorts, InteractionTypes) are not displayed. The interaction tokens
are owned by four test samples 00, 01, 02 and 03.

Figure 47. Simplified vBN S.

The first inference cycle is triggered by instantiating System to 1 (faulty) - the assumption that the SAUT is
faulty. From the Interaction fail prior probabilities and the System faulty assumption, the inference engine
calculates the TestSample fitness probabilities. Let’s suppose that the scheduling policy is the max-entropy
policy (“the least informed the first”): given the TestSample fitness probability distributions, the Scheduler
calculates the entropy of each test sample. The test samples are prioritized by their entropy. In this case the
best candidate for the next test execution is the test sample OO0 (see Figure 48).
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00 01 02 03 04 05 06 07 08 09 10
Entropy

0.999993251405
00:0.9587452405 01:0.958089863347 02:0.876785386883 03:0.875979077773

Figure 48. Prioritised test samples through the max-entropy policy.

The Scheduler sends to the Executor/Arbiter via the Runner the test simple id 00. The inference waits for the
return from the Executor/Arbiter via the Runner of the global verdict, i.e. the collection of verdicts for m0, m1,
m6. The Executor/Arbiter effectively runs 00 and returns the verdicts to the Scheduler (always through the
Runner. The scheduler inserts the verdicts as observations in the inference engine and the inference step is
triggered. The following scenarios are illustrated:

1) The test execution/arbitration returns the pass local verdict for all the m0, m1, m6 interaction tokens. The
next test sample suggested by the max-entropy policy is O1.

showResults({'00':0K, 'ml1':0K, 'mé6':0K})

00 01 0.2 03 04 05 0.6 07 08 09
Entropy

0.996362875871
01:0.973872694353 02:0.897796383678 03:0.896841723273 00:-0

Figure 49. 00 passes and O1 is suggested.

2) The test execution/arbitration returns the pass for m0 and m6 and fail for m1. In order to bypass the single-
fault assumption, m1 is inserted as being pass and m0 and m6 are not instantiated. A new prioritization of test
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samples is proposed that is the specific result of the application of the max-entropy policy after the observation
of m1 being observed fail.

showResults({'00':NOK, 'ml' :NOK})

0.0 01 02 03 04 05 06 07 08 09
Entropy

0.975392585873
01:0.915734398671 03:0.828236021682 02:0.825143544483 00:-0.0

Figure 50. Breadth-first (max coverage) search for failures knowing that there is a fault in p1.
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Figure 51. Sequence diagram of three path of test sample execution according to the returned verdicts.

In the activity diagram above three paths of test sample execution are presented, starting from different
verdicts for OO0 (the verdicts presented in Figure 49 and Figure 50, and another verdict not presented).
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showResults ({'p3':[1,5]})

0.0 01 02 03 04 05 0.6 0.7 08 09
Entropy

0.997923876297
01:0.997923876297 00:0.974513839803 03:0.923272617617 02:0.842940822795

Figure 52. Entropy level on each component and proposed order of test samples after insertion of belief on p3.
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Figure 53. Activity diagram with regression testing test sample execution path

The Scheduler behavior in a regression testing scenario is sketched in Figure 52. A fault has been found in p3,
the test session is halted and the AC Image is saved. The fault in p3 is fixed. A “new” test session starts, on the
same SAUT and with the same test suite, and the scheduler upload the saved AC Image. The “new” test session
is initialized by inserting version-specific information: the belief of functional reliability of the fixed p3. The new
activity diagram showing the added execution path of test samples when modifying the belief of p3 is showed
in Figure 53.

PERFORMANCE OF THE INFASAT ALGORITHM



158

The performance of the inf4sat algorithm has been evaluated with an experimentation. A generator produces
waves of 20 BN description files (corresponding to “dummy” SAUTs and Test Suites). Each wave includes bigger
BNs. The vBNs are created in a top-down fashion in the sequence System, Participants (at least two),
SendingPorts (at least one per Participant), InteractionTypes (at least one per SendingPort). A number of
TestSamples is created, and, for each TestSample, enough Interactions are created to guarantee that at least
each InteractionType is linked to one Interaction. The dependencies between elements are randomly
generated. The connection structure of two vBNs the same number of elements can be very different.
Consequently, the two BN can represent two very different factorization of the joint probability law, hence not
the same complexity for the inference effort. At each wave the number of elements is augmented for each BN.

To be able to test the performance of the inf4sat algorithm it is necessary to compare the results to alternative
tools. For comparing compilation alternative the ACE package developed at UCLA" is used. Ace is a package
coded in JAVA that includes a compiler that can transform a Bayesian network into an AC and a light evaluator
for inference. The ACE compiler take as inputs .hugin/.net network format files and the evaluator uses a

proprietary format for the evidences.
The performance test focuses on different characteristic of the outputs:

1. The number of AC nodes related to the amount of caching of subcircuits operations values.
2. The number of edges related to the number of operations and closely linked to the inference time.
3. The compilation time.

For the inference time comparison, it has been extended (beyond the comparison between inf4sat and Ace) to
other classic inference algorithms. aGrUM, developed by the Decision TEAM of the LIP6 at the University
UPMC48, is a C++ library that permits the generation of BNs and provides multiple inference algorithms. The
inference algorithms adopted for the performance test are Gibbs [Koller and Friedman 2009] and Lazy
Propagation [Madsen and Jensen 1999]. Those algorithms were chosen over others because they implement
global inference like infdsat. aGrUM generates the BN from the specification files of inf4sat.

The configured evaluation environment offers to all the inference methods and algorithms, with and without
compilation, exactly the same generated BNs.

This section presents the results of the performance test and the observations that can be made from them.
This results concern the AC size and the inference time. The section ands with a discussion concerning the
trade-off inference time versus compilation time.

4 http://reasoning.cs.ucla.edu/ace

*® http://agrum.lip6.fr
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ARITHMETIC CIRCUIT SIZE

In this section, a comparison between the method investigated in this research and the state of the art
concerning compilation size efficiency is presented. By compilation size efficiency, it is intended the research of
the smallest size of the AC for a same BN.

A Multi-linear function (MLF) is unique and depends uniquely on the size and complexity of the BN (nodes and
edges). Different methods of compilation can compile the same MLF into different ACs with different
compression rates. Because the MLF is always the same, finding its smallest AC improves the inference
calculation. In fact we know from the literature that the inference computation time is linear to the AC size.

inf4sat has been compared with the method proposed by the ACE tool. The ACE tool uses the technique of
compilation developed by Darwiche and colleagues [Darwiche 2003].

The graphic presented in Figure 54 shows the dependence between the number of the BN elements and (i) the
number of nodes (memory size), (ii) the number of edges (operations) of the MLF.

The first experimental result is that the inf4sat compilation method generates ACs with no standard deviation
(the AC is always of the same size).

The compilation method of the ACE tool shows a higher number of nodes and edges with a clearly visible
standard deviation, which is evidence of randomness in the compilation method. The standard deviation
increases with the size of the BN.
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Figure 54. Comparison of compilation size results with variance.

In Figure 54 the standard deviation has been shown on a set of small BNs, since it is easier to see the
difference. For the rest of the graphics presented the standard deviation, which is increasing with the problem
size, will be omitted, because it makes the graphics unreadable. The graphic presented in the figure below
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shows the comparison of the generated AC sizes between infdsat (exact AC size) and Darwiche (average AC
size).

The comparison is made twofold for the AC nodes and the AC edges. The blue triangle represents the area
where the numbers of objects generated are smaller for the ACE program than the infdsat. The second
observable result is that for a given BN the size result of the Darwiche algorithm is always higher both for AC
nodes and AC edges. Figure 55 also shows that the infdsat algorithm can process BNs that are practically
untreatable for ACE (that crashes).
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Figure 55. Comparison of compilation size results (II).

In summary, three results are revealed in this section concerning alternative compilation solution.

1. inf4sat exhibits a more efficient compression rate.
2. infdsat always find a unique solution.
3. infdsat is more robust and pushes further the limits of BN size.

INFERENCE SPEED

This section presents the results on inference time, issued from the comparison of the three previously

mentioned approaches and the inf4sat inference algorithm.
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Figure 56. ACE AC evaluator inference time vs. inf4sat AC evaluator inference time (s).

In the figure above, the green dots represent the ACE AC evaluator inference time, and the red ones represent
the inf4sat AC evaluator inference time. The blue dots near the bottom line represent the evaluation failures of
the ACE evaluator (it crashes or cannot process the its generated AC).

The compression rate improvement of inf4sat with respect to the Darwiche method brings also an
improvement of the average inference computation time. This is an expected result, because the inference
computation time is linear to the AC size.

The robustness of the inf4sat algorithm compared to the ACE software can be asserted here since it is possible
to see in the figure above that beyond 65 BN elements (SAUT/TS components) ACE is no more able to treat the
complexity of the BN.

It is possible to compare the inference time using another format for the graphic. In the comparison between
the two methods, which is illustrated in Figure 57, the inf4dsat AC and the Darwiche AC are provided with the
same evidences and this computation is repeated 20 times in order to have an average time for the Darwiche
method.
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For the same inference (BN + evidence), the inf4sat value is on the x-line (abscissa) and the Darwiche value is
on the y-line (ordinate). The values show that for all inference computations the inf4sat value is better than the
Darwiche value.
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Figure 57. Comparison of the average inference computation time between inf4sat and Darwiche.

|II

Moreover, the experimentation has been conducted also with the other “classical” inference methods such as:

*  Gibbs sampling inference method - Figure 58.a
* Lazy propagation method - Figure 58.b

The graphic in Figure 58 shows a simple superposition for each “classic” inference algorithm (green dots) with
the infdsat inference algorithm (red dots). The blue dots near the bottom line represent the evaluation failures
of the “classic” algorithm.

The results show directly that:

* theinference time results of the inf4sat algorithm are better than both classic algorithms, and

* the infdsat algorithm is more robust and the classic algorithm.

Gibbs algorithm shows inferior performance but better robustness.
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Figure 59 shows results in the same format than Figure 57. In each figure, the inf4sat value is on the x-line

(abscissa) and the value of the competing classical method is on the y-line (ordinate). All the trials show that

the inference computation time of the infdsat method is by far better than the inference computation time of

any “classic” method.
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Figure 59. Comparison of the average inference computation time between inf4sat and Lazy Propagation algorithm (left) and Gibbs

sampling algorithm (right).
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The previous results show the efficiency of the inf4sat inference with respect with the other “compiled” and
“non-compiled” methods. The cost of this improvement is in terms of larger compilation time.

In fact:

* C(lassic inference methods [Shenoy and Shafer 1988] [Zhang and Poole 1994] [Madsen and Jensen
1999] are slower in inference time and less robust in BN size tractability, but do not need any
compilation time.

¢ The other AC compilation method [Darwiche 2003] is faster, because it does not seek for the optimal
arrangement of the AC nodes and edges, but is less robust in BN size tractability,

The Arithmetic Circuit compilation of the inf4sat tool, i.e. the search for the best arrangement for the
entwining optimal sub-circuits among all the possible configurations, is the most demanding task regarding
memory allocation and processing power. But, once this compilation step is completed, the result can
significantly improve the inference computation time and the AC size (that is related to the inference time).

The goal of this research is to build the smallest AC for the same MLF in the fastest possible way. It remains to
be seen whether the benefit brought by the MLF optimised AC compilation to the scheduling engine is higher
than the cost of the compilation time. This is the subject of the following section.

DISCUSSION
The results presented above highlight four points:

* The inf4sat compilation pushes the limits of BN representation to significantly large and complex BNs
with respect to the classical BN methods, for which, beyond a certain size and complexity, the
application of the Bayesian inference is practically intractable.

¢ The inf4sat compilation brings a big improvement of the inference computation time with respect to
classical BN methods even for BNs that are tractable by these methods.

¢ The improvement of the AC size of the inf4sat compilation method brings a significant advantage in
terms of AC size, size tractability and inference time even with respect to the ACE method.

* The cost of the advantages mentioned in the points above is in terms of AC compilation time, for
which the infdsat method is worse than all the others.

The question that can be asked now is if the cost of the compilation is worth the improvements in terms of size
and complexity of the BNs that are tractable and in terms of inference computation time.

The infdsat method satisfies the first goal of this research that is scheduling the test run cycle of relatively large
test suites on large and complex SAUTs without significant degradation of the inference computation time.

The first argument that relativizes the compilation time cost is the reusability of the compiled AC. The
Scheduler is able to store the AC image (the compiled form of the AC) at the end of initialisation step and at
each schedule/execute/arbitrate cycle.
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Re-testing and Regression testing are typically very interesting testing processes that can reuse advantageously
the AC image. With basic re-testing and regression testing, the n" test session is run with exactly the same
SAUT construction model and the same Test Suite on a service component architecture under test, where some
components’ implementations have been modified in order to fix some faults or improve their performance. By
definition, there are no changes of the SAUT structural, functional and behavioural models (the service
contracts), only of the service components’ implementations, and the implementation changes always aim at
ameliorating the compliance of the service components and of the overall architecture with the
aforementioned models.

Basic re-testing and regression testing processes can advantageously utilise the AC image in order to improve
the performance of the scheduled test run cycle. It suffices to change the input parameter of the initialisation
operation (initTestSched) from the SAUT/TSD/TS files’ URIs to the appropriate AC image file URI. In this case
the AC is built in memory directly from the content of the AC image file. The cost of the AC image upload is
linear to the AC size and negligible in any case.

Within basic re-testing and regression testing, the compilation step occurs only once, can occur asynchronously
with the test session and its result is utilised in an unlimited number of test sessions.

Moreover, as the MIDAS platform is deployed on the cloud, the Scheduler initialisation step can be executed to
the most powerful cloud virtual machine, and the Scheduler computations during the
schedule/execute/arbitrate cycle could be downsized to a less powerful cloud virtual machine.

In order to assess the costs / benefits of the inf4sat AC compilation approach more objectively, the function

A . ) . . I . .
A—C = Nis defined where A, is the variation of compilation time (loss) and A; the variation of the average
i
inference time (gain). N is the minimum number of iterations of inference computation necessary to justify the
compilation effort. The comparison is effected between:

* inf4sat vs. Darwiche,
e Infdsat vs. “classic” inference methods (Lazy Propagation and Gibbs sampling).

Note that in the case of the “classic” inference methods the variation in compilation time is the infdsat
compilation time since the time of generation of the BN is negligible.

The results are presented in the figures below. Within the domain of tractability of the three methods the ratio
N is on average too high for inf4sat to be pertinent, especially for ACE and Lazy Propagation. One could argue
that the ratio for the Gibbs sampling algorithm may be the only one that could be pertinently to replace.
However, inf4sat offers a more robust solution that is sustainable beyond the size tractability limits of the
other algorithms, that are too low for being applicable to the problem posed to this research work, the
effective scheduling of test session of even small services architectures and test suites.
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8. CONCLUSION AND FUTURE WORK

MAIN RESEARCH RESULTS

The main result of this research is a software tool that, on the basis of probabilistic inference, implements
efficient dynamic scheduling services on cloud to be utilised by automated execution/arbitration systems that
targets distributed services architecture. The scheduling services aim at improving the testing time efficiency
(the fault detection rate - the precocity of the exposure of failures and of the detection of faulty elements that
are the sources of the failures), at shortening the test session durations and at augmenting their frequency, in
the context of a software engineering cycle that integrates the Test-Driven Development and the Continuous
Integration Testing approaches.

INTELLIGENT DYNAMIC SCHEDULING OF TEST SESSIONS

Current research in SOA testing is mainly focused on test generation, and on orchestration and choreography
testing. The research on testing of services architectures that practice direct (by program) composition, without
any orchestration or choreography infrastructure, i.e. the majority of present and future real world applications
(APl economy, REST/JSON services), is still at its infancy. The test scheduling for efficient testing and
troubleshooting requires a model-based testing approach, in particular a simple but powerful meta-model of
the SAUT structure (descriptive model) and of the test system configuration (prescriptive model to be utilised
by the test system). The current MBT research focuses on testing scenarios for test case generation but lacks
independent structural and functional modelling of the SAUT.

In the domain of test run automation, an important step has been taken with the “invention” of TTCN-3
[Willcock et al. 2011]. TTCN-3 is an international standardised general programming language that has been
designed with powerful traits that are specific for test automation. It allows complete automation by
programming of the test execution and arbitration tasks. De Rosa and colleagues [De Rosa et al. 2013],
including the author of this manuscript, have implemented a generic and complete model-based TTCN-3
framework for testing services and service compositions. This framework is able to integrate not only a formal
representation of the test scenarios (message sequences) and of the test suite, but also a structural meta-
model of the SAUT that is independent from any scenario representation meta-model and from any
orchestration and choreography infrastructure. Starting from these formal representations, the framework
implements the execution/arbitration automation of the scheduled test run cycle. This framework allows the
scheduler to drive the dynamic scheduling of automated test execution and arbitration tasks. The same
elements (SAUT structural model, test suite) allow configuring, generating and initialising the TTCN-3
executor/arbiter and the Bayesian agent that realises the dynamic scheduler. This execution/arbitration
framework and the dynamic scheduler that results from this work are integrated in the MIDAS facility platform
and realise what can be considered, in the author’s best knowledge, the first automated and dynamically
scheduled execution arbitration framework for functional conformance testing of services architecture.

The SOA regression testing scientific literature is interesting because of its focus on practical questions about
the cost, duration, effectiveness and efficiency of regression testing and re-testing with already existing test
suites. The most interesting proposed solutions are static prioritisation techniques of the test suite based on
test coverage of the SAUT and on the fault-exposing potential of the test case. Note that these techniques can
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be very greedy in terms of computational resources. The limitation of the approach is that the proposed
heuristics and algorithms are twofold non contextual: they are not dynamic, i.e. they do not take into account
successes and failures of the on-going test session, and they are not version-specific, i.e. they do not take onto
account the specific characteristics of the version under test in the regression testing or re-testing history. The
research presented in this manuscript introduces the dynamicity in the test suite prioritisation and allows
considering the specific characteristics of an implementation version by means of beliefs about the fault
proneness of the SAUT structural and functional elements that are taken into account by the probabilistic
inference. A deeper focus on re-testing and regression testing and version-specific scheduling is a topic of
future work.

In summary, this work introduces the dynamic scheduling of functional conformance test sessions for efficient
testing and troubleshooting as a new research topic in the testing domain and proposes a generalised approach
to the dynamic prioritisation of test cases based on probabilistic inference, beyond the current application of
static prioritisation to regression testing and re-testing.

BAYESIAN REASONING METHODS FOR SERVICE TESTING

The application of Bayesian reasoning methods to the “reliable and efficient software testing and program
analysis” [Namin and Sridharan 2010] is considered an “ideal research paradigm” and a promising future
research thread on software testing.

It is surprising that the fundamental uncertainty of the testing activity and, above all of the black-box/grey-box
testing (for instance, the high risk of false positives and false negatives that are highlighted in the examples
presented in the preceding sections) has been recognised only very recently and is still taken into account only
by a minority of the research approaches.

The seminal and pioneering works in this domain concern different aspects of the testing activity: test case
generation, mutation testing, representing and measuring the reliability of program component (defect
density, time to failure), software economics and metrics, decision support of the verification and validation
activities, causal models for quality prediction, risk models, software quality models, modelling and updating
developers’ beliefs regarding software components, and, last but not least, a pioneering work on test case
static prioritisation for white-box testing [Mirarab and Tahvildari 2007] that interestingly consider interactive
prioritisation incorporating feedback from testing (in other terms, dynamic scheduling) an promising topic for
future research.

Bayesian troubleshooting is a well-established discipline that has been successfully applied in industrial
applications for troubleshooting of physical devices. The research presented in this manuscript introduces
troubleshooting models and techniques based on Bayesian Networks and in general applied to physical devices
in the domain of software testing, where a fault is not a newly broken physical component, but the
consequence of an error that has been introduced by the programmer from the beginning. The idea is to utilise
similar troubleshooting methods to localise faults in services architectures.

In summary, this work is an original contribution to the utilisation of Bayesian network inference and Bayesian
troubleshooting approaches to improve the time efficiency of testing of distributed services architectures
through intelligent dynamic scheduling. The author of this manuscript believes that the problem of intelligent
dynamic scheduling of functional conformance test sessions on services architectures is too complex for non-
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probabilistic inference methods and can be posed only from a probabilistic stance and solved only through
probabilistic inference (and it is a “new” domain of the testing research for this reason).

BAYESIAN NETWORK MODEL FOR TEST SCHEDULING

An appropriate BN model (the definition of variables and of variable dependences) of the problem domain is a
crucial element for the success of the probabilistic inference application. A BN model for the intelligent
scheduling of test sessions on services architectures, with the objective of test time efficiency must take into
account on one side the structural and functional decomposition of the SAUT at the lowest level of granularity
in order to improve fault localisation and, on the other side, the structure of the test suite and its relationships
with the aforementioned structural and functional decomposition in order to dynamically prioritise the test
cases on the basis different criteria.

This work proposes an original, simple and universal Bayesian Network model of the problem domain (the
grey-box functional conformance testing of services architectures). This model takes into account the structure
of the services architecture, the service dependences and the functional architecture decomposition until the
message type level of granularity, in terms of random variables and dependences between variables. The
model is independent from: (i) the implementation technology of the service components, of the services and
services operations, (i) the technology of the service interoperability platform49 (WSDL/SOAP, REST/XML,
REST/ISON — it applies even to services architecture in which all these technologies are present at the same
time), (ii) the presence/absence of composition infrastructures such as orchestration and choreography. The
BN model is also able to identify each individual test case and each individual message / oracle / local verdict,
and to take into account as dependences their relationships with the architecture decomposition.

INFERENCE BY COMPILATION IMPROVEMENT

The Scheduler puts into operation a probabilistic inference engine whose main job is to propose iteratively, in a
test session, the test cases to be executed on the basis of the verdicts of the past test runs. The dynamic
prioritisation of the test cases, that takes incrementally into accounts the results (verdicts) of the test runs as
observations, aims at proposing for execution first the test cases that fit with different criteria. The dynamic
(re-)computation of this fitness is based on the results of the probabilistic inference cycle that are evaluated on
the basis of different scheduling policies.

However, the application of probabilistic inference to dynamic scheduling of test sessions raises significant

|u

computational complexity problems. This work implements an original “inference by compilation” algorithm

(inf4sat) that is compliant with the Bayesian network inference.

Compared to its “competitors” (“classic” Bayesian network and Arithmetic circuit inference algorithm), inf4sat

is more robust, less consuming in memory size of the compiled Arithmetic Circuit, improves the inference

* The scheduler is utilised today on the MIDAS platform on SOAP services architecture. This is a constraint of
the MIDAS facility : the BN model is completely independent from the service technology utilised by the service
components.
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speed and pushes further the practical tractability limits of complex models. Conversely, it is not as good as its
competitors in compilation speed, but this trade-off (compilation speed vs. inference speed) is completely
consistent with the proposed modus operandi of the algorithm, which allows compiling once, saving the AC
image and running fast (without any compilation time) a large number of frequent test sessions on the same
AC image, particularly for re-testing and regression testing in Test-Driven Development and Continuous
Integration Testing Environments.

TESTING COSTS

The dynamic scheduler is a software module that is deployed on the MIDAS testing facility platform on cloud
and offers to the other components of the MIDAS platform its scheduling functionalities as a programmable
service, through a “generic” API. The cloud deployment of the testing facility lowers substantially (at least of
one of order of magnitude) the global cost of the computing resources needed for testing and troubleshooting,
guarantees the scalability and elasticity of these resources and, finally, reduce to zero their marginal cost. Of
the three cost components of testing and troubleshooting, per se and in relationship with the design and
development activities of the software engineering cycle - equipment expense, labour effort, time-to-market —
the first one is decreasing quickly compared to the others that are becoming critical. Hence, a significant
reduction of the testing and troubleshooting costs can be obtained only through: (i) the extreme automation of
all the testing tasks (labour effort), (ii) the shortening of the test sessions (time to market) and (iii) their
automated, event-driven integration in the software engineering environments that improves their reactivity
and augments their frequency (both).

CONCLUSION ON THE REAL-WORLD CASE STUDIES

One of the fundamental problems of the research about SOA testing is the lack of real-world case studies. In
the SOA testing research review of Bozkurt and colleagues [Bozkurt et al. 2013], on 177 publications reviewed
in 2010, only four research experiments are conducted on targets that can be considered real-world services
and services architectures.

There are many plausible reasons for this lack of real-world case studies. The first is probably the fact that, in
spite of the hype on SOA, only very recently the “API economy” phenomenon is going to spread the service
orientation approach. The second reason is that SOA testing is complex and hard to put in place in real
contexts, from the technical and organisational points of view. The third reason is that, roughly speaking,
testing is a hot topic: businesses are reluctant to communicate about their testing practices and to expose their

systems as targets of research approaches and tools for testing.

A specific characteristic of the MIDAS project is the planned availability of two real complex services
architectures (the Pilots), respectively in the logistic (supply chain management) and health domains, as real-
world case studies of the MIDAS facility. These services architectures have been designed and implemented in
the first two years of the MIDAS project and are now (Autumn 2014) operational.

This Scheduler is a generic test scheduling tool that aims at being applied to several different testing
approaches, strategies, contexts, through the definition and implementation of focused scheduling and halting
policies. It is integrated in the MIDAS platform and its utilisation within test sessions on the MIDAS Pilots is on
going. The author is confident that the Scheduler usage in relationships with different testing objectives and
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approaches on two real world case studies will confirm and improve the main technical choices of the
proposed solution and will produce interesting policies about the utilisation of the probabilistic approach to

dynamic scheduling.

FUTURE WORK

In this paragraph we list some topics of future research on the basis of the results presented in this manuscript.

TEST REPORT

A very important function of the Scheduler is to supply the Runner with meaningful information that
accompanies the Scheduler halt notification (see section 7, § ‘Generic halting policies’). The general idea is that
every actor of the scheduled test run cycle (the Executor/Arbiter and the Scheduler) supplies to the Reporter
(via the Runner) the information that can contribute to build a meaningful and comprehensive report about the
test session. The goal of the test report is to shorten the debugging/fixing cycle. The problem is how to relate
and supply not only core information such as test verdicts and faulty elements, but also information such as the
faulty index of components, ports, message types and the fault-exposing potential of the not-yet-executed test
samples. This could help the debug/fix team to localise and identify the implementation modification to be
done.

ENHANCED RE-TESTING AND REGRESSION TESTING PROCESSES

An enhanced re-testing and/or regression testing process is able to utilise the dynamic prioritisation of test
cases implemented by the Scheduler in order to maximise the value of the regression Test Suite for a given

SAUT construction model.

Generally speaking, there are two kinds of prioritisation techniques for regression testing: (i) general test case
prioritisation and (ii) version-specific test case prioritisation, and two general criteria for prioritisation: (i)
prioritisation for improving the test coverage, and (ii) prioritisation on the basis of the fault-exposing potential
of the test cases.

In the approach of this research the Scheduler:

* is model-based, i.e. it has a deep and detailed knowledge of the structure of the SAUT and of the Test
Suite - it is aware of the impact of each element of each test sample on the SAUT structure;

* is able to perform sound probabilistic reasoning about the elements of the SAUT structure on the
basis of prior probabilities;

* is able to acquire new evidences - not only observations such as the test verdicts, but also beliefs on
the faulty index of the components, ports and interaction classes and on the fault-exposing potential
of the not yet executed test samples.

In the current scheduler version, the tools that allow driving the inference process are the prior probability
settings of the top random variables (the Interactions) and the beliefs on the other variables that are processed
as evidence realisations. The prior probability settings are parameters of the initialisation, i.e. of the
compilation process, whereas beliefs can be entered and changed at each inference cycle. In the future the use
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of the different modalities of driving the inference process for re-testing and regression testing will be
investigated.

Version-specific prioritisation in black-box or grey-box testing requires the availability of some information
coming from the maintenance and the development teams. For instance, enhanced regression testing
processes for implementation maintenance require that a more cooperative test/debug/fix cycle be put in
place between the testing team and the debugging/fixing team. The idea is that the debugging/fixing team
should accompany the deployment on the SAUT of new component builds with information about the failures
revealed in the past test session that the new deployed builds are intended to correct. The investigation to be
conducted should concern the best way of utilising this information in the new regression testing or re-testing

session in terms of beliefs.

THE NOISY-OR APPROACH

In the actual vBN model of the Scheduler utilises OR nodes. This implies that, if an Interaction Token fails, its
Interaction Class owner is faulty, the Port that owns the Interaction Class is faulty and so on. Conversely, if
none of the Interaction Tokens of an Interaction Class is faulty, the Interaction Class is not faulty. A less rigid
approach considers the hypothesis that the test coverage of the test cases is incomplete. A solution for the less
rigid approach could be the use of Noisy-OR nodes instead of the OR nodes [Pearl 1988] (see section 5). The
parameters could be fitted to take into consideration the degree of exposure of the component’s sub-
component. The adoption of the Noisy-OR approach would not require a deep modification of the model and

the implementation of the inference engine.

EVIDENCE DRIVEN GENERATION

In fact the idea behind a fully automated workflow for functional testing is to use the scheduler not only to
drive the test among a set of existing test cases but also drive the generation of new test cases. With such a
tool, the interested party need only to provide the structural, functional and behavioural description of the
SAUT (SAUT Constitution and PSM models) for it to be tested.

The scheduler with the use of the Noisy-OR nodes is able to infer the faulty state of the different interaction
types of the respective service. The Test Generator can generate instantiated test cases in accordance with the
state machine (PSM) diagrams representing the SAUT behaviour (PSM) [De Rosa et al. 2014b]. Creating a test
case corresponds to generate the interaction paths from the collection of SAUT PSM, and, for a path, to
generate an instance of the path (a test sample) by generating the instances of messages of the path. For
instance, the scheduler can specify the interaction types for which it wants new test samples.

LAYERED PARTITIONING TROUBLESHOOTING

Once the modifications described in the sections above are implemented, the Scheduler can be modified to
become an enhanced troubleshooting tool. Knowing that the cost of compilation is not negligible and depends
on the size of the SAUT/TS model, the troubleshooting problem posed by a large SAUT and a big Test Suite
could be non-tractable with a direct compilation of the complete model. The solution to the problem is in the
consideration that a distributed system is a system and can be considered as a black box. By partitioning the
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participant in regions and ignoring the wires linking the components inside the same region, the new SAUT
model and the new TS become tractable in terms of vBN generation and AC compilation.

During each test cycle, if the evidence of faulty behaviour within an opaque region is revealed, the Scheduler
can modify the partitioning of the participants by splitting faulty opaque region into two (dichotomously)
opaque regions and, conversely, can regroup low faulty index regions by selecting the ports that are believed to

work properly and ignoring them.

At the end of multiple cycles of test execution and test generations, the arrangement of the component
partitioning is such that high faulty-index components are isolated and the rest are aggregated. In addition the
Test Suites are tailored to focus on the outgoing and ingoing message of the high faulty-index structural and
functional elements of the SAUT. For re-testing and regression testing if the test session is suspended and some

faults are fixed, the suspended AC Image can be resumed.
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THE SCHEDULER INTERFACE

|TESTSCHEDSERVICE_V1_4_0.WSDL

<wsdl:definitions xmlns:tns="http://www.midas-
project.eu/Core/API/TestSchedService" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tst="http://www.midas-project.eu/Core/API/TestSchedTypes"
name="TestSchedulingService"
targetNamespace="http://www.midas-project.eu/Core/API/TestSchedService">
<wsdl:types>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:tst="http://www.midas-project.eu/Core/API/TestSchedTypes"
xmlns:tsit="http://www.midas-project.eu/Core/API/TestSchedInstantiatedTypes"
targetNamespace="http://www.midas-project.eu/Core/API/TestSchedTypes"
elementFormDefault="qualified" attributeFormDefault="unqualified">
<xs:import namespace="http://www.midas-project.eu/Core/API/TestSchedInstantiatedTypes"
schemaLocation="TestSchedInstantiatedTypes_v1l 4 0.xsd"/>
<xs:simpleType name="DeclineMsg">

<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:simpleType name="TestSchedMethodId">

<xs:restriction base="xs:anyURI"/>

</xs:simpleType>

<xs:simpleType name="InternalStatus">

<xs:restriction base="xs:NCName">

<xs:enumeration value="done"/>

<xs:enumeration value="drop"/>

<xs:enumeration value="inputError"/>

<xs:enumeration value="serverError"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="RequestStatus">

<xs:restriction base="xs:NCName">

<xs:enumeration value="undertake"/>

<xs:enumeration value="done"/>

<xs:enumeration value="decline"/>

<xs:enumeration value="drop"/>

<xs:enumeration value="fail"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="TaskStatus">

<xs:restriction base="xs:NCName">

<xs:enumeration value="done"/>

<xs:enumeration value="declined"/>

<xs:enumeration value="dropped"/>

<xs:enumeration value="failed"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="TestTaskId">

<xs:restriction base="xs:anyURI"/>

</xs:simpleType>

<xs:simpleType name="FileId">

<xs:restriction base="xs:anyURI"/>

g
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</xs:simpleType>

<xs:simpleType name="TestContextName">

<xs:restriction base="xs:anyURI"/>

</xs:simpleType>

<xs:simpleType name="TestDirectiveId">

<xs:restriction base="xs:anyURI"/>

</xs:simpleType>

<xs:simpleType name="TransSpecId">

<xs:restriction base="xs:anyURI"/>

</xs:simpleType>

<xs:simpleType name="ModelId">

<xs:restriction base="xs:anyURI"/>

</xs:simpleType>

<xs:complexType name="TestModelMetadata">

<xs:sequence>

<xs:element name="modelId" type="tst:ModelId" minOccurs="0"/>
<xs:element name="directiveId" type="tst:TestDirectiveId" minOccurs="0"/>
<xs:element name="contextName"

type="tst:TestContextName" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="sourceModelId" type="tst:ModelId" minOccurs="0"/>
<xs:element name="transSpecId" type="tst:TransSpecId" minOccurs="0"/>
<xs:element name="targetModelId" type="tst:ModelId" minOccurs="0"/>
<xs:element name="sourceFileId" type="tst:FileId" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:element name="InitTestSchedIn" type="tst:InitTestSchedInMsgType"/>
<xs:complexType name="InitTestSchedInMsgType">

<xs:sequence>

<xs:element name="taskId" type="tst:TestTaskId"/>

<xs:element name="methodId" type="tst:TestSchedMethodId"/>
<xs:element name="metadata" type="tst:TestModelMetadata" minOccurs="0"/>
<xs:element ref="tsit:initTestSchedInputInfoset"/>

</xs:sequence>

</xs:complexType>

<xs:element name="InitTestSchedOut" type="tst:InitTestSchedOutMsgType" />
<xs:complexType name="InitTestSchedOutMsgType">

<xs:sequence>

<xs:element name="reqgStatus" type="tst:RequestStatus"/>

<xs:element name="regDeclineMsg" type="tst:DeclineMsg" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:element name="NotifyTestSchedInitOutcomeIn"
type="tst:NotifyTestSchedInitOutcomeInMsgType" />

<xs:complexType name="NotifyTestSchedInitOutcomeInMsgType">
<xs:sequence>

<xs:element name="taskId" type="tst:TestTaskId"/>

<xs:element name="methodId" type="tst:TestSchedMethodId"/>
<xs:element name="taskStatus" type="tst:TaskStatus"/>

<xs:element ref="tsit:initTestSchedOutputInfoset" minOccurs="0"/>
<xs:element ref="tsit:initTestSchedDeclineInfoset" minOccurs="0"/>
</xs:sequence>

</xs:complexType>

<xs:element name="NotifyTestSchedInitOutcomeOut"
type="tst:NotifyTestSchedInitOutcomeOutMsgType" />

<xs:complexType name="NotifyTestSchedInitOutcomeOutMsgType">
<xs:sequence>

<xs:element name="status" type="tst:InternalStatus"/>

</xs:sequence>

</xs:complexType>

<xs:element name="TestSchedIn" type="tst:TestSchedInMsgType"/>
<xs:complexType name="TestSchedInMsgType">

<xs:sequence>



<xs:element name="taskId" type="tst:TestTaskId"/>

<xs:element name="methodId" type="tst:TestSchedMethodId"/>

<xs:element name="metadata" type="tst:TestModelMetadata" minOccurs="0"/>
<xs:element ref="tsit:testSchedInputInfoset"/>

</xs:sequence>

</xs:complexType>

<xs:element name="TestSchedOut" type="tst:TestSchedOutMsgType" />
<xs:complexType name="TestSchedOutMsgType">

<xs:sequence>

<xs:element name="reqStatus" type="tst:RequestStatus"/>

<xs:element name="regDeclineMsg" type="tst:DeclineMsg" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:element name="NotifyTestSchedOutcomeIn" type="tst:NotifyTestSchedOutcomeInMsgType" />
<xs:complexType name="NotifyTestSchedOutcomeInMsgType">

<xs:sequence>

<xs:element name="taskId" type="tst:TestTaskId"/>

<xs:element name="methodId" type="tst:TestSchedMethodId"/>

<xs:element name="taskStatus" type="tst:TaskStatus"/>

<xs:element ref="tsit:testSchedOutputInfoset" minOccurs="0"/>
<xs:element ref="tsit:testSchedDeclineInfoset" minOccurs="0"/>
</xs:sequence>

</xs:complexType>

<xs:element name="NotifyTestSchedOutcomeOut" type="tst:NotifyTestSchedOutcomeOutMsgType" />
<xs:complexType name="NotifyTestSchedOutcomeOutMsgType">

<xs:sequence>

<xs:element name="status" type="tst:InternalStatus"/>

</xs:sequence>

</xs:complexType>

<xs:element name="TestSchedAbortIn" type="tst:TestSchedAbortInMsgType" />
<xs:complexType name="TestSchedAbortInMsgType">

<xs:sequence>

<xs:element name="taskId" type="tst:TestTaskId"/>

<xs:element name="methodId" type="tst:TestSchedMethodId"/>
</xs:sequence>

</xs:complexType>

<xs:element name="TestSchedAbortOut" type="tst:TestSchedAbortOutMsgType" />
<xs:complexType name="TestSchedAbortOutMsgType">

<xs:sequence>

<xs:element name="reqStatus" type="tst:RequestStatus"/>

<xs:element name="regDeclineMsg" type="tst:DeclineMsg" minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>

</xs:complexType>

<xs:element name="NotifyTestSchedAbortOutcomeIn"
type="tst:NotifyTestSchedAbortOutcomeInMsgType" />

<xs:complexType name="NotifyTestSchedAbortOutcomeInMsgType">
<xs:sequence>

<xs:element name="taskId" type="tst:TestTaskId"/>

<xs:element name="methodId" type="tst:TestSchedMethodId"/>

<xs:element name="taskStatus" type="tst:TaskStatus"/>

</xs:sequence>

</xs:complexType>

<xs:element name="NotifyTestSchedAbortOutcomeOut"
type="tst:NotifyTestSchedAbortOutcomeOutMsgType" />

<xs:complexType name="NotifyTestSchedAbortOutcomeOutMsgType">
<xs:sequence>

<xs:element name="status" type="tst:InternalStatus"/>

</xs:sequence>

</xs:complexType>

</xs:schema>

</wsdl:types>

<wsdl:message name="InitTestSchedInMsg">

177
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<wsdl:part name="content" element="tst:InitTestSchedIn"/>
</wsdl:message>

<wsdl:message name="InitTestSchedOutMsg">

<wsdl:part name="content" element="tst:InitTestSchedOut"/>
</wsdl:message>

<wsdl:message name="TestSchedInMsg">

<wsdl:part name="content" element="tst:TestSchedIn"/>
</wsdl:message>

<wsdl:message name="TestSchedOutMsg">

<wsdl:part name="content" element="tst:TestSchedOut"/>
</wsdl:message>

<wsdl:message name="NotifyTestSchedInitOutcomeInMsg">

<wsdl:part name="content" element="tst:NotifyTestSchedInitOutcomeIn"/>
</wsdl:message>

<wsdl:message name="NotifyTestSchedInitOutcomeOutMsg">

<wsdl:part name="content" element="tst:NotifyTestSchedInitOutcomeOut"/>
</wsdl:message>

<wsdl:message name="NotifyTestSchedOutcomeInMsg">

<wsdl:part name="content" element="tst:NotifyTestSchedOutcomeIn"/>
</wsdl:message>

<wsdl:message name="NotifyTestSchedOutcomeOutMsg">

<wsdl:part name="content" element="tst:NotifyTestSchedOutcomeOut"/>
</wsdl:message>

<wsdl:message name="TestSchedAbortInMsg">

<wsdl:part name="content" element="tst:TestSchedAbortIn"/>
</wsdl:message>

<wsdl:message name="TestSchedAbortOutMsg">

<wsdl:part name="content" element="tst:TestSchedAbortOut"/>
</wsdl:message>

<wsdl:message name="NotifyTestSchedAbortOutcomeInMsg">

<wsdl:part name="content" element="tst:NotifyTestSchedAbortOutcomeIn"/>
</wsdl:message>

<wsdl:message name="NotifyTestSchedAbortOutcomeOutMsg">

<wsdl:part name="content" element="tst:NotifyTestSchedAbortOutcomeOut"/>
</wsdl:message>

<wsdl:portType name="TestSchedConsumerPortType">

<wsdl:operation name="notifyTestSchedInitOutcome">

<wsdl:input name="TestSchedInitOutcomeInNotification"
message="tns:NotifyTestSchedInitOutcomeInMsg"/>

<wsdl:output name="TestSchedInitOutcomeOutNotification"
message="tns:NotifyTestSchedInitOutcomeOutMsg" />

</wsdl:operation>

<wsdl:operation name="notifyTestSchedOutcome">

<wsdl:input name="TestSchedOutcomeInNotification"
message="tns:NotifyTestSchedOutcomeInMsg"/>

<wsdl:output name="TestSchedOutcomeOutNotification"
message="tns:NotifyTestSchedOutcomeOutMsg" />

</wsdl:operation>

<wsdl:operation name="notifyTestSchedAbortOutcome">

<wsdl:input name="NotifyTestSchedAbortOutcomeInMsg"
message="tns:NotifyTestSchedAbortOutcomeInMsg" />

<wsdl:output name="NotifyTestSchedAbortOutcomeOutMsg"
message="tns:NotifyTestSchedAbortOutcomeOutMsg" />

</wsdl:operation>

</wsdl:portType>

<wsdl:portType name="TestSchedProviderPortType">

<wsdl:operation name="initTestScheduling">

<wsdl:input name="InitTestSchedInRequest" message="tns:InitTestSchedInMsg"/>
<wsdl:output name="InitTestSchedOutResponse" message="tns:InitTestSchedOutMsg"/>
</wsdl:operation>

<wsdl:operation name="requestTestScheduling">

<wsdl:input name="TestSchedInRequest" message="tns:TestSchedInMsg"/>
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<wsdl:output name="TestSchedOutResponse" message="tns:TestSchedOutMsg"/>
</wsdl:operation>

<wsdl:operation name="abortTestSched">

<wsdl:input name="TestSchedAbortInMsg" message="tns:TestSchedAbortInMsg"/>
<wsdl:output name="TestSchedAbortOutMsg" message="tns:TestSchedAbortOutMsg"/>
</wsdl:operation>

</wsdl:portType>

<wsdl:binding name="TestSchedConsumerPortTypeSOAPBinding"
type="tns:TestSchedConsumerPortType">

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="notifyTestSchedInitOutcome">
<soap:operation style="document"/>

<wsdl:input name="TestSchedInitOutcomeInNotification">
<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name="TestSchedInitOutcomeOutNotification">
<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="notifyTestSchedOutcome">
<soap:operation style="document"/>

<wsdl:input name="TestSchedOutcomeInNotification">
<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name="TestSchedOutcomeOutNotification">
<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="notifyTestSchedAbortOutcome">
<soap:operation style="document"/>

<wsdl:input name="NotifyTestSchedAbortOutcomeInMsg">
<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name="NotifyTestSchedAbortOutcomeOutMsg">
<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:binding name="TestSchedProviderPortTypeSOAPBinding"
type="tns:TestSchedProviderPortType">

<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="initTestScheduling">
<soap:operation style="document"/>

<wsdl:input name="InitTestSchedInRequest">

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name="InitTestSchedOutResponse">

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="requestTestScheduling">
<soap:operation style="document"/>

<wsdl:input name="TestSchedInRequest">

<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name="TestSchedOutResponse">

<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

<wsdl:operation name="abortTestSched">

<soap:operation style="document"/>

<wsdl:input name="TestSchedAbortInMsg">
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<soap:body use="literal"/>

</wsdl:input>

<wsdl:output name="TestSchedAbortOutMsg">
<soap:body use="literal"/>

</wsdl:output>

</wsdl:operation>

</wsdl:binding>

<wsdl:service name="TestSchedulingConsumerService">
<wsdl:port name="TestSchedulingConsumerSOAPPort"
binding="tns:TestSchedConsumerPortTypeSOAPBinding">
<soap:address location="http://www.midas-
project.eu/Core/API/TestSchedService/TestSchedulingConsumerSOAPPort" />
</wsdl:port>

</wsdl:service>

<wsdl:service name="TestSchedulingProviderService">
<wsdl:port name="TestSchedulingProviderSOAPPort"
binding="tns:TestSchedProviderPortTypeSOAPBinding">
<soap:address location="http://www.midas-
project.eu/Core/API/TestSchedService/TestSchedulingProviderSOAPPort" />
</wsdl:port>

</wsdl:service>

</wsdl:definitions>

MYTESTSCHEDMETHODTYPES_1_4_0.XSD

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema" targetNamespace="http://www.midas-
project.eu/TestMethod/PartnerNames/MyTestSchedMethodTypes" elementFormDefault="qualified"
attributeFormDefault="unqualified">

<!-- Replace the following complex types with ones your test scheduling method expects
* as input / output / decline parameters if any

<xs:complexType name="MyInitTestSchedMethodInputInfoset"/>

<xs:complexType name="MyInitTestSchedMethodOutputInfoset"/>

<xs:complexType name="MyInitTestSchedMethodDeclineInfoset"/>

<xs:complexType name="MyTestSchedMethodInputInfoset"/>

<xs:complexType name="MyTestSchedMethodOutputInfoset"/>

<xs:complexType name="MyTestSchedMethodDeclineInfoset"/>
</xs:schema>

TESTSCHEDINSTANTIATEDTYPES_V1_4_0.XSD

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
xmlns:mtsmt="http://www.midas-project.eu/TestMethod/PartnerNames/MyTestSchedMethodTypes"
targetNamespace="http://www.midas-project.eu/Core/API/TestSchedInstantiatedTypes"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<!l--

Replace the namespace and the file name containing the types needed for your test scheduling
method

——>

<xs:import
namespace="http://www.midas-project.eu/TestMethod/PartnerNames/MyTestSchedMethodTypes"
schemaLocation="MyTestSchedMethodTypes_v1l_4_0.xsd"/>

<!l--

Change the types of the following elements with ones defined within the file you imported
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——>

<xs:element name="initTestSchedInputInfoset" type="mtsmt:MyInitTestSchedMethodInputInfoset"/>
<xs:element name="initTestSchedOutputInfoset"

type="mtsmt :MyInitTestSchedMethodOutputInfoset"/>

<xs:element name="initTestSchedDeclineInfoset"

type="mtsmt :MyInitTestSchedMethodDeclineInfoset"/>

<xs:element name="testSchedInputInfoset" type="mtsmt:MyTestSchedMethodInputInfoset"/>
<xs:element name="testSchedOutputInfoset" type="mtsmt:MyTestSchedMethodOutputInfoset"/>
<xs:element name="testSchedDeclineInfoset" type="mtsmt:MyTestSchedMethodDeclineInfoset"/>
</xs:schema>
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