P. Achim, Simulations de collisions, coalescence et rupture de gouttes par une approche lagrangienne : application aux moteursàmoteursà propergol solide, Thèse de doctorat, 1999.

*. Y. Ait-bouziad, M. Farhat, F. Guennoun, and J. L. Kueny, Avellan : Physical modelling and simulation of leading edge cavitation, application to an industrial inducer, 5 th International Symposium on cavitation, 2003.

*. M. Akiyama, Bubble Collapse in Subcooled Boiling, Bulletin of JSME, vol.16, issue.93, pp.570-575, 1973.
DOI : 10.1299/jsme1958.16.570

A. Amblard and Y. Lecoffre, The non effect of dissolved air on cavitation erosion, In American Society of Mechanical Engineers, 1988.

*. S. Antal, R. T. Lahey, and J. E. Flaherty, Analysis of phase distribution in fully developed laminar bubbly two-phase flow, International Journal of Multiphase Flow, vol.17, issue.5, pp.635-652, 1991.
DOI : 10.1016/0301-9322(91)90029-3

M. Arora and C. D. Ohl, Effect of nuclei concentration on cavitation cluster dynamics, The Journal of the Acoustical Society of America, vol.121, issue.6, pp.3432-3436, 2007.
DOI : 10.1121/1.2722045

G. Balmigere, S. Vincent, J. P. Caltagirone, and E. Meillot, Utilisation d'une méthode de suivi d'interface mixte eulérienne/lagrangienne pour lesécoulementslesécoulements diphasiques, 18ème18ème Congrès Français de Mécanique, 2007.

R. Bannari, F. Kerdouss, B. Selma, A. Bannari, and P. Proulx, Three-dimensional mathematical modeling of dispersed two-phase flow using class method of population balance in bubble columns, Computers & Chemical Engineering, vol.32, issue.12, pp.3224-3237, 2008.
DOI : 10.1016/j.compchemeng.2008.05.016

*. T. Barberon, Finite volume simulation of cavitating flows, Computers & Fluids, vol.34, issue.7, pp.832-858, 2005.
DOI : 10.1016/j.compfluid.2004.06.004

URL : https://hal.archives-ouvertes.fr/inria-00071762

*. M. Barret, E. Faucher, and J. M. , Schemes to Compute Unsteady Flashing Flows, AIAA Journal, vol.40, issue.5, pp.905-913, 2002.
DOI : 10.2514/2.1727

*. B. Belahadji, J. P. Franc, and J. M. Michel, A Statistical Analysis of Cavitation Erosion Pits, Journal of Fluids Engineering, vol.113, issue.4, pp.700-706, 1991.
DOI : 10.1115/1.2926539

URL : https://hal.archives-ouvertes.fr/hal-01133777

D. Bedeaux and S. Kjelstrup, Transfer coefficient for evaporation. Physica A : Statistical Mechanics and its Applications, pp.413-426, 1999.

*. R. Beeching, Resistance to cavitation erosion. Institute of engineers and shipbuilders in Scotland, 1942.

S. A. Beig, J. Hartenberg, I. H. Lee, S. L. Ceccio, and E. Johnsen, Direct simulation of the compressible navier-stokes equations for interfacial flows, th International Conference on Multiphase Flow, 2013.

*. T. Benjamin and A. T. Ellis, The collapse of cavitation bubbles and the pressures threby produced against solid boundaries. Philosophical transaction of the Royal society, pp.221-240, 1110.

N. Berchiche, Erosion de cavitation d'un métal ductile : ´ etude expérimentale et modélisation, Thèse de doctorat, 2000.

R. Eférencesef´eférences, Berthelot : Sur quelques phénomènes de dilatation forcée des liquides : Mémoire sur les diverses essences de térébenthine ; Sur les précautionsprécautionsà prendre pour chauffer les corps en vase clos, 1849.

D. Bestion, Applicability of two-phase CFD to nuclear reactor thermalhydraulics and elaboration of Best Practice Guidelines, Nuclear Engineering and Design, vol.253, 2011.
DOI : 10.1016/j.nucengdes.2011.08.068

*. F. Blake, Onset of Cavitation in Liquids, Thèse de doctorat, 1949.

G. Bois, Transferts de masse et d'´ energie aux interfaces liquide/vapeur avec changement de phase : proposition de modélisation aux grandeséchellesgrandeséchelles des interfaces

*. G. Boitel and D. Mft, Etude expérimentale et numérique desécoulementsdesécoulements instationnaires cavitants : applications aux inducteurs des turbopompes spatiales, 2003.

*. J. Boussinesq, Sur la résistance qu'oppose un liquide indéfini en repos, sans pesanteur, au mouvement varié d'une sphère solide qu'il mouille sur toute sa surface, quand les vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables, Comptes-Rendus de l'Académie des Sciences, p.1885

*. C. Brechbühler, G. Gerig, and O. Kübler, Parametrization of Closed Surfaces for 3-D Shape Description, Computer Vision and Image Understanding, vol.61, issue.2, pp.154-170, 1995.
DOI : 10.1006/cviu.1995.1013

N. Bremond, M. Arora, and C. D. Ohl, Lohse : Controlled multibubble surface cavitation, Physics of Fluids, issue.22, p.96, 2005.
DOI : 10.1103/physrevlett.96.224501

URL : http://purl.utwente.nl/publications/59080

C. E. Brennen, The dynamic balances of dissolved air and heat in natural cavity flows, Journal of Fluid Mechanics, vol.none, issue.01, pp.115-127, 1969.
DOI : 10.1017/S0022112069000449

C. E. Brennen, Cavitation and Bubble Dynamics, 1995.
DOI : 10.1017/CBO9781107338760

E. A. Brujan, K. Nahen, P. Schmidt, and A. Vogel, Dynamics of laser-induced cavitation bubbles near an elastic boundary, Journal of Fluid Mechanics, vol.433, pp.381-384, 2001.
DOI : 10.1017/S0022112000003347

*. J. Brunton, High Speed Liquid Impact, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.260, issue.1110, pp.79-85, 1110.
DOI : 10.1098/rsta.1966.0031

*. D. Carlson and R. F. , Hoglund : Particle drag and heat transfer in rocket nozzles, pp.1980-1984, 1964.

G. L. Chahine and P. F. Genoux, Collapse of a Cavitating Vortex Ring, Journal of Fluids Engineering, vol.105, issue.4, pp.400-405, 1983.
DOI : 10.1115/1.3241018

G. Challier, Mécanismes d'interactions fluide/structure et de transfert d'´ energie enérosionenérosion de cavitation, Thèse de doctorat, 2002.

N. Charles, Modélisation diphasique d'´ ecoulements cavitants avec effets thermodynamiques, Thèse de doctorat, 1992.

*. Y. Chen and F. Mayinger, Measurement of heat transfer at the phase interface of condensing bubbles, International Journal of Multiphase Flow, vol.18, issue.6, pp.877-890, 1992.
DOI : 10.1016/0301-9322(92)90065-O

X. Chen, R. Q. Xu, Z. H. Shen, J. Lu, and X. W. Ni, Optical investigation of cavitation erosion by laser-induced bubble collapse, Optics & Laser Technology, vol.36, issue.3, pp.197-203, 2004.
DOI : 10.1016/j.optlastec.2003.08.004

R. Eférencesef´eférences, Simulation des phénomènes de marquage et de pertes de masse enérosion enérosion de cavitation, Thèse de doctorat, 2007.

*. R. Ciskowski and C. A. , Brebbia : Boundary Element Methods in Acoustics, 1991.

*. R. Cole, Underwater explosions, 1948.

*. Y. Courtot, Instabilité de cavitation dans les inducteurs : Analyse et modélisation de l'´ ecoulement instationnaire en grilles d'aubes, Thèse de doctorat, 1999.

O. Coutier-delgosha, Modélisation desécoulementsdesécoulements cavitants : Etude des comportements instationnaires et application tridimensionnelle aux turbomachines

O. Coutier-delgosha, F. Deniset, J. A. Astolfi, and J. B. Leroux, Numerical Prediction of Cavitating Flow on a Two-Dimensional Symmetrical Hydrofoil and Comparison to Experiments, Journal of Fluids Engineering, vol.129, issue.3, pp.279-292, 2007.
DOI : 10.1115/1.2427079

O. Coutier-delgosha, J. L. Reboud, and Y. , Delannoy : Numerical simulation of the unsteady behaviour of cavitating flows, Journal for numerical methods in fluids, vol.42, issue.5, pp.527-548, 2003.

P. Couty, Physical investigation of cavitation vortex collapse, Thèse de doctorat, 2002.

L. Agostino and C. E. Brennen, Linearized dynamics of spherical bubble clouds, Journal of Fluid Mechanics, vol.9, issue.-1, pp.155-176, 1989.
DOI : 10.1121/1.1909101

*. Y. Delannoy and J. L. , Kueny : Two phase flow approach in unsteady cavitation modelling, Cavitation and Multiphase Flow Forum, 1990.

J. M. Delhaye, Jump conditions and entropy sources in two-phase systems. Local instant formulation, International Journal of Multiphase Flow, vol.1, issue.3, pp.395-409, 1973.
DOI : 10.1016/0301-9322(74)90012-3

J. P. Demailly, Analyse numérique etéquationsetéquations différentielles, EDP Science, 2006.

*. V. Dontsov, Propagation of pressure waves in a gas-liquid medium with a cluster structure, Journal of Applied Mechanics and Technical Physics, vol.16, issue.5, pp.346-354, 2005.
DOI : 10.1007/s10808-005-0084-7

J. M. Dorey, Q. Le, and F. Tura, A new test procedure using plant and polished samples to quantify cavitation agressivity on industrial components, Cavitation 91 Symposium, 1991.

*. P. Downar-zapolski, Z. Bilicki, L. Bolle, and J. Franco, The non-equilibrium relaxation model for one-dimensional flashing liquid flow, International Journal of Multiphase Flow, vol.22, issue.3, pp.473-483, 1996.
DOI : 10.1016/0301-9322(95)00078-X

*. M. Dular and A. Osterman, Pit clustering in cavitation erosion, Wear, vol.265, issue.5-6, pp.811-820, 2008.
DOI : 10.1016/j.wear.2008.01.005

M. Dular, B. Bachert, and B. Stoffel, Relationship between cavitation structures and cavitation damage, Wear, vol.257, issue.11, pp.1176-1184, 2004.
DOI : 10.1016/j.wear.2004.08.004

URL : https://repozitorij.uni-lj.si/Dokument.php?id=38868

M. Dular, Numerical modelling of cavitation erosion, International Journal for Numerical Methods in Fluids, vol.3, issue.5, pp.1388-1410, 2009.
DOI : 10.1016/j.wear.2008.12.002

URL : https://hal.archives-ouvertes.fr/hal-00491715

M. Dular and B. Stofel, Development of a cavitation erosion model, Wear, vol.261, issue.5-6, pp.642-655, 2006.
DOI : 10.1016/j.wear.2006.01.020

N. Dumont, Modélisation de l'´ ecoulement diphasique dans les injecteurs Diesel, Thèse de doctorat, 2004.

B. Duplantier, Le mouvement brownien, " divers et ondoyant, Séminaire Poincaré, 2005.

*. I. Eames, N. J. Marr, and H. Sabir, The evaporation coefficient of water: a review, International Journal of Heat and Mass Transfer, vol.40, issue.12, pp.402963-2973, 1997.
DOI : 10.1016/S0017-9310(96)00339-0

*. J. Edwards and R. K. , Franklin : Low-diffusion flux splitting methods for real fluid flows with phase transition, p.38, 2000.

R. Eférencesef´eférences, Fadai-Ghotbi : Modélisation de la turbulence en situation instationnaire par approche URANS et hybride RANS-LES. Prise en compte des effets de paroi par pondération elliptique, Thèse de doctorat, 2007.

M. Farhat, ContributionàContributionà l'´ etude de l'´ erosion de cavitation : Mécanismes hydrodynamiques et prédictions, Thèse de doctorat, 1994.

C. Flageul and R. , Fortes-Patella et A Archer : Cavitation erosion prediction by numerical simulations, 14th International Symposium on Transpert Phenomena and Dynamics of Rotating Machinery

*. L. Foldy, The Multiple Scattering of Waves. I. General Theory of Isotropic Scattering by Randomly Distributed Scatterers, Physical Review, vol.67, issue.3-4, pp.3-4107, 1945.
DOI : 10.1103/PhysRev.67.107

R. Fortes-patella, Analyse de l'´ erosion de cavitation par simulations numériques d'impacts, Thèse de doctorat, 1994.

R. Fortes-patella, G. Challier, and J. L. Reboud, Archer : Cavitation erosion mechanism : numerical simulations of the interaction between pressure waves and solid boundaries, 4 th International Symposium on Cavitation, 2001.

R. Fortes-patella and J. L. Reboud, Etude de l'interaction fluide-structure enérosion enérosion de cavitation, Houille Blanche, vol.6, 1997.

R. Fortes-patella and J. L. , Reboud : Energetical approach and impact efficiency in cavitation erosion, Third International Symposium on Cavitation, 1998.

R. Fortes-patella and J. L. , Reboud : A new approach to evaluate the cavitation erosion power, Journal of fluid Engineering, vol.120, 1998.

R. Fortes-patella and J. L. Reboud, Briancon-Marjollet : A phenomenological and numerical model for scaling the flow agressiveness in cavitation erosion, EROCAV Workshop, 2004.

J. Fourier, Théorie analytique de la chaleur
DOI : 10.1017/CBO9780511693229

URL : http://www.mdz-nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:bvb:12-bsb10058361-6

. Michel, La cavitation : mécanismes physiques et aspects industriels, EDP Sciences, 1995.

J. P. Franc, M. Riondet, A. Karimi, and G. L. , Chahine : Impact load measurements in an erosive cavitating flow, Journal of Fluids Engineering, vol.113, 2011.

S. Frikha, O. Coutier-delgosha, and J. A. , Astolfi1 : Influence of the cavitation model on the simulation of cloud cavitation on 2D foil section, International Journal of Rotating Machinery, 2008.

S. Fujikawa, Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid, Journal of Fluid Mechanics, vol.6, issue.03, pp.481-512, 1980.
DOI : 10.1016/0502-8205(56)90007-7

*. B. Le-fur and J. F. David, Comparaison entre les vitesses d'´ erosion déduites d'un essai de longue durée et d'un essai de marquage, Société hydrotechnique de France, 1992.

*. B. Le-fur and J. F. David, Comparaison between pitting rate and erosion rate for three materials, 3th International Symposium on Cavitation, 1998.

D. Fuster, Modelling bubble clusters in compressible liquids, Journal of Fluid Mechanics, vol.3, pp.352-389, 2011.
DOI : 10.1017/S0022112092000387

*. P. Février, O. Simonin, and K. D. , Squires : Partitioning of particle velocities in gas-solid turbulent flows into a continuous field and a spatially uncorrelated random distribution : theoretical formalism and numerical study, Journal of Fluid Mechanic, vol.533, pp.1-46, 2005.

*. E. Gates and J. Bacon, Determination of cavitation nuclei distribution by holography, Journal of Ship Research, vol.22, issue.1, pp.29-31, 1978.

R. Eférencesef´eférences, Gatignol : The faxén formulae for a rigid particle in an unsteady non-uniform stokes flow, Mécanique Théorique et Appliquée, vol.1, issue.2, pp.143-160, 1983.

F. R. Gilmore, The growth and collapse of spherical bubble in viscous compressible liquid. Rapport technique 26-4, 1952.

A. J. Goldman, R. G. Cox, and H. Brenner, Slow viscous motion of a sphere parallel to a plane wall???I Motion through a quiescent fluid, Chemical Engineering Science, vol.22, issue.4, pp.637-651, 1967.
DOI : 10.1016/0009-2509(67)80047-2

E. Goncalves, Implémentation et validation de lois de parois dans un code Navier Stokes, Thèse de doctorat, Ecole nationale supérieure de l'aéronautique et de l'espace, 2001.

E. Goncalves, Fortes-Patella : Numerical simulation of cavitating flows with homogeneous models, Computers and Fluids, vol.39, issue.9, pp.1682-1696, 2009.

E. Goncalves, Fortes-Patella : Numerical study of cavitating flows with thermodynamic effect, Computers ans Fluids, vol.99, issue.113, pp.99-113, 2010.

G. Gorski, E. Hivon, A. Banday, B. D. Wandelt, F. K. Hansen et al., HEALPix: A Framework for High???Resolution Discretization and Fast Analysis of Data Distributed on the Sphere, The Astrophysical Journal, vol.622, issue.2, pp.759-771, 2005.
DOI : 10.1086/427976

H. Grandjean, Propagation d'une onde de choc dans un liquide aéré : modélisation et application aux rideaux de bulles, Thèse de doctorat, 2012.

D. Greif and W. Edelbauer, Application of cavitation erosion modeling within engine development process, International Multidimensional Engine Modeling User's Group Meeting

*. A. Guelfi, D. Bestion, M. Boucker, P. Boudier, P. Fillion et al., NEPTUNE: A New Software Platform for Advanced Nuclear Thermal Hydraulics, Nuclear Science and Engineering, vol.156, issue.3, pp.281-234, 2007.
DOI : 10.13182/NSE05-98

R. Eférencesef´eférences, Guennoun : ´ Etude physique de l'apparition et du développement de la cavitation sur une aube isolée, Thèse de doctorat, 2006.

*. A. Haider, Drag coefficient and terminal velocity of spherical and nonspherical particles, Powder Technology, vol.58, issue.1, pp.63-70, 1989.
DOI : 10.1016/0032-5910(89)80008-7

N. Hakimi, Preconditioning Methods for time dependent Navier-Stokes equations

Y. Haroun, Etude du transfert de masse réactif Gaz-Liquide le long de plans corrugués par simulation numérique avec suivi d'interface, Thèse de doctorat, 2008.

*. P. Helluy and N. Seguin, Relaxation models of phase transition flows, ESAIM: Mathematical Modelling and Numerical Analysis, vol.40, issue.2, pp.331-352, 2006.
DOI : 10.1051/m2an:2006015

URL : https://hal.archives-ouvertes.fr/hal-00139607

*. C. Herring, Theory of the pulsation of the gas bubble produced by an underwater explosion, 1941.

*. H. Hertz, On the evaporation of liquids, especially mercury, in vacuo, Annalen der Physik (Leipzig), vol.17, pp.177-1882

*. R. Hickling and M. S. Plesset, Collapse and rebound of a spherical bubble inwater, Physics of Fluids, vol.7, issue.1, 1964.

*. R. Higbie, The rate of absorption of a pure gas into a still liquid during a short time of exposure, pp.365-389, 1935.

C. W. Hirt and B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, Journal of Computational Physics, vol.39, issue.1, pp.201-225, 1979.
DOI : 10.1016/0021-9991(81)90145-5

M. Hofmann, H. Lohrberg, G. Ludwig, B. Stoffel, and J. L. Reboud, Fortes-Patella : Numerical and experimental investigations on the selfoscillating behaviour of cloud cavitation : Part I : Visualisations, 3rd ASME/JSME Joint Fluids Engineering Conference, 1999.

J. Huang and Z. Zhang, Level set method for numerical simulation of a cavitation bubble, its growth, collapse and rebound near a rigid wall, Acta Mechanica Sinica, vol.176, issue.1, pp.645-653, 2007.
DOI : 10.1007/s10409-007-0104-3

*. S. Iordanski, On the equation of motion for a liquid containing gas bubbles, pp.102-110, 1960.

*. C. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, 2006.

T. Ishiyama, T. Yano, and S. Fujikawa, Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase, Physics of Fluids, vol.16, issue.12, p.16, 2004.
DOI : 10.1063/1.1811674

C. B. Ivey, Moin : Conservative volume of fluid advection method on unstructured grids in three dimensions. Center for Turbulence Research, Annual Research Briefs Journal of Computational Physics, 2012.

A. Jameson, Time dependent calculations using multigrid, with applications to unsteady flows past airfoils and wings, 10th Computational Fluid Dynamics Conference, 1956.
DOI : 10.2514/6.1991-1596

A. Jameson, W. Schmidt, and E. Turkel, Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes, 14th Fluid and Plasma Dynamics Conference, p.1259, 1981.
DOI : 10.2514/6.1981-1259

*. S. Jones, G. Evans, and K. Galvin, Bubble nucleation from gas cavities ??? a review, Advances in Colloid and Interface Science, vol.80, issue.1, pp.27-50, 1999.
DOI : 10.1016/S0001-8686(98)00074-8

*. W. Jones and B. E. , The prediction of laminarization with a two-equation model of turbulence, International Journal of Heat and Mass Transfer, vol.15, issue.2, pp.301-314, 1972.
DOI : 10.1016/0017-9310(72)90076-2

*. A. Karimi and W. R. Leo, Phenomenological model for cavitation erosion rate computation, Materials Science and Engineering, vol.95, pp.1-14, 1987.
DOI : 10.1016/0025-5416(87)90493-9

*. I. Kataoka, Local instant formulation of two-phase flow, International Journal of Multiphase Flow, vol.12, issue.5, pp.745-758, 1986.
DOI : 10.1016/0301-9322(86)90049-2

*. H. Kato, M. Maeda, and A. Magaino, Mechanism and scaling of cavitation erosion, 12th ONR Symposium on Naval Hydrodynamics, 1978.

*. H. Kato, Y. P. Ye, M. Maeda, and H. Yamaguchi, Cavitation erosion and noise study on a foil section, 1989.

K. Kato and H. Dan, Matsudaira : Lock-in phenomenon of pitching hydrofoil with cavitation breakdown (unsteady fluid force characteristics and visualization of flow structure), Japan Society of Mechanical Engineers International Journal, Series B, vol.49, issue.3, pp.797-805, 2006.

*. J. Katz, Determination of solid nuclei and bubble distribution in water by holography, 1978.

*. E. Kennard, Kinetic Theory of Gases with an Introduction to Statistical Mechanics, 1938.

K. H. Kim, G. L. Chahine, J. P. Franc, and A. Karimi, Advanced Experimental and Numerical Techniques for Cavitation Erosion Prediction, 2014.
DOI : 10.1007/978-94-017-8539-6

URL : https://hal.archives-ouvertes.fr/hal-00936566

A. Y. Kipnis, B. E. Yavelov, and J. S. , Rowlinson : Van der Waals and Molecular Science, 1996.

*. A. Knacke and I. N. Stranski, The mechanism of evaporation, Progress in Metal Physics, vol.6, p.181, 1956.
DOI : 10.1016/0502-8205(56)90007-7

R. T. Knapp, Investigations of the mechanism of cavitation and cavitation damage, 1955.

*. M. Knudsen, Maximum rate of vaporization of mercury, Annalen der Physik (Leipzig), vol.47, p.697, 1915.

*. B. Kogarko, One-dimensional unsteady motion of a liquid with an initiation and progression of cavitation, Doklady Akademii Nauk SSSR, vol.155, pp.779-782, 1964.

A. N. Kolmogorov, Dissipation of Energy in the Locally Isotropic Turbulence, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.434, issue.1890, pp.15-17, 1890.
DOI : 10.1098/rspa.1991.0076

S. Kumar and C. E. Brennen, Nonlinear effects in the dynamics of clouds of bubbles, The Journal of the Acoustical Society of America, vol.89, issue.2, pp.707-714, 1991.
DOI : 10.1121/1.1894630

R. F. Kunz, D. A. Boger, D. R. Stinebring, T. S. Chyczewski, J. W. Lindau et al., Govindan : A preconditioned navierstokes method for two-phase flows with application to cavitation prediction, Computers and Fluids, issue.8, pp.29849-875, 2000.

B. Lafaurie, C. Nardonne, R. Scardovelli, S. Zaleski, and G. Zanetti, Modelling Merging and Fragmentation in Multiphase Flows with SURFER, Journal of Computational Physics, vol.113, issue.1, pp.645-653, 1994.
DOI : 10.1006/jcph.1994.1123

*. M. Lance and J. Bataille, Turbulence in the liquid phase of a uniform bubbly air???water flow, Journal of Fluid Mechanics, vol.8, issue.-1, pp.95-118, 1991.
DOI : 10.1017/S0022112082001530

*. W. Lauterborn and T. Kurz, Physics of bubble oscillations, Reports on Progress in Physics, vol.73, issue.10, 2010.
DOI : 10.1088/0034-4885/73/10/106501

W. Lauterborn and H. Bolle, Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary, Journal of Fluid Mechanics, vol.94, issue.02, pp.391-399, 1975.
DOI : 10.1063/1.1707461

*. S. Lavigne, A. Retailleau, and J. Woillez, Measurement of the aggressivity of erosive caviting flows by a technique of pits analysis. application to a method of prediction of erosion, International Symposium on Cavitation, 1995.

Y. Lecoffre, La cavitation, traqueur de bulles. Edition Hermès, 1994.

T. G. Leighton, A. J. Walton, and J. W. , Primary Bjerknes forces, European Journal of Physics, vol.11, issue.1, pp.47-50, 1990.
DOI : 10.1088/0143-0807/11/1/009

URL : http://eprints.soton.ac.uk/349516/1/%23%201990%20Leighton_%28Bjerknes%29%20%28Eur%20J%20Phys%29.pdf

V. Leroy, Bulles d'air dans l 'eau : couplage d'oscillateurs harmoniques et excitation paramétrique, Thèse de doctorat, 2004.

*. M. Lesser and J. E. Field, The Impact of Compressible Liquids, Annual Review of Fluid Mechanics, vol.15, issue.1, pp.97-122, 1983.
DOI : 10.1146/annurev.fl.15.010183.000525

Z. R. Li, M. Pourquie, and T. J. , Van Terwisga : Assessment of cavitation erosion with a urans method, Journal of Fluids Engineering, vol.136, issue.4, p.2014

*. O. Lindau, Untersuchungen zur laserzeugten Kavitation, Thèse de doctorat, 2001.

. Reboud, Numerical and experimental investigations on the cavitating flow in a cascade of hydrofoils, Experiments in Fluids, vol.33, pp.578-586, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00211732

S. Van-loo, H. W. Hoeijmakers, T. J. Van-terwisga, and M. Hoekstra, Numerical Study on Collapse of a Cavitating Cloud of Bubbles, Proceedings of the 8th International Symposium on Cavitation, 2012.
DOI : 10.3850/978-981-07-2826-7_187

J. Lowengrub and L. Truskinovsky, Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.454, issue.1978, pp.2617-2654, 1998.
DOI : 10.1098/rspa.1998.0273

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.232.8527

*. P. Lush and P. I. Peters, Visualisation of the caviting flow in a venturi type duct using high speed cine photography, IAHR Conference on Operating Problems of Pump Stations and Power Plants, 1982.

*. S. Luther, T. H. Der-berg, J. Rensen, and D. Lohse, The effect of bubbles on developed turbulence, XXI ICTAM, 2004.

R. Marek and J. Straub, Analysis of the evaporation coefficient and the condensation coefficient of water, International Journal of Heat and Mass Transfer, vol.44, issue.1, pp.39-53, 2001.
DOI : 10.1016/S0017-9310(00)00086-7

*. I. Mareuge and M. Lance, Bubble-induced dispersion of a passive scalar in bubbly flows, 2nd International Conference on Multiphase flow, 1995.

*. B. Mathieu, Etude physique, expérimentale et numérique des mécanismes de base intervenant dans lesécoulementslesécoulements diphasiques, Thèse de doctorat, 2003.

*. M. Maxey and J. J. Riley, Equation of motion for a small rigid sphere in a nonuniform flow, Physics of Fluids, vol.26, issue.4, pp.883-889, 1983.
DOI : 10.1063/1.864230

*. T. Menard, S. Tanguy, and A. Berlemont, Coupling level set/VOF/ghost fluid methods: Validation and application to 3D simulation of the primary break-up of a liquid jet, International Journal of Multiphase Flow, vol.33, issue.5, pp.510-524, 2007.
DOI : 10.1016/j.ijmultiphaseflow.2006.11.001

URL : https://hal.archives-ouvertes.fr/hal-00649785

*. C. Merkle, J. Feng, and P. E. Buelow, Computation modeling of the dynamics of sheet cavitation, 3rd International Symposium on cavitation, 1998.

*. O. Le-metayer and J. Massoni, Modelling evaporation fronts with reactive Riemann solvers, Journal of Computational Physics, vol.205, issue.2, pp.567-610, 2005.
DOI : 10.1016/j.jcp.2004.11.021

S. Mimouni and J. Laviéville, Archer : Modelling and computation of cavitation with a two-phase flow approach downstream an orifice, The 13 th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, 2009.

*. J. Minier and E. Peirano, The pdf approach to turbulent polydispersed two-phase flows, Physics Reports, vol.352, issue.1-3, pp.1-214, 2001.
DOI : 10.1016/S0370-1573(01)00011-4

*. E. Nasibullaeva and I. S. Akhatov, Dynamics of a bubble cluster in an acoustic field, Acoustical Physics, vol.51, issue.6, pp.705-712, 2005.
DOI : 10.1134/1.2130902

*. C. Naude and A. Ellis, On the Mechanism of Cavitation Damage by Nonhemispherical Cavities Collapsing in Contact With a Solid Boundary, Journal of Basic Engineering, vol.83, issue.4, 1961.
DOI : 10.1115/1.3662286

N. Ochiai, Y. Iga, M. Nohmi, and T. Ikohagi, Numerical Prediction of Cavitation Erosion Intensity in Cavitating Flows around a Clark Y 11.7% Hydrofoil, Journal of Fluid Science and Technology, vol.5, issue.3, pp.416-431, 2010.
DOI : 10.1299/jfst.5.416

*. T. O-'hern, J. Katz, and A. J. Acosta, Holographic measurements of cavitation nuclei in the sea, Cavitation and Multiphase Flow Forum, 1985.

*. C. Ohl and A. Philipp, Lauterborn : Cavitation bubble collapse studied at 20-million frames-per-second, Annalen der Physik, vol.4, issue.1, pp.26-34, 1995.

*. C. Oseen, Neuere Methoden und Ergebnisse in der Hydrodynamik, 1927.

F. Pereira, Prédiction de l'´ erosion de cavitation : Approché energétique, Thèse de doctorat, 1997.

*. F. Peterson, F. Danel, A. P. Keller, and Y. Lecoffre, Comparitive measurements of bubble and particulate spectra by three optical methods, 14th International Towing Tank Conference, 1975.

*. A. Philipp, C. D. Ohl, and W. Lauterborn, Single bubble erosion on a solid surface, International symposium on cavitation, Deauville, 1995.

M. S. Plesset and R. B. Chapman, Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary, Journal of Fluid Mechanics, vol.260, issue.02, pp.283-290, 1971.
DOI : 10.1063/1.1707461

H. Poritsky, The collapse or the growth of a spherical bubble or cavity in a viscious fluid, 1st US National Congres Applied Mechanics, 1952.

B. Pouffary, Modélisation numérique desécoulementsdesécoulements dans une roue centrifuge : Analyse des mécanismes associésassociésà la chute des performances en cavitation, Thèse de doctorat, 2001.

C. Poulard, Dynamiques de gouttelettes mouillantes, Thèse de doctorat, 2005.
URL : https://hal.archives-ouvertes.fr/tel-00011257

A. Prosperetti, Bubble dynamics: Some things we did not know 10 years ago, 1994.
DOI : 10.1007/978-94-011-0938-3_1

A. Prosperetti and A. Lezzi, Bubble dynamics in a compressible liquid. Part 1. First-order theory, Journal of Fluid Mechanics, vol.9, issue.-1, pp.457-478, 1986.
DOI : 10.1146/annurev.fl.09.010177.001045

P. Rahimi and C. A. Ward, Kinetics of evaporation : Statistical rate theory approach, International Journal of Thermodynamics, vol.8, issue.1, pp.1-14, 2005.

*. W. Ranz and W. R. Marshall, Evaporation from drops : Part ii, Chemical Engineering Progress, vol.48, issue.4, pp.173-180, 1952.

*. E. Rapposelli and L. , Agostino : A barotropic cavitation model with thermodynamic effects, 5th International Symposium on Cavitation, 2003.

*. Lord and R. , On pressure developped in the fluid during the collapse of a spherical cavity, Philosophical Magazine, vol.34, 1917.

J. L. Reboud, R. Fortes-patella, and A. Archer, Analysis of damaged surface. part I : Cavitation mark measurements by 3d laser profilometry, 3rd Fluids Engineering Conference, 1999.

J. L. Reboud, R. Fortes-patella, M. Hofmann, H. Lohrberg, and G. Ludwig, Stoffel : Numerical and experimental investigations on the self-oscillating behaviour of cloud cavitation : Part II : Dynamic pressures, 1999.

J. L. Reboud and B. Stutz, Coutier-Delgosha : Two-phase flow structure of cavitation : experiment and modelling of unsteady effects, 3rd International Symposium on Cavitation, 1998.

G. E. Reisman and C. E. Brennen, Pressure pulses generated by cloud cavitation, Fluids Engineering Division Conference, 1996.

E. Riber, Modélisation et calculs de jets diphasiques, 2003.

*. W. Rider and D. B. Kothe, Streching and tearing interface tracking methods, 12 th AIAA Computational Fluid Dynamics Conference, pp.95-1717, 1995.
DOI : 10.2514/6.1995-1717

*. J. Rolland, Modélisation et résolution de la propagation de fronts perméables. Application aux fronts d'´ evaporation et de détonation, Thèse de doctorat, 2003.

D. Rossinelli, B. Hejazialhosseini, P. Hadjidoukas, C. Bekas, A. Curioni et al., 11 PFLOP/s simulations of cloud cavitation collapse, Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on, SC '13, p.11, 2013.
DOI : 10.1145/2503210.2504565

M. Roudet, Hydrodynamique et transfert de masse autour d'une bulle confinée entre deux plaques, Thèse de doctorat, 2008.

*. E. Rückenstein, On heat transfer between vapour bubbles in motion and the boiling liquid from which they are generated, Chemical Engineering Science, vol.10, issue.1-2, pp.22-30, 1959.
DOI : 10.1016/0009-2509(59)80021-X

G. Ryskin and L. G. , Orthogonal mapping, Journal of Computational Physics, vol.50, issue.1, pp.71-100, 1983.
DOI : 10.1016/0021-9991(83)90042-6

*. Y. Saito and I. Nakamori, Ikoha : Numerical analysis of unsteady vaporous cavitating flow around a hydrofoil, 5 th International Symposium on Cavitation, 2003.

R. Sander, Compilation of Henry's law constants for inorganic and organic species of potential importance in environmental chemistry. Rapport technique, Max-Planck Institute of Chemistry, Air Chemistry Department, 1999.

K. Sato, Z. Liu, and C. E. Brennen, The micro-bubble distribution in the wake of a cavitating circular cylinder, Cavitation and Multiphase Flow, 1993.

*. J. Sauer and G. H. Schnerr, Unsteady cavitating flow -a new cavitation model based on modified front capturing method and bubble dynamics, Fluids Engineering Division Summer Meeting, 2000.

*. R. Saurel, J. P. Cocchi, and P. B. , Numerical Study of Cavitation in the Wake of a Hypervelocity Underwater Projectile, Journal of Propulsion and Power, vol.15, issue.4, pp.513-522, 1999.
DOI : 10.2514/2.5473

R. Saurel and O. L. Metayer, A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation, Journal of Fluid Mechanics, vol.431, pp.239-271, 2001.
DOI : 10.1017/S0022112000003098

R. Saurel and F. Petitpas, Abgrall : Modelling phase transition in metastable liquids : application to cavitating and flashing flows, Journal of Fluid Mechanics, vol.607, pp.313-350, 2008.

*. L. Schiller, Naumann : A drag coefficient correlation, pp.318-320, 1935.

*. D. Schmidt, Cavitation in diesel fuel injector nozzles, Thèse de doctorat, 1997.

*. S. Schmidt, I. H. Sezal, and G. H. Schnerr, Thalhamer : Numerical analysis of shock dynamics for detection of erosion sensitive areas in complex 3-d flows, WIMRC Cavitation Forum, 2008.

S. J. Schmidt, M. Mihatsch, M. Thalhamer, and N. A. , Adams : Assessment of the prediction capability of a thermodynamic cavitation model for the collapse characteristics of a vapor-bubble cloud, 3 rd International Cavitation Forum, 2011.

S. J. Schmidt, I. H. Sezal, and G. H. Schnerr, Compressible simulation of high-speed hydrodynamics with phase change, European Conference on Computational Fluid Dynamics, Egmond aan Zee, 2006.

*. I. Senocak and W. Shyy, A Pressure-Based Method for Turbulent Cavitating Flow Computations, Journal of Computational Physics, vol.176, issue.2, pp.363-383, 2002.
DOI : 10.1006/jcph.2002.6992

*. A. Serizawa and I. Kataoka, Turbulence suppression in bubbly two-phase flow, Nuclear Engineering and Design, vol.122, issue.1-3, pp.1-16, 1990.
DOI : 10.1016/0029-5493(90)90193-2

*. S. Shin, Modeling Three-Dimensional Multiphase Flow Using a Level Contour Reconstruction Method for Front Tracking without Connectivity, Journal of Computational Physics, vol.180, issue.2, pp.427-470, 2002.
DOI : 10.1006/jcph.2002.7086

*. R. Simoneau, Archer : Transposition of cavitation marks on different hardness metals, ASME Fluids Engineering Division Summer Meeting, 1997.

*. A. Singhal, H. Li, M. M. Athavale, and Y. Jiang, Mathematical Basis and Validation of the Full Cavitation Model, Journal of Fluids Engineering, vol.124, issue.3, pp.617-624, 2002.
DOI : 10.1115/1.1486223

L. Somaglino, Délivrance par ultrasons de chimiothérapie encapsulée dans des liposomes sono-sensibles : Contrôle et dosage de la cavitation inertielle ultrasonore

*. H. Soyama, H. Kato, and R. Oba, Cavitation observations of severely erosive vortex cavitation arising in a centrifugal pump, 3rd International Conference on Cavitation, 1992.

*. H. Soyama and H. Kumano, The fundamental threshold level -a new parameter for predicting cavitation erosion resistance, Journal of testing and Evaluation, vol.30, issue.5, 2002.

*. P. Spalart and S. R. , Allmaras : A one-equation turbulence model for aerodynamics flows, 30 th Aerospace Sciences meeting, 1992.

*. D. Stinebring, J. W. Holl, and R. E. , Two Aspects of Cavitation Damage in the Incubation Zone: Scaling by Energy Considerations and Leading Edge Damage, Journal of Fluids Engineering, vol.102, issue.4, pp.481-485, 1980.
DOI : 10.1115/1.3240729

M. Sussman, P. Smereka, and S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, pp.146-159, 1994.
DOI : 10.1006/jcph.1994.1155

M. Thalhamer, S. J. Schmidt, M. Mihatsch, and N. A. , Adams : Numerical simulation of sheet and cloud cavitation and detection of cavitation erosion, 14th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery, 2012.

*. T. Thompson and N. Clark, A holistic approach to particle drag prediction, Powder Technology, vol.67, issue.1, pp.57-66, 1991.
DOI : 10.1016/0032-5910(91)80026-F

*. Y. Tomita and A. Shima, High-speed photographic observations of laser-induced cavitation bubbles in water, Acustica, vol.71, pp.161-171, 1990.

Y. Tomita and A. Shima, Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse, Journal of Fluid Mechanics, vol.198, issue.-1, pp.535-564, 1986.
DOI : 10.1016/0020-7403(79)90061-4

Y. Tomita, A. Shima, and H. Takahashi, The behavior of a laser-produced bubble near a rigid wall with various configurations, Cavitation 91 Symposium, 1991.

R. P. Tong, W. P. Schiffers, S. J. Shaw, J. R. Blake, and D. C. , The role of ???splashing??? in the collapse of a laser-generated cavity near a rigid boundary, Journal of Fluid Mechanics, vol.380, pp.339-361, 1999.
DOI : 10.1017/S0022112098003589

*. L. Torobin and W. H. Gauvin, The drag coefficients of single spheres moving in steady and accelerated motion in a turbulent fluid, AIChE Journal, vol.7, issue.4, pp.615-619, 1961.
DOI : 10.1002/aic.690070417

A. Toutant, Modélisation physique des interactions entre interfaces et turbulence, Thèse de doctorat, 2006.

*. S. Unverdi, A front-tracking method for viscous, incompressible, multi-fluid flows, Journal of Computational Physics, vol.100, issue.1, pp.25-37, 1992.
DOI : 10.1016/0021-9991(92)90307-K

*. Y. Utturkar, J. Wu, G. Wang, and W. Shyy, Recent progress in modelling cryogenic cavitation for liquid rocket propulsion, Progress in aerospace Sciences, pp.558-608, 2005.

*. J. Van-der-meulen and R. L. Van-der-renesse, The collapse of laser-induced bubbles near a solid boundary and the generation of pressure pulses, Cavitation and multiphase flow forum, 1993.

A. Vogel, W. Lauterborn, and R. Timm, Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary, Journal of Fluid Mechanics, vol.1, issue.-1, pp.299-306, 1989.
DOI : 10.1017/S0022112086000745

*. C. Vortmann, G. H. Schnerr, and S. Seelecke, Thermodynamic modeling and simulation of cavitating nozzle flow, International Journal of Heat and Fluid Flow, vol.24, issue.5, pp.774-783, 2003.
DOI : 10.1016/S0142-727X(03)00003-1

*. D. Wang and D. Greif, Progress in Modeling Injector Cavitating Flows With a Multi-Fluid Method, Volume 2: Fora, 2006.
DOI : 10.1115/FEDSM2006-98501

Y. C. Wang and C. E. Brennen, Shock wave development in the collapse of a cloud of bubbles, Cavitation and Multiphase Flow Forum, Lake Tahoe, 1994.

Y. C. Wang and C. E. Brennen, Shock wave developpement in the collapse of a cloud of bubbles. Cavitation and Multiphase flow, 1994.

B. Ward and D. C. , The Energies and Pressures of Acoustic Transients Associated with Optical Cavitation in Water, Journal of Modern Optics, vol.93, issue.4, pp.803-811, 1990.
DOI : 10.1119/1.1986279

*. C. Ward, Fang : Expression for predicting liquid evaporation flux : Statistical rate theory approach, Physical Review, issue.429, p.59, 1999.

*. W. Whitman, Preliminary experimental confirmation of the two-film theory of gas absorption, Chemical and Metallurgical Engineering, vol.29, pp.146-148, 1923.

*. D. Wilcox, Reassessment of the scale-determining equation for advanced turbulence models, AIAA Journal, vol.26, issue.11, pp.1299-1310, 1988.
DOI : 10.2514/3.10041

S. W. Yoon, L. A. Crum, A. Prosperetti, and N. Q. Lu, An investigation of the collective oscillations of a bubble cloud, The Journal of the Acoustical Society of America, vol.89, issue.2, pp.700-770, 1991.
DOI : 10.1121/1.1894629

Z. Zeravcic and D. Lohse, Collective oscillations in bubble clouds, Journal of Fluid Mechanics, vol.30, pp.114-149, 2011.
DOI : 10.1121/1.1910702

K. Zhou, H. Bao, and J. Shi, 3D surface filtering using spherical harmonics, Computer-Aided Design, vol.36, issue.4, pp.3-363, 2004.
DOI : 10.1016/S0010-4485(03)00098-8

A. Sommaire, 1 Présence de gaz dans l, p.340

B. Etude-paramétrique-de-la-loi, 4.1 Méthode Afin d'´ etudier l'influence des paramètres de la loi B-STMA, plusieurs configurations sont essayées. Pour cela, les 5 paramètres indépendants de la loi sont modifiés touràtour`tourà tour par rapportàrapport`rapportà une configuration de référence. Pour chaque paramètre, 5 valeurs sont choisies, les valeurs soulignées

. @bullet-c-min, 0, 5m.s ?1 ;0, 8m.s ?1 ; 1m.s ?1 ;1.2m.s ?1 ; 1.5m.s ?1 ? Y l a : 0ppm ; 5ppm ; 11ppm : 15ppm, pp.10-12

. @bullet and . Loi, 1300P a ; 1800P a ; 2300P a ; 2800P a ;3300P a ? p cuve : p atm

B. Sommaire, 1 Description des codes de calcul utilisés, p.367

C. Sommaire, 1 Décomposition du potentiel de vitesse en deux variables séparées, p.386

. Dans-cette-annexe, nous allons apporter des précisions quantàquant`quantà la mise en place de l'algorithme IDB. Pour cela, nous allons dans un premier temps présenter la décomposition de fonction utilisée pour chaque harmonique sphérique. Dans un second temps, nous donnerons des précisions sur le passage entre l'ensemble S 2 (représentatif de l'interface) et le C-espace vectoriel dans lequel la résolution du système est effectuée, Nous terminerons cette section, en explicitant les matrices et vecteurs du système