P. Couplées, Les CLF indirects (ligne de pointillés) sont très faibles devant les autres CLF (ligne en tirets) : jusqu'à

C. Les and . La-force-de-couplage, D'après la figure 7.6, ? 12

C. Dans-cet-exemple-les, exemple des trois oscillateurs couplés du chapitre 5 Deux régimes de couplage ont été mis en valeur par la technique non contrainte. Pour des couplages faibles, les CLF indirects sont négligeables devant les CLF et les DLF. La SEA, qui les fixe à zéro, est applicable Au dessus d'une valeur seuil, les raideurs se comportent comme des liens rigides et les CLF ne varient plus. Les CLF indirects sont faibles car les couplages, même forts, sont localisés. Ils ne s

L. Dans-ce-cas and . Case-champ-diffus-prend-la-valeur-non, Dans le cas contraire, cela signifie que la plaque est soit excitée par un rain-on-the-roof, soit excitée par une force ponctuelle et son amortissement est faible

A. La-vue-de-ces-essais, il ressort que ? La SEA ne fonctionne pas si aucune des hypothèses n'est respectée. 7.3. CONCLUSION plus de deux sous-systèmes. L'hypothèse doit être vérifiée par tous les sous-systèmes

A. J. Keane, Statistical energy analysis of engineering structures, 1988.

G. Maidanik, Some elements in statistical energy analysis, Journal of Sound and Vibration, vol.52, issue.2, pp.171-191, 1977.
DOI : 10.1016/0022-460X(77)90638-1

R. H. Lyon, Statistical Energy Analysis of dynamical systems, 1975.

F. J. Fahy-white, R. G. Walker, J. G. , and E. Horwood, Statistical energy analysis in Noise and Vib, 1982.

C. H. Hodges and J. Woodhouse, Theories of noise and vibration transmission in complex structures. Reports in progress in physics, pp.107-170, 1986.

R. H. Lyon, Theory and application of Statistical Energy Analysis. Buttersworths-Heimann, 1995.

N. Totaro, C. Dodard, and J. Guyader, Sea coupling loss factors of complex vibroacoustic systems, J. Vib. Ac, vol.131, pp.1-8, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00418599

B. R. Mace, On The Statistical Energy Analysis Hypothesis Of Coupling Power Proportionality And Some Implications Of Its Failure, Journal of Sound and Vibration, vol.178, issue.1, pp.95-112, 1994.
DOI : 10.1006/jsvi.1994.1470

F. J. Fahy, Statistical Energy Analysis: A Critical Overview, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.346, issue.1681, pp.431-447, 1681.
DOI : 10.1098/rsta.1994.0027

R. H. Lyon and G. Maidanik, Power Flow between Linearly Coupled Oscillators, The Journal of the Acoustical Society of America, vol.34, issue.5
DOI : 10.1121/1.1918177

T. D. Scharton and R. H. Lyon, Power Flow and Energy Sharing in Random Vibration, The Journal of the Acoustical Society of America, vol.43, issue.6
DOI : 10.1121/1.1910990

H. G. Davies, Ensemble averages of power flow in randomly excited coupled beams, J

E. K. Dimitriadis and A. D. Pierce, Analytical solution for the power exchange between strongly coupled plates under random excitation: A test of statistical energy analysis concepts, Journal of Sound and Vibration, vol.123, issue.3
DOI : 10.1016/S0022-460X(88)80158-5

R. H. Lyon and E. Eichler, Random Vibration of Connected Structures, The Journal of the Acoustical Society of America, vol.36, issue.7, pp.1344-1354, 1964.
DOI : 10.1121/1.1919207

R. H. Lyon and T. Scharton, Vibrational???Energy Transmission in a Three???Element Structure, The Journal of the Acoustical Society of America, vol.38, issue.2
DOI : 10.1121/1.1909649

G. Maidanik and J. Dickey, Wave derivation of the energetics of driven coupled one-dimensional dynamic systems, Journal of Sound and Vibration, vol.139, issue.1, pp.31-42, 1990.
DOI : 10.1016/0022-460X(90)90773-S

L. Bot, Derivation of statistical energy analysis from radiative exchanges, Journal of Sound and Vibration, vol.300, issue.3-5, pp.763-779, 2007.
DOI : 10.1016/j.jsv.2006.08.033

URL : https://hal.archives-ouvertes.fr/hal-00469455

D. Langhe, High frequency vibrations : contributions to experimental and computational SEA parameter identification techniques, 1996.

R. J. Craik, The prediction of sound transmission through buildings using statistical energy analysis, Journal of Sound and Vibration, vol.82, issue.4, pp.505-516, 1982.
DOI : 10.1016/0022-460X(82)90404-7

R. J. Craik, A review of sound transmission through buildings using statistical energy analysis, 1993.

T. Koizumi, N. Tsujiuchi, and H. Tanaka, Prediction of the vibration in buildings using statistical energy analysis, Conference and exposition on structural dynamics. Society for Experimental Mechanics, 2002.

T. Lim and R. Singh, Statistical Energy Analysis of a Gearbox with Emphasis on the Bearing Path, Noise Control Engineering Journal, vol.37, issue.2, pp.63-69, 1991.
DOI : 10.3397/1.2827795

G. Borello, Prediction noise transmission in a truck cabin using the statistical energy analysis, IUTAM symposium on statistical energy analysis. Kluwer academic publishers, 1997.

X. Huang, M. J. Moeller, J. J. Lee, and R. E. , Application of Statistical Energy Analysis (SEA) to the Development of a Light Truck Sound Package, IUTAM symposium on statistical energy analysis. Kluwer academic publishers, 1997.
DOI : 10.1007/978-94-015-9173-7_24

P. Hynnä, P. Klinge, and J. Vuoksinen, Prediction of structure-borne sound transmission in large welded ship structures using statistical energy analysis, Journal of Sound and Vibration, vol.180, issue.4, pp.583-607, 1995.
DOI : 10.1006/jsvi.1995.0101

M. P. Sheng, M. Q. Wang, J. C. Sun, and B. Qian, Statistical energy analysis for complicated coupled system and its application in engineering, Journal of Sound and Vibration, vol.274, issue.3-5, pp.3-5877, 2004.
DOI : 10.1016/j.jsv.2003.06.013

O. Guasch and L. Cortes, Graph theory applied to noise and vibration control in statistical energy analysis models, The Journal of the Acoustical Society of America, vol.125, issue.6, pp.3657-3672, 2009.
DOI : 10.1121/1.3125324

O. Guasch and A. Aragonès, Finding the dominant energy transmission paths in statistical energy analysis, Journal of Sound and Vibration, vol.330, issue.10, pp.2325-2338, 2011.
DOI : 10.1016/j.jsv.2010.11.021

D. A. Bies and S. Hamid, In situ determination of loss and coupling loss factors by the power injection method, Journal of Sound and Vibration, vol.70, issue.2, pp.187-204, 1980.
DOI : 10.1016/0022-460X(80)90595-7

L. Wu, A. Agren, and U. Sundback, Determination of loss factors for statistical energy analysis of a diesel engine with geometric averaging approach, Acta Acustica, vol.2, pp.127-142, 1994.

D. Langhe and P. Sas, Statistical analysis of the power injection method, The Journal of the Acoustical Society of America, vol.100, issue.1
DOI : 10.1121/1.415915

N. Totaro, Caractérisation de sources aérodynamiques et sous-structuration pour la méthode SEA, 2004.

N. Totaro and J. Guyader, SEA substructuring using cluster analysis: The MIR index, Journal of Sound and Vibration, vol.290, issue.1-2, pp.264-289, 2006.
DOI : 10.1016/j.jsv.2005.03.030

URL : https://hal.archives-ouvertes.fr/hal-00414808

C. Diaz-cereceda, J. Poblet-puig, and A. Rodriguez-ferran, Automatic subsystem identification in statistical energy analysis, Mechanical Systems and Signal Processing, vol.54, issue.55, 2014.
DOI : 10.1016/j.ymssp.2014.09.003

G. R. Khabbaz, Comparison of Mechanical Coupling Factor by Two Methods, The Journal of the Acoustical Society of America, vol.47, issue.1B
DOI : 10.1121/1.1911520

S. H. Crandall and R. Lotz, On the Coupling Loss Factor in Statistical Energy Analysis, The Journal of the Acoustical Society of America, vol.49, issue.1B
DOI : 10.1121/1.1912337

W. Wohle, T. Beckman, and H. Schreckenbach, Coupling loss factors for statistical energy analysis of sound transmission at rectangular structural slab joints, part I, Journal of Sound and Vibration, vol.77, issue.3, pp.323-334, 1981.
DOI : 10.1016/S0022-460X(81)80169-1

W. Wohle, T. Beckman, and H. Schreckenbach, Coupling loss factors for statistical energy analysis of sound transmission at rectangular structural slab joints, part II, Journal of Sound and Vibration, vol.77, issue.3, pp.335-344, 1981.
DOI : 10.1016/S0022-460X(81)80170-8

R. S. Langley, A derivation of the coupling loss factors used in statistical energy analysis, Journal of Sound and Vibration, vol.141, issue.2
DOI : 10.1016/0022-460X(90)90835-N

C. Cacciolati and J. Guyader, Measurement of SEA Coupling Loss Factors using Point Mobilities, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.346, issue.1681, pp.465-475, 1994.
DOI : 10.1098/rsta.1994.0029

L. Maxit and J. Guyader, ESTIMATION OF SEA COUPLING LOSS FACTORS USING A DUAL FORMULATION AND FEM MODAL INFORMATION, PART I: THEORY, Journal of Sound and Vibration, vol.239, issue.5, pp.907-930, 2001.
DOI : 10.1006/jsvi.2000.3192

L. Maxit and J. Guyader, ESTIMATION OF SEA COUPLING LOSS FACTORS USING A DUAL FORMULATION AND FEM MODAL INFORMATION, PART II: NUMERICAL APPLICATIONS, Journal of Sound and Vibration, vol.239, issue.5, pp.931-948, 2001.
DOI : 10.1006/jsvi.2000.3193

A. J. Keane and W. G. Price, Statistical energy analysis of strongly coupled systems, Journal of Sound and Vibration, vol.117, issue.2, pp.363-386, 1987.
DOI : 10.1016/0022-460X(87)90545-1

D. S. Berrnstein and Y. Kishimoto, Thermodynamic modelling of interconnected systems, part i conservative coupling, J. Sound Vibrat, vol.182, pp.23-58, 1995.

F. J. Fahy and Y. De-yuan, Power flow between non-conservatively coupled oscillators, Journal of Sound and Vibration, vol.114, issue.1
DOI : 10.1016/S0022-460X(87)80227-4

N. Lalor, E. J. Richards, and J. C. Sun, Power flow and energy balance of non-conservatively coupled structures, i : Theory, J. Sound Vibrat, vol.112, issue.2, pp.321-330, 1987.

B. R. Mace, Statistical energy analysis, energy distribution models and system modes, Journal of Sound and Vibration, vol.264, issue.2, pp.391-409, 2003.
DOI : 10.1016/S0022-460X(02)01201-4

L. Maxit, Extension et reformulation du modèle SEA par la prise en compte de la répartition des énergies modales, 2000.

N. Totaro and J. Guyader, MODal ENergy analysis, Journal of Sound and Vibration, vol.332, issue.16, pp.3735-3749, 2013.
DOI : 10.1016/j.jsv.2013.02.022

URL : https://hal.archives-ouvertes.fr/hal-00841463

R. S. Langley, A wave intensity technique for the analysis of high frequency vibrations, Journal of Sound and Vibration, vol.159, issue.3
DOI : 10.1016/0022-460X(92)90754-L

P. W. Smith, Response and Radiation of Structural Modes Excited by Sound, The Journal of the Acoustical Society of America, vol.34, issue.5, pp.640-647, 1962.
DOI : 10.1121/1.1918178

D. E. Newland, Calculation of power flow between coupled oscillators, Journal of Sound and Vibration, vol.3, issue.3, pp.262-276, 1966.
DOI : 10.1016/0022-460X(66)90095-2

D. E. Newland, Power Flow between a Class of Coupled Oscillators, The Journal of the Acoustical Society of America, vol.43, issue.3, pp.553-559, 1968.
DOI : 10.1121/1.1910865

F. J. Fahy, Energy flow between oscillators: special case of point excitation, Journal of Sound and Vibration, vol.11, issue.4, pp.481-483, 1970.
DOI : 10.1016/S0022-460X(70)80012-8

F. J. Fahy, L'analyse statistique énergétique, pp.10-25, 1975.

R. Lotz and S. H. Crandall, Prediction and measurement of the proportionality constant in statistical energy analysis of structures, The Journal of the Acoustical Society of America, vol.54, issue.2, pp.516-524, 1973.
DOI : 10.1121/1.1913609

B. R. Mace and L. Ji, The statistical energy analysis of coupled sets of oscillators, Proc. R
DOI : 10.1098/rspa.2007.1824

G. Maidanik, Response of coupled dynamic systems, Journal of Sound and Vibration, vol.46, issue.4, pp.561-583, 1976.
DOI : 10.1016/0022-460X(76)90681-7

R. S. Langley, A general derivation of the statistical energy analysis equations for coupled dynamic systems, Journal of Sound and Vibration, vol.135, issue.3, pp.499-508, 1989.
DOI : 10.1016/0022-460X(89)90702-5

A. J. Keane and W. G. Price, A note on the power flowing between two conservatively coupled multi-modal subsystems, Journal of Sound and Vibration, vol.144, issue.2, pp.185-196, 1991.
DOI : 10.1016/0022-460X(91)90743-4

B. R. Mace, Power flow between two continuous one-dimensional subsystems: A wave solution, Journal of Sound and Vibration, vol.154, issue.2, pp.289-319, 1992.
DOI : 10.1016/0022-460X(92)90583-J

B. R. Mace, The statistics of power flow between two continuous one-dimensional subsystems, Journal of Sound and Vibration, vol.154, issue.2, pp.321-341, 1992.
DOI : 10.1016/0022-460X(92)90584-K

B. R. Mace, The Statistical Energy Analysis of Two Continuous One-Dimensional Subsystems, Journal of Sound and Vibration, vol.166, issue.3, pp.429-461, 1993.
DOI : 10.1006/jsvi.1993.1305

L. Cremer, M. Heckl, and E. E. Ungar, Structure-Borne Sound : Structural vibrations and sound radiation at audio frequencies, 1988.

C. B. Burroughs, R. W. Fisher, and F. R. Kem, An introduction to statistical energy analysis, The Journal of the Acoustical Society of America, vol.101, issue.4, pp.1779-1789, 1997.
DOI : 10.1121/1.418074

A. and L. Bot, Foundation of statistical energy analysis (In press), 2014.

W. Gersch, Average Power and Power Exchange in Oscillators, The Journal of the Acoustical Society of America, vol.46, issue.5B, pp.1180-1185, 1969.
DOI : 10.1121/1.1911839

J. Woodhouse, An approach to the theoretical background of statistical energy analysis applied to structural vibration, The Journal of the Acoustical Society of America, vol.69, issue.6, pp.1695-1709, 1981.
DOI : 10.1121/1.385949

D. E. Newland, An introduction to random vibrations and spectral analysis, 1975.

J. Guyader, Vibrations des milieux continus, Hermes Science, 2002.

V. Martin, Éléments d'acoustique générale, Presse Polytechniques et Universitaires Romandes, 2007.

R. L. Weaver and O. Lobkis, Enhanced Backscattering and Modal Echo of Reverberant Elastic Waves, Physical Review Letters, vol.84, issue.21, pp.4942-4945, 2000.
DOI : 10.1103/PhysRevLett.84.4942

T. Lafont, N. Totaro, and A. L. Bot, Statistical energy analysis : correlation between diffuse field and energy equipartition, Proceedings of the 1st euro-mediterranean conference on structural dynamics and vibroacoustics, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00841466

T. Lafont, N. Totaro, and A. L. Bot, Review of statistical energy analysis hypotheses in vibroacoustics, Proc. R. Soc. A, pp.4701471-2946, 2014.
DOI : 10.1121/1.3147502

URL : https://hal.archives-ouvertes.fr/hal-00918078

R. L. Weaver, Diffuse waves in finite plates, Journal of Sound and Vibration, vol.94, issue.3, pp.319-335, 1984.
DOI : 10.1016/S0022-460X(84)80014-0

C. Faller, Signal processing for audio and acoustics, EPFL, 2010.

R. Lyon, Needed: a new definition of diffusion, The Journal of the Acoustical Society of America, vol.56, issue.4, pp.1300-1302, 1974.
DOI : 10.1121/1.1903425

W. Soedel, Vibration of Plates and Shells, Journal of Vibration Acoustics Stress and Reliability in Design, vol.105, issue.3, 2004.
DOI : 10.1115/1.3269097

M. R. Schroeder and K. H. Kuttruff, On Frequency Response Curves in Rooms. Comparison of Experimental, Theoretical, and Monte Carlo Results for the Average Frequency Spacing between Maxima, The Journal of the Acoustical Society of America, vol.34, issue.1, pp.76-80, 1962.
DOI : 10.1121/1.1909022

L. Bot and V. Cotoni, Validity diagrams of statistical energy analysis, Journal of Sound and Vibration, vol.329, issue.2, pp.221-235, 2010.
DOI : 10.1016/j.jsv.2009.09.008

URL : https://hal.archives-ouvertes.fr/hal-00573940

Y. G. Sinai, Introduction to Ergodic Theory, 1976.

G. Gallavotti, problèmes ergodiques de la mécanique classique, EPFL, 1976.

W. B. Joyce, Sabine???s reverberation time and ergodic auditoriums, The Journal of the Acoustical Society of America, vol.58, issue.3, pp.643-655, 1975.
DOI : 10.1121/1.380711

J. Polack, Playing billiards in the concert hall: The mathematical foundations of geometrical room acoustics, Applied Acoustics, vol.38, issue.2-4, pp.235-244, 1993.
DOI : 10.1016/0003-682X(93)90054-A

J. Polack, Modifying chambers to play billiards : the foundations of reverberation theory, Acustica, vol.76, pp.257-272, 1992.

M. Bruneau, Manuel d'acoustique fondamental, Editions Hermès, 1998.

H. Bacry, Introduction aux concepts de la physique statistique, Ellipses, 1998.

J. Perdijon, Histoire de la physique, 2008.

R. Locqueneux, Une histoire des idées en physique, 2009.

F. Bloch and J. D. Walecka, Fundamentals of statistical mechanics. Imperial college press, 2001.

F. Magionesi and A. Carcaterra, Insights into the energy equipartition principle in large undamped structures, Journal of Sound and Vibration, vol.322, issue.4-5, pp.851-869, 2009.
DOI : 10.1016/j.jsv.2008.11.038

N. Roveri, A. Carcaterra, and A. Akay, Energy equipartition and frequency distribution in complex attachments, The Journal of the Acoustical Society of America, vol.126, issue.1, pp.122-128, 2009.
DOI : 10.1121/1.3147502

R. L. Weaver, Equipartition and mean-square responses in large undamped structures, The Journal of the Acoustical Society of America, vol.110, issue.2
DOI : 10.1121/1.1385566

A. Carcaterra, AN ENTROPY FORMULATION FOR THE ANALYSIS OF ENERGY FLOW BETWEEN MECHANICAL RESONATORS, Mechanical Systems and Signal Processing, vol.16, issue.5, pp.905-920, 2002.
DOI : 10.1006/mssp.2002.1486

A. Carcaterra, Entropy in vibration : energy sharing among linear and nonlinear freely vibrating systems, Tenth international congress on sound and vibration. ICSV, 2003.

T. Lafont, N. Totaro, and A. L. Bot, Acoustique statistique : étude de l'hypothèse de couplage faible et de l'influence des modes non-résonants pour la sea, 12ème congrès français d'acoustique, 2014.

T. Lafont, N. Totaro, and A. L. Bot, On the requirement of weak coupling in statistical energy analysis, 2014.

S. Finnveden, A quantitative criterion validating coupling power proportionality in statistical energy analysis, Journal of Sound and Vibration, vol.330, issue.1, pp.87-109, 2011.
DOI : 10.1016/j.jsv.2010.08.003

F. J. Fahy and P. P. James, A STUDY OF THE KINETIC ENERGY IMPULSE RESPONSE AS AN INDICATOR OF THE STRENGTH OF COUPLING BETWEEN SEA SUBSYSTEMS, Journal of Sound and Vibration, vol.190, issue.3, pp.363-386, 1996.
DOI : 10.1006/jsvi.1996.0069

P. W. Smith, Statistical models of coupled dynamical systems and the transition from weak to strong coupling, The Journal of the Acoustical Society of America, vol.65, issue.3, pp.695-698, 1979.
DOI : 10.1121/1.382481

S. Finnveden, ENSEMBLE AVERAGED VIBRATION ENERGY FLOWS IN A THREE-ELEMENT STRUCTURE, Journal of Sound and Vibration, vol.187, issue.3, pp.495-529, 1995.
DOI : 10.1006/jsvi.1995.0538

B. R. Mace, Statistical energy analysis: coupling loss factors, indirect coupling and system modes, Journal of Sound and Vibration, vol.279, issue.1-2, pp.141-170, 2005.
DOI : 10.1016/j.jsv.2003.10.040

. Fredö, A SEA-LIKE APPROACH FOR THE DERIVATION OF ENERGY FLOW COEFFICIENTS WITH A FINITE ELEMENT MODEL, Journal of Sound and Vibration, vol.199, issue.4, pp.645-666, 1997.
DOI : 10.1006/jsvi.1996.0634

M. Barbagallo, Statistical energy analysis and variational principles for the prediction of sound transmission in multilayered structures, 2013.

M. J. Crocker and A. J. Price, Sound Transmission through Single and Double Panels Using Statistical Energy Analysis, The Journal of the Acoustical Society of America, vol.48, issue.1A, pp.683-693, 1970.
DOI : 10.1121/1.1975117

R. J. Craik, Non-resonant sound transmission through double walls using statistical energy analysis, Applied Acoustics, vol.64, issue.3, pp.325-341, 2003.
DOI : 10.1016/S0003-682X(02)00051-8

L. Maxit, K. Ege, N. Totaro, and J. Guyader, Non resonant transmission modelling with statistical modal energy distribution analysis, Journal of Sound and Vibration, vol.333, issue.2, pp.499-519, 2014.
DOI : 10.1016/j.jsv.2013.09.007

URL : https://hal.archives-ouvertes.fr/hal-00872485

A. Culla and A. Sestieri, Is it possible to treat confidentially SEA the wolf in sheep's clothing?, Mechanical Systems and Signal Processing, vol.20, issue.6, pp.1372-1399, 2006.
DOI : 10.1016/j.ymssp.2005.02.007

M. De-rochambeau, Analyse des interactions fluide-structure en moyennes fréquence sous chargement aérodynamique, 2010.