T. Massoud and S. Gambhir, Molecular imaging in living subjects: seeing fundamental biological processes in a new light, Genes & Development, vol.17, issue.5, pp.545-580, 2003.
DOI : 10.1101/gad.1047403

W. Foltz and D. Jaffray, Principles of Magnetic Resonance Imaging, Radiation Research, vol.177, issue.4, pp.331-348
DOI : 10.1667/RR2620.1

A. Merbach and E. Toth, The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, 2001.
DOI : 10.1002/9781118503652

H. Sharma and J. Lagopoulos, MRI physics: pulse sequences, Acta Neuropsychiatrica, vol.8, issue.02, pp.90-92, 2010.
DOI : 10.1016/S0090-3019(96)00375-8

E. Jackson, L. Ginsberg, D. Schomer, and N. Leeds, A review of MRI pulse sequences and techniques in neuroimaging, Surgical Neurology, vol.47, issue.2, pp.185-199, 1997.
DOI : 10.1016/S0090-3019(96)00375-8

M. Pysz, S. Gambhir, and J. Willmann, Molecular imaging: current status and emerging strategies, Clinical Radiology, vol.65, issue.7, pp.500-516, 2010.
DOI : 10.1016/j.crad.2010.03.011

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3150531

Z. Zhang, S. Nair, and T. Mcmurry, Gadolinium Meets Medicinal Chemistry: MRI Contrast Agent Development, Current Medicinal Chemistry, vol.12, issue.7, pp.751-778, 2005.
DOI : 10.2174/0929867053507379

V. Kubicek, E. Toth, . Design, . Function, . Metal et al., Metal Ion Controlled Reactivity, 11. Sherry AD, Caravan P, Lenkinski RE: Primer on Gadolinium Chemistry, pp.63-129, 2009.

P. Hermann, J. Kotek, V. Kubicek, and I. Lukes, Gadolinium(iii) complexes as MRI contrast agents: ligand design and properties of the complexes, Dalton Transactions, vol.361, issue.186, pp.3027-3047, 2008.
DOI : 10.1016/j.jinorgbio.2008.02.002

E. Brucher, Kinetic stabilities of gadolinium(III) chelates used as MRI contrast agents. Contrast Agents I, pp.103-122, 2002.

M. Port, J. Idee, C. Medina, C. Robic, M. Sabatou et al., Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review, BioMetals, vol.41, issue.suppl 1, pp.469-490, 2008.
DOI : 10.1007/s10534-008-9135-x

X. Wang, T. Jin, V. Comblin, A. Lopezmut, E. Merciny et al., A kinetic investigation of the lanthanide DOTA chelates. Stability and rates of formation and of dissociation of a macrocyclic gadolinium(III) polyaza polycarboxylic MRI contrast agent, RB: Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications, pp.1095-10992293, 1992.
DOI : 10.1021/ic00032a034

N. Bloembergen, E. Purcell, R. Pound, . Relaxation, . In et al., Relaxation Effects in Nuclear Magnetic Resonance Absorption, Physical Review, vol.73, issue.7, pp.679-712, 1948.
DOI : 10.1103/PhysRev.73.679

I. Solomon, . Relaxation, . In, . System, and . Of, Relaxation Processes in a System of Two Spins, Physical Review, vol.99, issue.2, pp.559-565, 1955.
DOI : 10.1103/PhysRev.99.559

I. Solomon, N. Bloembergen, . Nuclear, . Interactions, . The et al., Nuclear Magnetic Interactions in the HF Molecule, The Journal of Chemical Physics, vol.25, issue.2, pp.261-266, 1956.
DOI : 10.1063/1.1742867

N. Bloembergen, . Proton, . Relaxation, . In, and . Solutions, Proton Relaxation Times in Paramagnetic Solutions, The Journal of Chemical Physics, vol.27, issue.2, pp.572-573, 1957.
DOI : 10.1063/1.1743771

N. Bloembergen, L. Morgan, . Proton, . Relaxation, . In et al., Proton Relaxation Times in Paramagnetic Solutions. Effects of Electron Spin Relaxation, The Journal of Chemical Physics, vol.34, issue.3, p.842, 1961.
DOI : 10.1063/1.1731684

S. Benazeth, J. Purans, M. Chalbot, M. Nguyen-van-duong, N. L. Keller et al., Complexes: Solid State and Solution Structures, Inorganic Chemistry, vol.37, issue.15, pp.3667-3674, 1998.
DOI : 10.1021/ic9707321

E. Toth, L. Helm, A. Merbach, C. Farrar, L. Frullano et al., Relaxivity of MRI contrast agents Contrast Agents I Influence of molecular parameters and increasing magnetic field strength on relaxivity of gadolinium-and manganese-based T(1) contrast agents, Contrast Media Mol Imaging, vol.221, issue.42, pp.61-10189, 2002.

S. Aime, M. Botta, M. Fasano, and E. Terreno, Prototropic and Water-Exchange Processes in Aqueous Solutions of Gd(III) Chelates, Accounts of Chemical Research, vol.32, issue.11, pp.941-949, 1999.
DOI : 10.1021/ar970300u

S. Laurent, L. Elst, F. Botteman, and R. Muller, An Assessment of the Potential Relationship between the Charge of Gd-DTPA Complexes and the Exchange Rate of the Water Coordinated to the Metal, European Journal of Inorganic Chemistry, vol.33, issue.28, pp.4369-4379, 2008.
DOI : 10.1002/ejic.200800541

S. Zhang, Z. Kovacs, S. Burgess, A. S. Terreno, E. Sherry et al., {DOTA-bis(amide)}lanthanide Complexes: NMR Evidence for Differences in Water-Molecule Exchange Rates for Coordination Isomers, Chemistry, vol.37, issue.1, pp.288-296, 2001.
DOI : 10.1002/1521-3765(20010105)7:1<288::AID-CHEM288>3.0.CO;2-6

L. Karfeld-sulzer, E. Waters, N. Davis, T. Meade, and A. Barron, Multivalent Protein Polymer MRI Contrast Agents: Controlling Relaxivity via Modulation of Amino Acid Sequence, Biomacromolecules, vol.11, issue.6, pp.1429-1436, 2010.
DOI : 10.1021/bm901378a

J. Yang, Y. J. Wei, L. Zurkiya, O. , Y. W. Li et al., Rational Design of Protein-Based MRI Contrast Agents, Journal of the American Chemical Society, vol.130, issue.29, pp.1309260-9267, 2008.
DOI : 10.1021/ja800736h

J. Andre, E. Toth, H. Fischer, A. Seelig, H. Macke et al., High Relaxivity for Monomeric Gd(DOTA)-Based MRI Contrast Agents, Thanks to Micellar Self-Organization, Chemistry - A European Journal, vol.5, issue.10, pp.2977-2983, 1999.
DOI : 10.1002/(SICI)1521-3765(19991001)5:10<2977::AID-CHEM2977>3.0.CO;2-T

S. Torres, J. Martins, J. Andre, C. Geraldes, A. Merbach et al., Supramolecular Assembly of an Amphiphilic GdIII Chelate: Tuning the Reorientational Correlation Time and the Water Exchange Rate, Chemistry - A European Journal, vol.75, issue.186, pp.940-948, 2006.
DOI : 10.1002/chem.200500551

E. Wiener, F. Auteri, J. Chen, M. Brechbiel, O. Gansow et al., Molecular Dynamics of Ion???Chelate Complexes Attached to Dendrimers, Journal of the American Chemical Society, vol.118, issue.33, pp.1187774-7782, 1996.
DOI : 10.1021/ja9536126

G. Yan, A. C. Li, L. Zong, R. Liu, and F. , Dendrimers as carriers for contrast agents in magnetic resonance imaging, Chinese Science Bulletin, vol.90, issue.27-28, pp.27-283085, 2010.
DOI : 10.1007/s11434-010-3267-4

Y. Miyake, Y. Kimura, S. Ishikawa, H. Tsujita, H. Miura et al., Synthesis and functional evaluation of chiral dendrimer-triaminecoordinated Gd complexes as highly sensitive MRI contrast agents, Tetrahedron Letters, vol.2012, issue.34, pp.534580-4583

E. Battistini, E. Gianolio, R. Gref, P. Couvreur, S. Fuzerova et al., High-relaxivity magnetic resonance imaging (MRI) contrast agent based on supramolecular assembly between a gadolinium chelate, a modified dextran, and polybeta-cyclodextrin, Chemistry-a European Journal, issue.15, pp.144551-4561, 2008.

V. Jacques, S. Dumas, W. Sun, J. Troughton, and M. Greenfield, Caravan P: High-Relaxivity Magnetic Resonance Imaging Contrast Agents Part 2 Optimization of Inner-and Second- Sphere Relaxivity, Invest Radiol, issue.10, pp.45613-624, 2010.

M. Botta and L. Tei, Relaxivity Enhancement in Macromolecular and Nanosized GdIII-Based MRI Contrast Agents, European Journal of Inorganic Chemistry, vol.44, issue.12, pp.20121945-1960
DOI : 10.1002/ejic.201101305

A. Makino, H. Harada, T. Okada, H. Kimura, H. Amano et al., Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent, Nanomedicine: Nanotechnology, Biology and Medicine, vol.7, issue.5, pp.638-646, 2011.
DOI : 10.1016/j.nano.2011.01.015

S. Aime, L. Frullano, and S. Crich, Compartmentalization of a gadolinium complex in the apoferritin cavity: A route to obtain high relaxivity contrast agents for magnetic resonance imaging, Angewandte Chemie-International Edition, issue.6, p.411017, 2002.

K. Briley-saebo, S. Geninatti-crich, D. Cormode, A. Barazza, W. Mulder et al., High-Relaxivity Gadolinium-Modified High-Density Lipoproteins as Magnetic Resonance Imaging Contrast Agents, The Journal of Physical Chemistry B, vol.113, issue.18, pp.1136283-6289, 2009.
DOI : 10.1021/jp8108286

D. Cormode, W. Mulder, E. Fisher, and Z. Fayad, Modified lipoproteins as contrast agents for molecular imaging, Future Lipidology, vol.2, issue.6, pp.587-590, 2007.
DOI : 10.2217/17460875.2.6.587

L. Helm, Optimization of gadolinium-based MRI contrast agents for high magnetic-field applications, Future Medicinal Chemistry, vol.2, issue.3, pp.385-396
DOI : 10.4155/fmc.09.174

!. , !. Invalid-citation-!-!-!-49, and J. Mansfield, Distinguished Photons: A Review of In Vivo Spectral Fluorescence Imaging in Small Animals, Curr Pharm Biotechnol, vol.11, issue.6, pp.628-638, 2010.

J. Prescher and C. Contag, Guided by the light: visualizing biomolecular processes in living animals with bioluminescence, Current Opinion in Chemical Biology, vol.14, issue.1, pp.80-89, 2010.
DOI : 10.1016/j.cbpa.2009.11.001

J. Bunzli, Lanthanide Luminescence for Biomedical Analyses and Imaging, Chemical Reviews, vol.110, issue.5, pp.2729-2755, 2010.
DOI : 10.1021/cr900362e

M. Elbanowski and B. Makowsaka, The lanthanides as luminescent probes in investigations of biochemical systems, Journal of Photochemistry and Photobiology A: Chemistry, vol.99, issue.2-3, pp.85-92, 1996.
DOI : 10.1016/S1010-6030(96)04417-6

V. Yam and K. Lo, Recent advances in utilization of transition metal complexes and lanthanides as diagnostic tools, Coordination Chemistry Reviews, vol.184, issue.1, pp.157-240, 1999.
DOI : 10.1016/S0010-8545(98)00262-8

S. Petoud, C. Shade, H. Uh, K. Gogick, Z. Thompson et al., Luminescent dendrimer complexes for in vivo biologic imaging Abstr Pap Am Chem Soc Pyridine-Based Lanthanide Complexes Combining MRI and NIR Luminescence Activities Probes for dual MRI-optical imaging Tóth É: Towards highly efficient, intelligent and bimodal imaging probes: Novel approaches provided by lanthanide coordination chemistry, Chemistry-a European Journal Bonnet CS Comptes Rendus Chimie, vol.2012, issue.13, pp.1419-14316, 2009.

J. Bunzli and C. Piguet, Taking advantage of luminescent lanthanide ions, Chemical Society Reviews, vol.10, issue.221, pp.1048-1077, 2005.
DOI : 10.1039/b406082m

J. Bunzli, Lanthanide-containing luminescent molecular edifices, Journal of Alloys and Compounds, vol.408, issue.412, pp.934-944, 2006.
DOI : 10.1016/j.jallcom.2004.11.098

J. Bunzli and S. Eliseeva, Lanthanide NIR luminescence for telecommunications, bioanalyses and solar energy conversion, Journal of Rare Earths, vol.28, issue.6, pp.824-842
DOI : 10.1016/S1002-0721(09)60208-8

F. Galgano, F. Favati, M. Caruso, T. Scarpa, and A. Palma, Analysis of trace elements in southern Italian wines and their classification according to provenance. LWT -Food Science and Technology, pp.411808-1815, 2006.

J. Bunzli, Luminescent lanthanide probes as diagnostic and therapeutic tools Metal Complexes in Tumor Diagnosis and as Anticancer Agents, Metal Ions in Biolgical Systems, vol.42, issue.42, pp.39-75, 2004.

R. Shannon, . And, . Studies, . Interatomic, . In et al., Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, vol.32, issue.5, pp.751-767, 1976.
DOI : 10.1107/S0567739476001551

J. Idee, M. Port, I. Raynal, M. Schaefer, L. Greneur et al., Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review, Fundamental and Clinical Pharmacology, vol.32, issue.1, pp.563-576, 2006.
DOI : 10.1681/ASN.2006060601

N. Itoh, M. Kawakita, and M. , Characterization of Gd3+ and Tb3+ Binding Sites on Ca2+, Mg2+-Adenosine Triphosphatase of Sarcoplasmic Reticulum1, The Journal of Biochemistry, vol.95, issue.3, pp.661-669, 1984.
DOI : 10.1093/oxfordjournals.jbchem.a134655

H. Uh and S. Petoud, Novel antennae for the sensitization of near infrared luminescent lanthanide cations, Comptes Rendus Chimie, vol.13, issue.6-7, pp.6-7668
DOI : 10.1016/j.crci.2010.05.007

URL : https://hal.archives-ouvertes.fr/hal-00529481

F. Ramirez, S. Varbanov, C. C. Muller, G. Fatin-rouge, N. Scopelliti et al., A p-tertbutylcalix 6 arene bearing phosphinoyl pendant arms for the complexation and sensitisation of lanthanide ions, Journal of the Chemical Society-Dalton Transactions, issue.23, pp.4505-4513, 2002.

G. Marriott, M. Heidecker, E. Diamandis, Y. Yanmarriott, . Luminescence et al., Time-resolved delayed luminescence image microscopy using an europium ion chelate complex, Biophysical Journal, vol.67, issue.3, pp.957-965, 1994.
DOI : 10.1016/S0006-3495(94)80597-1

S. Eliseeva, J. Buenzli, A. Cgaleo, F. Pointillart, L. Ouahab et al., Lanthanide luminescence for functional materials and bio-sciences, Chem. Soc. Rev., vol.46, issue.123, pp.189-22715, 2010.
DOI : 10.1039/b911301k

A. Thibon and V. Pierre, Principles of responsive lanthanide-based luminescent probes for cellular imaging, Analytical and Bioanalytical Chemistry, vol.129, issue.1, pp.107-120, 2009.
DOI : 10.1007/s00216-009-2683-2

D. Parker and J. Williams, Getting excited about lanthanide complexation chemistry, Journal of the Chemical Society, Dalton Transactions, issue.18, pp.3613-3628, 1996.
DOI : 10.1039/dt9960003613

J. Bunzli and C. Piguet, Lanthanide-Containing Molecular and Supramolecular Polymetallic Functional Assemblies, Chemical Reviews, vol.102, issue.6, pp.1897-1928, 2002.
DOI : 10.1021/cr010299j

A. Beeby, L. Bushby, D. Maffeo, and J. Williams, 1 References 76 The efficient intramolecular sensitisation of terbium(III) and europium(III) by benzophenone-containing ligands, J Chem Soc-Perkin Trans, vol.2, issue.7, pp.20001281-1283

J. Leonard, C. Nolan, F. Stomeo, and T. Gunnlaugsson, Photochemistry and photophysics of coordination compounds: Lanthanides. In: Photochemistry and Photophysics of Coordination Compounds Ii, pp.1-43

R. Dickins, D. Parker, A. Desousa, and J. Williams, Closely diffusing O-H, amide N-H and methylene C-H oscillators quench the excited state of europium complexes in solution, Chem Commun, issue.6, pp.697-698, 1996.

A. Beeby, I. Clarkson, R. Dickins, S. Faulkner, D. Parker et al., Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states, Journal of the Chemical Society, Perkin Transactions 2, vol.2, issue.3, pp.1999493-503
DOI : 10.1039/a808692c

W. Horrocks, D. Sudnick, . Lanthanide, . Probes, . Structure et al., Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules, Journal of the American Chemical Society, vol.101, issue.2, pp.334-340, 1979.
DOI : 10.1021/ja00496a010

S. Faulkner, S. Pope, and B. Burton-pye, Lanthanide Complexes for Luminescence Imaging Applications, Applied Spectroscopy Reviews, vol.39, issue.1, pp.1-31, 2005.
DOI : 10.1021/ja035634v

D. Parker and G. , Responsive luminescent lanthanide complexes in Lanthanide ions and their interactions with biological systems, 2003.

F. Caille, C. Bonnet, F. Buron, S. Villette, L. Helm et al., Isoquinolinebased lanthanide complexes: bright NIR optical probes and efficient MRI agents, Inorg Chem, vol.2012, issue.514, pp.2522-2532
URL : https://hal.archives-ouvertes.fr/hal-00721803

G. Strijkers, W. Mulder, G. Van-tilborg, and K. Nicolay, MRI contrast agents: Current status and future perspectives. Anti-Cancer Agents in Medicinal Chemistry, pp.291-305, 2007.

V. Jmlap, The [18]-N3O3 aza-oxa Macrocycle: a Selective Receptor Unit for Primary Ammonium Cations, Tetrahedron Letters, vol.21, pp.1323-1326, 1980.

A. Hellebust and R. Richards-kortum, Advances in molecular imaging: targeted optical contrast agents for cancer diagnostics, Nanomedicine, vol.7, issue.3, pp.429-445
DOI : 10.2217/nnm.12.12

C. Geraldes, K. Djanashvili, and J. Peters, Glycoconjugate probes and targets for molecular imaging using magnetic resonance, Future Medicinal Chemistry, vol.2, issue.3, pp.409-425, 2009.
DOI : 10.4155/fmc.09.157

P. Verwilst, S. Eliseeva, V. Elst, L. Burtea, C. Laurent et al., A Tripodal Ruthenium-Gadolinium Metallostar as a Potential alpha(v)beta(3) Integrin Specific Bimodal Imaging Contrast Agent A new class of Gd-based DO3A-ethylamine-derived targeted contrast agents for MR and optical imaging, Inorganic Chemistry Bioconjugate chemistry, vol.2012, issue.173, pp.6405-6411773, 2006.

S. Konda, M. Aref, S. Wang, M. Brechbiel, E. Wiener et al., Specific targeting of folate???dendrimer MRI contrast agents to the high affinity folate receptor expressed in ovarian tumor xenografts, Magma: Magnetic Resonance Materials in Physics, Biology, and Medicine, vol.41, issue.5, pp.104-113653, 2001.
DOI : 10.1007/BF02668091

P. Sukerkar, K. Macrenaris, T. Townsend, R. Ahmed, J. Burdette et al., Synthesis and Biological Evaluation of Water-Soluble Progesterone-Conjugated Probes for Magnetic Resonance Imaging of Hormone Related Cancers, Bioconjugate Chemistry, vol.22, issue.11, pp.222304-2316, 2011.
DOI : 10.1021/bc2003555

Y. Pu, W. Wang, G. Tang, F. Zeng, S. Achilefu et al., Spectral Polarization Imaging of Human Prostate Cancer Tissue Using a Near-infrared Receptor-targeted Contrast Agent, Technology in Cancer Research & Treatment, vol.253, issue.4, pp.429-436369, 2005.
DOI : 10.1177/153303460500400410

M. Prata, A. Santos, S. Torres, J. Andre, J. Martins et al., Targeting of lanthanide(III) chelates of DOTA-type glycoconjugates to the hepatic asyaloglycoprotein receptor: cell internalization and animal imaging studies, Contrast Media & Molecular Imaging, vol.5, issue.6, pp.246-258, 2006.
DOI : 10.1002/cmmi.111

A. Luciani, J. Olivier, O. Clement, N. Siauve, P. Brillet et al., Guy Frija et al: Glucose-Receptor MR Imaging of Tumors: Study in Mice with PEGylated Paramagnetic Niosomes, Radiology, issue.231, p.135, 2004.

T. Chuqiao, E. Osborne, and A. Louie, Activatable T1 and T2 Magnetic Resonance Imaging Contrast Agents, Ann Biomed Eng, vol.39, issue.4, pp.1335-13481348, 2011.

P. David, Luminescent lanthanide sensors for pH, pO2 and selected anions, Coord Chem Rev, issue.205, pp.109-130, 2000.

T. Meade, A. Taylor, and S. Bull, New magnetic resonance contrast agents as biochemical reporters, Current Opinion in Neurobiology, vol.13, issue.5, pp.597-602, 2003.
DOI : 10.1016/j.conb.2003.09.009

J. Major, R. Boiteau, and T. Meade, Mechanisms of Zn(II)-Activated Magnetic Resonance Imaging Agents, Inorganic Chemistry, issue.22, pp.4710788-10795, 2008.

E. Perez-mayoral, V. Negri, J. Soler-padros, S. Cerdan, and P. Ballesteros, Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy, European Journal of Radiology, vol.67, issue.3, pp.453-458, 2008.
DOI : 10.1016/j.ejrad.2008.02.048

S. Zhang, K. Wu, and A. Sherry, A Novel pH-Sensitive MRI Contrast Agent, Angewandte Chemie International Edition, vol.38, issue.21, pp.3192-3194, 1999.
DOI : 10.1002/(SICI)1521-3773(19991102)38:21<3192::AID-ANIE3192>3.0.CO;2-#

S. Aime, D. Castelli, D. Terreno, and E. , Novel pH-Reporter MRI Contrast Agents, Angewandte Chemie International Edition, vol.41, issue.22, pp.414334-4336, 2002.
DOI : 10.1002/1521-3773(20021115)41:22<4334::AID-ANIE4334>3.0.CO;2-1

F. Kalman, M. Woods, P. Caravan, P. Jurek, M. Spiller et al., Potentiometric and relaxometric properties of a gadolinium-based MRI contrast agent for sensing tissue pH, Inorganic Chemistry, issue.13, pp.465260-5270, 2007.

G. Giovenzana, R. Negri, G. Rolla, and L. Tei, Gd-Aminoethyl-DO3A Complexes: A Novel Class of pH-Sensitive MRI Contrast Agents, European Journal of Inorganic Chemistry, vol.85, issue.12, pp.2035-2039
DOI : 10.1002/ejic.201101296

S. Okada, S. Mizukami, and K. Kikuchi, Switchable MRI contrast agents based on morphological changes of pH-responsive polymers, Bioorganic & Medicinal Chemistry, vol.20, issue.2, pp.769-774
DOI : 10.1016/j.bmc.2011.12.005

K. Lokling, S. Fossheim, R. Skurtveit, A. Bjornerud, and J. Klaveness, pH-sensitive paramagnetic liposomes as MRI contrast agents: in vitro feasibility studies, Magnetic Resonance Imaging, vol.19, issue.5, pp.731-738, 2001.
DOI : 10.1016/S0730-725X(01)00380-0

E. Gianolio, S. Porto, R. Napolitano, S. Baroni, G. Giovenzana et al., Relaxometric Investigations and MRI Evaluation of a Liposome-Loaded pH-Responsive Gadolinium(III) Complex, Inorganic Chemistry, vol.51, issue.13, pp.517210-7217
DOI : 10.1021/ic300447n

M. Lowe, D. Parker, O. Reany, A. S. Botta, M. Castellano et al., Pagliarin R: pHdependent modulation of relaxivity and luminescence in macrocyclic gadolinium and europium complexes based on reversible intramolecular sulfonamide ligation, J Am Chem Soc, issue.31, pp.1237601-7609, 2001.

M. Woods, G. Kiefer, S. Bott, A. Castillo-muzquiz, C. Eshelbrenner et al., -Nitrophenolic Pendant Arm, Journal of the American Chemical Society, vol.126, issue.30, pp.1269248-9256, 2004.
DOI : 10.1021/ja048299z

URL : https://hal.archives-ouvertes.fr/in2p3-00025602

J. Van-beilen and Z. Li, Enzyme technology: an overview, Current Opinion in Biotechnology, vol.13, issue.4, pp.338-344, 2002.
DOI : 10.1016/S0958-1669(02)00334-8

R. Moats, S. Fraser, and T. Meade, A???Smart??? Magnetic Resonance Imaging Agent That Reports on Specific Enzymatic Activity, Angewandte Chemie International Edition in English, vol.36, issue.7, pp.726-728, 1997.
DOI : 10.1002/anie.199707261

A. Louie, M. Huber, E. Ahrens, U. Rothbacher, R. Moats et al., In vivo visualization of gene expression using magnetic resonance imaging, Nature Biotechnology, vol.18, issue.3, pp.321-325, 2000.

M. Alauddin, A. Louie, A. Shahinian, T. Meade, and P. Conti, Receptor mediated uptake of a radiolabeled contrast agent sensitive to ??-galactosidase activity, Nuclear Medicine and Biology, vol.30, issue.3, pp.261-265, 2003.
DOI : 10.1016/S0969-8051(02)00392-X

K. Hanaoka, K. Kikuchi, T. Terai, T. Komatsu, and T. Nagano, A Gd3+-Based Magnetic Resonance Imaging Contrast Agent Sensitive to ??-Galactosidase Activity Utilizing a Receptor-Induced Magnetization Enhancement (RIME) Phenomenon, Chemistry - A European Journal, vol.18, issue.186, pp.987-995, 2008.
DOI : 10.1002/chem.200700785

A. Keliris, T. Ziegler, R. Mishra, R. Pohmann, M. Sauer et al., Synthesis and characterization of a cell-permeable bimodal contrast agent targeting beta-galactosidase

T. Chauvin, S. Torres, R. Rosseto, J. Kotek, B. Badet et al., Lanthanide(III) Complexes That Contain a Self-Immolative Arm: Potential Enzyme Responsive Contrast Agents for Magnetic Resonance Imaging, Chemistry - A European Journal, vol.38, issue.5, pp.1408-1418
DOI : 10.1002/chem.201101779

URL : https://hal.archives-ouvertes.fr/hal-00679094

E. Rodriguez, M. Nilges, R. Weissleder, and J. Chen, Activatable Magnetic Resonance Imaging Agents for Myeloperoxidase Sensing: Mechanism of Activation, Stability, and Toxicity, Journal of the American Chemical Society, vol.134, issue.9, pp.168-177, 2010.
DOI : 10.1021/ja3009709

M. Querol, J. Chen, and A. Bogdanov, A paramagnetic contrast agent with myeloperoxidase-sensing properties, Organic & Biomolecular Chemistry, vol.70, issue.10, pp.1887-1895, 2006.
DOI : 10.1039/b601540a

J. Ronald, J. Chen, Y. Chen, A. Hamilton, E. Rodriguez et al., Enzyme-Sensitive Magnetic Resonance Imaging Targeting Myeloperoxidase Identifies Active Inflammation in Experimental Rabbit Atherosclerotic Plaques, Circulation, vol.120, issue.7, pp.592-592, 2009.
DOI : 10.1161/CIRCULATIONAHA.108.813998

A. Bogdanov, L. Matuszewski, C. Bremer, A. Petrovsky, and R. Weissleder, Oligomerization of Paramagnetic Substrates Result in Signal Amplification and can be Used for MR Imaging of Molecular Targets, Molecular Imaging, vol.1, issue.1, pp.16-23, 2002.
DOI : 10.1162/153535002753395671

J. Chen, W. Pham, R. Weissleder, and A. Bogdanov, Human myeloperoxidase: A potential target for molecular MR imaging in atherosclerosis, Magnetic Resonance in Medicine, vol.36, issue.5, pp.1021-1028, 2004.
DOI : 10.1002/mrm.20270

C. Bonnet and E. Toth, MRI probes for sensing biologically relevant metal ions, Future Medicinal Chemistry, vol.2, issue.3, pp.367-384
DOI : 10.4155/fmc.09.161

K. Cai, Magnetic resonance imaging of glutamate, Nature Medicine, vol.187, issue.2, pp.302-306
DOI : 10.1002/cmmi.383

W. Li, S. Fraser, and T. Meade, A Calcium-Sensitive Magnetic Resonance Imaging Contrast Agent, Journal of the American Chemical Society, vol.121, issue.6, pp.1413-1414, 1999.
DOI : 10.1021/ja983702l

W. Li, G. Parigi, M. Fragai, C. Luchinat, and T. Meade, Mechanistic studies of a calciumdependent MRI contrast agent, Inorganic Chemistry, issue.15, pp.414018-4024, 2002.

A. Jasanoff, M. Shapiro, T. Atanasijevic, H. Faas, and G. Westmeyer, Dynamic imaging with MRI contrast agents: quantitative considerations, Magnetic Resonance Imaging, vol.24, issue.4, pp.449-462462, 2006.

I. Mamedov, N. Logothetis, and G. Angelovski, Structure-related variable responses of calcium sensitive MRI probes, Organic & Biomolecular Chemistry, vol.39, issue.16, pp.5816-5824
DOI : 10.1039/c1ob05463e

K. Hanaoka, K. Kikuchi, Y. Urano, and T. Nagano, Selective sensing of zinc ions with a novel magnetic resonance imaging contrast agent???, Journal of the Chemical Society, Perkin Transactions 2, vol.2, issue.9, pp.20011840-1843
DOI : 10.1039/b100994j

K. Hanaoka, K. Kikuchi, Y. Urano, M. Narazaki, T. Yokawa et al., Design and Synthesis of a Novel Magnetic Resonance Imaging Contrast Agent for Selective Sensing of Zinc Ion, Chemistry & Biology, vol.9, issue.9, pp.1027-1032, 2002.
DOI : 10.1016/S1074-5521(02)00216-8

J. Major, G. Parigi, C. Luchinat, and T. Meade, The synthesis and in vitro testing of a zinc-activated MRI contrast agent, Proceedings of the National Academy of Sciences, vol.104, issue.35, pp.13881-13886, 2007.
DOI : 10.1073/pnas.0706247104

Z. Xiao-an, K. Lovejoy, A. Jasanoff, and S. Lippard, Water-soluble porphyrins as a dual-function molecular imaging platform for MRI and fluorescence zinc sensing, Proceedings of the National Academy of Sciences of the United States of America, issue.26, pp.10410780-10785, 2007.

A. Esqueda, J. Lopez, G. Andreu-de-riquer, J. Alvarado-monzon, J. Ratnakar et al., A New Gadolinium-Based MRI Zinc Sensor, Journal of the American Chemical Society, vol.131, issue.32, pp.13111387-11391, 2009.
DOI : 10.1021/ja901875v

E. Que and C. Chang, A Smart Magnetic Resonance Contrast Agent for Selective Copper Sensing, Journal of the American Chemical Society, vol.128, issue.50, pp.15942-15943, 2006.
DOI : 10.1021/ja065264l

E. Que, E. Gianolio, S. Baker, A. S. Chang, and C. , A copper-activated magnetic resonance imaging contrast agent with improved turn-on relaxivity response and anion compatibility, Dalton Trans., vol.35, issue.217, pp.469-476, 2010.
DOI : 10.1039/B916931H

N. Logothetis, Intracortical recordings and fMRI: An attempt to study operational modules and networks simultaneously, NeuroImage, vol.62, issue.2, pp.962-969
DOI : 10.1016/j.neuroimage.2012.01.033

N. Logothetis, What we can do and what we cannot do with fMRI, Nature, vol.1, issue.7197, pp.869-878, 2008.
DOI : 10.1038/nature06976

N. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, Neurophysiological investigation of the basis of the fMRI signal, Nature, issue.6843, pp.412150-157, 2001.

S. Kannurpatti, M. Motes, B. Rypma, and B. Biswal, Neural and vascular variability and the fMRI-BOLD response in normal aging, Magnetic Resonance Imaging, vol.28, issue.4, pp.466-476, 2010.
DOI : 10.1016/j.mri.2009.12.007

C. Bonnet and E. Toth, Smart MR Imaging Agents Relevant to Potential Neurologic Applications, American Journal of Neuroradiology, vol.31, issue.3, pp.401-409, 2010.
DOI : 10.3174/ajnr.A1753

URL : https://hal.archives-ouvertes.fr/hal-00529257

W. Chan, C. Luo, D. Zheng, and M. Yu, Neurotransmitters and neuropeptides in the developing human central nervous system -A review, Biological Signals and Receptors, vol.8, issue.3, pp.149-159, 1999.

B. Meldrum, Glutamate as a neurotransmitter in the brain: Review of physiology and pathology, Journal of Nutrition, vol.130, issue.4, pp.1007-1015, 2000.

F. Werner and R. Covenas, Classical Neurotransmitters and Neuropeptides Involved in Major Depression: a Review, International Journal of Neuroscience, vol.29, issue.12, pp.455-470, 2010.
DOI : 10.3109/00207454.2010.483651

M. Fillenz, In vivo neurochemical monitoring and the study of behaviour, Neuroscience & Biobehavioral Reviews, vol.29, issue.6, pp.949-962, 2005.
DOI : 10.1016/j.neubiorev.2005.02.003

J. Tao, J. Perdew, V. Staroverov, and G. Scuseria, Climbing the Density Functional Ladder: Nonempirical Meta???Generalized Gradient Approximation Designed for Molecules and Solids, Physical Review Letters, vol.91, issue.14, p.91, 2003.
DOI : 10.1103/PhysRevLett.91.146401

L. Fratiglioni, B. Winblad, V. Strauss, and E. , Prevention of Alzheimer's disease and dementia. Major findings from the Kungsholmen Project, Physiology & Behavior, vol.92, issue.1-2, pp.98-104, 2007.
DOI : 10.1016/j.physbeh.2007.05.059

M. Dolg, H. Stoll, A. Savin, H. Preuss, and . Elements, Energy-adjusted pseudopotentials for the rare earth elements, Theoretica Chimica Acta, vol.58, issue.3, pp.173-194, 1989.
DOI : 10.1007/BF00528565

C. Platas-iglesias, The Solution Structure and Dynamics of MRI Probes Based on Lanthanide(III) DOTA as Investigated by DFT and NMR Spectroscopy, European Journal of Inorganic Chemistry, vol.26, issue.12, pp.2023-2033
DOI : 10.1002/ejic.201101164

M. Perry, Q. Li, and R. Kennedy, Review of recent advances in analytical techniques for the determination of neurotransmitters, Analytica Chimica Acta, vol.653, issue.1, pp.1-22, 2009.
DOI : 10.1016/j.aca.2009.08.038

F. Crespi, Wireless in vivo voltammetric measurements of neurotransmitters in freely behaving rats, Biosensors and Bioelectronics, vol.25, issue.11, pp.2425-2430
DOI : 10.1016/j.bios.2010.03.034

P. Matzneller, M. Brunner, R. Carroll, W. Geldenhuys, G. Gudelsky et al., Recent advances in clinical microdialysis, TrAC Trends in Analytical Chemistry, vol.30, issue.9, pp.1497-1504109, 2011.
DOI : 10.1016/j.trac.2011.06.008

N. Lovtsevich and L. Davydova, Microdialysis and neuromonitoring, Anesteziologiya i Reanimatologiya, vol.2008, issue.2, pp.85-88

S. Engelborghs and P. Dedeyn, The neurochemistry of Alzheimer's disease, Acta Neurol Belg, vol.97, issue.2, pp.67-84, 1997.

O. Gautschi, M. Seule, D. Cadosch, M. Land, J. Fournier et al., Zerebrale Mikrodialyse ??? M??glichkeiten und Grenzen, AINS - An??sthesiologie ?? Intensivmedizin ?? Notfallmedizin ?? Schmerztherapie, vol.44, issue.04, pp.268-274, 2009.
DOI : 10.1055/s-0029-1222434

J. Tomasi, B. Mennucci, and C. R. , Quantum Mechanical Continuum Solvation Models, Chemical Reviews, vol.105, issue.8, pp.2999-3093, 2005.
DOI : 10.1021/cr9904009

M. Shapiro, G. Westmeyer, P. Romero, J. Szablowski, B. Kuster et al., Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine, Nature Biotechnology, vol.239, issue.3, pp.264-120, 2010.
DOI : 10.1038/nbt.1609

M. Mammen, S. Choi, and G. Whitesides, Polyvalent interactions in biological systems: Implications for design and use of multivalent ligands and inhibitors, Angewandte Chemie- International Edition, vol.37, issue.20, pp.2755-2794, 1998.

M. Chung, S. Lee, M. Waters, and M. Gagne, Self-Assembled Multi-Component Catenanes: The Effect of Multivalency and Cooperativity on Structure and Stability, Journal of the American Chemical Society, vol.134, issue.28, pp.13411430-11443
DOI : 10.1021/ja302347q

L. Zimmer and A. Luxen, PET radiotracers for molecular imaging in the brain: Past, present and future, NeuroImage, vol.61, issue.2, pp.363-370
DOI : 10.1016/j.neuroimage.2011.12.037

URL : https://hal.archives-ouvertes.fr/hal-00821153

S. Kim and K. Ahn, Novel Artificial Receptors for Alkylammonium Ions with Remarkable Selectivity and Affinity, Chemistry - A European Journal, vol.6, issue.18, pp.3399-3403, 2000.
DOI : 10.1002/1521-3765(20000915)6:18<3399::AID-CHEM3399>3.0.CO;2-M

G. Arena, A. Casnati, A. Contino, G. Lombardo, D. Sciotto et al., Water-Soluble Calixarene Hosts that Specifically Recognize the Trimethylammonium Group or the Benzene Ring of Aromatic Ammonium Cations: A Combined 1H NMR, Calorimetric, and Molecular Mechanics Investigation, Cram DJ: PREORGANIZATION -FROM SOLVENTS TO SPHERANDS, pp.738-744, 1986.
DOI : 10.1002/(SICI)1521-3765(19990201)5:2<738::AID-CHEM738>3.3.CO;2-Y

H. Imai, K. Misawa, H. Munakata, Y. Uemori, J. Steed et al., Water-Soluble Zinc Porphyrins as Artificial Receptors for Amino Acids, Supramolecular Chemistry: From Molecules to Nanomaterials, pp.1470-1472, 2008.
DOI : 10.1248/cpb.56.1470

Y. Bretonniere, M. Cann, D. Parker, and R. Slater, Ratiometric probes for hydrogencarbonate analysis in intracellular or extracellular environments using europium luminescence, Chem. Commun., vol.14, issue.17, pp.1930-1931, 2002.
DOI : 10.1039/B206286K

M. Regueiro-figueroa, K. Djanashvili, D. Esteban-gomez, T. Chauvin, E. Toth et al., Platas-Igleslas C: Molecular Recognition of Sialic Acid by Lanthanide(III) Complexes through Cooperative Two-Site Binding, Inorganic Chemistry, issue.9, pp.494212-4223, 2010.

D. Parker, Excitement in f Block: Structure, Dynamics and Function of Nine-Coordinate Chiral Lanthanoid Complexes in Aqueous Media, ChemInform, vol.33, issue.26, pp.156-165, 2004.
DOI : 10.1002/chin.200426215

D. Parker and J. Yu, A pH-insensitive, ratiometric chemosensor for citrate using europium luminescence, Chemical Communications, vol.5, issue.25, pp.3141-3143, 2005.
DOI : 10.1039/b502553b

R. Dickins, D. Parker, J. Bruce, and D. Tozer, Correlation of optical and NMR spectral information with coordination variation for axially symmetric macrocyclic Eu(iii) and Yb(iii) complexes: axial donor polarisability determines ligand field and cation donor preference, Dalton Transactions, issue.7, pp.1264-1271, 2003.
DOI : 10.1039/b211939k

S. Cantrill, D. Fulton, A. Heiss, A. Pease, J. Stoddart et al., The Influence of Macrocyclic Polyether Constitution upon Ammonium Ion/Crown Ether Recognition Processes, Chemistry - A European Journal, vol.6, issue.12, pp.2274-2287, 2000.
DOI : 10.1002/1521-3765(20000616)6:12<2274::AID-CHEM2274>3.0.CO;2-2

C. Adair, M. Woods, P. Zhao, A. Pasha, P. Winter et al., Spectral properties of a bifunctional PARACEST europium chelate: an intermediate for targeted imaging applications, Contrast Media & Molecular Imaging, vol.53, issue.1, pp.55-58, 2007.
DOI : 10.1002/cmmi.125

Z. Kovacs and A. Sherry, pH-Controlled Selective Protection of Polyaza Macrocycles, Synthesis, vol.1997, issue.07, p.759, 1997.
DOI : 10.1055/s-1997-1418

J. Stezowski, J. Hoard, . Among, . Parameters, . Complexed et al., Thermodynamic and structural properties of Gd3+ complexes with functionalized macrocyclic ligands based upon 1, Israel Journal of Chemistry Journal of the Chemical Society-Dalton Transactions, vol.2447, issue.45, pp.323-33410, 1984.

R. Dickins, D. Parker, A. Desousa, and J. Williams, Closely diffusing O-H, amide N-H and methylene C-H oscillators quench the excited state of europium complexes in solution, Chemical Communications, issue.6, pp.697-698, 1996.

A. Beeby, I. Clarkson, R. Dickins, S. Faulkner, D. Parker et al., Non-radiative deactivation of the excited states of europium, terbium and ytterbium complexes by proximate energy-matched OH, NH and CH oscillators: an improved luminescence method for establishing solution hydration states, Journal of the Chemical Society, Perkin Transactions 2, vol.2, issue.3, pp.1999493-503
DOI : 10.1039/a808692c

F. Dunand, A. Borel, and A. Merbach, DOTA-like Complexes?, Journal of the American Chemical Society, vol.124, issue.4, pp.710-716, 2002.
DOI : 10.1021/ja016873q

D. Powell, O. Nidhubhghaill, D. Pubanz, L. Helm, Y. Lebedev et al., Structural and dynamic parameters obtained from O-17 NMR, EPR, and NMRD studies of monomeric and dimeric Gd3+ complexes of interest in magnetic resonance imaging: An integrated and theoretically self consistent approach Plush SE, Gunnlaugsson T: Luminescent sensing of dicarboxylates in water by a bismacrocyclic dinuclear Eu(III) conjugate. Organic Letters Merbach AE, Toth E: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging, TETRAACETATO)EUROPATE(III) TETRAHYDRATE, NA+(EUDOTA.H2O)-.4H2O, AND P: W-band O-17 pulsed electron nuclear double resonance study of gadolinium complexes with water, pp.9333-93461919, 1984.

R. Ruloff, E. Toth, R. Scopelliti, R. Tripier, H. Handel et al., Accelerating water exchange for Gd-III chelates by steric compression around the water binding site, Chemical Communications, issue.22, pp.2630-2631, 2002.

X. Fu, T. Hang, and Q. Ye, Synthesis, structure and dielectric deuterated effect of a novel organic???inorganic hybrid compound, Inorganic Chemistry Communications, vol.14, issue.1, pp.281-284, 2011.
DOI : 10.1016/j.inoche.2010.11.014

A. Martell, R. Motekaitis, . The, . Determination, . Use et al., Towards rational design of fast waterexchanging Gd(dota-like) contrast agents? Importance of the M/m ratio, RB: Gadolinium(III) chelates as MRI contrast agents: Structure, dynamics, and applications, pp.5160-51672293, 1988.

D. Corsi, C. Platas-iglesias, H. Van-bekkum, and J. Peters, Determination of paramagnetic lanthanide(III) concentrations from bulk magnetic susceptibility shifts in NMR spectra, Magnetic Resonance in Chemistry, vol.35, issue.11, pp.39723-726, 2001.
DOI : 10.1002/mrc.922

S. Aime, M. Botta, M. Fasano, S. Crich, and E. Terreno, Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin, Journal of Biological Inorganic Chemistry, vol.1, issue.4, pp.312-319, 1996.
DOI : 10.1007/s007750050059

I. Bertini, C. Luchinat, and A. S. , NMR of paramagnetic substances, Coordination Chemistry Reviews, vol.150, p.7, 1996.

W. Vranken, W. Boucher, T. Stevens, R. Fogh, A. Pajon et al., The CCPN data model for NMR spectroscopy: Development of a software pipeline, Proteins: Structure, Function, and Bioinformatics, vol.58, issue.4, pp.687-696, 2005.
DOI : 10.1002/prot.20449

D. Esteban-gómez, A. De-blas, T. Rodríguez-blas, and L. Helm, Platas-Iglesias C: Hyperfine Coupling Constants on Inner-Sphere Water Molecules of GdIII-Based MRI Contrast Agents, Chemphyschem, vol.2012, issue.16, pp.133640-3650

R. And and D. , 13 3.3.1. Photophysical characterization, p.13
URL : https://hal.archives-ouvertes.fr/hal-00084877

Y. Bretonniere, M. Cann, D. Parker, and R. Slater, Ratiometric probes for hydrogencarbonate analysis in intracellular or extracellular environments using europium luminescence, Chem. Commun., vol.14, issue.17, pp.1930-1931, 2002.
DOI : 10.1039/B206286K

D. Parker and J. Yu, A pH-insensitive, ratiometric chemosensor for citrate using europium luminescence, Chemical Communications, vol.5, issue.25, pp.3141-3143, 2005.
DOI : 10.1039/b502553b

D. Palit, Photophysics and excited state relaxation dynamics of p-hydroxy and p-aminosubstituted benzophenones: a review, Research on Chemical Intermediates, vol.31, pp.1-3205, 2005.

Y. Shiraishi, H. Koizumi, and T. Hirai, Photosensitized Oxygenation of Sulfides within an Amphiphilic Dendrimer Containing a Benzophenone Core, The Journal of Physical Chemistry B, vol.109, issue.18, pp.8580-8586, 2005.
DOI : 10.1021/jp045639u

J. Rodriguez-ubis, M. Alonso, O. Juanes, R. Sedano, and E. Brunet, The discovery of a simple ligand based on acetophenone bearing excellent quantum yields for the excitation of Eu3+ and Tb3+, Journal of Luminescence, vol.79, issue.2, pp.121-125, 1998.
DOI : 10.1016/S0022-2313(98)00025-8

A. Wilkinson, D. Maffeo, A. Beeby, C. Foster, and J. Williams, Sensitization of Europium(III) Luminescence by Benzophenone-Containing Ligands:?? Regioisomers, Rearrangements and Chelate Ring Size, and Their Influence on Quantum Yields, Inorganic Chemistry, vol.46, issue.22, pp.469438-9449, 2007.
DOI : 10.1021/ic701113c

A. Beeby, L. Bushby, D. Maffeo, and J. Williams, Intramolecular sensitisation of lanthanide(iii) luminescence by acetophenone-containing ligands: the critical effect of para-substituents and solvent, Journal of the Chemical Society, Dalton Transactions, vol.2002, issue.1, pp.48-54
DOI : 10.1039/b105966c

K. Chen and C. Nicholson, Spatial Buffering of Potassium Ions in Brain Extracellular Space, Biophysical Journal, vol.78, issue.6, pp.2776-2797, 2000.
DOI : 10.1016/S0006-3495(00)76822-6

J. Steed, P. Gale, J. Lehn, P. Vierling, . Unit et al., Supramolecular Chemistry: From Molecules to Nanomaterials: Wiley; 2012. 11, Tetrahedron Letters, vol.21, issue.14, pp.18-3031323, 1980.
DOI : 10.1002/9780470740880

S. Vogel, K. Rohr, O. Dahl, and J. Wengel, Synthesis of an Asymmetrically Substituted AZA Crown Ether as Metal and Amino Acid Binding Site in DNA Conjugates, Nucleosides, Nucleotides and Nucleic Acids, vol.22, issue.5-8, pp.5-81039, 2003.
DOI : 10.1021/jo00278a016

S. Vogel, K. Rohr, O. Dahl, and J. Wengel, A substituted triaza crown ether as a binding site in DNA conjugates, Chem Commun, issue.8, pp.1006-1007, 2003.

S. Sasaki, A. Hashizume, D. Citterio, E. Fujii, and K. Suzuki, Fluororeceptor for zwitterionic form amino acids in aqueous methanol solution, Tetrahedron Letters, vol.43, issue.40, pp.437243-7245, 2002.
DOI : 10.1016/S0040-4039(02)01618-0

F. Schmidtchen and . Carboxylates, Tetazac: a novel artificial receptor for binding .omega.-amino carboxylates, The Journal of Organic Chemistry, vol.51, issue.26, pp.5161-5168, 1986.
DOI : 10.1021/jo00376a021

A. Metzger, K. Gloe, H. Stephan, F. Schmidtchen, A. Torrens et al., Molecular recognition and phase transfer of underivatized amino acids by a foldable artificial host Synthesis of new benzoxazinone derivatives as neuropeptide Y5 antagonists for the treatment of obesity M: Zinc-Catalyzed Chemoselective Reduction of Tertiary and Secondary Amides to Amines, 182 References 18, pp.612051-20552080, 1996.

S. Das, D. Addis, S. Zhou, K. Junge, and M. Beller, Zinc-Catalyzed Reduction of Amides: Unprecedented Selectivity and Functional Group Tolerance, Journal of the American Chemical Society, vol.132, issue.6, p.1770, 2010.
DOI : 10.1021/ja910083q

T. Gunnlaugsson, H. Gunaratne, M. Nieuwenhuyzen, and J. Leonard, Synthesis of functionalised macrocyclic compounds as Na+ and K+ receptors: a mild and high yielding nitration in water of mono and bis 2-methoxyaniline functionalised crown ethers, Journal of the Chemical Society, Perkin Transactions 1, vol.1, issue.17, pp.20021954-1962
DOI : 10.1039/b205299g

Y. Shiraishi, Y. Furubayashi, G. Nishimura, and T. Hirai, Sensitized luminescence properties of dinuclear lanthanide macrocyclic complexes bearing a benzophenone antenna, Journal of Luminescence, vol.127, issue.2, pp.623-63215, 2007.
DOI : 10.1016/j.jlumin.2007.03.021

S. Aime, M. Botta, M. Fasano, M. Marques, C. Geraldes et al., H-NMR Spectroscopy, Inorganic Chemistry, vol.36, issue.10, pp.362059-2068, 1997.
DOI : 10.1021/ic961364o

M. Spirlet, J. Rebizant, J. Desreux, M. Loncin, . Crystal et al., Crystal and molecular structure of sodium aqua(1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetato)europate(III) tetrahydrate Na+(EuDOTA.H2O)-.4H2O, and its relevance to NMR studies of the conformational behavior of the lanthanide complexes formed by the macrocyclic ligand DOTA, -TETRAACETATO)EUROPATE(III) TETRAHYDRATE, NA+(EUDOTA.H2O)-.4H2O, AND, pp.359-363, 1984.
DOI : 10.1021/ic00171a018

J. Stezowski, J. Hoard, . Among, . Structural, . Of et al., P: W-band O-17 pulsed electron nuclear double resonance study of gadolinium complexes with water, Israel Journal of Chemistry Raitsimring AM, Astashkin AV Journal of Physical Chemistry A, vol.24, issue.10835, pp.323-3347318, 1984.

R. Ruloff, E. Toth, R. Scopelliti, R. Tripier, H. Handel et al., Accelerating water exchange for Gd-III chelates by steric compression around the water binding site, Chem Commun, issue.22, pp.2630-2631, 2002.

K. Kubo, R. Ishige, J. Kubo, and T. Sakurai, Synthesis and complexation behavior of N-(1-naphthylmethyl)-1,4,7,10,13-pentaoxa-16-azacyclooctadecane, Talanta, vol.48, issue.1, pp.181-187, 1999.
DOI : 10.1016/S0039-9140(98)00229-X

H. Ji, R. Dabestani, G. Brown, and R. Hettich, Spacer Length Effect on the Photoinduced Electron Transfer Fluorescent Probe for Alkali Metal Ions, Photochemistry and Photobiology, vol.101, issue.5, pp.513-516, 1999.
DOI : 10.1039/tf9666201785

K. Kubo, R. Ishige, N. Kato, E. Yamamoto, and T. Sakurai, Synthesis and Complexation Behavior of N,N'-Bis(1-naphthylmethyl)-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane, HETEROCYCLES, vol.45, issue.12, pp.2365-237932, 1997.
DOI : 10.3987/COM-97-7944

E. Meyer, R. Castellano, and F. Diederich, Interactions with Aromatic Rings in Chemical and Biological Recognition, Angewandte Chemie International Edition, vol.42, issue.11, pp.1210-1250, 2003.
DOI : 10.1002/anie.200390319

G. Kryger, I. Silman, and J. Sussman, Three-dimensional structure of a complex of E2020 with acetylcholinesterase from Torpedo californica, Journal of Physiology-Paris, vol.92, issue.3-4, pp.3-4191, 1998.
DOI : 10.1016/S0928-4257(98)80008-9

G. Kryger, I. Silman, and J. Sussman, Structure of acetylcholinesterase complexed with E2020 (Aricept??): implications for the design of new anti-Alzheimer drugs, Structure, vol.7, issue.3, pp.297-307, 1999.
DOI : 10.1016/S0969-2126(99)80040-9

S. Comby and J. Bünzli, Chapter 235 Lanthanide Near-Infrared Luminescence in Molecular Probes and Devices, pp.217-470, 2007.
DOI : 10.1016/S0168-1273(07)37035-9

R. Poole, F. Kielar, S. Richardson, P. Stenson, and D. Parker, A ratiometric and non-enzymatic luminescence assay for uric acid: differential quenching of lanthanide excited states by anti-oxidants, Chemical Communications, vol.3, issue.39, pp.4084-4086, 2006.
DOI : 10.1039/b611259e

M. Tremblay, M. Halim, and D. Sames, Complexes:?? A General Platform for the Design of Ratiometric Optical Probes, Journal of the American Chemical Society, vol.129, issue.24, pp.7570-7577, 2007.
DOI : 10.1021/ja070867y

C. Montgomery, B. Murray, E. New, R. Pal, and D. Parker, Cell-Penetrating Metal Complex Optical Probes: Targeted and Responsive Systems Based on Lanthanide Luminescence, Accounts of Chemical Research, vol.42, issue.7, pp.925-937, 2009.
DOI : 10.1021/ar800174z

A. Hugi, L. Helm, A. Merbach, and . Kinetics, WATER EXCHANGE ON HEXAAQUAVANADIUM(III) -A VARIABLE-TEMPERATURE AND VARIABLE-PRESSURE O-17-NMR STUDY AT 1.4 AND 4.7 TESLA, Helvetica Chimica Acta, vol.23, issue.682, pp.508-521, 1985.

D. Corsi, C. Platas-iglesias, H. Van-bekkum, and J. Peters, Determination of paramagnetic lanthanide(III) concentrations from bulk magnetic susceptibility shifts in NMR spectra, Magnetic Resonance in Chemistry, vol.35, issue.11, pp.39723-726, 2001.
DOI : 10.1002/mrc.922

S. Aime, M. Botta, M. Fasano, S. Crich, and E. Terreno, Gd(III) complexes as contrast agents for magnetic resonance imaging: a proton relaxation enhancement study of the interaction with human serum albumin, Journal of Biological Inorganic Chemistry, vol.1, issue.4, pp.312-319, 1996.
DOI : 10.1007/s007750050059

I. Bertini, C. Luchinat, and A. S. , NMR of paramagnetic substances, Coord Chem Rev, vol.150, p.7, 1996.

A. To-synthesize-l-1-2 and .. , 1 4.1.1. Coupling via amid-bond formation, 1 a) Preparation of aldehyde by deprotection of acetal

A. To, S. Ligands-l-3-4, and .. , 19 4.2.1. Coupling via alkylation 19 a) Preparation of aldehyde by deprotection of acetal, ., vol.19

D. Garin, F. Oukhatar, B. Andrew, . Mahon, C. Andrew et al., Proflavine derivatives as fluorescent imaging agents of amyloid deposits, Bioorganic & Medicinal Chemistry Letters, vol.21, issue.8, pp.2203-2209, 2011.
DOI : 10.1016/j.bmcl.2011.03.010

O. Thillaye-du-boullay, A. Alba, F. Oukhatar, B. Martin-vaca, and D. Bourissou, -Carboxy Anhydride as a Chiral Derivatizing Agent: Eclipsed Conformation Enforced by Hydrogen Bonding, Organic Letters, vol.10, issue.20, pp.10-4669, 2008.
DOI : 10.1021/ol801930m

URL : https://hal.archives-ouvertes.fr/hal-00270773