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Abstract

Sequencing and scheduling involve the organization in time of operations subject to
capacity and resource constraints. We propose in this dissertation several improvements
to the constraint satisfaction and combinatorial optimization methods for solving these
problems. These contributions concern three different aspects: how to choose the next
node to explore (search)? how much, and how efficiently, one can reduce the search
space (propagation)? and what can be learnt from previous failures (learning)?

Our contributions start with an empirical study of search heuristics for the well known
car-sequencing problem. This evaluation characterizes the key aspects of a good heuris-
tic and shows that the search strategy is as important as the propagation aspect in this
problem. Second, we carefully investigate the propagation aspect in a class of sequenc-
ing problems. In particular, we propose an algorithm for filtering a type of sequence
constraints which worst case time complexity is lower than the best known upper bound,
and indeed optimal. Third, we investigate the impact of clause learning for solving the
car-sequencing problem. In particular, we propose reduced explanations for the new
filtering. The experimental evaluation shows compelling evidence supporting the impor-
tance of clause learning for solving efficiently this problem. Next, we revisit the general
approach of lazy generation for the Boolean variables encoding the domains. Our propo-
sition avoids a classical redundancy issue without computational overhead. Finally, we
investigate conflict analysis algorithms for solving disjunctive scheduling problems. In
particular, we introduce a novel learning procedure tailored to this family of problems.
The new conflict analysis differs from conventional methods by learning clauses whose
size are not function of the scheduling horizon. Our comprehensive experimental study
with traditional academic benchmarks demonstrates the impact of the novel learning
scheme that we propose. In particular, we find new lower bounds for a well known
scheduling benchmark.

Keywords: Artificial intelligence, constraint programming, Boolean satisfiability, com-
binatorial optimization, sequencing, scheduling.
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Résumé

Les problèmes de séquencement et d’ordonnancement forment une famille de problèmes
combinatoires qui implique la programmation dans le temps d’un ensemble d’opérations
soumises à des contraintes de capacités et de ressources. Nous contribuons dans cette
thèse à la résolution de ces problèmes dans un contexte de satisfaction de contraintes
et d’optimisation combinatoire. Nos propositions concernent trois aspects différents :
comment choisir le prochain nœud à explorer (recherche) ? comment réduire efficacement
l’espace de recherche (propagation) ? et que peut-on apprendre des échecs rencontrés lors
de la recherche (apprentissage) ?

Nos contributions commencent par une étude approfondie des heuristiques de bran-
chement pour le problème de séquencement de chaîne d’assemblage de voitures. Cette
évaluation montre d’abord les paramètres clés de ce qui constitue une bonne heuristique
pour ce problème. De plus, elle montre que la stratégie de branchement est aussi im-
portante que la méthode de propagation. Deuxièmement, nous étudions les mécanismes
de propagation pour une classe de contraintes de séquencement à travers la conception
de plusieurs algorithmes de filtrage. En particulier, nous proposons un algorithme de
filtrage complet pour un type de contrainte de séquence avec une complexité temporelle
optimale dans le pire cas. Troisièmement, nous investiguons l’impact de l’apprentissage
de clauses pour résoudre le problème de séquencement de véhicules à travers une nou-
velle stratégie d’explication réduite pour le nouveau filtrage. L’évaluation expérimentale
montre l’importance de l’apprentissage de clauses pour ce problème. Ensuite, nous pro-
posons une alternative pour la génération retardée de variables booléennes pour encoder
les domaines. Finalement, nous revisitons les algorithmes d’analyse de conflits pour ré-
soudre les problèmes d’ordonnancement disjonctifs. En particulier, nous introduisons
une nouvelle procédure d’analyse de conflits dédiée pour cette famille de problèmes.
La nouvelle méthode diffère des algorithmes traditionnels par l’apprentissage de clauses
portant uniquement sur les variables booléennes de disjonctions. Enfin, nous présentons
les résultats d’une large étude expérimentale qui démontre l’impact de ces nouveaux
mécanismes d’apprentissage. En particulier, la nouvelle méthode d’analyse de conflits a
permis de découvrir de nouvelle bornes inférieures pour des instances largement étudiées
de la littérature.

Mot-clés : Intelligence artificielle, programmation par contraintes, satisfiabilité boo-
léenne, optimisation combinatoire, séquencement, ordonnancement
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Chapter 1

Introduction

Many real world problems involve sequencing a set of operations subject to resource
constraints. Depending on the problem at hand, the objective might be optimizing an
economic-related cost or simply finding satisfactory solutions. Sequencing and schedul-
ing problems have direct applications in a variety of areas such as manufacturing, project
management, and timetabling. The work presented in this thesis considers solving prob-
lems of this family in a combinatorial context. From a computational complexity theory
perspective, many of these problems are NP-hard. Therefore, there is no known poly-
nomial time algorithm for solving them.

There exist numerous techniques for solving combinatorial optimization problems rang-
ing from heuristic to exact methods. Integer Linear Programming (ILP) is probably the
best known and used approach. In this framework, the problem must be formulated as
a system of linear equations. Typically, an ILP solver uses a branch-and-bound algo-
rithm in which the lower bound is the optimal solution of the linear relaxation of the
problem. Another restricted format is the one used by SAT solvers. The problem is
stated using clauses, each of which being a disjunction of literals, where each literal is
a propositional variable or its negation. Modern SAT solvers [95] are essentially based
on the Davis-Putnam-Logemann-Loveland (DPLL) [41] algorithm augmented with res-
olution [112]. DPLL is a backtracking system using a simple form of inferences called
Unit-propagation (UP). The integration of resolution within DPLL enables a strong in-
ference through new clauses derived from conflicts during search. Constraint program-
ming (CP) is another declarative paradigm for solving combinatorial problems based
on a far richer language than ILP and SAT. In CP, a problem is defined with a set of
relations, called constraints, operating on variables associated to sets of possible values
called domains. CP solvers typically rely on propagating the constraints while explor-
ing a search space. Constraint propagation is a fundamental concept in CP aiming at
pruning the search space as much as possible. In fact, each constraint is associated to
a propagator (or filtering algorithm) responsible for reducing the domains according to

1
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some rules. In CP, we often distinguish search from propagation, and slightly more
recently, from learning.

I report in this dissertation several contributions on each one of these aspects within
constraint programming approaches to sequencing and scheduling problems. This case
study strongly supports my thesis, that modern constraint programming solvers may not
underestimate any of these three aspects.

Search Constraint programming solvers are typically implemented on top of back-
tracking systems. The search space is explored via a tree where every node corresponds
to a decision restricting the search space to a smaller problem. The tree is often explored
following a Depth-First Search (DFS) scheme. Whenever a failure is encountered, the
solver backtracks to the last node, reverses the last decision, then resumes the explo-
ration. The ‘search’ aspect in CP is related to the decisions made to explore the search
tree.

A decision in CP is usually performed heuristically by shrinking a specific variable do-
main to a value. We often make the distinction between variable ordering and value
ordering heuristics. Variable ordering heuristics are typically designed following the
‘fail-first’ principle [73, 129, 13]: «To succeed, try first where you are most likely to
fail.». As such, one tries to prune inconsistent subtrees as soon as possible. Value
ordering is usually less important and follows generally an opposite principle, called
‘succeed-first’ or ‘promise’ [61]. Indeed, the value with best chances to lead to a solu-
tion is preferred. These heuristics can be customized to the problem at hand or follow
a standard scheme. Examples of standard variable ordering heuristics include: lexico-
graphical order, minimum domain size, and maximum variable degree (i.e., how much a
variable is constrained). General purpose value heuristics are less common, trivial ones
(such as branching on the minimum or maximum value in the domain) are often used by
default. When we have some information about the structure of the problem, however,
dependent heuristics can be useful. We quote for instance [54, 130, 126, 51, 122].

Search strategies can have a dramatic effect on the overall efficiency as they guide the
exploration of the search space [73, 28, 9, 63, 104]. In fact, a “bad” decision can cause the
exploration to become trapped in an unsatisfiable sub-tree that can take an exponential
time to explore.

Propagation Constraint propagation is a fundamental concept in CP aiming at re-
ducing the search space by pruning dead-end branches. The level of pruning is usually
characterized by a property called local consistency. The principle is that if an assign-
ment is part of no solution of a relaxation of the problem, then it can not be part of a
solution of the complete problem; it is inconsistent. Often, the problem is relaxed simply
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by considering a subset of the constraints and/or variables. For instance, Arc Consis-
tency1(ac) [89, 90] considers constraints one at a time. Algorithms implementing ac
were proposed in the 70s by Waltz [146] and Gaschnig [60]. Subsequently, ‘higher’ local
consistencies were introduced, for instance by Montanari in [94] and Freuder in [56, 57].
The propagation methods based on local consistencies were originally “generic” in the
sense that the constraint relation is part of the input. As a consequence, combining
strong pruning and computational efficiency is difficult. The notion of ‘global con-
straint’ moves the relation from the input to the definition of the problem, making it
far easier to reconcile these two objectives. The idea is to capture patterns occurring in
many problems and to design dedicated algorithm to filter out inconsistent values for
these particular cases.

There is a significant amount of work in the CP literature regarding the proposition,
reformulation, and extension of global constraints [109, 110, 111, 21, 139, 96, 97, 121, 26].
The canonical example of global constraint is the AllDifferent constraint, ensuring
that all variables are pair-wise distinct. Take for instance three variables x1, x2, x3

subject to x1 ≠ x2 ∧ x2 ≠ x3 ∧ x1 ≠ x3. We can rewrite this as AllDifferent(x1, x2, x3).
Now assume that the domain for x1 and x2 is {1,2} and for x3 is {1,2,3}. Enforcing
ac on each constraint separately does not change the domains. However, the fact that
all variables must have pairwise different values prevents the assignment of x3 to 1 or 2
to be part of any solution. Making this inference via stronger local consistencies would
take exponential time. However, it is possible to enforce ac on the AllDifferent
constraint in polynomial time [109].

Learning When exploring a search tree, we repeat many times the same decisions. It
is therefore natural to try to learn from a failure (a dead-end in the tree), in order to avoid
doing the same mistake again. By definition, an exact set of decisions is never explored
twice is a search tree. However, it may happen that only a part of the current branch, a
‘nogood’, entails a failure. When this is the case, it is possible to learn something useful
in order to avoid failing more than once with the same reason.

The notion of nogood goes back originally to Stallman in the 70s [133]. The first formal
adaptation to CP was proposed by Dechter in [43]. Other approaches to nogood record-
ing were proposed later in [105, 113, 66]. In these approaches, a nogood is defined as a
set of assignments that can not lead to any solution. This definition prevented learning
from being more broadly used in constraint solvers. The success of nogood learning in
the SAT community was, however, spectacular in the decade following Dechter’s semi-
nal work. This success is due to papers by Bayardo and Schrag [76], Marques-Silva and
Sakallah [123, 124], Moskewicz et al. [95] and Zhang et al. [147]. Conflict Driven Clause

1The terms ‘Domain Consistency’ and ‘Generalized Arc Consistency’ are also used in the literature.
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Learning (CDCL) [95] constitutes the backbone of modern SAT-solvers. In CDCL, no-
goods are built by computing cuts in the graph drawn from the deductions made by
Unit-propagation.

Nogood recording has gained considerable attention in the CP literature essentially
during the past decade and a half [79, 78, 80, 77, 82, 35, 87, 34, 36, 37, 101, 106]. The
notion of ‘explanation’ is the central component in these works. In order to compute a
nogood, every propagation outcome should be explained in the form of a set of decisions
and/or earlier propagations that logically imply it. Learning in CP has taken a new
start in the past decade thanks to Katsirelos’s Generalized nogoods [82, 81] and more
recently to Lazy Clause Generation (LCG) [100, 101]. The latter mimics propagators in
CDCL by considering them as generators of clauses. Propagators in LCG are allowed
to use literals of the form Jx = vK, Jx ≠ vK, Jx ≤ vK, and Jx ≥ vK to express any domain
change. All these types of literals can be used to explain any filtering outcome in a
clausal form.

CP solvers can benefit from learning by ‘discovering’ new filtering rules, in the form of
clauses, that propagators alone are not able to perform. Potentially, hybrid CP/SAT
solvers have features coming from both approaches such as powerful propagation mech-
anisms, clause learning, adaptive branching, etc. However, this holds only when prop-
agators, including those proposed for global constraints, are able to explain all their
pruning.

Thesis Overview

This dissertation shows, by a thorough case-study of a class of sequencing and scheduling
problems that all these aspects are important and must all be taken into account in order
to design efficient solution methods.

We give a summary of the contributions presented in this thesis.

1. An empirical heuristic study for the car-sequencing problem

Car-sequencing is a well known sequencing problem coming from the automotive
industry. In 2005, a challenge has been organized by the French Operations Re-
search and Decision Support Society (ROADEF2) for solving optimization versions
of the problem provided by the RENAULT3 automobile manufacturer [131]. In
this problem, a set of cars has to be sequenced on an assembly line subject to
capacity and demand constraints. Each car belongs to a class of vehicles that is
defined with a set of options to install (like the sunroof and the air-conditioner).

2http://challenge.roadef.org/2005/en
3http://group.renault.com
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We investigate the ‘search’ component for efficiently solving this problem. First, we
propose a new heuristic classification for this problem. This classification is based
on a set of four criteria: branching variables, exploration directions, selection
of branching variables and aggregation functions for this selection. Thanks to
this classification, we discovered new combinations of existing criteria leading to
superior heuristics.

Based on large experimental tests, we indicate with a relatively high confidence
which is the most robust strategy, or at least outline a small set of potentially best
strategies. Specifically, we show that the way of selecting the most constrained
option is critical, and the best choice is fairly reliably the “load” of an option, that
is the ratio between its demand and the capacity of the corresponding machine.
Similarly, branching on the class of vehicle is more efficient than branching on
the use of an option. Finally, we show that the choice of the heuristic is often as
important as the propagation method in this problem.

2. Propagation in sequencing problems

Motivated by a simple observation in [111] about finding failures for the car-
sequencing problem, we design a simple filtering rule called Slack-Pruning. This
filtering relies on reasoning simultaneously about capacity and demand constraints.
However, it is applicable with very limited branching scenarios. We propose there-
fore to generalize the Slack-Pruning in the form of a complete filtering for a
new global constraint that we call AtMostSeqCard. This constraint can be
used to model a number of sequencing problems including car-sequencing and
crew-rostering.

AtMostSeqCard can in fact be considered as a particular case of well known
constraints. In [139], two algorithms designed for the AmongSeq constraint
were adapted to this constraint with an O(2qn) and O(n3) worst case time com-
plexity, respectively. In [91], another algorithm similarly adaptable to filter the
AtMostSeqCard constraint was proposed with O(n2.log(n)) time complexity
down a branch of the search tree with an initial compilation of O(q.n2). We
propose a complete filtering algorithm for this constraint with an O(n) (hence op-
timal) worst case time complexity. Furthermore, we show that this algorithm can
be adapted to achieve a complete filtering for some extensions of this constraint.
In particular, the conjunction of a set of m AtMostSeqCard constraints sharing
the same scope can be filtered in O(nm).

The experimental results on car-sequencing and crew-rostering benchmarks show
how competitive and efficient our filtering is compared to state-of-the-art propa-
gators.

3. Learning in car-sequencing
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We investigate the learning aspect for solving car-sequencing instances using our
filtering for AtMostSeqCard. In order to use AtMostSeqCard in a hybrid
CP/SAT solver, one has to explain every single domain change made by the prop-
agator. We therefore propose a procedure explaining AtMostSeqCard that runs
in linear time complexity in the worst case. Any hybrid model using these expla-
nations benefits from the complete filtering for this constraint along with clause
learning and potentially many other CP/SAT features.

Our experiments include a variety of models with Pseudo-Boolean and SAT for-
mulations. We show how clause learning improves the global performances in most
cases. We witness a strong correlation between advanced propagation and finding
solutions quickly for this problem. Moreover, for building proofs, clause learning
is the most important ingredient and propagation is less useful.

4. Revisiting lazy generation

We revisit in this part the lazy generation of Boolean variables for encoding the
domains. The issue that we address is related to the redundancy of clauses used
when lazily encoding a domain [53]. In fact, when a Boolean variable Jx ≤ uK has
to be generated, the clauses ¬Jx ≤ aK∨Jx ≤ uK; ¬Jx ≤ uK∨Jx ≤ bK are added where a
and b are the nearest generated bounds to u. After adding these clauses, the clause
¬Jx ≤ lK∨ Jx ≤ uK becomes redundant. The DomainFaithfulness constraint that
we propose avoids such redundancy while ensuring the same level of consistency
without any computational overhead. The novel lazy generation method is used
in the next part with a large number of disjunctive scheduling instances.

5. Learning in disjunctive scheduling

The last part of our contributions addresses the impact of clause learning for
solving disjunctive scheduling problems. We propose a novel conflict analysis pro-
cedure tailored to this family of problems. In fact, we use a property of disjunctive
scheduling allowing to learn clauses using a number of Boolean variables that is
not function of the domain size. Our propositions give good experimental results
and outperform the standard CP model in most cases. Furthermore, we observe
a relationship between the instance size, the branching choice, and the conflict
analysis scheme. Our method improved the best known lower bounds on several
instances of a classic data set.

The work presented in this thesis is funded by CNRS4 and ‘midi-Pyrénées’ region56.
The CNRS grant was attributed to the ROC team7 at LAAS-CNRS8 jointly with a

4http://www.cnrs.fr
5http://www.midipyrenees.fr
6The region grant number is 11050449.
7https://www.laas.fr/public/en/roc
8https://www.laas.fr/public/en
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Google research award on SAT-based scheduling9. Many parts of the dissertation has
been published in the following international journals and conferences:

1. Two clause learning approaches for disjunctive scheduling. Mohamed Siala, Chris-
tian Artigues, and Emmanuel Hebrard. In Principles and Practice of Constraint
Programming - 21st International Conference, CP 2015, Cork, Ireland, August
31-September 4. Proceedings (to appear), 2015 [119]

2. A study of constraint programming heuristics for the car-sequencing problem.
Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Engineering Appli-
cations of Artificial Intelligence, 38(0):34 – 44, 2015 [122].

3. SAT and hybrid models of the car sequencing problem10. Christian Artigues, Em-
manuel Hebrard, Valentin Mayer-Eichberger, Mohamed Siala, and Toby Walsh. In
Integration of AI and OR Techniques in Constraint Programming - 11th Interna-
tional Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings,
pages 268–283, 2014 [5].

4. An optimal arc consistency algorithm for a particular case of sequence con-
straint. Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Con-
straints, 19(1):30–56, 2014 [121].

5. An optimal arc consistency algorithm for a chain of atmost constraints with car-
dinality11. Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. In
Principles and Practice of Constraint Programming - 18th International Confer-
ence, CP 2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings, pages
55–69, 2012 [120].

The structure of the dissertation follows globally the contributions order. Chapter 2
introduces the formal background and all notations used throughout the thesis. We
present in Chapter 3 our heuristic study for the car-sequencing problem. In Chapter 4,
we investigate the propagation aspect in a class of sequencing problems. We present in
Chapter 5 our threefold learning propositions: learning in car-sequencing; revisiting lazy
generation; learning in disjunctive scheduling problems. Finally, we conclude the thesis
in Chapter 6 and give potential future research directions.

9http://www2.cnrs.fr/presse/communique/2093.htm
10This part constitutes a joint work with Valentin Mayer-Eichberger and Toby Walsh. While the

experimental observations were discussed together, the rest of the paper is organized in two clear different
parts. The SAT part is solely proposed by Mayer-Eichberger and Walsh while the hybrid propositions
constitutes our own contributions.

11The paper is awarded with an “Honorable mention”.





Chapter 2

Formal Background

Introduction

We present in this chapter the necessary background and notions used throughout the
thesis. This chapter is divided in three sections: Constraint programming (Section 2.1),
Boolean Satisfiability (Section 2.2), and learning in CP (Section 2.3).

2.1 Constraint Programming

Constraint programming is a framework for modeling and solving combinatorial prob-
lems. Unknowns are modeled with variables drawing their values from a discrete do-
main, and the possible relations between variables are represented as constraints. The
Constraint Satisfaction Problem (CSP) consists in deciding whether there exists an as-
signment of the variables satisfying all the constraints. In this section, we formally define
this formalism and introduce several notational conventions.

2.1.1 Constraint Network

2.1.1.1 Domains, Tuples, and Constraints

Let ∆ be a set. We use the notation ∣∆∣ to denote the cardinality of ∆. A sequence S
defined in ∆ is an ordered list of elements in ∆. We use the same notation S to denote
a sequence S or the set of elements in S.

Let n ∈ N∗ and X= [x1, . . . , xn] be a finite sequence of distinct variables A domain for X ,
denoted by D, is a mapping from variables to finite sets of values. For each variable x,
we call D(x) the domain of the variable x. We suppose that D(xi) is a finite subset

9
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of Z for all i ∈ [1, . . . , n]. We use min(xi) to denote the minimum value in D(xi) and
max(xi) to denote the maximum value in D(xi). A domain D is singleton iff ∀x ∈ X ,
∣D(x)∣ = 1. A fail domain is the special domain ⊥ where all variables x ∈ X have a
domain equal to ∅ (i.e., ∣D(x)∣ = 0). The domain of a variable x is called Boolean iff
D(x) = {0,1}. In a propositional context, we sometimes denote 0 by false and 1 by
true. When a domain D(x) is equal to a set of values of the form {l, l + 1, l + 2, .., u}
(where l and u are two integers s.t. u ≥ l), we say that D(x) is a range domain and will
be denoted by [l, u]. Finally, we say that v is assigned to the variable x iff D(x) = {v}.

Given two domainsD1 andD2 defined over the same sequence of variables X = [x1, . . . , xn],
we say that D1 is stronger (respectively strictly stronger) than D2 iff ∀x,D1(x) ⊆
D2(x) (respectively ∀x,D1(x) ⊆ D2(x) and ∃xi, D1(xi) ⊂ D2(xi)). In this case, D2 is
said to be weaker (respectively strictly weaker) than D1.

A n−tuple (or simply a tuple) τ = ⟨v1, . . . , vn⟩ is a sequence of n values. We use τ[i] to
denote the value vi. Given a tuple τ = ⟨v1, . . . , vn⟩ and a sub-sequence S = [xs1 , . . . , xsk

] ⊆
X , we denote by τπS the k−tuple τ ′ = ⟨vs1 , . . . , vsk

⟩ and is called the projection of τ
on S.

Let X be a sequence of variables, D a domain for X , and S = [x1, . . . , xk] a sequence of
variables in X . A constraint C defined over S is a finite subset of Zk. S is called the
scope of C (denoted by X(C)) and ∣S∣ is called the arity of C. We sometimes use the
notation C(S) to denote a constraint C having S as a scope. An instantiation of S
is a k−tuple τ . τ is said to be:

• consistent for C (or satisfying C) if it belongs to C.

• inconsistent for C (or violating C) if it is not consistent for C.

• valid in D if τ[i] ∈ D(xi) for all i ∈ [1, . . . , n].

We distinguish two classes of constraints: firstly constraints given in extension (called
also Table Constraints) where all the acceptable tuples are given explicitly in a list; sec-
ondly constraints expressed intentionally by a formula. Example 2.1 shows two possible
representations for the same constraint.

Example 2.1. A constraint defined intentionally and extensionally.

Let x1, x2 and x3 be three variables s.t. D(x1) = D(x2) = D(x3) = {1,2,3}. The
AllDifferent(x1, x2, x3) stating that the three variables should have pairwise different
values can be defined intentionally by the formula: x1 /= x2 ∧ x2 /= x3 ∧ x1 /= x3 or exten-
sionally using the following list of acceptable tuples ⟨1,2,3⟩, ⟨1,3,2⟩, ⟨2,1,3⟩, ⟨2,3,1⟩,
⟨3,1,2⟩, ⟨3,2,1⟩.
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All constraints used in this thesis are defined intentionally. A constraint type is
a family of constraints sharing a general definition. The AllDifferent(x1, x2, x3)
constraint given in Example 2.1 is nothing but an instance of the constraint type
AllDifferent where all variables in the scope should have pairwise different values.
The AllDifferent constraint type is defined as follows:

Definition 2.1. AllDifferent([x1, . . . , xn]): xi /= xj for all i /= j.

Another typical example of constraint type is the Cardinality constraint given in
Definition 2.2 where [x1, . . . , xn] is a sequence of Boolean variables.

Definition 2.2. Cardinality([x1, . . . , xn], d): ∑ni=1 xi = d

Cardinality is in fact a particular case of a more general constraint type called Pseudo-
Boolean. Given a sequence of Boolean variables [x1, . . . , xn], a Pseudo-Boolean con-
straint1 has the form of ∑i=ni=1 ai × xi ◂ k where ai, k ∈ Z and ◂ is an operator in {≤,≥,=}.

We shall use the term constraint to denote either a constraint or a constraint type where
no ambiguity is possible.

2.1.1.2 Constraint Satisfaction Problem

Definition 2.3. Constraint network

A constraint network (CN) is defined by a triplet P = (X ,D,C) where

• X = [x1, . . . , xn] is a sequence of variables

• D is a domain for X

• C is a set of constraints defined over subsets of X .

A solution for a constraint network (X ,D,C) is an instantiation τ defined in D s.t. for
all C ∈ C, τπX(C) is consistent for C. A constraint network is said to be satisfiable

if it has a solution; unsatisfiable otherwise. We assume throughout the thesis for
every variable x ∈ X that x is in the scope of at least one constraint and that x has a
non-empty (initial) domain.

A Constraint Satisfaction Problem (CSP) consists of deciding whether a constraint
network has a solution or not.

Since the SAT problem [39] can be considered as a particular case of CSP (the domain of
each variable is {0,1} and each clause is considered as a constraint) then the constraint

1That is what Mixed Integer Programming people call a linear constraint on binary variables.



Chapter 2 Formal background 12

satisfaction problem is NP-Hard in general. Moreover, if all constraints are checkable in
polynomial time, i.e., each constraint C has a function CheckC ∶ Z∣X(C)∣ → {false, true}
computable in polynomial time and answers «true» iff the tuple given in input is con-
sistent for C, then the constraint satisfaction problem becomes NP-Complete.

We find mainly three approaches in the literature for solving constraint satisfaction
problems: backtracking algorithms, local search and algebraic resolution. We consider
in this thesis, only (complete) backtracking algorithms where the solver explores the
search tree according to some strategies while performing propagation and possibly
learns from conflict.

2.1.1.3 Backtracking Search

We give in Algorithm 1 a baseline backtracking Solver. One call of the recursive function
TreeSearch() determines the satisfiability of the current constraint network. The final
outcome will therefore indicates the satisfiability of the initial problem.

This algorithm uses a basic checking function (Algorithm 2) to find failures. The deci-
sions are made based on Algorithm 3 «Decide()».It uses a simple form of decisions: it
chooses an unassigned variable, and assigns it to a value in its domain. The decision
is applied in Line 3. The choice of the next decision to make is typically performed
following a variable/value heuristic.

Algorithm 1: TreeSearch()
1 if !Check() then

return false

else
if D is singleton then

return true

else
oldDomain← D ;

2 (x, v) =Decide() ;
3 D(x) ← {v} ;

if TreeSearch() then
return true;

else
D ← oldDomain ;
D(x) ← D(x) ∖ {v} ;
return TreeSearch();

Backtracking algorithms can naturally be traced into trees. Vertices stand for calls
to TreeSearch() and there is an edge between two calls if they are parent and child.
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Algorithm 2: Check()
if ∃x s.t. D(x) is empty then

return false ;
1 foreach C ∈ C do

if The domain of X(C) is singleton then
if C is not satisfied then

return false ;

return true ;

Algorithm 3: Decide()
x ← Choose one unassigned variable ;
v ← Choose one value in D(x) ;
return (x, v) ;

The term ‘search’ is used throughout the thesis to describe any process related to the
decisions made to explore the search tree.

With Backtracking Solvers, the domain will be subject to several changes. We will there-
fore suppose that D (respectively D(x)) denotes the current domain of X (respectively
the variable x), and Dinitial (respectively Dinitial(x)) the initial domain (respectively of
the variable x).

In constraint programming, backtracking solvers are augmented with reduction rules
(known as propagators or filtering algorithms) that are usually characterized by some
conditions they enforce (called local consistency). Reduction rules aim to reduce the
search space using inferences based on the current state of the constraint network. When
the constraints are given in intention, CP solvers typically use domain-based tightening.
That is, operations on networks, keeping the same set of constraints and solutions, while
returning stronger domains.

2.1.2 Constraint Propagation

2.1.2.1 Propagators

We use a similar formalism to [115, 114] for defining propagators.

Definition 2.4. Let C([x1, . . . , xk]) be a constraint. A propagator f for C is a mapping
from domains to domains respecting the following properties for any domain D:

• f(D) is stronger than D [Filtering property].
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• Any tuple satisfying C that is valid in D is also valid in f(D) [Correctness prop-
erty].

• If D(xi) = {vi} ∀i ∈ [1..k], then f(D) = D if ⟨v1, . . . , vk⟩ satisfies C, and f(D) =⊥
otherwise [Checking property] .

The scope of C is also called the scope of f and is denoted by X(f). We assume that f
operates only on X(f). That is, if f(D) ≠⊥, then ∀x ∉ X(C), f(D)(x) = D(x).

Returning a fail domain ⊥ is interpreted as finding a failure. That is, there is no possible
way to satisfy the constraint under the domain D. We suppose that all propagators
return ⊥ if there exists a variable whose domain is empty. By default we denote any
propagator with the same name as the constraint.

Example 2.2. Propagating Cardinality([x1, . . . , xn], d)

We show in Algorithm 4 a possible propagator for Cardinality([x1, . . . , xn], d). This
algorithm satisfies the filtering, correctness, and checking properties.

Algorithm 4: Cardinality([x1, . . . , xn], d)
if ∣{xj ∣ D(xj) = {1}}∣ > d then

1 D ←⊥ ;
if ∣{xj ∣ D(xj) = {0}}∣ > n − d then

2 D ←⊥ ;
if ∣{xj ∣ D(xj) = {1}}∣ = d then

foreach i ∈ {1..n} do
if D(xi) = {0,1} then

3 D(xi) ← {0} ;

else
if ∣{xj ∣ D(xj) = {0}}∣ = n − d then

foreach i ∈ {1..n} do
if D(xi) = {0,1} then

4 D(xi) ← {1} ;

return D ;

Propagators are executed within backtracking search sequentially before taking any de-
cision. We describe the basic Generic Iteration Algorithm used in [4, 114, 20] to iterate
over a set of propagators. Algorithm 5 depicts a possible pseudo-code that returns a
Boolean indicating if propagation finish without finding a failure.

In this algorithm, F is a set of propagators and Open is a list, initialized with F ,
containing a subset of propagators to execute. Each iteration in the main loop chooses
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Algorithm 5: Propagate()
Open← F ;
while Open /= ∅ do

Choose f ∈ Open ;
Open← Open ∖ {f} ;
D ← f(D) ;
if D =⊥ then

return false ;
for x ∈ X(f) s.t. D(x) changed do

Open← Open ∪ {g ∣ g ∈ F ∧ x ∈ X(g)} ;

return true ;

a propagator f in Open; executes f ; then updates the list Open. All propagators
not in Open and having at least one variable whose domain is changed by f will be
added to Open. The filtering property that we used in the definition propagators makes
Algorithm 5 terminates [4, 114].

The incorporation of propagators into a backtracking solver is simply done by replacing
the checking function in the TreeSearch algorithm (Line 1 in Algorithm 1) with a call to
Propagate(). Modern CP-Solvers deploy propagation based on Algorithm 5, however,
with several improvements like the notion of idempotency and priority of propagators,
among others. We shall not detail further this iterative process. We give, however, more
attention on how to «measure» the filtering level between propagators.

Given two propagators f , g , we say that f is stronger than g iff f(D) is stronger than
g(D) for all domain D. In this case, we say also that f subsumes the filtering/pruning
of g. The filtering of f and g is said to be incomparable iff none of them is stronger
than the other. It is common in CP modeling to combine incomparable propagators
together in order to prune further the search space. This was for instance the modeling
choice in [11, 140, 139, 25]. There is of course a tradeoff between filtering strength and
computational cost, and it is not always obvious to choose the most practical propagator.
We shall draw a link to this modeling choice later when we introduce the notion of global
constraint.

2.1.2.2 Local Consistency

Characterizing the level of filtering is usually associated with the notion of local consis-
tency. A local consistency is a property that characterizes some necessary conditions
on values (or instantiations) to belong to solutions [20]. The most known and widely
used local consistency property is Arc Consistency.

Definition 2.5. Support
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A support on a constraint C in a domain D is an instantiation of X(C) satisfying C
and valid in D.

We say that an assignment xi ← v has a support on a constraint C([x1, . . . , xk]) in D
iff there exists a support τ on C in D s.t. τ[i] = v. Another way to look at the notion
of support is that if a propagator for C prunes a value v from D(xi), then necessarily
xi ← v does not have a support in C (due to the correctness property).

Definition 2.6. Arc Consistency

A constraint C([x1, . . . , xk]) is Arc Consistent (ac) on a domain D iff for all i ∈ [1, k],
any value v ∈ D(xi) has a support on C in D.

We shall use the term «complete filtering» to describe a propagator enforcing ac. Indeed,
enforcing ac on a constraint C guarantees that every possible assignment can be part
of a consistent instantiation for C.

Example 2.3. ac on Cardinality([x1, . . . , xn], d)

The propagator depicted in Algorithm 4 enforces ac on Cardinality([x1, . . . , xn], d)
in O(n).

There is a close computational relationship between enforcing ac and solving. If decid-
ing whether a given constraint C is satisfiable or not costs O(ξ) time complexity, then
enforcing ac on this constraint can run in O(ξ × ∑x∈X(C) ∣D(x)∣) by checking every pos-
sible assignment on X(C). The reverse sense works as follows: if ac runs in O(ξ) time,
then deciding the constraint runs in O(ξ) and finding a solution costs O(∣X(C)∣ × ξ).

Arc Consistency is sometimes very costly to enforce. One may typically consider instead
a weaker form of propagation called Bound Consistency.

Definition 2.7. Bound Support

A bound support on a constraint C([x1, . . . , xk]) in a domain D is a k−tuple τ satisfying
C s.t. ∀i ∈ [1, k], τ[i] ∈ [min(xi),max(xi)].

Definition 2.8. Bound consistency

A constraint C([x1, . . . , xk]) is bound consistent (bc) in a domain D iff for all i ∈ [1, k],
min(xi) and max(xi) have a bound support in D.

Bound Consistency is obviously weaker than Arc Consistency. Note, however, that they
are equivalent in some cases. Take for example the constraint x1 ≤ x2. ac and bc are
equivalent since for any bound support, we can easily build a support for this constraint.

We shall omit mentioning the domain D when describing supports, ac, and bc as it is
supposed to be the current domain.
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2.1.3 Decomposition & Global Constraints

2.1.3.1 Decomposition

We say that a constraint C can be decomposed into a finite set of constraints {c1, . . . , ck}
iff for any solution τ for the constraint C∗ defined by c1 ∧ . . . ∧ ck, we have τπX(C) is a
solution for C. Notice that there might exist some variables X ∗

C in the scope of c1 . . . ck

that do not belong to the scope of C. In this case we use the term channeling to denote
the constraints having in their scope variables from both X(C) and X ∗

C .

It is known that decomposing constraints hinders propagation in general. Consider
again the AllDifferent(x1, x2, x3) constraint in Example 2.1 with D(x1) = D(x2) =
{1,2} and D(x3) = {1,2,3}. Enforcing ac on each constraint of the decomposition
would leave the domain as it is whereas there is no possible way to satisfy the original
constraint when assigning 1 or 2 to x3. In this example, the constraints x1 /= x2, x2 /=
x3, and x1 /= x3 are ac whereas AllDifferent(x1, x2, x3) is not. Achieving ac on
AllDifferent(x1, x2, x3) in this case reduces the domain of x3 to {3}.

There exists, however, a few particular cases where the decomposition maintains ac. We
use in this thesis two known cases where ac on a constraint C is equivalent to enforcing
ac on a decomposition. The first case, described below, is related to the notion of Berge
acyclicity in the constraint graph, whereas the second case is related to the notion of
monotonicity (a constraint of this type is studied in Section 4.2).

Let P = (X ,D,C) be a CN. The constraint graph of P is a hypergraph HP in which
one associates each variable to a node and each constraint scope to an hyperedge. A
Berge cycle [18] in HP is a sequence [C1, x1, ..,Ck, xk,Ck+1] (k > 1) where : x1 . . .xk
are distinct variables; C1 . . .Ck are distinct constraints; Ck+1 is C1; and xi is in X(Ci)
and X(Ci+1). HP is said to be Berge cyclic if it contains a Berge cycle; and Berge
acyclic otherwise. Notice than if two distinct variables x1 and x2 are in the scope of
two constraints C1 and C2, then the constraint graph is necessarily Berge cyclic. The
sequence [C1, x1,C2, x2,C1] is a Berge cycle in this case.

Let C be a constraint that can be decomposed into a finite set of constraints {c1, .., ck}.
If the constraint graph of the CN formed by c1, . . . , ck is Berge acyclic, then C is ac iff
ci is ac for all i ∈ [1, k] [14].

2.1.3.2 Global Constraints

The notion of global constraint [27, 137] is a fundamental concept in CP. We consider
the definition of a global constraint as a constraint type defined over a non-fixed
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number of variables. In practice, they represent sub-problems or patterns occurring in
many problems.

The AllDifferent constraint given in Definition 2.1 is a typical example. There is a
wide range of problems in which one can use AllDifferent. Sudoku for instance is a
typical example where one can post an AllDifferent constraint for each row, column,
and square. The same constraint can also be used in scheduling problems with unary
resources. If all tasks of a machine M have a duration of one unit of time, then the
resource constraint related to M is nothing but an AllDifferent constraint on the
variables representing the start time of each task.

A global constraint is usually introduced in the CP literature together with a polynomial
time filtering algorithm. The fact that they occur in several applications has attracted
a lot of attention to develop special-purpose propagators making them practical tools
for tackling hard combinatorial problems. The global constraint catalog 2 [16] contains
descriptions (in terms of graph properties, automata, or first order logical formula) for
more than 400 global constraints. Such a rich language may sometimes make it difficult
to make the best the modeling choices.

We give in the following the definition of the Global Cardinality Constraint (Gcc)
and the Global Sequencing Constraint (Gsc) that are used throughout this thesis.

Let [x1, . . . , xn] be a sequence of variables and ∆ = ⋃ni=1D(xi). Let low and upp be
two mappings on integers such that low(j) ≤ upp(j) for all j. The Global Cardinality
Constraint Gcc [110] is defined as follows:

Definition 2.9. Gcc(low,upp, [x1, . . . , xn]) ∶ ⋀j∈∆ low(j) ≤ ∣{i ∣ xi = j}∣ ≤ upp(j)

Gcc(low,upp, [x1, . . . , xn]) limits the occurrences of any value j ∈ ∆ in the sequence
[x1, . . . , xn] to be in the interval [low(j), upp(j)]. It can be seen as a generalization of
AllDifferent if we restrict the intervals [low(j), upp(j)] to be [0,1]. Arc Consistency
on Gcc can be enforced in O(∣∆∣.n2) [110]. Quimper et al. showed a Bound Consistency
algorithm for this constraint running in O(t + n) where t is the time to sort the bounds
of the domains of the variables [107].

The Global Sequencing Constraint Gsc is defined with a conjunction between a Gcc
and a chain of Among constraints. An Among constraint (Definition 2.10) limits the
occurrences of values of a set of integers ν to be bounded between two integer l and u
(l < u).

Definition 2.10. Among(l, u, [x1, . . . , xq], ν) ⇔ l ≤ ∣{i ∣ xi ∈ ν}∣ ≤ u

The Gsc constraint is defined as follows:
2The latest version is available via http://sofdem.github.io/gccat/.

http://sofdem.github.io/gccat/
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Definition 2.11. Gsc(l, u, q, low,upp, [x1, . . . , xn], ν) ∶

n−q

⋀
i=0

Among(l, u, [xi+1, . . . , xi+q], ν) ∧Gcc(low,upp, [x1, .., xn])

We mention now an important complexity property related to ac for global constraints.
For a more complete background on the subject, we refer the reader to [24].

Definition 2.12. ac-poly-time [24]

An ac-poly-time decomposition of a global constraint is a decomposition where ac can
be enforced in polynomial time w.r.t. the size of the original constraint and domains.

Theorem 2.13. [24]

If enforcing ac on a global constraint is NP-Hard, then there is no ac-poly-time decom-
position of the original constraint that achieves ac on C.

Theorem 2.13 gives a clear statement when to consider lower filtering compared to ac.
Obviously, one does not use in practice ac algorithms when they are NP-Hard. Instead,
lower filtering (usually bc) is typically used is this case since any decomposition would
hinder propagation anyway. Arc Consistency on Gsc for instance is NP-Hard [22]. Régin
and Puget proposed a reformulation of this constraint into a set of Gcc constraints.
Their filtering is therefore hindering propagation.

The modeling choice between several global constraints should take into account the
filtering level to enforce along with the complexity of such propagation. This tradeoff is
often the motivation behind proposing new global constraints. The latter are usually ei-
ther extensions or particular cases of other global constraints that might occur in a num-
ber of applications. It should be noted that the more general is a constraint, the higher
the complexity of enforcing a given level of consistency on it. For instance, enforcing
ac on Gcc can be done in O(∣∆∣.n2) time [110] while enforcing ac on AllDifferent
takes O(∣∆∣.n1.5) time [109]. Sometimes, generalizing constraints can make them in-
tractable. For example, consider Gcc in which, instead of integer bounds of occurrences
(i.e.,low(j) and upp(j) for all j ∈ ∆), we have variables. That is, the occurrence of
each value j ∈ ∆ has to be equal to a variable δj . ac for this constraint is NP-Hard to
enforce [108].

2.1.4 Search

The search aspect is related to the decisions made to explore the search tree. A decision
in CP is often performed heuristically by reducing a specific variable domain to a value
(in a similar way to Algorithm 3). Variable ordering heuristics are typically designed
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following the ‘fail-first’ principle [73, 129, 13]: «To succeed, try first where you are most
likely to fail.». As such, one tries to avoid inconsistent subtrees as soon as possible.
Value ordering is usually less important and follows generally an opposite principle,
called ‘succeed-first’ or ‘promise’ [61]. Indeed, the value with best chances to lead to
a solution is preferred. These heuristics can be customized to the problem at hand
or follow a standard scheme. Examples of problem dependent heuristics can be found
in [54, 130, 126, 51, 122]. Examples of standard variable ordering heuristics include:
lexicographical order, minimum domain size, and maximum variable degree (i.e., how
much a variable is constrained). General purpose value heuristics are less common,
trivial ones (such as branching on the minimum or maximum value in the domain) are
often used by default.

Search strategies can have a dramatic effect on the overall efficiency as they guide the
exploration of the search space [73, 28, 9, 63, 104]. In fact, a “bad” decision can cause the
exploration to become trapped in an unsatisfiable sub-tree that can take an exponential
time to explore.

2.1.4.1 Boosting Search through Randomization and Restarts

The authors of [67], have shown that the ‘hardness’ of finding solutions is not entirely
related to the instance at hand, but rather to the combination ‘instance ⊕ determin-
istic algorithm’. This observation is supported by the efficiency gain witnessed when
adding randomization to a deterministic search algorithm. Randomization is typically
performed when making decisions. For instance, one can use randomization when tie
breaking choices that rank equally with respect to the heuristic at hand. Another ex-
ample is to choose randomly across a number of best choices.

It was observed int [67] that at any time during the experiment there is a non-negligible
probability of hitting a problem that requires exponentially more time to solve than
any that has been encountered before [67]. This phenomenon explains that runtime
distributions on random instances, or on random runs for a given instance, are often
heavy tailed.

Restarts has been proposed as a solution to avoid this phenomenon. The search is
bounded by a given cutoff. Once the cutoff reached, the exploration is stopped, and
restarted from the search root. One usually uses the number of failures as a restart
cutoff. Using randomization when branching on nodes makes the explored trees differ
from restart to restart.

We find in the literature two common restart policies. A geometric restart [144] uses
a limit of b × fk−1 for the kth restart where b is called a base and f is called a factor. A
Luby policy [88], on the other hand, follows the sequence 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1,
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2, 4, 8, . . . multiplied by a base b. The ith element of the luby sequence ψi is defined
recursively by the formula:

⎧⎪⎪⎨⎪⎪⎩

2k−1 if ∃k ∈ N, i = 2k − 1

ψi−2k−1+1 if ∃k ∈ N,2k−1 ≤ i < 2k − 1
(2.1)

2.2 Boolean Satisfiability

The Boolean Satisfiability Problem (SAT) is the question of deciding a Boolean expres-
sion defined in a Conjunctive Normal Form. That is, a conjunction of clauses, each of
which is a disjunction of literals, and each literal represents a Boolean variable or its
negation. As such, SAT can be considered as a particular case of CSP. This restriction
has made SAT solvers benefit from several enhancements that are not available in pure
constraint programming solvers.

We describe in this section the organization of modern SAT solvers by formally defining
this formalism and introducing some related notions.

2.2.1 A Background on Propositional Logic

An atom a is a propositional (i.e., Boolean) variable. A literal p denotes either an
atom a or its negation ¬a. The former is called positive literal whereas the latter is
called negative literal. We use the notations a and ¬a for each atom a to denote its
positive and negative literals respectively. We extend the negation operator to literals
following the rule ¬¬p = p. A clause c is a disjunction of literals p1 ∨ . . . ∨ pk. We
suppose, without loss of generality, that all literals in a clause are pairwise distinct and
there is no literals p, ¬p in the same clause. We use the two notations: pi ∈ c for any
literal appearing in the clause c; and ∣c∣ as the size of the clause (i.e., the number of
literals in the disjunction). Let c, c′ be clauses and p be a literal. We denote by: p ∨ c
the clause obtained by the disjunction of p with all literals in c; and c ∨ c′ the clause
defined by the disjunction of all literals in c and c′. Finally, a propositional formula Φ is
given in a Conjunctive Normal Form (CNF) if it is defined by a conjunction of clauses
c1 ∧ .. ∧ cn.

With that being defined, a CNF can be considered as a constraint network (X ,D,C) s.t.
X is the set of atoms, and C is the set of clauses. The Boolean Satisfiability Problem
(SAT) is to decide the satisfiability of a CNF formula [39].

A literal p is said to be:
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• true iff p is positive and its atom is assigned to the value 1 or p is negative and its
atom is assigned to the value 0.

• false iff ¬p is true.

A literal p is said to satisfy a clause c iff p ∈ c and p is true. Conversely, a literal p is
said to strengthen a clause c iff p ∈ c and p is false.

A clause c is satisfied iff there exists a literal satisfying c. Similarly, c is violated iff
∀p ∈ c, p falsifies c. A clause c is called unit when it contains exactly one unassigned
literal and the rest strengthen c. Finally, an empty clause ⊥clause is a clause with no
literals.

2.2.2 Conflict Driven Clause Learning

Conflict Driven Clause Learning (CDCL) [123, 124, 95, 48] is a state-of-the-art com-
plete algorithm underlying most modern SAT solvers. CDCL is essentially based on the
Davis-Putnam-Logemann-Loveland (DPLL) [41] algorithm augmented with
resolution [112]. DPLL is a backtracking system using one type of propagation called
Unit-propagation (UP).

We associate two values to each assigned literal p: level(p) represents the number of
decisions in the path between the root and the node in which p is assigned; and rank(p)

represents the rank of p in the sequence of assignments of its level, in chronological order.
We shall start counting rank from 0 at each level. Therefore, any decision has a rank
equal to 0.

We introduce the notion of propagation rule as a mechanism to describe the outcome
of some propagation.A propagation rule is a logical implication of the form Ψ ⇒ p

where Ψ is a conjunction of literals and p is either a literal or a failure ⊥. Ψ is said to
be the explanation for (propagating) p and will be denoted by explain(p).

UP triggers propagation in two possible ways. First, whenever a clause c becomes unit,
it enforces the only unassigned literal p in c to be true since it is the only possible way to
satisfy c. The propagation rule describing this filtering is ⋀q≠p∈c ¬q ⇒ p. Second, when
all literals in a clause c falsifies c, a failure ⊥ is triggered (c is said to be the conflict

clause in this case). We use ⋀q∈c ¬q ⇒ ⊥ to describe this propagation. If q is the last
propagated literal in the conflict clause, then we call q and ¬q conflicting literals.

Finally a nogood is a conjunction of literals sufficient to make the CN unsatisfiable if
they are true. It follows from any propagation rule of the form Ψ ⇒ ⊥ that Ψ is a
nogood.



Chapter 2 Formal background 23

As previously said, modern SAT solvers implement Conflict Driven Clause Learning
(CDCL) [123, 124, 95, 48], i.e., essentially DPLL in which new clauses are learnt from
failures [123, 124]. However, CDCL solvers feature many enhancements, we describe the
most important.

2.2.2.1 Conflict Analysis

Whenever a failure occurs during search, a new nogood is computed. The latter is trans-
lated into a clause that will be added to the base and used to perform non-chronological
backtrack (known with the term backjump). The whole machinery is called conflict

analysis and is based on the notion of cuts in the Implication Graph

Definition 2.14. Implication graph

The implication graph G(N,E) is a directed acyclic graph built as follows:

• Each assigned literal is associated to a vertex in N .

• There exists a directed edge in E from p to q (p /= q) if p ∈ explain(q).

• When a failure is detected by a clause c, we first add a vertex q s.t. q is the
conflicting literal in c. Then, any literal p ≠ q ∈ ¬c is associated to a directed edge
going from p to q. Finally, there is a special vertex ⊥ having edges coming from q

and ¬q.

From Definition 2.14, one can observe that all decisions have no incident edge inG(N,E).

We give an example of implication graph. Suppose that the set of clauses contains the
following five clauses, among others: (1) ¬a ∨ ¬b; (2) b ∨ h ∨ c; (3) ¬g ∨ ¬c ∨ ¬d; (4)
¬c ∨ d ∨ ¬e; and (5) ¬c ∨ e.

We suppose that: g and a are true and correspond to decisions made at levels 4 and
9 respectively; ¬h is propagated at level 6; the propagation after assigning a follows
the following propagation order: clause 1 propagates ¬b, clause 2 propagates c, clause 3
propagates ¬d, clause 5 propagates e, and clause 4 triggers failure.

We show a part of the implication graph leading to failure. A node pl●r in the implication
graph stands for the assignment of p as the r-th consequence of the l-th decision (i.e.,
l = level(p) and r = rank(p)). Note that decisions will always have the form of pn●0

since their rank is always equal to 0. Grey vertices are decisions while white vertices are
propagated literals. The conflicting literals in this example are e and ¬e.

The implication graph is built while searching by recording for each assigned literal p its
reason, that is, explain(p) if p is propagated and null otherwise (i.e., p is a decision).
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Figure 2.1: Example of implication graph
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Figure 2.2: Cuts in the implication graph
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During conflict analysis, new nogoods will be produced. They correspond to cuts in the
implication graph. We define a cut as a bipartition of G(N,E). We distinguish two
disjoint sets: the conflict part and the reason part. The conflict part always contains
the ⊥ vertex whereas the reason part contains all decisions. The conjunction of literals
in the reason side that have an edge going to at least one literal in the conflict side leads
to a contradiction. It is therefore a nogood. The clause equal to the negation of the
nogood is therefore logically implied by the CN. Different cuts will therefore produce
different clauses. We show in Figure 2.2 two different cuts for the implication graph
used in the previous example of Figure 2.1. The two cuts correspond to the nogoods
c ∧ g and g ∧ a ∧ ¬h. Hence we can learn the clauses ¬c ∨ ¬g and ¬g ∨ ¬a ∨ h.

When a nogood ¬c is identified, c is firstly learnt and secondly used to perform non-
chronological backtracking (called backjumping). The condition for backjumping is that
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c contain only one literal p in the latest level. In this case, c can be seen as Ψ Ô⇒ p

where Ψ = ¬p1 ∧ .. ∧ ¬pn s.t. pi /= p ∈ c and pi are assigned at previous levels. We
first backtrack to the greatest level between level(pi), then c directly propagates p. For
instance, with the clause ¬g ∨ ¬a ∨ h in the previous example, we backtrack to level 6
and assign ¬a to true immediately.

Learning schemes are essentially differentiated by their methods for building cuts. The
first method proposed in the literature is the one used in the relsat system [76] where
cuts are built s.t. the literal in the last level is always the latest decision. Modern
SAT-solvers, however, use any Unique Implication Point (UIP), that is, a dominator of
the conflicting literals in the last level.

Definition 2.15. Domination in the Implication Graph [147]

A vertex V dominates another vertex V ′ in the implication graph if any path from the
decision vertex of the level of V to V ′ has to go through V .

Definition 2.16. Unique Implication point [147] A Unique Implication point (UIP)
is a vertex in the current level that dominates both conflicting literals.

Choosing cuts based on UIPs was originally proposed in Grasp [123, 124]. As we can
see in Figure 2.3, several UIPs can be found in a same implication graph. In this figure,
every path from the latest decision (i.e., a) to the conflicting literals e and ¬e has to
pass through a, b and c. Three different UIP cuts are therefore possible in this example.

Among the several possibilities, there exists one UIP cut that is particularly interesting.
By considering all UIPs by their reverse order of propagation, the first one (i.e., the
nearest to the conflict), called the first Unique Implication point (1-UIP), guarantees
the best backjump level (i.e. the nearest to the root). 1-UIP cuts have been shown to
be extremely efficient in practice [147] and are widely used in modern SAT Solvers.

Algorithm 6: 1-UIP
d← current level;
Ψ← explain(⊥) ;
while ∣{q ∈ Ψ ∣ level(q) = d}∣ > 1 do

1 p← arg maxq({rank(q) ∣ level(q) = d ∧ q ∈ Ψ}) ;
2 Ψ← Ψ ∪ {q ∣ q ∈ explain(p) ∧ level(q) > 0} ∖ {p} ;
return Ψ ;

Algorithm 6 shows a possible algorithm for computing the 1-UIP nogood. It returns a
nogood Ψ having one literal assigned at the last decision level d. Ψ is initialized with
the explanation of failure. Each iteration in the main loop substitutes a literal in Ψ with
its explanation. The choice of the next literal to substitute is performed at Line 1 with
the literal of Ψ assigned at the last decision level and of maximum rank.
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Figure 2.3: Unique Implication Points in an implication graph
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Algorithm 6 is usually implemented with a worst case time complexity of O(ξ) where ξ
is the number of propagated literals in the last level. Indeed this requires exploring the
sequence of assigned literals in the latest level starting from the last propagated literal.

It should be pointed out that modern SAT solvers usually try to reduce the final nogood
Ψ [132]. A common strategy of reduction is to eliminate literals having their explanation
in Ψ.

In the example used in Figure 2.1, the 1-UIP clause is ¬g ∨ ¬c, and the literal c is the
first UIP. The solver then backtracks to the level of assigning g (i.e., 4 in this case),
assigns c to false, then continues the exploration. We show a step-by-step execution of
algorithm 6 for building the nogood in this example.

1. Ψ← c ∧ ¬d ∧ e

2. p← e

3. Ψ← c ∧ ¬d (i.e., Ψ← Ψ ∪ {c} ∖ {e})

4. p← ¬d

5. Ψ← c ∧ g

We use the term clause database in the rest of this thesis to denote the set of learnt
clauses.
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2.2.2.2 2-Watched Literals

Unit-propagation is typically implemented with lazy data structures. The 2-watched
literals [95, 62] is the most known lazy propagation scheme used with modern SAT
solvers. Briefly, the idea is associate each clause c to two literals p, q ∈ c (said to be
watching c). No propagation check is needed for c as long as the two literals watching
c are unassigned. Without loss of generality, if p becomes assigned, but strengthen the
clause, Unit-propagation looks for a new unassigned literal to watch c. If no such literal
exists, Unit-propagation assigns q to true if q is unassigned and triggers failure if q is
assigned but falsifies c.

2.2.2.3 Activity-Based Branching

One of the most known and widely used variable ordering heuristic in SAT solvers is
the so-called Variable State Independent Decaying Sum (VSIDS) [95]. This heuristic
has been shown to be extremely efficient is practice. One can find a variety of imple-
mentations for VSIDS. The first description of a VSIDS ordering follows the following
steps [95]:

• Each literal has an ‘activity’ value initialized to 0.

• Whenever a literal occurs in a learnt clause, its activity is incremented.

• The (unassigned) literal with the highest activity is chosen at each decision.

• All activity values are periodically divided by a constant so that literals in recent
learnt clauses are preferred.

2.2.2.4 Clause Database Reduction

Learning clauses without controlling the clause database size can lead to a memory
explosion with the increasing number of clauses. This explosion is likely to increase
the amount of time required for enforcing UP. Several deletion strategies have been
proposed in the literature [124, 95, 48, 7, 75]. One usually prefers the shortest clauses,
or the most ‘active’ clauses. The latter are selected based on literal activities computed
along with VSIDS. It is important to note that clauses responsible for propagating some
literals in the current branch should not be deleted as they might be needed during
conflict analysis.
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2.2.2.5 Restarts

We have discussed in Section 2.1.4.1 the importance of restarts for combinatorial algo-
rithms in general. CDCL can benefit further from restarts by using the learnt clauses
and activity counting. The learnt clause prevents previous branches to be explored
twice. Moreover, the activity of literals can be extremely useful to bring information
from previous restarts to the search strategy.

2.3 Clause Learning in CP

When exploring a search tree, we repeat many times the same decisions. It is therefore
natural to try to learn from failures, in order to avoid doing the same mistake again. By
definition, an exact set of decisions is never explored twice is a search tree. However, it
may happen that only a part of the current branch entails a failure. When this is the
case, it is possible to learn something useful in order to avoid failing more than once
with the same reason.

We have seen in the previous section how nogoods are derived from conflicts in SAT
solvers. Nogood learning in CP, however, predates CDCL. Indeed, the notion of nogood
goes back originally to the 70s in the seminal work of Stallman and Sussman [133]. And
the first formal adaptation to CP was proposed by Dechter in [43]. A nogood (or conflict
set in [43]) is defined as a set of assignments that can not lead to any solution. Other
approaches to nogood recording were proposed later in [105, 113, 66].

Nogood learning in CP had not the same impact of CDCL in SAT solvers in the early
days. It has gained, however, considerable attention progressively during the last decade
and a half [79, 78, 80, 77, 82, 35, 34, 36, 37, 101, 106]. The notion of ‘explanation’ is
the central component in these works. In order to compute a nogood, every propagation
outcome should be explained in the form of a set of decisions and/or earlier propagations
that logically imply it.

Learning in CP has taken a new start in the past decade thanks to Katsirelos’s
generalized nogoods [82, 81]. A generalized nogood extends the notion of nogood to
contain both assignments and non-assignments (i.e., pruning). Lazy clause generation3

(LCG) [100, 101] is a similar approach to Katsirelos’. However, propagators in LCG are
allowed to use literals of the form Jx = vK, Jx ≠ vK, Jx ≤ vK, and Jx ≥ vK to express domain
changes. All these types of literals can be used to explain domain reductions in a clausal
form. The explanations are used essentially to mimic CDCL.

3Note that the term “lazy” might refer to completely different notions depending on the context (such
as Integer Linear Programming). We therefore insist to mention that we use this term to respect the
exact terminology used in [100, 101, 53, 52].
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We give an illustrative example. Let ξ be a Boolean variable and x1 . . . x11 be variables
with a domain defined by: D(x1) = [1,30], D(x2) = [9,30], D(x3) = [0,3], D(x4) =
[0,30], D(x5) = [24,50], D(x6) = [5,10], D(x7) = [2,10], D(x8) = [9,30], D(x9) =
[13,16], D(x10) = [0,3], and D(x11) = [15,100]. These variables are subject to the
following constraints: (1) x1 + x7 ≥ 4, (2) x2 + x10 ≥ 11, (3) x3 + x9 = 16, (4) x5 ≥ x8 + x9,
(5) ξ ↔ (x9 − x4 = 14), (6) ξ → (x6 ≥ 7), (7) ξ → (x6 + x7 ≤ 9), and (8) x11 ≥ x9 + x10.
Observe that no pruning happens in the initial state of the problem. Now consider the
following decisions in the chronological order:

1. Assign x1 to 1: The only subsequent propagation is to make 3 the lower bound of
x7 by constraint (1), i.e., Jx7 ≥ 3K.

2. Assign x2 to 9: Constraint (2) propagates Jx10 ≥ 2K.

3. Assign x3 to 2: In this case, constraint (3) enforces Jx9 = 14K, then constraint (8)
propagates Jx11 ≥ 16K.

4. Assign x4 to 0: Constraint (5) propagates ξ to 1. Constraint (6) enforces Jx6 ≥ 7K.
And constraint (7) finds failure.

The implication graph corresponding to this example is shown in Figure 2.4. The solver
learns the new clause Jx7 ≤ 2K ∨ Jξ = 0K following the 1-UIP scheme, backtracks to the
first level, assigns ξ to 0, and resumes the exploration of the search space.

Figure 2.4: Example of an implication graph with a hybrid CP/SAT solver

Jx1=1K Jx7≥3K

Jx2=9K Jx10≥2K

Jx3=2K Jx9=14K Jx11≥16K

Jx4=0K Jξ=1K

Jx6≥7K

⊥

CP-solvers can benefit from clause leaning by ‘discovering’ new filtering rules, in the form
of clauses, that propagators alone are not able to perform. In the previous example for
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instance, when enforcing Jx7 ≥ 3K, no filtering suggest that ξ should be assigned to 0. It is
only by means of the learnt clause Jx7 ≤ 2K∨Jξ = 0K that the solver performs such filtering.
Hybrid CP/SAT solvers may combine features coming from both approaches such as
powerful propagation mechanisms, clause learning, and adaptive branching. However,
this holds only when propagators, including those proposed for global constraints, are
able to explain all their pruning.

In the rest of this section, we cover in more details the principles of Lazy Clause Gen-
eration [101, 100, 53] as it is the framework that we use to design the approach in-
troduced in this dissertation. The latest architecture [53] is implemented on top of a
CP-solver augmented with most SAT features (clause learning, non-chronological back-
track, adaptive-Branching, etc).

2.3.1 A Baseline Hybrid Solver

2.3.1.1 Domain Encoding

The atoms on which the learning is performed are related to some propositional facts
about the variable domains. These atoms are channeled through a set of clauses to ensure
a correct domain representation. The most known domain encodings in the literature
are the direct encoding [42, 145] and the order encoding [40, 135] .

We assume without loss of generality that x is a variable with a domain D(x) =
{v1, v2, . . . , vk} where vi < vi+1 for all i ∈ [1, k − 1].

The Direct Encoding The direct encoding uses k atoms denoted by Jx = vjK (j ∈
[1, k]) s.t. Jx = vjK is semantically equivalent to assigning x to vj . Two types of clauses
are used to represent the different relations between these atoms.

• at-least-one: a clause is used to express the fact that x has to be assigned to a
value:

Jx = v1K ∨ Jx = v2K ∨ . . . ∨ Jx = vkK

• at-most-one: k2−k
2 clauses are used to express the fact that x has to be assigned

to only one value.

∀l < h ∈ [1, k], ¬Jx = vlK ∨ ¬Jx = vkK.
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The Order Encoding Here also k atoms are used, however, each atom (denoted by
Jx ≤ vjK, j ∈ [1, k]) is equivalent to have an upper bound for x less than vj . As for the
domain clauses, k − 1 clauses are used as follows:

∀j ∈ [1, k − 1], ¬Jx ≤ vj+1K ∨ Jx ≤ vjK

To make the notation lighter, we denote by Jx ≠ vK the literal ¬Jx = vK and Jx ≥ vK the
literal ¬Jx ≤ v − 1K.

Following lazy clause generation, we use these two types of atoms together. In this case,
the domain related clauses have to ensure a complete domain representation between
these atoms. For instance, if Jx ≤ 3K is true, then Jx = 4K and Jx = 5K should be set
to false. A clausal representation of such relationships can be found in [100] under the
term Domain Faithfulness (which is essentially a channeling between the direct and
order encoding). Without loss of generality, for every variable x s.t. D(x) = [l, u], we
have the following clauses (referenced later by dom(x)):

1. ¬Jx ≤ dK ∨ Jx ≤ d + 1K, ∀d ∈ [l, u − 1]

2. ¬Jx = dK ∨ Jx ≤ dK, ∀d ∈ [l, u − 1]

3. ¬Jx = dK ∨ ¬Jx ≤ d − 1K, ∀d ∈ [l + 1, u]

4. Jx = lK ∨ ¬Jx ≤ lK

5. Jx = dK ∨ ¬Jx ≤ dK ∨ Jx ≤ d − 1K, ∀d ∈ [l + 1, u]

6. Jx = uK ∨ Jx ≤ u − 1K

2.3.1.2 Solver Description

All domain related atoms and clauses described above are generated before search. The
UP engine acts as a global constraint whose scope contains all these atoms, and whose
semantics is given by the set of domain related clauses. During search, every propagator
is expected to explain each domain change it performs. Since every domain change must
be represented by a literal, propagators are limited to changes that can be expressed as
conjunctions of literals of the following types:

• Assignment: an assignment operation assigns x to a value v in its domain, written
D(x) ← {v}.

• Pruning: conversely to assignments, a pruning operation removes a value v from
a variable domain, written D(x) ← D(x) ∖ {v}.
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• Upper bound tightening: an upper bound tightening operation changes the upper
bound of x to a value u ∈ [min(x),max(x) − 1], written D(x) ← D(x)∩] −∞, u].

• Lower bound tightening: a lower bound tightening operation changes the lower
bound of x to a value l ∈ [min(x) + 1,max(x)], written D(x) ← D(x) ∩ [l,+∞].

The notion of ‘explanation’ and ‘propagation rule’ that we introduced in Section 2.2.2
for clauses are extended to propagators as follows. First, each domain operation is
mapped to one of the literals Jx = vK, Jx ≠ vK, Jx ≤ vK, and Jx ≥ vK in the natural way.
Second, once a domain operation is executed by a propagator f , the solver assigns the
corresponding domain literal accordingly. For instance, if f enforces a new upper bound
u for a variable x with D(x) ← D(x)∩] − ∞, u], then the literal Jx ≤ uK is assigned to
true. Any propagator executing a domain operation associated to a literal p is asked to
explain p with a propagation rule of the form Ψ⇒ p where Ψ, called an explanation

for p, is a conjunction of literals. The explanation Ψ should be of course valid in the
sense where if the set of domain operations corresponding to literals in Ψ are called on
the initial domain, then f executes (at least) the domain operation associated to p.

Example 2.4. Propagation rule

Let f be the propagator for x ≥ y + 10 described in Algorithm 7. When tightening the
lower bound of x to 13 because y is assigned to 3 (Line 2), f can generate the propagation
rule Jy = 3K⇒ Jx ≥ 13K which corresponds to the clause Jy ≠ 3K ∨ Jx ≥ 13K.

Algorithm 7: x ≥ y + 10
if min(y) + 10 >max(x) then

1 D ←⊥ ;
else

if (min(y) + 10) >min(x) then
2 D(x) ← D(x) ∩ [min(y) + 10,+∞[ ;

if (max(x) − 10) <max(y) then
3 D(y) ← D(y)∩] −∞,max(x) − 10] ;

return D ;

Similarly to CDCL, propagation rules are expanded to explain failures. That is, when
a propagator f returns the fail domain ⊥, a propagation rule associated to this failure
is a logical implication Ψ⇒ ⊥ s.t. Ψ is a sufficient condition for f to detect a failure.

Example 2.5. Explaining Failure

Consider the same constraint x ≥ y + 10 with D(x) = [3,8] and D(y) = {3}. In this case,
the propagator f when triggering a failure (Line 1 in Algorithm 7)) can generate the
explanation Jy = 3K ∧ Jx ≤ 8K⇒ ⊥ which gives the conflict clause Jy ≠ 3K ∨ Jx ≥ 9K.
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Propagation rules are added to the UP-Engine as clauses already propagated. The same
behavior applies when a conflict is raised by a propagator. The clause explaining the
failure is added to the UP-Engine, however, as the conflict clause. The conflict analysis
procedure is performed exactly the same way in CDCL.

It should be pointed out that any assignment by UP is reflected on the domain every
time UP successfully terminates propagation. For instance, if UP propagates the literal
Jx ≤ 7K to be true then the upper bound tightening D(x) ← D(x)∩] −∞,7] is executed
if max(x) > 7.

2.3.2 Engineering a Hybrid Solver: Modern Techniques

We describe here three modern techniques used in hybrid solvers: backward explana-
tions, lazy generation, and semantic reduction.

2.3.2.1 Backward Explanations

The concept of backward (or lazy) explanations [59, 64, 98, 52] can simply be understood
as generating explanations only when they are needed. The main motive behind using
backward explanations is that generating a clause for each single propagation might
make the clause database grow extremely large. Moreover these clauses do not make
any difference to the propagation engine. They are only useful during conflict analysis,
where only a fraction of them may be explored. Avoiding generating these clauses could
therefore save time. We give a simple way for using backward explanations.

First, as usual, when a domain operation is being executed by a propagator f , the
correspondent literal p should be assigned accordingly. However, instead of generating a
propagation rule for l, the solver records f as the reason for assigning p. Any propagator
using the backward mode is supposed to be able to generate a propagation rule for its
actions during conflict analysis.

Algorithm 8 depicts a slightly modified version of the 1-UIP procedure in order to handle
backward explanations. The difference between Algorithm 8 and Algorithm 6 is the use
of a function called reason(p) to return the propagator f responsible for the domain
operation represented by p. Moreover, the correspondent propagation rule is expected
to be computed by the call to the function explain(f, l). The same behavior applies
when explaining a failure with reason(⊥) and explain(f,⊥).

Note that the way we presented Algorithm 8 allows any propagator to adapt any mode
of generating explanations (i.e., eagerly at the moment of propagation, or during conflict
analysis).
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Algorithm 8: 1-UIP-backward
d← current level;
f ← reason(⊥) ;

1 Ψ← explain(f,⊥) ;
2 while ∣{q ∈ Ψ ∣ level(q) = d}∣ > 1 do
3 p← arg maxq({rank(q) ∣ level(q) = d ∧ q ∈ Ψ}) ;
4 f ← reason(p) ;

Ψ← Ψ ∪ {q ∣ q ∈ explain(f, p) ∧ level(q) > 0} ∖ {p} ;
5 return Ψ ;

2.3.2.2 Lazy (Atom) Generation

In order to have a reasonable number of atoms inside the UP engine, this technique is
used to lazily generate atoms related to domain operations only when they are needed
[53, 52]. Recall that for a variable domain of size k, the number of atoms is 2k and the
number of clauses is about 4k (using the dom(x) encoding). When the domain size is
too large, hybrid models becomes hardly efficient because of the amount of time needed
for propagating these clauses. The notion of ‘lazy generation’ appeared recently in the
literature as a mechanism dealing with that issue.

We describe this mechanism following the latest propositions in [52] which are improve-
ments of [53]. We use their term ‘lazy generation’ to describe this technique.

The main transformation needed for using lazy generation is to reshape propagation
rules to contain both literals and domain operations. The gain here is that one does not
need the atoms generated from the beginning. Take for instance the propagation rule in
Example 2.4 Jy = 3K⇒ Jx ≥ 13K. The propagator does not need to use the atom Jy = 3K
to explain Jx ≥ 13K. Instead, it can inform the solver that the operation assigning y to
3 is responsible for the lower bound tightening of x to 13. We shall use the notations
Jx = vK, Jx ≠ vK, Jx ≤ vK, and Jx ≥ vK for literals associated to generated atoms as well as
the correspondent domain operations.

The skeleton of conflict analysis is the same as Algorithm 8. Few adaptations are,
however, necessary. First, the nogood under construction Ψ can contain both literals
and domain operations and p can be either a literal or a domain operation. Next, one
should be able to recover the values of level, rank and reason for each domain constraint
operation. Note that the rank is needed only in Line 3 to compute the last assigned
literal in Ψ. Finally, before returning Ψ in Line 5, all domain operations in Ψ should
either be replaced by their corresponding literals if they are already generated, or be
associated to newly generated atoms.

Three scenarios are possible when lazily generating an atom Jx ≤ uK.
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1. If there is no value a =max{u′ ∣ Jx ≤ u′K is generated ∧u′ < u}, we add the clause
¬Jx ≤ uK∨Jx ≤ bK if there exists a value b =min{u′ ∣ Jx ≤ u′K is generated ∧u′ > u}.

2. If there is no value b =min{u′ ∣ Jx ≤ u′K is generated ∧u′ > u}, we add the clause
¬Jx ≤ aK∨Jx ≤ uK if there exists a value a =max{u′ ∣ Jx ≤ u′K is generated ∧u′ < u}

3. Otherwise, we add the clauses ¬Jx ≤ aK ∨ Jx ≤ uK and ¬Jx ≤ uK ∨ Jx ≤ bK where a =
max{u′ ∣ Jx ≤ u′K is generated ∧u′ < u} and b =min{u′ ∣ Jx ≤ u′K is generated ∧u′ >
u}.

If an atom Jx = vK has to be generated, one first generates Jx ≤ vK and Jx ≤ v − 1K
following the above way (if they are not already generated), then posts the clauses 2, 3,
and 5 of dom(x).

The main problem with lazy generation is that there is a redundancy regarding the
generation of bound literals. After adding the clauses ¬Jx ≤ aK∨Jx ≤ uK and ¬Jx ≤ uK∨Jx ≤
bK the clause ¬Jx ≤ lK ∨ Jx ≤ uK becomes redundant. There might be n − 2 redundant
clauses after generating n atoms for a given variable.

We shall propose in Section 5.2 a new way for using lazy generation in order to avoid
this redundancy whilst being computationally equivalent to UP as if the atoms were
generated from the beginning.

Recall that if the literals are eagerly generated then for any domain change, one as-
signs its corresponding literal to true which might trigger UP. Such a procedure is not
necessary with lazy generation since not every domain operation is associated to a lit-
eral. Instead, the domain changes must be reflected on the generated literals. Feydy et
al. [52] propose to associate a map for each variable x from values to domain operations4.
Whenever D(x) changes, the map can be used to determine the newly executed domain
operations already having an associated literal. These literals must then be assigned
accordingly.

2.3.2.3 Semantic Reduction

In general, there is no complete qualitative evaluation for comparing different
nogoods/explanations. Take for instance the nogoods a ∧ ¬b ∧ c ⇒ ⊥, e ∧ c ⇒ ⊥, and
a ∧ ¬b ⇒ ⊥. Unless we have additional information regarding a, b, and e, we cannot
determine the best choice between a ∧ ¬b ∧ c⇒ ⊥ and e ∧ c⇒ ⊥ even though the latter
is shorter. The strict inclusion, however, gives a simple and straightforward way for
comparison. For instance a ∧ ¬b⇒ p is clearly preferable to a ∧ ¬b ∧ c⇒ p.

4We had also a personal communication with Thibaut Feydy on the subject.
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Reasoning about the semantic of each literal/domain operation enables a new way for
reduction. Suppose that Ψ ∶ Jx ≤ 17K ∧ Jx ≤ 10K ∧ Jy ≥ 5K ∧ Jy ≥ 9K ∧ p ⇒ ⊥ is the final
nogood found before converting domain operations into literals. Since Jx ≤ 10K can be
considered as a plausible explanation for Jx ≤ 17K, then we can safely remove it from Ψ.
The same observation goes with Jy ≥ 9K as a reason for Jy ≥ 5K. The final nogood in this
case is Jx ≤ 10K ∧ Jy ≥ 9K ∧ p⇒ ⊥.

Semantic reduction revises the final nogood to contain for each variable the smallest
possible upper bound and the largest possible lower bound literals. Not only has the
final nogood a better quality, but also the number of lazily generated atoms is smaller.



Chapter 3

An Empirical Heuristic Study for
the Car-Sequencing Problem

Introduction

Car-sequencing [102] is a well known sequencing problem coming from the automotive
industry and has a long history in constraint programming [44, 17, 128, 111, 139]. In
this problem, a set of cars has to be sequenced on an assembly line subject to capacity
and demand constraints. Each car belongs to a class of vehicles that is defined with a set
of options to install (such as sunroof and air-conditioner). In 2005, a challenge has been
organized by the French Operations Research and Decision Support Society (ROADEF1)
for solving optimization versions of the problem provided by the RENAULT2 automobile
manufacturer. We refer the reader to [131] for a survey regarding exact and heuristic
methods used in this challenge.

In this chapter, we are interested in the search aspect for solving the car-sequencing
problem. The latter is used as a test benchmark throughout this thesis. Through a
comprehensive evaluation of search strategies for this problem. We show the interest
of several new branching heuristics and we measure the overall impact of the choice of
search strategy.

This empirical study is built on a new classification of heuristics for this problem. This
classification is based on a set of four criteria: the type of branching decisions, the
exploration directions, the selection of branching values (‘options’ in this model) and
the aggregation function for this selection. In particular, we show that the way of
selecting the most constrained option is critical, and the best choice is fairly reliably

1http://challenge.roadef.org/2005/en
2http://group.renault.com
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the “load” of an option, that is the ratio between its demand and the capacity of the
corresponding machine. Similarly, branching on the class of vehicle is more efficient than
branching on the use of an option. Overall, even though results can vary greatly from
instance to instance, we are able to indicate with a relatively high confidence which is
the most robust strategy, or at least outline a small set of potentially best strategies.

The remaining of the chapter is organized as follows. In Section 3.1, we describe the
car-sequencing problem and discuss the related constraint satisfaction models. In Sec-
tion 3.2, we propose and classify a number of new and existing heuristics. And finally,
we empirically evaluate and analyze the new classification in Section 3.3.

3.1 The Car-Sequencing Problem

3.1.1 Problem Description

In the car-sequencing problem, n vehicles have to be produced on an assembly line.
There are k classes of vehicles and m types of options. Each class c ∈ {1, . . . , k} is
associated with a demand dclassc , that is, the number of occurrences of this class on the
assembly line, and a set of options Oc ⊆ {1, . . . ,m}. Each option is handled by a working
station able to process only a fraction of the vehicles passing on the line. The capacity
of an option j is defined by two integers pj and qj , such that no subsequence of size qj
may contain more than pj vehicles requiring option j.

A solution of the problem is then a sequence of cars satisfying both demand and capacity
constraints. This problem is NP-hard [84, 50].

For convenience, we shall also define, for each option j, the corresponding set of classes
of vehicles requiring this option Cj = {c ∣ j ∈ Oc}, and the option’s demand doptj =
∑c∈Cj

dclassc .

Example 3.1. Consider a simple case of 5 slots (i.e., n = 5) with 3 classes {c1, c2, c3}
and 4 options such that:

• Oc1 = {1,2}, Oc2 = {1,3,4}, Oc3 = {2}.

• dclassc1 = 2, dclassc2 = 2, dclassc3 = 1

• pi/qi (lexicographically): 3/4; 2/3; 1/3; 1/2.

From above, we obtain:



Chapter 3 An empirical heuristic study for the car-sequencing problem 39

• C1 = {1,2}, C2 = {1,3}, C3 = {2} and C4 = {2}

• dopt1 = 4, dopt2 = 3, dopt3 = 2 and dopt4 = 2

The sequence [c1, c2, c1, c3, c2] is a possible solution for this instance.

3.1.2 Modeling

We use a standard CP model3 with two sets of variables. The first set corresponds to
n integer variables {x1, . . . , xn} (called class variables) taking values in {1, . . . , k} and
standing for the class of vehicles in each slot of the assembly line. The second set of
variables corresponds to nm Boolean variables {y1

1, . . . , y
m
n } (called option variables),

where yji stands for whether the vehicle in the ith slot requires option j.

There are three sets of constraints.

1. Demand constraints: for each class c ∈ {1..k}, ∣{i ∣ xi = c}∣ = dclassc . These con-
straints are usually enforced with a Global Cardinality Constraint (Section 2.1.3.2.

2. Capacity constraints: for each option j ∈ {1..m}, no subsequence of size qj involves
more than pj cars requiring option j. That is, ∑i+qj−1

l=i yjl ≤ pj , ∀i ∈ {1, . . . , n−qj+1}.
In order to factor out as much as possible the propagation aspect from the study,
we use several models in order to diversify the data set. More precisely, we shall
consider four models, differentiated by how capacity constraints are modeled and
thus propagated. For each option j, these constraints can be expressed in one of
the following alternatives:

(a) A naive decomposition using sum constraints. This model is denoted
decompose.

(b) Let card be a mapping on integers such that card(c) = dclassc ,∀c ∈ {1, . . . , k}.
For each option j, we post the following Global Sequencing Constraint (Sec-
tion 2.1.3.2):

Gsc(0, pj , qj , card, card, [x1, . . . , xn],Cj)

This model is denoted gsc.

(c) For each option j, we post the following AtMostSeqCard constraint (de-
fined later in Section 4.3):

3This model can be found for instance in Ilog-Solver 6.7.
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AtMostSeqCard(pj , qj , doptj
, [yj1, . . . , y

j
n])

This model is denoted amsc.

(d) We post both Gsc(0, pj , qj , card, card, [x1, . . . , xn],Cj) and
AtMostSeqCard(pj , qj , doptj

, [yj1, . . . , y
j
n]) for each option.

This model is denoted gsc⊕amsc.

3. Channeling: Option and class variables are channeled through simple constraints:
yji = 1 ⇔ j ∈ Cxi ,∀j ∈ {1, ...,m},∀i ∈ {1, ..., n}. Each constraint is implemented
using a set of simple binary constraints xi = c⇒ yji = 1, ∀j ∈ Oc and xi = c⇒ yji =
0, ∀j ∈ {1, . . . ,m} ∖Oc.

3.1.3 Related Work

Regarding the search strategy, two main principles are known to be important for the
car-sequencing problem. First, the sequence of variables to branch should follow the
assembly line itself. Indeed, the structure in chain of capacity constraints makes it
difficult to achieve any inference far away from a modified variable in the sequence
[128]. Second, one should assign the most constrained class or option first. This has been
perceived as a fail-first strategy, hence surprising since succeed-first strategies should be
better for selecting the next branch to follow. However, as pointed out in [128], since
the solutions to this problem are permutations of a multiset of values, choosing the most
constrained one when it is still possible actually yields the least constrained sub-problem.
Therefore, in this sense, it is indeed a succeed-first strategy.

In [128], a lexicographical exploration of the integer variables x1, . . . , xn, standing for
classes of vehicles, was advocated as an interesting search strategy. Three parameters
were considered for choosing the most constrained class: the number of options per class
(denoted as max option), the tightness of each option (i.e., the capacity constraint q/p)
and the usage of each option (i.e., usage rate d.q/p

n ).

In [111], the authors proposed to branch on option variables yji , exploring the sequence
consistently with their position on the assembly line, however starting from the middle
towards the extremities. Indeed variables at both ends are subject to fewer capacity
constraints than variables within the sequence. Moreover, they introduced for the first
time the notion of slack for selecting the most constrained option.

In [68], several heuristics were compared for solving an optimization variant of this
problem. These heuristics are based on the usage rate previously defined for selecting the
next variables to assign in the sequence. They consider two ways for aggregating these
values (using lexicographically the maximum value, or a simple sum) when branching
on class variables. Two possibilities of using the usage rate were compared : static
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and dynamic (i.e., updated at each node). Note that the static values of usage rate,
load or slack are all equivalent. Their experiments showed essentially the interest of
dynamic heuristics comparatively to static ones. The same observation is made in [29]
where a dynamic load was used with class variable branching and a simple summation
to aggregate the values.

3.2 Heuristics Classification

3.2.1 Classification Criteria

We propose to classify the heuristics related to this problem according to four criteria:

• The type of branching decisions: that is, whether we branch on classes or options.

• The order in which we explore the variables along the assembly line: one can start
from the left of the sequence and progress to the right, or start from the middle of
the assembly line widen to the sides.

• The measure used to select the most constrained options.

• The function used to aggregate the evaluation of the different options in order to
choose the next class of vehicles to branch on.

Notice that among the many combinations of these four criteria, some correspond to
existing heuristics, however some are novel. For each criterion, there are several alter-
natives, we present each of them below.

3.2.1.1 Branching

We can branch either by assigning a class to a slot, that is, branching on class variables
xi, or by assigning an option to a slot, that is, branching on option variables yji . The
former was used in [128], while the latter was proposed in [111]. Notice that when
branching on option variables, we always set it to the value 1, which amounts at forcing
the corresponding option to be represented in that slot. We therefore consider these two
cases denoted respectively class and opt.

3.2.1.2 Exploration

Heuristics that do not follow the sequence of variables along the assembly line generally
have poor performances [128]. We find in the literature two main exploration orders:
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either following a lexicographical order on class variables or from the middle to the sides
of the sequence. We therefore consider these two exploration cases denoted respectively
lex and mid.

3.2.1.3 Selection

The best heuristics are those selecting first the most constrained option or class. Observe
that since each class is defined by a set of options, then it all goes down to the hardness
of the options. We therefore consider the following indicators proposed in the literature
to select the most constrained option:

• The capacity qj/pj : The greater the ratio qj/pj , the more constrained is the option.
In fact, a greater ratio qj/pj has more impact on neighboring slots as it is shown
in Example 3.2.

Example 3.2. Let o1 and o2 be two options s.t. p1 = 1, p2 = 2, and q1 = q2 = 3.
Consider now a sequence of 5 slots in which we have to choose between o1 and o2

in the third position. The two parts of the following figure show the impact of each
option. In fact, by choosing o1, all neighboring slots can no longer contain this
option because of the at most 1/3 constraints.

y1
i y2

i

0 0 1 0 0 . . 1 . .

• The residual demand doptj : This value is equal to the total demand (of a given
option) minus the number of cars containing this option already allocated (doptj =
(doptj −∑ni=1min(y

j
i )). Clearly, a greater demand makes it more difficult to fit the

cars requiring this option on the assembly line.

• The load δj : This parameter combines the residual demand with the capacity ratio:
δj = doptj × qj

pj
. In fact the ceiling of δj is always an upper bound for the number

of slots required to mount doptj times the option j. A greater value of the load is
therefore more constrained.

• The slack σj : Let nj be the number of slots available for option j. The slack of an
option j is σj = nj − δj . Since we want higher values to indicate more constrained
options, we use in fact n − σj .

• The usage rate ρj : This value is defined as the load divided by the number of
remaining slots: ρj = δj/nj . It therefore represents how much of the remaining
space will be occupied by vehicles requiring this option.
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Based on these indicators, we consider four methods to evaluate the options. Each
method returns an indicative value on how constrained is an option. In other words, the
option maximizing the given parameter will be preferred in the next decision. In the
following, we denote the above selection criteria by q/p, dopt, δ, n−σ and ρ, respectively.

3.2.1.4 Aggregation

In the case of class branching, since classes are defined as a set of options, the decision
is most often made by summing up the “scores” of the options for each class. However,
there are many ways to aggregate these values. We therefore propose to add the method
used for the aggregation as a fourth criterion.
Let f ∶ {1, . . . ,m} ↦ R be a scoring function. We denote f(Oc) the tuple formed
by the sorted scores of class c’s options, i.e., f(Oc) = ⟨f(j1), . . . , f(j

∣Oc∣
)⟩ such that

{j1, . . . , j
∣Oc∣

} = Oc and f(jl) ≥ f(jl+1) ∀l ∈ [1, . . . , ∣Oc∣ − 1]. We shall consider the
following ordering relations between classes:

• Sum of the elements (≤∑): c1 ≤∑ c2 iff ∑v∈f(Oc1)
v ≤ ∑v∈f(Oc2)

v.

• Euclidean norm (≤Euc): c1≤Eucc2 iff ∑v∈f(Oc1)
v2 ≤ ∑v∈f(Oc2)

v2.

• Lexicographical order (≤lex): c1≤lexc2 iff f(Oc2) comes lexicographically after
f(Oc1).

Example 3.3. We give an illustrative example. We consider Example 3.1 and suppose
that one branches on classes. In Table 3.1, we give the different values of each selection
parameter for all options.

Table 3.1: Values of the selection criteria for each option
hhhhhhhhhhhhhhhhhSelection parameter

Options 1 2 3 4

q/p 1,33 1.5 3 2
dopt 4 3 2 2
δ 5,32 4.5 6 4

n − σ 5,32 4.5 6 4
ρ 1,064 0.9 1,2 0,8

In order to emphasize the impact of aggregation functions, we propose to study the dif-
ferent scores for each class using the dopt parameter. Recall that each class is defined by
a set of options, we obtain in Table 3.2 the corresponding values for each class.

In Table 3.3, we report the order of preferences given by the different aggregations. The
class having the higher score will be selected first and so on.
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Table 3.2: Classes’ scores using the parameter dopt

XXXXXXXXXXXOptions
Classes

c1 c2 c3

1 4 4 -
2 3 - 3
3 - 2 -
4 - 2 -

Table 3.3: Scores & Heuristic decisions

Agg. Scores Heuristic preferences
c1 c2 c3

≤∑ 7 8 3 [c2, c1, c3]
≤Euc 25 24 9 [c1, c2, c3]
≤lex [4, 3, -, -] [4, 2,-,-] [3,-,-,-] [c1, c2, c3]

Although we treat a simple case, one can observe that decisions can be influenced by
aggregation functions. The behavior of ≤∑ is different from ≤Euc and ≤lex. It prefers c2

whereas the others prefer c1.

3.2.2 Heuristics Structure

In the rest of the chapter, we denote the set of heuristics as follows:
⟨{class, opt},{lex,mid},{q/p, dopt, δ, n − σ, ρ,1},{≤∑,≤Euc,≤lex}⟩. Note that we consid-
ered the constant function 1 as another possible selection criterion. This is proposed so
that our classification also includes the max option heuristic [128] where each class is
evaluated simply by its number of options.

Observe, however, that not all combinations make sense. For instance, the aggrega-
tion function does not matter when branching on options. Therefore, using the new
classification, we obtain 42 possible heuristics:

• ⟨{class},{lex,mid},{q/p, dopt, δ, n−σ, ρ},{≤∑,≤Euc,≤lex}⟩: The 30 heuristics that
branches on class variables with the two exploration strategies {lex,mid}, the
five selection parameters {q/p, dopt, δ, n − σ, ρ} and the 3 aggregation techniques
{≤∑,≤Euc,≤lex}.

• ⟨{opt},{lex,mid},{q/p, dopt, δ, n−σ, ρ},∅⟩: 10 heuristics branching on option vari-
ables with the two exploration possibilities {lex,mid} and the five selection pa-
rameters {q/p, dopt, δ, n − σ, ρ}.
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• ⟨{class},{lex,mid},{1},{≤∑}⟩: The two possible heuristics related to the partic-
ular case of max option.

Among the many combinations defined by this structure, there are several existing
heuristics as well as new ones. In the literature, only few heuristics have been studied.
First, the max option heuristic proposed in [128] branches on class variables lexico-
graphically (lex) and the most constrained class is then selected using the sum (≤∑)
aggregation. It therefore corresponds to ⟨class, lex,1,≤∑⟩. Second, in [68], the authors
proposed to use the usage rage with class branching, lexicographical exploration (lex)
and ≤∑, ≤lex for aggregation. They correspond to ⟨class, lex, δ,{≤∑,≤lex}⟩. Similarly,
the authors of [29] proposed a class branching using ≤∑ for aggregation in a lexicograph-
ical exploration (lex), however, using the load δ and the capacity q/p for selection (i.e.,
⟨class, lex,{δ, q/p},≤∑⟩). Finally, the heuristic proposed in [111] is based on option

branching, exploring the sequence from the middle to the sides using the slack as a
selection criteria. This heuristic corresponds to ⟨opt,mid,n − σ,∅⟩.

To the best of our knowledge, all other heuristics are new and there is no comparative
study for evaluating the impact of each classification criterion.

3.3 Evaluating the new Structure

In this section, we evaluate experimentally the impact of the proposed criteria classi-
fication for the heuristics. We slightly perform randomization as follows: with a low
probability (2% for classes and 5% for options4), the second best choice (provided by
the heuristic) is taken.

All the experiments were run on Intel Xeon CPUs 2.67GHz under Linux. The detailed
results are available via http://homepages.laas.fr/msiala/car-sequencing. For
each instance, we launched five randomized runs per heuristic with a 20 minutes time
cut-off. All models are implemented using Ilog-Solver 6.7.

We use benchmarks available from the CSPLib [2] divided into three groups. The first
group of the CSPLib contains 70 satisfiable instances having 200 cars, 5 options and from
18 to 30 classes, it is denoted by set1 . The second group of the CSPLib corresponds to
instances with 100 cars, 5 options and from 19 to 26 classes. In this group there are 4
satisfiable instances , denoted by set2 and 5 unsatisfiable instances denoted by set3 . The
third group of the CSPLib contains 30 larger instances (ranging from 200 to 400 vehicles,
5 options and from 19 to 26 classes). The 7 instances from this group that are known
to be satisfiable are grouped together in set4 . At the top of each table, we mention,

4Those values were arbitrarily chosen. The impact of branching on an option variable being lower, a
higher probability was necessary.

http://homepages.laas.fr/msiala/car-sequencing
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for each data set, the total number of instances with an indication on their feasibility
(i.e., satisfiable: S and unsatisfiable U). The status of the 23 remaining instances set5
is still unknown. They are often treated in an optimization context, hence they are not
considered in these experimentations.

The set of heuristics ⟨{class, opt},{lex,mid}, {1, q/p, dopt, δ, n − σ, ρ},{≤∑,≤Euc,≤lex}⟩
combined with the four models decompose, amsc, gsc, and gsc⊕amsc leads to 168
different configurations. The latter is applied to each set of instances (i.e., 70 + 4 + 5 + 7
instances) with 5 randomized runs. The total CPU time for that was devoted to these
experiments is around 244 days.

We say that a run (related to an instance and a given configuration) is successful if
either a solution was found or unsatisfiability was proven. For each set of instances, we
report the percentage of successful runs (%sol) 5, the CPU time (time) in seconds both
averaged over all successful runs and number of instances.

Experimental results are divided in thee parts. We first compare the many combinations
of heuristic factors by giving the results for each one. Then, we study the proposed
classification by evaluating each factor separately. Finally, we provide a comparison
related to the efficiency and confidence of each factor

3.3.1 Impact of each Heuristic

In this paragraph, we report the results of each heuristic separately on each set of
instances averaged over the four propagators.

The set of heuristics corresponds to all possible combinations of parameters given by:
⟨{class, opt},{lex,mid},{1, q/p, dopt, δ, n−σ, ρ},{≤∑,≤Euc,≤lex}⟩ leading to the 42 heuris-
tics presented in Section 3.2.

Table 3.4 shows the global results of our experiments. For each heuristic, we indicate
in column (‘Ref.’) whether it is already known (with the corresponding reference) or
not (with ‘-’). Recall that, in these experiments, we consider only dynamic evaluation
with the four criteria : demand, load, usage rate and slack. For each set of instances,
we report the percentage of successful runs (%sol) and their average CPU time (time).
The last two columns summarize the results over all set of instances. The column (%tot)
gives the total percentage of solved instances and the column (%dev) gives the deviation
in percent of a given heuristic to the heuristic solving the maximum number of instances.
Bold values give the best heuristics w.r.t. %sol.

5Since set3 contains only unsatisfiable instances, then %sol corresponds to the percentage of instances
for which the solver proves unsatisfiability.
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Table 3.4: Comparison of heuristics averaged over propagation rules

Heuristics Ref. Instances Total
set 1 (70, S) set 2 (4, S) set 3 (5, U) set 4 (7, S)

Sel. Br. Expl. Aggr. %sol time %sol time %sol time %sol time %tot %dev

ρ
class

lex
≤lex [68] 100.00 0.6 52.50 59.1 0.00 - 25.71 2.9 85.93 1.00
≤∑ [68] 100.00 0.6 48.75 0.2 0.00 - 10.71 84.4 84.53 2.61
≤Euc - 100.00 0.6 30.00 0.2 0.00 - 12.85 156.3 83.84 3.42

mid
≤lex - 99.92 0.5 53.75 163.5 0.00 - 16.42 50.0 85.17 1.88
≤∑ - 100.00 0.5 51.25 236.6 0.00 - 18.57 5.4 85.29 1.74
≤Euc - 100.00 0.5 51.25 249.3 0.00 - 17.14 30.2 85.17 1.88

opt
lex - - 87.00 1.9 75.00 33.3 25.00 211.3 5.71 533.4 76.22 12.19
mid - - 87.64 2.9 31.25 0.4 23.00 233.6 14.28 171.1 75.29 13.26

n − σ
class

lex
≤lex - 100.00 0.6 52.50 59.2 0.00 - 25.71 2.8 85.93 1.00
≤∑ - 100.00 0.6 48.75 0.2 0.00 - 10.71 78.6 84.53 2.61
≤Euc - 100.00 0.6 48.75 0.1 0.00 - 10.71 79.4 84.53 2.61

mid
≤lex - 100.00 0.6 53.75 169.7 0.00 - 18.57 33.1 85.41 1.61
≤∑ - 100.00 0.5 51.25 236.9 0.00 - 22.14 29.0 85.58 1.41
≤Euc - 99.92 0.5 51.25 236.3 0.00 - 22.14 28.8 85.52 1.48

opt
lex - - 32.71 21.7 43.75 236.8 13.00 190.7 0.00 - 29.42 66.11
mid - [111] 38.14 13.0 26.25 33.7 18.00 260.8 0.00 - 33.31 61.62

δ
class

lex
≤lex - 100.00 0.6 71.25 42.4 0.00 - 25.71 3.0 86.80 0.00
≤∑ [29] 100.00 0.6 48.75 0.3 0.00 - 10.71 100.2 84.53 2.61
≤Euc - 100.00 0.6 48.75 0.3 0.00 - 10.71 87.3 84.53 2.61

mid
≤lex - 100.00 0.5 37.50 38.2 0.00 - 15.00 51.5 84.36 2.81
≤∑ - 100.00 0.5 68.75 167.9 0.00 - 20.71 42.8 86.28 0.60
≤Euc - 100.00 0.5 68.75 166.5 0.00 - 20.00 16.2 86.22 0.67

opt
lex - - 98.57 1.2 36.25 111.7 0.00 - 22.85 5.8 83.78 3.48
mid - - 98.92 3.7 43.75 3.8 0.00 - 21.42 88.8 84.29 2.89

q/p
class

lex
≤lex - 82.85 7.8 0.00 - 0.00 - 0.00 - 67.44 22.31
≤∑ [29] 83.35 10.1 18.75 0.1 0.00 - 0.00 - 68.72 20.84
≤Euc - 83.42 11.3 18.75 0.09 0.00 - 0.00 - 68.77 20.77

mid
≤lex - 84.71 7.9 18.75 95.7 0.00 - 0.00 - 69.82 19.56
≤∑ - 85.35 7.7 18.75 100.9 0.00 - 0.00 - 70.34 18.96
≤Euc - 84.64 7.5 18.75 96.0 0.00 - 0.00 - 69.77 19.63

opt
lex - - 65.71 73.3 0.00 - 0.00 - 0.00 - 53.48 38.38
mid - - 70.71 29.8 12.50 606.4 0.00 - 0.00 - 58.14 33.02

dopt
class

lex
≤lex - 90.92 1.2 37.50 47.4 0.00 - 25.71 55.3 77.84 10.32
≤∑ - 95.07 1.9 41.25 48.5 0.00 - 17.14 21.5 80.70 7.03
≤Euc - 94.50 0.7 43.75 106.5 0.00 - 23.57 40.2 80.87 6.83

mid
≤lex - 90.64 1.9 75.00 83.4 0.00 - 24.28 5.3 79.24 8.71
≤∑ - 94.71 0.6 67.50 68.9 0.00 - 13.57 53.9 81.33 6.30
≤Euc - 94.57 0.6 75.00 83.2 0.00 - 15.71 50.7 81.74 5.83

opt
lex - - 73.78 2.9 56.25 79.5 0.00 - 0.71 282.0 62.73 27.73
mid - - 77.28 13.7 43.75 5.2 0.00 - 7.85 16.5 65.58 24.45

1 class
lex ≤∑ [128, 29] 86.92 13.2 18.75 0.1 0.00 - 0.00 - 71.62 17.49
mid ≤∑ - 89.92 8.3 63.75 20.3 0.00 - 0.00 - 76.16 12.26

For the easiest set (set1 ), 16 heuristics solve all instances in less than a second. Among
them, 3 are known heuristics whereas 13 correspond to new combinations. It should be
noted that all these configurations use a class branching and a load-based selection (i.e.,
ρ, δ, n−σ). Interestingly, changing a single parameter of a heuristic can have a dramatic
effect. For instance, the heuristic ⟨opt, lex, n − σ,∅⟩ resolves only 32,71% of this set
whereas changing only the branching criterion to class (i.e., ⟨class, lex, n − σ,{≤lex,≤∑
,≤Euc}⟩) leads to a complete resolution (i.e., 100%).

For set2 and set3, the heuristic ⟨opt, lex, ρ,∅⟩ gives the best results with 75% in 33.3s for
set2 and 25% in 211.3s for set3. Also, the heuristics ⟨class,mid, dopt,{≤lex,≤Euc}⟩ has
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the same number of successful runs compared to ⟨opt, lex, ρ,∅⟩ but with higher runtime.
All of these heuristics correspond to new configurations.

Finally, for set4, the best heuristics resolve 25.71% in approximately 3s and correspond to
the configurations ⟨class, lex,{δ, ρ, n − σ},≤lex⟩. Another heuristic ⟨class, lex, dopt,≤lex⟩
obtains the same percentage but with higher runtime (55.3s).

Overall, the heuristic that has the best results across all data sets and therefore seems
to be the more robust is ⟨class, lex, δ,≤lex⟩ with 86.8% of solved instances (according to
the column ‘Total’). More generally, heuristics using load-based selection (i.e., δ, n − σ
and ρ) and class branching obtain better results than the other configurations.

3.3.2 Criteria Analysis

In this part, we aim to evaluate the relative impact of each classification criterion. For
each criterion and each data set, we divide all the runs into as many sets as the number
of possible values for this criterion. Then, we average the results within each set. For
instance, exploration can be done either lexicographically (lex), or from the middle to
the sides (mid). We will thus report two sets of statistics, one for lex and one for
mid. Each average corresponds to one run per possible set of heuristics (21), filtering
algorithms (4), randomized runs (5), and instances in the data set.

The following Tables (3.5, 3.6, 3.7 and 3.8) are split in two parts. We report in the upper
part the results for each set and each possible criterion w.r.t. the criterion being used
averaged over all other criteria. The lower part shows the best results obtained for any
possible combination of the other criteria. In these tables, we report the percentage of
successful runs (%sol), the CPU time (time) in seconds both averaged over all successful
runs, instances and heuristic criteria. Bold values indicate best results in terms of
successful runs (%sol). Moreover, in the upper tables, the last column (%tot) gives the
percentage of solved instances over all the sets.

3.3.2.1 Branching Strategy

Here we compare the two branching strategies: class and opt. We tested all the pos-
sible combinations of heuristics for each strategy. However, as the constant selection
parameter 1 is not defined for opt variables, we do not consider its heuristics in this
part.

When branching on opt variables, we have defined 10 heuristics (since aggregation func-
tions are omitted): ⟨opt,{lex ,mid},{q/p, dopt, δ, n − σ, ρ},∅⟩, that is 200 tests for each



Chapter 3 An empirical heuristic study for the car-sequencing problem 49

instance. To have consistent comparison with class branching, we separate its re-
sults by aggregation functions. That is ⟨class,{lex ,mid},{q/p, dopt, δ, n − σ, ρ},≤lex⟩,
⟨class,{lex ,mid},{q/p, dopt, δ, n − σ, ρ},≤Euc⟩ and ⟨class,{lex ,mid},{q/p, dopt, δ, n −
σ, ρ},≤∑⟩.

Table 3.5: Evaluation of the branching variants

Av. Bran. set1 (70, S) set2 (4, S) set3 (5, U) set4 (7, S) Global
(×200) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot
opt 73.0 102023.9 14.1 36.8 287139.5 82.0 7.9 53275.4 225.6 7.2 207502.8 107.9 62.2

class,≤lex 94.9 26120.0 2.0 45.2 481410.8 84.9 0.0 - - 17.7 98707.8 22.5 80.7
class,≤∑ 95.8 27209.1 2.1 46.3 327601.5 95.7 0.0 - - 12.4 156300.3 44.6 81.1
class,≤Euc 95.7 27563.3 2.1 45.5 463196.6 107.9 0.0 - - 13.2 107599.7 52.9 81.0
Best Bran.

opt 100.0 98577.4 10.3 75.0 7251.3 0.5 40.0 46211.8 261.8 25.7 629016.8 130.7
class,≤lex 100.0 184.7 0.0 100.0 730687.4 89.5 0.0 - - 28.5 29632.6 58.5
class,≤∑ 100.0 184.2 0.0 95.0 904739.2 96.3 0.0 - - 25.7 34705.3 54.8
class,≤Euc 100.0 184.4 0.0 100.0 211830.5 128.8 0.0 - - 28.5 47435.1 75.4

The upper part of Table 3.5 shows that branching on classes is usually better than
branching on options. However, the latter is more efficient on proving infeasibility (i.e.,
line opt on set3 ). The most efficient branching averaged over the other factors uses
the ≤∑ aggregation, but the two other aggregation options (≤lex or ≤Euc) are close in
performances. This result is confirmed by the lower part of the table.

3.3.2.2 Exploration

To evaluate the exploration parameters, we consider for each ω ∈ {lex,mid} the following
heuristics:

• ⟨class,ω,{q/p, dopt, δ, n − σ, ρ},{≤∑,≤Euc,≤lex}⟩.

• ⟨opt, ω,{q/p, dopt, δ, n − σ, ρ},∅⟩.

• ⟨class,ω,{1},{≤∑}⟩.

These three sets cover all possible combinations of heuristics leading to 420 tests for
each parameter ω ∈ {lex,mid} and each instance. The results are shown in Table 3.6.

In the first part of Table 3.6, we can see that exploring the sequence from the middle
then widening to the sides is in average slightly but consistently beneficial. Recall that
the rationale for starting in the middle is that variables in the extremities are subject
to fewer capacity constraints.

However, in the second part of Table 3.6, we can see that in terms of successful runs,
exploring the sequence using the lexicographical order leads to better results for proving
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Table 3.6: Evaluation of the exploration variants

Av. Expl. set1 (70, S) set2 (4, S) set3 (5, U) set4 (7, S) Global
(×420) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot
lex 89.2 50617.6 5.6 40.0 259229.0 46.6 1.8 52295.1 204.3 11.3 120652.6 54.2 75.5
mid 90.3 42167.0 4.1 46.7 479360.9 126.5 1.9 54184.0 245.5 12.7 139829.4 42.8 76.8

Best Expl.
lex 100.0 184.8 0.0 100.0 730687.4 89.5 40.0 46211.8 261.9 28.5 29632.6 58.5
mid 100.0 183.5 0.0 100.0 213028.8 129.1 36.0 63984.8 307.6 28.5 1357.4 9.2

unsatisfiability. This could be explained by the fact that when starting in the middle
of the sequence, we effectively split the problem into essentially disjoint subproblems
(there is actually a weak link through demand constraints).

Overall, the exploration parameter does not seem to be as critical as the branching
parameter.

3.3.2.3 Selection

Here, we evaluate the selection criterion for choosing the most-constrained option. In this
case, there are two possible sets of heuristics for each parameter ω ∈ {q/p, dopt, δ, n−σ, ρ}:

• ⟨class,{lex,mid}, ω,{≤∑,≤Euc,≤lex}⟩

• ⟨opt,{lex,mid}, ω,∅⟩

That is 8 heuristics for each ω combined with the 4 propagators and the 5 runs. We
therefore have 160 tests for each instance (reported in Table 3.7).

The special case of max option is presented separately at the end of Table 3.7 because
the number of tested heuristics is different. In this case, there is only 2 heuristics
⟨class,1,{lex,mid},{≤∑}⟩, that is 40 tests for each instance.

The upper part of Table 3.7 shows that using the load solves more instances in average
over all the sets and for satisfiable sets (set1, set2 and set4 ) only. Surprisingly, the
load gives better results than slack and usage rate, despite the fact that both slack and
usage rate are defined using the load and the number of available slots in the variable’s
sequence. However the usage rate criteria seems to work better both in average and for
the best results for unsatisfiable instances. Moreover, in the second part of the table,
one can note that the demand obtains good results.

This can be explained by the manner in which the benchmarks were generated. In fact,
these instances, especially the hardest ones, are built in such way that they have a usage
rate close to 1 [2]. Since the number of available slots is initially identical for all options,
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Table 3.7: Evaluation of the selection variants

Av. Selec. set1 (70, S) set2 (4, S) set3 (5, U) set4 (7, S) Global
(×160) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot
ρ 96.8 1628.8 1.0 49.2 480035.3 99.9 6.0 49922.8 222.0 15.1 136850.7 81.7 82.6

n − σ 83.8 5773.4 2.3 47.0 699885.1 126.9 3.8 58466.5 231.4 13.7 103897.2 33.3 71.7
δ 99.6 3292.6 1.0 52.9 254264.1 74.8 0.0 - - 18.3 98161.0 41.5 85.1
q/p 80.0 195896.5 17.7 13.2 135511.2 123.0 0.0 - - 0.0 - - 65.8
dopt 88.9 25988.2 2.7 55.0 254347.0 68.8 0.0 - - 16.0 185381.6 36.8 76.2

1 (×40) 88.4 130722.2 10.7 41.2 28165.2 15.8 0.0 - - 0.0 - - 73.8
Best Selec.

ρ 100.0 184.8 0.0 75.0 7251.3 0.5 40.0 46211.8 261.9 25.7 4843.0 0.4
n − σ 100.0 184.8 0.0 75.0 1009607.4 124.1 32.0 75445.9 351.0 25.7 4843.0 0.4
δ 100.0 184.8 0.1 100.0 730687.4 89.5 0.0 - - 25.7 4843.0 0.4
q/p 98.8 7208.4 3.4 25.0 68.2 0.1 0.0 - - 0.0 - -
dopt 100.0 178.7 1.2 100.0 213028.8 129.1 0.0 - - 28.5 29632.6 58.5

1 99.7 58773.0 9.9 85.0 51740.9 36.9 0.0 - - 0.0 - -

they also have the same (low) slack and the same (high) load. Therefore the heuristics
based on these criteria (ie. load, slack and usage rate) cannot effectively discriminate
values at the root of the search tree. However, recall that the load is defined as the
product of the demand and the capacity. These two factors do not contribute equally,
and therefore will favor different sets of options. In other words, one of them is bound
to take a better decision, whilst the other is bound to take a worse one. We believe that
this bias in the generation of the benchmarks explains the surprisingly good results of
the demand (dopt) as well as the bad results of the capacity q/p along with the load, the
slack and the usage rate.

3.3.2.4 Aggregation

Aggregation functions are only used with class branching. For each parameter ω ∈
{≤lex,≤∑,≤Euc}, we have the 10 following heuristics combined with the propagators and
the random runs (i.e., 200 tests for each ω and each instance):

• ⟨class,{lex,mid},{q/p, dopt, δ, n − σ, ρ}, ω⟩

The constant parameter for selection 1 is not considered in these experiments since it is
only defined with the ≤∑ aggregation. The results are given in Table 3.8.

As we can see in the first part of this table, the three aggregation functions provide in
average similar results except for the hardest instances (set4 ) where ≤lex solved more
instances. Considering all instances, ≤∑ solves the largest number of problems. No
solution was found for unsatisfiable instances as in our case, only opt branching can
solve these instances (i.e., which by default does not use any aggregation function).
However, regarding the best results in the second part of the table, when using ≤lex and
≤Euc, one can obtain better performances in terms of resolved instances.



Chapter 3 An empirical heuristic study for the car-sequencing problem 52

Table 3.8: Evaluation of the aggregation variants

Av. Agg. set1 (70, S) set2 (4, S) set3 (5, U) set4 (7, S) Global
(×200) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot
≤lex 94.9 26120.0 2.0 45.2 481410.8 84.9 0.0 - - 17.7 98707.8 22.5 80.7
≤∑ 95.8 27209.1 2.1 46.3 327601.5 95.7 0.0 - - 12.4 156300.3 44.6 81.1
≤Euc 95.7 27563.3 2.1 45.5 463196.6 107.9 0.0 - - 13.2 107599.7 52.9 81.0

Best Agg.
≤lex 100.0 184.7 0.0 100.0 730687.4 89.5 0.0 - - 28.5 29632.6 58.5
≤∑ 100.0 184.2 0.0 95.0 904739.2 96.3 0.0 - - 25.7 34705.3 54.8
≤Euc 100.0 184.4 0.0 100.0 211830.5 128.8 0.0 - - 28.5 47435.1 75.4

3.3.3 A Summary Regarding the Criteria

We have previously evaluated the average best choice of each criterion (in terms of
solved instances). However, this choice is not the best on each set of instances. Instead,
we can determine the best choice for each data set, called the “perfect" choice. The
“Confidence” of the average best choice can then be defined by the ratio between the
average best choice and the perfect choice. Similarly, we can consider the “worst" choice
for each data set, and subsequently, define the “Significance” of a given factor using
the ratio between the worst and the perfect choice as 1 −worst/perfect.

Table 3.9: Confidence and Significance for each factor

Confidence Significance
Branching 0.989 0.247
Selection 0.995 0.231

Exploration 1.000 0.017
Aggregation 0.995 0.015

In Table 3.9, we give the values of Confidence and Significance for each factor (branch-
ing, selection, exploration, and aggregation).This table shows that there is high confi-
dence for each selected average best choice (between 0.989 and 1.0): that is, exploration
from middle to sides using a class branching, load selection, and a sum aggregation.
When considering the Significance of each criterion, one can observe that only two of
them (branching and selection) have a valuable impact. For the two other criteria (i.e.,
exploration and aggregation), there is little impact on the results when changing the
parameters.

Therefore, the most robust heuristics will be those branching on classes variables and
selecting options using the load criterion, that is ⟨class,{lex,mid}, δ,{≤∑,≤Euc,≤lex}⟩.
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3.4 Search vs. Propagation

An empirical evaluation of our propositions regarding the propagation aspect is given
in the next chapter. We consider here, however, how important is the search strat-
egy compared to propagation. In addition to all the previous models, we consider
a new one incorporating the Slack-Pruning (proposed in the next chapter, Sec-
tion 4.1) within the decompose model. As we mention in Section 4.1, this rule can
be applied only with lex branching. Therefore, we use the following set of heuristics
⟨{class, opt}, lex,{1, q/p, dopt, δ, n−σ, ρ},{≤∑,≤Euc,≤lex}⟩. That is 21 different heuristics
for each filtering algorithm. The experiments concern 9030 configurations per propaga-
tor.

Table 3.10: Evaluation of the filtering variants (averaged over all heuristics)

Filtering (×21) set1 (70 × 5) set2 (4 × 5) set3 (5 × 5) set4 (7 × 5)
%sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time

decompose 75.8 190636.0 11.2 22.6 792179.8 44.4 0.0 - - 7.7 194651.7 17.0
gsc 94.8 1639.4 4.2 44.0 38673.7 49.2 2.8 49417.9 260.8 12.1 35302.0 64.3

amsc 91.2 36285.7 3.9 49.2 411514.8 46.2 1.5 68873.9 15.1 13.1 239317.8 41.4
gsc⊕ amsc 95.1 1585.1 4.3 44.0 35711.3 45.4 2.8 46330.2 248.6 12.5 32258.4 80.9

slack-pruning 90.5 55384.8 3.8 43.3 627443.4 43.9 1.7 82815.9 16.1 12.2 356073.4 34.8

Table 3.11: Best results for filtering variants

Filtering set1 (70 × 5) set2 (4 × 5) set3 (5 × 5) set4 (7 × 5)
%sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time

decompose 100 184.8 0 75 7251.3 0.5 0 - - 25.7 4843 0.4
gsc 100 184.8 1.2 75 18073.7 58.2 40 46211.8 261.9 28.5 29632.6 58.5

amsc 100 184.8 0 100 730687.4 89.5 20 60460.4 13.5 28.5 31617.6 6
gsc⊕amsc 100 184.8 1.2 75 16923.7 55 40 46196.7 259.7 28.5 17252.6 40.8

slack-pruning 100 184.3 0 75 510189.0 35.1 20 70573.6 14 28.5 332430.9 34.3

Table 3.10 shows that the extra filtering of Slack-Pruning, AtMostSeqCard, or Gsc
does help a lot. For instance, at least 90% of the instances of the first set are resolved
irrespectively of the heuristic being used against 75,89% with the default decomposition
(i.e., decompose). The difference is even greater for the other sets.

Consider now the propagation method as a fifth criterion (i.e., in addition to the heuristic
factors). We calculate its Confidence and Significance according to the same formula
given in Section 3.3.3. Their values are equal to 0.996 and 0.217, respectively. This is
similar to the other criteria in terms of Confidence (i.e., close to 1.0), but slightly less
than the Significance of branching and selection. This emphasizes the importance of
these factors which are at least as important as the propagation level.

Overall, we observe that the choice of the search strategy has a very significant impact on
the efficiency of the method. For instance, on the set of easiest instances, when averaging
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across all heuristics, the “worst” filtering method (decomposition into sum constraints)
is successful in about 20% less runs than the best (Gsc+ AtMostSeqCard). However,
now averaging across all four models, the worst heuristic ⟨opt, lex, n−σ,−⟩, is successful
56% less runs than one of the many heuristics solving all easy instances (see Table 3.4).
For harder instances (set2, set3 and set4 ), these choices are even more important, with
a 42% gap between the best and worst model, whilst the worst heuristics (in this case
⟨opt, lex, p/q,−⟩) do not solve any instances.

It is hardly a surprise to observe that the choice of search strategy is a critical one.
However, whilst the aim of this study was to better understand what makes a good
heuristic for the car-sequencing problem, it was relatively surprising to find out that
minor variations around known heuristics would bring such a substantial gain.

Summary

We empirically studied in this chapter a large set of heuristics for the car-sequencing
problem and proposed to classify these heuristics using 4 criteria: the type of branching
decisions; the exploration order; the selection of the most constrained options; and the
aggregation function for the options. Several new heuristics arise from this classification
as untested combinations. Our experiments show that a single criterion can drastically
impact the behavior of the heuristic. Moreover, it also gives a clear separation between
the most important criteria (branching and selection) and the other factors (exploration
and aggregation). Furthermore, this study shows that branching and variable ordering
are as important as the propagation aspect in this problem.



Chapter 4

Propagation in Sequencing
Problems

Introduction

Sequence constraints are useful in a number of applications. Constraints of this class
enforce upper and/or lower bounds on all sub-sequences of variables of a given length
within a main sequence. For instance, in crew-rostering, we may want to have an
upper bound on the number of worked days in every sub-sequence to meet working
regulations. Several constraints of this class have been studied in the CP literature such
as Gen-Sequence and AmongSeq [111, 17, 32, 91, 139, 96]. An even more general
constraint, Regular, can be used to enforce arbitrary patterns on all sub-sequences.
However, as we explained in Section 2.1.3.2, the more general a constraint is, the higher
is the complexity of reasoning about it. In this context, we focus on particular cases of
sequence constraints where we have variables subject simultaneously to AtMost (i.e.,
of the form ∑i=ni=1 xi ≤ p) and Cardinality (Section 2.3) constraints.

Our contributions start with a simple filtering rule that we call Slack-Pruning, ded-
icated to the car-sequencing problem. This rule reasons simultaneously about capac-
ity and demand constraints. This simple filtering is generalized later as a new global
constraint called AtMostSeqCard. The latter is useful in car-sequencing and crew-
rostering problems. Following [139], ac on this constraint can be enforced with
Gen-Sequence in O(n3) time or with cost-Regular in O(2qn) time where q is
the size of the sliding window. Furthermore, the Gen-Sequence filtering of [91] is
adaptable to AtMostSeqCard with O(n2.log(n)) time complexity down a branch of
the search tree with an initial compilation of O(q.n2). We propose a new algorithm
achieving Arc Consistency on this constraint with an O(n) (hence optimal) worst case
time complexity. Next, we show that this algorithm can be easily modified to achieve

55
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Arc Consistency on some extensions of this constraint. In particular, the conjunction
of a set of m AtMostSeqCard constraints sharing the same scope can be filtered in
O(nm). The efficiency of our filtering is proven through a large experimental evaluation.

We start this chapter with the simple Slack-Pruning rule specially designed for solv-
ing the car-sequencing problem. Then, after giving a short background on sequence
constraints in Section 4.2, we show how this reasoning can be generalized as a global
constraint in Section 4.3. We show in Section 4.4 how to extend the new constraint
without a computational overhead. The experimental results in Section 4.5 emphasize
the efficiency of our filtering propositions.

4.1 Slack-Pruning

When analyzing the heuristics for the car-sequencing problem (Chapter 3), we have seen
that selecting the options using load, slack, or usage rate is beneficial. In this section,
we shall see that one can go one step further and use the same idea to prune the search
tree at a very cheap computational cost. We suppose in this section that we are using
the decompose model (Section 3.1.2) for the car-sequencing problem.

4.1.1 Triggering Failure via Slack

We first recall some of the notations that we used for car-sequencing in Section 3.1:

• n: the number of vehicles that have to be produced on the assembly line.

• k: the number of classes of vehicles.

• m: the number of types of options.

• dclassc : the required demand for the class of vehicles c.

• doptj : the required demand for the option j.

• Oc ⊆ {1, . . . ,m}: the set of options defining the class of vehicles c.

• pj and qj : used to represent the capacity constraint related to an option j as
follows: no subsequence of size qj may contain more than pj vehicles requiring
option j.

• The load of an option j: δj = doptj × qj

pj
.

• The slack of an option j: σj = nj − δj where nj is the number of slots available for
option j.
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In [111], it is observed that if the slack (σj) of an option j is negative, then the problem
is unsatisfiable. Indeed, the load (δj) tends to represent the number of required slots
to mount all the occurrences of an option. Since the slack is the difference between the
available number of slots and the load, a negative value suggests infeasibility since we
need more slots than are available. However, one has to be careful about boundaries
issues since the capacity constraints are truncated at the extremities of the assembly
line. For instance, consider an option j with pj = 1, qj = 3 and doptj = 2. The slack is
negative as soon as there are less than six slots remaining (nj < 6). However, a line with
only four slots is sufficient if we put the two classes requiring this option on both ends of
the line. In other words, the load is an accurate measure of how many slots are needed
for a given option, however only for large values of demand and length of the assembly
line.

We show in the following how to compute the the exact minimum number of slots to
mount doptj times an option j while respecting capacity constraints. We assume, however,
that we explore the assembly line from left to right, and that the unassigned slots are
contiguous in the assembly line.

Consider the following greedy rule (called lex_assignment):

1. Assign the first pj variables to 1, and the qj − pj next variables to 0.

2. Repeat step 1 (⌈doptj /pj⌉ − 1) times.

3. Fill the remaining variables with the value 1.

Let δ′j be the length of the sequence obtained by lex_assignment. The value of δ′j is
given by the formula:

δ′j = qj(⌈d
opt
j /pj⌉ − 1) +

⎧⎪⎪⎨⎪⎪⎩

pj if doptj mod pj = 0
doptj mod pj otherwise

Proposition 4.1. For each option j, δ′j is the minimum number of contiguous slots to
mount doptj times the option j.

Proof. The sequence returned by lex_assignment clearly satisfies all capacity con-
straints and has a cardinality equal to doptj . Moreover, every subsequence of length
qj has exactly pj times the value 1, therefore, it is not possible to obtain the same car-
dinality in a shorter sequence. Hence, δ′j is the minimum length to mount doptj times
option j. ◻

In the following, the value of δ′j is refereed as the ‘real’ load. Note that an equivalent
formula can be found in [31].
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4.1.2 Filtering the Domains

We suppose now that all variables up to a rank i−1 are assigned. To make the notation
lighter we rename the sequence of unassigned variables yi, . . . , yn to: y0, . . . , yn−i.

When the real load δ′ is greater than the residual number of slots n − i + 1, then we
should fail since δ′ is the minimum number of required slots. Moreover, we can prune
inconsistent values in the domains of the option variables when the load is equal to the
remaining number of slots. Khichane et al. [83] proposed to fix the first unassigned slot
to contain the option at hand. We show that this filtering can be extended for many
slots in the sequence. We illustrate this situation in Example 4.1.

Example 4.1. Consider a sequence of unassigned variables yj0, . . . , y
j
16, with capacity 3/5

and demand 11. Note that the load is δ′j = 5× (4− 1) + 2 = 17, which is precisely equal to
the number of unassigned slots. Consider the two slots indexed 5 and 6, corresponding
to the variables yj5 and yj6. On the left, there are 5 slots, hence we can fit at most 3
vehicles with the option j since fitting 4 vehicles requires 6 = 5(⌈4/3⌉−1)+4 mod 3 slots.
Similarly, on the right, one cannot fit more than 6 vehicles with option j since fitting 7
vehicles would require 11 slots. Therefore, since the total demand is 11, we can conclude
that 11 − 6 − 3 = 2 vehicles with option j must fit in the slots 5 and 6. In other words,
both yj5 and yj6 must be equal to 1. This example is depicted in Figure 4.1.

Figure 4.1: Instantiation of an option with capacity 3/5.

yj 0 1 1 1 2 1 3 0 4 0 5 1 6 1 7 1 8 0 9 0 10 1 11 1 12 1 13 0 14 0 15 1 16 1
3 2 6

Now we formally define the Slack-Pruning rule that can detect all such forced assign-
ments (e.g., it detects all bold faced 1’s in Figure 4.1).

Theorem 4.2. The following filtering rule is correct:

If δ′j = n − i + 1, then if doptj mod pj = 0, we impose yji = 1 for all i such that i mod qj <
pj. Otherwise (i.e., doptj mod pj /= 0), we impose yji = 1 for all i such that i mod qj <
(doptj mod pj).

Proof. Suppose that (doptj mod pj ≠ 0). Then there exists two integers k and r such that
doptj = k.pj + r. Notice that in this case, we have δ′j = qj .k + r. Consider a subsequence
yja, . . . , y

j
b such that a mod qj = 0 and b = a + r − 1, i.e., such that the rule above applies.

Then there exist two integers α and β such that a = α ⋅ qj and n − i − b = β ⋅ qj (since
n − i + 1 = δ′j = qj .k + r).

Now using n− i−b = β ⋅qj , we show that n− i+1 = β ⋅qj +a+r then n− i+1 = (α+β) ⋅qj +r
and hence k = α + β (since n − i + 1 = qj .k + r).
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However, by definition of α and β, we may argue that the number of occurrences of the
value 1 on yj0, . . . , y

j
a−1 is at most α ⋅ pj and at most β ⋅ pj on yjb+1, . . . , y

j
n−i.

Now since the demand doptj = (α + β).pj + r then all the pj variables in the subsequence
yja, . . . , y

j
b must take the value 1.

We use a similar argument for the second case. Suppose that doptj mod pj = 0, consider
a subsequence yja, . . . , yjb such that a mod qj = 0 and b = a + pj − 1. Then there exist
two integers α and β such that a = α ⋅ qj and n − i − b = β ⋅ qj . Therefore, the number
of occurrences of the value 1 on yj0, . . . , y

j
a−1 is at most α ⋅ pj and at most β ⋅ pj on

yjb+1, . . . , y
j
n−i.

Now using the demand doptj = k ⋅ pj , and δ′ = qj(⌈doptj /pj ⌉ − 1) + pj we show that
n − i + 1 = qj(k − 1) + p. However, since b = a + pj − 1, a = α ⋅ qj and n − i − b = β ⋅ qj , then
k = α + β + 1 and all pj variables the subsequence yja, . . . , yjb must take the value 1. ◻

Figure 4.2 and 4.3 depict the proposed pruning. On the one hand, when doptj mod pj = 0,
the only possible arrangement of vehicles that satisfy the capacity constraint is to start
the sequence with pj vehicles requiring the option, then qj − pj vehicles not requiring
the option and repeat (see Figure 4.2). Notice that because of the capacity constraint,
all other variables must take the value 0. On the other hand, when doptj mod pj ≠ 0,
one must start the sequence with doptj mod pj vehicles requiring the option, then the
following qj − (doptj mod pj) slots can be filled arbitrarily as long as exactly pj vehicles
requiring this options are fitted in the qj first slots. Here again, the initial sequence
must be repeated throughout (see Figure 4.3).

Figure 4.2: Filtering when dopt
j mod pj = 0

pj qj − pj
11 .. 1 00.. 0

pj qj − pj
11 .. 1 00.. 0 ..

pj qj − pj
11 .. 1 00.. 0

pj

11 .. 1

Figure 4.3: Filtering when r = dopt
j mod pj ≠ 0

r qj − r
11 .. 1 xx.. x

r qj − r
11 .. 1 xx.. x ..

r qj − r
11 .. 1 xx.. x

r

11 .. 1

4.1.3 Time Complexity

This rule is extremely cheap to enforce. Once one has computed the real load, the domain
filtering can be achieved in O(k) where k is the number of option variables forced to
take the value 1. Indeed, when doptj mod pj ≠ 0 we can jump over the variables which are
not forced to take the value 1, since their position is given by a simple recursion. In the
worst case (i.e., when doptj mod pj = 0), k is equal to the number of unassigned variables
and therefore the time complexity can reach O(n).
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In the next sections, we generalize the Slack-Pruning rule in the form of an Arc
Consistency algorithm for a new global constraint that we call AtMostSeqCard. The
latter can be used for solving a large family of sequencing problems. This constraint will
be introduced after a short background regarding sequence constraints.

4.2 Sequence Constraints

There are several variants of the Sequence constraints. We first review them and
then motivate the need for the variant proposed in this chapter: the AtMostSeqCard
constraint which extends the Slack-Pruning.

4.2.1 Decomposition via slide

We start with an important decomposition property related to sequence constraints in-
troduced in [23]. For any constraint C, we denote by D∪C the set of values ⋃x∈X(C)D(x).

Definition 4.3. Monotonicity

A constraint C is said to be monotone iff there exists a total order ≺ on D∪C s.t. for any
two values α ≺ β, α can replace β in any support on C.

Example 4.2. A monotone constraint

Let ∑i=ni=1 xi ≤ p be the constraint ensuring that the sum of the Boolean variables x1 . . . xn

is at most p. We show that this constraint is monotone. The total order ≺ chosen here
is the ‘less than’ (i.e. <) operator on integers. It is clear that the value 0 can replace the
value 1 in any support for this constraint. ◻

Definition 4.4. The slide meta-constraint

Let C be a constraint of arity k. The slide(C, [x1, . . . , xn]) constraint is defined by the
conjunction of all C([xi, . . . , xi+k−1]) where i ∈ [1, n − k + 1].

The slide (meta-)constraint can be used to model many sequencing problems. The idea
is to slide the same ‘type’ of constraints over a sequence of variables.

Theorem 4.5. Arc Consistency on slide [23]

If C is monotone then ac on slide(C, [x1, . . . , xn]) is equivalent to ac on each constraint
C.

Theorem 4.5 gives an easy sufficient condition for making the decomposition of slide
not hindering propagation. This property is used in Section 4.2.2.1 to decompose a chain
of AtMost constraints.
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4.2.2 Chains of Among Constraints:

In the following definitions, ν is a set of integers and l, u, q are integers. Sequence con-
straints are conjunctions of Among constraints, constraining the number of occurrences
of a set of values in a set of variables.

Definition 4.6. Among(l, u, [x1, . . . , xq], ν) ⇔ l ≤ ∣{i ∣ xi ∈ ν}∣ ≤ u

The AmongSeq constraint, first introduced in [17], is a chain of Among constraints of
width q slid along a vector of n variables.

Definition 4.7. AmongSeq(l, u, q, [x1, . . . , xn], ν) ⇔ ⋀n−qi=0 Among(l, u, [xi+1, . . . , xi+q], ν)

Note first that Among is not monotone in general. Therefore Theorem 4.5 does not
apply and ac on each Among will not necessarily establish ac on AmongSeq. We
use the same example given in [139] to show how decomposition hinders propagation.
In AmongSeq(2,3,5, [x1, . . . , x7],{1}) where D(x1) = D(x2) = 1, D(x3) = D(x4) =
D(x5) = D(x7) = {0,1}, and D(x6) = 0, each Among constraint is ac while the assign-
ment x7 ← 0 does not have a support on AmongSeq.

The first (incomplete) algorithm for filtering this constraint was proposed in 2001 [15].
Then, in [139, 138], two complete algorithms for filtering the AmongSeq constraint were
introduced: firstly, a reformulation using the Regular constraint using 2q−1 states
achieving ac in O(2qn) time; secondly, an algorithm achieving ac with a worst case
time complexity of O(n3). Moreover, this last algorithm is able to handle arbitrary sets
of Among constraints on consecutive variables (denoted Gen-Sequence), however in
O(n4). Last, two flow-based algorithms were introduced in [91]. The first achieves ac
on AmongSeq in O(n3/2 logn log p), while the second achieves ac on Gen-Sequence
in O(n3) in the worst case. These two algorithms have an amortized complexity down
a branch of the search tree of O(n2) and O(n3), respectively.

4.2.2.1 Chain of AtMost Constraints

Although useful in both applications, the AmongSeq constraint does not model exactly
the type of sequences useful in car-sequencing and crew-rostering applications. First,
there is often no lower bound for the cardinality of the subsequences, i.e., l = 0. Therefore
AmongSeq is unnecessarily general in that respect. Moreover, the capacity constraint
on subsequences is often paired with a cardinality requirement.

For instance, in car-sequencing, classes of car requiring a given option cannot be clustered
together, because a working station can only handle a fraction of the cars passing on the
line (at most p times in any sequence of length q). The total number of occurrences of
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these classes is a requirement, and translates as an overall cardinality constraint rather
than lower bounds on each subsequence.

In crew-rostering, allowed shift patterns can be complex, hence the Regular constraint
is often used to model them. However, working in at most p shifts out of q is a useful
particular case. If days are divided into three 8h shifts, AtMostSeq with p = 1 and
q = 3 makes sure that no employee work more than one shift per day and that there
must be a 24h break when changing shifts. Moreover, similarly to car-sequencing, the
lower bound on the number of worked shifts is global (monthly, for instance). In other
words, we often have a chain of AtMost constraints.

Definition 4.8. AtMost(p, [x1, . . . , xq], ν) ⇔ Among(0, p, [x1, . . . , xq], ν)

To simplify notation, when the variables are Boolean and ν = {1}, we denote by
AtMost([x1, . . . , xq], p) the AtMost(p, [x1, . . . , xq], ν) constraint. Note that
AtMost([x1, . . . , xq], p) is in fact the monotone constraint ∑i=ni=1 xi ≤ p given in Ex-
ample 4.2. We can easily show that the general AtMost(p, [x1, . . . , xq], ν) is similarly
monotone.

A chain of AtMost constraints can be defined as follows:

Definition 4.9. AtMostSeq(p, q, [x1, . . . , xn], ν) ⇔ ⋀n−qi=0 AtMost(p, [xi+1, . . . , xi+q], ν)

Observe that ac on AtMostSeq is maintained using the decomposition of definition 4.9.
In fact since AtMost is monotone, then Arc Consistency is established on AtMostSeq
iff each AtMost is ac.

A good tradeoff between filtering power and complexity can be achieved by reasoning
about the total number of occurrences of values from the set ν together with the chain
of AtMost constraints.1 We therefore introduce the AtMostSeqCard constraint,
defined as the conjunction of an AtMostSeq with a cardinality constraint on the total
number of occurrences of values in ν:

Definition 4.10. AtMostSeqCard(p, q, d, [x1, . . . , xn], ν) ⇔

AtMostSeq(p, q, [x1, . . . , xn], ν) ∧ ∣{i ∣ xi ∈ ν}∣ = d

The two ac algorithms introduced in [138] were adapted in [139] to achieve ac on the
AtMostSeqCard constraint. First, in the same way that AmongSeq can be encoded
with a Regular constraint, AtMostSeqCard can be encoded with a cost-Regular
constraint, where the cost stands for the overall demand, and it is increased on tran-
sitions labeled with the value 1. This procedure has the same worst case time com-
plexity, i.e., O(2qn) [139]. Second, the more general version of the polynomial algorithm

1This modeling choice is used in [139] on car-sequencing.
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(Gen-Sequence) is used, to filter the following decomposition of the AtMostSeqCard
constraint into a conjunction of Among:

AtMostSeqCard(p, q, d, [x1, . . . , xn], ν) ⇔
n−q

⋀
i=0

Among(0, p, [xi+1, . . . , xi+q], ν) ∧ Among(d, d, [x1, . . . , xn], ν)

The algorithm of van Hoeve et al. [139] runs in O(n3) time complexity on this decompo-
sition. Similarly, the algorithm of Maher et al. [91] runs in O(n2.log(n)) down a branch
of the search tree with an O(q.n2) initial compilation. The algorithm we propose in this
chapter (first published as [120]) runs in linear time and is therefore optimal. Finally,
another linear time algorithm based on the graph representation of [91] was subsequently
proposed by Narodytska and Walsh in [136].

4.2.2.2 Global Sequencing Constraint

The Global Sequencing Constraint that we introduced in Definition 2.11 is in fact nothing
but a conjunction between an AmongSeq and a Gcc. That is:

Definition 4.11. Gsc(l, u, q, low,upp, [x1, . . . , xn], ν) ⇔

AmongSeq(l, u, q, [x1, .., xn], ν) ∧Gcc(low,upp, [x1, .., xn])

4.3 The AtMostSeqCard Constraint

In this section, we introduce a linear filtering algorithm for the AtMostSeqCard
constraint. We first give a simple greedy algorithm for finding a support with an O(nq)
time complexity. Then, we show that one can use two calls to this procedure to enforce
ac. Last, we show that its worst case time complexity can be reduced to O(n).

It was observed in [139] and [91] that we can consider Boolean variables and ν = {1},
since the following decomposition of Among (or AtMost) does not hinder propagation
as it is Berge acyclic:

Among(l, u, [x1, . . . , xq], ν) ⇔
q

⋀
i=1

(xi ∈ ν ↔ x′i = 1) ∧ l ≤
q

∑
i=1
x′i ≤ u

Therefore, throughout the chapter, we consider [x1, . . . , xn] as a sequence of Boolean
variables, and use the following restriction of the AtMostSeqCard constraint with
ν = {1}:
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Definition 4.12.

AtMostSeqCard(p, q, d, [x1, . . . , xn]) ⇔
n−q

⋀
i=0

(
q

∑
l=1
xi+l ≤ p) ∧ (

n

∑
i=1
xi = d)

4.3.1 Finding a Support

Let w be an n-tuple in {0,1}n, ∣w∣ = ∑ni=1w[i] its cardinality, and w[i ∶ j] the projection
of w on the subsequence [xi, . . . , xj].

We first show that one can find a support by greedily assigning variables in a lexicograph-
ical order to the value 1 whenever possible, that is, while taking care of not violating the
AtMostSeq constraint. More precisely, doing so leads to an instantiation of maximal
cardinality, which may easily be transformed into an instantiation of cardinality d.

The greedy procedure leftmost (Algorithm 9) computes an instantiation w that maxi-
mizes the cardinality of the sequence (x1, . . . , xn) subject to an AtMostSeq constraint
(with parameters p and q),

Algorithm 9: leftmost

1 foreach i ∈ [1, . . . , n] do w[i] ←min(xi);
foreach i ∈ [1, . . . , q] do w[n + i] ← 0;
c(1) ← w[1];
foreach j ∈ [2, . . . , q] do c(j) ← c(j − 1) +w[j];
foreach i ∈ [1, . . . , n] do

2 if ∣D(xi)∣ > 1 & maxj∈[1,q](c(j)) < p then
w[i] ← 1;

3 foreach j ∈ [1, . . . , q] do c(j) ← c(j) + 1;
4 foreach j ∈ [2, . . . , q] do c(j − 1) ← c(j);
5 c(q) ← c(q − 1) +w[i + q] −w[i];
return w;

Algorithm leftmost works as follows. First, the tuple w is initialized to the minimum
value in the domain of each variable in Line 1. Then, at each step i ∈ [1, . . . , n] of
the main loop, the cardinality of the jth subsequence involving the variable xi with
respect to the current value of w is stored in c(j). In other words, at step i, we have
c(j) = ∑min(n,i+j−1)

l=max(1,i−q+j)w[l].

When exploring variable xi, such that D(xi) = {0,1} we set w[i] to 1 iff this would not
violate the capacity constraints, that is, if c(j) < p for all j ∈ [1, . . . , q] (Condition Line 2).
In that case, the cardinality of every subsequence involving xi is incremented (Line 3).
Finally, when moving to the next variable, the values of c(j) are shifted (Line 4), and
the value of c(q) is obtained by adding the value of w[i + q] and subtracting w[i] to its
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previous value (Line 5).

From now on, we shall use the following notations:

• Ð→w denotes the instantiation found by leftmost on the sequence x1, . . . , xn.

• ←Ðw denotes the instantiation found by the same algorithm, however on the sequence
xn, . . . , x1, that is, from right to left. Notice that, in order to simplify the notations,
←Ðw [i] shall denote the value assigned by leftmost to the variable xi, and not xn−i+1

as it would actually be if we gave the reversed sequence as input.

Example 4.3. We illustrate the behavior of leftmost on a simple example (see Fig-
ure 4.4). Let [x1, . . . , x22] be a sequence of variables with a capacity constraint of 2/4,
that is, constrained by: AtMostSeq(2,4, [x1, . . . , x22]). Dots in the first row stand for
unassigned variables. The second row shows the computed instantiation Ð→w , and the next
rows show the state of the variables c(1), c(2), c(3) and c(4) at the start of each iteration
of the main loop. The last row stands for the maximum value of c(j). The bold values
indicate that leftmost assigns the value 1.

D(xi) . 0 . 1 . . . 0 . 0 1 . . 1 . . . . . . . 1
Ð→w [i] 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1
c(1) 0 1 1 2 1 2 2 1 0 0 2 2 1 2 1 2 2 1 1 2 2 2
c(2) 0 1 2 1 1 2 1 0 0 2 2 1 2 1 1 2 1 0 1 2 2 1
c(3) 0 2 1 1 1 1 0 0 1 2 1 2 1 1 1 1 0 0 1 2 1 1
c(4) 1 1 1 1 0 0 0 1 1 1 2 1 1 1 0 0 0 1 1 1 1 1

max(c) 1 2 2 2 1 2 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 2

Figure 4.4: Sequence of maximum cardinality obtained by leftmost.

Lemma 4.13. leftmost maximizes ∑ni=1 xi subject to AtMostSeq(p, q, [x1, . . . , xn]).

Proof. Let Ð→w be the instantiation found by leftmost, and suppose that there exists
another instantiation w (consistent for AtMostSeq(p, q, [x1, . . . , xn])) such that ∣w∣ >
∣
Ð→w ∣. Let i be the smallest index such that Ð→w [i] ≠ w[i]. By definition of Ð→w , we know
that Ð→w [i] = 1 hence w[i] = 0. Now, let j be the smallest index such that Ð→w [j] < w[j]
(it must exists since ∣w∣ > ∣Ð→w ∣).

We first argue that the instantiation w′ equal to w except that w′[i] = 1 and w′[j] = 0 (as
in Ð→w ) is consistent for AtMostSeq. Clearly, its cardinality is not affected by this swap,
hence ∣w′

∣ = ∣w∣. Now, we consider all the sum constraints whose scopes are changed by
this swap, that is, the sums ∑a+q−1

l=a w′[l] on intervals [a, a + q − 1] such that a ≤ i < a + q
or a ≤ j < a + q. There are three cases:
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1. Suppose first that a ≤ i < j < a + q: in this case, the value of the sum is the same
in w and w′, therefore it is lower than or equal to p.

2. Suppose now that i < a ≤ j < a + q: in this case, the value of the sum is decreased
by 1 from w to w′, therefore it is lower than or equal to p.

3. Last, suppose that a ≤ i < a + q ≤ j: in this case, for any l ∈ [a, a + q − 1], we have
w′[l] ≤ Ð→w [l] since j is the smallest integer such that Ð→w [j] < w[j], hence the sum
is lower than or equal to p.

Therefore, given a sequence w of maximum cardinality that differs from Ð→w at rank i, we
can build a sequence of equal cardinality that does not differ from Ð→w until rank i + 1.
By iteratively applying this argument, we can obtain a sequence identical to Ð→w , albeit
with cardinality ∣w∣, therefore contradicting our hypothesis that ∣w∣ > ∣Ð→w ∣. ◻

Corollary 4.14. Let Ð→w be the instantiation returned by leftmost. There exists a
solution of AtMostSeqCard(p, q, d, [x1, . . . , xn]) iff the three following propositions
hold:

(1) AtMostSeq(p, q, [x1, . . . , xn]) is satisfiable (2) ∑ni=1min(xi) ≤ d

(3) ∣Ð→w ∣ ≥ d.

Proof. It is easy to see that these conditions are all necessary: (1) and (2) come from
the definition, and (3) is a direct application of Lemma 4.13. Now, we prove that they
are sufficient by showing that if these properties hold, then a solution exists. Since
AtMostSeq(p, q, [x1, . . . , xn]) is satisfiable, Ð→w does not violate the chain of AtMost
constraints as the value 1 is assigned to xi only if all subsequences involving xi have
cardinality p − 1 or less. Moreover, since ∑ni=1min(xi) ≤ d ≤ ∣Ð→w ∣, then there are at
least ∣Ð→w ∣ − d variables such that min(xi) = 0 and Ð→w [i] = 1. Assigning them to 0 in
Ð→w does not violate the AtMostSeq constraint. Hence we can build a support for
AtMostSeqCard. ◻

Lemma 4.13 and Corollary 4.14 give us a polynomial support-seeking procedure for
AtMostSeqCard. Indeed, the worst case time complexity of Algorithm 9 is in O(nq).
There are n steps and on each step, Lines 2, 3 and 4 involve O(q) operations. Therefore,
for each variable xi, a support for xi = 0 or xi = 1 can be found in O(nq). Consequently,
we have a naive ac procedure running in O(n2q) time.

4.3.2 Filtering the Domains

In this section, we show that we can filter out all the values inconsistent with respect to
the AtMostSeqCard constraint within the same time complexity as Algorithm 9.
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First, we show that there can be inconsistent values only in the case where the cardinality
∣
Ð→w ∣ of the instantiation returned by leftmost is exactly d: in any other case, the
constraint is either violated (when ∣Ð→w ∣ < d) or ac, (when ∣Ð→w ∣ > d). The following lemma
formalizes this:

Lemma 4.15. The constraint AtMostSeqCard(p, q, d, [x1, . . . , xn]) is ac if the three
following propositions hold:

1. AtMostSeq(p, q, [x1, . . . , xn]) is ac

2. ∑ni=1min(xi) ≤ d

3. ∣Ð→w ∣ > d

Proof. By Corollary 4.14 we know that AtMostSeqCard(p, q, d + 1, [x1, . . . , xn]) is
satisfiable. Let w be a satisfying instantiation, and consider without loss of generality
a variable xi such that ∣D(xi)∣ > 1. Assume first that w[i] = 1. The solution w′ equal
to w except that w′[i] = 0 satisfies AtMostSeqCard(p, q, d, [x1, . . . , xn]). Indeed,
∣w′
∣ = ∣w∣− 1 = d and since AtMostSeq(p, q, [x1, . . . , xn]) was satisfied by w it must be

satisfied by w′. Hence, for every variable xi such that ∣D(xi)∣ > 1, there exists a support
for xi = 0.

Suppose that w[i] = 0, and let a (respectively b) be the largest (respectively small-
est) index such that a < i, w[a] = 1 and D(xa) = {0,1} (respectively b > i, w[b] = 1
and D(xb) = {0,1}). Let w′ be the instantiation such that w′[i] = 1, w′[a] = 0,
w′[b] = 0, and w = w′ otherwise. We have ∣w′

∣ = d, and we show that it satisfies
AtMostSeq(p, q, [x1, . . . , xn]). Consider a subsequence xj , . . . , xj+q−1. If j + q ≤ i or
j > i then ∑j+q−1

l=j w′[l] ≤ ∑j+q−1
l=j w[l] ≤ p, so only indices j s.t. j ≤ i < j + q matter. There

are two cases:

1. Either a or b or both are in the subsequence (j ≤ a < j + q or j ≤ b < j + q). In that
case ∑j+q−1

l=j w′[l] ≤ ∑j+q−1
l=j w[l].

2. Neither a nor b are in the subsequence (a < j and j + q ≤ b). In that case,
since D(xi) = {0,1} and since AtMostSeq(p, q, [x1, . . . , xn]) is ac, we know that
∑j+q−1
l=j min(xl) < p. Moreover, since a < j and j + q ≤ b, there is no variable

xl in that subsequence such that w[l] = 1 and 0 ∈ D(xl). Therefore, we have
∑j+q−1
l=j w[l] < p, hence ∑j+q−1

l=j w′[l] ≤ p.

In both cases w′ satisfies all capacity constraints. Hence it is support for the value 1. ◻

Remember that achieving ac on AtMostSeq is trivial since AtMost is monotone.
Therefore we focus of the case where AtMostSeq is ac, and ∣Ð→w ∣ = d. In particular,
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Lemmas 4.16, 4.17, 4.19 and 4.20 only apply in that case. The equality ∣Ð→w ∣ = d is
therefore implicitly assumed in all of them.

Lemma 4.16. If ∣Ð→w [1 ∶ i − 1]∣ + ∣←Ðw [i + 1 ∶ n]∣ < d then xi = 0 is not ac.

Proof. Suppose that we have ∣Ð→w [1 ∶ i − 1]∣ + ∣←Ðw [i + 1 ∶ n]∣ < d and suppose that there
exists a consistent instantiation w such that w[i] = 0 and ∣w∣ = d.

By Lemma 4.13 on the sequence x1, . . . , xi−1 we know that ∑i−1
l=1 w[l] ≤ ∣Ð→w [1 ∶ i − 1]∣.

By Lemma 4.13 on the sequence xn, . . . , xi+1 we know that ∑nl=i+1w[l] ≤ ∣←Ðw [i + 1 ∶ n]∣.

Therefore, since w[i] = 0, we have ∣w∣ = ∑nl=1w[l] < d, thus contradicting the hypothesis
that ∣w∣ = d. Hence, there is no support for xi = 0. ◻

Lemma 4.17. If ∣Ð→w [1 ∶ i]∣ + ∣←Ðw [i ∶ n]∣ ≤ d then xi = 1 is not ac.

Proof. Suppose that we have ∣Ð→w [1 ∶ i]∣ + ∣←Ðw [i ∶ n]∣ ≤ d and suppose that there exists a
consistent instantiation w′ such that w′[i] = 1 and ∣w′

∣ = d.

By Lemma 4.13 on the sequence x1, . . . , xi we know that ∑il=1w
′[l] ≤ ∣Ð→w [1 ∶ i]∣.

By Lemma 4.13 on the sequence xn, . . . , xi we know that ∑nl=iw′[l] ≤ ∣←Ðw [i ∶ n]∣.

Therefore, since w′[i] = 1, we have ∣w′
∣ = ∑il=1w

′[l]+∑nl=iw′[l]−1 < d, thus contradicting
the hypothesis that ∣w′

∣ = d. Hence there is no support for xi = 1. ◻

Lemmas 4.16 and 4.17 entail a pruning rule. In a first pass, from left to right, one
can use an algorithm similar to leftmost to compute and store the values of ∣Ð→w [1 ∶ i]∣
for all i ∈ [1, . . . , n]. In a second pass, the values of ∣←Ðw [i ∶ n]∣ for all i ∈ [1, . . . , n] are
similarly computed by simply running the same procedure on the same sequence of
variables, however reversed, i.e., from right to left. Using these values, one can then
apply Lemma 4.16 and Lemma 4.17 to filter out the value 0 and 1, respectively. We
detail this procedure in the next section.

We first show that these two rules are complete, that is, if AtMostSeq is ac, and the
overall cardinality constraint is ac then an instantiation xi = 0 (respectively xi = 1) is
inconsistent iff Lemma 4.16 (respectively Lemma 4.17) applies. The following Lemma
shows that the greedy rule maximizes the density of 1s on any subsequence starting on
x1, and therefore minimizes it on any subsequence finishing on xn. Let leftmost(k)
denote the algorithm corresponding to applying leftmost, however stopping whenever
the cardinality of the instantiation reaches a given value k.

Lemma 4.18. Let w be a satisfying instantiation of AtMostSeq(p, q, [x1, . . . , xn]).
If k ≤ ∣w∣ then the instantiation Ð→w k computed by leftmost(k) is such that, for any
1 ≤ i ≤ n: ∑nl=iÐ→w k[l] ≤ ∑nl=iw[l].
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Proof. Let m be the index at which leftmost(k) stops. We distinguish two cases. If
i > m, for any value l in [m + 1, . . . , n], Ð→w k[l] ≤ w[l] (since Ð→w k[l] = min(xl)), hence
∑nl=iÐ→w k[l] ≤ ∑nl=iw[l]. When i ≤ m, clearly for i = 1, ∑nl=iÐ→w k[l] ≤ ∑nl=iw[l] since
∣
Ð→w k∣ ≤ ∣w∣. Now consider the case of i /= 1. Since ∣Ð→w k∣ ≤ ∣w∣, then ∑nl=iÐ→w k[l] ≤
∣w∣ − ∑i−1

l=1
Ð→w k[l]. Thus, ∑nl=iÐ→w k[l] ≤ ∑nl=iw[l] + (∑i−1

l=1 w[l] − ∑i−1
l=1
Ð→w k[l]). Moreover,

by applying Lemma 4.13, we show that ∑i−1
l=1
Ð→w k[l] is maximum, hence larger than or

equal to ∑i−1
l=1 w[l]. Therefore, ∑nl=iÐ→w k[l] ≤ ∑nl=iw[l]. ◻

Lemma 4.19. If AtMostSeq(p, q, [x1, . . . , xn]) is ac, and ∣Ð→w [1 ∶ i − 1]∣+∣←Ðw [i + 1 ∶ n]∣ ≥
d then xi = 0 has a support.

= ≥
Ð→w 1

Ð→w [1 ∶ i − 1] 0 ←Ðw d−L[i ∶ n]

xixj xj+q−1

L d −L
Support for xi = 0 Ð→w [1 ∶ i − 1]

0 ←Ðw d−L[i ∶ n]

Figure 4.5: Illustration of Lemma 4.19’s proof. Horizontal arrows represent assign-
ments.

Proof. Let Ð→w be the instantiation found by leftmost. We consider, without loss of
generality, a variable xi such that D(xi) = {0,1} and ∣Ð→w [1 ∶ i − 1]∣ + ∣←Ðw [i + 1 ∶ n]∣ ≥ d,
and show that one can build a support for xi = 0. IfÐ→w [i] = 0 or←Ðw [i] = 0 then there exists
a support for xi = 0, hence we only need to consider the case where Ð→w [i] = ←Ðw [i] = 1.

Let L = ∣Ð→w [1 ∶ i − 1]∣ and ←Ðw d−L be the result of leftmost(d − L) on the subsequence
xn, . . . , xi. We will show that w, defined as the concatenation of Ð→w [1 ∶ i − 1] and ←Ðw d−L[i ∶
n] is a support for xi = 0.

First, we show that w[i] = 0, that is ←Ðw d−L[i] = 0. By hypothesis, since ∣Ð→w [1 ∶ i − 1]∣ +
∣
←Ðw [i + 1 ∶ n]∣ ≥ d, we have ←Ðw [i + 1 ∶ n] ≥ d − L. Now, consider the sequence xi, . . . , xn,
and let w′ be the instantiation such that w′[i] = 0, and w′ = ←Ðw [i + 1 ∶ n] otherwise. Since
w′ = ←Ðw [i + 1 ∶ n] ≥ d−L, by Lemma 4.18, we know that w′ has a higher cardinality than
←Ðw d−L on any subsequence starting in i, hence w[i] = ←Ðw d−L[i] = w′[i] = 0.

Now, we show that w does not violate the AtMostSeq constraint. Obviously, since it
is the concatenation of two consistent instantiations, it can violate the constraint only
on the junction, i.e., on a subsequence xj , . . . , xj+q−1 such that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less than or equal to p by comparing
with Ð→w , as illustrated in Figure 4.5. We have ∑j+q−1

l=j
Ð→w [l] ≤ p, and ∑i−1

l=j
Ð→w [l] = ∑i−1

l=j w[l].
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Moreover, by Lemma 4.18, since ∣Ð→w [i ∶ n]∣ = ∣←Ðw d−L∣ = d − L we have ∑j+q−1
l=i

←Ðw d−L[l] ≤
∑j+q−1
l=i

Ð→w [l] hence∑j+q−1
l=i w[l] ≤ ∑j+q−1

l=i
Ð→w [l]. Therefore, we can conclude that∑j+q−1

l=j w[l] ≤
p. ◻

Lemma 4.20. If AtMostSeq(p, q, [x1, . . . , xn]) is ac, and ∣Ð→w [1 ∶ i]∣ + ∣←Ðw [i ∶ n]∣ > d
then xi = 1 has a support.

=

=

≥
Ð→w 1 0 0. . . 0

Ð→wL−1
0 0 0. . . 1 ←Ðw d−L

0 0. . . 0

←Ðw d−L+1
0 0 0. . . 1

xixa

xb

L − 1 d −L + 1

Support for xi = 1 Ð→wL−1
1 ←Ðw d−L

Figure 4.6: Illustration of Lemma 4.20’s proof. Horizontal arrows represent assign-
ments.

Proof. Let Ð→w and ←Ðw be the instantiations found by leftmost, on respectively x1, . . . , xn

and xn, . . . , x1. We consider, without loss of generality, a variable xi such that D(xi) =
{0,1} and ∣Ð→w [1 ∶ i]∣ + ∣←Ðw [i ∶ n]∣ > d, and show that one can build a support for xi = 1.
If Ð→w [i] = 1 or ←Ðw [i] = 1 then there exists a support for xi = 1, hence we only need to
consider the case where Ð→w [i] = ←Ðw [i] = 0.

Let L = ∣Ð→w [1 ∶ i]∣ = ∣Ð→w [1 ∶ i − 1]∣ (this equality holds since Ð→w [i] = 0). Let Ð→wL−1 be the
instantiation obtained by using leftmost(L−1) on the subsequence x1, . . . , xi−1, and let
←Ðw d−L be the instantiation returned by leftmost(d−L) on the subsequence xn, . . . , xi+1.

We show that w such that w[i] = 1, equal to Ð→wL−1 on x1, . . . , xi−1 and to ←Ðw d−L on
xi+1, . . . , xn, is a support.

Clearly ∣w∣ = d, therefore we only have to make sure that all capacity constraints are
satisfied. Moreover, since it is the concatenation of two consistent instantiations, it can
violate the constraint only on the junction, i.e., on a subsequence xj , . . . , xj+q−1 such
that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less than or equal to p by comparing
with Ð→w and ←Ðw d−L (see Figure 4.6). First, note that on the subsequence x1, . . . , xi−1,
Ð→wL−1 = Ð→w , except for the largest index a such that Ð→w [a] = 1 and w[a] = 0. Similarly on
xn, . . . , xi+1, we have ←Ðw d−L = ←Ðw d−L+1, except for the smallest b such that ←Ðw d−L+1[b] = 1.
There are two cases:
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Suppose first that j > a. In that case, ∑j+q−1
l=j w[l] = ∑j+q−1

l=i
←Ðw d−L+1[l] if j + q − 1 ≥ b, and

otherwise it is equal to 1. It is therefore always less than or equal to p since i ≥ j (and
we assume p ≥ 1).

Now suppose that j ≤ a. In that case, consider first the subsequence xj , . . . , xi. On this
interval, the cardinality of w is the same as that of Ð→w , i.e., ∑il=j w[l] = ∑i−1

l=j
Ð→wL−1[l]+1 =

∑il=jÐ→w [l]. On the subsequence xi+1, . . . , xj+q−1, note that ∣w[i + 1 ∶ n]∣ = ∣Ð→w [i + 1 ∶ n]∣ =
d−L, hence by Lemma 4.18, we have ∑j+q−1

l=i+1 w[l] = ∑j+q−1
l=i+1

←Ðw d−L[l] ≤ ∑j+q−1
l=i+1

Ð→w [l]. There-
fore ∑j+q−1

l=j w[l] ≤ ∑j+q−1
l=j

Ð→w [l] ≤ p. ◻

4.3.3 Algorithmic Complexity

Using Lemmas 4.16, 4.17, 4.19 and 4.20, one can design a filtering algorithm with the
same worst case time complexity as leftmost. In this section, we introduce a linear
time implementation of leftmost. We denote this algorithm leftmost_count, since we
use it to compute an array “count” containing the values of ∣Ð→w [1 ∶ i]∣ for all values of i.
We give the pseudo code for this procedure in Algorithm 10. The key idea that allows to
reduce the complexity is that, at each step, a single new subsequence is to be considered.
However, we also need to compute the new maximum across current subsequences, and
increment all subsequences when assigning the value 1 to w[i], both in constant time.

It is easy to see that leftmost_count has an O(n) worst case time complexity. In order
to prove its correctness, we will show that the instantiation computed by leftmost_count

is the same as that computed by leftmost.

Lemma 4.21. Algorithms 9 and 10 return the same instantiation w.

Proof. We first prove the following three invariants, true at the beginning of each step
of the main loop:

• The cardinality of the jth subsequence is equal to c[(i+j−2) mod q]+count[i−1].

• The number of subsequences of cardinality k is equal to occ[n − count[i − 1] + k].

• The cardinality maximum of any subsequence is equal to maxc.

Then, it is easy to check that leftmost_count computes the exact same instantiation as
leftmost. Furthermore, at the end of the algorithm, we will have count[i] = ∣Ð→w [1 ∶ i]∣
for all i ∈ [1, n].

Cardinality of the subsequences.

Let wi denote the assignment w after i−1 steps of the loop. Notice that at the beginning
and the end of the sequence of variables, subsequences are truncated. However, to
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Algorithm 10: leftmost_count
Data: p, q, [x1, . . . , xn]
Result: count ∶ [0, . . . , n] ↦ [0, . . . , n]
foreach i ∈ [1, . . . , n] do

w[i] ←min(xi);
occ[i] = 0;

foreach i ∈ [0, . . . , n] do count[i] ← 0;
c[0] ← w[1];
foreach i ∈ [1, . . . , p] do occ[n + i] = 0;
foreach i ∈ [1, . . . , q] do

w[n + i] ← 0;
if i < q then c[i] ← c[i − 1] +w[i + 1];
;
occ[n + c[i − 1]] ← occ[n + c[i − 1]] + 1;

maxc ←max({c[i] ∣ i ∈ [0, . . . , q − 1]});
foreach i ∈ [1, . . . , n] do

1 if maxc < p & ∣D(xi)∣ > 1 then
maxc ←maxc + 1;
count[i] ← count[i − 1] + 1;
w[i] ← 1;

else count[i] ← count[i − 1] ;
2 prev ← c[(i − 1) mod q];
3 next← c[(i + q − 2) mod q] +w[i + q] −w[i];

c[(i − 1) mod q] ← next;
if prev ≠ next then

4 occ[n + prev] ← occ[n + prev] − 1;
5 occ[n + next] ← occ[n + next] + 1;

if next + count[i] >maxc then maxc ←maxc + 1 ;
if occ[n + prev] = 0 & prev + count[i] =maxc then

maxc ←maxc − 1;

return count;

simplify the notations, we will consider that w[−q],w[−q + 1], . . . ,w[−1] exist and are
equal to 0. Thus we can write that the cardinality of the jth is equal to ∑i+j−1

l=i−q+j wi[l].

We prove the first invariant by induction, i.e., let P (i) denote the fact that the following
equalities hold at the beginning of a step i:

(
i+j−1
∑

l=i−q+j

wi[l]) = (c[i + j − 2 mod q] + count[i − 1]) ∀j ∈ [1, . . . , q]

The base case P (1) is easily checkable from the initialization of c.

Now suppose that P (i) holds, and consider the state of c at the beginning of step i + 1.
First, note that at step i of the loop, only the value of c[i− 1 mod q] changes. Consider
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j ∈ [1, . . . , q − 1]. In this case, ((i + 1) + j − 2 mod q) = (i + j − 1 mod q) ≠ (i − 1 mod q).
Therefore, c[(i + 1) + j − 2 mod q] has not changed between step i and step i + 1, and
since P (i) holds, we have:

(
i+(j+1)−1
∑

l=i−q+(j+1)
wi[l]) = (c[i + (j + 1) − 2 mod q] + count[i − 1])

which can be rewritten as follows:

(
(i+1)+j−1
∑

l=(i+1)−q+j
wi[l]) = (c[(i + 1) + j − 2 mod q] + count[i − 1])

Now there are two possibilities. Either count is incremented, i.e., count[i] = count[i −
1]+1, and in that case wi+1[i] = wi[i]+1. Or count is not incremented, and in that case
wi+1[i] = wi[i].

In both cases we have:

(i+1)+j−1
∑

l=(i+1)−q+j
wi+1[l] =

(i+1)+j−1
∑

l=(i+1)−q+j;l≠i
wi[l] +wi+1[i]

since wi+1[l] = wi[l] for all l ≠ i. Hence we obtain:

(
(i+1)+j−1
∑

l=(i+1)−q+j
wi+1[l]) = (c[i + (j + 1) − 2 mod q] + count[i − 1]) −wi[i] +wi+1[i]

which can be rewritten as:

(
(i+1)+j−1
∑

l=(i+1)−q+j
wi+1[l]) = (c[(i + 1) + j − 2 mod q] + count[i])

Thus P (i + 1) holds.

Now we look at the last case: j = q. Here, at step i the value of c[i − 1 mod q] is set to
c[i+q−2 mod q]+wi+1[i+q]−wi+1[i]. Since P (i) holds, we can replace c[i+q−2 mod q]
by ∑i+q−1

l=i wi[l]) − count[i − 1], so at the beginning of step i + 1 we have:

c[(i + 1) + q − 2 mod q] = (
i+q−1
∑
l=i

wi[l]) − count[i − 1] +wi+1[i + q] −wi+1[i]

however, since ∑i+q−1
l=i wi[l]) = wi[i] + ∑i+q−1

l=i+1 wi+1[l]) we have:

c[(i + 1) + q − 2 mod q] =
i+q

∑
l=i+1

wi+1[l] − count[i − 1] +wi[i] −wi+1[i]
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Therefore, since count[i] = count[i − 1] +wi+1[i] −wi[i], the following holds:

c[(i + 1) + q − 2 mod q] =
i+q

∑
l=i+1

wi+1[l] − count[i]

We have shown that P (i) implies P (i + 1), and we can therefore conclude that at the
beginning of each step i of the loop P (i) (that is, the first invariant) holds.

Occurrences of each cardinality.

We proceed as for the first invariant, and prove it by induction. The base case is easy
to check since count[0] = 0, and since the array c is properly initialized.

Now we assume that there are exactly occ[n − count[i − 1] + k] subsequences involving
xi whose cardinality is equal to k in wi, and we show that at the beginning of step i+ 1
there are occ[n − count[i] + k] subsequences involving xi+1 of cardinality k in wi+1.

There are two reasons for cardinalities to change.

First, when moving up to the next step in the loop, we move from subsequences involving
xi to subsequences involving xi+1. There are q − 1 subsequences involving both xi and
xi+1. So we simply need to make sure that the occurrences are updated to reflect
the fact that the subsequence xi−q+1, . . . , xi should not be counted anymore, whilst the
subsequence xi+1, . . . , xi+q should now be. Let k1 (respectively k2) be the cardinality
of the former (respectively latter) subsequence. As established by the first invariant,
k1 = c[(i−1) mod q]+count[i−1], that is the value prev in Line 2 is set to k1−count[i−1].
Moreover, next is given the value c[(i + q − 2) mod q] + w[i + q] − w[i]. However, from
invariant 1, we have c[(i + q − 2) mod q] + count[i − 1] = ∑i+q−1

l=i w[l]. It follows that

next =
i+q−1
∑
l=i

w[l] +w[i + q] −w[i] − count[i − 1] =
i+q

∑
l=i+1

w[l] − count[i − 1]

therefore next = k2 − count[i − 1]. To maintain invariant (2), we therefore need to
increment the value of occ[n − count[i − 1] + k2] and decrement the value of occ[n −
count[i − 1] + k1]. This is precisely what is done in Lines 4 and 5.

Second, when the conditions in Line 1 are met, the value of w[i] is set to 1. Since its
value was previously 0, the cardinality of every subsequence involving w[i] should be
incremented before starting the next step (i + 1). This happens automatically because
in this case the value of count[i] will be set to count[i − 1] + 1. Indeed, for any integer
k, the number of occurrences of subsequences of cardinality k − 1 at the beginning of
step i is occ[n − count[i − 1] + k − 1]. Therefore, since count[i] = count[i − 1] + 1, at the
beginning of step i+1, we have occ[n−(count[i]−1)+k−1], that is, occ[n−count[i]+k].

Cardinality maximum.
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Here we show that the maximum value of the cardinalities of the current subsequences is
properly maintained. When the number of occurrences of a cardinality k becomes non-
null and if k >maxc, then maxc is set to k. Similarly, When the number of occurrences
of a cardinality k becomes null and if k =maxc, then maxc is decreased. Last, when the
cardinality of all subsequences is incremented, maxc is incremented too.

These operations are correct because from one step i to i + 1, the value of maxc cannot
change by more than 1. Indeed, only the first subsequence is removed, the other q − 1
subsequences remain unchanged. Moreover, the first subsequence is replaced by the
last subsequence to which a value a ∈ [0,1] is added, and another value b ∈ [0,1] is
subtracted. Therefore its value cannot change by more than 1, hence maxc.

Now having these three invariants, one can check that at each step i the values of w[i]
will be the same as in Algorithm 9.

◻

4.3.4 Achieving Arc-Consistency on AtMostSeqCard

Now, we can prove our main result, that ac on a constraint
AtMostSeqCard(p, q, d, [x1, . . . , xn]) can be achieved in O(n) time by Algorithm 11.

First, in Line 1, we achieve ac on AtMostSeq(p, q, [x1, . . . , xn]), so that the first con-
dition for Lemma 4.15 holds. Achieving ac on AtMostSeq can be done in linear time
using a procedure essentially similar to leftmost_count. Indeed, since the constraint
AtMost is monotone, we simply need to achieve ac on every AtMost. Moreover, a
constraint AtMost(p, [xi1 , . . . , xiq]) may prune the domain of a variable only if p other
variables in [xi1 , . . . , xiq]) are assigned to 1. To do that, we run a truncated version of
leftmost_count: the values of w[i] are never updated, i.e., they are set to the minimum
value in the domain and we never enter the if-then-else block starting at condition 1 in
Algorithm 10. Now, if at step i we have maxc = p, then there are p variables assigned
to 1 in at least one subsequence involving xi, hence it should be set to 0 if possible.

Second, in Line 2, we achieve ac on the cardinality constraint, in order to satisfy the
second condition of Lemma 4.15.

Third, in Line 4 we compute the vector L that maps each index i to the value of
∣
Ð→w [1 ∶ i]∣−∑j=ij=1min(xj). This is given by the array count returned by leftmost_count

on the sequence [x1, . . . , xi]. Notice that, we work with the residual demand, com-
puted in Line 3, rather than the original demand. At this point, the third condition of
Lemma 4.15 can be checked, and we know whether the constraint is ac, inconsistent, or
if some pruning may be possible.
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In the latter case, we compute the vector R, that maps each index i to the value of
∣
←Ðw [i ∶ n]∣ −∑j=nj=i min(xj), in Line 5.

Finally, we can activate the pruning rules that are shown to be correct and sufficient by
Lemmas 4.16 and 4.19 for Line 6, and Lemmas 4.17 and 4.20 for Line 7.

Algorithm 11: ac(AtMostSeqCard(p, q, d, [x1, .., xn]))
1 if ac(AtMostSeq(p, q, [x1, . . . , xn])) =⊥ then

return ⊥ ;
2 if ac(∑ni=1 xi = d) =⊥ then

return ⊥;
3 dres ← d −∑ni=1min(xi);
4 L← leftmost_count([x1, . . . , xn], p, q);
if L[n] = dres then

5 R ← leftmost_count([xn, . . . , x1], p, q);
foreach i ∈ [1, . . . , n] such that D(xi) = {0,1} do

6 if L[i] +R[n − i + 1] ≤ dres then D(xi) ← {0};
7 if L[i − 1] +R[n − i]<dres then D(xi) ← {1};

else if L[n] < dres then
return ⊥ ;

return D ;

Theorem 4.22. Algorithm 11 achieves ac on AtMostSeqCard with an optimal worst
case time complexity.

Proof. The soundness of Algorithm 11 is a straight application of Lemmas 4.16 and 4.17.
Its completeness is a consequence of Lemmas 4.15, 4.19 and 4.20.

Achieving ac on AtMostSeq (Line 1) can be done with one call to leftmost_count.
Achieving ac on a simple cardinality constraint (Line 2) can be done trivially in O(n)
time. Finally, pruning the domains requires at most two calls to leftmost_count, plus
going through the sequence of variable to actually change the domains, that is, O(n)
time.

The worst case time complexity of Algorithm 11 is then O(n), hence optimal. ◻ ◻

Example 4.4. We give an example of the execution of Algorithm 11 in Figure 4.7 for
computing the ac of constraint AtMostSeqCard with p = 4, q = 8 and d = 12.

The first line stands for current domains, dots are unassigned variables (hence dres = 10).
The two next lines give the instantiations Ð→w and ←Ðw obtained by running leftmost_count

from left to right and from right to left, respectively. The third and fourth lines stand for
the values of L[i] = ∣Ð→w [1 ∶ i]∣−∑j=ij=1min(xj) and R[n− i+1] = ∣←Ðw [i ∶ n]∣−∑j=nj=i min(xj).
The fifth and sixth lines correspond to the application of, respectively, Lemma 4.16
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D(xi) . 0 . . . . . . 0 1 0 . . . . . . . . . . 1
Ð→w [i] 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1
←Ðw [i] 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1
L[i] 0 1 1 2 3 4 4 4 4 4 4 4 5 6 7 7 7 7 8 8 9 10 10

R[n − i + 1] 10 9 9 9 8 7 6 6 6 6 6 6 5 4 3 3 3 3 3 2 1 0 0
L[i] +R[n − i + 1] 11 10 11 12 12 11 10 10 10 10 10 11 11 11 10 10 10 11 11 11 11 10
L[i − 1] +R[n − i] 9 10 10 10 10 10 10 10 10 10 10 9 9 9 10 10 10 10 10 9 9 10

ac(D(xi)) 1 0 . . . . 0 0 0 1 0 1 1 1 0 0 0 . . 1 1

Figure 4.7: ac on AtMostSeqCard(p = 4, q = 8, d = 12, [x1, . . . , xn])

and 4.17. Last, the seventh line gives the Arc Consistent domains. Bold values indicate
pruning.

4.4 Extensions

In this section, we show that the filtering algorithm described in the previous section
can be extended in a number of ways to enforce ac on more general constraints.

Some generalizations are straightforward. For instance, the parameter p does not need
to be the same for all subsequences. Indeed neither Algorithm 9 nor Algorithm 10 relies
on the fact that p is constant across all subsequences. We can easily give a list of upper
bounds, one for each subsequence. Another relatively straightforward generalization is
to have a variable, rather than a single value, for the demand d.

4.4.1 The AtMostSeq∆Card Constraint

Let δ be a variable, we define the AtMostSeq∆Card as follows:

Definition 4.23.

AtMostSeq∆Card(p, q, δ, [x1, . . . , xn]) ⇔
n−q

⋀
i=0

(
q

∑
l=1
xi+l ≤ p) ∧ (

n

∑
i=1
xi = δ)

We show how one can achieve ac on the above generalization. The changes to Algo-
rithm 11 required to handle this generalization are minimal. Indeed, tight lower and
upper bounds on δ are easy to compute.

They are given, respectively by ∑ni=1min(xi), and ∣Ð→w ∣. Moreover, by Lemma 4.15, we
know there can be inconsistent values for a variable xi only if ∣Ð→w ∣ ≤ d. It follows that we
only need to care about the lower bound of δ. We show these changes in Algorithm 12.
The domain of δ is updated in Line 2 for the lower bound, and Line 5 for the upper
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bound. Also, the lower bound of δ (min(δ)) is used to compute the residual demand to
reach in Line 3 instead of d.

Algorithm 12: ac(AtMostSeq∆Card(p, q, δ, [x1, .., xn]))
1 if ac(AtMostSeq(p, q, [x1, . . . , xn])) =⊥ then

return ⊥ ;
2 if ac(∑ni=1 xi = δ) =⊥ then

return ⊥ ;
3 dres ←min(δ) −∑ni=1min(xi);
4 L← leftmost_count([x1, . . . , xn], p, q);
5 D(δ) ← D(δ) ∩ [0, L[n] + ∑ni=1min(xi)];
6 if L[n] = dres then

R ← leftmost_count([xn, . . . , x1], p, q);
foreach i ∈ [1, . . . , n] such that D(xi) = {0,1} do

if L[i] +R[n − i + 1] ≤ dres then D(xi) ← {0};
if L[i − 1] +R[n − i]<dres then D(xi) ← {1};

7 else if L[n] < dres then
return ⊥ ;

return D ;

Theorem 4.24. Algorithm 12 achieves ac on AtMostSeq∆Card with an optimal
worst case time complexity.

Proof. First, we need to filter inconsistent values from the domain of δ. By Lemma 4.13,
the cardinality ∣Ð→w ∣ of the instantiation returned by leftmost is a valid upper bound
for δ. Moreover, because of the cardinality constraint, ∑ni=1min(xi) is a valid lower
bound. It is easy to see that any value d within these bounds satisfies the condi-
tions of Lemma 4.14. In other words, we can assign δ to any value in the interval
[∑ni=1min(xi), ∣Ð→w ∣] and extend it to an ac support of
AtMostSeq∆Card(p, q, δ, [x1, . . . , xn]). These bounds are therefore tight.

Second, we need to prune values in D(xi) for all i in 1, . . . , n that are not supported
by any value in D(δ). A naive algorithm for checking that would be to run leftmost

for each value in D(δ) and compute the union of possible values for the variables xi.
However, one can avoid this by distinguishing two cases after line 5. Suppose that
∣D(δ)∣ > 1, in this case, Line 1 and Line 2 and 5 imply that Lemma 4.15 holds for
d =min(δ). Hence all values for the variables xi are consistent and in this case we will
never enter lines 6 and 7. Suppose now that ∣D(δ)∣ = 1, in this case, we can simply apply
the same filtering (Line 6) that we proposed previously for a fixed cardinality.

The whole procedure requires at most two calls to leftmost_count, which takes O(n)
time. ◻
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Table 4.1: Maximal cardinality instantiations.

xi: . . . . . . . 0 . . . . . 0 . . . . . 0 . .
Ð→w on 4.1: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 ∣Ð→w ∣ = 11
Ð→w on 4.2: 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 ∣Ð→w ∣ = 10

Ð→w on 4.1 & 4.2: 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0 ∣Ð→w ∣ = 8

4.4.2 The MultiAtMostSeqCard Constraint

We show here that we can easily modify Algorithm 11 (or Algorithm 12) to achieve ac
on the conjunction of several AtMostSeqCard constraints.

For instance, in crew-rostering problems, the work pattern of an employee might re-
quire a conjunction of AtMostSeqCard: one to limit the number of shifts per day,
and another to limit the number of shifts per week. In the crew-rostering bench-
marks that we consider in Section 4.5, we have a variable xi for each working shift
i. Moreover, we want each employee to work at most one shift per day, at most five
shifts per week, and between 17 and 18 shifts on the whole period. We model this
with two AtMostSeq∆Card constraints: AtMostSeq∆Card(1,3, δ, [x1, . . . , xn])
and AtMostSeq∆Card(5,21, δ, [x1, . . . , xn]) s.t. D(δ) = {17,18}. However, ac on
these two constraints is not equivalent to ac on their conjunction. We illustrate this in
Example 4.5 (using smaller instances of the constraints).

Example 4.5. Consider the conjunction of the two following AtMostSeqCard con-
straints:

AtMostSeqCard(1,2,9, [x1, . . . , x22]) & (4.1)

AtMostSeqCard(2,5,9, [x1, . . . , x22]) (4.2)

Now, suppose that D(x8) = D(x14) = D(x20) = {0}, whilst all other domains are equal
to {0,1}. The first line of Table 4.1 shows the domains of [x1, . . . , x22], with a dot
(.) standing for a full domain ({0,1}) and the value 0 standing for the domain re-
duced to the singleton {0}. The second and third lines show the results of leftmost

on [x1, . . . , x22] for p/q = 1/2 and p/q = 2/5, respectively. Since the demand d is equal
to 9, both constraints 4.1 and 4.2 are ac. Last, the third line shows an instantiation
of maximum cardinality respecting simultaneously AtMostSeq(1,2, [x1, . . . , x22]) and
AtMostSeq(2,5, [x1, . . . , x22]). It is obtained using the same principle as leftmost,
however by checking two sets of subsequences, one for each AtMostSeqCard con-
straint. It is easy to see that the arguments of Lemma 4.13 are still valid when consid-
ering any number of subsequences. Therefore, the total cardinality of 8 is a valid upper
bound, and since d is equal to 9, the conjunction of the two constraints has no solution.
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We define the constraint MultiAtMostSeqCard, and show that the algorithm intro-
duced in this chapter can be adapted to enforce ac on this constraint in O(nm) time,
where m is the number of chains of AtMost constraints.

Definition 4.25. MultiAtMostSeqCard(p1, .., pm, q1, .., qm, d, [x1, . . . , xn]) ⇔

m

⋀
k=1

n−qk

⋀
i=0

(
qk

∑
l=1
xi+l ≤ pk) ∧ (

n

∑
i=1
xi = d)

Theorem 4.26. One can achieve ac on MultiAtMostSeqCard in O(nm) time.

Proof. The main argument to show that this theorem holds is that all previous proofs
and algorithms can be easily adapted to this case. We therefore only sketch its proof.

First, note that one can modify the procedure leftmost (or leftmost_count) to handle
a conjunction of AtMostSeq constraints instead of a single one. All we need to do is
to duplicate m times the structures maintaining the cardinalities of the subsequences.
We obtain a procedure that checks m chains in O(nm) if we use Algorithm 10.

Second we show that Lemma 4.13 still holds with this new procedure, and with respect to
several chains of AtMost constraints. In other words, greedily assigning the value “1”
while respecting m chains of AtMost will produce a sequence of maximal cardinality.
The argument used in the proof of Lemma 4.13 generalizes without modification to
several chains. We show that if we make the hypothesis that an instantiation w of
cardinality higher than of ∣Ð→w ∣ found by the greedy procedure leads to a contradiction.
For each value of q, the same three cases arise, and can be analyzed in exactly the
same way. Hence we can show that w can be made equal to Ð→w without changing its
cardinality, hence a contradiction.

In all subsequent proofs, we check subsequences of length q and show that they do not
violate capacity constraints. Obviously, these proofs hold for any value of q (within
[1, n]). In fact, the only difference is that when considering multiple chains, we might
have to check subsequences of different lengths. ◻ ◻

4.5 Experimental Results

We tested our filtering algorithms on two benchmarks: car-sequencing and crew-rostering.
Since Slack-Pruning is a particular case of AtMostSeqCard and in all cases cannot
filter more than AtMostSeqCard then it will be omitted in these experiments. All
models are implemented using Ilog-Solver 6.7. All experiments ran on Intel Xeon CPUs
2.67GHz under Linux. Since we compare propagators, we averaged the results across
several branching heuristics to reduce the bias that these can have on the outcome.
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Moreover, these heuristics were randomized and for each instance and each heuristic we
launched 5 randomized runs with a 20 minutes time cutoff2. For each considered data
set, we primarily compare the total number of successful runs, denoted “#solved”. Then,
we consider the CPU time in seconds and number of backtracks, denoted #backtracks,
both restricted to successful runs. When appropriate, we emphasize the statistics of the
best method using bold face fonts.

4.5.1 Car-Sequencing

We use the same configuration used in the previous chapter (Section 3.3). That is, 4
models (decompose, gsc, amsc, and gsc⊕amsc) and 42 heuristics. For each model,
we report the average number of solved instances in Table 4.2, the average CPU time
on solved instances in Table 4.3 and the average number of backtracks in Table 4.4. In
each table, we also report the minimum and maximum value (for any heuristic, though
averaged over randomized runs) as well as the standard deviation over the different
heuristics.

Table 4.2: Evaluation of the filtering methods (solved instances count)

propagation #solved in set1 (70 × 5) #solved in set2 (4 × 5)
avg min max dev avg min max dev

decompose 268.33 70.00 350.00 88.95 2.95 0.00 15.00 3.66
gsc 333.52 154.00 350.00 42.16 10.11 0.00 20.00 5.25

amsc 321.35 80.00 350.00 64.05 11.19 0.00 20.00 5.22
gsc⊕amsc 334.11 154.00 350.00 41.88 10.45 0.00 20.00 5.06

propagation #solved in set3 (5 × 5) #solved in set4 (7 × 5)
avg min max dev avg min max dev

decompose 0.00 0.00 0.00 0.00 2.35 0.00 9.00 2.65
gsc 0.73 0.00 10.00 2.35 4.64 0.00 10.00 3.69

amsc 0.38 0.00 5.00 1.21 5.09 0.00 10.00 3.75
gsc⊕amsc 0.76 0.00 10.00 2.41 4.80 0.00 10.00 3.65

Table 4.2 shows that in all cases, the best method is either gsc⊕amsc or amsc. In
some cases a stronger filtering seems to be key and gsc⊕amsc solves more instances
than other methods: 95.46% of set1 and 3.04% of set3. In other cases, exploration speed
is more important and amsc is better: 55.95% and 14.55% of solved instances for set2
and set4, respectively. Overall, as witnessed by Table 4.4, gsc and gsc⊕amsc usually
require exploring a much smaller tree than amsc. However, the propagator for Gsc
slows down the search by a substantial amount. Considering Table 4.3 as well as data
from unsolved instances, we observed a factor 12.5 on the number of nodes explored per
second between these two models. Moreover, the level of filtering obtained by these two

2The approximate total CPU time is one year.
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Table 4.3: Evaluation of the filtering methods (CPU time on solved instances)

propagation CPU time (in sec.) on set1 (70 × 5) CPU time (in sec.) on set2 (4 × 5)
avg min max dev avg min max dev

decompose 10.49 0.02 1145.20 80.39 58.74 0.01 766.25 178.88
gsc 3.16 0.52 1100.54 33.17 109.45 0.11 1096.37 237.46

amsc 3.79 0.03 1197.88 51.49 70.56 0.01 1014.57 186.87
gsc⊕amsc 3.03 0.53 1017.74 33.60 99.71 0.11 1155.40 222.85

propagation CPU time (in sec.) on set3 (5 × 5) CPU time (in sec.) on set4 (7 × 5)
avg min max dev avg min max dev

decompose - - - - 30.85 0.03 985.75 136.43
gsc 276.06 29.22 988.79 308.64 53.61 1.63 975.03 147.35

amsc 8.62 1.06 18.07 6.72 38.45 0.03 1171.78 124.29
gsc⊕amsc 285.43 6.01 1131.19 337.24 61.61 1.62 1180.53 175.23

Table 4.4: Evaluation of the filtering methods (search tree size on solved instances)

propagation #backtracks on set1 (70 × 5) #backtracks on set2 (4 × 5)
avg min max dev avg min max dev

decompose 174017 148 25062202 1341281 1101723 78 15324348 3439897
gsc 1408 99 2320312 34519 131062 58 1595137 306448

amsc 33600 92 13888040 468527 665205 61 10254401 1827516
gsc⊕amsc 1007 92 1180605 23649 104823 56 1055307 244135

propagation #backtracks on set3 (5 × 5) #backtracks on set4 (7 × 5)
avg min max dev avg min max dev

decompose - - - - 378475 170 13767766 1754180
gsc 55365 5852 218590 63211 23897 151 467396 75097

amsc 40326 5991 83454 29690 215349 146 5624744 653498
gsc⊕amsc 57725 1120 244787 69705 22974 146 428523 71552

methods are incomparable. Therefore combining them is always better than using Gsc
alone.

In [139] the authors applied their method to set1, set2 and set3 only. For their
experiments, they considered the best result provided by 2 heuristics. When using
cost-Regular or Gen-Sequence filtering alone, 50.7% of problems are solved and
when combining either cost-Regular or Gen-Sequence with Gsc, 65.2% of prob-
lems are solved (with a time out of 1 hour). In our experiments, in average over the 42
heuristics and the 5 randomized runs, AtMostSeqCard and Gsc solve respectively
84.29% and 87.19% of instances and combining AtMostSeqCard with Gsc solves
87.42% instances in a time out of 20 minutes. Moreover, using the model gsc⊕amsc,
the best heuristic was able to solve 96.20% of these instances.
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4.5.2 Crew-Rostering

Problem Description In this problem, working shifts have to be attributed to em-
ployees over a period, so that the required service is met at any time and working
regulations are respected. The latter condition can entail a wide variety of constraints.
Previous work [93, 103] used allowed (or forbidden) patterns to express successive shift
constraints. For example, with 3 shifts of 8 hours per day: D (day), E (evening) and
N (night), ND can be forbidden since employees need some rest after night shifts. We
consider here a simple case involving 20 employees with 3 shifts of 8 hours per days
where no employee can work more than one 8h shift per day, no more than 5 days per
period of 7 days, and the break between two worked shifts must be at least 16h. The
planning horizon is of 28 days, and each employee must work 17 shifts over the 4 weeks
period (i.e., 34 hours per week in average).

Models and Heuristics We use a model with one Boolean variable eij for each of
the m employees and each of the n shifts stating if employee i works on shift j. The
demand dsj on each shift j is enforced through a sum constraint ∑mi=1 eij = dsj . The other
constraints are stated using two AtMostSeqCard constraints per employee, one with
ratio p/q = 1/3, another with ratio 5/21, and both with the same demand d = 17. We
compare four models. In the first (decompose), we use a decomposition in a chain of
AtMost constraints. In the second (amsc) we use two AtMostSeqCard constraints
per employee j, of the form:

AtMostSeqCard(p, q, d, [ei1, . . . , ein])

In the first constraint we have p = 1, q = 3, d = 17 and in the second constraint we have p =
5, q = 21, d = 17. Both are propagated using Algorithm 11. In the third model (gsc), we
use the following Gsc constraint to encode the constraint AtMostSeqCard(p, q, d, [ei1, . . . , ein]):

Gsc(0, p, q,{0 ∶ n − d,1 ∶ d},{0 ∶ n − d,1 ∶ d}, [ei1, . . . , ein],{1})

Note that in this case, since the domains are Boolean, the Gsc is in this case equivalent
to AtMostSeqCard. Therefore, it cannot prune more since the latter enforces ac.
However, it is stronger than the decomposition. Last, in the fourth model (mamsc) the
conjunction of the two AtMostSeqCard constraints is propagated using Algorithm 12.

We used the following four variable ordering heuristics.

1. Lexicographic: Explores shifts chronologically and picks an employee at random;

2. Middle: Similar as above, however we start exploring shifts from the middle;
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3. Employee: Picks an employee with min slack, then a possible shift of max demand;

4. Shift: Similar as above, however, the shift is selected before the employee.

In all cases, we branch by assigning the value 1 to the chosen pair (employee, shift).

Benchmarks We generated 341 instances, with worker availability ranging from 82%
to 48% by increment of 0.1. This value denotes the probability that a given employee is
willing to work during a given shift. It allows to vary the constrainedness of the problem.
228 of these instances were found feasible, 77 infeasible and 36 remain open. We report
results for the satisfiable and unsatisfiable sets with 5 random runs per instance.

Table 4.5: Evaluation of the filtering methods: static branching (highest success
counts are in bold fonts)

Lexicographic

Model
satisfiable (1140) unsatisfiable (385)

#sol CPU time #backtracks #sol CPU time #backtracks
avg dev avg dev avg dev avg dev

decompose 0 - - - - 170 0.05 0.02 86 452
gsc 25 308.93 344.29 74074 84301 175 2.56 9.71 262 1794

amsc 125 164.36 239.56 1828347 2759080 213 1.76 21.95 22621 292152
mamsc 534 87.29 188.81 685720 1491867 271 2.80 45.02 27150 444913

From the middle to the sides

Model satisfiable (1140) unsatisfiable (385)

#sol CPU time #backtracks #sol CPU time #backtracks
avg dev avg dev avg dev avg dev

decompose 1 166.76 0.00 5716015 0 160 0.04 0.00 0 0
gsc 7 253.20 301.63 53763 63110 165 1.07 0.08 0 0

amsc 57 161.38 267.23 2207676 3621762 201 0.20 1.46 1622 15809
mamsc 336 134.95 239.11 1410458 2525422 265 0.05 0.00 0 0

We report the results for the static heuristics in Table 4.5 and for the dynamic heuris-
tics in Table 4.6. The first column indicates the total number of successful runs (#sol),
then we report CPU time and number of backtracks, averaged over all instances and
runs, as well as the standard deviation on this sample. Clearly, achieving ac on the
(Multi)AtMostSeqCard constraint have a significant impact on the efficiency of the
model. The decomposition into sum constraints cannot solve any satisfiable instance
with lexicographic branching, and only one when starting from the middle of the se-
quence. The model using Gsc offers a much more potent filtering, however, it is not
as strong as ac on the AtMostSeqCard constraint and moreover, it is much slower.
On the other hand, the model using Algorithm 11 for the AtMostSeqCard constraint
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achieves ac whilst being as fast as the decomposed model in terms of exploration. More-
over, combining the two AtMostSeqCard constraints and using Algorithm 12 allows
to solve about four times more satisfiable instances with Lexicographic branching and
six times more with Middle branching.

The cost-Regular constraint could be used to enforce the same level of consistency
as the combination of two AtMostSeqCard constraints. The possible patterns can
be encoded through a finite automaton whilst the overall cardinality is encoded by the
counter. Notice that using a Regular constraint (i.e., without cost) and modeling
the overall work load with a cardinality constraint would not enforce a higher level of
consistency than the decomposition into cardinality constraints (i.e., model decompose)
since AtMost constraints are monotone. A worst case analysis would indicate that the
number of states in the automaton is too large.

Table 4.6: Evaluation of the filtering methods (dynamic branching)

Most constrained employee

Model
satisfiable (1140) unsatisfiable (385)

#sol CPU time #backtracks #sol CPU time #backtracks
avg dev avg dev avg dev avg dev

decompose 772 21.93 104.91 205087 1000794 165 0.06 0.00 0 2
gsc 746 65.75 180.29 14133 42235 175 0.98 0.09 0 3

amsc 818 20.51 103.76 147479 761261 215 0.13 0.55 330 2582
mamsc 842 20.78 111.00 125886 676061 270 0.05 0.01 0 2

Most constrained shift

Model
satisfiable (1140) unsatisfiable (385)

#sol CPU time #backtracks #sol CPU time #backtracks
avg dev avg dev avg dev avg dev

decompose 987 20.76 102.53 169964 853020 352 19.74 99.61 180161 967933
gsc 1006 33.30 107.08 8875 31586 335 15.97 95.36 5145 35824

amsc 1061 10.07 65.02 90247 593928 362 12.19 77.37 108797 736775
mamsc 1074 10.94 77.37 91222 667176 377 14.63 107.58 110244 834887

When using dynamic heuristics (see Table 4.6), the difference between the different
models becomes much less spectacular. However, the trend is the same, with the model
combining the pairs of AtMostSeqCard constraint dominating the other models.

Summary

We first proposed a simple filtering rule that reasons about capacity and demand con-
straints simultaneously for solving the car-sequencing problem. This pruning is then gen-
eralized to an optimal Arc Consistency algorithm for the AtMostSeqCard constraint.
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Moreover, we showed how to adapt the filtering with more general constraints while keep-
ing a reasonable worst case time complexity. Our computational results demonstrate the
efficiency of our approach for solving car-sequencing and crew-rostering benchmarks.



Chapter 5

Learning

Introduction

In the past decade, hybrid CP/SAT solvers have been redesigned to benefit from CP
and SAT features as much as possible. In this chapter, we show that enabling clause
learning via hybrid models can greatly improve the performances of CP models in many
sequencing and scheduling problems.

Lazy Clause Generation is a general framework for hybrid solvers in which propagators
should be able to explain their pruning in a clausal form. A trend has subsequently
emerged aiming at proposing effective and efficient explanations for (global) constraints
(see for instance [47, 46, 116, 58, 55]). In this context, we investigate the learning
aspect for solving car-sequencing benchmarks using our filtering for AtMostSeqCard
in Section 5.1. We propose a procedure explaining AtMostSeqCard that runs in
linear time complexity in the worst case. Any hybrid model using these explanations
benefits from the complete filtering for this constraint along with clause learning and
potentially many other CP/SAT features. We show experimentally how clause learning
improves the global performances in most cases. We confirm a strong correlation between
advanced propagation and finding solutions quickly for this problem. Moreover, for
building proofs, clause learning appears in these experiments to be the most important
ingredient while propagation is less useful.

The rest of the contributions presented in this chapter are related to the question of
designing ‘lazy’ data structures in order to efficiently tackle large scaled instances. Back-
ward explanations and lazy generation (see Section 2.3.2) are typically the type of ‘lazy’
data structures that we address. However, these techniques are relatively new in hybrid
solvers and might be improved in a number of ways.

87
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We revisit in Section 5.2 the lazy generation of Boolean variables for encoding the
domains. The issue that we address is related to the redundancy of clauses used when
lazily encoding a domain [53] (detailed in Section 2.3.2.2). The DomainFaithfulness
constraint that we propose avoids such redundancy while ensuring the same level of
consistency without any computational overhead.

Section 5.3 addresses the impact of clause learning for solving disjunctive scheduling
problems. We consider a large number of disjunctive scheduling instances, on which we
test the lazy generation method proposed in Section 5.2. Furthermore, we propose a
novel conflict analysis scheme, called Disjunctive-based learning, tailored to this family
of problems. Disjunctive-based learning uses a property of these problems allowing to
learn clauses using a number of Boolean variables that is not function of the domain size.
Our propositions give good experimental results and outperform the CP model in most
cases. Furthermore, we confirm a correlation between the instance size, the branching
choice, and the conflict analysis scheme. State-of-the-art lower bounds for a traditional
benchmark are improved thanks to the new conflict analysis scheme.

5.1 Learning in Car-Sequencing

We investigate in this section the impact of clause learning for solving the car-sequencing
problem. We first show how to explain our complete filtering for AtMostSeqCard.
These explanations are later used in several hybrid models for solving the car-sequencing
problem.

5.1.1 Explaining AtMostSeqCard

We first recall the definition of AtMostSeqCard. Given a sequence of Boolean vari-
ables [x1, . . . , xn] and three integers p, q, d, AtMostSeqCard is defined by a conjunc-
tion between a chain of AtMost constraints (called AtMostSeq) and Cardinality.

AtMostSeqCard(p, q, d, [x1, . . . , xn]) ⇔
n−q

⋀
i=0

(
q

∑
l=1
xi+l ≤ p) ∧ (

n

∑
i=1
xi = d)

To explain AtMostSeqCard, we briefly recall the complete filtering that we pro-
posed in Section 4.3. Let [x1, .., xn] be a sequence of Boolean variables subject to
AtMostSeqCard(p, q, d, [x1, .., xn])). The first step is to make sure that
AtMostSeq(p, q, [x1, . . . , xn]) and Cardinality([x1, . . . , xn], d) are ac. The remain-
ing of the filtering is based on a greedy rule called leftmost. The outcome of leftmost

is an instantiation w with a maximum cardinality on [x1, .., xn] respecting all AtMost
constraints. We use a linear time implementation of leftmost called leftmost_count
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to complete the filtering. The procedure leftmost_count returns an array L where
L[i] = ∑j=ij=1w[j] − ∑j=ij=1min(xj). The value of L[i] represents the maximum possible
cardinality that the sequence [x1, .., xi] might additionally have while respecting all the
AtMost constraints. We define the array R to be the result of leftmost_count on the
reverse sequence [xn, .., x1]. Let dres = d −∑ni=1min(xi) be the remaining cardinality to
satisfy. To complete the filtering, we use the following rules:

1. If L[n] < dres, then a failure is raised.

2. If L[n] = dres, then for all unassigned variable xi:

• If L[i] +R[n − i + 1] ≤ dres, then xi is assigned to 0.

• If L[i − 1] +R[n − i]<dres, then xi is assigned to 1.

Now in order to explain AtMostSeqCard, we make the distinction between the possi-
ble changes made by AtMostSeq or Cardinality on one hand, and the extra filtering
that we obtain using leftmost_count on the other hand.

5.1.1.1 Explaining AtMostSeq & Cardinality

Explaining AtMostSeq We proceed here by propagating
AtMostSeq(p, q, [x1, . . . , xn]) with the decomposition into all possible AtMost con-
straints of size q. Recall that this decomposition does not hinder propagation (Sec-
tion 4.2). Algorithm 13 shows an ac propagator for AtMost([x1, . . . , xq], p).

Algorithm 13: AtMost([x1, . . . , xq], p)
if ∣{xj ∣ D(xj) = {1}}∣ > p then

1 D ←⊥ ;
else

2 if ∣{xj ∣ D(xj) = {1}}∣ = p then
foreach i ∈ {1..q} do

if D(xi) = {0,1} then
3 D(xi) ← {0} ;

return D ;

On the one hand, when a failure is raised because of Line 1, the set of all variables
assigned to 1 constitutes a possible reason triggering the failure. We therefore use the
following propagation rule to explain a failure:

⋀D(xi)={1} Jxi = 1K⇒ ⊥
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This explanation can be reduced as follows. Since p+ 1 assignments of the type Jxi = 1K
are sufficient to have a failure on AtMost([x1, . . . , xq], p), then any conjunction defined
on a subset of {Jxi = 1K ∣ D(xi) = {1}} of size p + 1 is a valid explanation of the failure.

On the other hand, any assignment made by this propagator (only of the type D(xi) ←
{0} in this case) in Line 3 is triggered because of the p assigned variables to 1 (i.e., the
test in Line 2). We therefore return the set of assigned variables to 1 as an explanation
for Jxi = 0K.

⋀D(xj)={1} Jxj = 1K⇒ Jxi = 0K

Explaining Cardinality Notice first that filtering AtMost (Algorithm 13) is very
close to filtering Cardinality as we proposed earlier in Algorithm 4. We use therefore
similar reasoning to explain the following scenarios:

If a failure is raised in Line 1 (Algorithm 4):

⋀D(xi)={1} Jxi = 1K⇒ ⊥

Similarly to failures on AtMost, this explanation can be reduced by considering any
subset of size d + 1 from {Jxi = 1K ∣ D(xi) = {1}}.

If a failure is raised in Line 2 (Algorithm 4):

⋀D(xi)={0} Jxi = 0K⇒ ⊥

This explanation can also be reduced by considering any subset of size n − d + 1 from
{Jxi = 0K ∣ D(xi) = {0}}.

To explain assignments, we return the set of assigned variables responsible for the domain
change at hand:

⋀D(xj)={1} Jxj = 1K⇒ Jxi = 0K (propagated at Line 3, Algorithm 4)

⋀D(xj)={0} Jxj = 0K⇒ Jxi = 1K (propagated at Line 4, Algorithm 4)

5.1.1.2 Explaining the Extra-Filtering

We move now to explaining the extra-filtering of AtMostSeqCard. We start by giving
a procedure explaining the failure triggered when L[n] < dres. Next, we show how to
use this procedure to explain domain reductions.
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Explaining Failure The set of current assignments is a possible naive explanation
for the failure. We propose in the following a procedure generating more compact
explanations.

In example 5.1, the sequence [x1, .., x6] is subject to AtMostSeqCard(2,5,3, [x1..x6]).
The left part of the example shows the propagator triggering a failure on a domain D
defined as follows: D(x1) = {1}, D(x3) = D(x6) = {0}, and all other variables are
unassigned. The current sequence is unsatisfiable since L[6] < dres. Consider now
the same sequence, however, with a domain D′ where all variables are unassigned ex-
cept D′(x6) = {0}. This corresponds to the right part of the example. The results of
leftmost on D and on D′ are identical. Therefore the set of assignments in D and the
set of assignments in D′ are both valid explanations for this failure. They correspond
respectively to the propagation rules Jx1 = 1K ∧ Jx3 = 0K ∧ Jx6 = 0K⇒ ⊥ and Jx6 = 0K⇒ ⊥.
The second explanation is clearly preferable since it is strictly included in the first one.

Example 5.1. Irrelevant assignments

D 1 . 0 . . 0
w 1 1 0 0 0 0
L 0 1 1 1 1 1

dres = 2
L(6) = 1
→ Failure

D′ . . . . . 0
w 1 1 0 0 0 0
L 1 2 2 2 2 2

dres = 3
L(6) = 2
→ Failure

The idea behind our algorithm for computing shorter explanations is to characterize
some assignments with no impact on the behavior of the propagator, and thus can be
removed from the naive explanation. The domain obtained by the assignments in the
shorter explanation is clearly weaker than the domain from which the failure is triggered.
We need to recall and define some notations related to leftmost in order to define this
weaker domain and to prove our propositions.

Recall that leftmost computes an instantiation of maximum cardinality w that is con-
sistent with all AtMost constraints. The instantiation w is initialized with min(xi)
for all i. Afterwards, we greedily assign (from i = 1 to i = n) w[i] to the value 1 if the
following holds:

1. xi is unassigned.

2. maxj∈[1,q](c(j)) < p where c(j) is the cardinality in w of the jth subsequence
including i.

We use in this paragraph slightly modified notations compared to Chapter 4. In fact,
many notations are parametrized by the input domain D and even sometimes depend
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on the ith iteration when computing leftmost. We therefore need to refer to D in dres,
w and L with dresD, wD and LD respectively. Furthermore, at the beginning of any
iteration i, we denote by:

• wiD the current instantiation w.

• maxD(i) the value of maxj∈[1,q](c(j)).

• cardD(I, i) the cardinality of a sub-sequence I.

Now we have all the notations needed to describe the shorter explanations and to prove
our results.

Let [x1, . . . , xn] be a sequence of Boolean variables subject to
AtMostSeqCard(p, q, d, [x1, . . . , xn]). We associate any domain D for x1 . . . xn to
a weaker domain D̂ defined as follows:

D̂(xi) = {0,1} if D(xi) = {0} ∧maxD(i) = p
D̂(xi) = {0,1} if D(xi) = {1} ∧maxD(i) ≠ p
D̂(xi) = D(xi) otherwise

We prove in the following that the outcome of leftmost on D and D̂ is the same. Hence
the propagator behavior is the same on both domains.

Lemma 5.1. w
D̂
= wD.

Proof. Suppose that there exists an index i ∈ [1..n] s.t. w
D̂
[i] ≠ wD[i] and let k be

the smallest index verifying this property. Since D̂ is weaker than D and leftmost is
a greedy procedure assigning the value 1 whenever possible from left to right, it follows
that wD[k] = 0 and w

D̂
[k] = 1. Hence maxD(k) = p and max

D̂
(k) < p. In other words,

there exists a subsequence I containing xk s.t. cardD(I, k) is equal to p, and cardD̂(I, k)
is less than p. From this we deduce that there exists a variable xj ∈ I such that wkD[j] = 1
and wk

D̂
[j] = 0.

We show by contradiction that the latter statement cannot hold. Observe first that
j must be greater than k because k is the smallest index where leftmost behaves
differently. Next, from wkD[j] = 1 and wk

D̂
[j] = 0, only two cases are possible:

1. xj is unassigned in D and D̂: In this case, since j > k, then at iteration k both
wkD(j) and wkD̂(j) are equal to 0 because leftmost changes the values of w greedily
following the lexicographical order. Hence the first contradiction.
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2. xj is assigned in D but not in D̂: It follows that D(xj) = {1} since wkD[j] = 1.
Moreover, since D̂(xj) = {0,1} then the definition of D̂ implies that maxD(j) /= p.
Recall now that cardD(I, k) = p, therefore maxD(j) = p which is impossible.

◻

Theorem 5.2. If a failure is raised because LD[n] < dresD , then

⋀
D̂(xi)={1}

Jxi = 1K ∧ ⋀
D̂(xi)={0}

Jxi = 0K⇒ ⊥

is a valid explanation.

Proof. We show that the set of assignments in D̂ is sufficient to have a failure. In other
words, we show that L

D̂
[n] < dresD̂. Let α be the number of variables having {1} as a

domain in D but unassigned in D̂. It is clear that dresD̂ = dresD +α. By Lemma 5.1, we
know that wD and w

D̂
are equal. It follows that L

D̂
[n] = LD[n] + α. Therefore, since

LD[n] < dres then LD̂[n] < dresD̂.

◻

Theorem 5.2 gives us a linear time procedure to explain a failure. In fact, it is sufficient to
compute the values maxD(i) in order to construct D̂. All these values can be computed
using one call to leftmost_count which is linear in time. Example 5.2 illustrates the
explanation procedure.

Example 5.2. Reducing the default explanation

D 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 . . . 1
maxD 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2
wD 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1
LD 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

dresD = 2 and LD[25] = 1 < dresD Ô⇒ Failure
D̂ 1 1 . . . . . . 1 1 . . . . 0 0 0 0 . 0 0 . . . 1
w
D̂

1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1
L
D̂

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 3 3 3 3
dresD̂ = 4 and L

D̂
[25] = 3 < dresD̂ Ô⇒ Failure

We illustrate here the explanation of a failure on AtMostSeqCard(2,5,9, [x1..x25])
triggered using the extra-filtering rules. Observe first that AtMostSeq and Cardinality
are both ac. Next, the propagator returns a failure since LD(25) = 1 < dresD = 2. The
default explanation corresponds to the set of all the assignments in D, whereas our pro-
cedure generates a more compact explanation by considering only the assignments in D̂.
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Red values in the maxD line represent the indices corresponding to variables being unas-
signed in D̂. As we can see, w

D̂
is identical to wD. Therefore, the propagator behaves

the same way on both domains. As a result, we reduce the size of the explanation from
22 to 11.

Note that this reduction is not optimal w.r.t. the explanation size. For instance, the
first assignment Jx1 = 1K in Example 5.2 can be removed from the reduced explanation
and the rest of the assignments still lead to a failure.

Explaining Pruning Suppose that an assignment Jx = vK was triggered by the
propagator for an input domain D at level l with a rank r. Consider the new domain D′

identical to D at level l and rank r−1 except for x with D′(x) = {1−v} (i.e., the opposite
of v). Since the pruning is correct, the constraint is unsatisfiable on D′. Let Ψ⇒ ⊥ be
the propagation rule explaining this failure using the previous mechanism. Observe that
Jx = 1 − vK has to be in Ψ, otherwise we have a failure without assigning x to 1 − v which
contradicts our first hypothesis that Jx = vK was triggered by the propagator on D at level
l and rank r. The propagation rule can be reformulated as follows: Ψ′ ∧ Jx = 1 − vK⇒ ⊥
(s.t. Ψ′ = ⋀q≠Jx=1−vK∈Ψ) which is equivalent to Ψ′ ⇒ Jx = vK. We can therefore use the
same algorithm to explain failures and pruning.

5.1.2 Pseudo-Boolean & SAT Models for the Car-Sequencing Problem

We show first a Pseudo-Boolean model for the car-sequencing problem that serves as a
starting point for the SAT formulations. The SAT models that we use are those proposed
by Mayer-Eichberger and Walsh in [5, 92].

5.1.2.1 A Pseudo-Boolean Formulation

The decompose model (Section 3.1) of this problem can be easily translated into a
Pseudo-Boolean model since all constraints are in fact sum expressions. We use the
same Boolean variables yji standing for whether the vehicle in the ith slot requires option
j. Moreover, the integer domains of class variables x1, . . . , xn are expressed based on
the direct encoding with n× k Boolean variables cji standing for whether the ith vehicle
is of class j. Since we use a Pseudo-Boolean model, we have the choice between using
clauses to encode the different relationship between cji or simply post one constraint per
class variable using ∑j cji = 1 for all i ∈ [1..n]. The Pseudo-Boolean formulation of this
problem that we adopt is the following.

1. Demand constraints: ∀j ∈ [1..k], ∑i cji = dclassj
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2. Capacity constraints: ∑i+qj−1
l=i yjl ≤ pj , ∀i ∈ {1, . . . , n − qj + 1}

3. Channeling:

• ∀i ∈ [1..n], ∀l ∈ [1..k], we have:

– ∀j ∈ Ol, cli ∨ y
j
i

– ∀j ∉ Ol, cli ∨ y
j
i

• ∀i ∈ [1..n], j ∈ [1..m], yji∨ ∨ l∈Cj
cli

4. Class constraints: ∀i ∈ [1..n], ∑j cji = 1

5.1.2.2 From Pseudo-Boolean to SAT

Notice that the above Pseudo-Boolean model contains only clauses, AtMost, and
Cardinality constraints. A simple and straightforward way to formulate this problem
into SAT is to encode each AtMost/Cardinality constraint into a CNF. The latter
has been intensively studied in the last decade (see for instance [127, 49, 125, 6, 3]). We
use, however, the three SAT encodings proposed for this problem by Mayer-Eichberger
and Walsh in [5, 92]. They correspond in fact to three different ways of encoding
AtMostSeqCard. All of them are based on the Sequential Counter [127]. We give a
brief description for these models and refer the reader to [5] for more details.

The first step is to show the encoding used for Cardinality([x1, . . . , xn], d).

• Variables:

– si,j : ∀i ∈ [0..n], ∀j ∈ [0..d + 1], si,j is true iff ∑k∈[1..i] xk ≥ j

• Clauses: ∀i ∈ [1..n]

– ∀j ∈ [0..d + 1]

1. ¬si−1,j ∨ si,j
2. xi ∨ ¬si,j ∨ si−1,j

– ∀j ∈ [1..d + 1]

3. ¬si,j ∨ si−1,j−1

4. ¬xi ∨ ¬si−1,j−1 ∨ si,j

• Initial values:

5. s0,0 ∶ true ; s0,1 ∶ false ; sn,d ∶ true ; sn,d+1 ∶ false ;
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In this encoding, (n + 1) × (d + 1) atoms si,j are used in addition to the variables
[x1, . . . , xn]. An atom si,j is semantically equivalent to have a lower bound at least
equal to j in the sum ∑k∈[1..i] xk. The clauses 1 & 3 ensure the monotonicity of the sum,
while clauses 2 & 4 perform a channeling between the variables xi and si,j .

Adapting this encoding for an AtMost constraint is quite simple. In fact, it is sufficient
to change the initial value of sn,d from true to unassigned. This way makes the constraint
satisfied iff ∑i∈[1..n] xi ≤ d.

Recall that AtMostSeqCard is defined by a conjunction of Cardinality and a set of
AtMost constraints. We denote by: SATCard the (above) encoding for Cardinality;
and SATAtmost the encoding applied to all AtMost constraints. Note that each AtMost
constraint is encoded independently with new variables channeled only to option position
variables.

Another possible way for encoding the chain of AtMost constraints can use similar
encoding of the Gen-Sequence constraint [8, 32]. For each subsequence of size q whose
latest index is i, we have the clause:

6. ¬si,j ∨ si−q,j−u

This encoding is denoted SATSeq.

Mayer-Eichberger and Walsh showed not only that the level of pruning of SATSeq is
incomparable with SATAtmost but also combining SATCard, SATAtmost, and SATSeq

maintains Arc Consistency on AtMostSeqCard [5]. Three SAT models for the car-
sequencing problem are therefore proposed. They all encode the basic model using the
following encodings of AtMostSeqCard:

1. CNFA uses SATCard and SATAtmost.

2. CNFS uses SATCard and SATSeq.

3. CNFA+S combines SATCard, SATAtmost and SATSeq.

5.1.3 Experimental Results

We test the different approaches on the previous benchmarks of car-sequencing (used in
Chapters 3 and 4). We reorganize the instances into three categories.

1. EasySat: It contains all instances from set1 and set2. All these instances (70 + 4)
are satisfiable and easy for all the methods tested here.
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2. HardSat: It contains the instances of set4. These instances (7) are known to be
satisfiable but very hard to solve.

3. Unsat: It contains all unsatisfiable instances from set3 in addition to the 23 un-
known instances form set5.

We ran the following models:

Hybrid CP/SAT We use Mistral-2.01 as a hybrid CP/SAT solver with backward
explanations. Our hybrid model is based on the Pseudo-Boolean formulation of the
problem, however, by using AtMostSeqCard for capacity constraints. Note that the
rest of the constraints are either Cardinality or AtMost constraints. We explain
them in the same way we proposed previously in Section 5.1.1.1.

Using a hybrid solver has the advantage of using adaptive branching coming from the
SAT component as well as problem-specific heuristics. We therefore propose to test the
following configurations differentiated by the heuristic being used:

1. Hybrid(VSIDS): using VSIDS.

2. Hybrid(Slot): using the heuristic ⟨opt,mid, δ,∅⟩ (see Chapter 3).

3. Hybrid(Slot/VSIDS): using firstHybrid(Slot), then switching after 100 non-improving
restarts to Hybrid(VSIDS).

4. Hybrid(VSIDS/Slot): the reverse of Hybrid(Slot/VSIDS)

SAT We use the three SAT models CNFA, CNFS , and CNFA+S using Minisat[48]
(version 2.2.0) with default parameter settings.

CP and Pseudo-Boolean Models We compare against the following «reference»
approaches:

1. CPAMSC : The pure CP model using AtMostSeqCard without clause learning
with the same heuristic used in Hybrid(Slot) and the same solver Mistral-2.0.

2. PBO-clauses: A Pseudo-Boolean method relying on SAT encoding. We used Min-
iSat+ [49] on the Pseudo-Boolean encoding described in Section 5.1.2.1.

3. PBO-cutting planes: A Pseudo-Boolean method with dedicated propagation and
learning based on cutting planes [45]. We used SAT4J [19] on the same model,
with the «CuttingPlanes» algorithm.

1http://homepages.laas.fr/ehebrard/mistral.html
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All experiments are realized on Intel Xeon CPUs 2.67GHz under Linux. For each in-
stance, we ran 5 randomized runs with Luby restarts and a 20 minutes time cutoff. The
summary of these results is given in Table 5.1. Recall that a run is said to be ‘success-
ful’ iff a solution is found or the search space is completely explored without finding any
solution. For each category of instances, we report: the total number of successful runs
(#suc); the averaged number of failures (avg fails) and the averaged CPU time (time)
in seconds. The statistics «time» and «avg fails» are computed only for the successful
runs. We emphasize the statistics of the best method (w.r.t. #suc, ties broken by time)
for each category using bold face fonts.

Table 5.1: Experimental comparison of CP, SAT, hybrid, and Pseudo-Boolean mod-
els for the car-sequencing problem

Method EasySat (74 × 5) HardSat (7 × 5) Unsat (28 × 5)
#suc avg fails time #suc avg fails time #suc avg fails time

CNFA 370 2073 1.71 28 337194 282.35 85 249301 105.07
CNFS 370 1114 0.87 31 60956 56.49 65 220658 197.03

CNFA+S 370 612 0.91 34 32711 36.52 77 190915 128.09
Hybrid(VSIDS) 370 903 0.23 16 207211 286.32 35 177806 224.78

Hybrid(VSIDS/Slot) 370 739 0.23 35 76256 64.52 37 204858 248.24
Hybrid(Slot/VSIDS) 370 132 0.04 34 4568 2.50 37 234800 287.61

Hybrid(Slot) 370 132 0.04 35 6304 3.75 23 174097 299.24
CPAMSC 370 43.06 0.03 35 57966 16.25 0 - -

PBO-clauses 277 538743 236.94 0 - - 43 175990 106.92
PBO-cutting planes 272 2149 52.62 0 - - 1 5031 53.38

From Table 5.1, we first note that CP and hybrid models outperform other approaches
on satisfiable instances (i.e., EasySat and HardSat). The best method in average for
both sets is the hybrid model using CP branching. By considering all the results on these
instances, one can observe that models enforcing Arc Consistency on AtMostSeqCard
are the best choices for finding solutions quickly. In fact, this claim is confirmed by the
poor performances of Pseudo-Boolean models on satisfiable instances together with the
distinguished results of CNFA+S compared to other SAT models. Recall that CNFA+S
simulates ac on AtMostSeqCard. It is worth mentioning the importance of using
the crafted heuristic compared to VSIDS, at least within hybrid models. For instance,
on the dataset “HardSat”, we move from solving 16 instances with Hybrid(VSIDS) to
35 instances with Hybrid(Slot). In general, the results of satisfiable instances show that
propagation is by far the most crucial factor for finding solutions. Moreover, the use of
built-in heuristics is clearly beneficial compared to «blind» branching when using hybrid
models.

Conversely to these observations, the results on the dataset “Unsat” instances clearly
show that clause learning is the most important ingredient for proving unsatisfiability.
There are a number evidences supporting this claim. First, while the CP model fails
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to build proofs on any instance for this set, its equivalent hybrid model (Hybrid(Slot))
succeeds on 23 instances. We stress here the impact of VSIDS with hybrid models
as we move from 23 to 37 instances with Hybrid(Slot/VSIDS) or Hybrid(VSIDS/Slot).
Next, the PBO-clauses model, which relies essentially on basic SAT encoding without
any extra filtering, performs better that hybrid models on this set with 43 successful
runs. Finally, the best results on this set come from the SAT models. Specifically, the
«lightest» model CNFA is, surprisingly, the best model for proving unsatisfiability with
85 instances.

To summarize the experimental findings, we first observed that clause learning improves
the global performances generally. This is specially true when proving unsatisfiability.
Second, we confirm a strong correlation between advanced propagation and finding solu-
tions quickly for this problem. However, for building proofs, clause learning is the most
crucial factor and propagation is less useful. Finally, regarding the choice of heuristic,
adaptive-branching is very beneficial for building proofs while problem-specific heuristics
are much helpful for finding solutions efficiently.

5.2 Revisiting Lazy Generation

We move now to the second part of our contributions regarding clause learning. We
revisit the lazy generation of Boolean variables for encoding the domains. In partic-
ular, we show how to avoid the issue mentioned in Section 2.3.2.2. Recall that when
lazily generating variables, clauses encoding the domains become redundant (see Sec-
tion 2.3.2.2 for more details). The DomainFaithfulness constraint that we propose in
this section avoids such redundancy while ensuring the same level of consistency without
computational overhead.

This novel lazy generation is used in the next section with our hybrid models for solving
scheduling problems. We consider only the lazy generation of atoms of the type Jx ≤ uK
since all propagators in our models performs only bound tightening operations. Note
that this type of domain reduction is the most used for scheduling problems in general.
Nevertheless, the generalization of our propositions with atoms of the type Jx = vK is
quite simple and straightforward.

5.2.1 The DomainFaithfulness Constraint

We first recall the redundancy issue related to lazy generation. When an atom Jx ≤ uK
has to be generated, we add the clauses ¬Jx ≤ aK ∨ Jx ≤ uK ; ¬Jx ≤ uK ∨ Jx ≤ bK where a
and b are the nearest generated bounds to u with a < u < b. After adding these clauses,
the clause ¬Jx ≤ lK∨Jx ≤ uK becomes redundant. We show how to avoid this redundancy.
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Instead of generating clauses to encode the different relationships between the newly
generated atoms, we propose to encode such relations through a new constraint called
DomainFaithfulness. This constraint has a twofold role: firstly, it simulates UP as if
the atoms were generated eagerly; secondly it performs a complete channeling between
the range variable and all its domain atoms.

Let x be a Range variable (i.e., with a domain of the form [l, u]). Let [v1, . . . , vn] be
a sequence of integer values, and [b1 . . . bn] be a sequence of lazily generated Boolean
variables s.t. bi is the atom Jx ≤ viK. We assume that bi is the ith generated Boolean
variable for all i. We define the DomainFaithfulness constraint as follows.

Definition 5.3. DomainFaithfulness(x, [b1 . . . bn], [v1, . . . , vn]) ∶

∀i, bi ↔ x ≤ vi

For each Range variable x, we use one DomainFaithfulness constraint (denoted by
DomainFaithfulness(x)). Initially, the scope of DomainFaithfulness(x) contains
only x. Afterwards, whenever an atom b⇔ Jx ≤ vK has to be generated, we simply add
b to the scope of DomainFaithfulness(x).

5.2.1.1 Propagating DomainFaithfulness

We present first a complete filtering procedure for DomainFaithfulness in Algo-
rithm 14 running in O(n) time complexity. Next, we show that one can enforce the
same propagation level with a constant amortized time complexity down a branch of the
search tree.

Algorithm 14: AC(DomainFaithfulness(x, [b1 . . . bn], [v1, . . . , vn]))
1 ub←min(max(x),min(vi ∣ D(bi) = {1}));
2 lb←max(min(x),1 +max(vi ∣ D(bi) = {0}));
if ub < lb then

3 return ⊥ ;
4 D(x) ← D(x) ∩ [lb,+∞[ ;
5 D(x) ← D(x)∩] −∞, ub] ;
6 for i ∈ [1, n] do

if vi ≥ ub then
D(bi) ← {1};

if vi < lb then
D(bi) ← {0};

return D ;

We assume that n >= 1, otherwise no propagation is needed since no atom is generated.
The first step is to look for the tightest possible bounds for x. The new upper bound
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ub is the minimum between the current upper bound of x and the minimum value vi
where bi is assigned to 1. Similarly, the new lower bound lb is the maximum between
the current lower bound and the maximum value vi + 1 where bi is assigned to 0. These
new bounds are computed at the first two lines of Algorithm 14.

Regarding failure, there is only one way to make the constraint violated. This case
corresponds to the situation when ub is less that lb (Line 3). The rest of the propagator
is quite straightforward. First, we update the domain of x with the new bounds (Line 4
and Line 5). Then, we assign the atoms bi in the natural way (Line 6). That is, any
variable bi is assigned to 1 if vi ≥ ub and to 0 if vi < lb. Figure 5.1 visualizes the effect of
propagating DomainFaithfulness on [b1 . . . bn].

Figure 5.1: Assigning b1, . . . , bn

0 0 . . . 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

{0,1} {0,1} . . . {0,1}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1 1 . . . 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

{bi ∣ vi < lb} {bi ∣ lb ≤ vi < ub} {bi ∣ vi ≥ ub}

Theorem 5.4. Algorithm 14 enforces ac for DomainFaithfulness in O(n).

Proof. The time complexity for this algorithm is clearly O(n). We show how to build
supports for any possible assignment after propagating DomainFaithfulness. Assign-
ing x to any value v ∈ [lb, ub] has clearly a support by assigning any atom bi to 1 if vi ≥ v
and to 0 otherwise. For the rest of assignments, it is also easy to find supports. We
distinguish two cases for building supports for assignments of the type Jbi = 1K.

• If vi ≥ ub (i.e., bi is already assigned to 1), we assign x to ub, and all unassigned
bj to 0.

• If vi < ub (i.e., bi is unassigned), we assign x to lb, and all unassigned bj to 1.

Similarly, we build supports for the assignments of the type Jbi = 0K as follows:

• If vi < lb (i.e., bi is already assigned to 0), we assign x to lb, and all unassigned bj
to 1.

• If vi ≥ lb (i.e., bi is unassigned), we assign x to ub, and all unassigned bj to 0.

◻

5.2.2 Incrementality

We introduce here an incremental procedure to propagate DomainFaithfulness in a
constant amortized time complexity down a branch of the search tree.
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We use two arrays called s and g defined as follows: For each i ∈ [1, n]:

• If {vk ∣ vk < vi} /= ∅, then s[i] = λ where vλ =max{vk ∣ vk < vi}, otherwise s[i] = 0.
That is, the value of s[i] represents the index j of the greatest value vj that is
smaller than vi if such index exists, and 0 otherwise.

• If {vk ∣ vk > vi} /= ∅, then g[i] = λ where vλ =min{vk ∣ vk > vi}, otherwise g[i] = 0.
That is, g[i] represents the index j of the smallest value vj that is greater than vi
if such index exists, and 0 otherwise.

Consider now the example of D(x) = [17,83] and an atom bk corresponding to Jx ≤ 64K
(i.e., vk = 64). Suppose now that assigning bk to 1 is the only new event before propagat-
ing DomainFaithfulness. It is easy to see that the only changes needed to maintain ac
on this constraint are the tightening of the upper bound of x to 64 and the assignment of
some atoms to 1. These atoms correspond to the set η = {bg[k], bg[g[k]], bg[g[g[k]]] . . . blastk}
where blastk is unassigned and bg[lastk] is assigned to 1. The time complexity needed
for this propagation is O(∣η∣). Take now the same example, however, by having in
addition to assigning bk to 1, a new upper bound ub∗ = 48 as an event. In this
case, one can proceed exactly as in the previous example by assigning all atoms in
η = {bg[k], bg[g[k]], bg[g[g[k]]] . . . blastk} to 1, then continue assigning other atoms to 1 to be
consistent with the new upper bound. The new set of atoms is η∗ = {bs[k], bs[s[k]], . . . , bub}
where vub =min(vk ∣ vk ≥ ub∗). The time complexity in this case is O(∣η∣ + ∣η∗∣).

Our incremental filtering is organized in two parts:

1. Simulating UP as if the atoms b1, . . . , bn were eagerly generated with all domain
clauses.

2. Performing the channeling between x and b1, . . . , bn.

Algorithm 15 depicts the main procedure for this incremental propagator. It uses al-
gorithms 16, 17, and 18 as follows: Any event related to assigning an atom bi to
1 is handled by Algorithm 16 (UB(i, iub)); an event of assigning bi to 0 is handled
by Algorithm 17(LB(i, ilb)); and the changes on D(x) are handled by Algorithm 18
(Update_Range(ilb, iub, lb, ub)).

In Line 1 (respectively Line 2) of Algorithm 15, we setup iub (respectively ilb) as the index
of literal standing for the maximum (respectively minimum) value in {vj ∣ j ∈ [1, n]}.
This initialization happens only in the first call. In subsequent calls, we use their updated
values coming from the previous call. Moreover, these values are re-established when
backtracking2.

2iub and ilb are implemented as a "reversible" integer.
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Algorithm 15: Propagate(DomainFaithfulness(x, [b1 . . . bn], [v1, . . . , vn]))
lb← false;
ub← false;
changed← false;
//iub and ilb can be modified later with UB(i, iub) and LB(i, ilb) respectively.

1 iub ← arg maxj({vj ∣ j ∈ [1, n]}) ;
2 ilb ← arg minj({vj ∣ j ∈ [1, n]}) ;
//Θ is a list containing indices of newly assigned variables.
while Θ is not empty do

i← Θ.pop() ;
if i >= 1 then

3 if D(bi) = {1} then
if UB(i, iub) then

ub← true ;

4 else
if LB(i, ilb) then

lb← true ;

if D =⊥ then
return ⊥ ;

else
changed← true ;

5 if changed then
Update_Range(ilb, iub, lb, ub) ;

return D ;

We use a list Θ containing indices of newly assigned variables in the scope of the con-
straint. We assume that Θ is globally modifiable by all algorithms and that the index
of the variable x is 0 and bi is i for all i ∈ [1..n].

We show how the two parts of filtering are maintained by one call to Algorithm 15.

Simulating UP: Suppose that all atoms b1, . . . , bn are eagerly generated with all
domain clauses. The set of these clauses can be described with {¬bs[i]∨bi ∣ i ∈ [1, n]∧s[i] ≠
0} or {¬bi ∨ bg[i] ∣ i ∈ [1, n] ∧ g[i] ≠ 0}. There are two possible scenarios of propagation
depending on the assignment of a variable bi .

• bi becomes assigned to 1: In this case, UP propagates the clause ¬bi ∨ bg[i] by
assigning bg[i] to 1 or triggers failure if D(bg[i]) = {0}. If bg[i] becomes assigned,
then UP should triggers propagation for clauses watched by bg[i]. This scenario
is triggered at Line 3 in Algorithm 15 and executed at Line 2, and Line 3 in
Algorithm 16.
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Algorithm 16: UB(i, iub))
//We first update the index iub
if vs[i] < viub

then
1 iub ← s[i] ;
//Here we simulate the propagation of the clause ¬bi ∨ bnext

2 next← g[i] ;
3 if next /= 0 then

if max(bnext) = 0 then
4 D ←⊥;

return false;
else

5 D(bnext) ← {1} ;
Θ.add(next) ;

//Now we perform the channeling between x and bi
6 if min(x) > vi then
7 D ←⊥;

return false;
8 if vi <max(x) then

D(x) ← D(x)∩] −∞, vi] ;
return true ;

else
return false ;

Algorithm 17: LB(i, ilb))
//We first update the value of ilb
if vg[i] > vilb then

1 ilb ← g[i] ;
//Here we simulate the propagation of the clause ¬bnext ∨ bi

2 next← s[i] ;
3 if next /= 0 then

if min(bnext) = 1 then
4 D ←⊥;

return false;
else

5 D(bnext) ← {0} ;
Θ.add(next) ;

//Now we perform the channeling between x and bi
6 if max(x) < (vi + 1) then
7 D ←⊥;

return false;
8 if (vi + 1) >min(x) then

D(x) ← D(x) ∩ [vi + 1,+∞[ ;
return true ;

else
return false ;



Chapter 5 Learning 105

Algorithm 18: Update_Range(ilb, iub, lb, ub) )
next← iub ;
bound←max(x) ;
if not(ub) then

1 while next /= 0 do
if vnext ≥ bound then

2 D(bnext) ← {1} ;
next← s[next] ;

else
next← 0 ;

next← ilb;
bound←min(x) ;
if not(lb) then

3 while next /= 0 do
if vnext < bound then

4 D(bnext) ← {0} ;
next← g[next] ;

else
next← 0 ;

• bi becomes assigned to 0: Conversely to the previous case, UP propagates the
clause ¬bs[i] ∨ bi by assigning bs[i] to 0 or triggers failure if D(bs[i]) = {1}. If bs[i]
becomes assigned, then UP should trigger propagation for clauses watched by bs[i].
This scenario is triggered at Line 4 in Algorithm 15 and executed at Line 2, and
Line 3 in Algorithm 17.

Let η be the set of all atoms assigned by our algorithm. The worst case time complexity
for simulating UP is clearly O(∣η∣) which is the same as if UP propagates with the
2-watched literals. Therefore, the time complexity of this part is O(n) down a branch
of the search tree, and subsequently corresponds to a constant amortized complexity.

Channeling Between x and b1, . . . , bn: There are two cases to distinguish when
performing this channeling.

1. Changing D(x) based on newly assigned atoms: When an atoms bi ↔ Jx ≤ viK
becomes assigned to 1, one have to check:

(a) If enforcing vi as a new upper bound for x can make D(x) empty, and hence
failure should be triggered. This test is performed at Line 6 of Algorithm 16.

(b) If vi can be the new upper bound of x. This is performed at Line 8 of
Algorithm 16.
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The case where bi becomes assigned to 0 is similarly handled at Line 6 and Line 8
in Algorithm 17.

2. Assigning some atoms from b1, . . . , bn to be coherent with D(x). This propaga-
tion is handled by Algorithm 18 (Update_Range(ilb, iub, lb, ub)). Clearly, when no
change occurs on D(x) before calling Algorithm 15
«Propagate(DomainFaithfulness(x, [b1 . . . bn], [v1, . . . , vn]))», then no propaga-
tion is needed. This is exactly what happens at Line 5 in Algorithm 15 using the
Boolean changed. In the case where D(x) changed, we treat each type of domain
change separately. We show the procedure used when the change concerns a new
upper bound. The case of a new lower bound is similar. Let u be the new upper
bound of x. We show that every atom bi such that vi ≥ u is assigned to 1 when
the algorithm ends.

(a) If there exists an atom bj in the initial Θ list s.t. Algorithm 16 changes the
upper bound of x to be vj at Line 8, then no further propagation is needed.

(b) Otherwise, every atom bi with a value vi ≥ max(x) should be assigned to 1.
This is done by means of an index iub as follows: We first make sure that
every atom with a value that is greater than viub

is already assigned to 1.
Afterwards, we assign all atoms in the sequence [biub

, bs[iub]
, bs[s[iub]]

. . . ,
blastub

] to 1 where vlastub
= min(vk ∣ vk ≥ max(x)). This is exactly what

happens in the loop of Line 1 in Algorithm 18. Now regarding the index iub,
recall that it has to guarantee that all atoms with a value greater than viub

are
already assigned to 1. Therefore, we initialize iub to the be the index of the
greatest possible value vi (Line 1 in Algorithm 15). Then, whenever we find
an atom bk newly assigned to 1 and associated to a value vk that is smaller
than the current viub

, we update iub with the value s[k]. Recall that the part
simulating UP guarantees that all atoms with a value v ≥ vk are assigned to
1.

Regarding the complexity of this part, observe that considering iub and ilb as reversible
integers makes the running time of this part also O(n) down a branch of the search tree
and therefore corresponds to a constant amortized complexity.

5.2.3 Explaining DomainFaithfulness

Since DomainFaithfulness is used in a Hybrid CP/SAT Solver, we must explain all
possible domain changes and failures triggered by this constraint.
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5.2.3.1 Explaining Failure

There are several cases to find a failure by our algorithms. We give for each one a
possible explanation using the current values of next, min(x), max(x), and i at the
moment of propagation.

• Line 4 in Algorithm 16: Jbnext = 0K ∧ Jbi = 1K⇒ ⊥

• Line 7 in Algorithm 16: Jx ≥min(x)K ∧ Jbi = 1K⇒ ⊥

• Line 4 in Algorithm 17: Jbnext = 1K ∧ Jbi = 0K⇒ ⊥

• Line 7 in Algorithm 17: Jx ≤max(x)K ∧ Jbi = 0K⇒ ⊥

5.2.3.2 Explaining Pruning

Tightening the bounds of the range variable x is possible only when a Boolean variable
with the same bound value was previously set to true / false. We therefore use the
following rules to explain Jx ≥ lK and Jx ≤ uK without saving any information (i.e.,
typically used with backward explanations):

• Jbk = 0K⇒ Jx ≥ lK s.t. vk = l − 1

• Jbk = 1K⇒ Jx ≤ uK s.t. vk = u

For the assignments of the type Jb = 1K and Jb = 0K, we make a clear distinction whether
they are assigned by Algorithms UB(i, iub)/LB(i, ilb) or by Algorithm
Update_Range(ilb, iub, lb, ub).

• Line 5 in Algorithm 16: Jbi = 1K⇒ Jbnext = 1K

• Line 2 in Algorithm 18: Jx ≤max(x)K⇒ Jbnext = 1K

• Line 5 in Algorithm 17: Jbi = 0K⇒ Jbnext = 0K

• Line 4 in Algorithm 18: Jx ≥min(x)K⇒ Jbnext = 0K

All these explanations are computed eagerly and saved in an internal structure for later
use during conflict analysis. The reason we compute them at the moment of propagation
is to recover the exact literal responsible for assigning every bnext.
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5.3 Learning in Disjunctive Scheduling

We investigate in this part the impact of clause learning for solving disjunctive scheduling
problems. We introduce a novel learning mechanism tailored to this family of problems.
Specifically, we use a property of these problems allowing to explain a conflict using a
number of Boolean variables that is not function of the scheduling horizon. The novel
conflict analysis procedure along with the alternative lazy generation mode that we pro-
posed in Section 5.2 are experimentally tested on well known academic benchmarks.
Both approaches give good experimental results and outperform the CP model in most
cases. While the prior target of this study is the evaluation of the new learning mech-
anisms that we propose, numerous observations are made based on the experimental
results. These observations include relations between the instance size, the heuristic
choice, and the conflict analysis scheme. State-of-the-art lower bounds for a traditional
benchmark are improved thanks to our approach.

Disjunctive scheduling refers to a large family of scheduling problems having in common
the Unary Resource Constraint. That is, for each machine, no pair of tasks can overlap.
For a long time, the focus in constraint programming was to design dedicated propa-
gation algorithms for the Unary Resource Constraint. For instance, the Edge-Finding
filtering [38, 99, 141] is inferring relationships of the form « T must precede any task in
Θ » where: T is a task, and Θ is a set of tasks to be scheduled on the same machine of
T. We refer the reader to [10] for a comprehensive introduction to filtering techniques
used in scheduling in general.

We are interested in this section in the impact of clause learning rather than propagation.
Our models use minimalist propagation mechanisms. Our approach is implemented on
top of the so called light model used in [71, 69, 70]. We shall use the classical job shop
problem (JSP) and open shop problem (OSP) as illustrations. The objective in both
problems is to minimize the total scheduling duration (i.e., the makespan Cmax). We
start by describing the ‘light’ CP model for these problems.

5.3.1 Modeling

In the rest of this chapter, n andm denote two integers in N∗. We consider the definition
of a job as a set of tasks. Let J = {Ji ∣ 1 ≤ i ≤ n} be the set of jobs, andM = {Mk ∣ 1 ≤
k ≤ m} be the set of machines. Each job Ji is defined by m tasks {Tik ∣ 1 ≤ k ≤ m}
s.t. Tik requires machine k. Conversely, each machine Mk is associated to n tasks
{Tik ∣ 1 ≤ i ≤ n}. Each task Tik is associated to a processing duration pik in which the
machine Mk is allocated to job i. Let tik be the variable representing the starting time
of task Tik. For all k ∈ [1,m], the Unary Resource Constraint for machine Mk can be
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expressed as follows:

∀i ∈ [1, n],∀j ∈ [1, n] s.t. i < j
tik + pik ≤ tjk ∨ tjk + pjk ≤ tik

(5.1)

We use a simple decomposition into reified constraints with O(n2) Boolean variables
δkij per machine Mk channeled to task variables as follows:

∀i ∈ [1, n],∀j ∈ [1, n], i < j

δkij =
⎧⎪⎪⎨⎪⎪⎩

0 ⇔ tik + pik ≤ tjk
1 ⇔ tjk + pjk ≤ tik

(5.2)

In the following, we shall refer to this channeling with the Disjunctive(b, x, y, dx, dy)
constraint instantiated to (δkij , tik, tjk, pik, pjk).

The Job Shop Problem In addition to the Disjunctive constraints, this problem
requires for each job a total order on its tasks. We therefore suppose that Tiva is the
ath task required by job Ji. Modeling the order of tasks for each Job is expressed by
means of Precedence constraints. Let x, y be variables and d be an integer. The
Precedence(x, y, d) constraint is defined as follows:

x + d ≤ y (5.3)

For each job i, we have the set of Precedence constraints:

∀a ∈ [1,m − 1]
Precedence(tiva , tiva+1 , piva)

(5.4)

The JSP having the minimization of the makespan Cmax as an objective can be defined
as follows:

minimize Cmax subject to

∀i ∈ [1, n]
tivm + pivm ≤ Cmax

∀k ∈ [1,m],∀i ∈ [1, n],∀j ∈ [1, n], i < j
Disjunctive(δkij , tik, tjk, pik, pjk)

∀i ∈ [1, n],∀a ∈ [1,m − 1]
Precedence(tiva , tiva+1 , piva)

(5.5)
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The Open Shop Problem The only difference compared to the JSP problem is
that the order between tasks of the same job is part of the decision. In other words, two
tasks of a same job cannot be executed at the same time but we are free to choose the
processing order. A job can therefore be considered as a unary resource. Similarly to
the disjunctions on machines, we introduce O(m2) Boolean variables ξiab for each job
i and post the constraints Disjunctive(ξiab, tia, tib, pia, pib) for all a < b ∈ [1,m]. The
OSP can therefore be defined as follows:

minimize Cmax subject to

∀i ∈ [1, n],∀k ∈ [1,m]
tik + pik ≤ Cmax

∀k ∈ [1,m],∀i ∈ [1, n],∀j ∈ [1, n], i < j
Disjunctive(δkij , tik, tjk, pik, pjk)

∀i ∈ [1, n],∀a ∈ [1,m],∀b ∈ [1,m], a < b
Disjunctive(ξiab, tia, tib, pia, pib)

(5.6)

5.3.2 Search

Our search strategies are essentially based on those proposed in [71, 69].

5.3.2.1 The Global Search Scheme

Exploring the search space is performed in three steps. Firstly a greedy algorithm is
used to compute an initial upper bound (uinit) for Cmax. The initial lower bound (linit)
is initialized to be the largest sum of durations between all jobs/machines. Second,
a dichotomic search is used to improve the initial upper/lower bounds for Cmax. Each
iteration is limited by a cutoff on CPU time and on the number of propagation calls. The
initial dichotomy step starts with [linit, uinit] as a domain for Cmax. In each dichotomy
step i we try to solve the decision version of the problem (i.e., without an objective
function) where the upper bound of Cmax is equal to (li−1 + ui−1)/2 s.t. the values li−1

and ui−1 are the best bounds found after step i − 1. We update the bounds of Cmax
depending on the outcome of a dichotomic step i. If it is satisfiable then we store the
value of Cmax in the solution as ui and change the upper bound of Cmax accordingly.
Otherwise, we set li to (li−1+ui−1)/2. However, observe that we change the lower bound
of Cmax only if the problem has been proven unsatisfiable at step i, but not if the limit
has been reached. Finally, a branch and bound algorithm is launched with the best real
lower/upper bound found (i.e., [min(Cmax),max(Cmax)]).
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5.3.2.2 Branching

It is very common in disjunctive scheduling to branch by fixing one of the possible
precedences in the unary resource constraints. The authors of [71] proposed to branch
on the Boolean variables in the Disjunctive constraints which simulates that behavior.
Note that it is sufficient to have all these Boolean variables assigned to decide the
problem. In fact, assigning all the tasks, along with the variable standing for makespan,
to the minimum possible value in their domain returns a solution with the minimum
possible value for Cmax w.r.t. the assignment of the Boolean variables.

Variable Ordering The variable ordering heuristics are inspired from the conflict-
driven domain/weighted-degree heuristic proposed in [30]. The idea is to assign first
the variables involved in previous failures. The domain size dom(tik) of a task Tik is
equal to max(tik) −min(tik) + 1. The weight wx of a variable x is equal to the number
of times x is in the scope of the constraint triggering a failure. Every Boolean variable
b in a Disjunctive(b, x, y, dx, dy) constraint can be evaluated using the following two
heuristics:

1. taskDom/bw: dom(x)+dom(y)
wb

2. taskDom/tw: dom(x)+dom(y)
wx+wy

In both heuristics, the final decision is randomly chosen between the two Boolean vari-
ables with minimum values.

We use slightly modified versions of the above heuristics in our hybrid models. First,
following a remark in [70] stating that «the greater the minimum arity of constraints
in a problem, the less discriminatory the weight-degree heuristic can be», we propose
to update the variables weight in the conflicting clauses as follows. When a failure
is triggered by a clause c, the weight of each variable in the clause is increased by
1
∣c∣

instead of 1. Next, with taskDom/tw, instead on incrementing the weight of any

Boolean variable b in c, we share this value between the two tasks in the Disjunctive
constraint reified by b. This is proposed because the weight of the Boolean variables in
these cases would not bring new information to taskDom/tw. Finally, if we use lazy
generation, instead of updating the weight of the generated atoms a ↔ Jtik ≤ vK, we
consider increasing the weight of task Tik (by 1

∣c∣
).

We shall also consider VSIDS as another variable ordering alternative in our hybrid
models.
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Value Ordering Similarly to the solution guided approach proposed in [12], we assign
the chosen variable to the same value it has in the latest solution.

5.3.3 Explaining Constraints

Observe first that the constraints related to the makespan can be considered are
Precedence constraints (i.e., of the form x + d ≤ y). We therefore have two types
of constraints to explain: Precedence, and Disjunctive. We give in the following
how to generate explanations for these constraints. To make the notation lighter, we
denote lx (respectively ux) the lower (respectively upper) bound in D(x).

5.3.3.1 Explaining Precedence(x, y, d)

To propagate Precedence, we need to update the upper bound of x and the lower
bound of y. We give in Algorithm 19 a BC propagator for this constraint.

Algorithm 19: Precedence(x, y, d)
if min(x) + d >max(y) then

1 D ←⊥ ;
else

if max(x) >max(y) − d then
2 D(x) ← D(x)∩] −∞,max(y) − d] ;

if min(y) <min(x) + d then
3 D(y) ← D(y) ∩ [min(x) + d,+∞[ ;

return D ;

Explaining Failure The only way to have a failure in this constraint is whenmax(x)
is greater that max(y) − d (Line 1 in Algorithm 19). The obvious explanation for this
failure is:

Jx ≥ lxK ∧ Jy ≤ uyK⇒ ⊥

Explaining Pruning This propagator only tighten the upper bound of x and the
lower bound of y. Let v be an integer. To explain the literal Jy ≥ vK, it is clear that
Jx ≥ v − dK ⇒ Jy ≥ vK is a valid explanation. Similarly, if Jx ≤ vK is propagated by this
constraint, then we use Jy ≤ v + dK⇒ Jx ≤ vK as an explanation for this propagation.
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These explanations are computed in O(1) regardless of the level/rank of the literals
being explained. Furthermore, we do not need to keep track the exact bounds at the
time it was changed through propagation. The backward explanation mode suits very
well this constraint.

5.3.3.2 Explaining Disjunctive(b, x, y, dx, dy)

We start again by giving a full description of the filtering used for this constraint. We
show a BC propagator in Algorithm 20.

Algorithm 20: Disjunctive(b, x, y, dx, dy)
if ∣D(b)∣ = 1 then

if D(b) = {0} then
return Precedence(x, y, dx) ;

else
return Precedence(y, x, dy) ;

else
if lx + dx > uy then
D(b) ← {1} ;
return Precedence(y, x, dy) ;

else
if ly + dy > ux then
D(b) ← {0} ;
return Precedence(x, y, dx) ;

Algorithm 20 does not prune the domains of x nor y until D(b) becomes singleton.
Furthermore, once D(b) is assigned, the constraint becomes a Precedence. Therefore,
in order to explain Disjunctive, all the previous explanations are used along with the
current state of b. That is, if we want to explain ω (ω is either a literal or a failure
⊥) made by this propagator because of a call to Precedence, then it is sufficient to
return Jb = vK ∧Ψ⇒ ω s.t. D(b) = {v} and Ψ is the explanation of ω based on the way
we explain Precedence.

The only missing explanations to generate are the ones related to the assignments of b.
We explain them using the following propagation rules:

Jx ≥ lxK ∧ Jy ≤ uyK→ Jb = 1K
Jy ≥ lyK ∧ Jx ≤ uxK→ Jb = 0K

The values lx, ux, ly, and uy must be those used at the time of propagation. We store
these values once the propagator assigns b.
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5.3.4 Disjunctive-Based Learning

We introduce a novel learning scheme as an alternative to the lazy generation mode.
The main advantage offered by this novel learning mechanism is that the final nogoods
do not contain any domain related atom.

Recall that our search strategies branch only on Boolean variables of the Disjunctive
constraints. It follows that any bound literal (i.e., of the form Jx ≤ vK and Jx ≥ vK) does
not correspond to a decision. Therefore such literals are either propagated, hence have a
non-null explanation, or have a level equal to the search root. Our new learning method
exploits precisely this property. Instead of generating bound atoms before learning a
new clause, we propose to start a second phase of conflict analysis.

The first step in the new Disjunctive-based learning is to perform conflict analysis as
usual to compute the 1-UIP nogood Ψ. Next, we make sure that the latest literal in Ψ
is not a bound literal. Otherwise, we keep explaining the latest literal in Ψ until having
such UIP. We know that this procedure terminates because the worst case would reach
the last decision which corresponds to a UIP that is not a bound literal. Let Ψ∗ be the
resulting nogood. Observe that the backjump level in Ψ∗ might be different from the
one given by the 1-UIP nogood.

Consider now I = {l1, . . . , ln} to be the set of bound literals in Ψ∗ before generating
atoms. Instead of performing lazy generation, we call the procedure «Substitute(I,Ψ∗)»
(algorithm 21) as a second phase of conflict analysis. This procedure keeps replacing
any bound literal with its explanation until having a nogood composed by only literals
related to some Boolean variables of the Disjunctive constraints. In Algorithm 21, we
use:

• visited: to represent a set containing bound literals already explained

• ω: to represent the explanation of the current bound literal to resolve

• ϕ: to represent the set of bound literals in ω.

Starting from the first line in Algorithm 21, we split the nogood under construction
in two parts: I to contain bound literals; and Ψ for the rest of literals (i.e., literals
associated to Boolean variables coming from the Disjunctive constraints). The idea
of Algorithm 21 is to explain every bound literal in I until no such literal exists. This is
exactly what happens at each iteration of the main loop. I is updated to contain new
bound literals from ϕ at Line 2. The rest of literals in the current explanation ω goes
in Ψ at Line 3 and Line 4.

The final nogood Ψ contains only some Boolean variables from the Disjunctive con-
straints without any bound literal. It should be noted that the backjump level remains



Chapter 5 Learning 115

the same as in Ψ∗ since resolving a literal l replaces it with a set of literals assigned at
least at the same level of l.

Algorithm 21: Substitute(I,Ψ∗)
1 Ψ← Ψ∗ ∖ I ;
visited← ∅ ;
while ∣I∣ > 0 do

l ← choose l ∈ I ;
visited← visited ∪ {l} ;
f ← reason(l) ;
ω ← explain(f, l) ;
ϕ = {q ∣ q ∈ ω ∧ q is a bound litteral} ;

2 I← I ∪ {q ∣ q ∈ ϕ ∧ level(q) > 0 ∧ q ∉ visited} ;
3 ω ← ω ∖ ϕ ;
4 Ψ← Ψ ∪ {q ∣ q ∈ ω ∧ level(q) > 0} ;
return Ψ ;

The advantage of this approach is that the tasks’ domains do not matter any more in
size. The SAT engine focuses on learning clauses with only Boolean variables coming
from the Disjunctive constraints. Note, however, that in this case conflict analysis is
likely to take more time to finish compared to the lazy generation mode since there are
more literals to explain.

5.3.5 Experiments

We implemented the learning mechanisms we propose within Mistral-2.0. This solver
supports backward explanations and semantic reduction. The source code is available
online via https://github.com/siala/Hybrid-Mistral and the tests can be repro-
duced following the guidance in Appendix A. All the experiments were performed on
Intel i7-4770 processors running on Ubuntu 12.04. We compare the previous CP models
against our new learning methods. The two heuristics taskDom/bw and taskDom/tw
are tested in both CP and hybrid solvers. V SIDS is also used as another hybrid model.
We use a geometric restart with a base of 256 failures and a factor of 1.3. The total
time limit is fixed to 3600s for all the experiments. Each dichotomy step is limited to a
cutoff of 300s and 4 ∗ 106 propagation call. We ran 10 randomized runs with different
seeds for each instance and configuration.

We use a clause reduction strategy based on the Size-Bounded Randomized (SBR)
method [75]. Every f failures, we check whether the size of the clause database reached a
given parameter ω. If so, a parametrized deletion procedure
reduceClauses(f,ω,α, k, ε, ρ) is performed as follows. A clause c is considered ‘locked’
if there exists a literal p such that c is the reason for propagating p. All locked clauses

https://github.com/siala/Hybrid-Mistral
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are not removed. The last α non-locked clauses are also kept. Afterwards, the clauses
with size less than a parameter k are not deleted. The other clauses are deleted with
a probability ρ. If the resulting number of clauses still greater than ω, we call again
reduceClauses, however, after decreasing k by ε. We iterate this process until the clause
database is of size smaller than w. The default values used for all the experiments for
< f,ω,α, k, ε, ρ > are < 5000,75000,50000,12,8,90% >.

We shall evaluate experimentally the following models:

• Mistral(θ): The pure CP model using θ as a heuristic. The latter is denoted by

– bool if we use taskDom/bw

– task if we use taskDom/tw

• Hybrid(θ, σ): The hybrid model where:

– θ is the heuristic and is denoted by:

∗ vsids if we use VSIDS
∗ bool if we use taskDom/bw
∗ task if we use taskDom/tw

– σ indicates the learning method with ‘disj’ in the case of using the Disjunctive-
based learning and ’lazy’ with the lazy generation approach with
DomainFaithfulness.

We use a limit of 2.5 ∗ 105 generated atoms with the models Hybrid(θ, lazy). Once this
limit is reached, we forget all clauses, delete the generated atoms, and restart.

We use the following format for all tables. Each instance results (i.e., using different
seeds) is depicted in one line. Each model is associated to a column. We report for
each model and instance: the average CPU time (T); the percentage of instances found
optimal (%O); the minimum (min) and average (avg) upper bound (UB) across the
different seeds. We shall denote in bold the minimum makespan found for each instance
(can occur in different models). Furthermore, we add a line ‘average’ at the bottom of
each table to show the average CPU time T and the average percentage of optimality %O
for each model. The last line contains the average PRD (percentage relative deviation)
of each model. The PRD of a model m for an instance C is computed with the formula:
100∗ Cm−Cbest

Cbest
, where Cm is the minimum makespan found by model m for this instance

(among the several randomized runs); and Cbest is the minimum makespan found by all
models for the instance C. The average PRD can be considered as an ‘efficiency’ measure
for the models. The bigger this value, the less efficient a model is. The minimum possible
value of a PRD is 0 and means that the model returns always the best makespan.



Chapter 5 Learning 117

5.3.5.1 JSP Results

We use two well studied benchmarks for the job shop problem: Lawrence [86] and Tail-
lard [134]. The former is much easier than the latter. We observed in these instances
that taskDom/tw performs slightly, but constantly, better than taskDom/bw. There-
fore, the results that we report in this paragraph concern the models: Mistral(task),
Hybrid(vsids, disj), Hybrid(vsids, lazy), Hybrid(task, disj), and Hybrid(task, disj).

Lawrence Instances The detailed results of Lawrence instances are shown in Ta-
bles 5.2 and 5.3. The model Hybrid(vsids, disj) has the best PRD with a value of 0.01
and the greatest percentage of optimal solutions (92%). The only case where the CP
model returns the best makespan was with instance la27, however, without obtaining
the best average. As a comparison between the different hybrid models, we observe
that the Disjunctive-based learning outperforms the lazy approach regardless of the
branching strategy. We are not able, however, to argue on a best heuristic here since
VSIDS performs better with the Disjunctive-based learning whereas taskDom/tw is
the best choice of branching with lazy generation.

Taillard Instances These instances are much harder than Lawrence benchmark since
a large number of them are still open in the literature and only 10 out of 70 instances
are proved optimal in our experiments. We start by giving a global view analysis before
empirically evaluating subsets of these instances.

The detailed results are given in Tables 5.4, 5.5, and 5.6. According to the global average
PRD (shown at the end of Table 5.6), the best models for these instances are those using
taskDom/tw. The CP model is completely outperformed by hybrid models with a PRD
equal to 1.5474 compared to an average of 0.9487 with the models Hybrid(vsids, θ) and
an average of 0.30185 with the models Hybrid(task, θ). Clearly, the branching choice is
the most important criteria for hybrid models. The choice of the conflict analysis scheme
does not seem to impact much the global behavior, although lazy generation performs
slightly better.

These results do not confirm our earlier claim with Lawrence instances stating that
Hybrid(vsids, disj) is the best learning configuration. We therefore propose to classify
the results according to the instance size.

Taillard Statistics In table 5.7, each line depicts several statistics for a given set
of instances having the same number of disjunctions. We report for each model: the
speed of exploration in terms of nodes explored by second (Nodes/s); the average size
of learnt clauses (Size); and a performance metric M equal to the pair <%O,T> (%O is
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the average optimality percentage and T is the average CPU time) for the set tai-01-10
and to the average PRD for the rest of sets. The choice of M is based on the fact that
almost all instances have been proven optimal in the set tai-01-10 whereas the others
are much harder and are not proved optimal (except one). We show the best values of
M in bold values. We indicate also the number of disjunctions per set of instances in a
separate column (Disj).

There are a number of clear observations from Table 5.7. First, as expected, the CP
model is less efficient in general than any hybrid model for the instances tai11, . . . ,
tai70. Second, the average size of the learnt clauses is always shorter with VSIDS than
taskDom/tw. Take for example the set of instances tai11-20. The model
Hybrid(vsids, disj) learns clauses with size 31 (in average) whereas Hybrid(task, disj)
learns clauses with size 41. Third, according to the number of nodes explored by sec-
ond, the CP model is faster than any hybrid model in general. As an illustration,
with instances tai11-20, the speed of exploration of Mistral(task) is 6509 Nodes/s while
the fastest hybrid model Hybrid(vsids, disj) explores 3970 Nodes/s. This behavior is
expected because of the amount of time to propagate clauses and to learn from conflict.

Next, we observe that lazy generation slows down considerably the exploration speed
compared to Disjunctive-based learning. For instance, with tai11-20, Hybrid(vsids, disj)
explores 3970 Nodes/s whereas Hybrid(vsids, lazy) explores 520 Nodes/s. Further-
more the exploration speed seems to be constant on hard sets (tai-11 . . . tai-70) irre-
spectively of the instance size. Indeed, it ranges from 413 to 698 Nodes/s. We be-
lieve that this behavior is due to the additional amount of time needed to propagate
DomainFaithfulness constraints compared to Disjunctive-based learning.

Finally, this table shows that taskDom/tw is always slower than VSIDS with
Disjunctive-based learning. Take again the set of instances tai-11-20, we move from
3970 Nodes/s with Hybrid(vsids, disj) to 2715 Nodes/s with Hybrid(task, disj).

Now regarding the overall efficiency, we can see that Hybrid(vsids, disj) seems to be the
best choice with small instances and Hybrid(task, lazy) is by far the best choice with
large instances. Moreover, taskDom/tw is in general more efficient than VSIDS when
the size of the instance grows. Finally, the Disjunctive-based learning performs much
better than the lazy mode with small/medium-sized instances and vice versa.

Lawrence Statistics In order to confirm our latest claims, we show the same statis-
tics described above with Lawrence instances. We propose to give these statistics for
the hardest instances in this set. An instance is considered «hard» if at least one model
fails to prove its optimality at least once (i.e., using any seed). The hardest instances in
this set are divided in two sets:
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Table 5.7: Job Shop: Taillard statistics

Instances Mistral(task) Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(task, disj) Hybrid(task, lazy)
Disj M Nodes/S Size M Nodes/S Size M Nodes/S Size M Nodes/S Size M Nodes/S Size

%O T %O T %O T %O T %O T
tai 01-10 1575 90 616 8871 0 90 477 6814 18 87 999 1213 25 90 574 4869 21 85 1115 1261 34

PRD PRD PRD PRD PRD
tai 11-20 2850 3.2381 6509 0 3.0350 3970 31 1.8937 520 43 0.4808 2715 41 0.1169 539 66
tai 21-30 3800 0.7302 3935 0 0.2769 2424 33 0.4756 413 46 0.2485 1752 45 0.1557 437 73
tai 31-40 6525 1.7227 4503 0 0.7109 2598 51 0.3043 555 65 0.6016 1517 76 0.4103 566 111
tai 41-50 8700 2.2161 2570 0 0.4798 1530 70 0.3036 413 86 0.5420 994 97 0.6163 443 140
tai 51-60 18375 2.0798 1952 0 2.2847 2602 57 2.7990 562 44 0.1621 1131 91 0.2419 698 89
tai 61-70 24500 3.2381 1349 0 3.0350 2183 64 1.8937 522 50 0.4808 920 121 0.1169 584 123

1. Open: the set of instances for which all models fail to prove optimality. This set
contains the instances la07, la27, and la29

2. Opt: the rest of hard instances. This set contains the instances la21, la26, la28,
la31, and la34.

It should be noted that the number of disjunctions in these sets ranges from 525 to 4350.
We can therefore consider then as small and medium-sized instances (w.r.t. Taillard
instances). Table 5.8 gives the statistics for each set of instances in a separate line.

Table 5.8: Job Shop: Lawrence Statistics

Mistral(task) Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(task, disj) Hybrid(task, lazy)
%O T Nodes/S Size %O T Nodes/S Size %O T Nodes/S Size %O T Nodes/S Size %O T Nodes/S Size

Opt 70 1362 11520 0 96 768 8507 26 64 1683 1746 31 84 891 6745 35 72 1170 3380 40
PRD Nodes/S Size PRD Nodes/S Size PRD Nodes/S Size PRD Nodes/S Size PRD Nodes/S Size

Open 0.4280 18581 0 0.1343 10159 23 0.6530 1000 31 0.1393 6782 31 0.4969 1322 49

Table 5.8 shows clearly that Hybrid(vsids, disj) outperforms the other models on these
instances. This model proves 96% of the instances in Opt to optimality and has a PRD
of 0.1343 on the set of instances Open. Overall, the statistics presented in this table sup-
ports our previous observations with Taillard instances such as the speed of exploration,
the average size of learnt clauses, and more importantly the outstanding performances
of Disjunctive-based learning compared to lazy generation with small/medium-sized
instances.

Improving the Lower Bounds for Taillard Open Instances Many of the Taillard
instances are still open in the literature. Our results do not improve any upper bound
for these instances, but what about the lower bound? Recall that the way we perform
dichotomy steps is focused only on improving the current upper bound. Indeed, if
step i ends without finding a solution nor proving unsatisfiability, then we set li to
(li−1+ui−1)/2. We propose to alter this particular behavior so that the purpose becomes
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finding better lower bounds. This is simply done by starting the next iteration after
setting ui (instead of li) to (li−1 + ui−1)/2.

We ran again the tests with the new dichotomy strategy for all open Taillard instances.
We change the dichotomy breaking conditions to be only a 1400s time limit. All other
settings are the same.

The new results are presented in Table 5.9. For each model and instance, we report the
maximum (max) and average (avg) lower bound found for the 10 randomized runs. The
best bound found by our models is shown in bold fonts for each instance. Moreover,
the last column stands for the best known lower bound for each instance [1]3

Table 5.9: Lower bound experiments for open Taillard instances

Instance Mistral(task) Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(task, disj) Hybrid(task, lazy)
Best knownLower bound Lower bound Lower bound Lower bound Lower bound

max avg max avg max avg max avg max avg
tai11 1273 1266.90 1294 1287.70 1273 1266.90 1281 1271 1273 1269.70 1323
tai12 1297 1271.70 1300 1296.80 1275 1274 1298 1270.50 1276 1267.10 1351
tai13 1278 1268.50 1305 1296.40 1282 1268.50 1291 1284 1281 1268.70 1282
tai15 1283 1267 1288 1281 1270 1262.10 1288 1277.60 1284 1267.20 1304
tai16 1276 1267.40 1293 1288.40 1280 1275 1276 1273.20 1274 1258.30 1304
tai18 1303 1285 1306 1301.90 1281 1277.20 1300 1284.40 1300 1279.40 1369
tai19 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1304
tai20 1306 1302.20 1318 1314.30 1306 1301.40 1313 1307.70 1307 1301.40 1318
tai21 1592 1586.60 1613 1607.40 1602 1598.70 1597 1591.90 1595 1587.30 1573
tai22 1522 1498.60 1529 1511.40 1520 1503.60 1524 1504 1524 1504.70 1542
tai23 1502 1495.60 1514 1502.50 1502 1497.80 1503 1499.40 1502 1497.80 1474
tai24 1571 1561.30 1588 1574.50 1573 1567.30 1573 1566.70 1572 1568.20 1606
tai25 1525 1519.20 1543 1535.80 1529 1522.10 1530 1523.60 1529 1523.40 1518
tai26 1557 1546.70 1561 1553.50 1552 1543.40 1559 1552 1555 1546.60 1558
tai27 1596 1590.70 1607 1600 1593 1588.80 1601 1597.80 1604 1598.30 1617
tai28 1568 1564.10 1583 1579.70 1579 1567.50 1568 1565.60 1578 1566.90 1591
tai29 1556 1542.90 1573 1562.30 1563 1555.90 1560 1554.40 1560 1547.30 1525
tai30 1499 1472.90 1508 1502.10 1504 1495.60 1500 1479.10 1474 1469.50 1485
tai32 1774 1774 1774 1774 1774 1774 1774 1774 1774 1774 1774
tai33 1729 1729 1729 1729 1729 1729 1729 1729 1729 1729 1778
tai34 1828 1828 1828 1828 1828 1828 1828 1828 1828 1828 1828
tai40 1602 1602 1602 1602 1602 1602 1602 1602 1602 1602 1631
tai41 1830 1830 1830 1830 1830 1830 1830 1830 1830 1830 1876
tai42 1761 1761 1761 1761 1761 1761 1761 1761 1761 1761 1867
tai43 1694 1694 1694 1694 1694 1694 1694 1694 1694 1694 1809
tai44 1787 1787 1787 1787 1787 1787 1787 1787 1787 1787 1927
tai45 1731 1731 1731 1731 1731 1731 1731 1731 1731 1731 1997
tai46 1856 1856 1856 1856 1856 1856 1856 1856 1856 1856 1940
tai47 1690 1690 1690 1690 1690 1690 1690 1690 1690 1690 1789
tai48 1744 1744 1744 1744 1744 1744 1744 1744 1744 1744 1912
tai49 1758 1758 1758 1758 1758 1758 1758 1758 1758 1758 1915
tai50 1674 1674 1674 1674 1674 1674 1674 1674 1674 1674 1807

Thanks to the model using VSIDS along with our new conflict analysis procedure (i.e.,
Hybrid(vsids, disj)), we were able to find new lower bounds for 7 instances. These

3As by March 15th, 2015, we noticed an accepted paper to the CPAIOR’15 conference [142] in which
the authors report several new bounds for these instances (and many other scheduling benchmarks).
Their lower bounds are greater than or equal to the values found in our experiments. It should be noted,
however, that they use a 30000s time cutoff, a parallelization phase with two threads, in addition to
starting search by using the best known bounds as an additional information. Our approach is quite
different since we start search from scratch without parallelization, and each instance is limited to 3200s
time cutoff.
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instances are tai13, tai21, tai23, tai25, tai26, tai29, and tai30. The old lower bounds are
based on the work of [65] and are reported in [1]. The model Hybrid(vsids, disj) solely
find these new bounds and is by far the best choice for building proofs for all instances.

It should be noted that in general the difference between the average and the maximum
bound per instance is not large. In fact, almost all averages for the instances with new
lower bounds are better than the best known lower bound.

5.3.5.2 OSP Results

We use three benchmarks for this problem: Gueret and Prins [72]; Taillard [134];
and Brucker et al. [33]. Note that all these instances were previously closed thanks
to [71]. Conversely to the previous problem, we observed that taskDom/bw was slightly
better than taskDom/tw for this problem. We shall therefore report the results of:
Mistral(bool), Hybrid(vsids, disj), Hybrid(vsids, lazy), Hybrid(bool, disj), and
Hybrid(bool, disj).

The first two benchmarks are extremely easy for all the models. Gueret and Prins
instances are all solved to optimality within an average CPU time less than 0.02s for each
instance with any model and any seed. Taillard instances are also solved to optimality,
however, with slightly longer runtime. Their detailed results are shown in Appendix B.
We shall give more attention to Brucker et al. instances in the rest of this evaluation.
The number of disjunctions ranges from 18 to 448 in these instances. We can therefore
consider them as (very) small instances. Tables 5.10 and 5.11 present the detailed results
of these instances.

These tables show clearly that clause learning is particularly not helpful in these in-
stances. First, the lazy generation mode decreases clearly the performances on these
instances since only Mistral(bool), Hybrid(vsids, disj), and Hybrid(bool, disj) succeed
to prove optimality to all configurations. Moreover, the average running time per in-
stance is equal to 31.21s with Mistral(bool) and 119.71s with Hybrid(θ, disj).

To investigate further the of impact of clause learning in this set, we propose to decrease
the clause database size from a limit of 75000 to 10000. The new parametrized reduction
strategy is < 5000,10000,500,12,8,90% > instead of < 5000,75000,50000,12,8,90% >.

The new results are shown in Tables 5.12 and 5.13. The performances of the models
Hybrid(θ, disj) are greatly improved with an average runtime of 35.95 and 40.25 instead
of 117.46s and 121.97s respectively. The CP model, however, has a slightly better
runtime with 31.21s. It should be pointed out that the global performances of lazy
generation are not improved with the new reduction strategy.
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In order to understand the behavior of the different models in this set, we propose to
analyze the results of the two reduction strategies on the hardest instances in this set
(j7-per0-0 and j8-per0-1). We give for each model: the average runtime T; the speed of
exploration (Nodes/S); and the average learnt clauses size (Size). Table 5.14 presents
these statistics.

Using lighter clause database improves the overall efficiency by essentially increasing
the speed of exploration. For instance, with j7-per0-0, Hybrid(vsids, disj) explores
6605 Nodes/s with the default strategy and 24498 Nodes/s with the reduced strategy.
The latter is approximately the half of the speed in the CP model. The speed of
explorations is clearly the most influential element in these instances. This explains
the bad performances of lazy generation since it slows down considerably the speed
of exploration. With j7-per0-0 for example, the factor of speed between Mistral(bool)
and any model Hybrid(θ, lazy) is about 45 with the default strategy and 13,5 with the
reduced strategy. That is, the CP model explores about 45 (respectively 13,5) faster the
search space compared to any model using the lazy mode for the default (respectively
reduced) strategy.

Table 5.14: Open Shop Brucker et al. instances: Statistics

Default reduction strategy

Instance Disj Mistral(bool) Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(bool, disj) Hybrid(bool, lazy)
T Nodes/S Size T Nodes/S Size T Nodes/S Size T Nodes/S Size T Nodes/S Size

j7-per0-0 294 547 47458 0 2684 6605 21 3600 1016 28 2258 6252 24 3600 1088 29
j8-per0-1 448 723 37864 0 2399 5730 24 3600 1028 30 2775 4905 26 3600 1072 30

Reduced Clause Database

Instance Disj Mistral(bool) Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(bool, disj) Hybrid(bool, lazy)
T Nodes/S Size T Nodes/S Size T Nodes/S Size T Nodes/S Size T Nodes/S Size

j7-per0-0 294 547 47458 0 736 24498 21 3600 3657 27 735 19839 24 3600 3262 29
j8-per0-1 448 723 37864 0 819 20236 23 3600 3361 28 916 16002 26 3600 2981 30

In conclusion, the «Light» CP models that we used from [71, 69, 70] are extremely
efficient with small sized instances. These models benefit essentially from the fast explo-
ration speed. The impact of clause learning is more and more glaring when the size of the
instance grows. It is very interesting to see how the hybrid model using Disjunctive-
based learning along with VSIDS outperforms the other models on medium sized in-
stances. Conversely, the lazy generation mode with our variants of the weighted degree
heuristic is by far the most efficient approach for large instances.

Summary

We showed in this chapter that the performances of CP models in many sequencing and
scheduling problems can be greatly improved by means of clause learning.
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First, we investigated the impact of clause learning for solving car-sequencing bench-
marks via AtMostSeqCard. The explanation algorithm that we proposed for this
constraint runs in O(n) time complexity and generates compact explanations compared
to a naive one. We compared the new hybrid model against CP, Pseudo-Boolean, and
SAT encodings for this problem. The experimental results emphasize the importance of
clause learning specially for building proofs. Furthermore, we observed a strong correla-
tion between advanced propagation and finding solutions quickly for this problem. The
experiments showed also that adaptive-branching is very beneficial for building proofs
while problem-specific heuristics are much helpful for finding solutions efficiently.

Next, we revisited lazy generation by proposing a solution to the redundancy issue
regarding the generation of domain clauses. The issue is avoided by means of a constraint
called DomainFaithfulness simulating UP and performing a complete channeling
between the domains and the lazily generated atoms. We showed also that one can
enforce ac on this constraint in a constant time amortized complexity down a branch of
the search tree.

Finally, we studied the impact of clause learning for solving disjunctive scheduling prob-
lems. We introduced a novel conflict analysis scheme, called Disjunctive-based learn-
ing, tailored to this family of problems. This method guarantees the learning of clauses
without encoding the tasks domains. A large number of experiments were carried out
on common job shop and open shop benchmarks using the new learning propositions.
These experiments showed how CP models can greatly benefit from clause learning when
the instance size grows. We observed that the new Disjunctive-based learning with
VSIDS outperforms the other models on medium sized instances. Conversely, the lazy
generation mode with our variants of the weighted degree heuristic is by far the most
efficient approach for large instances. Finally, we were able to find new lower bounds
for 7 open instances using VSIDS along with our Disjunctive-based learning.
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Conclusion

We brought contributions to each of the three aspects of constraint programming that
are ‘search’, ‘propagation’ and ‘learning’ for efficiently solving sequencing and schedul-
ing problems. This case study strongly supports my thesis, that modern constraint
programming solvers may not underestimate any of these three aspects.

Case Study: Car-Sequencing We proposed a complete approach for tackling the
car-sequencing problem, with contributions on search, propagation and learning. This
approach represents the state of the art for complete methods for this problem.

We proposed a new classification of search heuristics for this problem. This classifi-
cation is based on a set of four criteria: branching variables, exploration directions,
selection of branching variables and aggregation functions for this selection. Thanks to
this classification, many heuristics were used for the first time in the form of untested
configurations. We were able to indicate with a relatively high confidence the most
robust strategies. Furthermore, we showed that the choice of the heuristic is often as
important as the propagation method.

We then introduced a family of filtering algorithms for a class of sequence constraints.
We first designed a simple filtering rule called Slack-Pruning that can be used only
when using a specific type of branching choices for the car-sequencing problem. This
filtering relies on reasoning simultaneously about capacity and demand constraints. We
proposed next a generalization of this pruning in the form of a complete filtering for a
new global constraint that we called AtMostSeqCard. This constraint can be used
to model a number of sequencing problems including car-sequencing and crew-rostering.
The filtering that we proposed for AtMostSeqCard runs in O(n) time in the worst
case which is optimal, whereas the previously best known method required a cubic
compilation phase and then ran in O(n2log(n)). Furthermore, we showed that this
algorithm can be adapted to achieve a complete filtering for some extensions of this

133
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constraint. In particular, the conjunction of a set of m AtMostSeqCard constraints
sharing the same scope [x1, . . . , xn] can be filtered in O(nm). The experimental results
on car-sequencing and crew-rostering benchmarks showed how competitive and efficient
our filtering is compared to state-of-the-art propagators.

Finally, we investigated clause learning by introducing this method in our constraint pro-
gramming approach for the car-sequencing problem. In order to use AtMostSeqCard
in a hybrid CP/SAT solver, one has to explain every single domain change made by
the propagator. We therefore proposed a procedure explaining AtMostSeqCard that
runs in linear time in the worst case. We used this procedure in the design of a hybrid
model for the car-sequencing problem. The experiments in this part included a variety
of models with Pseudo-Boolean and SAT formulations. We showed, in particular, how
clause learning improves the global performances in most cases. We observed a strong
correlation between advanced propagation and finding solutions quickly for this problem.
Moreover, for building proofs, we observed that clause learning was the most important
ingredient and propagation became less useful.

Clause Learning in CP Learning is relatively recent and not as established in CP
as propagation and search. We introduced two new techniques useful for embedding
clause learning techniques into a constraint programming approach.

The first contribution is a general purpose method for implementing the lazy generation
of Boolean variables representing a domain. We addressed the issue related to the redun-
dancy of clauses used when lazily encoding a domain [53]. The DomainFaithfulness
constraint that we proposed avoids such redundancy while ensuring the same level of con-
sistency as UP without any computational overhead. The novel lazy generation method
was empirically evaluated on a large number of disjunctive scheduling instances.

The second contribution is a learning mechanism tailored for disjunctive scheduling
problems. We used a property of disjunctive scheduling allowing to design a novel
conflict analysis scheme that learns clauses using a number of Boolean variables that is
not function of the domain size. Our approach outperforms the CP model introduced in
[71, 69, 70] in most cases. Several best known lower bounds for a traditional benchmark
have been improved thanks to our method.

Future Research

There are a number of potential future research directions in each of the questions
tackled in this dissertation.

• Car-Sequencing



Chapter 6 Conclusion 135

It would be interesting to adapt our threefold propositions for the car-sequencing
problem to ‘real’ industrial situations such as those proposed in the ROADEF’05
challenge [131]. Furthermore, since we have isolated good branching criteria in
particular, the combination of these heuristics with discrepancy search algorithms
such as LDS [74], IDS [85], and DDS [143] seems promising.

• Propagation via AtMostSeqCard

The first direct future work regarding AtMostSeqCard is to consider incremen-
tality. Designing an ac algorithm for AtMostSeqCard with a constant time
amortized complexity (i.e., O(n) time down a branch) would be a great result.

Next, as for any new global constraint, proposing new extensions/particular cases
is always an important research avenue in CP. We have already proposed two
useful extensions , namely AtMostSeq∆Card and MultiAtMostSeqCard.
Other related constraints might also be useful in numerous applications. For in-
stance, it is possible to have a circular form of AtMostSeqCard to model cyclic
timetabling and crew-rostering problems. This can be modeled by having a few
more AtMost constraints to transform the ‘chain’ into a ‘cycle’, however, achiev-
ing ac on this constraint in linear time is a tough challenge. Another extension
consists in having Among constraints instead of AtMost. The global constraint
built this way corresponds to a particular case of Gen-Sequence defined by a
conjunction between Sequence and Cardinality.

• Explaining AtMostSeqCard

First, we know that reducing the explanations is always interesting especially
when learning with global constraints. Recall that our explanation algorithm for
AtMostSeqCard does not guarantee minimality w.r.t. the size nor does it guar-
antee it in the inclusion sense. It would be interesting to investigate the question
of how hard is generating minimal explanations for AtMostSeqCard? Next,
the application of these explanations to other sequencing problems might be very
helpful in practice. The crew-rostering problem that we introduced in Section 4.5.2
is a typical example.

• Generalizing DomainFaithfulness

Recall that DomainFaithfulness was proposed to avoid the redundancy issue
of lazy generation. The proposed version in this thesis supports only bound lit-
erals. Its generalization is quite simple to conceive following the semantics of the
constraint. In fact, we only have to perform a complete channeling between the
literals Jx = vK, Jx ≠ vK, Jx ≤ uK, and Jx ≥ lK with the corresponding domain. The
resulting proposition can be used within any (standard) hybrid CP/SAT solver.

• Learning in Scheduling Problems
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There are three possible research avenues:

▸ Application to other scheduling problems.
It is quite straightforward to apply our learning models with other disjunctive
scheduling problems. Examples of direct extensions include mainly variants
of job shop scheduling with time lags, sequence dependent setup times, and
earliness/tardiness costs. There are perhaps additional constraints to explain,
however the underlying models/solver is essentially the same.
Furthermore, it would be interesting to adapt our learning propositions for
more (general) scheduling problems such as the Resource Constrained Project
Scheduling Problem (RCPSP).

▸ Learning with global constraints.
The learning mechanisms that we introduced for disjunctive scheduling are
implemented on top of the ‘Light’ models proposed in [71, 69, 70]. These mod-
els use very limited propagation mechanisms. It would be interesting to add
some extra filtering, such as edge-finding and detectable precedences [140],
and evaluate the impact of clause learning with such models.

▸ Hand-crafted learning.
The experimental results of the Disjunctive-based learning showed that
classical conflict analysis is not necessarily the best choice in practice. An
interesting future research avenue is to study possible hand-crafted learning
schemes with other problems.
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Appendix A

Reproducing the Disjunctive
Scheduling Experiments

We give in this appendix sufficient details to reproduce the scheduling experiments. The
source code is available via github at https://github.com/siala/Hybrid-Mistral.
After cloning the repository1, the following command line is needed to use the exact
version of the solver for all the tests:
$ git checkout 3 d2fe4738746aade930ce6aa92aa9a33cae09d48

The command used to compile the source is the following:
$ make scheduler

The general command syntax for the tests is the following:
$ bin/ scheduler BENCHNAME -type [jla|jsp|osp] [- options ]

where BENCHNAME is the instance file location and ‘-type [jla ∣ jsp ∣ osp]’ indicates
its type. The option ‘-seed v’ is needed to precise the value of the randomisation seed
‘v’. The 10 seeds that we used in these tests range from 11041979 to 11041988.

The instances are available in:

• data/scheduling/jsp/taillard/ for JSP Taillard instances. The option -type should
have the value ‘jsp’ (default value)

• data/scheduling/jla/Lawrence/ for JSP Lawrence instances. The option -type
should have the value ‘jla’

1https://help.github.com
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• data/scheduling/osp/gueret-prins/ for OSP Gueret&Prins instances. The option
-type should have the value ‘osp’

• data/scheduling/osp/taillard/ for OSP Taillard instances. The option -type should
have the value ‘osp’

• data/scheduling/osp/hurley for OSP Brucker et al. instances. The option -type
should have the value ‘osp’

We show now the options used for each model:

• Mistral(bool): no option needed

• Mistral(task): -taskweight 2

• Hybrid(vsids, disj): -fdlearning 2 -semantic 1 -keeplearning 1 -orderedexploration
1 -reduce 1 -fixedLearntSize 50000 -fixedlimitSize 75000 -vsids 1

• Hybrid(bool, disj): -fdlearning 2 -semantic 1 -keeplearning 1 -orderedexploration
1 -reduce 1 -fixedLearntSize 50000 -fixedlimitSize 75000

• Hybrid(task, disj): -fdlearning 2 -semantic 1 -keeplearning 1 -orderedexploration
1 -reduce 1 -fixedLearntSize 50000 -fixedlimitSize 75000 -taskweight 2

• Hybrid(vsids, lazy): -fdlearning 2 -semantic 1 -keeplearning 1 -orderedexploration
1 -reduce 1 -fixedLearntSize 50000 -fixedlimitSize 75000 -lazygeneration 1 -vsids 1

• Hybrid(bool, lazy): -fdlearning 2 -semantic 1 -keeplearning 1 -orderedexploration
1 -reduce 1 -fixedLearntSize 50000 -fixedlimitSize 75000 -lazygeneration 1

• Hybrid(task, lazy): -fdlearning 2 -semantic 1 -keeplearning 1 -orderedexploration 1
-reduce 1 -fixedLearntSize 50000 -fixedlimitSize 75000 -lazygeneration 1 -taskweight
2

To use the reduced clause reduction strategy (mentioned at Section 5.3.5.2), the options
‘-fixedLearntSize’ ‘-fixedlimitSize’ should have the values 500 and 10000 respectively
(instead of 50000 and 75000).

Finally, in order to use the configuration for improving the lower bounds of Taillard
open instances, the option ‘-lbcutoff 1400’ should be added to precise the new time limit
for each dichotomy step.



Appendix B

Detailed Results for OSP
Instances

We give the detailed results for Gueret and Prins instances in Tables B.1, B.2, and B.3;
and for Taillard OSP instances in Tables B.4 and B.5. Note that we use the same
presentation protocol used in Section 5.3.5.

153



Appendix B Reproducing the disjunctive scheduling experiments 154

T
ab

le
B

.1
:
O
SP

:G
ue
re
t
an

d
Pr

in
s
in
st
an

ce
s
(G

P0
3-
01

–
G
P0

5-
10
)

In
st
an

ce
M
ist

ra
l(b
oo
l)

H
yb

rid
(v
si
d
s,
d
is
j)

H
yb

rid
(v
si
d
s,
la
z
y
)

H
yb

rid
(b
oo
l,
d
is
j)

H
yb

rid
(b
oo
l,
la
z
y
)

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

G
P0

3-
01

0
10

0
11

68
11

68
0

10
0
11

68
11

68
0

10
0
11

68
11

68
0

10
0
11

68
11

68
0

10
0
11

68
11

68
G
P0

3-
02

0
10

0
11

70
11

70
0

10
0
11

70
11

70
0

10
0
11

70
11

70
0

10
0
11

70
11

70
0

10
0
11

70
11

70
G
P0

3-
03

0
10

0
11

68
11

68
0

10
0
11

68
11

68
0

10
0
11

68
11

68
0

10
0
11

68
11

68
0

10
0
11

68
11

68
G
P0

3-
04

0
10

0
11

66
11

66
0

10
0
11

66
11

66
0

10
0
11

66
11

66
0

10
0
11

66
11

66
0

10
0
11

66
11

66
G
P0

3-
05

0
10

0
11

70
11

70
0

10
0
11

70
11

70
0

10
0
11

70
11

70
0

10
0
11

70
11

70
0

10
0
11

70
11

70
G
P0

3-
06

0
10

0
11

69
11

69
0

10
0
11

69
11

69
0

10
0
11

69
11

69
0

10
0
11

69
11

69
0

10
0
11

69
11

69
G
P0

3-
07

0
10

0
11

65
11

65
0

10
0
11

65
11

65
0

10
0
11

65
11

65
0

10
0
11

65
11

65
0

10
0
11

65
11

65
G
P0

3-
08

0
10

0
11

67
11

67
0

10
0
11

67
11

67
0

10
0
11

67
11

67
0

10
0
11

67
11

67
0

10
0
11

67
11

67
G
P0

3-
09

0
10

0
11

62
11

62
0

10
0
11

62
11

62
0

10
0
11

62
11

62
0

10
0
11

62
11

62
0

10
0
11

62
11

62
G
P0

3-
10

0
10

0
11

65
11

65
0

10
0
11

65
11

65
0

10
0
11

65
11

65
0

10
0
11

65
11

65
0

10
0
11

65
11

65
G
P0

4-
01

0
10

0
12

81
12

81
0

10
0
12

81
12

81
0

10
0
12

81
12

81
0

10
0
12

81
12

81
0

10
0
12

81
12

81
G
P0

4-
02

0
10

0
12

70
12

70
0

10
0
12

70
12

70
0

10
0
12

70
12

70
0

10
0
12

70
12

70
0

10
0
12

70
12

70
G
P0

4-
03

0
10

0
12

88
12

88
0

10
0
12

88
12

88
0

10
0
12

88
12

88
0

10
0
12

88
12

88
0

10
0
12

88
12

88
G
P0

4-
04

0
10

0
12

61
12

61
0

10
0
12

61
12

61
0

10
0
12

61
12

61
0

10
0
12

61
12

61
0

10
0
12

61
12

61
G
P0

4-
05

0
10

0
12

89
12

89
0

10
0
12

89
12

89
0

10
0
12

89
12

89
0

10
0
12

89
12

89
0

10
0
12

89
12

89
G
P0

4-
06

0
10

0
12

69
12

69
0

10
0
12

69
12

69
0

10
0
12

69
12

69
0

10
0
12

69
12

69
0

10
0
12

69
12

69
G
P0

4-
07

0
10

0
12

67
12

67
0

10
0
12

67
12

67
0

10
0
12

67
12

67
0

10
0
12

67
12

67
0

10
0
12

67
12

67
G
P0

4-
08

0
10

0
12

59
12

59
0

10
0
12

59
12

59
0

10
0
12

59
12

59
0

10
0
12

59
12

59
0

10
0
12

59
12

59
G
P0

4-
09

0
10

0
12

80
12

80
0

10
0
12

80
12

80
0

10
0
12

80
12

80
0

10
0
12

80
12

80
0

10
0
12

80
12

80
G
P0

4-
10

0
10

0
12

63
12

63
0

10
0
12

63
12

63
0

10
0
12

63
12

63
0

10
0
12

63
12

63
0

10
0
12

63
12

63
G
P0

5-
01

0
10

0
12

45
12

45
0

10
0
12

45
12

45
0

10
0
12

45
12

45
0

10
0
12

45
12

45
0

10
0
12

45
12

45
G
P0

5-
02

0
10

0
12

47
12

47
0

10
0
12

47
12

47
0

10
0
12

47
12

47
0

10
0
12

47
12

47
0

10
0
12

47
12

47
G
P0

5-
03

0
10

0
12

65
12

65
0

10
0
12

65
12

65
0

10
0
12

65
12

65
0

10
0
12

65
12

65
0

10
0
12

65
12

65
G
P0

5-
04

0
10

0
12

58
12

58
0

10
0
12

58
12

58
0

10
0
12

58
12

58
0

10
0
12

58
12

58
0

10
0
12

58
12

58
G
P0

5-
05

0
10

0
12

80
12

80
0

10
0
12

80
12

80
0

10
0
12

80
12

80
0

10
0
12

80
12

80
0

10
0
12

80
12

80
G
P0

5-
06

0
10

0
12

69
12

69
0

10
0
12

69
12

69
0

10
0
12

69
12

69
0

10
0
12

69
12

69
0

10
0
12

69
12

69
G
P0

5-
07

0
10

0
12

69
12

69
0

10
0
12

69
12

69
0

10
0
12

69
12

69
0

10
0
12

69
12

69
0

10
0
12

69
12

69
G
P0

5-
08

0
10

0
12

87
12

87
0

10
0
12

87
12

87
0

10
0
12

87
12

87
0

10
0
12

87
12

87
0

10
0
12

87
12

87
G
P0

5-
09

0
10

0
12

62
12

62
0

10
0
12

62
12

62
0

10
0
12

62
12

62
0

10
0
12

62
12

62
0

10
0
12

62
12

62
G
P0

5-
10

0
10

0
12

54
12

54
0

10
0
12

54
12

54
0

10
0
12

54
12

54
0

10
0
12

54
12

54
0

10
0
12

54
12

54



Appendix B Reproducing the disjunctive scheduling experiments 155

T
ab

le
B

.2
:
O
SP

:G
ue
re
t
an

d
Pr

in
s
in
st
an

ce
s
(G

P0
6-
01

–
G
P0

8-
10
)

In
st
an

ce
M
ist

ra
l(b
oo
l)

H
yb

rid
(v
si
d
s,
d
is
j)

H
yb

rid
(v
si
d
s,
la
z
y
)

H
yb

rid
(b
oo
l,
d
is
j)

H
yb

rid
(b
oo
l,
la
z
y
)

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

G
P0

6-
01

0
10

0
12

64
12

64
0

10
0
12

64
12

64
0

10
0
12

64
12

64
0

10
0
12

64
12

64
0

10
0
12

64
12

64
G
P0

6-
02

0
10

0
12

85
12

85
0

10
0
12

85
12

85
0

10
0
12

85
12

85
0

10
0
12

85
12

85
0

10
0
12

85
12

85
G
P0

6-
03

0
10

0
12

55
12

55
0

10
0
12

55
12

55
0

10
0
12

55
12

55
0

10
0
12

55
12

55
0

10
0
12

55
12

55
G
P0

6-
04

0
10

0
12

75
12

75
0

10
0
12

75
12

75
0

10
0
12

75
12

75
0

10
0
12

75
12

75
0

10
0
12

75
12

75
G
P0

6-
05

0
10

0
12

99
12

99
0

10
0
12

99
12

99
0

10
0
12

99
12

99
0

10
0
12

99
12

99
0

10
0
12

99
12

99
G
P0

6-
06

0
10

0
12

84
12

84
0

10
0
12

84
12

84
0

10
0
12

84
12

84
0

10
0
12

84
12

84
0

10
0
12

84
12

84
G
P0

6-
07

0
10

0
12

90
12

90
0

10
0
12

90
12

90
0

10
0
12

90
12

90
0

10
0
12

90
12

90
0

10
0
12

90
12

90
G
P0

6-
08

0
10

0
12

65
12

65
0

10
0
12

65
12

65
0

10
0
12

65
12

65
0

10
0
12

65
12

65
0

10
0
12

65
12

65
G
P0

6-
09

0
10

0
12

43
12

43
0

10
0
12

43
12

43
0

10
0
12

43
12

43
0

10
0
12

43
12

43
0

10
0
12

43
12

43
G
P0

6-
10

0
10

0
12

54
12

54
0

10
0
12

54
12

54
0

10
0
12

54
12

54
0

10
0
12

54
12

54
0

10
0
12

54
12

54
G
P0

7-
01

0
10

0
11

59
11

59
0

10
0
11

59
11

59
0

10
0
11

59
11

59
0

10
0
11

59
11

59
0

10
0
11

59
11

59
G
P0

7-
02

0
10

0
11

85
11

85
0

10
0
11

85
11

85
0

10
0
11

85
11

85
0

10
0
11

85
11

85
0

10
0
11

85
11

85
G
P0

7-
03

0
10

0
12

37
12

37
0

10
0
12

37
12

37
0

10
0
12

37
12

37
0

10
0
12

37
12

37
0

10
0
12

37
12

37
G
P0

7-
04

0
10

0
11

67
11

67
0

10
0
11

67
11

67
0

10
0
11

67
11

67
0

10
0
11

67
11

67
0

10
0
11

67
11

67
G
P0

7-
05

0
10

0
11

57
11

57
0

10
0
11

57
11

57
0

10
0
11

57
11

57
0

10
0
11

57
11

57
0

10
0
11

57
11

57
G
P0

7-
06

0
10

0
11

93
11

93
0

10
0
11

93
11

93
0

10
0
11

93
11

93
0

10
0
11

93
11

93
0

10
0
11

93
11

93
G
P0

7-
07

0
10

0
11

85
11

85
0

10
0
11

85
11

85
0

10
0
11

85
11

85
0

10
0
11

85
11

85
0

10
0
11

85
11

85
G
P0

7-
08

0
10

0
11

80
11

80
0

10
0
11

80
11

80
0

10
0
11

80
11

80
0

10
0
11

80
11

80
0

10
0
11

80
11

80
G
P0

7-
09

0
10

0
12

20
12

20
0

10
0
12

20
12

20
0

10
0
12

20
12

20
0

10
0
12

20
12

20
0

10
0
12

20
12

20
G
P0

7-
10

0
10

0
12

70
12

70
0

10
0
12

70
12

70
0

10
0
12

70
12

70
0

10
0
12

70
12

70
0

10
0
12

70
12

70
G
P0

8-
01

0
10

0
11

30
11

30
0

10
0
11

30
11

30
0.
01

10
0
11

30
11

30
0

10
0
11

30
11

30
0

10
0
11

30
11

30
G
P0

8-
02

0
10

0
11

35
11

35
0.
01

10
0
11

35
11

35
0.
01

10
0
11

35
11

35
0.
01

10
0
11

35
11

35
0

10
0
11

35
11

35
G
P0

8-
03

0
10

0
11

10
11

10
0

10
0
11

10
11

10
0.
01

10
0
11

10
11

10
0.
01

10
0
11

10
11

10
0

10
0
11

10
11

10
G
P0

8-
04

0
10

0
11

53
11

53
0

10
0
11

53
11

53
0

10
0
11

53
11

53
0.
01

10
0
11

53
11

53
0.
01

10
0
11

53
11

53
G
P0

8-
05

0
10

0
12

18
12

18
0

10
0
12

18
12

18
0.
01

10
0
12

18
12

18
0

10
0
12

18
12

18
0.
01

10
0
12

18
12

18
G
P0

8-
06

0
10

0
11

15
11

15
0.
01

10
0
11

15
11

15
0.
01

10
0
11

15
11

15
0.
01

10
0
11

15
11

15
0.
01

10
0
11

15
11

15
G
P0

8-
07

0
10

0
11

26
11

26
0.
01

10
0
11

26
11

26
0.
01

10
0
11

26
11

26
0

10
0
11

26
11

26
0

10
0
11

26
11

26
G
P0

8-
08

0
10

0
11

48
11

48
0

10
0
11

48
11

48
0.
01

10
0
11

48
11

48
0.
01

10
0
11

48
11

48
0.
01

10
0
11

48
11

48
G
P0

8-
09

0
10

0
11

14
11

14
0

10
0
11

14
11

14
0

10
0
11

14
11

14
0

10
0
11

14
11

14
0.
01

10
0
11

14
11

14
G
P0

8-
10

0
10

0
11

61
11

61
0

10
0
11

61
11

61
0

10
0
11

61
11

61
0

10
0
11

61
11

61
0.
01

10
0
11

61
11

61



Appendix B Reproducing the disjunctive scheduling experiments 156

T
ab

le
B

.3
:
O
SP

:G
ue
re
t
an

d
Pr

in
s
in
st
an

ce
s
(G

P0
9-
01

–
G
P1

0-
10
)

In
st
an

ce
M
ist

ra
l(b
oo
l)

H
yb

rid
(v
si
d
s,
d
is
j)

H
yb

rid
(v
si
d
s,
la
z
y
)

H
yb

rid
(b
oo
l,
d
is
j)

H
yb

rid
(b
oo
l,
la
z
y
)

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

av
g

av
g

m
in

av
g

G
P0

9-
01

0.
01

10
0
11

29
11

29
0.
01

10
0
11

29
11

29
0.
01

10
0
11

29
11

29
0.
01

10
0
11

29
11

29
0.
01

10
0
11

29
11

29
G
P0

9-
02

0.
05

10
0
11

10
11

10
0.
02

10
0
11

10
11

10
0.
02

10
0
11

10
11

10
0.
02

10
0
11

10
11

10
0.
03

10
0
11

10
11

10
G
P0

9-
03

0.
01

10
0
11

15
11

15
0.
01

10
0
11

15
11

15
0.
01

10
0
11

15
11

15
0.
01

10
0
11

15
11

15
0.
01

10
0
11

15
11

15
G
P0

9-
04

0.
01

10
0
11

30
11

30
0.
01

10
0
11

30
11

30
0.
01

10
0
11

30
11

30
0.
01

10
0
11

30
11

30
0.
01

10
0
11

30
11

30
G
P0

9-
05

0.
01

10
0
11

80
11

80
0.
01

10
0
11

80
11

80
0.
01

10
0
11

80
11

80
0.
01

10
0
11

80
11

80
0.
01

10
0
11

80
11

80
G
P0

9-
06

0.
04

10
0
10

93
10

93
0.
02

10
0
10

93
10

93
0.
02

10
0
10

93
10

93
0.
02

10
0
10

93
10

93
0.
03

10
0
10

93
10

93
G
P0

9-
07

0.
02

10
0
10

90
10

90
0.
01

10
0
10

90
10

90
0.
01

10
0
10

90
10

90
0.
02

10
0
10

90
10

90
0.
03

10
0
10

90
10

90
G
P0

9-
08

0.
01

10
0
11

05
11

05
0.
02

10
0
11

05
11

05
0.
02

10
0
11

05
11

05
0.
01

10
0
11

05
11

05
0.
02

10
0
11

05
11

05
G
P0

9-
09

0.
01

10
0
11

23
11

23
0.
01

10
0
11

23
11

23
0.
01

10
0
11

23
11

23
0.
01

10
0
11

23
11

23
0.
02

10
0
11

23
11

23
G
P0

9-
10

0.
03

10
0
11

10
11

10
0.
02

10
0
11

10
11

10
0.
03

10
0
11

10
11

10
0.
02

10
0
11

10
11

10
0.
03

10
0
11

10
11

10
G
P1

0-
01

0.
08

10
0
10

93
10

93
0.
08

10
0
10

93
10

93
0.
11

10
0
10

93
10

93
0.
10

10
0
10

93
10

93
0.
12

10
0
10

93
10

93
G
P1

0-
02

0.
02

10
0
10

97
10

97
0.
02

10
0
10

97
10

97
0.
03

10
0
10

97
10

97
0.
03

10
0
10

97
10

97
0.
03

10
0
10

97
10

97
G
P1

0-
03

0.
31

10
0
10

81
10

81
0.
17

10
0
10

81
10

81
0.
27

10
0
10

81
10

81
0.
35

10
0
10

81
10

81
0.
47

10
0
10

81
10

81
G
P1

0-
04

0.
04

10
0
10

77
10

77
0.
05

10
0
10

77
10

77
0.
06

10
0
10

77
10

77
0.
04

10
0
10

77
10

77
0.
06

10
0
10

77
10

77
G
P1

0-
05

0.
51

10
0
10

71
10

71
0.
25

10
0
10

71
10

71
0.
42

10
0
10

71
10

71
0.
45

10
0
10

71
10

71
0.
74

10
0
10

71
10

71
G
P1

0-
06

0.
05

10
0
10

71
10

71
0.
04

10
0
10

71
10

71
0.
05

10
0
10

71
10

71
0.
05

10
0
10

71
10

71
0.
07

10
0
10

71
10

71
G
P1

0-
07

0.
10

10
0
10

79
10

79
0.
04

10
0
10

79
10

79
0.
06

10
0
10

79
10

79
0.
09

10
0
10

79
10

79
0.
11

10
0
10

79
10

79
G
P1

0-
08

0.
04

10
0
10

93
10

93
0.
05

10
0
10

93
10

93
0.
07

10
0
10

93
10

93
0.
05

10
0
10

93
10

93
0.
06

10
0
10

93
10

93
G
P1

0-
09

0.
03

10
0
11

12
11

12
0.
04

10
0
11

12
11

12
0.
05

10
0
11

12
11

12
0.
04

10
0
11

12
11

12
0.
04

10
0
11

12
11

12
G
P1

0-
10

0.
05

10
0
10

92
10

92
0.
03

10
0
10

92
10

92
0.
05

10
0
10

92
10

92
0.
05

10
0
10

92
10

92
0.
05

10
0
10

92
10

92
av
er
ag

e
0.
02

10
0

0.
01

10
0

0.
01

10
0

0.
02

10
0

0.
02

10
0



Appendix B Reproducing the disjunctive scheduling experiments 157

T
ab

le
B

.4
:
O
SP

:T
ai
lla

rd
in
st
an

ce
s
(t
ai
04
_
04
_
01

–
ta
i0
7_

7_
10
)

In
st
an

ce
M
ist

ra
l(b
oo
l)

H
yb

rid
(v
si
d
s,
d
is
j)

H
yb

rid
(v
si
d
s,
la
z
y
)H

yb
rid

(b
oo
l,
d
is
j)

H
yb

rid
(b
oo
l,
la
z
y
)

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

av
g
av
g
m
in

av
g

av
g
av
g
m
in

av
g

av
g
av
g
m
in

av
g

av
g
av
g
m
in

av
g

av
g
av
g
m
in

av
g

ta
i0
4_

04
_
01

0
10

0
19

3
19

3
0
10

0
19

3
19

3
0
10

0
19

3
19

3
0
10

0
19

3
19

3
0
10

0
19

3
19

3
ta
i0
4_

04
_
02

0
10

0
23

6
23

6
0
10

0
23

6
23

6
0
10

0
23

6
23

6
0
10

0
23

6
23

6
0
10

0
23

6
23

6
ta
i0
4_

04
_
03

0
10

0
27

1
27

1
0
10

0
27

1
27

1
0
10

0
27

1
27

1
0
10

0
27

1
27

1
0
10

0
27

1
27

1
ta
i0
4_

04
_
04

0
10

0
25

0
25

0
0
10

0
25

0
25

0
0
10

0
25

0
25

0
0
10

0
25

0
25

0
0
10

0
25

0
25

0
ta
i0
4_

04
_
05

0
10

0
29

5
29

5
0
10

0
29

5
29

5
0
10

0
29

5
29

5
0
10

0
29

5
29

5
0
10

0
29

5
29

5
ta
i0
4_

04
_
06

0
10

0
18

9
18

9
0
10

0
18

9
18

9
0
10

0
18

9
18

9
0
10

0
18

9
18

9
0
10

0
18

9
18

9
ta
i0
4_

04
_
07

0
10

0
20

1
20

1
0
10

0
20

1
20

1
0
10

0
20

1
20

1
0
10

0
20

1
20

1
0
10

0
20

1
20

1
ta
i0
4_

04
_
08

0
10

0
21

7
21

7
0
10

0
21

7
21

7
0
10

0
21

7
21

7
0
10

0
21

7
21

7
0
10

0
21

7
21

7
ta
i0
4_

04
_
09

0
10

0
26

1
26

1
0
10

0
26

1
26

1
0
10

0
26

1
26

1
0
10

0
26

1
26

1
0
10

0
26

1
26

1
ta
i0
4_

04
_
10

0
10

0
21

7
21

7
0
10

0
21

7
21

7
0
10

0
21

7
21

7
0
10

0
21

7
21

7
0
10

0
21

7
21

7
ta
i0
5_

05
_
01

0.
01

10
0
30

0
30

0
0.
01

10
0
30

0
30

0
0.
03

10
0
30

0
30

0
0.
01

10
0
30

0
30

0
0.
02

10
0
30

0
30

0
ta
i0
5_

05
_
02

0
10

0
26

2
26

2
0.
01

10
0
26

2
26

2
0.
02

10
0
26

2
26

2
0
10

0
26

2
26

2
0.
01

10
0
26

2
26

2
ta
i0
5_

05
_
03

0.
01

10
0
32

3
32

3
0.
02

10
0
32

3
32

3
0.
05

10
0
32

3
32

3
0.
02

10
0
32

3
32

3
0.
06

10
0
32

3
32

3
ta
i0
5_

05
_
04

0.
01

10
0
31

0
31

0
0.
02

10
0
31

0
31

0
0.
03

10
0
31

0
31

0
0.
02

10
0
31

0
31

0
0.
03

10
0
31

0
31

0
ta
i0
5_

05
_
05

0.
02

10
0
32

6
32

6
0.
04

10
0
32

6
32

6
0.
08

10
0
32

6
32

6
0.
03

10
0
32

6
32

6
0.
07

10
0
32

6
32

6
ta
i0
5_

05
_
06

0
10

0
31

2
31

2
0.
01

10
0
31

2
31

2
0.
03

10
0
31

2
31

2
0.
01

10
0
31

2
31

2
0.
03

10
0
31

2
31

2
ta
i0
5_

05
_
07

0.
01

10
0
30

3
30

3
0.
02

10
0
30

3
30

3
0.
04

10
0
30

3
30

3
0.
02

10
0
30

3
30

3
0.
04

10
0
30

3
30

3
ta
i0
5_

05
_
08

0.
01

10
0
30

0
30

0
0.
02

10
0
30

0
30

0
0.
04

10
0
30

0
30

0
0.
02

10
0
30

0
30

0
0.
04

10
0
30

0
30

0
ta
i0
5_

05
_
09

0.
01

10
0
35

3
35

3
0.
03

10
0
35

3
35

3
0.
05

10
0
35

3
35

3
0.
02

10
0
35

3
35

3
0.
04

10
0
35

3
35

3
ta
i0
5_

05
_
10

0.
03

10
0
32

6
32

6
0.
02

10
0
32

6
32

6
0.
06

10
0
32

6
32

6
0.
03

10
0
32

6
32

6
0.
07

10
0
32

6
32

6
ta
i0
7_

07
_
01

0.
01

10
0
43

5
43

5
0.
02

10
0
43

5
43

5
0.
02

10
0
43

5
43

5
0.
02

10
0
43

5
43

5
0.
03

10
0
43

5
43

5
ta
i0
7_

07
_
02

0.
02

10
0
44

3
44

3
0.
04

10
0
44

3
44

3
0.
05

10
0
44

3
44

3
0.
02

10
0
44

3
44

3
0.
02

10
0
44

3
44

3
ta
i0
7_

07
_
03

0.
15

10
0
46

8
46

8
0.
14

10
0
46

8
46

8
0.
28

10
0
46

8
46

8
0.
12

10
0
46

8
46

8
0.
29

10
0
46

8
46

8
ta
i0
7_

07
_
04

0.
02

10
0
46

3
46

3
0.
04

10
0
46

3
46

3
0.
04

10
0
46

3
46

3
0.
02

10
0
46

3
46

3
0.
03

10
0
46

3
46

3
ta
i0
7_

07
_
05

0.
01

10
0
41

6
41

6
0.
03

10
0
41

6
41

6
0.
04

10
0
41

6
41

6
0.
01

10
0
41

6
41

6
0.
01

10
0
41

6
41

6
ta
i0
7_

07
_
06

0.
29

10
0
45

1
45

1
0.
18

10
0
45

1
45

1
0.
57

10
0
45

1
45

1
0.
35

10
0
45

1
45

1
1.
49

10
0
45

1
45

1
ta
i0
7_

07
_
07

0.
06

10
0
42

2
42

2
0.
13

10
0
42

2
42

2
0.
33

10
0
42

2
42

2
0.
06

10
0
42

2
42

2
0.
22

10
0
42

2
42

2
ta
i0
7_

07
_
08

0
10

0
42

4
42

4
0.
02

10
0
42

4
42

4
0.
02

10
0
42

4
42

4
0.
01

10
0
42

4
42

4
0
10

0
42

4
42

4
ta
i0
7_

07
_
09

0
10

0
45

8
45

8
0.
02

10
0
45

8
45

8
0.
02

10
0
45

8
45

8
0
10

0
45

8
45

8
0.
01

10
0
45

8
45

8
ta
i0
7_

07
_
10

0.
01

10
0
39

8
39

8
0.
02

10
0
39

8
39

8
0.
02

10
0
39

8
39

8
0.
01

10
0
39

8
39

8
0.
02

10
0
39

8
39

8



Appendix B Reproducing the disjunctive scheduling experiments 158
T

ab
le

B
.5

:
O
SP

:T
ai
lla

rd
in
st
an

ce
s
(t
ai
10
_
10
_
01

–
ta
i2
0_

20
_
10
)

In
st
an

ce
M
ist

ra
l(b
oo
l)

H
yb

rid
(v
si
d
s,
d
is
j)

H
yb

rid
(v
si
d
s,
la
z
y
)

H
yb

rid
(b
oo
l,
d
is
j)

H
yb

rid
(b
oo
l,
la
z
y
)

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

T
%
O

U
B

av
g
av
g

m
in

av
g

av
g
av
g

m
in

av
g

av
g
av
g

m
in

av
g

av
g
av
g

m
in

av
g

av
g
av
g

m
in

av
g

ta
i1
0_

10
_
01

0.
09

10
0

63
7

63
7
0.
07

10
0

63
7

63
7
0.
13

10
0

63
7

63
7
0.
06

10
0

63
7

63
7
0.
13

10
0

63
7

63
7

ta
i1
0_

10
_
02

0.
05

10
0

58
8

58
8
0.
06

10
0

58
8

58
8
0.
08

10
0

58
8

58
8
0.
05

10
0

58
8

58
8
0.
07

10
0

58
8

58
8

ta
i1
0_

10
_
03

0.
06

10
0

59
8

59
8
0.
07

10
0

59
8

59
8
0.
10

10
0

59
8

59
8
0.
04

10
0

59
8

59
8
0.
05

10
0

59
8

59
8

ta
i1
0_

10
_
04

0.
03

10
0

57
7

57
7
0.
05

10
0

57
7

57
7
0.
06

10
0

57
7

57
7
0.
02

10
0

57
7

57
7
0.
03

10
0

57
7

57
7

ta
i1
0_

10
_
05

0.
07

10
0

64
0

64
0
0.
07

10
0

64
0

64
0
0.
11

10
0

64
0

64
0
0.
06

10
0

64
0

64
0
0.
08

10
0

64
0

64
0

ta
i1
0_

10
_
06

0.
03

10
0

53
8

53
8
0.
06

10
0

53
8

53
8
0.
06

10
0

53
8

53
8
0.
03

10
0

53
8

53
8
0.
04

10
0

53
8

53
8

ta
i1
0_

10
_
07

0.
05

10
0

61
6

61
6
0.
05

10
0

61
6

61
6
0.
07

10
0

61
6

61
6
0.
04

10
0

61
6

61
6
0.
04

10
0

61
6

61
6

ta
i1
0_

10
_
08

0.
06

10
0

59
5

59
5
0.
06

10
0

59
5

59
5
0.
11

10
0

59
5

59
5
0.
05

10
0

59
5

59
5
0.
06

10
0

59
5

59
5

ta
i1
0_

10
_
09

0.
05

10
0

59
5

59
5
0.
06

10
0

59
5

59
5
0.
08

10
0

59
5

59
5
0.
05

10
0

59
5

59
5
0.
08

10
0

59
5

59
5

ta
i1
0_

10
_
10

0.
05

10
0

59
6

59
6
0.
06

10
0

59
6

59
6
0.
09

10
0

59
6

59
6
0.
06

10
0

59
6

59
6
0.
06

10
0

59
6

59
6

ta
i1
5_

15
_
01

0.
63

10
0

93
7

93
7
0.
37

10
0

93
7

93
7
0.
45

10
0

93
7

93
7
0.
58

10
0

93
7

93
7
0.
73

10
0

93
7

93
7

ta
i1
5_

15
_
02

0.
54

10
0

91
8

91
8
0.
52

10
0

91
8

91
8
0.
51

10
0

91
8

91
8
0.
45

10
0

91
8

91
8
0.
50

10
0

91
8

91
8

ta
i1
5_

15
_
03

0.
43

10
0

87
1

87
1
0.
35

10
0

87
1

87
1
0.
42

10
0

87
1

87
1
0.
48

10
0

87
1

87
1
0.
49

10
0

87
1

87
1

ta
i1
5_

15
_
04

0.
47

10
0

93
4

93
4
0.
35

10
0

93
4

93
4
0.
44

10
0

93
4

93
4
0.
47

10
0

93
4

93
4
0.
50

10
0

93
4

93
4

ta
i1
5_

15
_
05

0.
64

10
0

94
6

94
6
0.
41

10
0

94
6

94
6
0.
52

10
0

94
6

94
6
0.
58

10
0

94
6

94
6
0.
61

10
0

94
6

94
6

ta
i1
5_

15
_
06

0.
53

10
0

93
3

93
3
0.
35

10
0

93
3

93
3
0.
46

10
0

93
3

93
3
0.
49

10
0

93
3

93
3
0.
53

10
0

93
3

93
3

ta
i1
5_

15
_
07

0.
47

10
0

89
1

89
1
0.
37

10
0

89
1

89
1
0.
46

10
0

89
1

89
1
0.
47

10
0

89
1

89
1
0.
48

10
0

89
1

89
1

ta
i1
5_

15
_
08

0.
47

10
0

89
3

89
3
0.
37

10
0

89
3

89
3
0.
49

10
0

89
3

89
3
0.
45

10
0

89
3

89
3
0.
52

10
0

89
3

89
3

ta
i1
5_

15
_
09

0.
73

10
0

89
9

89
9
0.
51

10
0

89
9

89
9
0.
52

10
0

89
9

89
9
0.
54

10
0

89
9

89
9
0.
74

10
0

89
9

89
9

ta
i1
5_

15
_
10

0.
67

10
0

90
2

90
2
0.
40

10
0

90
2

90
2
0.
54

10
0

90
2

90
2
0.
63

10
0

90
2

90
2
0.
68

10
0

90
2

90
2

ta
i2
0_

20
_
01

3.
63

10
0
11

55
11

55
2.
37

10
0
11

55
11

55
3.
10

10
0
11

55
11

55
2.
96

10
0
11

55
11

55
3.
31

10
0
11

55
11

55
ta
i2
0_

20
_
02

5.
93

10
0
12

41
12

41
2.
44

10
0
12

41
12

41
3.
67

10
0
12

41
12

41
3.
74

10
0
12

41
12

41
4.
62

10
0
12

41
12

41
ta
i2
0_

20
_
03

3.
02

10
0
12

57
12

57
2.
15

10
0
12

57
12

57
3.
01

10
0
12

57
12

57
3.
06

10
0
12

57
12

57
3.
21

10
0
12

57
12

57
ta
i2
0_

20
_
04

3.
51

10
0
12

48
12

48
2.
19

10
0
12

48
12

48
2.
65

10
0
12

48
12

48
3.
34

10
0
12

48
12

48
3.
17

10
0
12

48
12

48
ta
i2
0_

20
_
05

2.
92

10
0
12

56
12

56
2.
21

10
0
12

56
12

56
2.
85

10
0
12

56
12

56
2.
72

10
0
12

56
12

56
2.
87

10
0
12

56
12

56
ta
i2
0_

20
_
06

3.
57

10
0
12

04
12

04
2.
44

10
0
12

04
12

04
3.
19

10
0
12

04
12

04
3.
47

10
0
12

04
12

04
3.
41

10
0
12

04
12

04
ta
i2
0_

20
_
07

3.
93

10
0
12

94
12

94
2.
59

10
0
12

94
12

94
3.
35

10
0
12

94
12

94
4
10

0
12

94
12

94
3.
41

10
0
12

94
12

94
ta
i2
0_

20
_
08

4.
99

10
0
11

69
11

69
2.
56

10
0
11

69
11

69
3.
28

10
0
11

69
11

69
3.
50

10
0
11

69
11

69
4.
26

10
0
11

69
11

69
ta
i2
0_

20
_
09

3.
68

10
0
12

89
12

89
2.
33

10
0
12

89
12

89
2.
71

10
0
12

89
12

89
3.
31

10
0
12

89
12

89
3.
56

10
0
12

89
12

89
ta
i2
0_

20
_
10

3.
21

10
0
12

41
12

41
2.
18

10
0
12

41
12

41
2.
76

10
0
12

41
12

41
3.
18

10
0
12

41
12

41
3.
18

10
0
12

41
12

41
av
er
ag

e
0.
75

10
0

0.
48

10
0

0.
63

10
0

0.
66

10
0

0.
73

10
0



Appendix C

Résumé étendu

Nous décrivons brièvement les contributions principales de la thèse dans ce résumé
étendu.

C.1 Introduction

La Programmation Par Contraintes (PPC) est un paradigme riche et générique pour
résoudre les problèmes combinatoires d’une manière efficace. Face à l’explosion combi-
natoire, la PPC s’appuie typiquement sur des mécanismes de filtrage (ou de propagation)
afin de réduire l’espace de recherche. De plus, des approches hybrides récentes de type
SAT/PPC ont montré des résultats remarquables pour résoudre des problèmes large-
ment dominés par d’autres approches (voir par exemple [118]). Ces méthodes déploient
essentiellement des procédures d’analyse de conflits permettant l’apprentissage de nou-
velles contraintes sous forme de clauses ce qui permet un élagage avancé de l’espace
de recherche. L’analyse de conflit se base essentiellement sur la notion d’explication de
contrainte afin de simuler le comportement des solveurs SAT.

Cette thèse vise à contribuer à la résolution des problèmes de séquencement et d’ordon-
nancement dans un contexte de Programmation Par Contraintes avec apprentissage de
clauses. Les contributions présentées dans cette thèse se résume en sept points.

1. Une étude approfondie des heuristiques de branchement pour le problème de car-
sequencing

2. Une nouvelle règle de filtrage simple et efficace dédiée au problème de car-sequencing.

3. Un algorithme de filtrage complet et optimal pour une classe de problèmes de
séquencement tel que le car-sequencing ou encore les problèmes de type «confection
d’horaires d’équipages» (crew-rostering).
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4. Deux généralisations de ce filtrage.

5. Une stratégie réduite d’explication de notre filtrage. Cette stratégie a été appliquée
au problème de car-sequencing.

6. Une révision du mode d’apprentissage de clauses avec génération retardée d’atomes.

7. Une nouvelle procédure d’analyse de conflit pour les problèmes d’ordonnancement
disjonctifs.

Nous optons pour une approche expérimentale afin d’étudier l’efficacité de nos proposi-
tions. Ce résumé décrit brièvement les contributions principales de la thèse.

C.2 Contexte et définitions

C.2.1 Programmation par contraintes

Un problème de Satisfaction de Contraintes (CSP) est défini par un triplet P = (X ,D,C)
où X représente l’ensemble des variables, D l’ensemble des domaines finis pour chacune
des variables et C l’ensemble des contraintes qui spécifient les combinaisons de valeurs
autorisés sur des sous-ensembles de variables. On suppose que D(x) ⊂ Z pour tout
x ∈ X et on note min(x) et max(x) les valeurs minimale et maximale de D(x). Une
instanciation d’un ensemble de variables X est un tuple w tel que w[i] représente la
valeur affectée à la variable xi. Une contrainte C ∈ C portant sur un ensemble de variables
X caractérise une relation, i.e., un sous-ensemble de tuples du produit cartésien du
domaine des variables de X . Une instanciation w est dite cohérente pour une contrainte C
ssi elle appartient à la relation correspondante. Une contrainte C est dite arc-consistante
(ac) ssi, pour toute valeur j de chaque variable xi qu’elle met en jeu, il existe une
instanciation cohérente w telle que w[i] = j.

Nous considérons la résolution des CSPs avec des méthodes de recherche complètes
basées sur une exploration en profondeur avec des mécanismes de branchement et de
propagation de contraintes. Chaque contrainte est associée à au moins un propaga-
teur. Chaque propagateur (ou algorithme de filtrage) réduit l’espace de recherche en
supprimant des valeurs qui n’appartiennent à aucune solution par rapport au domaine
courant. Pour chaque variable x, on suppose que les propagateurs utilisent uniquement
les contraintes unaires suivante : Jx ≤ vK, Jx ≥ vK, Jx = vK et Jx ≠ vK.
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C.2.2 Apprentissage de clauses dirigé par les conflits

Nous allons donner une description générale du fonctionnement des solveurs SAT avant
de passer aux méthodes hybrides.

C.2.2.1 SAT

Un problème SAT sous forme normale conjonctive (CNF) se définit par une conjonction
de clauses. Une clause l1 ∨ .. ∨ ln est une disjonction de littéraux. Chaque littéral l
représente soit une variable booléenne soit sa négation. Par la suite, le terme «atome»
désigne une variable booléenne.

Les meilleurs solveurs SAT de la littérature sont basés sur l’algorithme CDCL (Conflict
Driven Clause Learning) [95]. Cet algorithme peut être considéré comme une recherche
arborescente augmenté par des mécanismes d’apprentissage de clauses et de retours
arrière non-chronologiques. On note qu’il y a un seul type de propagation pour les
clauses appelé propagation unitaire (UP) : pour une clause l1 ∨ .. ∨ ln telle que la valeur
de vérité de n−1 littéraux est en contradiction avec la clause, alors le dernier littéral doit
forcément être assigné de façon à la satisfaire. L’algorithme CDCL progresse en prenant
des décisions, c’est à dire, en affectant des valeurs de vérité arbitraires à des littéraux et en
appliquant la propagation unitaire jusqu’à atteindre un point fixe après chaque décision.
Lorsque la propagation unitaire déclenche une contradiction, une routine d’analyse de
conflit est appelée. Le but est d’analyser le conflit courant pour trouver une raison, sous
la forme d’une nouvelle clause. Cette dernière sera apprise et utilisée pour un retour
arrière non-chronologique.

Pour chaque littéral l, on utilise la notation n(l) pour représenter le niveau de l’arbre de
recherche au quel l est assigné, et r(l) pour représenter le rang du littéral l dans la sé-
quence des assignements effectués par l’algorithme CDCL, et raison(l) pour représenter
la raison d’affectation de l. Pour chaque littéral assigné l, reason(l) est égale à

• null si l est une décision.

• l1 ∧ .. ∧ ln avec li ≠ l ∈ c et c est la clause qui a propagé l.

D’une façon similaire, on définit la raison initiale du conflit raison(⊥) comme l1 ∧ ..∧ ln
avec li ∈ c et c est la clause dont la propagation unitaire a provoqué l’échec.

L’algorithme 2 présente la procédure d’analyse de conflit la plus utilisée dans littérature.

Cet algorithme renvoie Ψ comme raison du conflit sous forme d’un ensemble d’affecta-
tions suffisantes pour impliquer un échec. La clause apprise après l’analyse de conflit est
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Algorithm 2: Analyse de conflit
1 Ψ← reason(⊥) ;
while ∣{l ∈ Ψ ∣ n(l) = d}∣ > 1 do

2 l ← arg maxl∈Ψ(r(l)) ;
3 Ψ← Ψ ∪ {q ∣ q ∈ raison(l) ∧ n(q) > 0} ∖ {l} ;
return Ψ ;

¬Ψ. La première ligne de cet algorithme initialise Ψ avec reason(⊥). Par la suite, on
remplace tous les littéraux de Ψ du niveau courant d par leur raisons sauf le dernier. Le
choix du prochain littéral à remplacer s’effectue à la ligne 2 en prenant le dernier littéral
assigné.

C.2.2.2 Méthodes hybrides SAT/PPC

Il existe une multitude de systèmes hybrides SAT/PPC dans la littérature. Nous allons
utiliser un formalisme très récent en se basant sur les travaux de la ‘Génération de
Clauses Retardée’ désignée par (LCG) pour «Lazy Clause Generation» [101, 100, 53, 52].
L’idée principale est de garder l’utilisation des propagateurs et de les considérer comme
générateurs de clauses afin de simuler CDCL.

Nous allons utiliser la notion de littéral l pour représenter une contrainte unaire de
type Jx ≤ vK, Jx ≥ vK, Jx = vK, Jx ≠ vK. Dans LCG chaque propagateur est sensé être
capable d’«expliquer» toutes ses actions en termes de règles de propagation. Une règle
de propagation est une implication logique sous la forme Ψ ⇒ l telle que la contrainte
unaire associée à l est appelée par le propagateur en question et Ψ est une conjonction
de littéraux suffisante pour propager l. Pour chaque littéral l, nous allons noter par

• propag(l) : le propagateur responsable au changement de domaine représenté par
l.

• explication(f, l) : la prémisse Γ de la règle de propagation Γ⇒ l retournée par le
propagateur reason(l).

Les notions de propag et explication sont étendues pour l’échec ⊥.

D’une façon très similaire à l’analyse de conflit décrite précédemment pour CDCL, nous
introduisons dans algorithme 2 un pseudo-code d’analyse de conflit utilisé dans les sol-
veurs hybrides modernes (par exemple [52]).

Cet algorithme est présenté d’une manière assez flexible afin de supporter différents
modes d’apprentissage. D’abord la génération des explications peut être effectuée d’une
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Algorithm 3: Analyse de conflit hybride
f ← propag(⊥) ;

1 Ψ← explication(f,⊥) ;
2 while ∣{l ∈ Ψ | level(l) = d}∣ > 1 do
3 l = arg maxl∈Ψ(r(l)) ;
4 f ← propag(l) ;

Ψ← Ψ ∪ {q ∣ q ∈ explication(f, l) ∧ n(q) > 0} ∖ {l} ;
5 return Ψ ;

façon retardée (sur demande) ou bien au moment de la propagation. Chaque propa-
gateur a la liberté d’adopter un mode de génération d’explications approprié selon les
spécificités de la contrainte en question. D’autre part, la génération des atomes peut
également s’effectuer d’une façon proactive (avant de commencer la recherche) ou bien
d’une façon retardée (juste avant d’apprendre les clauses). Dans tous les cas, tous les
atomes générés doivent être associés à des clauses qui encodent les différentes relations
entre ces atomes. Par exemple, si on génère dès le début tous les atomes possibles associés
à une variables x telle que D(x) = [l, u], il va falloir ajouter les clauses suivantes pour
tout d ∈ [l, u] : ¬Jx ≤ dK ∨ Jx ≤ d + 1K ; ¬Jx = dK ∨ Jx ≤ dK ;¬Jx = dK ∨ ¬Jx ≤ d − 1K ;Jx = dK ∨
¬Jx ≤ dK ∨ Jx ≤ d − 1K ;Jx = lK ∨ ¬Jx ≤ lK ;Jx = uK ∨ Jx ≤ u − 1K.

C.3 Heuristiques de branchement pour le problème de car-
sequencing

Les premières descriptions du problème de car sequencing remontent aux années 80 [102,
44]. Nous disposons d’un nombre de véhicules à fabriquer. Tous les véhicules sont issues
d’un modèle de base auquel on ajoute différentes options (climatisation, toit ouvrant,
etc). Ainsi, les voitures sont regroupées par classe (chacune requiert un ensemble d’op-
tions prédéfinies). Le nombre de voitures par classe est fixé. Des stations de travail
dédiées à la réalisation des options sont placées sur la chaîne d’assemblage (une station
de travail par option). Les équipes de travail sont placées sur chaque station et une limite
de temps est imposée pour installer l’option spécifique. Toutefois, les voitures deman-
dant une certaine option ne doivent pas être groupées ensemble, sinon la station ne sera
pas capable d’installer toutes les options.

Modélisation

Nous nous sommes basés sur le modèle standard implémenté avec Ilog-Solver 6.7. Ce
modèle comporte n variables entières représentant les classes de véhicules de chaque po-
sition dans la ligne d’assemblage et nm variables booléennes yji représentant le fait que
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le véhicule placé en iieme position nécessite l’option j. La demande de chaque classe est
exprimée avec une contrainte de cardinalité globale (Gcc) et l’arc-consistance de cette
contrainte est réalisée avec Ilog Solver [110]. Quatre modélisations pour les contraintes
de capacité sont comparées (exprimant que pour chaque option j, chaque sous-séquence
de taille qj contient au plus pj variables d’option fixées à 1) associées aux contraintes
de demande de chaque option (déduites des contraintes de demande sur chaque classe).
La première modélisation (sum) comprend une simple décomposition en une séquence
de contraintes de somme pour les contraintes de capacité ainsi qu’une contrainte de
somme supplémentaire exprimant la demande. La seconde modélisation, (gsc) utilise
une contrainte de séquencement global Gsc [111] par option. La troisième, (amsc)
est une application de la procédure d’ac introduite dans la prochaine section pour la
contrainte AtMostSeqCard. Enfin, la quatrième modélisation, (amsc+gsc) combine
les contraintes AtMostSeqCard et Gsc.

Nouvelle structuration des heuristiques

Nous proposons de classifier les heuristiques de branchement selon quatre critères :

• Exploration : La manière d’explorer la ligne d’assemblage soit de manière lexico-
graphique (lex) soit depuis le milieu vers les bords (mid).

• Branchement : L’affectation d’une classe (class) ou d’une option (opt) à une posi-
tion dans la ligne.

• Sélection : Le paramètre d’évaluation pour les options. Cinq choix sont possibles :
la capacité pj/qj ; la demande résiduelle (doptj ) ; la charge δj = doptj .

qj

pj
; la marge

σj = n − (nj − δj) ; et le taux d’utilisation ρj = δj/nj (où nj représente le nombre
de positions libre dans la séquence pour l’option j).

• Agrégation : Lorsqu’on utilise un branchement de type class, on a besoin d’agréger
les scores des options pour chaque classe. Nous proposons d’utiliser les trois choix
suivants : la somme(≤∑) ; la somme euclidienne (≤Euc) ; et l’ordre lexicographique
(≤lex).

L’ensemble des heuristiques est noté par ⟨{class, opt},{lex,mid},{1, q/p, dopt, δ, n−σ, ρ},{≤∑
,≤Euc,≤lex}⟩.

Expérimentations

Nous considérons 3 groupes d’instances de la CSPLib [2] ont été considérés. Le pre-
mier groupe, appelé set1 par la suite, comporte 70 instances à 200 véhicules, toutes
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satisfiables. Dans le second groupe, il y a 9 instances de 100 véhicules réparties en 4
instances satisfiables, notées set2 et 5 instances insatisfiables, noté set3. Le troisième
groupe contient 30 instances de plus grande taille (jusqu’à 400 véhicules). Parmi elles,
nous considérons les 7 instances connues pour être satisfiables, notées set4.

Nous avons testé toutes les combinaisons possibles d’heuristiques et de modèles avec 5
graines de randomisation pour chaque instance. Ces tests ont montré en moyenne que :

• Le meilleur choix de branchement est celui basé sur les variables de classes

• L’exploration mid est légèrement meilleure que l’exploration lexicographique

• Le meilleur paramètre de sélection est celui basé sur la charge δ

• La fonction d’agrégation ≤∑ est légèrement meilleure que ≤lex et ≤Euc.

Notons que ces observations ne constituent pas nécessairement le meilleur choix pour
chaque groupe d’instances. On peut déterminer plutôt le meilleur choix pour chaque
groupe, appelé le choix parfait. Nous introduisons alors deux métriques d’évaluation
de critère appelé confiance et importance définit comme suit. La confiance du meilleur
choix en moyenne est définit par le quotient entre le meilleur choix en moyenne et le
choix parfait. De même, on peut considérer le pire choix pour chaque groupe et par
conséquence, introduite l’importance d’un critère comme le quotient entre le pire choix
et le choix parfait choix avec la formule 1 − pire

parfait .

La table C.1 présente les valeurs de confiance et d’importance pour chaque critère (y
compris la propagation). Cette table montre qu’il y a une grande confiance pour chaque
meilleur paramètre en moyenne. Toutefois, les critères de branchement et de sélection
sont beaucoup plus importants que les autres. On peut donc considérer les heuristiques
⟨class,{lex,mid}, δ,{≤∑,≤Euc,≤lex}⟩ comme les plus robustes.

Table C.1: confiance et importance pour chaque critère

confiance importance
Branchement 0.989 0.247
Sélection 0.995 0.231

Exploration 1.000 0.017
Agrégation 0.995 0.015
Propagation 0.996 0.217



Appendix C Résumé étendu 166

C.4 Propagation dans une classe de problèmes de séquen-
cement

Dans cette section, nous introduisons un algorithme de complexité temporelle optimale
pour effectuer la cohérence d’arc sur la contrainte AtMostSeqCard. Nous présentons
par la suite des expérimentations pour évaluer l’efficacité de nos propositions sur le
problème de car-sequencing. Enfin, nous décrivons deux adaptations de cet algorithme
avec des contraintes plus générales.

C.4.1 Propagation de la contrainte AtMostSeqCard

Soit p, q, d ∈ N et [x1, . . . , xn] une séquence de variables booléennes. La contrainte
AtMostSeqCard que nous proposons se définit par une conjonction d’une chaîne de
contraintes AtMost (i.e. de type ∑ql=1 xi+l ≤ p) avec une contrainte de cardinalité.

Definition C.1. AtMostSeqCard(p, q, d, [x1, . . . , xn]) ⇔

n−q

⋀
i=0

(
q

∑
l=1
xi+l ≤ p) ∧ (

n

∑
i=1
xi = d)

AtMostSeqCard peut être considérée comme un cas particulier d’autres contraintes
de séquence. Les meilleurs complexités de la littérature pour un filtrage complet de cette
contraintes sont de O(n3)[139], O(2qn) [139] et O(n2.log(n)) dans une branche de l’arbre
de recherche avec une initialisation de O(q.n2) [91]. Nous proposons un algorithme de
filtrage complet pour cette contrainte avec une complexité linéaire dans le pire cas, donc
optimale.

Cet algorithme se base sur une règle gloutonne qu’on appelle leftmost. Le rôle de
leftmost est de retourner une instanciation w qui maximise ∑ni=1 xi tout en respectant
les contraintes AtMost. Nous avons proposé une implémentation linéaire de leftmost

appelée leftmost_count retournant un vecteur L tel que L[i] représente le nombre de
1 ajoutés par leftmost de x1 à xi. De la même façon on définit le vecteur R comme
le résultat de leftmost_count sur la séquence [xn, . . . , x1]. L’Algorithme 4 détermine
l’ac de la contrainte AtMostSeqCard(p, q, d,[x1, . . . , xn]).

On établit dans les deux premières lignes de cet algorithme l’ac de la chaîne de contraintes
AtMost ainsi que la cardinalité ∑ni=1 xi = d. Ces deux procédures peuvent être implé-
mentées en temps linéaire. La suite de l’algorithme complète le filtrage. La complexité au
pire cas de l’Algorithme 4 est clairement O(n). Un exemple d’exécution de l’algorithme 4
pour p = 4, q = 8, d = 12 est donné dans la Figure C.2. Dans cette figure, la première ligne
représente les domaines courants, les points représentent des variables non instanciées.
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Algorithm 4: ac(AtMostSeqCard)
Data: [x1, . . . , xn], p, q, d
Result: ac on AtMostSeqCard(p, q, d, [x1, .., xn])

1 ac(⋀n−qi=0 (∑ql=1 xi+l ≤ p));
2 ac(∑ni=1 xi = d);
dres ← d −∑ni=1min(xi);
L← leftmost_count([x1, . . . , xn], p, q, d);
if L[n] = dres then

R ← leftmost_count([xn, . . . , x1], p, q, d);
foreach i ∈ [1, . . . , n] such that D(xi) = {0,1} do

3 if L[i] +R[n − i + 1] ≤ ub then D(xi) ← {0};
4 if L[i − 1] +R[n − i] < ub then D(xi) ← {1};

else if L[n] < dres then
5 return ⊥ ;

Figure C.2: AtMostSeqCard(4,8,12, [x1, . . . , x22])
.

D(xi) . 0 . . . . . . 0 1 0 . . . . . . . . . . 1
Ð→w [i] 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1
←Ðw [i] 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1
L[i] 0 1 1 2 3 4 4 4 4 4 4 4 5 6 7 7 7 7 8 8 9 10 10

R[n − i + 1] 10 9 9 9 8 7 6 6 6 6 6 6 5 4 3 3 3 3 3 2 1 0 0
L[i] +R[n − i + 1] 11 10 11 12 12 11 10 10 10 10 10 11 11 11 10 10 10 11 11 11 11 10
L[i − 1] +R[n − i] 9 10 10 10 10 10 10 10 10 10 10 9 9 9 10 10 10 10 10 9 9 10

ac(D(xi)) 1 0 . . . . 0 0 0 1 0 1 1 1 0 0 0 . . 1 1

Les deux lignes suivantes donnent les instanciations Ð→w et ←Ðw obtenues par leftmost

de gauche à droite et de droite à gauche. Les troisième et quatrième lignes donnent les
valeurs de L et de R. Les cinquième et sixième ligne correspondent à l’application de
nos des propositions de filtrage. La septième ligne donne l’arc-consistance.

C.4.2 Expérimentations avec le problème de car-sequencing

Nous présentons dans cette section les résultats expérimentaux de l’algorithme de pro-
pagation appliqué au problème de car-sequencing. Ces expériences ont été effectuées sur
un processeur Intel Xeon à 2.67GHz sous Linux. Les développements ont été faits avec
Ilog-Solver 6.7 avec 5 exécutions aléatoires de chaque instance de 20 minutes.

Pour comparer l’efficacité relative des propagateurs, les résultats sont donnés en moyenne
sur plusieurs heuristiques pour réduire le biais que celles-ci pourraient introduire. Pour
chaque ensemble de données, #sol représente le nombre d’instances résolues. Puis, on
donne le temps CPU (time) en secondes et le nombre de retour-arrière (avg bts) (tous les
deux calculés en moyenne sur le nombre de solutions obtenues, le nombre d’instances et
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d’heuristiques) ainsi que le nombre maximum de retour-arrière (max bts). Les résultats
(en termes de #sol) de la meilleure méthode sont notés en gras.

Nous considérons la même configuration qu’en Section C.3. En particulier, nous utilisions
les mêmes heuristiques et les 4 modèles de propagation sum, gsc, amsc et amsc+gsc.
Les résultats sont présentés dans la Table C.2. Dans tous les cas, la meilleure valeur
en terme de nombre de problèmes résolus est obtenue soit avec amsc+gsc (pour les
instances de petite taille ou insatisfiables) ou avec amsc seul (pour les instances de plus
grande taille set2 et set4). Globalement, on note que Gsc permet d’élaguer beaucoup
plus de valeurs incohérentes que AtMostSeqCard. Toutefois, la propagation de Gsc
ralentit très significativement la recherche (on a observé un facteur 12.5 sur le nombre de
nœuds explorés par seconde). Par ailleurs, les niveaux de filtrage obtenus par ces deux
méthodes sont incomparables. En conséquent combiner ces deux contraintes est toujours
bénéfique plutôt que d’utiliser Gsc seule.

Table C.2: Car-sequencing : évaluation des méthodes de filtrage

Méthodes set1 (70 × 34 × 5) set2 (4 × 34 × 5) set3 (5 × 34 × 5) set4 (7 × 34 × 5)
#sol avg bts max bts time #sol avg bts max bts time #sol avg bts max bts time #sol avg bts max bts time

sum 8480 231.2K 25.0M 13.93 95 1.4M 15.3M 76.60 0 - - > 1200 64 543.3K 13.7M 43.81
gsc 11218 1.7K 2.3M 3.60 325 131.7K 1.5M 110.99 31 55.3K 218.5K 276.06 140 25.2K 321.9K 56.61

amsc 10702 39.1K 13.8M 4.43 360 690.8K 10.2M 72.00 16 40.3K 83.4K 8.62 153 201.4K 3.2M 33.56
amsc+gsc 11243 1.2K 1.1M 3.43 339 118.4K 1.0M 106.53 32 57.7K 244.7K 285.43 147 23.8K 371.0K 66.45

C.4.3 Extensions

Nous avons adapté le filtrage de AtMostSeqCard pour deux contraintes plus géné-
rales. La première contrainte AtMostSeq∆Card remplace simplement la demande d
par une variable entière δ, alors que la deuxième contrainte MultiAtMostSeqCard
est une conjonction de m AtMostSeqCard portant sur la même séquence avec la
même demande. Nous avons proposé un filtrage complet de MultiAtMostSeqCard
en O(m.n) et de AtMostSeq∆Card en O(n). Nos expérimentations sur un cas parti-
culier de problèmes de confection d’horaires pour des équipes (crew-rostering) ont montré
l’efficacité du filtrage complet pour MultiAtMostSeqCard.

C.5 Apprentissage de clauses

Nous présentons dans cette section nos contributions liées à l’apprentissage de clauses.
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C.5.1 Apprentissage de clauses pour le car-sequencing

Nous nous intéressons dans cette partie à l’aspect apprentissage de clauses pour résoudre
le problème de car-sequencing en utilisant l’algorithme de filtrage de AtMostSeqCard
que nous avons proposé.

C.5.1.1 Explications pour AtMostSeqCard

Afin d’utiliser AtMostSeqCard dans un solveur hybride, il est nécessaire d’expliquer
la contrainte sous forme de règles de propagations pour tous les changements possibles
provoqués par algorithme 4. Pour cela, nous classifions ces changements en deux types :
d’une part on a les changements dus au filtrage des contraintes AtMost ou de cardinalité
(lignes 1 et 2) et d’autre part, on a les nouvelles règles de filtrage (lignes 3, 4 et 5).

Le premier cas d’explication est assez simple (i.e. pour AtMost et cardinalité). Il suffit
de renvoyer l’ensemble des variables assignées à 1 pour expliquer les affections de type
Jx = 0K ; et l’ensemble des variables assignées à 0 pour expliquer les affections de type
Jx = 1K. L’explication des échecs s’effectue par exemple à travers la règle de propagation :

⋀D(xi)={1} Jxi = 1K⇒ ⊥

pour les contraintes AtMost et

⋀D(xi)={1} Jxi = 1K⇒ ⊥ ou ⋀D(xi)={0} Jxi = 0K⇒ ⊥

pour la contrainte de cardinalité.

Nous montrons dans la suite comment expliquer les nouvelles règles de filtrage de l’algo-
rithme 4. Nous allons montrer dans un premier lieu comment expliquer l’échec provoqué
à la ligne 5, puis comment utiliser cette dernière pour expliquer le filtrage des lignes 3, 4.

Explication pour l’échec L’explication de cet échec est calculé en deux étapes.
D’abord on considère l’ensemble des affectations comme raison initiale. Dans un deuxième
temps, on utilise une procédure linéaire qui permet de réduire la raison initiale en sup-
primant certaines affectations.

On va utiliser maxD(i) pour noter la cardinalité maximale des q sous-séquences conte-
nant xi au début de la ieme itération de leftmost. Nous allons aussi mentionner le
domaine sur les vecteur finaux Ð→w and L avec la notation Ð→wD and LD respectivement.
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Soit [x1, . . . , xn] une séquence de variables booléennes sujette à la contrainte
AtMostSeqCard(p, q, d, [x1, . . . , xn]). Nous associons tout domaine D pour x1 . . . xn

à un domaine plus large D̂ défini de la façon suivante :

D̂(xi) = {0,1} if D(xi) = {0} ∧maxD(i) = p
D̂(xi) = {0,1} if D(xi) = {1} ∧maxD(i) ≠ p
D̂(xi) = D(xi) otherwise

Lemme C.5.1. Ð→w
D̂
= Ð→wD.

Théorème C.5.1. Si ⋀D(xi)={1}Jxi = 1K ∧⋀D(xi)={0}Jxi = 0K⇒ ⊥ est une explication va-
lide de l’échec, alors ⋀D̂(xi)={1}Jxi = 1K ∧⋀D̂(xi)={0}Jxi = 0K⇒ ⊥ est également valide.

Le Théorème C.5.1 nous donne une procédure linéaire pour réduire l’explication naïve.
En effet, il suffit de lancer leftmost_count une fois pour calculer les valeurs de maxD,
puis construire D̂ pour avoir l’explication réduite.

Explications pour les règles de filtrage Nous utilisons un mécanisme assez simple
pour expliquer les nouvelles règles de filtrage. Supposons que le filtrage Jx ≠ vK a eu lieu
à la ligne 3 ou 4 de l’algorithme 4. Pour expliquer Jx ≠ vK, on calcule l’explication Ψ⇒ ⊥
de l’échec provoqué si on assigne v à x puis renvoie Ψ ∖ Jx = vK comme explication de
Jx ≠ vK.

C.5.1.2 Résultats expérimentaux

Nous comparons différents modèles hybrides avec le modèle PPC pour résoudre le pro-
blème de car-sequencing. Les instances sont organisées en 3 catégories : sat[easy] (74
instances satisfiables), sat[hard] (7 instances satisfiable) et unsat (28 instances non-
satisfiable). Toutes les expériences ont été effectuées sur des processeurs Intel Xeon CPUs
2.67GHz sous Linux. Pour chaque instance, nous avons lancé 5 tests randomisés avec un
temps limite de 20 minutes. Nous avons testé les modèles suivants :

• Mistral comme solveur hybride SAT/PPC avec la nouvelle explication de AtMostSeqCard.
Nous avons testé les 4 heuristiques de branchement suivante :

1. hybrid (VSIDS) avec VSIDS ;

2. hybrid (Slot) utilise ⟨opt,mid, δ,∅⟩ comme heuristique (voir section C.3).

3. hybrid (Slot → VSIDS) utilise d’abord hybrid (Slot) puis change après 100
redémarrages vers VSIDS.

4. hybrid (VSIDS → Slot) l’inverse de hybrid (Slot → VSIDS).

• Minisat-2.2.0 avec les trois modèles SAT CNFA, CNFS , CNFA+S proposés dans [5].
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• PBO-clauses : Un modèle pseudo-booléen implémenté dans MiniSat+ [49] basé sur
un encodage SAT.

• PBO-cutting planes : Un deuxième modèle pseudo-booléen implémenté dans SAT4J [19]
basée sur les coupes [45].

• pure-CP : Le modèle PPC sans apprentissage en utilisant AtMostSeqCard et
la même heuristique que hybrid (Slot).

La table C.3 présente un résumé pour ces tests. Pour chaque groupe d’instances, nous
présentons le nombre total de tests réussis (#suc), le nombre d’échecs rencontrés (fails)
et le temps CPU (time) en secondes. Nous montrons les statistiques des meilleures
configurations (par rapport à #suc) en gras.

En considérant la moyenne générale entre les deux premiers groupes, la meilleure confi-
guration est celle qui utilise l’apprentissage de clauses avec l’heuristique spécifique à
ce problème. Cette étude montre que la propagation est très importante pour trouver
rapidement des solutions en évitant les branches inutiles de l’arbre de recherche. Pour
prouver l’insatisfiabilité, les modèles purement SAT sont de loin les meilleurs configu-
rations. En ce qui concerne les modèles hybrides, on note qu’elles sont beaucoup plus
performantes que le modèle PPC. Ce dernier n’est pas capable de trouver des preuves
pour la moindre instance. Ces résultats montrent clairement que l’apprentissage de la
clauses est le facteur le plus important pour prouver l’insatisfiabilité.

Table C.3: Apprentissage de clauses appliqué au Car-sequencing

Méthode sat[easy] (74 × 5) sat[hard] (7 × 5) unsat (28 × 5)
#suc avg fails time #suc avg fails time #suc avg fails time

CNFA 370 2073 1.71 28 337194 282.35 85 249301 105.07
CNFS 370 1114 0.87 31 60956 56.49 65 220658 197.03

CNFA+S 370 612 0.91 34 32711 36.52 77 190915 128.09
hybrid (VSIDS) 370 903 0.23 16 207211 286.32 35 177806 224.78

hybrid (VSIDS → Slot) 370 739 0.23 35 76256 64.52 37 204858 248.24
hybrid (Slot → VSIDS) 370 132 0.04 34 4568 2.50 37 234800 287.61

hybrid (Slot) 370 132 0.04 35 6304 3.75 23 174097 299.24
pure-CP 370 43.06 0.03 35 57966 16.25 0 - -

PBO-clauses 277 538743 236.94 0 - - 43 175990 106.92
PBO-cutting planes 272 2149 52.62 0 - - 1 5031 53.38

C.5.2 Le problème de redondance de clauses et l’apport de la contrainte
DomainFaithfulness

Nous décrivons d’abord la problématique de redondance liée à la génération retardée
d’atomes. Dans cette approche, quand un atome Jx ≤ uK doit être généré, on ajoute les
clauses ¬Jx ≤ aK ∨ Jx ≤ uK et ¬Jx ≤ uK ∨ Jx ≤ bK où a et b sont les bornes les plus proches
de u telles que a < u < b et toutes les deux ont déjà un atome généré. Après l’ajout de



Appendix C Résumé étendu 172

ces clauses, ¬Jx ≤ aK∨ Jx ≤ bK devient clairement une clause redondante. Nous montrons
dans ce paragraphe comment éviter cette redondance.

Au lieu de générer des clauses pour encoder les différentes relations entre les atomes, nous
proposons d’utiliser une nouvelle contrainte appelé DomainFaithfulness qui assure le
même niveau de cohérence. Soit x une variable ayant comme domaine D(x) = [l, u],
[x1, . . . , xn] une séquence de variables booléennes (générées d’une façon retardée) et
[v1, . . . , vn] une séquence de valeurs tel que xi est la variable qui représente Jx ≤ viK.
Nous définissons la contrainte DomainFaithfulness de la façon suivante :

Definition C.2. DomainFaithfulness(x, [x1, . . . , xn], [v1, . . . , vn]) ∶

∀i, xi ↔ x ≤ vi

Pour chaque variable x, nous utilisons une contrainte DomainFaithfulness (notée par
DomainFaithfulness(x)). Initialement, la contrainte DomainFaithfulness(x) ne
concerne que la variable x. Par la suite, chaque fois qu’on génère un atome xi⇔ Jx ≤ viK,
on ajoute xi à la contrainte et sa structure interne est mise à jour.

La contrainte DomainFaithfulness a un double rôle. D’abord, elle simule UP comme
si les clauses de domaines étaient générées d’une façon proactive. Ensuite, elle assure une
cohérence entre le domaine de la variable x et tout les atomes xi. Pour cela, il suffit de
changer la borne supérieure (respectivement inférieure) de x à vi (respectivement vi +1)
s’il existe xi ⇔ Jx ≤ viK avec D(xi) = {1} (respectivement D(xi) = {0}) et vi < max(x)
(respectivement vi >=min(x)).

C.5.3 Apprentissage dans les problèmes d’ordonnancement disjonctifs

Nous étudions dans cette partie l’apport de l’apprentissage de clauses pour la résolution
des problèmes d’ordonnancement disjonctifs. Dans cette famille de problèmes, chaque
ressource (ou machine) est caractérisée par une contrainte d’accès exclusif. En d’autres
termes, deux tâches qui demandent la même machine ne peuvent pas s’exécuter en
même temps. L’aspect filtrage de contraintes a été largement étudié dans la littérature
(voir par exemple [10]). Nous nous intéressons ici plutôt à l’apprentissage de clauses
qu’à la propagation. Pour cela, nous utilisons un modèle basé sur une décomposition en
contraintes réifiées simples. Ce choix de modélisation a été l’objet d’une analyse détaillée
dans [117, 71] où il a été montré que ce modèle est compétitif et parfois meilleur que des
modèles utilisant des méthodes de propagation plus sophistiquées. Nous considérons le
problème d’ordonnancement d’atelier de type «Job shop».
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C.5.3.1 Modélisation

Nous considérons la définition d’un job comme un ensemble de tâches. Soit n,m ∈ N∗,
J = {Ji ∣ 1 ≤ i ≤ n} un ensemble de jobs et M = {Mk ∣ 1 ≤ k ≤ m} un ensemble de
machines. Chaque job Ji est défini par m tâches {Tik ∣ 1 ≤ k ≤ m} tel que Tik nécessite
la machine k. Inversement, chaque machine Mk est associée à n tâches {Tik ∣ 1 ≤ i ≤ n}.
Chaque tâche Tik a une durée de traitement pik au court de la quelle la machine Mk est
allouée exclusivement au job i.

Soit tik la variable représentant le début de la tâche Tik.

Pour tout k ∈ [1,m], la contrainte de ressource unaire associée à la machine Mk peut
être exprimée de la façon suivante : ∀i ∈ [1, n],∀j ∈ [1, n] tel que i < j

tik + pik ≤ tjk ∨ tjk + pjk ≤ tik (C.1)

Nous utilisons une décomposition simple utilisant des contraintes réifiées avec O(n2)
variables booléennes δkij par machine Mk liée avec les variables de tâches de la façon
suivante : ∀i ∈ [1, n],∀j ∈ [1, n], i < j

δkij =
⎧⎪⎪⎨⎪⎪⎩

0 ⇔ tik + pik ≤ tjk
1 ⇔ tjk + pjk ≤ tik

(C.2)

Dans ce qui suit, nous utilisons la notation Disjunctive(b, x, y, dx, dy) pour noter la
contrainte exprimée dans C.2 instanciée à (δkij , tik, tjk, pik, pjk).

En plus des contraintes de type Disjunctive, ce problème nécessite pour chaque job un
ordre total sur ses tâches. Nous allons donc supposer que Tikj

est la jeme tâche deman-
dée par le job Ji. L’ordre des tâches pour chaque job est exprimée par des contraintes
de précédence. Soit x, y deux variables et d un entier. La contrainte de précédence
Precedence(x, y, d) est définie de la façon suivante : x + d ≤ y.

Le problème de job shop à minimisation de makespan peut etre défini comme suit :

minimiser Cmax tel que :

∀i ∈ [1, n] ∶ Precedence(tikm ,Cmax, pikm)
∀k ∈ [1,m],∀i ∈ [1, n],∀j ∈ [1, n], i < j ∶ Disjunctive(δkij , tik, tjk, pik, pjk)

∀i ∈ [1, n],∀a ∈ [1,m − 1] ∶ Precedence(tikj
, tikj+1 , pikj

)
(C.3)
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Stratégie de recherche Nous utilisons la même stratégie de recherche proposée
dans [71, 69, 70]. D’abord les décisions sont prises uniquement sur les variables de dis-
jonction. Chaque décision va alors fixer un sens de précédence entre deux tâches parta-
geant une même ressource. Le choix de variables sera celui de taskDom/tw [69]. Le choix
de valeur pour la variable δkij recommandée par taskDom/tw est basée sur l’approche
guidée par les solutions (initialement proposé dans [12]). L’exploration de l’arbre de
recherche s’effectue en deux phases. Une phase de recherche binaire pour améliorer les
bornes initiales du makespan Cmax et une phase de “Branch and Bound” classique pour
minimiser la borne supérieure de Cmax.

Durant la première phase, trois bornes
¯
Cmax, ˜

Cmax et C̄max sont utilisées, représentant
respectivement, la borne inférieure “prouvée”, la borne inférieure “approximée” et la
borne supérieure. Chaque itération correspond au problème de décision dont le but est
de prouver l’existence d’un ordonnancement qui satisfait toutes les contraintes avec un
makespan inférieur ou égal à Cmax = ⌊ ˜

Cmax+C̄max

2 ⌋. Si l’insatisfiabilité de ce problème est
prouvée, alors les valeurs

¯
Cmax et

˜
Cmax sont mises à jour, la nouvelle valeur pour à la

fois
¯
Cmax et

˜
Cmax est Cmax + 1. Si au contraire une solution est trouvée, alors la valeur

de C̄max devient Cmax. Dans le but d’avoir une garantie sur la durée maximale de l’étape
de dichotomie, on impose une limite de temps pour chaque résolution du problème de
décision ci-dessus. Lorsque la limite de temps est dépassée, alors seulement la valeur de

˜
Cmax est mise à jour et devient Cmax + 1.

La phase de “Branch and Bound” commence alors avec les meilleurs bornes [
¯
Cmax, C̄max]

obtenues durant la recherche binaire.

C.5.3.2 Apprentissage de clauses

Nous avons implémenté, d’une manière similaire à [52], un solveur hybride SAT/PPC
supportant la génération retardée d’explications et d’atomes. Cependant, nous propo-
sons une nouvelle méthode d’analyse de conflit qui garantit un apprentissage de clauses
portant uniquement sur les variables booléennes de disjonction.

Rappelons que les décisions prises durant la recherche concernent uniquement les va-
riables booléennes de disjonctions. Ainsi, tout littéral de borne (i.e. de type Jx ≤ vK
ou Jx ≥ vK) qui apparaît dans l’analyse de conflit possède nécessairement une raison
composée uniquement de littéraux portant sur les variables booléennes de disjonction.
En exploitant cette propriété, nous proposons de remplacer chaque littéral de borne à
générer par son explication. Ce processus est répété de manière itérative jusqu’à ce qu’il
n’y ait plus de littéraux de bornes à expliquer.
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L’avantage de cette méthode est que les clauses qu’on apprend ne contiennent que des
variables booléennes de disjonction. Par conséquence, il n’y a aucune génération d’atomes
lors de la recherche.

C.5.4 Résultats expérimentaux

Nous avons implémenté nos propositions au sein du solveur Mistral-2.0. Toutes les ex-
périences ont été réalisées sur des processeurs Intel i7-4770 sous Ubuntu 12.04. Nous
comparons le modèle précédent avec ou sans apprentissage de clauses. L’heuristique
taskDom/tw [69] est testée pour les deux modes (avec ou sans apprentissage). L’heuris-
tique vsids [95] est également utilisée comme une autre heuristique de branchement avec
les modèles hybrides. Nous utilisons un redémarrage géométrique [144] et une stratégie
d’oubli de clauses basée sur la méthode «Size-Bounded Randomized» [75].

Différent modèles sont expérimentalement testés. Ils sont organisés de la façon suivante :

• Mistral(task) : Le modèle PPC sans apprentissage en utilisant taskDom/tw comme
heuristique.

• Hybrid(θ, σ) : Le modèle hybride SAT/PPC avec :

– θ ∈ {vsids, task} l’heuristique de branchement.

– σ : égale à disj si on utilise la nouvelle méthode d’analyse de conflit et lazy
si on utilise la génération retardée d’atomes via DomainFaithfulness.

Nous utilisons deux types de jeux de données largement étudiés dans la littérature :
les instances de Lawrence [86] et les instances de Taillard [134]. Les dernières sont
beaucoup plus difficiles et contiennent encore 32 instances ouvertes. Nous avons lancé
toutes les instances avec 10 graines différentes pour le générateur de nombres aléatoires.
Les expériences sont organisées en deux parties : une qui respecte la description que
nous avons donnée de la stratégie de recherche et l’autre conçue spécifiquement pour
améliorer les bornes inférieures pour les instances ouvertes de la littérature.

C.5.4.1 Minimisation du makespan

Nous utilisons le pourcentage moyen d’écart (à l’optimum) PRD comme mesure d’effi-
cacité. Le PRD d’un modèle m pour une instance C est calculé avec la formule : 100
∗Cm−Cbest

Cbest
, avec Cm le makespan minimal trouvé par le modèle m pour cette instance

et Cbest le meilleur makespan trouvé par tous les modèles pour l’instance C. Le PRD
moyen permet d’agréger les valeurs d’objectif obtenues par un algorithme donné sur un
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ensemble d’instance lorsque celles ci ne sont pas normalisées. La valeur minimale possible
d’un PRD est 0 et signifie que le modèle renvoie toujours le meilleur makespan.

En ce qui concerne les instances de Lawrence, le modèle Hybrid(vsids, disj) a le meilleur
PRD avec une valeur de 0,01 et le plus grand pourcentage de solutions optimales (92%).
Le seul cas où le modèle sans apprentissage (i.e. Mistral(task)) a un meilleur makespan
est avec l’instance la27 mais sans pour autant avoir la meilleure moyenne pour cette
instance. A titre de comparaison entre les différents modèles hybrides, nous avons observé
essentiellement que, indépendamment de l’heuristique utilisée, l’apprentissage basé sur
la nouvelle méthode (i.e. disj) est nettement meilleur que celui basé sur la génération
retardée d’atomes.

Pour les instances de Taillard, le choix du mode d’apprentissage ne semble pas avoir
un impact significatif bien que la nouvelle méthode d’apprentissage était légèrement
meilleure selon le PRD. Le modèle PPC (i.e. Mistral(task)) était complètement dominé
par les modèles hybrides avec un PRD de 1.5474 face à une moyenne de 0.9487 pour les
modèles Hybrid(vsids, θ) et une moyenne de 0.30185 pour les modèles Hybrid(task, θ).
Selon le PRD globale moyen, les meilleures configurations pour ces instances sont celles
qui utilisent l’heuristique taskDom/tw. Ces résultats ne confirment pas nos observations
précédentes avec les instances de Lawrence. Nous proposons donc de classer les résultats
selon la taille des instances. Nous utilisons le nombre de disjonctions comme mesure de
la taille d’instance.

Dans la table C.4, chaque ligne résume des statistiques liées à un ensemble d’instances
de même taille (i.e. nombre de disjonctions). On donne pour chaque modèle : la vitesse
d’exploration en termes de noeuds explorés par seconde (Nodes/s) ; la taille moyenne
des clauses (Size) ; et une métrique de performance M égale à <%O,T> (%O est le
pourcentage d’optimalité et T est temps CPU moyen) avec l’ensemble d’instances tai-
01-10 et le PRD moyen pour le reste d’instances. Les meilleurs valeurs de la métrique
M sont mises en gras.

Table C.4: Job Shop : Statistiques

Mistral(task) Hybrid(vsids, disj) Hybrid(vsids, lazy) Hybrid(task, disj) Hybrid(task, lazy)
M Nodes/S Size M Nodes/S Size M Nodes/S Size M Nodes/S Size M Nodes/S Size

%O T %O T %O T %O T %O T
tai01-10 90 599 8879 0 90 488 5820 11 86 1118 1140 18 90 593 4286 15 78 1330 1118 28

PRD PRD PRD PRD PRD
tai11-20 1.1287 6784 0 0.2236 3730.18 32.08 0.9065 406.70 45.36 0.3876 2549.06 42.23 0.7930 426.78 70.68
tai21-30 0.6368 3907.64 0 0.2612 2339.66 34.57 1.0504 327.92 50.13 0.2088 1656.24 45.70 0.5665 329.60 74.32
tai31-40 1.7568 3907.42 0 0.8185 2538.44 52.96 0.7786 411.74 67.85 0.5526 1493.04 76.86 0.4251 429.30 111.84
tai41-50 2.0680 2489.94 0 0.7728 1463.14 70.58 0.5424 312.76 87.64 0.3398 955.22 98.38 0.8340 309.36 139.34
tai51-60 2.1032 1845.90 0 2.2353 2586.70 57.43 2.3825 514.50 44.82 0.2560 1090 97.88 0.1425 540.38 87.12
tai61-70 3.0303 1377.26 0 2.6539 2049.90 64.75 2.4276 489.38 52.17 0.3708 859.52 125.51 0.2557 475.68 127.73
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Les résultats de la table C.4 montrent clairement une corrélation entre la taille de l’ins-
tance et le choix de l’heuristique. En effet, vsids est le meilleur choix avec les instances
de petites ou moyennes tailles (tai01-10 ou même Lawrence) alors que task devient de
plus en plus efficace quand la taille de l’instance augmente. En particulier, avec les très
grandes instances, ce sont les deux modèles Hybrid(task, σ) qui dominent clairement les
autres avec une meilleur performance pour le mode lazy.

En ce qui concerne les deux modes d’apprentissage, il est clair que le mode lazy ra-
lentit considérablement la vitesse d’exploration. Par exemple, avec le groupe tai-11-20,
Hybrid(vsids, disj) explore 3730.18 noeuds par seconde alors que Hybrid(vsids, lazy)
explore 406.70 noeuds par seconde. Nous pensons que ce phénomène est causé par le
temps mis pour propager les contraintes DomainFaithfulness qui ne sont pas pré-
sentes dans la nouvelle méthode d’analyse de conflit. De la même façon, nous avons re-
marqué qu’avec la nouvelle méthode d’analyse de conflit, l’heuristique task est constam-
ment plus lente que vsids. Par exemple, la vitesse d’exploration passe de 3730.18 avec
Hybrid(vsids, disj) à 2549.06 avec Hybrid(task, disj) pour le groupe d’instances tai-11-
20.

Pour résumer, nous avons constaté expérimentalement que le modèle Hybrid(vsids, disj)
est le meilleur choix avec des instances de taille petite ou moyenne et que Hybrid
(task, lazy) est de loin la meilleure configuration avec les grandes instances. De plus,
un branchement de type taskDom/tw semble plus efficace que vsids lorsque la taille
de l’instance augmente. Finalement, la nouvelle méthode d’analyse de conflit que nous
avons proposé constitue une véritable alternative d’apprentissage.

Nous nous intéressons maintenant à la possibilité d’améliorer les bornes inférieures des
instances Taillard encore ouvertes. Nous avons donc légèrement changé le comportement
de la recherche binaire pour favoriser l’amélioration de la borne inférieure. La seule
différence consiste à considérer le problème de décision comme satisfiable dès qu’on
atteint la limite de l’itération en cours. De cette façon, la recherche binaire va essayer
d’améliorer le plus possible la borne inférieure courante.

Dans ces expérimentations, le modèle Hybrid(vsids, disj) a dominé clairement les autres
modèles. Toutes les meilleures bornes sont trouvées par cette configuration. Il est impor-
tant de noter que ces valeurs améliorent nettement l’état de l’art pour quelques instances.
Grâce à notre nouvelle méthode d’analyse de conflit, nous avons pu trouver de nouvelles
bornes inférieures pour sept instances. La table C.5 montre pour chacune de ces instance
la nouvelle borne (new) et l’antienne meilleure valeur (old).
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Table C.5: Nouvelles bournes inférieures

tai13 tai21 tai23 tai25 tai26 tai29 tai30
new old new old new old new old new old new old new old
1305 1282 1613 1573 1514 1474 1543 1518 1561 1558 1573 1525 1508 1485

C.6 Conclusion

Nous avons contribué à la résolution des problèmes de séquencement et d’ordonnance-
ment dans un contexte hybride SAT/PPC. Nous avons présenté une étude approfondie
des heuristiques de branchement pour le problème de séquencement de chaîne d’as-
semblage de voitures. Dans un deuxième temps, nous avons étudié les mécanismes de
propagation pour une classe de contraintes de séquencement à travers la conception de
plusieurs algorithmes de filtrage. En particulier, nous avons proposées un algorithme de
filtrage optimal, complet et efficace pour la contrainte AtMostSeqCard. Ensuite, nous
avons développé un algorithme linéaire de génération d’explications réduites pour cette
contrainte ce qui permet de l’utiliser dans un solveur hybride et bénéficier des avantages
offerts par SAT. Finalement, nous avons proposé de nouvelles alternatives d’analyse de
conflit pour les problèmes d’ordonnancement disjonctifs. Ces nouvelles méthodes ont
permis d’améliorer l’état-de-l’art d’un nombre d’instances ouvertes de la littérature.

Différentes perspectives sont ouvertes à l’issue de ces travaux de recherche. D’abord, il
est intéressant de voir l’apport de AtMostSeqCard avec d’autres types de problème
de séquencement comme la planification d’horaires de travail. Ensuite, les nouvelles mé-
thodes d’analyse de conflit que nous avons proposé peuvent facilement être adaptées avec
d’autres problèmes de décision et d’optimisation combinatoire. Finalement, nous pensons
que la relation entre décomposition de contraintes, propagation globale et apprentissage
de clauses nécessite encore des recherches à la fois théoriques et expérimentales.
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