a2 +?-T QT ; iBQM- M/ H2 "MBM; BM b2[n
b+?2/mMHBM; T Q#H2KDb
JQ? K2/ aB H

hQ +Bi2 i?Bb p2 " bBQM,

JQ? K2/ aB H X a2 “+?-T'QT ; iBQM- M/ H2 "MBM; BM b2[m2M+BM; M
AMi2HHB;2M+2 (+bX A)X ALa /2 hQmHQmb2- kyR8X 1M;HBb?X LLh, k'

> G A/, i2H@yRRe9kNR
2iiTbh,ffi2HX "+?Bp2b@Qmp2 i2bX7 fi2H@YRREe
am#KBii2/ QM k9 CmM kyR8

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X

Abstract

Sequencing and scheduling involve the organization in timeof operations subject to
capacity and resource constraints. We propose in this disstation several improvements
to the constraint satisfaction and combinatorial optimization methods for solving these
problems. These contributions concern three di erent aspets: how to choose the next
node to explore (search)? how much, and how e ciently, one ca reduce the search
space (propagation)? and what can be learnt from previous féures (learning)?

Our contributions start with an empirical study of search heuristics for the well known
car-sequencing problem. This evaluation characterizes # key aspects of a good heuris-
tic and shows that the search strategy is as important as the popagation aspect in this
problem. Second, we carefully investigate the propagatioraspect in a class of sequenc-
ing problems. In particular, we propose an algorithm for It ering a type of sequence
constraints which worst case time complexity is lower than tie best known upper bound,
and indeed optimal. Third, we investigate the impact of clause learning for solving the
car-sequencing problem. In particular, we propose reduceéxplanations for the new
Itering. The experimental evaluation shows compelling evMdence supporting the impor-
tance of clause learning for solving e ciently this problem. Next, we revisit the general
approach of lazy generation for the Boolean variables encandg the domains. Our propo-
sition avoids a classical redundancy issue without computonal overhead. Finally, we
investigate con ict analysis algorithms for solving disjunctive scheduling problems. In
particular, we introduce a novel learning procedure tailored to this family of problems.
The new con ict analysis di ers from conventional methods by learning clauses whose
size are not function of the scheduling horizon. Our comprelinsive experimental study
with traditional academic benchmarks demonstrates the im@ct of the novel learning
scheme that we propose. In particular, we nd new lower bound for a well known
scheduling benchmark.

Keywords: Arti cial intelligence, constraint programming, Boolean satis ability, com-
binatorial optimization, sequencing, scheduling.

Résumé

Les problémes de séquencement et d'ordonnancement formeunhe famille de problemes
combinatoires qui implique la programmation dans le temps ¢un ensemble d'opérations
soumises a des contraintes de capacités et de ressources.ubl@ontribuons dans cette
these a la résolution de ces probléemes dans un contexte de isfiiction de contraintes
et d'optimisation combinatoire. Nos propositions concerrent trois aspects di érents :
comment choisir le prochain n+ud a explorer (recherche) ? camment réduire e cacement
I'espace de recherche (propagation) ? et que peut-on apprdre des échecs rencontrés lors
de la recherche (apprentissage) ?

Nos contributions commencent par une étude approfondie dedeuristiques de bran-
chement pour le probléme de séquencement de chaine d'assdage de voitures. Cette
évaluation montre d'abord les parametres clés de ce qui cotigie une bonne heuristique
pour ce probleme. De plus, elle montre que la stratégie de brehement est aussi im-
portante que la méthode de propagation. Deuxiemement, noustudions les mécanismes
de propagation pour une classe de contraintes de séquencemh@ travers la conception
de plusieurs algorithmes de Itrage. En particulier, nous proposons un algorithme de
ltrage complet pour un type de contrainte de séquence avec ne complexité temporelle
optimale dans le pire cas. Troisimement, nous investiguan l'impact de l'apprentissage
de clauses pour résoudre le probleme de séquencement de eélés a travers une nou-
velle stratégie d'explication réduite pour le nouveau Itr age. L'évaluation expérimentale
montre l'importance de l'apprentissage de clauses pour cerpbléme. Ensuite, nous pro-
posons une alternative pour la génération retardée de varldes booléennes pour encoder
les domaines. Finalement, nous revisitons les algorithmed'analyse de con its pour ré-
soudre les problemes d'ordonnancement disjonctifs. En péculier, nous introduisons
une nouvelle procédure d'analyse de con its dédiée pour ctt famille de problémes.
La nouvelle méthode di ére des algorithmes traditionnels gar I'apprentissage de clauses
portant uniquement sur les variables booléennes de disjotions. En n, nous présentons
les résultats d'une large étude expérimentale qui démontrdimpact de ces nouveaux
mécanismes d'apprentissage. En particulier, la nouvelle éthode d'analyse de con its a
permis de découvrir de nouvelle bornes inférieures pour désstances largement étudiées
de la littérature.

Mot-clés : Intelligence arti cielle, programmation par contraintes, satis abilité boo-
Iéenne, optimisation combinatoire, séquencement, ordorancement

Acknowledgments

I am tremendously grateful to my supervisor Emmanuel Hebrad, who guided this work.

| consider myself very fortunate to work with him during all t his period. | am indebted
to Emmanuel for the freedom that he gave me, the countless daussions, his insistence of
high research quality, and for including me in the reviewingprocess in top Al conferences
and journals. | will remember his advices as well as his reseeh methodologies.

I would like to thank my co-supervisor Christian Artigues. |t was a great pleasure work-
ing with him. | am grateful for his continuous support and his constructive suggestions
throughout the PhD.

| would like to thank my external reviewers Pr. Fahiem Bacchus and Dr. Christian
Bessiere for their thorough examination. I'm truly honored that they reviewed my
thesis. | would also like to thank the jury members Dr. Hadrien Cambazard, Dr.
George Katsirelos, and Pr. Christine Solnon for their evalation and their valuable
feedback.

Many thanks to Marie-José Huguet, who contributed in many parts of this work. |
appreciate all the time we spent discussing and working on spiencing problems.

I would like to thank my CP Doctoral Program mentors lan Gent and Thierry Petit for
their valuable advices.

I would like to thank Toby Walsh for o ering me the opportunit y to visit him in NICTA,
Sydney. Although the work of the visit is not presented in this thesis, it did help me
strengthen and consolidate my understanding of constraintprogramming. This visit
yielded to a collaboration with Nina Narodytska and Thierry Petit to whom | express
my deep gratitude. | want to thank Nina for the valuable discussions and precious
advices she gave me during my visit to NICTA.

My thanks go also to Valentin Mayer Eichberger for the collaboration that we had. |
enjoyed all the time we spent competing for the best model seing the car-sequencing
problem.

My sincere thanks to the Cork Constraint Computation Centre (4C) for kindly granting
access to its computing resources. | would also like to thanBarry O'Sullivan for the
period | spend at Insight, Centre for Data Analytics in Cork prior to the PhD defense.

I would like to thank CNRS, Google and midi-Pyrénées region ér the funding of the
PhD. | thank also the LAAS administrative service and specidly Christéle Mouclier.

| want to thank all the ROC team members at LAAS-CNRS who | shared this priceless
experience with.

The list will never end if | am to mention all those who gave me \aluable support in my
PhD. | would only say thank you all.

Last but not least, | would like to thank my family and my frien ds for their continuous
support and encouragement throughout my studies. Most impeotantly, 1 would like to
thank my beloved mother, Sonia, who has always supported meral encouraged me to
move forward.

Y

Dedication

To the memory of my grandfather Abdelmajid,
To my grandmother Souad,

To my mother Sonia,

vii

Contents

Contents

List of Figures

List of Tables

1 Introduction

Search
Propagation
Learning

2 Formal Background

2.1 Constraint Programming

2.2

2.3

2.1.3.1 Decomposition

2.2.2.1 Conict Analysis

2.3.1 A Baseline Hybrid Solver

2.1.1 Constraint Network
2.1.1.1 Domains, Tuples, and Constraints
2.1.1.2 Constraint Satisfaction Problem
2.1.1.3 Backtracking Search

2.1.3.2 Global Constraints

2.2.2.2 2-Watched Literals
2.2.2.3 Activity-Based Branching
2.2.2.4 Clause Database Reduction
2225 Restarts
Clause Learning inCP

2.3.1.1 Domain Encoding
The Direct Encoding
The Order Encoding

iX

2.1.2 Constraint Propagation.
2.1.2.1 Propagators e
2.1.2.2 Local Consistency

2.1.3 Decomposition & Global Constraints

214 Search
2.1.4.1 Boosting Search through Randomization and Restad .
Boolean Satisability
2.2.1 A Background on Propositional Logic
2.2.2 Conict Driven Clause Learning

Xiii

XV

W NN P

© ©

Contents X

2.3.1.2 Solver Description, 31
2.3.2 Engineering a Hybrid Solver. Modern Techniques 33
2.3.2.1 Backward Explanations 33
2.3.2.2 Lazy (Atom) Generation 34
2.3.2.3 Semantic Reduction, 35
3 An Empirical Heuristic Study for the Car-Sequencing Probl em 37
3.1 The Car-Sequencing Problem 38
3.1.1 Problem Description B
3.1.2 Modeling 39
3.1.3 Related Work 40
3.2 Heuristics Classication 41
3.21 Classication Criteria 41
3.21.1 Branching oo, 41
3.21.2 Exploration 41
3.21.3 Selection e 42
3.2.1.4 Aggregation 43
3.2.2 Heuristics Structure 44
3.3 Evaluating the new Structure 45
3.3.1 Impact of each Heuristic 46
3.3.2 Criteria Analysis. e 48
3.3.2.1 Branching Strategy 48
3.3.2.2 Exploration 49
3.3.23 Selection 50
3.3.24 Aggregation 51
3.3.3 A Summary Regarding the Criteria 52
3.4 Searchvs. Propagation iiiiiin. 53
4 Propagation in Sequencing Problems 55
4.1 Slack-Pruning 56
4.1.1 Triggering FailureviaSlack 56
4.1.2 Filteringthe Domains 58
4.1.3 Time Complexity 59
4.2 Sequence ConstraintS e 60
4.2.1 Decomposition viaslide 60
4.2.2 Chains ofAmong Constraints: 61
4.2.2.1 Chain ofAtMost Constraints. 61
4.2.2.2 Global Sequencing Constraint 63
4.3 The AtMostSeqCard Constraint 63
43.1 Findinga Support. 64
4.3.2 Filteringthe Domains, 66
4.3.3 Algorithmic Complexity 71
4.3.4 Achieving Arc-Consistency onAtMostSeqCard 75
44 EXIENSIONS o ot 77
4.4.1 The AtMostSeq Card Constraint 77
4.4.2 The MultiAtMostSeqCard Constraint 79
45 Experimental Results 80

Contents Xi

451 Car-Sequencing e 81
452 Crew-Rostering e 83
Problem Description 83
Models and Heuristics 83
Benchmarks 84
5 Learning 87
5.1 Learning in Car-Sequencing 88
5.1.1 Explaining AtMostSeqCard 88
5.1.1.1 Explaining AtMostSeq & Cardinality 89
Explaining AtMostSeq oL 89
Explaining Cardinality 90
5.1.1.2 Explaining the Extra-Filtering 90
Explaining Failure, 91
Explaining Pruning 94

5.2

5.3

5.1.2 Pseudo-Boolean & SAT Models for the Car-Sequencing Bblem . 94

5.1.2.1 A Pseudo-Boolean Formulation 94
5.1.2.2 From Pseudo-Booleanto SAT 95
5.1.3 Experimental Results 96
Hybrid CP/SAT 97
SAT . e 97
CP and Pseudo-Boolean Models 97
Revisiting Lazy Generation 99
5.2.1 The DomainFaithfulness Constraint 99
5.2.1.1 PropagatingDomainFaithfulness 100
5.2.2 Incrementality 101
Simulating UP: 103
Channeling Betweenx and by;:::;by: .o o o oL 105
5.2.3 Explaining DomainFaithfulness 106
5.2.3.1 Explaining Failure 107
5.2.3.2 ExplainingPruning 107
Learning in Disjunctive Scheduling 108
531 Modeling 108
The Job Shop Problem 109
The Open Shop Problem. 110
532 Search 110
5.3.2.1 The Global Search Scheme 110
5322 Branching 111
Variable Ordering 111
Value Ordering 112
5.3.3 Explaining Constraints, 112
5.3.3.1 Explaining Precedence (x,y,d) 112
Explaining Failure oL 112
Explaining Pruning 112
5.3.3.2 Explaining Disjunctive (b;x;y;dc;dy) 113
5.3.4 Disjunctive -Based Learning 114

5.3.5 Experiments

Contents Xii

5351 JSPResults............ 117
Lawrence Instances 117
Taillard Instances 117
Taillard Statistics 117
Lawrence Statistics e 123

Improving the Lower Bounds for Taillard Open Instances . 124

5352 OSPResults 126
6 Conclusion 133
A Reproducing the Disjunctive Scheduling Experiments 151

B Detailed Results for OSP Instances 153
C Résumé étendu 159
C.1 Introduction 159
C.2 Contexte etdénitions 160
C.2.1 Programmation par contraintes 160

C.2.2 Apprentissage de clauses dirigé parlesconits 161

C.2.21 SAT . . 161

C.2.2.2 Méthodes hybrides SAT/PPC 162

C.3 Heuristiques de branchement pour le probléme de car-segncing 163
C.4 Propagation dans une classe de probléemes de séquenceten 166
C.4.1 Propagation de la contrainte AtMostSeqCard 166

C.4.2 Expérimentations avec le probléme de car-sequencing 167

C.4.3 EXtensions 168

C.5 Apprentissage declauses 168
C.5.1 Apprentissage de clauses pour le car-sequencing 169

C.5.1.1 Explications pour AtMostSeqCard 169

Explication pourl'échec 169

Explications pour les regles de Itrage. 170

C.5.1.2 Reésultats expérimentaux 170

C.5.2 Le probléme de redondance de clauses et l'apport de lamtrainte DomainFaithfulnes:
C.5.3 Apprentissage dans les problemes d'ordonnancemenisjpnctifs . 172

C.5.3.1 Modélisation 173
Stratégie derecherche 174
C.5.3.2 Apprentissage declauses 174
C.5.4 Résultats expérimentaux 175
C.5.4.1 Minimisation du makespan 175

C.6 Conclusion e 178

List of Figures

2.1 Example of implication graph 24
2.2 Cuts in the implication graph 24
2.3 Unique Implication Points in an implication graph 26
2.4 Example of an implication graph with a hybrid CP/SAT solver 29
4.1 Instantiation of an option with capacity 3-5. 58
4.2 Filtering when d™ modp; 0 59
4.3 Filtering whenr d® modp x0 59
4.4 Seguence of maximum cardinality obtained byleftmost 65

4.5 lllustration of Lemma 4.19's proof. Horizontal arrows represent assignments. 69
4.6 lllustration of Lemma 4.20's proof. Horizontal arrows represent assignments. 70

4.7 ac on AtMostSeqCard “p 4;,q 8, d 12 Xi;:i:iiXn® 77
5.1 Assigningby; by . 101
C.2 AtMostSeqCard (4;8;12 X1;::1iX22) v v v v o e e e e e 167

Xiii

List of Tables

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

B.1
B.2
B.3
B.4

Values of the selection criteria for each option 43
Classes' scores using the parameta® 44
Scores & Heuristic decisions o oL 44
Comparison of heuristics averaged over propagationres. 47
Evaluation of the branching variants 49
Evaluation of the exploration variants 50
Evaluation of the selection variants 51
Evaluation of the aggregation variants 52
Con dence and Signi cance foreach factor 52
Evaluation of the ltering variants (averaged over all heuristics) 53
Best results for Iteringvariants 53
Maximal cardinality instantiations. 79
Evaluation of the Itering methods (solved instances caunt) 81

Evaluation of the ltering methods (CPU time on solved instances) ... 82
Evaluation of the Itering methods (search tree size on slved instances) 82

Evaluation of the ltering methods: static branching (h ighest success counts are in bold for

Evaluation of the ltering methods (dynamic branching) 85

Experimental comparison of CP, SAT, hybrid, and Pseudo-Boolean models for the car-seqt

Job Shop: Lawrence (la-01-20) detailed results 118
Job Shop: Lawrence (la-21-40) detailed results 119
Job Shop: Taillard (tai01 tai25) detailed results 120
Job Shop: Taillard (tai26 tai50) detailed results 121
Job Shop: Taillard (tai51 tai70) detailed results 122
Job Shop: Taillard statistics 124
Job Shop: Lawrence Statistics 124
Lower bound experiments for open Taillard instances 125
OSP results: Brucker et al. instances (j3-per0-1 j5-@r20-2) 127
OSP results: Brucker et al. instances (j6-per0-0 j8-@r20-2) 128
OSP: Brucker et al. reduced clause database results §3er0-1 j5-per20-2)129
OSP: Brucker et al. reduced clause database results ¢@éer0-0 j8-per20-2)130
Open Shop Brucker et al. instances: Statistics 131
OSP: Gueret and Prins instances (GP03-01 GP05-10) 154
OSP: Gueret and Prins instances (GP06-01 GP08-10) 155
OSP: Gueret and Prins instances (GP09-01 GP10-10) 156
OSP: Taillard instances (tai04_04 01 tai07_7 10) 157

XV

List of Tables XVi

B.5

Ci1l
C.z2
C3
CA4
C5

OSP: Taillard instances (tail0_10 01 tai20_ 20 10) 158
con ance et importance pour chaque critere 165
Car-sequencing : évaluation des méthodes de ltrage 168
Apprentissage de clauses appliqgué au Car-sequencing 171
Job Shop : Statistiques L 176
Nouvelles bournes inférieures 178

Chapter 1

Introduction

Many real world problems involve sequencing a set of operatns subject to resource
constraints. Depending on the problem at hand, the objectie might be optimizing an
economic-related cost or simply nding satisfactory soluions. Sequencing and schedul-
ing problems have direct applications in a variety of areas gch as manufacturing, project
management, and timetabling. The work presented in this thesis considers solving prob-
lems of this family in a combinatorial context. From a computational complexity theory
perspective, many of these problems are NP-hard. Thereforghere is no known poly-
nomial time algorithm for solving them.

There exist numerous techniques for solving combinatoriabptimization problems rang-
ing from heuristic to exact methods. Integer Linear Progranming (ILP) is probably the
best known and used approach. In this framework, the problemmust be formulated as
a system of linear equations. Typically, an ILP solver uses éranch-and-bound algo-
rithm in which the lower bound is the optimal solution of the | inear relaxation of the
problem. Another restricted format is the one used by SAT solers. The problem is
stated using clauses, each of which being a disjunction oftérals, where each literal is
a propositional variable or its negation. Modern SAT solvers [95] are essentially based
on the Davis-Putham-Logemann-Loveland (DPLL) [41] algorthm augmented with res-
olution [112]. DPLL is a backtracking system using a simple érm of inferences called
Unit-propagation (UP). The integration of resolution within DPLL enables a strong in-
ference through new clauses derived from con icts during sarch. Constraint program-
ming (CP) is another declarative paradigm for solving combinatorid problems based
on a far richer language than ILP and SAT. In CP, a problem is de ned with a set of
relations, called constraints, operating on variables assciated to sets of possible values
called domains. CP solvers typically rely on propagating the constraints while explor-
ing a search space. Constraint propagation is a fundamentatoncept in CP aiming at
pruning the search space as much as possible. In fact, eachnstraint is associated to
a propagator (or ltering algorithm) responsible for reducing the domains according to

1

Chapter 1 Introduction 2

some rules. InCP, we often distinguish search from propagation , and slightly more
recently, from learning .

| report in this dissertation several contributions on each one of these aspects within
constraint programming approaches to sequencing and scheting problems. This case
study strongly supports my thesis, that modern constraint programming solvers may not
underestimate any of these three aspects.

Search Constraint programming solvers are typically implemented on top of back-
tracking systems. The search space is explored via a tree wieevery node corresponds
to a decision restricting the search space to a smaller probim. The tree is often explored
following a Depth-First Search (DFS) scheme. Whenever a féiire is encountered, the
solver backtracks to the last node, reverses the last decisn, then resumes the explo-
ration. The "search' aspect inCP is related to the decisions made to explore the search
tree.

A decision in CP is usually performed heuristically by shrinking a speci c variable do-

main to a value. We often make the distinction between varialdle ordering and value

ordering heuristics. Variable ordering heuristics are tygcally designed following the

“fail- rst' principle [73, 129, 13]: To succeed, try rst w here you are most likely to

fail.. As such, one tries to prune inconsistent subtrees assoon as possible. Value
ordering is usually less important and follows generally anopposite principle, called

“succeed- rst' or “promise’ [61]. Indeed, the value with bst chances to lead to a solu-
tion is preferred. These heuristics can be customized to th@roblem at hand or follow

a standard scheme. Examples of standard variable orderingéuristics include: lexico-

graphical order, minimum domain size, and maximum variabledegree (i.e., how much a
variable is constrained). General purpose value heuristig are less common, trivial ones
(such as branching on the minimum or maximum value in the doman) are often used by

default. When we have some information about the structure ¢ the problem, however,

dependent heuristics can be useful. We quote for instance 45 130, 126, 51, 122].

Search strategies can have a dramatic e ect on the overall eciency as they guide the
exploration of the search space [73, 28, 9, 63, 104]. In fad, bad decision can cause the
exploration to become trapped in an unsatis able sub-tree hat can take an exponential
time to explore.

Propagation Constraint propagation is a fundamental concept in CP aiming at re-
ducing the search space by pruning dead-end branches. Thevid of pruning is usually
characterized by a property calledlocal consistency The principle is that if an assign-
ment is part of no solution of a relaxation of the problem, then it can not be part of a
solution of the complete problem; it is inconsistent. Often the problem is relaxed simply

Chapter 1 Introduction 3

by considering a subset of the constraints and/or variables For instance, Arc Consis-
tency!(ac) [89, 90] considers constraints one at a time. Algorithms inplementing ac
were proposed in the 70s by Waltz [146] and Gaschnig [60]. Sabquently, "higher' local
consistencies were introduced, for instance by Montanarin [94] and Freuder in [56, 57].
The propagation methods based on local consistencies wereiginally generic in the
sense that the constraint relation is part of the input. As a consequence, combining
strong pruning and computational e ciency is dicult. The n otion of ‘global con-
straint' moves the relation from the input to the de nition o f the problem, making it
far easier to reconcile these two objectives. The idea is toapture patterns occurring in
many problems and to design dedicated algorithm to Iter out inconsistent values for
these particular cases.

There is a signi cant amount of work in the CP literature regarding the proposition,
reformulation, and extension of global constraints [109, 10, 111, 21, 139, 96, 97, 121, 26].
The canonical example of global constraint is theAllDifferent constraint, ensuring
that all variables are pair-wise distinct. Take for instance three variablesxi, X2, X3
subjecttox; X X2, X2 X X3, X1 X X3. We can rewrite this asAllDifferent “X1;X2;X3°.
Now assume that the domain forx; and x» is "1;2¢ and for x3 is "1;2;3«. Enforcing
ac on each constraint separately does not change the domains. dwever, the fact that
all variables must have pairwise di erent values prevents he assignment ofxz to 1 or 2
to be part of any solution. Making this inference via stronge local consistencies would
take exponential time. However, it is possible to enforceac on the AllDifferent
constraint in polynomial time [109].

Learning When exploring a search tree, we repeat many times the same disions. It
is therefore natural to try to learn from a failure (a dead-end in the tree), in order to avoid
doing the same mistake again. By de nition, an exact set of deisions is never explored
twice is a search tree. However, it may happen that only a partof the current branch, a
‘nogood’, entails a failure. When this is the case, it is posble to learn something useful
in order to avoid failing more than once with the same reason.

The notion of nogood goes back originally to Stallman in the Ds [133]. The rst formal
adaptation to CP was proposed by Dechter in [43]. Other approaches to nogooccord-
ing were proposed later in [105, 113, 66]. In these approackea nogood is de ned as a
set of assignments that can not lead to any solution. This denition prevented learning
from being more broadly used in constraint solvers. The suceess of nogood learning in
the SAT community was, however, spectacular in the decade flowing Dechter's semi-
nal work. This success is due to papers by Bayardo and Schrag§], Marques-Silva and
Sakallah [123, 124], Moskewicz et al. [95] and Zhang et al. 4Z]. Con ict Driven Clause

1The terms “Domain Consistency' and “Generalized Arc Consistency' are also used in the literature.

Chapter 1 Introduction 4

Learning (CDCL) [95] constitutes the backbone of modern SAFsolvers. In CDCL, no-
goods are built by computing cuts in the graph drawn from the deductions made by
Unit-propagation.

Nogood recording has gained considerable attention in theCP literature essentially
during the past decade and a half [79, 78, 80, 77, 82, 35, 87,,336, 37, 101, 106]. The
notion of “explanation’ is the central component in these waks. In order to compute a
nogood, every propagation outcome should be explained in #¢nform of a set of decisions
and/or earlier propagations that logically imply it. Learn ing in CP has taken a new
start in the past decade thanks to Katsirelos's Generalizednogoods [82, 81] and more
recently to Lazy Clause Generation (LCG) [100, 101]. The later mimics propagators in
CDCL by considering them as generators of clauses. Propagats in LCG are allowed
to use literals of the form Jx vK Jx x vK Jx BVvK and Jx CvKto express any domain
change. All these types of literals can be used to explain anyitering outcome in a
clausal form.

CP solvers can bene t from learning by "discovering' new ltering rules, in the form of
clauses, that propagators alone are not able to perform. Pantially, hybrid CP/SAT
solvers have features coming from both approaches such aswerful propagation mech-
anisms, clause learning, adaptive branching, etc. Howevetthis holds only when prop-
agators, including those proposed for global constraintsare able to explain all their
pruning.

Thesis Overview

This dissertation shows, by a thorough case-study of a classf sequencing and scheduling
problems that all these aspects are important and must all beaken into account in order
to design e cient solution methods.

We give a summary of the contributions presented in this thess.

1. An empirical heuristic study for the car-sequencing proble m

Car-sequencing is a well known sequencing problem comingadim the automotive
industry. In 2005, a challenge has been organized by the Freh Operations Re-
search and Decision Support Society (ROADEF) for solving optimization versions
of the problem provided by the RENAULT 3 automobile manufacturer [131]. In
this problem, a set of cars has to be sequenced on an assembigel subject to
capacity and demand constraints. Each car belongs to a classf vehicles that is
de ned with a set of options to install (like the sunroof and t he air-conditioner).

2http://challenge.roadef.org/2005/en
3http://group.renault.com

Chapter 1 Introduction 5

We investigate the “search' component for e ciently solving this problem. First, we
propose a new heuristic classi cation for this problem. This classi cation is based
on a set of four criteria: branching variables, exploration directions, selection
of branching variables and aggregation functions for this slection. Thanks to
this classi cation, we discovered new combinations of exigng criteria leading to

superior heuristics.

Based on large experimental tests, we indicate with a relatiely high con dence
which is the most robust strategy, or at least outline a smallset of potentially best
strategies. Speci cally, we show that the way of selecting he most constrained
option is critical, and the best choice is fairly reliably the load of an option, that
is the ratio between its demand and the capacity of the corregonding machine.
Similarly, branching on the class of vehicle is more e cient than branching on
the use of an option. Finally, we show that the choice of the haristic is often as
important as the propagation method in this problem.

2. Propagation in sequencing problems

Motivated by a simple observation in [111] about nding failures for the car-
sequencing problem, we design a simple ltering rule calle@®lack-Pruning . This

Itering relies on reasoning simultaneously about capaciy and demand constraints.
However, it is applicable with very limited branching scenaios. We propose there-
fore to generalize theSlack-Pruning in the form of a complete ltering for a

new global constraint that we call AtMostSeqCard . This constraint can be
used to model a number of sequencing problems including carquencing and
crew-rostering.

AtMostSeqgCard can in fact be considered as a particular case of well known
constraints. In [139], two algorithms designed for the AmongSeq constraint
were adapted to this constraint with an O~29ne and O"n3 worst case time com-
plexity, respectively. In [91], another algorithm similarly adaptable to lter the
AtMostSegCard constraint was proposed with O"n?:log"nes time complexity
down a branch of the search tree with an initial compilation of O"q:n?s. We
propose a complete ltering algorithm for this constraint with an O"ne (hence op-
timal) worst case time complexity. Furthermore, we show tha this algorithm can
be adapted to achieve a complete Itering for some extensios of this constraint.
In particular, the conjunction of a set of m AtMostSeqCard constraints sharing
the same scope can be ltered inO"nme.

The experimental results on car-sequencing and crew-rosteg benchmarks show
how competitive and e cient our ltering is compared to stat e-of-the-art propa-
gators.

3. Learning in car-sequencing

Chapter 1 Introduction 6

We investigate the learning aspect for solving car-sequeiitg instances using our
Itering for AtMostSeqCard . In order to use AtMostSeqCard in a hybrid

CP/SAT solver, one has to explain every single domain change nde by the prop-
agator. We therefore propose a procedure explainingtMostSeqCard that runs

in linear time complexity in the worst case. Any hybrid model using these expla-
nations bene ts from the complete Itering for this constra int along with clause

learning and potentially many other CP/SAT features.

Our experiments include a variety of models with Pseudo-Botean and SAT for-
mulations. We show how clause learning improves the global grformances in most
cases. We witness a strong correlation between advanced gragation and nding
solutions quickly for this problem. Moreover, for building proofs, clause learning
is the most important ingredient and propagation is less uséul.

4. Revisiting lazy generation

We revisit in this part the lazy generation of Boolean variables for encoding the
domains. The issue that we address is related to the redundaly of clauses used
when lazily encoding a domain [53]. In fact, when a Boolean v@able Jx BuKhas
to be generated, the clauses Jx BakK- Jx BuK Jx Buk- Jx BbKare added wherea
and b are the nearest generated bounds to. After adding these clauses, the clause

X BIK- Jx BuKbecomes redundant. TheDomainFaithfulness constraint that
we propose avoids such redundancy while ensuring the samevéd of consistency
without any computational overhead. The novel lazy generaton method is used
in the next part with a large number of disjunctive scheduling instances.

5. Learning in disjunctive scheduling

The last part of our contributions addresses the impact of chuse learning for
solving disjunctive scheduling problems. We propose a noveon ict analysis pro-
cedure tailored to this family of problems. In fact, we use a poperty of disjunctive
scheduling allowing to learn clauses using a number of Bodd® variables that is
not function of the domain size. Our propositions give good gperimental results
and outperform the standard CP model in most cases. Furthermore, we observe
a relationship between the instance size, the branching chice, and the conict
analysis scheme. Our method improved the best known lower hmds on several
instances of a classic data set.

The work presented in this thesis is funded by CNRS and “midi-Pyrénées' regior®.
The CNRS grant was attributed to the ROC team’ at LAAS-CNRS? jointly with a

*http:/fwww.cnrs.fr

S http://www.midipyrenees.fr

5The region grant number is 11050449.
https://www.laas.fripublic/en/roc
8https://www.laas.fripublic/en

Chapter 1 Introduction 7

Google research award on SAT-based schedulifig Many parts of the dissertation has
been published in the following international journals and conferences:

1. Two clause learning approaches for disjunctive schedulg. Mohamed Siala, Chris-
tian Artigues, and Emmanuel Hebrard. In Principles and Practice of Constraint
Programming - 21st International Conference, CP 2015, Cork Ireland, August
31-September 4. Proceedings (to appearR015 [119]

2. A study of constraint programming heuristics for the car-sequencing problem.
Mohamed Siala, Emmanuel Hebrard, and Marie-José HuguetEngineering Appli-
cations of Arti cial Intelligence , 38(0):34 44, 2015 [122].

3. SAT and hybrid models of the car sequencing probled?. Christian Artigues, Em-
manuel Hebrard, Valentin Mayer-Eichberger, Mohamed Siala and Toby Walsh. In
Integration of Al and OR Techniques in Constraint Programming - 11th Interna-
tional Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings
pages 268 283, 2014 [5].

4. An optimal arc consistency algorithm for a particular case of sequence con-
straint. Mohamed Siala, Emmanuel Hebrard, and Marie-José Higuet. Con-
straints, 19(1):30 56, 2014 [121].

5. An optimal arc consistency algorithm for a chain of atmost constraints with car-
dinality 1. Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. n
Principles and Practice of Constraint Programming - 18th International Confer-
ence, CP 2012, Québec City, QC, Canada, October 8-12, 2012.réteedings pages
5569, 2012 [120].

The structure of the dissertation follows globally the contributions order. Chapter 2

introduces the formal background and all notations used thoughout the thesis. We
present in Chapter 3 our heuristic study for the car-sequening problem. In Chapter 4,

we investigate the propagation aspect in a class of sequemg problems. We present in
Chapter 5 our threefold learning propositions: learning incar-sequencing; revisiting lazy
generation; learning in disjunctive scheduling problems.Finally, we conclude the thesis
in Chapter 6 and give potential future research directions.

Shttp:/iww?2.cnrs.fr/presse/communique/2093.htm

0 This part constitutes a joint work with Valentin Mayer-Eich berger and Toby Walsh. While the
experimental observations were discussed together, the ret of the paper is organized in two clear di erent
parts. The SAT part is solely proposed by Mayer-Eichberger a nd Walsh while the hybrid propositions
constitutes our own contributions.

1 The paper is awarded with an Honorable mention.

Chapter 2

Formal Background

Introduction

We present in this chapter the necessary background and nabins used throughout the
thesis. This chapter is divided in three sections: Constrait programming (Section 2.1),
Boolean Satis ability (Section 2.2), and learning in CP (Section 2.3).

2.1 Constraint Programming

Constraint programming is a framework for modeling and solkng combinatorial prob-
lems. Unknowns are modeled with variables drawing their vales from a discrete do-
main, and the possible relations between variables are repsented as constraints. The
Constraint Satisfaction Problem (CSP) consists in decidirg whether there exists an as-
signment of the variables satisfying all the constraints. h this section, we formally de ne
this formalism and introduce several notational conventims.

2.1.1 Constraint Network
2.1.1.1 Domains, Tuples, and Constraints

Let be a set. We use the notation S So denote the cardinality of . A sequence S
de ned in is an ordered list of elements in . We use the same n otation S to denote
a sequenceS or the set of elements inS.

Let n >N¥ and X xj;:::;X, bea nite sequence of distinct variables Adomainfor X,
denoted by D, is a mapping from variables to nite sets of values. For eachvariable x,
we call D" x+ the domain of the variable x. We suppose thatD"x;¢ is a nite subset

9

Chapter 2 Formal background 10

max”X;e to denote the maximum value in D" xje. A domain D is singleton i | x >X,
D" x+S 1. A fail domain is the special domainU where all variablesx >X have a
domain equal tog (i.e., $*x*S 0). The domain of a variable x is called Boolean i

D"xe 70;1s. In a propositional context, we sometimes denote O byfalse and 1 by
true. When a domain D" xe is equal to a set of values of the forni'l;| 1;1 2;::;ue
(where| and u are two integers s.t. u Cl), we say that D" xe is arange domain and will
be denoted by I;u . Finally, we say that v is assigned to the variable x i D xe “ve.

Given two domainsD; and D, de ned over the same sequence of variables Xi;:::; X, ,
we say that D1 is stronger (respectively strictly stronger Ythan Dy i | x;D1"x* b
D, xe (respectively | x; D1"xe b D2"xe and 8x;; Di"Xj* ~ D2 X;*). In this case, D5 is
said to be weaker (respectively strictly weaker) than D;.

A n tuple (or simply a tuple) Vi;:ii;vpelis a sequence oh values. We use i to
denote the valuev;. Given a tuple Vi;iiiVheand asub-sequenc® Xg,;iii;Xs, b
X, we denote by s the k tuple © ‘v ;:::;vs, e and is called the projection of
on S.

Let X be a sequence of variabled) a domain for X, and S xj;:::;Xx a sequence of
variables in X. A constraint C de ned over S is a nite subset of ZK. S is called the
scope of C (denoted by X" Ce) and SSs called thearity of C. We sometimes use the
notation C"Se to denote a constraint C having S as a scope. Aninstantiation of S
isak tuple . is said to be:

consistent for C (or satisfying C) if it belongs to C.
inconsistent for C (or violating C) if it is not consistent for C.

valid inDif i >D"xjeforalli> 1;:::;n

We distinguish two classes of constraints: rstly constraints given in extension (called
also Table Constraints) where all the acceptable tuples argiven explicitly in a list; sec-
ondly constraints expressed intentionally by a formula. Example 2.1 shows two possible
representations for the same constraint.

Example 2.1. A constraint de ned intentionally and extensionally.

Let x1, X2 and x3 be three variables s.t. D"xq* D xp¢ D"x3* 71;2;3*. The
AlIDifferent "X1;X2;X3e stating that the three variables should have pairwise di e¥nt
values can be de ned intentionally by the formula:x; ~X2, X2 ~X3, X1 ~X3 Or exten-
sionally using the following list of acceptable tuplesl;2;3e "1;3;2¢ "2;1;3¢ "2;3;1e
"3;1,2¢ 3;2;1e

Chapter 2 Formal background 11

All constraints used in this thesis are de ned intentionally. A constraint type is
a family of constraints sharing a general de nition. The AllDifferent "X1; X2, X3®
constraint given in Example 2.1 is nothing but an instance of the constraint type
AllDifferent where all variables in the scope should have pairwise di enst values.
The AllDifferent constraint type is de ned as follows:

De nition 2.1. AllDifferent T XqpiiniXp el X ~xj forall i ~j.
Another typical example of constraint type is the Cardinality constraint given in
De nition 2.2 where Xx1;:::;Xn is a sequence of Boolean variables.

De nition 2.2. Cardinality = X1;:::;Xp ;de: P{' 1%, d
Cardinality is in fact a particular case of a more general constraint typecalled Pseudo-

straint! has the form ofP} 7a Xj Nk wherea;;k >Z and Nis an operator in"B;C, .

We shall use the term constraint to denote either a constraim or a constraint type where
no ambiguity is possible.

2.1.1.2 Constraint Satisfaction Problem

De nition 2.3. Constraint network

A constraint network (CNis de ned by a triplet P "X ;D;Ce where

" X Xi;iii;Xp is a sequence of variables

~

D is a domain for X

Cis a set of constraints de ned over subsets oK .

A solution for a constraint network "X ;D;Ceis an instantiation de nedin D s.t. for
all C >C, x-c. is consistent forC. A constraint network is said to be satisfiable

if it has a solution; unsatisfiable otherwise. We assume throughout the thesis for
every variable x >X that x is in the scope of at least one constraint and thatx has a
non-empty (initial) domain.

A Constraint Satisfaction Problem (CSP consists of deciding whether a constraint
network has a solution or not.

Since the SAT problem [39] can be considered as a particulatase of CSP (the domain of
each variable is™0; 1+ and each clause is considered as a constraint) then the comatnt

1That is what Mixed Integer Programming people call a linear ¢ onstraint on binary variables.

Chapter 2 Formal background 12

satisfaction problem isNP-Hard in general. Moreover, if all constraints are checkable in

$c.S

computable in polynomial time and answers true i the tuple given in input is con-

polynomial time, i.e., each constraintC has a functionCheck ¢ Z “false;true ¢

sistent for C, then the constraint satisfaction problem becomesNP-Complete.

We nd mainly three approaches in the literature for solving constraint satisfaction

problems: backtracking algorithms, local search and algetaic resolution. We consider
in this thesis, only (complete) backtracking algorithms where the solver explores the
search tree according to some strategies while performingrppagation and possibly
learns from con ict.

2.1.1.3 Backtracking Search

We give in Algorithm 1 a baseline backtracking Solver. One cH of the recursive function
TreeSearch() determines the satis ability of the current constraint network. The nal
outcome will therefore indicates the satis ability of the i nitial problem.

This algorithm uses a basic checking function (Algorithm 2)to nd failures. The deci-
sions are made based on Algorithm 3 Decide().It uses a simpe form of decisions: it
chooses an unassigned variable, and assigns it to a value itsidomain. The decision
is applied in Line 3. The choice of the next decision to make igypically performed
following a variable/value heuristic.

Algorithm 1. TreeSearch()

if !Check() then
| return false
else

if D is singleton then
L return true

else

oldDomain D ;
“x;ve Decide™ ;
D xe “ve ;

if TreeSearch() then
| return true;

else
D oldDomain ;
D xe D xe 7 ve ;
return TreeSearch();

Backtracking algorithms can naturally be traced into trees. Vertices stand for calls
to TreeSearch() and there is an edge between two calls if thewre parent and child.

Chapter 2 Formal background 13

Algorithm 2: Check()
if 8x sit: D"xe is empty then
| return false ;
foreach C >C do
if The domain of X" Cs is singleton then
if C is not satis ed then
| return false ;

return ftrue ;

Algorithm 3: Decide()

X Choose one unassigned variable ;
v Choose one value irD" xe ;
return "Xx;ve ;

The term “search' is used throughout the thesis to describe iy process related to the
decisions made to explore the search tree.

With Backtracking Solvers, the domain will be subject to seweral changes. We will there-
fore suppose thatD (respectively D" x¢) denotes the current domain of X (respectively
the variable x), and Diniial (respectively Diniiar ~X*) the initial domain (respectively of

the variable x).

In constraint programming, backtracking solvers are augmeted with reduction rules

(known as propagators or ltering algorithms) that are usually characterized by some
conditions they enforce (called local consistency). Reduion rules aim to reduce the
search space using inferences based on the current state bdktconstraint network. When

the constraints are given in intention, CP solvers typically use domain-based tightening.
That is, operations on networks, keeping the same set of cotraints and solutions, while

returning stronger domains.

2.1.2 Constraint Propagation
2.1.2.1 Propagators

We use a similar formalism to [115, 114] for de ning propagabrs.

De nition 2.4. Let C" X1;:::;Xk * be aconstraint. Apropagator f for C is a mapping
from domains to domains respecting the following propertis for any domainD:

f "De is stronger than D [Filtering property].

Chapter 2 Formal background 14

~ Any tuple satisfying C that is valid in D is also valid in f "De [Correctness prop-
erty].

“If D'Xje Tvieli> 1k ,thenf’De D if 'vi;:::;vesatises C,andf'De U
otherwise [Checking property] .

The scope ofC is also called the scope of and is denoted byX"f «. We assume thatf
operates only onX"fe. That is, if f "De xU, then ! x {X"Cs, f "De" xo D" xo.

Returning a fail domain U is interpreted as nding a failure. That is, there is no possble
way to satisfy the constraint under the domain D. We suppose that all propagators
return U if there exists a variable whose domain is empty. By default v& denote any
propagator with the same name as the constraint.

Example 2.2. Propagating Cardinality =~ Xp;:::;Xp ;de

We show in Algorithm 4 a possible propagator forCardinality = Xq;:::;Xp ;de. This
algorithm satis es the ltering, correctness, and checking properties.

Algorithm 4: Cardinality = Xgp;:::;Xp ;de
if Sxj SD™xj* ~ 1es SAd then
| DU ;
if Sxj SD™xj* ~ Oes SAn dthen
| DU ;
if Sxj SD™xj* ~ 1o+ S d then
foreach i >"1::ne do
if D"xj* = 0;1e then
| D"Xje "0 ;

else
if Sx; SD™xj* ~ 0« S n dthen
foreach i >"1::n* do
if D"xj* = 0O;1e then
L | D™Xje "1

return D ;

Propagators are executed within backtracking search sequmially before taking any de-
cision. We describe the basideneric Iteration Algorithm used in [4, 114, 20] to iterate
over a set of propagators. Algorithm 5 depicts a possible psmlo-code that returns a
Boolean indicating if propagation nish without nding a fa ilure.

In this algorithm, F is a set of propagators andOpen is a list, initialized with F,
containing a subset of propagators to execute. Each iteratin in the main loop chooses

Chapter 2 Formal background 15

Algorithm 5: Propagate()

Open F ;

while Open~g do
Choosef >Open;
Open Open “fe;
D f"De;

if D Uthen

| return false ;

for x >X"fe s:it: D"x* changeddo
| Open Open8~gSg>F, x >X"ge* ;

return ftrue ;

a propagator f in Open; executesf; then updates the list Open. All propagators
not in Open and having at least one variable whose domain is changed b will be
added to Open. The ltering property that we used in the de nition propaga tors makes
Algorithm 5 terminates [4, 114].

The incorporation of propagators into a backtracking solve is simply done by replacing
the checking function in the TreeSearch algorithm (Line 1 inAlgorithm 1) with a call to
Propagate(). Modern CP-Solvers deploy propagation based o Algorithm 5, however,
with several improvements like the notion of idempotency am priority of propagators,
among others. We shall not detail further this iterative process. We give, however, more
attention on how to measure the lItering level between pro pagators.

Given two propagatorsf, g, we say thatf is stronger than gi f“De is stronger than
g De for all domain D. In this case, we say also thatf subsumesthe Itering/pruning
of g. The ltering of f and g is said to beincomparable i none of them is stronger
than the other. It is common in CP modeling to combine incomparable propagators
together in order to prune further the search space. This wador instance the modeling
choice in [11, 140, 139, 25]. There is of course a tradeo bewen Itering strength and
computational cost, and it is not always obvious to choose tle most practical propagator.
We shall draw a link to this modeling choice later when we inttoduce the notion of global
constraint.

2.1.2.2 Local Consistency

Characterizing the level of ltering is usually associated with the notion of local consis-
tency. A local consistency is a property that characterizes some necessary conditions
on values (or instantiations) to belong to solutions [20]. The most known and widely
used local consistency property is Arc Consistency.

De nition 2.5. Support

Chapter 2 Formal background 16

A support on a constraint C in a domain D is an instantiation of X" Ce satisfying C
and valid in D.

We say that an assignment x; v has a support on a constraintC” xjy;:::;Xgx* in D

i there exists a support onC in D s.it. i v. Another way to look at the notion

of support is that if a propagator for C prunes a valuev from D" x;e, then necessarily
X; v does not have a support inC (due to the correctness property).

De nition 2.6. Arc Consistency

any value v >D"x;* has a support onC in D.

We shall use the term complete ltering to describe a propa gator enforcingac. Indeed,
enforcing ac on a constraint C guarantees that every possible assignment can be part
of a consistent instantiation for C.

Example 2.3. ac on Cardinality = Xjp;:::;Xp ;de
The propagator depicted in Algorithm 4 enforcesac on Cardinality = Xq1;:::;Xn ;de
in O"ne.

There is a close computational relationship between enfoing ac and solving. If decid-
ing whether a given constraint C is satis able or not costs O™ ¢ time complexity, then
enforcingac on this constraint can runin O~ P,.x~c. D x*Sby checking every pos-
sible assignment onX" Ce. The reverse sense works as follows: #c runsin O™ e time,
then deciding the constraint runs in O" « and nding a solution costs O"&"C+S e,

Arc Consistency is sometimes very costly to enforce. One matypically consider instead
a weaker form of propagation called Bound Consistency.

De nition 2.7. Bound Support

Cst ji>Lk, i >min"xje;max’x;e .

De nition 2.8. Bound consistency

min "x;* and max”x;* have a bound support inD.

Bound Consistency is obviously weaker than Arc ConsistencyNote, however, that they
are equivalent in some cases. Take for example the constrdinx; B x,. ac and bc are
equivalent since for any bound support, we can easily build aupport for this constraint.

We shall omit mentioning the domain D when describing supports,ac, and bc as it is
supposed to be the current domain.

Chapter 2 Formal background 17

2.1.3 Decomposition & Global Constraints

2.1.3.1 Decomposition

i for any solution for the constraint C* dened by ci, :::, ¢, we have y-c. is a
solution for C. Notice that there might exist some variablesXé in the scope ofcy @ :: ¢k
that do not belong to the scope ofC. In this case we use the ternchanneling to denote
the constraints having in their scope variables from bothX"Ce and Xé.

It is known that decomposing constraints hinders propagaton in general. Consider
again the AllDifferent "X1;X2; X3 constraint in Example 2.1 with D"x;¢ D Xp*
“1;2» and D"x3* "1;2;3. Enforcing ac on each constraint of the decompaosition
would leave the domain as it is whereas there is no possible wdo satisfy the original
constraint when assigning 1 or 2 toxs. In this example, the constraints X1 ~ X2, X2 ~
X3, and X; ~ X3 are ac whereasAllDifferent "X1;X2; X3¢ is not. Achieving ac on
AllDifferent "X1;X2; X3¢ in this case reduces the domain oks3 to ~3e.

There exists, however, a few particular cases where the degposition maintains ac. We
use in this thesis two known cases wherac on a constraint C is equivalent to enforcing
ac on a decomposition. The rst case, described below, is rel&d to the notion of Berge
acyclicity in the constraint graph, whereas the second casés related to the notion of
monotonicity (a constraint of this type is studied in Section 4.2).

Let P "X;D;Cebe a CN. Theconstraint graph of P is a hypergraphHp in which

one associates each variable to a hode and each constraintope to an hyperedge. A
Berge cycle [18] in Hp is a sequence Cq;Xy;::; Cy;Xk;Ck 1 (K Al) where : X1 ...Xg

are distinct variables; C; ... Cy are distinct constraints; Cx 1 is Cq; and x; is in X Cje

and X"C; 1». Hp is said to be Berge cyclic if it contains a Berge cycle; and Bege

acyclic otherwise. Notice than if two distinct variables x1 and x, are in the scope of
two constraints C; and C,, then the constraint graph is necessarily Berge cyclic. The
sequence Cy;x1;C>2;X2;C1 is a Berge cycle in this case.

Let C be a constraint that can be decomposed into a nite set of consaints ~cy;::; Cke.
If the constraint graph of the CN formed by ¢, ..., ¢ is Berge acyclic, thenC is ac i
G isac forall i> 1;k [14].

2.1.3.2 Global Constraints

The notion of global constraint [27, 137] is a fundamental cacept in CP. We consider
the de nition of a global constraint as a constraint type de ned over a non- xed

Chapter 2 Formal background 18

number of variables. In practice, they represent sub-probdms or patterns occurring in
many problems.

The AllDifferent constraint given in De nition 2.1 is a typical example. There is a
wide range of problems in which one can usd@llDifferent . Sudoku for instance is a
typical example where one can post arhlIDifferent constraint for each row, column,
and square. The same constraint can also be used in schedujirproblems with unary
resources. If all tasks of a machineM have a duration of one unit of time, then the
resource constraint related toM is nothing but an AllDifferent constraint on the
variables representing the start time of each task.

A global constraint is usually introduced in the CP literature together with a polynomial
time ltering algorithm. The fact that they occur in several applications has attracted
a lot of attention to develop special-purpose propagators raking them practical tools
for tackling hard combinatorial problems. The global constaint catalog 2 [16] contains
descriptions (in terms of graph properties, automata, or rst order logical formula) for
more than 400 global constraints. Such a rich language may seetimes make it di cult
to make the best the modeling choices.

We give in the following the de nition of the Global Cardinality Constraint (Gcee)
and the Global Sequencing Constraint (Gsc) that are used throughout this thesis.

Let Xi;:::;Xn be a sequence of variables and ' 1D xje. Let low and upp be
two mappings on integers such thatlow™je Bupp'je for all j. The Global Cardinality
Constraint Gee [110] is de ned as follows:

De nition 2.9. Gcc “low;upp; X1;::5;Xn e j> low’je BSi Sx; jePBuppje

Gcee “low; upp; X1;:::;Xe limits the occurrences of any valuej > in the sequence
X1;:::;Xn to be in the interval low™je;upp’je . It can be seen as a generalization of
AllDifferent if we restrict the intervals low™je;upp’je tobe 0;1. Arc Consistency
on Gee can be enforced in0”S Si2» [110]. Quimper et al. showed a Bound Consistency
algorithm for this constraint running in O"t ne wheret is the time to sort the bounds
of the domains of the variables [107].

The Global Sequencing ConstraintGsc is de ned with a conjunction between a Gcc
and a chain of Among constraints. An Among constraint (De nition 2.10) limits the

occurrences of values of a set of integers to be bounded between two integerl and u
(I'au).

De nition 2.10. Among “l;u; X1;:::;Xq; ¢ | BSi Sxj> «PBu

The Gsc constraint is de ned as follows:

2The latest version is available via http://sofdem.github.io/gccat/

Chapter 2 Formal background 19

Denition 2.11. Gsc”l;u;q;low;upp; X1;:::;Xn ; *
nq

i 0

We mention now an important complexity property related to ac for global constraints.
For a more complete background on the subject, we refer the mder to [24].

De nition 2.12. ac-poly-time [24]

An ac-poly-time decomposition of a global constraint is a decompsition whereac can
be enforced in polynomial time w.r.t. the size of the origind constraint and domains.

Theorem 2.13. [24]

If enforcing ac on a global constraint is NP-Hard, then there is noac -poly-time decom-
position of the original constraint that achievesac on C.

Theorem 2.13 gives a clear statement when to consider lowertering compared to ac.
Obviously, one does not use in practiceac algorithms when they are NP-Hard. Instead,
lower ltering (usually bc) is typically used is this case since any decomposition wodl
hinder propagation anyway. Arc Consistency onGsc for instance is NP-Hard [22]. Régin
and Puget proposed a reformulation of this constraint into a set of Geec constraints.
Their ltering is therefore hindering propagation.

The modeling choice between several global constraints shtd take into account the
Itering level to enforce along with the complexity of such propagation. This tradeo is
often the motivation behind proposing new global constrairts. The latter are usually ei-
ther extensions or particular cases of other global constriats that might occur in a num-
ber of applications. It should be noted that the more generalis a constraint, the higher
the complexity of enforcing a given level of consistency onti For instance, enforcing
ac on Gee can be done inO™S 2. time [110] while enforcingac on AllDifferent
takes 0" S 1'% time [109]. Sometimes, generalizing constraints can makehem in-
tractable. For example, considerGcec in which, instead of integer bounds of occurrences
(i.e.,low”je and upp’je for all j >), we have variables. That is, the occurrence of
each valuej > has to be equal to a variable . ac for this constraint is NP-Hard to
enforce [108].

2.1.4 Search

The search aspect is related to the decisions made to explotbe search tree. A decision
in CP is often performed heuristically by reducing a speci ¢ variable domain to a value
(in a similar way to Algorithm 3). Variable ordering heurist ics are typically designed

Chapter 2 Formal background 20

following the “fail- rst' principle [73, 129, 13]: To succ eed, try rst where you are most
likely to fail.. As such, one tries to avoid inconsistent subtrees as soon as possible.
Value ordering is usually less important and follows generly an opposite principle,
called “succeed- rst' or “promise' [61]. Indeed, the valuewith best chances to lead to
a solution is preferred. These heuristics can be customizetb the problem at hand
or follow a standard scheme. Examples of problem dependenteuristics can be found
in [54, 130, 126, 51, 122]. Examples of standard variable oeding heuristics include:
lexicographical order, minimum domain size, and maximum vaiable degree (i.e., how
much a variable is constrained). General purpose value heistics are less common,
trivial ones (such as branching on the minimum or maximum vaue in the domain) are
often used by default.

Search strategies can have a dramatic e ect on the overall eciency as they guide the
exploration of the search space [73, 28, 9, 63, 104]. In fad, bad decision can cause the
exploration to become trapped in an unsatis able sub-tree hat can take an exponential
time to explore.

2.1.4.1 Boosting Search through Randomization and Restart S

The authors of [67], have shown that the "hardness' of ndingsolutions is not entirely

related to the instance at hand, but rather to the combination “instance = determin-

istic algorithm’ This observation is supported by the e ci ency gain witnessed when
adding randomization to a deterministic search algorithm. Randomization is typically

performed when making decisions. For instance, one can usamdomization when tie

breaking choices that rank equally with respect to the heurstic at hand. Another ex-

ample is to choose randomly across a number of best choices.

It was observed int [67] that at any time during the experiment there is a non-negligible
probability of hitting a problem that requires exponential ly more time to solve than
any that has been encountered before [67]. This phenomenork@ains that runtime

distributions on random instances, or on random runs for a g¥en instance, are often
heavy tailed

Restarts has been proposed as a solution to avoid this phenomenon. Theearch is
bounded by a given cuto. Once the cuto reached, the exploration is stopped, and
restarted from the search root. One usually uses the number fofailures as a restart
cuto . Using randomization when branching on nodes makes tke explored trees di er
from restart to restart.

We nd in the literature two common restart policies. A geometric restart [144] uses
alimit of b X 1 for the k™ restart where bis called a base and is called a factor. A
Luby policy [88], on the other hand, follows the sequence 1, 1, 2,1, 2,4,1,1, 2,1, 1,

Chapter 2 Formal background 21

2, 4, 8, ... multiplied by a baseb. The i!" element of the luby sequence ; is de ned
recursively by the formula:

£33

2 Tif sk>N;i 2¢ 1

: (2.1)
o oi k1 g if 8k>N;2XIBi@* 1

-

2.2 Boolean Satis ability

The Boolean Satis ability Problem (SAT) is the question of d eciding a Boolean expres-
sion de ned in a Conjunctive Normal Form. That is, a conjunction of clauses, each of
which is a disjunction of literals, and each literal represats a Boolean variable or its
negation. As such, SAT can be considered as a particular casg CSP. This restriction
has made SAT solvers bene t from several enhancements thatra not available in pure
constraint programming solvers.

We describe in this section the organization of modern SAT slvers by formally de ning
this formalism and introducing some related notions.

2.2.1 A Background on Propositional Logic

An atom a is a propositional (i.e., Boolean) variable. Aliteral p denotes either an
atom a or its negation a. The former is called positive literal whereas the latter is
called negative literal. We use the notationsa and a for each atom a to denote its
positive and negative literals respectively. We extend thenegation operator to literals
following the rule p p. A clause c is a disjunction of literals p; - :::- px. We
suppose, without loss of generality, that all literals in a dause are pairwise distinct and
there is no literals p, p in the same clause. We use the two notationsyp; >c for any
literal appearing in the clause c; and $Sas the size of the clause (i.e., the number of
literals in the disjunction). Let c, c®*be clauses and be a literal. We denote by: p- ¢
the clause obtained by the disjunction of p with all literals in c; and c- c®the clause
de ned by the disjunction of all literals in ¢ and c% Finally, a propositional formula is
given in a Conjunctive Normal Form (CNIfif it is de ned by a conjunction of clauses
Ci1, i, Cy.

With that being de ned, a CNF can be considered as a constraib network "X ;D; Cs s.t.
X is the set of atoms, andC is the set of clauses. The Boolean Satis ability Problem
(SAT) is to decide the satis ability of a CNF formula [39].

A literal pis said to be:

Chapter 2 Formal background 22

true i pis positive and its atom is assigned to the value 1 op is negative and its
atom is assigned to the value 0.

false i pistrue.

A literal p is said to satisfy a clauseci p>c and p is true. Conversely, a literal p is
said to strengthen a clauseci p>cand pis false.

A clause c is satised i there exists a literal satisfying c¢. Similarly, c is violated i

I p>c, pfalsies c. A clausec is called unit when it contains exactly one unassigned
literal and the rest strengthen c. Finally, an empty clause Ugause iS @ clause with no
literals.

2.2.2 Conict Driven Clause Learning

Conflict Driven Clause Learning (CDCL[123, 124, 95, 48] is a state-of-the-art com-
plete algorithm underlying most modern SAT solvers. CDCL isessentially based on the
Davis-Putnam-Logemann-Loveland (DPLL [41] algorithm augmented with
resolution [112]. DPLL is a backtracking system using one type of propaagtion called
Unit-propagation (UB.

We associate two values to each assigned litergd: level(p) represents the number of
decisions in the path between the root and the node in whiclp is assigned; andank(p)
represents the rank ofp in the sequence of assignments of its level, in chronologitarder.
We shall start counting rank from O at each level. Therefore, any decision has a rank
equal to O.

We introduce the notion of propagation rule as a mechanism todescribe the outcome
of some propagation.Apropagation rule is a logical implication of the form p
where is a conjunction of literals and p is either a literal or a failure U. is said to
be the explanation for (propagating) p and will be denoted by explain(p).

UP triggers propagation in two possible ways. First, whenevera clausec becomes unit,
it enforces the only unassigned literalp in c to be true since it is the only possible way to
satisfy c. The propagation rule describing this Iteringis qpsc g p. Second, when
all literals in a clause c falsi es ¢, a failure U is triggered (c is said to be the conflict
clause in this case). We use ¢ ¢ U to describe this propagation. If g is the last
propagated literal in the con ict clause, then we call g and g conflicting literals

Finally a nogoodis a conjunction of literals su cient to make the CN unsatis able if
they are true. It follows from any propagation rule of the form U that is a
nogood.

Chapter 2 Formal background 23

As previously said, modern SAT solvers implement Con ict Driven Clause Learning

(CDCL) [123, 124, 95, 48], i.e., essentially DPLL in which nev clauses are learnt from

failures [123, 124]. However, CDCL solvers feature many er@mcements, we describe the
most important.

2.2.2.1 Conict Analysis

Whenever a failure occurs during search, a new nogood is comfed. The latter is trans-
lated into a clause that will be added to the base and used to pdgorm non-chronological
backtrack (known with the term backjump). The whole machinery is calledconflict
analysis and is based on the notion of cuts in thelmplication Graph

De nition 2.14. Implication graph

The implication graph G™N;E ¢ is a directed acyclic graph built as follows:

" Each assigned literal is associated to a vertex inN.
" There exists a directed edge in E from p to q (p ~0q) if p>explain”ge.

" When a failure is detected by a clause ¢, we rst add a vertex g s.t. ¢ is the
con icting literal in c. Then, any literal px g> cis associated to a directed edge
going from p to g. Finally, there is a special vertex U having edges coming fromq
and q.

From De nition 2.14, one can observe that all decisions haveno incident edge inG™N; E .

We give an example of implication graph. Suppose that the sebf clauses contains the
following ve clauses, among others: (1) a- b (2) b- h-c¢; 3) g- c- d; (4)
c-d- egand((B) c-e

We suppose that: g and a are true and correspond to decisions made at levels 4 and
9 respectively; h is propagated at level 6; the propagation after assigninga follows
the following propagation order: clause 1 propagates b, clause 2 propagateg, clause 3
propagates d, clause 5 propagates, and clause 4 triggers failure.

We show a part of the implication graph leading to failure. A nodep'™ in the implication

graph stands for the assignment ofp as the r-th consequence of thd-th decision (i.e.,
| level'pe and r rank”pe). Note that decisions will always have the form of p"™
since their rank is always equal to 0. Grey vertices are dedisns while white vertices are
propagated literals. The con icting literals in this examp le aree and e.

The implication graph is built while searching by recording for each assigned literalp its
reason, that is, explain“pe if p is propagated andnull otherwise (i.e., p is a decision).

Chapter 2 Formal background 24

Figure 2.1: Example of implication graph

Figure 2.2: Cuts in the implication graph

During con ict analysis, new nogoods will be produced. Theycorrespond to cuts in the
implication graph. We de ne a cut as a bipartition of G'N;Ee*. We distinguish two

disjoint sets: the con ict part and the reason part. The conflict part always contains
the U vertex whereas thereason part contains all decisions. The conjunction of literals
in the reason side that have an edge going to at least one litat in the con ict side leads

to a contradiction. It is therefore a nogood. The clause equito the negation of the
nogood is therefore logically implied by the CN. Di erent cuts will therefore produce
di erent clauses. We show in Figure 2.2 two dierent cuts for the implication graph

used in the previous example of Figure 2.1. The two cuts corigpond to the nogoods
c, gandg, a, h. Hence we can learn the clausesc- gand g- a- h.

When a nogood c is identied, cis rstly learnt and secondly used to perform non-
chronological backtracking (calledbackjumping). The condition for backjumping is that

Chapter 2 Formal background 25

c contain only one literal p in the latest level. In this case,c can be seenas O p
where p1, i, pn St pi ~p>candp are assigned at previous levels. We
rst backtrack to the greatest level between level p;e, then c directly propagates p. For
instance, with the clause g- a- h in the previous example, we backtrack to level 6
and assign ato true immediately.

Learning schemes are essentially di erentiated by their méhods for building cuts. The
rst method proposed in the literature is the one used in the relsat system [76] where
cuts are built s.t. the literal in the last level is always the latest decision. Modern
SAT-solvers, however, use any Unique Implication Point (UP), that is, a dominator of
the con icting literals in the last level.

De nition 2.15. Domination in the Implication Graph [147]

A vertex V dominates another vertexV %in the implication graph if any path from the
decision vertex of the level ofV to V%®has to go through V.

De nition 2.16. Unique Implication point [147] A Unique Implication point (UIP)
is a vertex in the current level that dominates both con icti ng literals.

Choosing cuts based on UIPs was originally proposed in Grasfl23, 124]. As we can
see in Figure 2.3, several UIPs can be found in a same implidan graph. In this gure,
every path from the latest decision (i.e., @) to the conicting literals e and e has to
pass througha, band c. Three di erent UIP cuts are therefore possible in this exanple.

Among the several possibilities, there exists one UIP cut tlat is particularly interesting.
By considering all UIPs by their reverse order of propagatim, the rst one (i.e., the
nearest to the conict), called the rst Unique Implication point (1-UIP), guarantees
the best backjump level (i.e. the nearest to the root). 1-UIP cuts have been shown to
be extremely e cient in practice [147] and are widely used in modern SAT Solvers.

Algorithm 6: 1-UIP
d current level;
explain”U ;
while Sq> Slevel"ge de S\ 1 do
Lp argmax,” rank"ge Slevel'ge d , g> e ;

87qg Sg>explain”pe, level'ge AQ “pe ;
return ;

Algorithm 6 shows a possible algorithm for computing the 1-UP nogood. It returns a
nogood having one literal assigned at the last decision leel d. s initialized with
the explanation of failure. Each iteration in the main loop substitutes a literal in with
its explanation. The choice of the next literal to substitut e is performed at Line 1 with
the literal of assigned at the last decision level and of maximum rank.

Chapter 2 Formal background 26

Figure 2.3: Unique Implication Points in an implication graph

Algorithm 6 is usually implemented with a worst case time conplexity of O™ « where
is the number of propagated literals in the last level. Indeel this requires exploring the
sequence of assigned literals in the latest level startingdm the last propagated literal.

It should be pointed out that modern SAT solvers usually try t o reduce the nal nogood
[132]. A common strategy of reduction is to eliminate liter als having their explanation
in .

In the example used in Figure 2.1, the 1-UIP clause is g- ¢, and the literal c is the
rst UIP. The solver then backtracks to the level of assigning g (i.e., 4 in this case),
assignsc to false, then continues the exploration. We show a step-by-step exaution of
algorithm 6 for building the nogood in this example.

1 c, d,e

2.p e

3 c, df.e., 87ce Te)
4. p d

5 c, g

We use the termclause database in the rest of this thesis to denote the set of learnt
clauses.

Chapter 2 Formal background 27

2.2.2.2 2-Watched Literals

Unit-propagation is typically implemented with lazy data structures. The 2-watched
literals [95, 62] is the most known lazy propagation scheme sed with modern SAT
solvers. Briey, the idea is associate each clause to two literals p;q>c (said to be
watching c). No propagation check is needed forc as long as the two literals watching
c are unassigned. Without loss of generality, ifp becomes assigned, but strengthen the
clause, Unit-propagation looks for a new unassigned literlato watch c. If no such literal
exists, Unit-propagation assignsq to true if qis unassigned and triggers failure ifq is
assigned but falsi esc.

2.2.2.3 Activity-Based Branching

One of the most known and widely used variable ordering heustic in SAT solvers is
the so-calledVariable State Independent Decaying Sum (VSIDS[95]. This heuristic
has been shown to be extremely e cient is practice. One can rd a variety of imple-
mentations for VSIDS. The rst description of a VSIDS ordering follows the following
steps [95]:

" Each literal has an “activity' value initialized to O.
" Whenever a literal occurs in a learnt clause, its activity i s incremented.
" The (unassigned) literal with the highest activity is chos en at each decision.

" All activity values are periodically divided by a constant so that literals in recent
learnt clauses are preferred.

2.2.2.4 Clause Database Reduction

Learning clauses without controlling the clause database ige can lead to a memory
explosion with the increasing number of clauses. This expkion is likely to increase
the amount of time required for enforcing UP. Several deletion strategies have been
proposed in the literature [124, 95, 48, 7, 75]. One usually refers the shortest clauses,
or the most "active' clauses. The latter are selected basednditeral activities computed
along with VSIDS. It is important to note that clauses responsible for propagating some
literals in the current branch should not be deleted as they night be needed during
con ict analysis.

Chapter 2 Formal background 28

2.2.2.5 Restarts

We have discussed in Section 2.1.4.1 the importance of regta for combinatorial algo-
rithms in general. CDCL can benet further from restarts by u sing the learnt clauses
and activity counting. The learnt clause prevents previous branches to be explored
twice. Moreover, the activity of literals can be extremely useful to bring information
from previous restarts to the search strategy.

2.3 Clause Learning in CP

When exploring a search tree, we repeat many times the same disions. It is therefore
natural to try to learn from failures, in order to avoid doing the same mistake again. By
de nition, an exact set of decisions is never explored twicds a search tree. However, it
may happen that only a part of the current branch entails a failure. When this is the

case, it is possible to learn something useful in order to avd failing more than once

with the same reason.

We have seen in the previous section how nogoods are deriverbiin conicts in SAT
solvers. Nogood learning inCP, however, predates CDCL. Indeed, the notion of nogood
goes back originally to the 70s in the seminal work of Stallma and Sussman [133]. And
the rst formal adaptation to CP was proposed by Dechter in [43]. A nogood (or con ict
set in [43]) is de ned as a set of assignments that can not leadb any solution. Other
approaches to nogood recording were proposed later in [10%13, 66].

Nogood learning in CP had not the same impact of CDCL in SAT solvers in the early
days. It has gained, however, considerable attention progessively during the last decade
and a half [79, 78, 80, 77, 82, 35, 34, 36, 37, 101, 106]. The ot of "explanation' is

the central component in these works. In order to compute a ngood, every propagation
outcome should be explained in the form of a set of decisionsd/or earlier propagations

that logically imply it.

Learning in CP has taken a new start in the past decade thanks to Katsirelos
generalized nogoods [82, 81]. A generalized nogood extends the notion of nogooat
contain both assignments and non-assignments (i.e., prung). Lazy clause generation 3
(LCG [100, 101] is a similar approach to Katsirelos. However, pppagators in LCG are
allowed to use literals of the formJx vK Jx x vK Jx BvK and Jx CvKto express domain
changes. All these types of literals can be used to explain aoain reductions in a clausal

form. The explanations are used essentially to mimic CDCL.

3Note that the term lazy might refer to completely di erent notions depending on the context (such
as Integer Linear Programming). We therefore insist to ment ion that we use this term to respect the
exact terminology used in [100, 101, 53, 52].

Chapter 2 Formal background 29

We give an illustrative example. Let be a Boolean variable andxy:::x11 be variables
with a domain de ned by: D"xqe 1,30, D" xpe 9:30, D x3e 0;3, D" xye
0;30, D" x5 2450, D" Xg* 5,10, D" xz¢e 2;10, D xg* 9:30, D" Xg*
13,16, D" x10° 0;3, and D" xq1° 15,100. These variables are subject to the
following constraints: (1) x;3 X7 C4, (2) X2 X190 C11, (3) X3 Xg 16, (4) x5 CXg Xg,
(5) "Xg X4 14, (6) “Xg C7e, (7) "Xg X7B9, and (8) x11 CXg Xio.
Observe that no pruning happens in the initial state of the problem. Now consider the
following decisions in the chronological order:

1. Assignx; to 1: The only subsequent propagation is to make 3 the lower band of
X7 by constraint (1), i.e., Jx7 C3K
2. Assignx; to 9: Constraint (2) propagates Jx19 C2K

3. Assignxs to 2: In this case, constraint (3) enforcesdxg 14K then constraint (8)
propagatesJxi; C16K

4. Assignx4 to 0: Constraint (5) propagates to 1. Constraint (6) enforcesJxg C7K
And constraint (7) nds failure.

The implication graph corresponding to this example is show in Figure 2.4. The solver
learns the new clauselx; B2K- J OKfollowing the 1-UIP scheme, backtracks to the
rst level, assigns to O, and resumes the exploration of the search space.

Figure 2.4: Example of an implication graph with a hybrid CP/SAT solver

CP-solvers can bene t from clause leaning by “discovering’ ne Itering rules, in the form
of clauses, that propagators alone are not able to perform.n the previous example for

Chapter 2 Formal background 30

instance, when enforcinglxy C3K no ltering suggest that should be assigned to 0. Itis
only by means of the learnt clauselx; B2k- J OKthat the solver performs such ltering.
Hybrid CP/SAT solvers may combine features coming from both approacks such as
powerful propagation mechanisms, clause learning, and agdive branching. However,
this holds only when propagators, including those proposedor global constraints, are
able to explain all their pruning.

In the rest of this section, we cover in more details the prinéples of Lazy Clause Gen-
eration [101, 100, 53] as it is the framework that we use to dégn the approach in-
troduced in this dissertation. The latest architecture [53] is implemented on top of a
CP-solver augmented with most SAT features (clause learnig, non-chronological back-
track, adaptive-Branching, etc).

2.3.1 A Baseline Hybrid Solver
2.3.1.1 Domain Encoding

The atoms on which the learning is performed are related to sme propositional facts
about the variable domains. These atoms are channeled thragh a set of clauses to ensure
a correct domain representation. The most known domain encdings in the literature
are the direct encoding [42, 145] and theorder encoding [40, 135] .

We assume without loss of generality thatx is a variable with a domain D" xe

The Direct Encoding The direct encoding usesk atoms denoted byJx v;K(j >
1k) s.t. x v;Kis semantically equivalent to assigningx to v;. Two types of clauses
are used to represent the di erent relations between these tams.

" at-least-one: a clause is used to express the fact thatx has to be assigned to a
value:

X viK- X woK- - X wK

"~ at-most-one: "sz clauses are used to express the fact that has to be assigned

to only one value.

rl@a> Lk, x vK- XX wK

Chapter 2 Formal background 31

The Order Encoding Here alsok atoms are used, however, each atom (denoted by
X BvjK j > 1,k) is equivalent to have an upper bound forx less thanv;. As for the
domain clausesk 1 clauses are used as follows:

1> Lk 1; XByv; 1K XByK

To make the notation lighter, we denote by Jx x vKthe literal Jx vKand Jx CvKthe
literal JxBv 1K

Following lazy clause generation, we use these two types of@ns together. In this case,
the domain related clauses have to ensure a complete domairepresentation between
these atoms. For instance, ifJx B 3Kis true, then Jx 4Kand Jx 5Kshould be set
to false. A clausal representation of such relationships gabe found in [100] under the
term Domain Faithfulness (which is essentially a channeling between the direct and
order encoding). Without loss of generality, for every varable x s.t. D"xs |;u , we
have the following clauses (referenced later bglom(x)):

1. XBdK- XxBd 1K |d>1lu 1
2. X dK- XxBdK}d>1lu 1

3. XX dKk- XxBd 1K d>1 ZLu
4. x IK- XBIK

5. x dK- XBdK- XxBd 1K d>1 Z1Lu

6. X uK- XxBu 1K

2.3.1.2 Solver Description

All domain related atoms and clauses described above are gerated before search. The

UP engine acts as a global constraint whose scope containsl g#hese atoms, and whose

semantics is given by the set of domain related clauses. Durg search, every propagator

is expected to explain each domain change it performs. Sinagavery domain change must

be represented by a literal, propagators are limited to chages that can be expressed as
conjunctions of literals of the following types:

" Assignment: an assignment operation assignsx to a value v in its domain, written
D xe “ve.

" Pruning: conversely to assignments, a pruning operation removes a valuev from
a variable domain, written D"xe D Xxe 7 ve.

Chapter 2 Formal background 32

" Upper bound tightening: an upper bound tightening operati on changes the upper
bound of x to a value u> min“xe;max"xe 1, written D"xe D"x*9 2 ;u.

" Lower bound tightening: a lower bound tightening operatio n changes the lower
bound of x to a value | > min“xe 1;max"xe , written D"xe D x*9 |[; 2

The notion of “explanation' and “propagation rule' that we introduced in Section 2.2.2
for clauses are extended to propagators as follows. First,aeh domain operation is
mapped to one of the literalsJx vK Jx x vK Jx BvK and Jx CvKin the natural way.
Second, once a domain operation is executed by a propagatdr, the solver assigns the
corresponding domain literal accordingly. For instance, f f enforces a new upper bound
u for a variable x with D"xe D"x*9 2 ;u, then the literal Jx B uKis assigned to
true. Any propagator executing a domain operation associagd to a literal p is asked to
explain pwith a propagation rule of the form p where , called an explanation
for p, is a conjunction of literals. The explanation should be of course valid in the
sense where if the set of domain operations corresponding ldgerals in are called on
the initial domain, then f executes (at least) the domain operation associated t@.

Example 2.4. Propagation rule

Let f be the propagator forx Cy 10 described in Algorithm 7. When tightening the
lower bound ofx to 13 becausey is assigned to3 (Line 2), f can generate the propagation
rule Jy 3K Jx C13Kwhich corresponds to the clausdy x 3K- Jx C13K

Algorithm 7: x Cy 10
if min"ys 10Amax”xe then
| DU ;
else
if “"min"ye 10~ Amin~xe then
| D°xs D'x*9 min7ys 10,2 ;
if "max"xe 10s @max"ye then
| D°ys D7ys9 2 ;max"xe 10 ;

return D ;

Similarly to CDCL, propagation rules are expanded to explan failures. That is, when
a propagator f returns the fail domain U, a propagation rule associated to this failure
is a logical implication U s.t. is a sucient condition for f to detect a failure.

Example 2.5. Explaining Failure

Consider the same constraintx Cy 10with D"xe 3;8 and D"ys ~3e. In this case,
the propagator f when triggering a failure (Line 1 in Algorithm 7)) can generate the
explanation Jy 3K, Jx B8K U which gives the conict clausely x 3K- Jx C9K

Chapter 2 Formal background 33

Propagation rules are added to the UP-Engine as clauses alaey propagated. The same
behavior applies when a conict is raised by a propagator. The clause explaining the
failure is added to the UP-Engine, however, as the con ict chuse. The con ict analysis
procedure is performed exactly the same way in CDCL.

It should be pointed out that any assignment by UP is re ected on the domain every
time UP successfully terminates propagation. For instance, ifUP propagates the literal
Jx B7Kto be true then the upper bound tightening D"xs D"x*9 2 ;7 is executed
if max~xe A7.

2.3.2 Engineering a Hybrid Solver: Modern Techniques

We describe here three modern techniques used in hybrid savs: backward explana-
tions, lazy generation, and semantic reduction.

2.3.2.1 Backward Explanations

The concept ofbackward (or lazy) explanations [59, 64, 98, 52] can simply be undersiod
as generating explanations only when they are needed. The nramotive behind using
backward explanations is that generating a clause for eachisgle propagation might
make the clause database grow extremely large. Moreover tke clauses do not make
any di erence to the propagation engine. They are only usefliduring con ict analysis,
where only a fraction of them may be explored. Avoiding geneating these clauses could
therefore save time. We give a simple way for using backwardxplanations.

First, as usual, when a domain operation is being executed by propagator f, the
correspondent literal p should be assigned accordingly. However, instead of gengireg a
propagation rule for I, the solver recordsf as the reason for assigning. Any propagator
using the backward mode is supposed to be able to generate agpagation rule for its
actions during con ict analysis.

Algorithm 8 depicts a slightly modi ed version of the 1-UIP p rocedure in order to handle

backward explanations. The di erence between Algorithm 8 and Algorithm 6 is the use

of a function called reason(p) to return the propagator f responsible for the domain
operation represented byp. Moreover, the correspondent propagation rule is expected
to be computed by the call to the function explain“f;l . The same behavior applies
when explaining a failure with reason”Ue and explain"f; Ue.

Note that the way we presented Algorithm 8 allows any propagaor to adapt any mode
of generating explanations (i.e., eagerly at the moment of pppagation, or during con ict
analysis).

A WO N P

Chapter 2 Formal background 34

Algorithm 8: 1-UIP-backward

d current level;
f reason" U ;

explain~f; Ue ;
while 8q> Slevel'ge deSA\1do
p argmax,” rank”qge Slevel'g> d, gq> e ;
f reason'pe ;
87q Sg>explain“f;pe, level’ge AO> “pe ;
return

2.3.2.2 Lazy (Atom) Generation

In order to have a reasonable number of atoms inside th&P engine, this technique is
used to lazily generate atoms related to domain operations @y when they are needed
[53, 52]. Recall that for a variable domain of sizek, the number of atoms is X and the

number of clauses is about K (using the dom”xe encoding). When the domain size is
too large, hybrid models becomes hardly e cient because of he amount of time needed
for propagating these clauses. The notion of “lazy generain' appeared recently in the
literature as a mechanism dealing with that issue.

We describe this mechanism following the latest propositias in [52] which are improve-
ments of [53]. We use their term [azy generation 'to describe this technique.

The main transformation needed for using lazy generation isto reshape propagation
rules to contain both literals and domain operations. The gan here is that one does not
need the atoms generated from the beginning. Take for instace the propagation rule in
Example 2.4Jy 3K Jx C13K The propagator does not need to use the atonly 3K
to explain Jx C13K Instead, it can inform the solver that the operation assigrning y to

3 is responsible for the lower bound tightening ofx to 13. We shall use the notations
X vK XX x vK X BvK and Jx CvKfor literals associated to generated atoms as well as
the correspondent domain operations.

The skeleton of conict analysis is the same as Algorithm 8. [Ew adaptations are,
however, necessary. First, the nogood under construction can contain both literals
and domain operations andp can be either a literal or a domain operation. Next, one
should be able to recover the values devel, rank and reason for each domain constraint
operation. Note that the rank is needed only in Line 3 to compue the last assigned
literal in . Finally, before returning in Line 5, all domai n operations in should
either be replaced by their corresponding literals if they ae already generated, or be
associated to newly generated atoms.

Three scenarios are possible when lazily generating an atodx BuK

Chapter 2 Formal background 35

1. If there is no valuea max~u®SJx Bu%Xis generated , u®@ue, we add the clause
Jx Buk- Jx BbKif there exists a valueb min~u®SJx Bu%Kis generated , uAue.

2. If there is no valueb min~u®*Six Bu%Xis generated , u®Aus, we add the clause
Jx Bak- Jx BuKif there exists a valuea max~u®S)x Bu%Kis generated , u*@ue

3. Otherwise, we add the clauses Jx BaK- Jx BuKand Jx BuK- Jx BbKwherea
max~ u®Six Bu%Xis generated, u®@ue andb min~u®Slx Bu%Kis generated , u®A
Ue.

If an atom Jx vKhas to be generated, one rst generatesix BvKand Jx Bv 1K
following the above way (if they are not already generated),then posts the clauses 2, 3,
and 5 ofdom”xe.

The main problem with lazy generation is that there is a redurdancy regarding the
generation of bound literals. After adding the clauses Jx Bak Jx BuKand Jx Buk Jx B
bKthe clause Jx BIK- Jx B uKbecomes redundant. There might ben 2 redundant
clauses after generatingh atoms for a given variable.

We shall propose in Section 5.2 a new way for using lazy gendran in order to avoid
this redundancy whilst being computationally equivalent to UP as if the atoms were
generated from the beginning.

Recall that if the literals are eagerly generated then for ay domain change, one as-
signs its corresponding literal totrue which might trigger UP. Such a procedure is not
necessary with lazy generation since not every domain opetian is associated to a lit-
eral. Instead, the domain changes must be re ected on the gerated literals. Feydy et
al. [52] propose to associate a map for each variabefrom values to domain operation$.
Whenever D" xe changes, the map can be used to determine the newly executeamhain
operations already having an associated literal. These lérals must then be assigned
accordingly.

2.3.2.3 Semantic Reduction

In general, there is no complete qualitative evaluation for comparing dierent
nogoods/explanations. Take for instance the nogoodst, b, ¢ U ,e, ¢ U, and
a, b U . Unless we have additional information regardinga, b, and e, we cannot
determine the best choice betweera, b, ¢ U ande, ¢ U even though the latter
is shorter. The strict inclusion, however, gives a simple ad straightforward way for
comparison. For instancea, b pis clearly preferable toa, b, ¢ p.

“We had also a personal communication with Thibaut Feydy on th e subject.

Chapter 2 Formal background 36

Reasoning about the semantic of each literal/domain operabn enables a new way for
reduction. Suppose that X B17K, Jx B10K, JyC5K, JyC9K, p U is the nal
nogood found before converting domain operations into liteals. SinceJx B 10Kcan be
considered as a plausible explanation fodx B17K then we can safely remove it from .
The same observation goes withly C9Kas a reason fordy C5K The nal nogood in this
case islx B10K, JyC9K, p U .

Semantic reduction revises the nal nogood to contain for eah variable the smallest
possible upper bound and the largest possible lower boundtérals. Not only has the
nal nogood a better quality, but also the number of lazily generated atoms is smaller.

Chapter 3

An Empirical Heuristic Study for
the Car-Sequencing Problem

Introduction

Car-sequencing [102] is a well known sequencing problem carg from the automotive
industry and has a long history in constraint programming [44, 17, 128, 111, 139]. In
this problem, a set of cars has to be sequenced on an assembilyel subject to capacity
and demand constraints. Each car belongs to a class of vehéd that is de ned with a set
of options to install (such as sunroof and air-conditioner) In 2005, a challenge has been
organized by the French Operations Research and Decision §port Society (ROADEF 1)
for solving optimization versions of the problem provided ky the RENAULT ? automobile
manufacturer. We refer the reader to [131] for a survey regating exact and heuristic
methods used in this challenge.

In this chapter, we are interested in the search aspect for daeing the car-sequencing
problem. The latter is used as a test benchmark throughout ths thesis. Through a
comprehensive evaluation of search strategies for this pldem. We show the interest
of several new branching heuristics and we measure the ovdrampact of the choice of
search strategy.

This empirical study is built on a new classi cation of heuristics for this problem. This
classi cation is based on a set of four criteria: the type of lvanching decisions, the
exploration directions, the selection of branching values("options' in this model) and
the aggregation function for this selection. In particular, we show that the way of
selecting the most constrained option is critical, and the kest choice is fairly reliably

Yhttp://challenge.roadef.org/2005/en
Zhttp://group.renault.com

37

Chapter 3 An empirical heuristic study for the car-sequencing problen 38

the load of an option, that is the ratio between its demand and the capacity of the
corresponding machine. Similarly, branching on the classfovehicle is more e cient than
branching on the use of an option. Overall, even though resi$ can vary greatly from
instance to instance, we are able to indicate with a relativédy high con dence which is
the most robust strategy, or at least outline a small set of paentially best strategies.

The remaining of the chapter is organized as follows. In Se@n 3.1, we describe the
car-sequencing problem and discuss the related constrairgatisfaction models. In Sec-
tion 3.2, we propose and classify a number of new and existingeuristics. And nally,
we empirically evaluate and analyze the new classi cation m Section 3.3.

3.1 The Car-Sequencing Problem

3.1.1 Problem Description

In the car-sequencing problem,n vehicles have to be produced on an assembly line.
There are k classes of vehicles andn types of options. Each classc > 71;:::;ke is
associated with a demandd'®ss, that is, the number of occurrences of this class on the

station able to process only a fraction of the vehicles passg on the line. The capacity
of an option j is de ned by two integers p; and ¢, such that no subsequence of sizg
may contain more than p; vehicles requiring optionj .

A solution of the problem is then a sequence of cars satisfymboth demand and capacity
constraints. This problem is NP-hard [84, 50].

For convenience, we shall also de ne, for each optiof, the corresponding set of classes
of vehicles requiring this option G~ ¢ Sj > Oce, and the option's demand djo'ot

= &G dglass.

Example 3.1. Consider a simple case of 5 slots (i.e.n 5) with 3 classes™c;; Cy; C3®
and 4 options such that:

" O " 1,2,0c " 134, O T 2e.
~ dglass 2 dglass 2 dglass 1
1) ' YC3

pi~G (lexicographically): 3~4; 2-3; 1-3; 1-2.

From above, we obtain:

Chapter 3 An empirical heuristic study for the car-sequencing problen 39

TG TL2,G T3, G "2 andC " 2e

S odPt o4, dP 3, dP 2and P 2

The sequencecy, Cp, C1, C3, Cx IS a possible solution for this instance.

3.1.2 Modeling

We use a standardCP modeP with two sets of variables. The rst set corresponds to

variables corresponds tonm Boolean variables™yi;:::;yMs (called option variables),

ith

where yf stands for whether the vehicle in thei™ slot requires optionj.

There are three sets of constraints.

1. Demand constraints for each classc >~ 1::ke, Si Sx; ¢S df®S. These con-
straints are usually enforced with aGlobal Cardinality Constraint (Section 2.1.3.2.

2. Capacity constraints: for each optionj >"1::me, no subsequence of sizq involves
G Llippy 1is~----

i J

In order to factor out as much as possible the propagation asgct from the study,

more than p; cars requiring optionj . Thatis, P:

we use several models in order to diversify the data set. Morerecisely, we shall
consider four models, di erentiated by how capacity constrints are modeled and
thus propagated. For each optionj, these constraints can be expressed in one of
the following alternatives:

(@) A naive decomposition using sum constraints. This modelis denoted
decompose.

For each option j, we post the following Global Sequencing Constraint(Sec-
tion 2.1.3.2):

This model is denotedgsc.

(c) For each option j, we post the following AtMostSeqCard constraint (de-
ned later in Section 4.3):

3This model can be found for instance in llog-Solver 6.7.

Chapter 3 An empirical heuristic study for the car-sequencing problen 40

(d) We post both Gsc™0;p; ;g ;card;card; X1;:::;Xn ;G and

This model is denotedgsc™ amsc.

3. Channeling: Option and class variables are channeled through simple ¢straints:
yf 1 j>G;1) >"Lunme; i >71; 0 ne: Each constraint is implemented
using a set of simple binary constraintsx; ¢ yf 1, 1j>0candx; c yf

3.1.3 Related Work

Regarding the search strategy, two main principles are know to be important for the
car-sequencing problem. First, the sequence of variableotbranch should follow the
assembly line itself. Indeed, the structure in chain of capaity constraints makes it
di cult to achieve any inference far away from a modied vari able in the sequence
[128]. Second, one should assign the most constrained clawsoption rst. This has been
perceived as a falil- rst strategy, hence surprising since cceed- rst strategies should be
better for selecting the next branch to follow. However, as winted out in [128], since
the solutions to this problem are permutations of a multiset of values, choosing the most
constrained one when it is still possible actually yields the least constrained sub-problem.
Therefore, in this sense, it is indeed a succeed- rst stratgy.

In [128], a lexicographical exploration of the integer varablesxs, ..., X, standing for
classes of vehicles, was advocated as an interesting seasinategy. Three parameters
were considered for choosing the most constrained class: @mumber of options per class
(denoted asmax option), the tightness of each option (i.e., the capacity constrant gp)
and the usage of each option (i.e., usage rat%).

In [111], the authors proposed to branch on option variablesy{ , exploring the sequence
consistently with their position on the assembly line, however starting from the middle
towards the extremities. Indeed variables at both ends are @bject to fewer capacity
constraints than variables within the sequence. Moreoverthey introduced for the rst
time the notion of slack for selecting the most constrained ption.

In [68], several heuristics were compared for solving an ophization variant of this

problem. These heuristics are based on the usage rate preusly de ned for selecting the
next variables to assign in the sequence. They consider two ays for aggregating these
values (using lexicographically the maximum value, or a sinple sum) when branching
on class variables. Two possibilities of using the usage ratwere compared : static

Chapter 3 An empirical heuristic study for the car-sequencing problen 41

and dynamic (i.e., updated at each node). Note that the statc values of usage rate,
load or slack are all equivalent. Their experiments showed ssentially the interest of
dynamic heuristics comparatively to static ones. The same bservation is made in [29]
where a dynamic load was used with class variable branchingral a simple summation
to aggregate the values.

3.2 Heuristics Classi cation

3.2.1 Classi cation Criteria

We propose to classify the heuristics related to this problen according to four criteria:

" The type of branching decisions: that is, whether we branch on classes or options.

" The order in which we explore the variables along the assembly line: one can start
from the left of the sequence and progress to the right, or std from the middle of
the assembly line widen to the sides.

" The measure used to selectthe most constrained options.

" The function used to aggregatethe evaluation of the di erent options in order to
choose the next class of vehicles to branch on.

Notice that among the many combinations of these four critefa, some correspond to
existing heuristics, however some are novel. For each crit®n, there are several alter-
natives, we present each of them below.

3.2.1.1 Branching

We can branch either by assigning a class to a slot, that is, kanching on class variables
Xij, Oor by assigning an option to a slot, that is, branching on opion variables y{ . The
former was used in [128], while the latter was proposed in [1Il. Notice that when
branching on option variables, we always set it to the value 1 which amounts at forcing
the corresponding option to be represented in that slot. We herefore consider these two
cases denoted respectivelglass and opt.

3.2.1.2 Exploration

Heuristics that do not follow the sequence of variables alog the assembly line generally
have poor performances [128]. We nd in the literature two man exploration orders:

Chapter 3 An empirical heuristic study for the car-sequencing problen 42

either following a lexicographical order on class variable or from the middle to the sides
of the sequence. We therefore consider these two exploraticcases denoted respectively
lex and mid.

3.2.1.3 Selection

The best heuristics are those selecting rst the most constained option or class. Observe
that since each class is de ned by a set of options, then it algoes down to the hardness
of the options. We therefore consider the following indicabrs proposed in the literature
to select the most constrained option:

" The capacity g ~p;: The greater the ratio ¢ ~p;, the more constrained is the option.
In fact, a greater ratio g ~; has more impact on neighboring slots as it is shown

in Example 3.2.

Example 3.2. Let 0, and 0, be two options s.t.p1 1, po 2, andpy ¢ 3
Consider now a sequence 05 slots in which we have to choose between and o,
in the third position. The two parts of the following gure show the impact of each
option. In fact, by choosing 0;, all neighboring slots can no longer contain this
option because of the at mosi~3 constraints.

yi y?

H
00 100|.. 1.

" The residual demand dj(’pt: This value is equal to the total demand (of a given

option) minus the number of cars containing this option already allocated (djOIOt
‘djpm P, min “y{ *). Clearly, a greater demand makes it more di cult to t the
cars requiring this option on the assembly line.

" The load ;: This parameter combines the residual demand with the capadty ratio:
j dj‘"ot g—j In fact the ceiling of j is always an upper bound for the number
of slots required to mount djOpt times the option j. A greater value of the load is

therefore more constrained.

" The slack ;: Let nj be the number of slots available for optionj. The slack of an
option j is j nj ;. Since we want higher values to indicate more constrained
options, we use in factn ;.

" The usage rate : This value is de ned as the load divided by the number of
remaining slots: ; j-n;. It therefore represents how much of the remaining

space will be occupied by vehicles requiring this option.

Chapter 3 An empirical heuristic study for the car-sequencing problen 43

Based on these indicators, we consider four methods to evadite the options. Each
method returns an indicative value on how constrained is an ption. In other words, the
option maximizing the given parameter will be preferred in the next decision. In the
following, we denote the above selection criteria by, d°®, ,n and , respectively.

3.2.1.4 Aggregation

In the case ofclass branching, since classes are de ned as a set of options, theedsion
is most often made by summing up the scores of the options fo each class. However,
there are many ways to aggregate these values. We thereforegpose to add the method
used for the aggregation as a fourth criterion.

Let f "1;:::;me (R be a scoring function. We denotef "O.* the tuple formed

following ordering relations between classes:

" Sum of the elements (Bp): C1 Bo C2 i Py "0¢,+VBPyst0,,. V-
" Euclidean norm (Beue): G1BeucC2 i Pyst-o,- v? BPyvs-oc,- V2.
" Lexicographical order (Bex): CiBexC2 i f Oc,» comes lexicographically after

f"Oge.

Example 3.3. We give an illustrative example. We consider Example 3.1 anduppose
that one branches on classes. In Table 3.1, we give the di en¢ values of each selection
parameter for all options.

Table 3.1: Values of the selection criteria for each option

h iy
U Thhp Options
Selection pargnQetel? hhhp 1 2|3
o 133 [15] 3 | 2
doPt 4 3 2 2
532 45| 6 | 4
n 532 | 45| 6 4
1,064 0912 0,8

In order to emphasize the impact of aggregation functions, & propose to study the dif-
ferent scores for each class using thd® parameter. Recall that each class is de ned by
a set of options, we obtain in Table 3.2 the corresponding vaés for each class.

In Table 3.3, we report the order of preferences given by thei drent aggregations. The
class having the higher score will be selected rst and so on.

Chapter 3 An empirical heuristic study for the car-sequencing problen 44

Table 3.2: Classes' scores using the parametei°™

AR
,\AxxxxxClasses ool e
; X 1| C | C3

Options XX x

1 4 | 4| -
2 3|-13
3 -1 2] -
4 -1 2] -

Table 3.3: Scores & Heuristic decisions

Agg. Scores Heuristic preferenceg
a | & | c

Bo 7 8 3 [C2, C1, Cs]

Beuc 25 24 9 [c1, c2, €3]

Bex ||[4: 3, -,][4, 2,--]][3,-,-] [C1, €2, C5]

Although we treat a simple case, one can observe that decig® can be in uenced by
aggregation functions. The behavior oBy is di erent from Bg,c and Bey. It prefers ¢,
whereas the others prefer;.

3.2.2 Heuristics Structure

In the rest of the chapter, we denote the set of heuristics as dilows:
“class;opt;~lex;mide;"qp;d°®; :n ;; 1e;7Bp;Beyc;Bex*e. Note that we consid-
ered the constant function 1 as another possible selectionriterion. This is proposed so
that our classi cation also includes the max option heuristic [128] where each class is
evaluated simply by its number of options.

Observe, however, that not all combinations make sense. Fomstance, the aggrega-
tion function does not matter when branching on options. Theefore, using the new
classi cation, we obtain 42 possible heuristics:

“classe;"lex;mid ;" g9;d°; ;n ; ¢;"Bp;Bruc;Bex*e: The 30 heuristics that
branches onclass variables with the two exploration strategies ~lex;mide, the

ve selection parameters “gp;d°Pt; ;:n ; and the 3 aggregation techniques
"Bp;Beuc; Bex®-
" opte;"lex;mide;"g;d°Pt; :n; ;ge: 10 heuristics branching on option vari-

ables with the two exploration possibilities ~“lex; mide and the ve selection pa-
rameters “q; Pt n ;..

Chapter 3 An empirical heuristic study for the car-sequencing problen 45

~

classe;"lex;mid+;"1+; "B *e: The two possible heuristics related to the partic-
ular case ofmax option.

Among the many combinations de ned by this structure, there are several existing
heuristics as well as new ones. In the literature, only few heristics have been studied.
First, the max option heuristic proposed in [128] branches orctlass variables lexico-
graphically (lex) and the most constrained class is then selected using the su"Bp*
aggregation. It therefore corresponds to class;lex; 1;Br e Second, in [68], the authors
proposed to use the usage rage witlelass branching, lexicographical exploration (ex)
and Bp, Bex for aggregation. They correspond to class;lex; ; "Bp ; Bex*e. Similarly,
the authors of [29] proposed alass branching usingBe for aggregation in a lexicograph-
ical exploration (lex), however, using the load and the capacity g for selection (i.e.,
“class;lex;” ;q-pe;Bp €. Finally, the heuristic proposed in [111] is based onoption
branching, exploring the sequence from the middle to the sids using the slack as a
selection criteria. This heuristic corresponds to opt;mid;n ; ge.

To the best of our knowledge, all other heuristics are new andhere is no comparative
study for evaluating the impact of each classi cation criterion.

3.3 Evaluating the new Structure

In this section, we evaluate experimentally the impact of the proposed criteria classi-
cation for the heuristics. We slightly perform randomizat ion as follows: with a low
probability (2% for classes and 5% for option8), the second best choice (provided by
the heuristic) is taken.

All the experiments were run on Intel Xeon CPUs 2.67GHz underLinux. The detailed
results are available via http://homepages.laas.fr/msiala/car-sequencing . For
each instance, we launched ve randomized runs per heuristi with a 20 minutes time
cut-o. All models are implemented using llog-Solver 6.7.

We use benchmarks available from the CSPLib [2] divided intothree groups. The rst
group of the CSPLib contains 70 satis able instances having200 cars, 5 options and from
18 to 30 classes, it is denoted bygetl. The second group of the CSPLib corresponds to
instances with 100 cars, 5 options and from 19 to 26 classesn this group there are 4
satis able instances , denoted byset2 and 5 unsatis able instances denoted byset3. The
third group of the CSPLib contains 30 larger instances (rangng from 200 to 400 vehicles,
5 options and from 19 to 26 classes). The 7 instances from thigroup that are known
to be satis able are grouped together inset4. At the top of each table, we mention,

“Those values were arbitrarily chosen. The impact of branching on an option variable being lower, a
higher probability was necessary.

Chapter 3 An empirical heuristic study for the car-sequencing problen 46

for each data set, the total number of instances with an indiation on their feasibility
(i.e., satis able: S and unsatis able U). The status of the 23 remaining instancesset5
is still unknown. They are often treated in an optimization context, hence they are not
considered in these experimentations.

The set of heuristics "~ class; opt;~lex;mids; “1;0;d°; ;n ; «;"Bp;Beyc;Bex®e
combined with the four models decompose, amsc, gsc, and gsc™ amsc leads to 168
di erent con gurations. The latter is applied to each set of instances (i.e., 70 4 5 7
instances) with 5 randomized runs. The total CPU time for that was devoted to these
experiments is around 244 days.

We say that a run (related to an instance and a given con guration) is successful if
either a solution was found or unsatis ability was proven. For each set of instances, we
report the percentage of successful runs%sol) °, the CPU time (time) in seconds both
averaged over all successful runs and number of instances.

Experimental results are divided in thee parts. We rst compare the many combinations
of heuristic factors by giving the results for each one. Thenwe study the proposed
classi cation by evaluating each factor separately. Finaly, we provide a comparison
related to the e ciency and con dence of each factor

3.3.1 Impact of each Heuristic

In this paragraph, we report the results of each heuristic sparately on each set of
instances averaged over the four propagators.

The set of heuristics corresponds to all possible combinatins of parameters given by:
“class; opte;~lex;mid ;" 1;q;d®; ;n ; ;"B ;Beyc; Bex*e leading to the 42 heuris-
tics presented in Section 3.2.

Table 3.4 shows the global results of our experiments. For eh heuristic, we indicate
in column (Ref!) whether it is already known (with the corr esponding reference) or
not (with "-'). Recall that, in these experiments, we consider only dynamic evaluation
with the four criteria : demand, load, usage rate and slack. Br each set of instances,
we report the percentage of successful runs (86l) and their average CPU time (time).
The last two columns summarize the results over all set of ingnces. The column (%ot)
gives the total percentage of solved instances and the colum(%dev) gives the deviation
in percent of a given heuristic to the heuristic solving the maximum number of instances.
Bold values give the best heuristics w.r.t. %sol.

5Sinceset3 contains only unsatis able instances, then % sol corresponds to the percentage of instances
for which the solver proves unsatis ability.

Chapter 3 An empirical heuristic study for the car-sequencing problen 47

Table 3.4: Comparison of heuristics averaged over propagation rules

Heuristics Ref. Instances Total
set 1 (70;S) || set2 (4;S) || set3 (5;U) || set4 (7;S)

Sel. Br. Expl. Aggr. %sol [time || %sol | time || %sol | time || %sol | time || %tot |%dev
Blex [68] 100.00 | 0.6|| 52.50| 59.1|| 0.00 -]{25.72 | 2.9]{| 85.93| 1.00
lex Bp [68] 100.00 | 0.6|| 48.75| 0.2 0.00 -1| 10.71| 84.4|| 84.53| 2.61
class Beuc - 100.00 | 0.6|| 30.00| 0.2 0.00 -1| 12.85|156.3|| 83.84| 3.42
Blex - 99.92| 0.5[| 53.75{163.5|] 0.00 -] 16.42] 50.0]| 85.17| 1.88
mid Bp - 100.00 | 0.5|| 51.25|236.6|| 0.00 -1| 18.57| 5.4|| 85.29| 1.74
Beuc - 100.00 | 0.5 || 51.25|249.3|| 0.00 -|| 17.14| 30.2|| 85.17| 1.88
opt ng - - 87.00| 1.9(|75.00 | 33.3 ||25.00 |211.3 5.71|533.4|| 76.22|12.19
mid - - 87.64| 2.9|| 31.25| 0.4|| 23.00| 233.6|| 14.28|171.1|| 75.29|13.26
Blex - 100.00 | 0.6|| 52.50| 59.2|| 0.00 -]{25.72 | 2.8|| 85.93| 1.00
lex Bp - 100.00 | 0.6|| 48.75| 0.2 0.00 -1| 10.71| 78.6|| 84.53| 2.61
class Beuc - 100.00 | 0.6|| 48.75| 0.1|| 0.00 -|| 10.71| 79.4|| 84.53| 2.61
n Biex - 100.00 | 0.6|| 53.75|169.7|| 0.00 -1| 18.57| 33.1|| 85.41| 1.61
mid Bp - 100.00 | 0.5 51.25|236.9|| 0.00 -1| 22.14| 29.0|| 85.58| 1.41
Beuc - 99.92| 0.5|| 51.25|236.3|| 0.00 -|| 22.14| 28.8|| 85.52| 1.48
opt ng - - 32.71| 21.7|| 43.75|236.8|| 13.00| 190.7|| 0.00 -1l 29.42{66.11
mid - [111] 38.14| 13.0|| 26.25| 33.7|| 18.00| 260.8|| 0.00 -|| 33.31|61.62
Blex - 100.00 | 0.6|| 71.25| 42.4|| 0.00 -]{25.72 | 3.0{|86.80 | 0.00
lex Bp [29] 100.00 | 0.6|| 48.75| 0.3 0.00 -1| 10.71{100.2|| 84.53| 2.61
class Beuc - 100.00 | 0.6|| 48.75| 0.3|| 0.00 -|| 10.71| 87.3|| 84.53| 2.61
Biex - 100.00 | 0.5|| 37.50| 38.2 0.00 -1| 15.00| 51.5|| 84.36| 2.81
mid Bp - 100.00 | 0.5 || 68.75|167.9|| 0.00 -|| 20.71| 42.8|| 86.28| 0.60
Beuc - 100.00 | 0.5|| 68.75|166.5|| 0.00 -1| 20.00| 16.2|| 86.22| 0.67
opt lex - - 98.57 1.2[| 36.25[111.7|] 0.00 -] 22.85] 5.8]| 83.78| 3.48
mid - - 98.92| 3.7|| 43.75| 3.8|| 0.00 -|| 21.42| 88.8|| 84.29| 2.89
Biex - 82.85| 7.8 0.00 - 0.00 - 0.00 -|| 67.44(22.31
lex Bp [29] 83.35| 10.1|| 18.75| 0.1 0.00 - 0.00 -|| 68.72(20.84
class Beuc - 83.42| 11.3|| 18.75| 0.09|| 0.00 -|| 0.00 -|| 68.77|20.77
Biex - 84.71| 7.9|| 18.75| 95.7 0.00 - 0.00 -|| 69.82(19.56
ar mid Bp - 85.35| 7.7|| 18.75/100.9|| 0.00 -|| 000l -|| 70.34{18.96
Beuc - 84.64| 7.5|| 18.75| 96.0|| 0.00 - 0.00 -|| 69.77{19.63
opt Ie_x - - 65.71| 73.3|| 0.00 - 0.00 -] 0.00 -]| 53.48|38.38
mid - - 70.71| 29.8|| 12.50|606.4|| 0.00 - 0.00 -|| 58.14(33.02
Biex - 90.92| 1.2|| 37.50| 47.4|| 0.00 -1|25.71 | 55.3|| 77.84|10.32
lex Bp - 95.07| 1.9|| 41.25| 48.5|| 0.00 -{| 17.14| 21.5|| 80.70| 7.03
class Beuc - 94.50| 0.7|| 43.75|106.5|| 0.00 -1| 23.57| 40.2|| 80.87| 6.83
dopt Blex - 90.64| 1.9({75.00 | 83.4|| 0.00 -1| 24.28| 5.3|| 79.24| 8.71
mid Bp - 94.71| 0.6|| 67.50| 68.9|| 0.00 -|| 13.57| 53.9|| 81.33| 6.30
Beuc - 94.57| 0.6(|75.00 | 83.2 0.00 -1| 15.71| 50.7|| 81.74| 5.83
opt Ie_x - - 73.78] 2.9[| 56.25| 79.5|] 0.00 -] 0.71]282.0|| 62.73[27.73
mid - - 77.28| 13.7|| 43.75| 5.2 0.00 - 7.85| 16.5|| 65.58(24.45
1 class lex Bp [128, 29] 86.92| 13.2|| 18.75| 0.1 0.00 - 0.00 -|| 71.62{17.49
mid Bp - 89.92| 8.3|| 63.75| 20.3|| 0.00 -|| 0.00 -|| 76.16|12.26

For the easiest set §etl), 16 heuristics solve all instances in less than a second. Aong

them, 3 are known heuristics whereas 13 correspond to hew cdmmations. It should be

noted that all these con gurations use aclass branching and a load-based selection (i.e.,
;5N). Interestingly, changing a single parameter of a heuristt can have a dramatic
e ect. For instance, the heuristic "opt;lex;n ; ge resolves only 3271% of this set
whereas changing only the branching criterion toclass (i.e., “class;lex;n ; "Biex;Bp

; Beuc*€) leads to a complete resolution (i.e., 100%).

For set2 and set3 the heuristic “opt;lex; ; ge gives the best results with 75% in 333s for
set2 and 25% in 2113s for set3 Also, the heuristics “class; mid; d°P';~ By ; Beyc*e has

Chapter 3 An empirical heuristic study for the car-sequencing problen 48

the same number of successful runs compared fopt; lex; ; ge but with higher runtime.
All of these heuristics correspond to new con gurations.

Finally, for set4, the best heuristics resolve 251% in approximately 3s and correspond to
the con gurations “class;lex;™ ; ;n *:Bexe Another heuristic “class;lex; d°Pt; Bey e
obtains the same percentage but with higher runtime (553s).

Overall, the heuristic that has the best results across all @ta sets and therefore seems
to be the more robust is class; lex; ; Bex e with 86:8% of solved instances (according to
the column "Total'). More generally, heuristics using loadbased selection (i.e., , n

and) and class branching obtain better results than the other ca gurations.

3.3.2 Criteria Analysis

In this part, we aim to evaluate the relative impact of each classi cation criterion. For
each criterion and each data set, we divide all the runs into a many sets as the number
of possible values for this criterion. Then, we average theeasults within each set. For
instance, exploration can be done either lexicographically lex), or from the middle to
the sides fnid). We will thus report two sets of statistics, one for lex and one for
mid. Each average corresponds to one run per possible set of hésitics (21), Itering
algorithms (4), randomized runs (5), and instances in the d#&a set.

The following Tables (3.5, 3.6, 3.7 and 3.8) are split in two @rts. We report in the upper
part the results for each set and each possible criterion w.t. the criterion being used
averaged over all other criteria. The lower part shows the bst results obtained for any
possible combination of the other criteria. In these tables we report the percentage of
successful runs ¢sol), the CPU time (time) in seconds both averaged over all successful
runs, instances and heuristic criteria. Bold values indicée best results in terms of
successful runs %sol). Moreover, in the upper tables, the last column @6tot) gives the
percentage of solved instances over all the sets.

3.3.2.1 Branching Strategy

Here we compare the two branching strategies:class and opt. We tested all the pos-
sible combinations of heuristics for each strategy. Howewve as the constant selection
parameter 1 is not de ned for opt variables, we do not consider its heuristics in this
part.

When branching on opt variables, we have de ned 10 heuristics (since aggregatiofunc-
tions are omitted): “opt;~lex ;mide; q4;d°®; ;n ; e;ge, that is 200 tests for each

Chapter 3 An empirical heuristic study for the car-sequencing problen 49

instance. To have consistent comparison withclass branching, we separate its re-

sults by aggregation functions. That is “class;”lex ;mide;"g-p;d®; ;n ; ¢;Bexg
“class;"lex ;mide;"gp;d°®; ;n ; «;Beyce and “class;lex ;mide;”gp; Y ;n
, *;Bpe

Table 3.5: Evaluation of the branching variants

Av. Bran. setl (70;S) set2 (4;S) set3 (5;U) set4 (7;S) Global
(' 200) %sol| avg bts [time || %sol| avg bts | time || %sol| avg bts | time || %sol| avg bts | time || %tot
opt 73.0{102023.9| 14.1|| 36.8|287139.5| 82.0|| 7.9 [53275.4|225.6|| 7.2|207502.8{107.9|| 62.2
class; Biex 94.9| 26120.0| 2.0|| 45.2|481410.8| 84.9|| 0.0 - -1|17.7 | 98707.8| 22.5|| 80.7
class; Bp 95.8 | 27209.1| 2.1|| 46.3|327601.5| 95.7|| 0.0 - -|| 12.4|156300.3| 44.6|| 81.1
class; Beyc 95.7| 27563.3| 2.1|| 45.5|463196.6/107.9|| 0.0 - -|| 13.21107599.7| 52.9|| 81.0
Best Bran.
opt 100.0 | 98577.4] 10.3|| 75.0] 7251.3] 0.5[[40.0 [46211.8]261.8|| 25.7]{629016.8]/130.7
class; Bex [/100.0 184.7| 0.0|/100.0 |730687.4| 89.5|| 0.0 - -1128.5 | 29632.6| 58.5
class; B |/100.0 184.2| 0.0 95.0{904739.2| 96.3|| 0.0 - -1| 25.7| 34705.3| 54.8
class; Bgyc |[100.0 184.4| 0.0|/100.0 |211830.5/128.8|| 0.0 - -||28.5 | 47435.1| 75.4

The upper part of Table 3.5 shows that branching on classes isisually better than
branching on options. However, the latter is more e cient on proving infeasibility (i.e.,
line opt on set3). The most e cient branching averaged over the other factors uses
the Br aggregation, but the two other aggregation options Bex oOr Bgyc) are close in
performances. This result is con rmed by the lower part of the table.

3.3.2.2 Exploration

To evaluate the exploration parameters, we consider for edc! >"lex; mid e the following
heuristics:

“class;!; “qp;d® ;n; ¢;7Bp;Beuc; Bexe.

‘opt;!; Tg;d® sn; ege.

“class;!; "1¢;"Bp *e.
These three sets cover all possible combinations of heuriss leading to 420 tests for
each parameter! >"lex;mid+ and each instance. The results are shown in Table 3.6.

In the rst part of Table 3.6, we can see that exploring the seqience from the middle
then widening to the sides is in average slightly but consiséntly bene cial. Recall that
the rationale for starting in the middle is that variables in the extremities are subject
to fewer capacity constraints.

However, in the second part of Table 3.6, we can see that in tens of successful runs,
exploring the sequence using the lexicographical order les to better results for proving

Chapter 3 An empirical heuristic study for the car-sequencing problen 50

Table 3.6: Evaluation of the exploration variants

Av. Expl. setl (70;S) set2 (4;S) set3 (5;U) set4 (7;S) Global
(420) %sol |avg bts [time || %sol | avg bts | time ||%sol|avg bts | time ||%sol| avg bts [time || %tot
lex 89.2|50617.6| 5.6|| 40.0(259229.0| 46.6|| 1.8]/52295.1{204.3|| 11.3|120652.6| 54.2|| 75.5
mid 90.3 |42167.0| 4.1|| 46.7 |479360.9|126.5|| 1.9 |54184.0(245.5((12.7 |139829.4| 42.8|| 76.8
Best Expl.
lex 100.0 184.8] 0.0[[100.0 [730687.4] 89.5[[40.0 [46211.8]261.9[[28.5 [29632.6] 58.5
mid 100.0 183.5| 0.0|/100.0 |213028.8|129.1|| 36.0|63984.8/307.6(/28.5 | 1357.4| 9.2

unsatis ability. This could be explained by the fact that wh en starting in the middle
of the sequence, we e ectively split the problem into essemlly disjoint subproblems
(there is actually a weak link through demand constraints).

Overall, the exploration parameter does not seem to be as dical as the branching
parameter.

3.3.2.3 Selection

Here, we evaluate the selection criterion for choosing the wst-constrained option. In this
case, there are two possible sets of heuristics for each panater! >~qgp;d°; ;n ; s:

“class;”lex;mid«;!; “Bp ;Beyc; Bex®e

‘opt;"lex;mide;!; ge

That is 8 heuristics for each! combined with the 4 propagators and the 5 runs. We
therefore have 160 tests for each instance (reported in Tabl 3.7).

The special case ofmax option is presented separately at the end of Table 3.7 because
the number of tested heuristics is dierent. In this case, there is only 2 heuristics
“class;1;"lex; mid ;" Bp e, that is 40 tests for each instance.

The upper part of Table 3.7 shows that using theload solves more instances in average
over all the sets and for satis able sets éetl, set2 and set4) only. Surprisingly, the
load gives better results thanslack and usage rate despite the fact that both slack and
usage rateare de ned using the load and the number of available slots in the variable's
sequence. However theisage ratecriteria seems to work better both in average and for
the best results for unsatis able instances. Moreover, in he second part of the table,
one can note that the demand obtains good results.

This can be explained by the manner in which the benchmarks we generated. In fact,
these instances, especially the hardest ones, are built irush way that they have a usage
rate close to 1 [2]. Since the number of available slots is itially identical for all options,

Chapter 3 An empirical heuristic study for the car-sequencing problen 51

Table 3.7: Evaluation of the selection variants

Av. Selec. setl (70;S) set2 (4;S) set3 (5;U) setd (7;S) Global
(160) %sol | avg bts [time || %sol | avg bts |time || %sol|avg bts | time || %sol| avg bts |time || %tot
96.8| 1628.8| 1.0|| 49.2| 480035.3] 99.9|| 6.0{49922.8|222.0|| 15.1|/136850.7| 81.7 82.6
n 83.8| 5773.4| 2.3|| 47.0| 699885.1{126.9| 3.8|58466.5|231.4|| 13.7|/103897.2| 33.3 71.7
99.6 | 3292.6| 1.0|| 52.9| 254264.1| 74.8|| 0.0 - -1|18.3 | 98161.0| 41.5|| 85.1
q-p 80.0{195896.5| 17.7|| 13.2| 135511.2{123.0{| 0.0 - -1l 0.0 - - 65.8
dopt 88.9| 25988.2| 2.7|| 55.0 | 254347.0| 68.8|| 0.0 - -|| 16.0/185381.6| 36.8 76.2
1 (40) 88.4]130722.2[10.7]] 41.2] 28165.2] 15.8]] 0.0] - -] 0.0] - - 73.8]|
Best Selec.
100.0 184.8] 0.0[] 75.0 7251.3] 0.5][40.0 [46211.8[261.9|| 25.7] 4843.0] 0.4
n 100.0 184.8| 0.0|| 75.0{1009607.4|124.1|| 32.0|{75445.9|351.0(| 25.7| 4843.0| 0.4
100.0 184.8| 0.1|/100.0 | 730687.4| 89.5|| 0.0 - -|| 25.7| 4843.0| 0.4
qp 98.8| 7208.4| 3.4|| 25.0 68.2| 0.1|| 0.0 - -1| 0.0 - -
dort 100.0 178.7| 1.2||100.0 | 213028.8|129.1|| 0.0 - -1|28.5 | 29632.6| 58.5
1 99.7| 58773.0] 9.9]] 85.0] 51740.9] 36.9|| 0.0 - -[[0.0 - -

they also have the same (low) slack and the same (high) load. Aerefore the heuristics
based on these criteria (ie. load, slack and usage rat§ cannot e ectively discriminate
values at the root of the search tree. However, recall that tke load is de ned as the
product of the demand and the capacity. These two factors do ot contribute equally,
and therefore will favor di erent sets of options. In other words, one of them is bound
to take a better decision, whilst the other is bound to take a worse one. We believe that
this bias in the generation of the benchmarks explains the swprisingly good results of
the demand (d°P!) as well as the bad results of the capacityg~p along with the load, the
slack and the usage rate

3.3.2.4 Aggregation

Aggregation functions are only used with class branching. For each parameter! >
"Biex; Bp ; Beuc®, we have the 10 following heuristics combined with the propgators and
the random runs (i.e., 200 tests for eacH and each instance):

“class;"lex;mids; " gp;d°; ;n ; e;le

The constant parameter for selection 1 is not considered inHese experiments since it is
only de ned with the Bp aggregation. The results are given in Table 3.8.

As we can see in the rst part of this table, the three aggregaton functions provide in
average similar results except for the hardest instancessgt4) where Bex solved more
instances. Considering all instancesBp solves the largest number of problems. No
solution was found for unsatis able instances as in our caseonly opt branching can
solve these instances (i.e., which by default does not use wraggregation function).
However, regarding the best results in the second part of théable, when usingBey and
Beyuc, One can obtain better performances in terms of resolved irances.

Chapter 3 An empirical heuristic study for the car-sequencing problen 52

Table 3.8: Evaluation of the aggregation variants

Av. Agg. setl (70;S) set2 (4;S) set3 (5;U) setd (7;S) Global
(200) %sol| avg bts [time || %sol| avg bts| time || %sol|avg bts |time || %sol| avg bts |time || %tot
Biex 94.9126120.0/ 2.0|| 45.2{481410.8] 84.9|| 0.0 - -1{17.7 | 98707.8] 22.5 80.7
Bp 95.8 (27209.1| 2.1|| 46.3 [327601.5| 95.7|| 0.0 - -|| 12.4|156300.3| 44.6|| 81.1
Beuc 95.7|27563.3| 2.1|| 45.5|463196.6/107.9|| 0.0 - -|| 13.2|107599.7| 52.9 81.0
Best Agg.
Biex 100.0 184.7] 0.0[[100.0 [730687.4] 89.5[] 0.0 - -1{28.5 | 29632.6] 58.5
Bp 100.0 184.2| 0.0|| 95.0{904739.2| 96.3|| 0.0 - -|| 25.7| 34705.3| 54.8
Beuc 100.0 184.4| 0.0(/100.0 {211830.5/128.8|| 0.0 - -1|28.5 | 47435.1| 75.4

3.3.3 A Summary Regarding the Criteria

We have previously evaluated the average best choice of eadriterion (in terms of
solved instances). However, this choice is not the best on eh set of instances. Instead,
we can determine the best choice for each data set, called th@erfect" choice. The

Confidence of the average best choice can then be de ned by the ratio beteen the
average best choice and the perfect choice. Similarly, we naconsider the worst" choice
for each data set, and subsequently, de ne the Significance of a given factor using
the ratio between the worst and the perfect choice as 1 worst~perfect.

Table 3.9: Con dence and Signi cance for each factor

| Con dence | Signi cance |

Branching 0.989 0.247
Selection 0.995 0.231
Exploration 1.000 0.017
Aggregation 0.995 0.015

In Table 3.9, we give the values ofCon dence and Signi cance for each factor (branch-
ing, selection, exploration, and aggregation).This tableshows that there is high con -
dence for each selected average best choice (between 0.98d 4.0): that is, exploration
from middle to sides using a class branching, load selectigrand a sum aggregation.
When considering the Signi cance of each criterion, one can observe that only two of
them (branching and selection) have a valuable impact. For he two other criteria (i.e.,
exploration and aggregation), there is little impact on the results when changing the
parameters.

Therefore, the most robust heuristics will be those branchng on classes variables and
selecting options using the load criterion, that is "class;”lex;mid¢; ; “Bp ; Beyc; Bex €.

Chapter 3 An empirical heuristic study for the car-sequencing problen 53

3.4 Search vs. Propagation

An empirical evaluation of our propositions regarding the propagation aspect is given
in the next chapter. We consider here, however, how importahis the search strat-
egy compared to propagation. In addition to all the previous models, we consider
a new one incorporating the Slack-Pruning (proposed in the next chapter, Sec-
tion 4.1) within the decompose model. As we mention in Section 4.1, this rule can
be applied only with lex branching. Therefore, we use the following set of heuristie
class;opt;lex; " 1;0p; At :n ; «:"Bp;Beuc;Bexe. Thatis 21 di erent heuristics

for each ltering algorithm. The experiments concern 9030 ©n gurations per propaga-
tor.

Table 3.10: Evaluation of the Itering variants (averaged over all heur istics)

Filtering (21) setl (70 5) set2 (4 5) set3 (5 5) set4 (7 5)
%sol| avg bts |time ||%sol| avg bts |time ||%sol| avg bts | time ||%sol| avg bts |time
decompose 75.81190636.0| 11.2|| 22.6| 792179.8| 44.4|| 0.0 - -|| 7.7| 194651.7| 17.0
gsc 94.8| 1639.4| 4.2|| 44.0| 38673.7| 49.2|| 2.8 | 49417.9| 260.8|| 12.1| 35302.0| 64.3
amsc 91.2| 36285.7| 3.9(|49.2 |411514.8 (46.2 || 1.5| 68873.9| 15.1|[13.1 |239317.8 [41.4
gsc = amsc 95.1 | 1585.1 | 4.3 || 44.0| 35711.3| 45.4|| 2.8 |46330.2 |248.6 || 12.5| 32258.4| 80.9
slack-pruning 90.5| 55384.8| 3.8|| 43.3| 627443.4| 43.9|| 1.7| 82815.9| 16.1|| 12.2| 356073.4| 34.8

Table 3.11: Best results for Itering variants

setl (70 5) set2 (4 5) set3 (5 5) setd (7 5)
%sol | avg bts | time || %sol| avg bts | time || %sol| avg bts | time || %sol| avg bts |time
decompose 100 | 184.8 0 75 7251.3| 05 0 - -|| 25.7 4843 0.4
gsc 100 184.8| 1.2 75 18073.7| 58.2 40 | 46211.8| 261.9||28.5 | 29632.6| 58.5
amsc 100 | 184.8 0| 100 |730687.4 |89.5 20| 60460.4| 13.5|28.5 |31617.6 6
gsc” amsc 100 184.8| 1.2 75 16923.7| 55 40 | 46196.7 | 259.7 || 28.5 | 17252.6| 40.8
slack-pruning 100 | 184.3 0 75| 510189.0| 35.1 20| 70573.6 14| 28.5 | 332430.9| 34.3

Filtering

Table 3.10 shows that the extra Itering of Slack-Pruning , AtMostSeqCard , or Gsc
does help a lot. For instance, at least 90% of the instances dhe rst set are resolved
irrespectively of the heuristic being used against 75,89% ith the default decomposition
(i.e., decompose). The di erence is even greater for the other sets.

Consider now the propagation method as a fth criterion (i.e., in addition to the heuristic

factors). We calculate its Con dence and Signi cance according to the same formula
given in Section 3.3.3. Their values are equal to @96 and 0217, respectively. This is
similar to the other criteria in terms of Con dence (i.e., close to 10), but slightly less
than the Signi cance of branching and selection. This emphasizes the importancef
these factors which are at least as important as the propagabn level.

Overall, we observe that the choice of the search strategy haa very signi cant impact on
the e ciency of the method. For instance, on the set of easiesinstances, when averaging

Chapter 3 An empirical heuristic study for the car-sequencing problen 54

across all heuristics, the worst Itering method (decomp osition into sum constraints)

is successful in about 20% less runs than the besGsc+ AtMostSeqCard). However,

now averaging across all four models, the worst heuristicopt;lex;n ; e, is successful
56% less runs than one of the many heuristics solving all easpstances (see Table 3.4).
For harder instances €et2 set3 and set4), these choices are even more important, with
a 42% gap between the best and worst model, whilst the worst heistics (in this case

“opt; lex; p~q; e) do not solve any instances.

It is hardly a surprise to observe that the choice of search sategy is a critical one.
However, whilst the aim of this study was to better understand what makes a good
heuristic for the car-sequencing problem, it was relativey surprising to nd out that
minor variations around known heuristics would bring such asubstantial gain.

Summary

We empirically studied in this chapter a large set of heurisics for the car-sequencing
problem and proposed to classify these heuristics using 4 iteria: the type of branching
decisions; the exploration order; the selection of the mostonstrained options; and the
aggregation function for the options. Several new heuristis arise from this classi cation
as untested combinations. Our experiments show that a sing criterion can drastically
impact the behavior of the heuristic. Moreover, it also gives a clear separation between
the most important criteria (branching and selection) and the other factors (exploration
and aggregation). Furthermore, this study shows that branding and variable ordering
are as important as the propagation aspect in this problem.

Chapter 4

Propagation in Sequencing
Problems

Introduction

Sequence constraints are useful in a number of applicationsConstraints of this class
enforce upper and/or lower bounds on all sub-sequences of iables of a given length
within a main sequence. For instance, in crew-rostering, wemay want to have an
upper bound on the number of worked days in every sub-sequeacto meet working
regulations. Several constraints of this class have beenwdied in the CP literature such
as Gen-Sequence and AmongSeq [111, 17, 32, 91, 139, 96]. An even more general
constraint, Regular , can be used to enforce arbitrary patterns on all sub-sequares.
However, as we explained in Section 2.1.3.2, the more gené@constraint is, the higher
is the complexity of reasoning about it. In this context, we focus on particular cases of
sequence constraints where we have variables subject sintaheously to AtMost (i.e.,
of the form P} 1 Xi Bp) and Cardinality (Section 2.3) constraints.

Our contributions start with a simple Itering rule that we ¢ all Slack-Pruning , ded-
icated to the car-sequencing problem. This rule reasons sinftaneously about capac-
ity and demand constraints. This simple Itering is generalized later as a new global
constraint called AtMostSeqCard . The latter is useful in car-sequencing and crew-
rostering problems. Following [139], ac on this constraint can be enforced with
Gen-Sequence in O"n3 time or with cost-Regular in O"29ne time where q is
the size of the sliding window. Furthermore, the Gen-Sequence ltering of [91] is
adaptable to AtMostSeqCard with O"n?:log nee time complexity down a branch of
the search tree with an initial compilation of O"q:n?s. We propose a new algorithm
achieving Arc Consistency on this constraint with an O"ne (hence optimal) worst case
time complexity. Next, we show that this algorithm can be easly modi ed to achieve

55

Chapter 4 Propagation in Sequencing Problems 56

Arc Consistency on some extensions of this constraint. In pdicular, the conjunction
of a set of m AtMostSeqCard constraints sharing the same scope can be ltered in
O"nme. The e ciency of our ltering is proven through a large exper imental evaluation.

We start this chapter with the simple Slack-Pruning rule specially designed for solv-
ing the car-sequencing problem. Then, after giving a short lckground on sequence
constraints in Section 4.2, we show how this reasoning can bgeneralized as a global
constraint in Section 4.3. We show in Section 4.4 how to extedh the new constraint
without a computational overhead. The experimental results in Section 4.5 emphasize
the e ciency of our ltering propositions.

4.1 Slack-Pruning

When analyzing the heuristics for the car-sequencing proldm (Chapter 3), we have seen
that selecting the options using load, slack, or usage ratesi bene cial. In this section,
we shall see that one can go one step further and use the sameealto prune the search
tree at a very cheap computational cost. We suppose in this s#ion that we are using
the decompose model (Section 3.1.2) for the car-sequencing problem.

4.1.1 Triggering Failure via Slack

We rst recall some of the notations that we used for car-seqencing in Section 3.1:

n: the number of vehicles that have to be produced on the assenpline.
k: the number of classes of vehicles.

m: the number of types of options.

ddass: the required demand for the class of vehicles.

d*™': the required demand for the option]j .

pj and g: used to represent the capacity constraint related to an opion j as
follows: no subsequence of sizg may contain more than p; vehicles requiring

option j.
" The load of an option j: ; d™ g—j
" The slack of an option j: ; n; j wheren; is the number of slots available for

option j.

Chapter 4 Propagation in Sequencing Problems 57

In [111], it is observed that if the slack (;) of an option j is negative, then the problem

is unsatis able. Indeed, the load (j) tends to represent the number of required slots
to mount all the occurrences of an option. Since the slack ishe di erence between the
available number of slots and the load, a negative value suggpts infeasibility since we
need more slots than are available. However, one has to be adul about boundaries
issues since the capacity constraints are truncated at the »dremities of the assembly
line. For instance, consider an optionj with p 1,¢ 3 and d}’pt 2. The slack is
negative as soon as there are less than six slots remaining;(@6). However, a line with

only four slots is su cient if we put the two classes requiring this option on both ends of
the line. In other words, the load is an accurate measure of h@ many slots are needed
for a given option, however only for large values of demand ah length of the assembly
line.

We show in the following how to compute the the exact minimum rumber of slots to
mount djOpt times an option j while respecting capacity constraints. We assume, however
that we explore the assembly line from left to right, and that the unassigned slots are
contiguous in the assembly line.

Consider the following greedy rule (calledlex_assignment):

1. Assign the rst p; variables to 1, and theq p; next variables to 0.
2. Repeat step 1" d™~p 1- times.

3. Fill the remaining variables with the value 1.

Let j"ebe the length of the sequence obtained byex_ assignment . The value of j‘Eis
given by the formula:

¢
Fatdte 1

o]

Pj if &’ modp; 0
d® modp, otherwise

Proposition 4.1. For each optionj, joeis the minimum number of contiguous slots to

mount d’™ times the option j .

Proof. The sequence returned bylex_assignment clearly satis es all capacity con-
straints and has a cardinality equal to dj"pt. Moreover, every subsequence of length
g has exactly p; times the value 1, therefore, it is not possible to obtain thesame car-
dinality in a shorter sequence. Hence, j"eis the minimum length to mount djOIOt times
option j.]

In the following, the value of Fis refereed as the “real' load. Note that an equivalent

formula can be found in [31].

Chapter 4 Propagation in Sequencing Problems 58

4.1.2 Filtering the Domains

We suppose now that all variables up to a ranki 1 are assigned. To make the notation

When the real load %is greater than the residual number of slotsn i 1, then we
should fail since %®is the minimum number of required slots. Moreover, we can prae
inconsistent values in the domains of the option variables wen the load is equal to the
remaining number of slots. Khichane et al. [83] proposed to x the rst unassigned slot
to contain the option at hand. We show that this Itering can b e extended for many
slots in the sequence. We illustrate this situation in Examde 4.1.

and demandl1l Note that the load is joe 5 "4 1. 2 17, which is precisely equal to
the number of unassigned slots. Consider the two slots indexk5 and 6, corresponding
to the variablesy{-) and ij, On the left, there are 5 slots, hence we can t at most3
vehicles with the optionj since tting 4 vehicles requires6 5" 4~3 1+ 4 mod 3slots.
Similarly, on the right, one cannot t more than 6 vehicles with optionj since tting 7
vehicles would requirell slots. Therefore, since the total demand isl1, we can conclude
that 11 6 3 2 vehicles with optionj must t in the slots 5 and 6. In other words,

both yj5 and ij must be equal tol. This example is depicted in Figure 4.1.

Figure 4.1: Instantiation of an option with capacity 3 5.

Y o1 113005161 1[0 0Jio L Juu1fo 23 0Jig 0fi5 1 J1s1
3 2 6

Now we formally de ne the Slack-Pruning rule that can detect all such forced assign-
ments (e.g., it detects all bold faced 1's in Figure 4.1).

Theorem 4.2. The following Itering rule is correct:

If = n i 1, then if d}’pt modp, O, we imposey! 1 for all i such thati modg @
pj. Otherwise (i.e., djOpt modp, ~0), we imposey! 1 for all i such thati modg @

~d™ modp+.

Proof. Suppose that (djOIOt mod p; x 0). Then there exists two integersk and r such that
d® kip r. Notice that in this case, we have ® ¢:k r. Consider a subsequence
dooe ;y‘b such thatamodg Oandb a r 1, ie., such thatthe rule above applies.
Then there exist two integers and such that a gandn i b g (since

n i 1 ® gk r)

Now usingn i b g,weshowthatn i 1 g a rthenn i 1 cq T
and hencek (sincen i 1 qg:k).

Chapter 4 Propagation in Sequencing Problems 59

However, by de nition of and , we may argue that the number of occurrences of the
value 1 onyl;:::;y, jisatmost p; and at most pj onyl iyl

Now since the demanddjf’pt - *:pj r then all the p; variables in the subsequence

INEES ;yL must take the value 1.

We use a similar argument for the second case. Suppose thdf™ mod pj 0, consider
a subsequenceyf;; i ;yjb such that amodg O andb a p 1. Then there exist
two integers and such that a gandn i b g . Therefore, the number
of occurrences of the value 1 ory{-);:::;yf; ; isat most p and at most p; on

Now using the demandd™ k pj, and ® ¢~ d®™- 1+ p we show that
n i 1 gk 1= p. However,sinceb a p 1,a gandn i b g, then
k 1 and all p; variables the subsequencgg; o ;yjb must take the value 1. j

Figure 4.2 and 4.3 depict the proposed pruning. On the one hath, when djOpt modp; O,
the only possible arrangement of vehicles that satisfy the apacity constraint is to start
the sequence withp; vehicles requiring the option, theng p; vehicles not requiring
the option and repeat (see Figure 4.2). Notice that becausefahe capacity constraint,
all other variables must take the value 0. On the other hand, vhen djOIOt modp; x 0,
one must start the sequence withdj""’t mod p; vehicles requiring the option, then the
following g ‘dj(’pt mod p; * slots can be lled arbitrarily as long as exactly p; vehicles
requiring this options are tted in the ¢ rst slots. Here again, the initial sequence
must be repeated throughout (see Figure 4.3).

Figure 4.2: Filtering when d™ modp, 0

.9 B B G B 9 P P
(11..1[00. 0[11..1[00. O] - [11..1]00. 0[11..1]

Figure 4.3: Filtering when r oljOpt modp; x 0

r g r r g r r g r r
]11..1|xx.. x|11..1|xx.. x| .. |11..1|xx.. x|11..1\

4.1.3 Time Complexity

This rule is extremely cheap to enforce. Once one has compudehe real load, the domain
ltering can be achieved in O"ke where k is the number of option variables forced to
take the value 1. Indeed, whendjOIOt mod p; x 0 we can jump over the variables which are
not forced to take the value 1, since their position is given ly a simple recursion. In the
worst case (i.e., whend;"ot modp; 0), k is equal to the number of unassigned variables
and therefore the time complexity can reachO™ne.

Chapter 4 Propagation in Sequencing Problems 60

In the next sections, we generalize theSlack-Pruning rule in the form of an Arc
Consistency algorithm for a new global constraint that we cdl AtMostSeqCard . The
latter can be used for solving a large family of sequencing jpblems. This constraint will
be introduced after a short background regarding sequenceoastraints.

4.2 Sequence Constraints

There are several variants of theSequence constraints. We rst review them and
then motivate the need for the variant proposed in this chapter. the AtMostSeqCard
constraint which extends the Slack-Pruning

4.2.1 Decomposition via slide

We start with an important decomposition property related t o sequence constraints in-
troduced in [23]. For any constraint C, we denote byD& the set of values ,sx-c. D"Xe.

De nition 4.3. Monotonicity

A constraint C is said to be monotone i there exists a total order h on D& s.t. for any
two values h , canreplace in any supporton C.

Example 4.2. A monotone constraint

Let P} 7 Xi Bp be the constraint ensuring that the sum of the Boolean varidbs x; ::: Xp,
is at most p. We show that this constraint is monotone. The total orderh chosen here
is the “less than' (i.e. @ operator on integers. It is clear that the valueO can replace the
value 1 in any support for this constraint.]

De nition 4.4. The slide meta-constraint

The slide (meta-)constraint can be used to model many sequencing prdbms. The idea
is to slide the same “type' of constraints over a sequence ofriables.

Theorem 4.5. Arc Consistency onslide [23]
C.
Theorem 4.5 gives an easy su cient condition for making the decomposition of slide

not hindering propagation. This property is used in Section4.2.2.1 to decompose a chain
of AtMost constraints.

Chapter 4 Propagation in Sequencing Problems 61

4.2.2 Chains of Among Constraints:

In the following de nitions, is a set of integers andl;u; q are integers. Sequence con-
straints are conjunctions of Among constraints, constraining the number of occurrences
of a set of values in a set of variables.

De nition 4.6. Among "l;u; X1;:::Xq; ¢ IBSi Sxi> «SPBu

The AmongSeq constraint, rst introduced in [17], is a chain of Among constraints of
width g slid along a vector ofn variables.

De nition 4.7. AmongSeq “l;u;q; X1;:::;Xn 5 * i”Oquong‘I;u; Xi 1,50 X g5 ®

Note rst that Among is not monotone in general. Therefore Theorem 4.5 does not
apply and ac on each Among will not necessarily establishac on AmongSeq. We
use the same example given in [139] to show how decompositidrinders propagation.
In AmongSeq "2;3;5; X1;:::;X7 ;" 1ee where D"x;¢ D7Xp* 1, D"x3* D Xxge

D xze D7x7* 70;1e, and D"xg* 0, eachAmong constraint is ac while the assign-
ment x; 0 does not have a support onAmongSeq .

The rst (incomplete) algorithm for Itering this constrai nt was proposed in 2001 [15].
Then, in [139, 138], two complete algorithms for ltering the AmongSeq constraint were
introduced: rstly, a reformulation using the Regular constraint using 29 ! states
achieving ac in O"29ne time; secondly, an algorithm achievingac with a worst case
time complexity of 0" n3. Moreover, this last algorithm is able to handle arbitrary sets
of Among constraints on consecutive variables (denotedsen-Sequence), however in
O"n*. Last, two ow-based algorithms were introduced in [91]. The rst achieves ac
on AmongSeq in 0" n®?lognlogpe, while the second achievesc on Gen-Sequence
in O"n3e in the worst case. These two algorithms have an amortized coplexity down
a branch of the search tree 0f0"n? and O"n®., respectively.

4.2.2.1 Chain of AtMost Constraints

Although useful in both applications, the AmongSeq constraint does not model exactly
the type of sequences useful in car-sequencing and crew-tesng applications. First,

there is often no lower bound for the cardinality of the subsguences, i.e.] 0. Therefore
AmongSeq is unnecessarily general in that respect. Moreover, the cagity constraint

on subsequences is often paired with a cardinality requiremnt.

For instance, in car-sequencing, classes of car requiringgiven option cannot be clustered
together, because a working station can only handle a fractin of the cars passing on the
line (at most p times in any sequence of lengthy). The total number of occurrences of

Chapter 4 Propagation in Sequencing Problems 62

these classes is a requirement, and translates as an overahrdinality constraint rather
than lower bounds on each subsequence.

In crew-rostering, allowed shift patterns can be complex, lence theRegular constraint

is often used to model them. However, working in at mostp shifts out of g is a useful
particular case. If days are divided into three 8h shifts, AtMostSeq with p 1 and
g 3 makes sure that no employee work more than one shift per dagnd that there

must be a 24h break when changing shifts. Moreover, similayl to car-sequencing, the
lower bound on the number of worked shifts is global (monthly for instance). In other

words, we often have a chain ofAtMost constraints.

De nition 4.8. AtMost "p; X1;::5;Xq; * Among "0;p; X1;:iiiXq s ®

To simplify notation, when the variables are Boolean and “1-, we denote by
AtMost " X1;:::1;Xq ;pe the AtMost “p; Xi;:ii;Xq; ¢ constraint. Note that
AtMost ~ X1;:::;Xq ;p* is in fact the monotone constraint P! Tx; B p given in Ex-

monotone.

A chain of AtMost constraints can be de ned as follows:

De nition 4.9. AtMostSeq “p;Q; X1;:::;Xn 5 ® i”OthMost PyXi Lt Xigs ®

Observe thatac on AtMostSeq is maintained using the decomposition of de nition 4.9.
In fact since AtMost is monotone, then Arc Consistency is established oAtMostSeq
i each AtMost is ac.

A good tradeo between Itering power and complexity can be achieved by reasoning
about the total number of occurrences of values from the set together with the chain
of AtMost constraints. We therefore introduce the AtMostSeqCard constraint,
de ned as the conjunction of an AtMostSeq with a cardinality constraint on the total
number of occurrences of values in:

De nition 4.10. AtMostSeqCard "p;q;d; X1;:::;Xn ; ®

AtMostSeq “p:q; X1;1::iXn ¢, S Sxj> +Sd

The two ac algorithms introduced in [138] were adapted in [139] to acheve ac on the
AtMostSeqCard constraint. First, in the same way that AmongSeq can be encoded
with a Regular constraint, AtMostSeqCard can be encoded with acost-Regular
constraint, where the cost stands for the overall demand, ad it is increased on tran-
sitions labeled with the value 1. This procedure has the sameavorst case time com-
plexity, i.e., O"29ne [139]. Second, the more general version of the polynomial gbrithm

1This modeling choice is used in [139] on car-sequencing.

Chapter 4 Propagation in Sequencing Problems 63

(Gen-Sequence) is used, to Iter the following decomposition of the AtMostSeqCard
constraint into a conjunction of Among :

AtMostSeqCard "p;q;d; X1;:::5;Xn 5 °
nq
Among “0;p; Xi 1;::5:Xi g5 ¢ , Among “d;d; Xg;:i5Xn ;e
i0

The algorithm of van Hoeve et al. [139] runs inO"n3e time complexity on this decompo-
sition. Similarly, the algorithm of Maher et al. [91] runs in O"n?:log"nes down a branch
of the search tree with anO"q:n?« initial compilation. The algorithm we propose in this
chapter (rst published as [120]) runs in linear time and is therefore optimal. Finally,
another linear time algorithm based on the graph representtion of [91] was subsequently
proposed by Narodytska and Walsh in [136].

4.2.2.2 Global Sequencing Constraint

The Global Sequencing Constraint that we introduced in De nition 2.11 is in fact nothing
but a conjunction between anAmongSeq and a Gcc . That is:

De nition 4.11. Gsc”l;u;q;low;upp; X1;:::;Xn ; *

AmongSeq “l;u;q; X1;:5Xn 5 ¢, Gee Tlow;upp; X1 Xn e

4.3 The AtMostSeqCard Constraint

In this section, we introduce a linear Itering algorithm fo r the AtMostSeqCard
constraint. We rst give a simple greedy algorithm for ndin g a support with an O"nge
time complexity. Then, we show that one can use two calls to tlis procedure to enforce
ac. Last, we show that its worst case time complexity can be redaed to O™ ne.

It was observed in [139] and [91] that we can consider Booleawariables and " le,
since the following decomposition ofAmong (or AtMost) does not hinder propagation
as it is Berge acyclic:

~

Therefore, throughout the chapter, we consider x1;:::;Xs as a sequence of Boolean
variables, and use the following restriction of the AtMostSeqCard constraint with
"le:

Chapter 4 Propagation in Sequencing Problems 64

De nition 4.12.

ngq n
AtMostSeqCard “p;qQ;d; X1;:::;Xn ® "Q Xi 1Bpe, "Q xi de
i011 i1

4.3.1 Finding a Support

Let w be ann-tuple in ~0;1+", &S PM",w i its cardinality, and w i j the projection

We rst show that one can nd a support by greedily assigning variables in a lexicograph-
ical order to the value 1 whenever possible, that is, while t&ing care of not violating the
AtMostSeq constraint. More precisely, doing so leads to an instantiaion of maximal
cardinality, which may easily be transformed into an instantiation of cardinality d.

The greedy procedureleftmost (Algorithm 9) computes an instantiation w that maxi-
mizes the cardinality of the sequencéxz;:::;Xn* subject to an AtMostSeq constraint
(with parameters p and),

Algorithm 9: leftmost

foreach i > 1;:::;n do wi min " Xje;
foreach 1> 1;:::;9g down i 0;
cle wil;

foreach j > 2;:::;9 do Cje Cj 1o wij ;
if B xi*A1 & max;s 1.4 Cjee @ then

W i 1;

foreach j > 1;:::;9 do Cje Cje 1;

foreach j > 2;:::;9 docC’j 1+ Cje;
| Cg C¢q 1 wi g wi;

return w;

Algorithm leftmost works as follows. First, the tuple w is initialized to the minimum
value in the domain of each variable in Line 1. Then, at each sgpi > 1;:::;n of
the main loop, the cardinality of the j subsequence involving the variablex; with
respect to the current value ofw is stored in c’j+. In other words, at step i, we have

CAj° Pm|n ni j 1e

I max"1;i q j-WI '

When exploring variable x;, such that D"x;e ~0;1s we setw i to 1i this would not
In that case, the cardinality of every subsequence involvig Xx; is incremented (Line 3).

Finally, when moving to the next variable, the values of c'j ¢ are shifted (Line 4), and
the value of ¢"ge is obtained by adding the value ofw i g and subtractingw i to its

Chapter 4 Propagation in Sequencing Problems 65

previous value (Line 5).

From now on, we shall use the following notations:

By i shall denote the value assigned byeftmost to the variable x;, and not x,, ; 1
as it would actually be if we gave the reversed sequence as iap

Example 4.3. We illustrate the behavior ofleftmost on a simple example (see Fig-

that is, constrained by: AtMostSeq "2;4; x1;:::;X22¢. Dots in the rst row stand for
unassigned variables. The second row shows the computedtargiation *\:7?/ and the next
rows show the state of the variableg™1e;c"2¢;c"3» and c 4« at the start of each iteration
of the main loop. The last row stands for the maximum value of”j¢. The bold values
indicate that leftmost assigns the valuel.

D7 Xxie . 0.2 . . .0.01212. .2 1
Wi 10011 0001010011 0011001
cl. 0112122100221 212211222
C' 2 0121121002212112101221
C'3e 0211110012121111001211
C 4o 1111000111211 100011111
max”ce 1222122112222 212211222

Figure 4.4;: Sequence of maximum cardinality obtained byleftmost .
Lemma 4.13. leftmost maximizesP{ ;X; subject to AtMostSeq “p;q; X1;:::;Xn ®.

Proof. Let @ be the instantiation found by leftmost , and suppose that there exists
another instantiation w (consistent for AtMostSeq “p;q; X1;::::Xn *) such that YSA
%S Let i be the smallest index such that® i x w i . By de nition of 1\:7?/ we know
that Wi 1hencewi O. Now, let j be the smallest index such that®] @wj
(it must exists since ¥A R S

We rst argue that the instantiation w%®equal tow except that w®i 1 andw®j 0 (as
in Q/) is consistent for AtMostSeq . Clearly, its cardinality is not a ected by this swap,

hence®°S 'S Now, we consider all the sum constraints whose scopes arearged by
this swap, that is, the sumsp

oraBj @a . There are three cases:

;1W08| onintervals aja g 1 suchthataBi @ q

Chapter 4 Propagation in Sequencing Problems 66

1. Suppose rstthat aBi @ @a ¢ in this case, the value of the sum is the same
in w and w® therefore it is lower than or equal to p.

2. Suppose now thati @a Bj @a q: in this case, the value of the sum is decreased
by 1 from w to w® therefore it is lower than or equal to p.

3. Last, suppose thataBi @a qgBj: in this case, for anyl > a;a g 1, we have
wel BR | since] is the smallest integer such that'® j @w] , hence the sum
is lower than or equal to p.

Therefore, given a sequence of maximum cardinality that di ers from & at rank i, we
can build a sequence of equal cardinality that does not di erfrom & until rank i 1.
By iteratively applying this argument, we can obtain a sequence identical to ’\:7?/ albeit
with cardinality $/Stherefore contradicting our hypothesis that ¥SA 'S j

Corollary 4.14. Let % be the instantiation returned by leftmost . There exists a
solution of AtMostSeqCard “p;q;d; x1;:::;Xn ¢ i the three following propositions
hold:

(1) AtMostSeq “p;q; X1;:::;Xn * is satis able (2) P ; min~x;* Bd
3) 8.

Proof. It is easy to see that these conditions are all necessary: (13nd (2) come from
the de nition, and (3) is a direct application of Lemma 4.13. Now, we prove that they
are su cient by showing that if these properties hold, then a solution exists. Since
AtMostSeq “p;qQ; X1;:::;Xnp * is satis able, # does not violate the chain of AtMost

constraints as the value 1 is assigned tx; only if all subsequences involvingx; have
cardinality p 1 or less. Moreover, sinceP{ ; min“x;s Bd B Q/Sthen there are at
least &S d variables such that min“xje 0 and R 1. Assigning them to 0O in
® does not violate the AtMostSeq constraint. Hence we can build a support for
AtMostSeqCard .]

Lemma 4.13 and Corollary 4.14 give us a polynomial supporteeking procedure for
AtMostSeqCard . Indeed, the worst case time complexity of Algorithm 9 is inO™nge.

There aren steps and on each step, Lines 2, 3 and 4 involM@®"ge operations. Therefore,
for each variablex;, a support for x; 0 orx; 1 can be found inO"nge. Consequently,
we have a naiveac procedure running in 0" n?ge time.

4.3.2 Filtering the Domains

In this section, we show that we can lIter out all the values inconsistent with respect to
the AtMostSeqCard constraint within the same time complexity as Algorithm 9.

Chapter 4 Propagation in Sequencing Problems 67

First, we show that there can be inconsistent values only in he case where the cardinality
%, Sof the instantiation returned by leftmost is exactly d: in any other case, the
constraint is either violated (when Q/S@i) or ac, (when Q/S\d). The following lemma
formalizes this:

Lemma 4.15. The constraint AtMostSeqCard “p;qQ;d; X1;:::;Xn * is ac if the three
following propositions hold:

1. AtMostSeq "p;Q; X1;:::;Xp ® IS ac
2. Py min"x;* Bd

3. B

Proof. By Corollary 4.14 we know that AtMostSeqCard “p;q;d 1; X3;:::;Xp * IS
satis able. Let w be a satisfying instantiation, and consider without loss ofgenerality
a variable x; such that ﬁ“xi-Sﬁ\ 1. Assume rst that w i 1. The solution w®equal
to w except that w®i 0 satis es AtMostSeqCard “p;qQ;d; X1;:::;Xn *. Indeed,

9% &S 1 dand sinceAtMostSeq “p;q; X1;:::;Xn * was satis ed by w it must be

satis ed by w® Hence, for every variablex; such that $"x;*S\1, there exists a support
for x; O.

Suppose thatw i 0, and let a (respectively b) be the largest (respectively small-
est) index such thata @i, wa 1 and D xge ~0;1e (respectively bAi,wb 1
and D" xp* 70;1e). Let w®be the instantiation such that wi 1, w®a 0,

w® 0, andw w®otherwise. We have &°S d, and we show that it satis es
AtMostSeq “p;q; X1;:::;Xn *. Consider a subsequence;;:::;X; q1. If j qBi or
j Ai then p! q 'wel Bp! q w1 Bp, soonly indicesj s.t. j Bi @ qmatter. There
are two cases.

1. Either a or bor both are in the subsequencej(Ba@ qorj Bb@ Q). In that
casep! ;! 'wel Bp! ;! wi .

2. Neither a nor b are in the subsequenced @j andj q B b). In that case,
sinceD"xj* 70;1e and sinceAtMostSeq “p;qQ; X1;:::;Xnp * is ac, we know that
Pl q Ymin~x;»+ @p. Moreover, sincea @j andj q B b, there is no variable
X |n that subsequence such thatw | 1 and 0> D"x;». Therefore, we have
p! ;! 'w | @p, hencep! ;! ‘we®l Bp.

In both casesw®satis es all capacity constraints. Hence it is support for the value 1. j

Remember that achieving ac on AtMostSeq s trivial since AtMost is monotone.
Therefore we focus of the case wherétMostSeq is ac, and &S d. In particular,

Chapter 4 Propagation in Sequencing Problems 68

Lemmas 4.16, 4.17, 4.19 and 4.20 only apply in that case. Thegaality &S dis
therefore implicitly assumed in all of them.

lemma 4.16. & 1i 1S®i 1 nSadthenx; 0Ois not ac.

Proof. Suppose that we hae® 17 1S®i 1n S@d and suppose that there
exists a consistent instantiation w such thatw i 0 and &S d.

Therefore, sincew i 0, we have &S P!',w | @, thus contradicting the hypothesis
that &S d. Hence, there is no support forx; 0. j

Lemma 4.17. F & 1 i S i n Bdthenx; 1is not ac.

Proof. Suppose that we have® 1 i S®/ i n Bdand suppose that there exists a
consistent instantiation w®such that w®i 1 and &°S d.

Therefore, sincew® 1, we have®S P! ;w® P';w® 1@, thus contradicting
the hypothesis that &°S d. Hence there is no support forx; 1.]

Lemmas 4.16 and 4.17 entail a pruning rule. In a rst pass, fran left to right, one
can use an algorithm similar to leftmost to compute and store the values o 1iS

similarly computed by simply running the same procedure on he same sequence of
variables, howeverreversed i.e., from right to left. Using these values, one can then

apply Lemma 4.16 and Lemma 4.17 to Iter out the value 0 and 1, espectively. We

detail this procedure in the next section.

We rst show that these two rules are complete, that is, if AtMostSeq is ac, and the
overall cardinality constraint is ac then an instantiation x; 0O (respectively x; 1) is
inconsistent i Lemma 4.16 (respectively Lemma 4.17) apples. The following Lemma
shows that the greedy rule maximizes the density of 1s on anyubsequence starting on
x1, and therefore minimizes it on any subsequence nishing orx,. Let leftmost “ke
denote the algorithm corresponding to applyingleftmost , however stopping whenever
the cardinality of the instantiation reaches a given valuek.

Lemma 4.18. Let w be a satisfying instantiation of AtMostSeq “p;q; X1;:::;Xn *.
If k B 3Sthen the instantiation Rk computed byleftmost “ke is such that, for any
1BiBn: P Ryl BRI Wi .

Chapter 4 Propagation in Sequencing Problems 69

Proof. Let m be the index at which leftmost “ke stops. We distinguish two cases. If
i Am, for any valuel in m 1;:::;n, 1\?/k | Bwl (sinceR/k I min "x;¢), hence
F’Pi?’k | BP';wl. Wheni Bm, clearly for i 1, PFiR/kI BP/'jwl since
%, SB &S Now consider the case off ~ 1. Since &,SB &S then P[‘i*\?/k | B
@S PR 1. Thus, PP Rt BPY,wi Pl iwil Pl 2Ry 1+, Moreover,
by applying Lemma 4.13, we show thatPI %Q/k | is maximum, hence larger than or
equal to P! 2w I . Therefore, P R\ 1| BP! Wi . j

Lemma 4.19. If AtMostSeq "p;Q; X1;:::;Xn * is ac,and@ 1i 1S%i 1n&
d then x; 0 has a support.

Xj Xi Xj q1
R 1 -
C|

R1i1 0 Byy i n

) L d L i

Support for x; 0 0
R1i 1 Byg i n
Figure 4.5: lllustration of Lemma 4.19's proof. Horizontal arrows represent assign-
ments.

Proof. Let ¥ be the instantiation found by leftmost . We consider, without loss of
generality, a variable x; such that D*xje ~“0:1e and & 1 i 1S®i 1 n Sy,
and show that one can build a support forx; 0. f® i 00oPwi 0thenthere exists
a support for x; 0, hence we only need to consider the case whelt i Bvi 1.

letL &1 1 Sand%d L be the result of leftmost "d Le on the subsequence

n is a support forx; O.
First, we show that wi 0, that isaNd L I 0. By hypothesis, since® 1i 1S
and let w®be the instantiation such that w*i 0, and WOEDW i 1 n otherwise. Since

weByi 10 cd oL, by Lemma 4.18, we know thatw®has a higher cardinality than
D\Nd L on any subsequence starting ifi, hencew i QNd Li ws 0.

Now, we show thatw does not violate the AtMostSeq constraint. Obviously, since it
is the concatenation of two consistent instantiations, it can violate the constraint only

We show that the sum of any such subsequence is less than or exjuo p by comparing
with @, as illustrated in Figure 4.5. We haveP{ jq 1% 1 Bp, and P! jlfﬁ | P fwi.

Chapter 4 Propagation in Sequencing Problems 70

Moreover, by Lemma 4.18, since® i n S %y .S d L we haveP' By, |
Pl 91R 1 hencep! @ lw i BPI 918 I . Therefore, we can concludethaPJ Jlwi B

p. j
Lemma 4.20. If AtMostSeq “p:q: X1:::::Xn+ isac,and B 1 i SBi n Ad
then x; 1 has a support.

Xa X|
R/ 110 :- Q0 .
.G} Xb
R/Ll 0ol0 --- Ql‘o 00 D\NdL
0/0 01
B DWd L1
L1 d L 1 ”
Support for x; 1 1
Q’L 1 E}Nd L
Figure 4.6: lllustration of Lemma 4.20's proof. Horizontal arrows represent assign-
ments.

and xn;:::;x1. We consider, without loss of generality, a varlablex. such that D" x;e
~0;1s and Q/ 11 S i nSAd, and show that one can build a support forx; 1.
FR i 108vi 1 then there exists a support forx; 1, hence we only need to

consider the case wherQ/ i QN i 0.

letL S 1iS & 10 1Jthis equality holds since® i 0). Let %, 1 be the
instantiation obtained by using leftmost "L 1 on the subsequencey;:::;X; 1, and let

We show that w such that w i 1, equal to R/L 1 0N Xq;:::;Xj 1 and tOD\Nd L on
Xj 1;::%;Xn, IS @ support.

Clearly &S d, therefore we only have to make sure that all capacity constaints are
satis ed. Moreover, since it is the concatenation of two corsistent instantiations, it can

that j Biandi @ q.
We show that the sum of any such subsequence is less than or exjuo p by comparing
i\:7?/|_ 1 i\:7?/ except for the Iargest indexa such that i\:7?/ a landwa 0. Similarly on

XniiiliXi 1, we hanNd L %d L 1, except for the smallestb such thaRNd L1 b 1
There are two cases:

Chapter 4 Propagation in Sequencing Problems 71

Suppose rst that | Aa. In that case, P{ jq Twl P{ iq 1qu L1l ifj g 1Cb and
otherwise it is equal to 1. It is therefore always less than orequal to p sincei Cj (and
we assumep C1).

interval, the cardinality of w is the same as that ofR/, ie., P} | W [Pi jl%_ 1

PIjJ\?/ | . On the subsequence; 1;:::;Xj q 1, hotethat i 1 n S i 1nS
d L, hence by Lemma 4.18, we hav@{ 9w P{ iql%d L | BP{ iqll@?/ | . There-
fore P! ;! 'wi Bp! ;! %1 Bp. j

4.3.3 Algorithmic Complexity

Using Lemmas 4.16, 4.17, 4.19 and 4.20, one can design a lteg algorithm with the
same worst case time complexity adeftmost . In this section, we introduce a linear
time implementation of leftmost . We denote this algorithm leftmost_count , since we
use it to compute an array count containing the values of % 1 i Sor all values ofi.
We give the pseudo code for this procedure in Algorithm 10. Tle key idea that allows to
reduce the complexity is that, at each step, a single new sulegjuence is to be considered.
However, we also need to compute the new maximum across cuntesubsequences, and
increment all subsequences when assigning the value 1 w i , both in constant time.

It is easy to see thatleftmost_count has anO"ne worst case time complexity. In order
to prove its correctness, we will show that the instantiation computed by leftmost_count
is the same as that computed byleftmost .

Lemma 4.21. Algorithms 9 and 10 return the same instantiation w.

Proof. We rst prove the following three invariants, true at the beg inning of each step
of the main loop:
* The cardinality of the j" subsequenceisequalte™i j 2+ modq counti 1.
" The number of subsequences of cardinalityk is equal tooccn counti 1 K.
" The cardinality maximum of any subsequence is equal to max..
Then, it is easy to check thatleftmost_count computes the exact same instantiation as

leftmost . Furthermore, at the end of the algorithm, we will have count i ®1iS
foralli> 1;n.

Cardinality of the subsequences.

Let w; denote the assignmentv after i 1 steps of the loop. Notice that at the beginning
and the end of the sequence of variables, subsequences arercated. However, to

Chapter 4 Propagation in Sequencing Problems 72

Algorithm 10: leftmost_count

L Wi min’xje;

occi 0
foreach i> 0;:::;n do count i 0;
c0 w1il;
foreach 1> 1;:::;p dooccn i O
foreach i> 1;:::;q do

wn i 0;

if i @qthen ci ci 1 wi 1;

occh ci 1 occn ci 1 1;

foreach i > 1;:::;n do
if maxc @ & D" xj* A1 then
max. maxe 1;

count i counti 1 1;
Wi 1;
else count i counti 1 ;

prev. c¢”i 1emodq;

next c¢c’i g 22modq wi q WwWi,;

c”i 1emodg next;

if prevx next then

occn prev occn prev 1;

occn next occn next 1;

if next counti Amax;then max; max; 1;
if occn prev 0 & prev counti maxc then
LmaxC max. 1;

return count;

equal to 0. Thus we can write that the cardinality of the j " is equal to P: ,’ qu wi | .

We prove the rst invariant by induction, i.e., let P"ie denote the fact that the following
equalities hold at the beginning of a stepi:

g1
Q wile “ci j 2modq counti 1« |j>1;:::;q
liqj

~

The base casé”” 1 is easily checkable from the initialization of c.

Now suppose thatP"ie holds, and consider the state ofc at the beginning of stepi 1.
First, note that at step i of the loop, only the value ofci 1 modqg changes. Consider

Chapter 4 Propagation in Sequencing Problems 73

j>121:::;9 1l.Inthiscase,”i 1+ j 2modge “i j 1modg x"i 1modge.
Therefore,c”i 1+ |j 2modq has not changed between step and stepi 1, and
sinceP"i* holds, we have:
i) o101

Q wijle “ci 7] 1+ 2modg counti 1
liqg7 1

A~

which can be rewritten as follows:

e 1
) wile “c’i 1+ j 2modq counti 1
I 7i 1o g j
Now there are two possibilities. Either count is incremented, i.e.,count i count i
1 1,andinthatcasew; 11 w; i 1. Orcountis notincremented, and in that case

Wili Wii.

In both cases we have:

“ide o1 Sle o1
Q wi 1 | Q wil w1
I 71 1o qj I 71 1 q j;Ixi

sincew; 1| w; | forall | xi. Hence we obtain:

~

Q wi1le “ci 7] 1+ 2modq counti le wii wjqi

Q wi1le “c’i 1+ j 2modq counti-

Thus P"i 1e holds.

Now we look at the last case:j Q. Here, at stepi the value ofci 1modq is set to
cCi g 2modq w; 1i q w 1i . SinceP”ie holds, we canreplaceci g 2 modq

by P:iqlwilo counti 1, so atthe beginning of stepi 1 we have:
ig1l
c’i 1 g 2modg " Q wile counti 1 wi1i g w1l
I i
however, sinceP: . Ywile wii P: iqllwi 1 |+ we have:
iq
c’i 1+ g 2modq Q wi1l counti 1 wii wiqi

i1

Chapter 4 Propagation in Sequencing Problems 74

Therefore, sincecounti counti 1 wj 1i w; i, the following holds:

iq
c’i 1 g 2modg Q w; 1| counti
li 1

We have shown that P"is implies P"i 1e, and we can therefore conclude that at the
beginning of each step of the loop P”ie (that is, the rst invariant) holds.

Occurrences of each cardinality.

We proceed as for the rst invariant, and prove it by inductio n. The base case is easy
to check sincecount 0 0, and since the arrayc is properly initialized.

Now we assume that there are exactlyoccn counti 1 k subsequences involving
Xi whose cardinality is equal tok in w;, and we show that at the beginning of stepi 1
there areoccn counti k subsequences involving; ; of cardinality k in w; 1.

There are two reasons for cardinalities to change.

First, when moving up to the next step in the loop, we move fromsubsequences involving
X; to subsequences involvings; 1. There areq 1 subsequences involving both; and
Xi 1. So we simply need to make sure that the occurrences are updad to re ect

of the former (respectively latter) subsequence. As estaldhed by the rst invariant,
ki c¢”i l*modqg counti 1,thatisthevalue previnlLine2issettok; counti 1.
Moreover, next is given the valuec™i g 2emodq wi q wi . However, from
invariant 1, we havec™i q 2*modqg counti 1 P: iq Yw I . It follows that

iqg1l iq

next Q wl wi g wi counti 1 Q wl counti 1

i li1
therefore next k, counti 1. To maintain invariant (2), we therefore need to
increment the value ofoccn counti 1 Kk, and decrement the value ofoccn
counti 1 ki . Thisis precisely what is done in Lines 4 and 5.

Second, when the conditions in Line 1 are met, the value ofv i is set to 1. Since its
value was previously 0, the cardinality of every subsequereinvolving w i should be
incremented before starting the next step { 1). This happens automatically because
in this case the value ofcount i will be setto counti 1 1. Indeed, for any integer
k, the number of occurrences of subsequences of cardinality 1 at the beginning of
stepiisoccn counti 1 Kk 1. Therefore, sincecounti counti 1 1, atthe

beginning of stepi 1, we haveoccn “counti 1e k 1,thatis, occn counti K.

Cardinality maximum.

Chapter 4 Propagation in Sequencing Problems 75

Here we show that the maximum value of the cardinalities of the current subsequences is
properly maintained. When the number of occurrences of a cafinality k becomes non-
null and if k Amaxc, then max. is set to k. Similarly, When the number of occurrences
of a cardinality k becomes null and itk maxc, then max. is decreased. Last, when the
cardinality of all subsequences is incrementedmnax. is incremented too.

These operations are correct because from one stepgo i 1, the value of max.; cannot
change by more than 1. Indeed, only the rst subsequence is reoved, the otherq 1
subsequences remain unchanged. Moreover, the rst subsegquce is replaced by the
last subsequence to which a valuea > 0;1 is added, and another valueb > 0;1 is
subtracted. Therefore its value cannot change by more than lhencemaxec.

Now having these three invariants, one can check that at eaclstep i the values ofw i
will be the same as in Algorithm 9.

4.3.4 Achieving Arc-Consistency on AtMostSeqCard

Now, we can prove our main result, that ac on a constraint
AtMostSeqCard “p;Q;d; X1;:::;Xn * can be achieved inO"ne time by Algorithm 11.

First, in Line 1, we achieve ac on AtMostSeq "p;q; X1;:::;Xn ¢, so that the rst con-

dition for Lemma 4.15 holds. Achievingac on AtMostSeq can be done in linear time
using a procedure essentially similar toleftmost_count . Indeed, since the constraint
AtMost is monotone, we simply need to achieveac on every AtMost . Moreover, a
iy * May prune the domain of a variable only if p other
iy * are assigned to 1. To do that, we run a truncated version of
leftmost_count : the values ofw i are never updated, i.e., they are set to the minimum
value in the domain and we never enter the if-then-else bloclstarting at condition 1 in

Algorithm 10. Now, if at step i we havemax. p, then there are p variables assigned

to 1 in at least one subsequence involving;, hence it should be set to O if possible.

Second, in Line 2, we achieveac on the cardinality constraint, in order to satisfy the
second condition of Lemma 4.15.

Third, in Line 4 we compute the vector L that maps each indexi to the value of
®1iS P} '1min “Xxj+. This is given by the array count returned by leftmost_count
on the sequence xj;:::;X; . Notice that, we work with the residual demand, com-
puted in Line 3, rather than the original demand. At this point, the third condition of
Lemma 4.15 can be checked, and we know whether the constraifg ac, inconsistent, or
if some pruning may be possible.

Chapter 4 Propagation in Sequencing Problems 76

In the latter case, we compute the vectorR, that maps each indexi to the value of
By i n S P! "min"x;e, in Line 5.

Finally, we can activate the pruning rules that are shown to be correct and su cient by
Lemmas 4.16 and 4.19 for Line 6, and Lemmas 4.17 and 4.20 forrig 7.

Algorithm 11: ac(AtMostSeqCard “p;q;d; X1;:; Xp *°
if ac”AtMostSeq "p;q; X1;:::;Xn *» Uthen
Lreturn U;
if ac"P,x; de Uthen
Lreturn U
3 des d P ymin"xe;
4 L leftmost count ~ Xi;:::;Xn ;p;Cr;
if Ln des then
R leftmost_count = Xp;:::;X1 ;p;Ce;
foreach i> 1;:::;n such thatD"xjs ~0;1e do
Lif Li Rn i 1 Bdesthen D xje ~0e;

|f L | 1 R n | @res then DAXi. ~1.;

else if L n @des then
| return U;

return D ;

Theorem 4.22. Algorithm 11 achievesac on AtMostSeqCard with an optimal worst
case time complexity.

Proof. The soundness of Algorithm 11 is a straight application of Lenmas 4.16 and 4.17.
Its completeness is a consequence of Lemmas 4.15, 4.19 an2i4.

Achieving ac on AtMostSeq (Line 1) can be done with one call toleftmost_count
Achieving ac on a simple cardinality constraint (Line 2) can be done ftrivially in O"ne
time. Finally, pruning the domains requires at most two calls to leftmost_count , plus
going through the sequence of variable to actually change th domains, that is, O"ne
time.

The worst case time complexity of Algorithm 11 is then O"ne, hence optimal. | |

Example 4.4. We give an example of the execution of Algorithm 11 in Figure Z for
computing the ac of constraint AtMostSeqCard withp 4, g 8andd 12

The rst line stands for current domains, dots are unassigna variables (hencedes 10).
The two next lines give the instantiations® andv obtained by runningleftmost_count
from left to right and from right to left, respectively. The third and fourth lines stand for
the values ofL i & 1 i Splimin xe+andRn i 1 Bin SP! 'min"x;e.
The fth and sixth lines correspond to the application of, respectively, Lemma 4.16

Chapter 4 Propagation in Sequencing Problems 77

D" x;e L0 ... 010 .. . A |
R i 1011100001011100010111
By i 1001110001011100001111
L i 01123444 44445677 778891010
Rn i 1 109 99876 6666654333332100
Li Rn i 1 1110111212110101010101111 17101010 1111 11 11 10
Li 1 Rn i 910101010101010101019 9 9 10 10 10 10109 9 10
ac’D” xjee 10 000101121000 1 1

Figure 4.7: ac on AtMostSeqCard "p 4;,q 8;d 12 Xz;:::;Xp

and 4.17. Last, the seventh line gives the Arc Consistent doans. Bold values indicate
pruning.

4.4 Extensions

In this section, we show that the Itering algorithm describ ed in the previous section
can be extended in a number of ways to enforcac on more general constraints.

Some generalizations are straightforward. For instance, lte parameter p does not need
to be the same for all subsequences. Indeed neither Algorith 9 nor Algorithm 10 relies
on the fact that p is constant across all subsequences. We can easily give & i upper
bounds, one for each subsequence. Another relatively strgintforward generalization is
to have a variable, rather than a single value, for the demandd.

4.4.1 The AtMostSeq Card Constraint

Let be a variable, we de ne the AtMostSeq Card as follows:

De nition 4.23.

ng q n
AtMostSeq Card “p;q; ; X1;:::;Xn ® "Q Xi 1Bpe, "TQXxi e
011 i1

We show how one can achievec on the above generalization. The changes to Algo-
rithm 11 required to handle this generalization are minimal. Indeed, tight lower and
upper bounds on are easy to compute.

They are given, respectively byP ; min “x;e, and &S Moreover, by Lemma 4.15, we
know there can be inconsistent values for a variable; only if $ Bd. It follows that we
only need to care about the lower bound of . We show these changes in Algorithm 12.
The domain of is updated in Line 2 for the lower bound, and Line 5 for the uppe

o O b W

Chapter 4 Propagation in Sequencing Problems 78

bound. Also, the lower bound of (min”~) is used to compute the residual demand to
reach in Line 3 instead ofd.

Algorithm 12: ac”AtMostSeq Card "p;q; ; X1;:5Xn *)
if ac”AtMostSeq "p;q; X1;:::;Xn *» Uthen
| return U;
if ac"P",;x; + Uthen
| retun U;
des mMin~ ¢ P min"xe;
L leftmost _count = X1;:::;Xn ;p;Cr;
D« D" «9 OLn P!;min"xje ;
if Ln des then
R leftmost_count ~ Xn;:::;X1 ;p;Qe;
foreach i> 1;:::;n such thatD"x;j* 70;1e do
|f L | R n | 1 Bdres then DAXi. NO.;
fLi 1 RN i @esthen D Xxje "ls;

else if L n @des then
| retun U;

return D ;

Theorem 4.24. Algorithm 12 achievesac on AtMostSeq Card with an optimal
worst case time complexity.

Proof. First, we need to lter inconsistent values from the domain of . By Lemma 4.13,
the cardinality $, Sof the instantiation returned by leftmost is a valid upper bound
for . Moreover, because of the cardinality constraint, P{' ; min“x;e is a valid lower
bound. It is easy to see that any valued within these bounds satis es the condi-
tions of Lemma 4.14. In other words, we can assign to any value in the interval
P min“x«;®S and extend it to an ac support of
AtMostSeq Card “p;q;; X1;:::;Xn ¢. These bounds are therefore tight.

by any value in D™ «. A naive algorithm for checking that would be to run leftmost
for each value inD” ¢ and compute the union of possible values for the variables;.
However, one can avoid this by distinguishing two cases afteline 5. Suppose that
" «SA 1, in this case, Line 1 and Line 2 and 5 imply that Lemma 4.15 hals for
d min~ «. Hence all values for the variablesx; are consistent and in this case we will
never enter lines 6 and 7. Suppose now tha®" S 1, in this case, we can simply apply
the same ltering (Line 6) that we proposed previously for a xed cardinality.

The whole procedure requires at most two calls tdeftmost_count , which takes O™ ne
time. i

Chapter 4 Propagation in Sequencing Problems 79

Table 4.1: Maximal cardinality instantiations.

Xi'f.0.....0.....0..
Won41/101010101010101010101&S11
Ron4a2/1100011000112000121000 1S 10

Won41842/101001001010001010001/&Ss

4.4.2 The MultiAtMostSeqCard Constraint

We show here that we can easily modify Algorithm 11 (or Algorthm 12) to achieve ac
on the conjunction of severalAtMostSeqCard constraints.

For instance, in crew-rostering problems, the work pattern of an employee might re-
quire a conjunction of AtMostSeqCard : one to limit the number of shifts per day,
and another to limit the number of shifts per week. In the crewrostering bench-
marks that we consider in Section 4.5, we have a variable; for each working shift
i. Moreover, we want each employee to work at most one shift peday, at most ve

shifts per week, and between 17 and 18 shifts on the whole ped. We model this
with two AtMostSeq Card constraints: AtMostSeq Card "1;3;; X1 Xn*

and AtMostSeq Card "5;21; ; Xq1;:::;Xpe* st. D™« 717,18. However, ac on
these two constraints is not equivalent toac on their conjunction. We illustrate this in

Example 4.5 (using smaller instances of the constraints).

Example 4.5. Consider the conjunction of the two followingAtMostSeqCard con-
straints:

AtMostSeqCard "1;2;9; X1;:::; X0 & (4.2)
AtMostSeqCard "2;5;9; Xq1;:::;Xo0® (4.2)

Now, suppose thatD"xge D Xx14¢ D" X290 ~0e, whilst all other domains are equal
to "0;1e. The rst line of Table 4.1 shows the domains of X1;:::;X22 , with a dot
(:) standing for a full domain (70;1¢) and the value O standing for the domain re-
duced to the singleton™0s. The second and third lines show the results ofeftmost

of maximum cardinality respecting simultaneouslyAtMostSeq "1;2; X1;:::;X22* and
AtMostSeq "2;5; X1;:::;X22¢. It is obtained using the same principle asleftmost
however by checking two sets of subsequences, one for eathostSeqCard con-
straint. It is easy to see that the arguments of Lemma 4.13 arestill valid when consid-
ering any number of subsequences. Therefore, the total cardility of 8 is a valid upper
bound, and sinced is equal to 9, the conjunction of the two constraints has no solution.

Chapter 4 Propagation in Sequencing Problems 80

We de ne the constraint MultiAtMostSeqgCard , and show that the algorithm intro-
duced in this chapter can be adapted to enforceac on this constraint in O"nme time,
where m is the number of chains ofAtMost constraints.

De nition 4.25. MultiiAtMostSeqCard TP PmOn Oy XqpiiniXn e
mn G % o
QX 1Bpke, "Q Xj de
k1i0 |1 i1
Theorem 4.26. One can achieveac on MultiAtMostSeqCard in O"nme time.

Proof. The main argument to show that this theorem holds is that all previous proofs
and algorithms can be easily adapted to this case. We therefe only sketch its proof.

First, note that one can modify the procedureleftmost (or leftmost_count)to handle
a conjunction of AtMostSeq constraints instead of a single one. All we need to do is
to duplicate m times the structures maintaining the cardinalities of the subsequences.
We obtain a procedure that checksm chains in O"nme if we use Algorithm 10.

Second we show that Lemma 4.13 still holds with this new proagure, and with respect to
several chains ofAtMost constraints. In other words, greedily assigning the value 1
while respectingm chains of AtMost will produce a sequence of maximal cardinality.
The argument used in the proof of Lemma 4.13 generalizes withut modi cation to
several chains. We show that if we make the hypothesis that arinstantiation w of
cardinality higher than of $ Sound by the greedy procedure leads to a contradiction.
For each value ofq, the same three cases arise, and can be analyzed in exactlyeth
same way. Hence we can show thaiv can be made equal tof without changing its
cardinality, hence a contradiction.

In all subsequent proofs, we check subsequences of lengjrand show that they do not
violate capacity constraints. Obviously, these proofs hall for any value of g (within

1;n). In fact, the only di erence is that when considering multi ple chains, we might
have to check subsequences of di erent lengths.] j

4.5 Experimental Results

We tested our ltering algorithms on two benchmarks: car-sequencing and crew-rostering.
SinceSlack-Pruning is a particular case ofAtMostSeqCard and in all cases cannot
Iter more than AtMostSeqCard then it will be omitted in these experiments. All
models are implemented using llog-Solver 6.7. All experima@s ran on Intel Xeon CPUs
2.67GHz under Linux. Since we compare propagators, we avegad the results across
several branching heuristics to reduce the bias that these an have on the outcome.

Chapter 4 Propagation in Sequencing Problems 81

Moreover, these heuristics were randomized and for each itesice and each heuristic we
launched 5 randomized runs with a 20 minutes time cuto?. For each considered data
set, we primarily compare the total number of successful rus, denoted #solved. Then,
we consider the CPU time in seconds and number of backtracksjenoted #backtracks,
both restricted to successful runs. When appropriate, we emphasize the statistics of the
best method using bold face fonts.

45.1 Car-Sequencing

We use the same con guration used in the previous chapter (Sgion 3.3). That is, 4
models decompose, gsc, amsc, and gsc” amsc) and 42 heuristics. For each model,
we report the average number of solved instances in Table 4,2he average CPU time
on solved instances in Table 4.3 and the average number of bittacks in Table 4.4. In
each table, we also report the minimum and maximum value (forany heuristic, though
averaged over randomized runs) as well as the standard deuian over the dierent
heuristics.

Table 4.2: Evaluation of the ltering methods (solved instances count)

#solved in setl (70 5) #solved in set2 (4 5)
avg| min max| dev avg| min| max| dev
decompose || 268.33 70.00/350.00 |88.95|| 2.95/0.00| 15.00|3.66
gsc 333.52/154.00 350.00 {42.16|| 10.11]0.00|20.00 |5.25
amsc 321.35 80.00/350.00 | 64.05|/11.19 | 0.00{20.00 |5.22
gsc amsc |/ 334.11 | 154.00350.00 {41.88|| 10.45|0.00{20.00 |5.06

#solved in set3 (5 5) #solved in set4 (7 5)
avg| min max| dev avg| min| max| dev
decompose 0.00, 0.00{ 0.00| 0.00|| 2.35/0.00] 9.00(2.65
gsc 0.73| 0.00| 10.00| 2.35|| 4.64/0.00/10.00 |3.69
amsc 0.38| 0.00 5.00/ 1.21|| 5.09|0.00{10.00 |3.75
gsc amsc 0.76| 0.00| 10.00| 2.41|| 4.80/0.00{10.00 |3.65

propagation

propagation

Table 4.2 shows that in all cases, the best method is eithegsc™ amsc or amsc. In
some cases a stronger Itering seems to be key angsc’ amsc solves more instances
than other methods: 9546% ofsetl and 3:04% ofset3 In other cases, exploration speed
is more important and amsc is better: 55:95% and 1455% of solved instances foset2
and set4, respectively. Overall, as witnessed by Table 4.4gsc and gsc™ amsc usually
require exploring a much smaller tree thanamsc. However, the propagator for Gsc
slows down the search by a substantial amount. Considering dble 4.3 as well as data
from unsolved instances, we observed a factor 12.5 on the ndrer of nodes explored per
second between these two models. Moreover, the level of Iteng obtained by these two

2The approximate total CPU time is one year.

Chapter 4 Propagation in Sequencing Problems 82

Table 4.3: Evaluation of the Itering methods (CPU time on solved insta nces)

. CPU time (in sec.) on setl (70 5)||CPU time (in sec.) on set2 (4 5)
propagation . .
avg| min max dev avg| min max dev
decompose || 10.49| 0.02|1145.20 80.39|| 58.74/0.01| 766.25 178.88
gsc 3.16| 0.52|1100.54 33.17|{109.45/0.11|1096.37 237.46
amsc 3.79| 0.03/1197.88 51.49|| 70.56/0.01|1014.57 186.87
gsc’ amsc 3.03| 0.53({1017.74 33.60|| 99.71|0.11|1155.40 222.85
. CPU time (in sec.) onset3 (5 5) ||CPU time (in sec.) onset4 (7 5)
propagation : .
avg| min max dev avg| min max dev
decompose - - - -1l 30.85/0.03| 985.75 136.43
gsc 276.06|29.22| 988.79 308.64|| 53.61|1.63| 975.03 147.35
amsc 8.62| 1.06| 18.07 6.72|| 38.45/0.03/1171.78 124.29
gsc’ amsc ||285.43| 6.01/1131.19 337.24]| 61.61/1.62|1180.53 175.23

Table 4.4;: Evaluation of the Itering methods (search tree size on sohed instances)

. #backtracks on setl (70 5) #backtracks on set2 (4 5)
propagation .)
avg| min max dev avg| min max dev
decompose || 174017 148|25062202 1341281} 1101723 78|15324348 3439897
gsc 1408 99| 2320312 34519 131062 58| 1595137 306448

amsc 33600 92|1388804Q 468527 665203 61|10254401 1827514
gsc' amsc 1007 92| 1180609 23649 104823 56| 1055307 244135

. #backtracks on set3 (5 5) #backtracks on set4 (7 5)
propagation .)
avg| min max dev avg| min max dev
decompose - - - -|| 378475 170|13767766 1754180
gsc 55365/ 5852| 218590 63211 23897 151| 467396 75097

amsc 40326/ 5991 83454 29690 215349 146| 5624744 653498
gsc amsc || 57725 1120| 244787 69705/ 22974 146| 428523 71552

methods are incomparable. Therefore combining them is alwgs better than using Gsc
alone.

In [139] the authors applied their method to setl set2 and set3 only. For their
experiments, they considered the best result provided by 2 @uristics. When using
cost-Regular or Gen-Sequence ltering alone, 50:7% of problems are solved and
when combining either cost-Regular or Gen-Sequence with Gsc, 652% of prob-
lems are solved (with a time out of 1 hour). In our experiments in average over the 42
heuristics and the 5 randomized runs,AtMostSeqCard and Gsc solve respectively
84:29% and 8719% of instances and combiningAtMostSeqCard with Gsc solves
87:42% instances in a time out of 20 minutes. Moreover, using thenodel gsc™ amsc,
the best heuristic was able to solve 920% of these instances.

Chapter 4 Propagation in Sequencing Problems 83

45.2 Crew-Rostering

Problem Description In this problem, working shifts have to be attributed to em-
ployees over a period, so that the required service is met atrgy time and working
regulations are respected. The latter condition can entaila wide variety of constraints.
Previous work [93, 103] used allowed (or forbidden) patters to express successive shift
constraints. For example, with 3 shifts of 8 hours per day: D (lay), E (evening) and
N (night), ND can be forbidden since employees need some resffter night shifts. We
consider here a simple case involving 20 employees with 3 §iisi of 8 hours per days
where no employee can work more than one 8h shift per day, no me than 5 days per
period of 7 days, and the break between two worked shifts musbe at least 16h. The
planning horizon is of 28 days, and each employee must work 1shifts over the 4 weeks
period (i.e., 34 hours per week in average).

Models and Heuristics We use a model with one Boolean variableg; for each of
the m employees and each of then shifts stating if employee i works on shift j. The
demand d’ on each shift] is enforced through a sum constraintP{", & d°. The other
constraints are stated using twoAtMostSeqCard constraints per employee, one with
ratio p~q 1-3, another with ratio 5~21, and both with the same demandd 17. We
compare four models. In the rst (decompose), we use a decomposition in a chain of
AtMost constraints. In the second @msc) we use two AtMostSeqCard constraints
per employeej, of the form:

AtMostSeqCard “p;q;d; e1;:::;€n *

In the rst constraintwe have p 1,9 3;d 17 and in the second constraint we have
5, 21,d 17. Both are propagated using Algorithm 11. In the third modéd (gsc), we
use the followingGsc constraint to encode the constraintAtMostSeqCard “p;q;d; g1;:::;€n *:

Note that in this case, since the domains are Boolean, th&sc is in this case equivalent
to AtMostSeqCard . Therefore, it cannot prune more since the latter enforcesac.
However, it is stronger than the decomposition. Last, in thefourth model (mamsc) the
conjunction of the two AtMostSeqCard constraints is propagated using Algorithm 12.

We used the following four variable ordering heuristics.

1. Lexicographic. Explores shifts chronologically and picks an employee atandom;

2. Middle: Similar as above, however we start exploring shifts from tie middle;

Chapter 4 Propagation in Sequencing Problems 84

3. Employee Picks an employee with min slack, then a possible shift of mademand;

4. Shift: Similar as above, however, the shift is selected before themployee.

In all cases, we branch by assigning the value 1 to the choserap (employee, shift).

Benchmarks We generated 341 instances, with worker availability rangng from 82%
to 48% by increment of 0.1. This value denotes the probabily that a given employee is
willing to work during a given shift. It allows to vary the con strainedness of the problem.
228 of these instances were found feasible, 77 infeasibledaB6 remain open. We report
results for the satis able and unsatis able sets with 5 random runs per instance.

Table 4.5: Evaluation of the Itering methods: static branching (high est success
counts are in bold fonts)

Lexicographic

satis able (1140) unsatis able (385)
Model CPU time #backtracks CPU time | #backtracks
#sol #sol

avg dev avg dev avg| dev | avg | dev
decompose 0 - - - -{| 170|0.05| 0.02 86 452
gsc 25(308.93/344.29] 74074 84301 175|2.56| 9.71] 262| 1794
amsc 125/164.36| 239.56| 1828347 2759080 213|1.76|21.95|22621| 292152
mamsc 534 | 87.29|188.81] 6857201491867 271 |2.80|45.02|27150| 444913

From the middle to the sides

Model satis able (1140) unsatis able (385)
CPU time #backtracks CPU time | #backtracks
#sol #sol

avg | dev avg dev avg| dev | avg | dev
decompose 1/166.76| 0.00|5716015 0| 160/0.04| 0.00 0 0
gsc 71253.20 301.63] 53763| 63110 165|1.07| 0.08 0 0
amsc 57)1161.38/267.23| 2207676 3621762| 201|/0.20| 1.46| 1622| 15809
mamsc 336 {134.95/239.11| 1410459 2525422| 265 |0.05| 0.00 0 0

We report the results for the static heuristics in Table 4.5 and for the dynamic heuris-
tics in Table 4.6. The rst column indicates the total number of successful runs (#sol),
then we report CPU time and number of backtracks, averaged oer all instances and
runs, as well as the standard deviation on this sample. Cledy, achieving ac on the
(Multi)AtMostSeqCard constraint have a signi cant impact on the e ciency of the

model. The decomposition into sum constraints cannot solveany satis able instance
with lexicographic branching, and only one when starting from the middle of the se-
qguence. The model usingGsc o ers a much more potent ltering, however, it is not

as strong asac on the AtMostSeqCard constraint and moreover, it is much slower.
On the other hand, the model using Algorithm 11 for the AtMostSeqCard constraint

Chapter 4 Propagation in Sequencing Problems 85

achievesac whilst being as fast as the decomposed model in terms of explation. More-
over, combining the two AtMostSeqCard constraints and using Algorithm 12 allows
to solve about four times more satis able instances with Lexicographic branching and
six times more with Middle branching.

The cost-Regular constraint could be used to enforce the same level of consesicy
as the combination of two AtMostSeqCard constraints. The possible patterns can
be encoded through a nite automaton whilst the overall cardinality is encoded by the
counter. Notice that using a Regular constraint (i.e., without cost) and modeling

the overall work load with a cardinality constraint would not enforce a higher level of
consistency than the decomposition into cardinality constaints (i.e., model decompose)

since AtMost constraints are monotone. A worst case analysis would indete that the

number of states in the automaton is too large.

Table 4.6: Evaluation of the Itering methods (dynamic branching)

Most constrained employee

satis able (1140) unsatis able (385)
Model CPU time #backtracks CPU time #backtracks
#sol #sol
avg | dev | avg dev avg | dev | avg dev
decompose 772|21.93/104.91) 205087 1000794| 165/ 0.06| 0.00 0 2
gsc 746|65.75/180.29 14133 42235/ 175/ 0.98| 0.09 0 3
amsc 818|20.51/103.76| 147479 761261 215/ 0.13| 0.55 330| 2582
mamsc 842120.78/111.00/ 125886 676061 270| 0.05| 0.01 0 2
Most constrained shift
satis able (1140) unsatis able (385)
Model CPU time #backtracks CPU time #backtracks
#sol #sol
avg | dev avg dev avg | dev avg dev
decompose 987|20.76|102.53 169964 853020/| 352|19.74| 99.61 180161967933
gsc 1006(33.30{107.08 8875 31586|| 335/15.97| 95.36| 5145 35824
amsc 1061(10.07| 65.02| 90247 593928| 362|12.19| 77.37/108797 736775
mamsc 1074 110.94| 77.37| 91222 667176 377 |14.63/107.58 110244 834887

When using dynamic heuristics (see Table 4.6), the dierene between the dierent
models becomes much less spectacular. However, the trendtisee same, with the model
combining the pairs of AtMostSeqCard constraint dominating the other models.

Summary

We rst proposed a simple Itering rule that reasons about capacity and demand con-
straints simultaneously for solving the car-sequencing poblem. This pruning is then gen-
eralized to an optimal Arc Consistency algorithm for the AtMostSeqCard constraint.

Chapter 4 Propagation in Sequencing Problems 86

Moreover, we showed how to adapt the Itering with more generl constraints while keep-
ing a reasonable worst case time complexity. Our computatinal results demonstrate the
e ciency of our approach for solving car-sequencing and cre-rostering benchmarks.

Chapter 5

Learning

Introduction

In the past decade, hybrid CP/SAT solvers have been redesigned to bene t fromCP
and SAT features as much as possible. In this chapter, we shothat enabling clause
learning via hybrid models can greatly improve the performances ofCP models in many
sequencing and scheduling problems.

Lazy Clause Generationis a general framework for hybrid solvers in which propagatos
should be able to explain their pruning in a clausal form. A trend has subsequently
emerged aiming at proposing e ective and e cient explanations for (global) constraints
(see for instance [47, 46, 116, 58, 55]). In this context, wenvestigate the learning
aspect for solving car-sequencing benchmarks using our #ring for AtMostSeqCard

in Section 5.1. We propose a procedure explainingitMostSeqCard that runs in
linear time complexity in the worst case. Any hybrid model using these explanations
bene ts from the complete ltering for this constraint alon g with clause learning and
potentially many other CP/SAT features. We show experimentally how clause learning
improves the global performances in most cases. We con rm a®ng correlation between
advanced propagation and nding solutions quickly for this problem. Moreover, for
building proofs, clause learning appears in these experinmés to be the most important
ingredient while propagation is less useful.

The rest of the contributions presented in this chapter are elated to the question of
designing ‘lazy' data structures in order to e ciently tack le large scaled instances. Back-
ward explanations and lazy generation (see Section 2.3.2ya typically the type of "lazy’
data structures that we address. However, these techniqueare relatively new in hybrid
solvers and might be improved in a number of ways.

87

Chapter 5 Learning 88

We revisit in Section 5.2 the lazy generation of Boolean vaables for encoding the
domains. The issue that we address is related to the redundayy of clauses used when
lazily encoding a domain [53] (detailed in Section 2.3.2.2) The DomainFaithfulness
constraint that we propose avoids such redundancy while enging the same level of
consistency without any computational overhead.

Section 5.3 addresses the impact of clause learning for sahg disjunctive scheduling

problems. We consider a large number of disjunctive scheding instances, on which we
test the lazy generation method proposed in Section 5.2. Fihermore, we propose a
novel con ict analysis scheme, calledDisjunctive -based learning, tailored to this family

of problems. Disjunctive -based learning uses a property of these problems allowingt
learn clauses using a number of Boolean variables that is ndtinction of the domain size.
Our propositions give good experimental results and outpeiorm the CP model in most

cases. Furthermore, we con rm a correlation between the in&nce size, the branching
choice, and the con ict analysis scheme. State-of-the-arfower bounds for a traditional

benchmark are improved thanks to the new con ict analysis sbeme.

5.1 Learning in Car-Sequencing

We investigate in this section the impact of clause learningor solving the car-sequencing
problem. We rst show how to explain our complete ltering fo r AtMostSeqgCard
These explanations are later used in several hybrid model®f solving the car-sequencing
problem.

5.1.1 Explaining AtMostSeqCard

We rst recall the de nition of AtMostSeqCard . Given a sequence of Boolean vari-
ables x1;:::;Xn and three integersp, g, d, AtMostSeqCard is de ned by a conjunc-
tion between a chain ofAtMost constraints (called AtMostSeq) and Cardinality

ngq n
AtMostSeqCard “p;q;d; X1;:::;Xn ® "Q Xj 1Bpe, "Q x; de
011 i1
To explain AtMostSeqCard , we briey recall the complete Itering that we pro-

posed in Section 4.3. Let x1;::;X, be a sequence of Boolean variables subject to
AtMostSeqCard “p;q;d; X1;:;Xn * . The rst step is to make sure that
AtMostSeq “p;qQ; X1;:::;Xn * and Cardinality " x1;:::;Xn ;de areac. The remain-
ing of the Itering is based on a greedy rule calledleftmost . The outcome of leftmost

is an instantiation w with a maximum cardinality on xj;::; X, respecting all AtMost
constraints. We use a linear time implementation of leftmost called leftmost_count

Chapter 5 Learning 89

to complete the Itering. The procedure leftmost _count returns an array L where
Li P} ile P} 'lmin “Xje. The value of L i represents the maximum possible
cardinality that the sequence xj;::;x; might additionally have while respecting all the
AtMost constraints. We de ne the array R to be the result of leftmost_count on the
reverse sequencexn;:i;X; . Let des d P{';min"X;¢ be the remaining cardinality to

satisfy. To complete the ltering, we use the following rules:

1. If L n @des, then a failure is raised.
2. IfL n des, then for all unassigned variablex;:

“If Li Rn i 1 Bdes,thenx; is assigned to 0.

“If Li 1 Rn i @es,thenx; is assigned to 1.

Now in order to explain AtMostSeqCard , we make the distinction between the possi-
ble changes made byAtMostSeq or Cardinality ~ on one hand, and the extra ltering
that we obtain using leftmost_count on the other hand.

5.1.1.1 Explaining AtMostSeq & Cardinality

Explaining AtMostSeq We proceed here by propagating
AtMostSeq “p;qQ; X1;:::;Xn * with the decomposition into all possible AtMost con-
straints of size q. Recall that this decomposition does not mder propagation (Sec-
tion 4.2). Algorithm 13 shows an ac propagator for AtMost = X1;:::;Xq ;P*.

Algorithm 13: AtMost ™ X1;:::;Xq ;p*
if Sxj SD™xjs ~1ee S\pthen
| DU ;
else
if Sx; SD"xj* ~1e S pthen
foreach i >"1:g* do
L if D"x;* ~0;1e then

L DAXi' " 0e X

return D ;

On the one hand, when a failure is raised because of Line 1, theet of all variables
assigned to 1 constitutes a possible reason triggering theailure. We therefore use the
following propagation rule to explain a failure:

D" Xje "1e \JX| 1K U

Chapter 5 Learning 90

This explanation can be reduced as follows. Sincp 1 assignments of the typelx; 1K
are su cient to have a failure on AtMost " X1;:::;Xq ;pe, then any conjunction de ned
on a subset of ' Jx; 1KSD"xjs ~1e of sizep 1 is a valid explanation of the failure.

On the other hand, any assignment made by this propagator (oly of the type D"x;e
“0e in this case) in Line 3 is triggered because of thg assigned variables to 1 (i.e., the
test in Line 2). We therefore return the set of assigned variales to 1 as an explanation
for Jx;j OK

pxe 1o X 1K X OK

Explaining Cardinality Notice rstthat Itering AtMost (Algorithm 13) is very
close to ltering Cardinality as we proposed earlier in Algorithm 4. We use therefore
similar reasoning to explain the following scenarios:

If a failure is raised in Line 1 (Algorithm 4):
D Xje "1e JX| lK U

Similarly to failures on AtMost , this explanation can be reduced by considering any
subset of sized 1 from "Jx; 1KSD Xxje " 1lee .

If a failure is raised in Line 2 (Algorithm 4):
D™Xje ~0e JX| OK U

This explanation can also be reduced by considering any suks of sizen d 1 from
“JXXi OKSD“Xje Qe

To explain assignments, we return the set of assigned varidbs responsible for the domain
change at hand:

px» “1. Xj 1K X OK (propagated at Line 3, Algorithm 4)

D x;+ 0o Xj OK Jx; 1K (propagated at Line 4, Algorithm 4)

5.1.1.2 Explaining the Extra-Filtering

We move now to explaining the extra- ltering of AtMostSeqCard . We start by giving
a procedure explaining the failure triggered whenL n @d;es. Next, we show how to
use this procedure to explain domain reductions.

Chapter 5 Learning 91

Explaining Failure The set of current assignments is a possible naive explanain
for the failure. We propose in the following a procedure gemmting more compact
explanations.

In example 5.1, the sequencexq;::;;Xg is subject to AtMostSeqCard "2;5;3; X1::Xg*.
The left part of the example shows the propagator triggeringa failure on a domain D
de ned as follows: D"x;e “1e, D"x3* D Xxg* ~0e, and all other variables are
unassigned. The current sequence is unsatis able sinck 6 @des. Consider now
the same sequence, however, with a domaib®where all variables are unassigned ex-
cept D®xge ~0e. This corresponds to the right part of the example. The resuls of
leftmost on D and on D%®are identical. Therefore the set of assignments irD and the
set of assignments inD%®are both valid explanations for this failure. They correspand
respectively to the propagation rulesdx; 1K, Jx3 OK, Jx¢ OK U andJxg OK U .
The second explanation is clearly preferable since it is sictly included in the rst one.

Example 5.1. Irrelevant assignments
Di1.0..0 D% 0

wi110000 wil110000
LI0O11111 Li122222

dres 2 dres 3
L™6 1 L™6 2
Failure Failure

The idea behind our algorithm for computing shorter explanaions is to characterize
some assignments with no impact on the behavior of the propagtor, and thus can be
removed from the naive explanation. The domain obtained by he assignments in the
shorter explanation is clearly weaker than the domain from vhich the failure is triggered.
We need to recall and de ne some notations related tdeftmost in order to de ne this

weaker domain and to prove our propositions.

Recall that leftmost computes an instantiation of maximum cardinality w that is con-
sistent with all AtMost constraints. The instantiation w is initialized with min “x;e
for all i. Afterwards, we greedily assign (fromi 1toi n)w i to the value 1 if the
following holds:

1. xj is unassigned.
2. max;s 1, Cjes @p where c’j+ is the cardinality in w of the jth subsequence

including i.

We use in this paragraph slightly modi ed notations compared to Chapter 4. In fact,
many notations are parametrized by the input domain D and even sometimes depend

Chapter 5 Learning 92

on the ith iteration when computing leftmost . We therefore need to refer toD in dyes,
w and L with diesp, Wp and Lp respectively. Furthermore, at the beginning of any
iteration i, we denote by:

wh the current instantiation w.
maxp“ie the value of max;. 1.q "C’jee.

cardp”l;i e the cardinality of a sub-sequencd .

Now we have all the notations needed to describe the shorterxplanations and to prove
our results.

Let X1;1:0Xn be a sequence of Boolean \variables subject to
AtMostSeqCard “p;q;d; X1;:::;Xn *. We associate any domainD for x;:::Xn to
a weaker domainP de ned as follows:

Iﬁ“xi- "0;1e if D*xje "0, maxpie p
B xie ~0;1+ if D"xj» “1e, maxp i x p
BCx;s+ D xj* otherwise

We prove in the following that the outcome of leftmost on D and B is the same. Hence
the propagator behavior is the same on both domains.

Lemma 5.1. wg Wp.

Proof. Suppose that there exists an indexi > 1in st wgi xwp i and let k be
the smallest index verifying this property. Since B is weaker than D and leftmost is
a greedy procedure assigning the value 1 whenever possibterm left to right, it follows

that wp kK O andwg k 1. Hencemaxp“ke p and maxg ke @p. In other words,
there exists a subsequenck containing xi s.t. cardp”I;k * is equal top, and cardz™I;k
is less thanp. From this we deduce that there exists a variablex; >| such thatwf j 1
andwf j 0.

We show by contradiction that the latter statement cannot hold. Observe rst that
j must be greater than k becausek is the smallest index whereleftmost behaves
di erently. Next, from wl'g j land w[kg j 0, only two cases are possible:

1. X; is unassigned inD and B In this case, sincej Ak, then at iteration k both
w'g “je and wg‘j « are equal to 0 becauséeftmost changes the values ol greedily
following the lexicographical order. Hence the rst contradiction.

Chapter 5 Learning 93

2. x;j is assigned inD but not in B It follows that D" xjs ~1e sincew§ j 1.
Moreover, sinceIﬂij « ~0;1+ then the de nition of B implies that maxp~je* ~p.
Recall now that cardp”l; ke p, therefore maxp~™je p which is impossible.

Theorem 5.2. If a failure is raised becauseLp n @desp , then

i 1K X OK U
@‘AXi' "1 @‘AXi' ~ Qe

is a valid explanation.

Proof. We show that the set of assignments i is su cient to have a failure. In other
words, we show thatL g4 n @dress. Let be the number of variables having™1- as a
domain in D but unassigned in I5 Itis clear that dresg dresp . By Lemma 5.1, we
know that wp and wy are equal. It follows that Lgn Lp n . Therefore, since
Lp N @dees then Lan @jreslﬁ-

j
Theorem 5.2 gives us a linear time procedure to explain a faire. In fact, it is su cient to
compute the valuesmaxp “i in order to construct B. All these values can be computed

using one call toleftmost_count which is linear in time. Example 5.2 illustrates the
explanation procedure.

Example 5.2. Reducing the default explanation

000 000110001 0000 100 : 1
222 2 2222222 111111111222
000 000110001 0000 1001001
000 O0O00O0OO0OOODODO OODODODOOODO1T11212
tesp 2andLp 25 1@desp O Failure

o 11::: : 0000 :00:::1
wag (11000 00011000 1 0000 1001001
Lo, |10O0OO00O00O0C0OGOOO0OO0O 1111122233
desp 4andLy 25 3 @desp O Failure

=

lw)
O Fr N P
O P N -

(v
=
=

w

We illustrate here the explanation of a failure onAtMostSeqCard "2;5;9; X1::X25*
triggered using the extra- Itering rules. Observe rst that AtMostSeq and Cardinality
are both ac. Next, the propagator returns a failure sinceLp™25 1 @desp 2. The
default explanation corresponds to the set of all the assigrents in D, whereas our pro-
cedure generates a more compact explanation by consideriranly the assignments inB.

Chapter 5 Learning 94

Red values in themaxp line represent the indices corresponding to variables beghunas-
signed in B. As we can see,wp is identical to wp. Therefore, the propagator behaves
the same way on both domains. As a result, we reduce the sizetbe explanation from
22to 11

Note that this reduction is not optimal w.r.t. the explanati on size. For instance, the
rst assignment Jx; 1Kin Example 5.2 can be removed from the reduced explanation
and the rest of the assignments still lead to a failure.

Explaining Pruning Suppose that an assignmentlx vKwas triggered by the
propagator for an input domain D at level | with a rank r. Consider the new domainD®
identical to D at level | and rankr 1 except forx with D®xe ~1 ve (i.e., the opposite
of v). Since the pruning is correct, the constraint is unsatis able on D% Let U be
the propagation rule explaining this failure using the previous mechanism. Observe that
JX 1 vKhasto bein , otherwise we have a failure without assigningx to 1 v which
contradicts our rst hypothesis that Jx vKwas triggered by the propagator onD at level

| and rank r. The propagation rule can be reformulated as follows: © Jx 1 vK U
(st ® g 1 vk) Whichis equivalentto ® Jx VK We can therefore use the
same algorithm to explain failures and pruning.

5.1.2 Pseudo-Boolean & SAT Models for the Car-Sequencing Pr oblem

We show rst a Pseudo-Boolean model for the car-sequencingrpblem that serves as a
starting point for the SAT formulations. The SAT models that we use are those proposed
by Mayer-Eichberger and Walsh in [5, 92].

5.1.2.1 A Pseudo-Boolean Formulation

The decompose model (Section 3.1) of this problem can be easily translatednto a
Pseudo-Boolean model since all constraints are in fact sumxeressions. We use the
same Boolean variablesy{ standing for whether the vehicle in thei" slot requires option
j. Moreover, the integer domains of class variablexq;:::;X, are expressed based on
the direct encoding with n k Boolean variablesc{ standing for whether the ith vehicle
is of classj. Since we use a Pseudo-Boolean model, we have the choice betw using
clauses to encode the di erent relationship between:{ or simply post one constraint per
class variable usingP; o: 1foralli > 1:n . The Pseudo-Boolean formulation of this
problem that we adopt is the following.

1. Demand constraints ! j > 1:k , P;d dflass

Chapter 5 Learning 95

2. Capacity constraints: P: iqj lyf Bpj,;1>"L:::n g 1e

3. Channeling:
" 1li>1lin, 1> 1l:k, we have:
1] >0, d -yl
1j 10, d -y

~

li>1in,j>1im ;W' - |>QC=

4. Class constraints | i > 1:in , P; dl 1

5.1.2.2 From Pseudo-Boolean to SAT

Notice that the above Pseudo-Boolean model contains only eluses, AtMost , and
Cardinality constraints. A simple and straightforward way to formulate this problem
into SAT is to encode eachAtMost /Cardinality = constraint into a CNF. The latter
has been intensively studied in the last decade (see for inahce [127, 49, 125, 6, 3]). We
use, however, the three SAT encodings proposed for this prdém by Mayer-Eichberger
and Walsh in [5, 92]. They correspond in fact to three dierent ways of encoding
AtMostSeqCard . All of them are based on the Sequential Counter [127]. We g a
brief description for these models and refer the reader to [5for more details.

The rst step is to show the encoding used forCardinality = Xp;:::;Xp ;de.
" Variables:
Sij -, 1>0n,1j>0:d 1,s; istruei Pysq1. Xk Cj

" Clauses: |i> 1:n
1j>0d 1
1 s 1 - Sjj
2. Xi- Sij - Si 1
1j>1d 1
3. Sij-Si1j1
4. Xi- Si1j 1- Sij
" Initial values:

5. sgo true ; sp1 false ; spq true ; spq 1 false ;

Chapter 5 Learning 96

In this encoding, 'n 1+ "d 1. atoms s;; are used in addition to the variables
X1;::5Xn . An atom s;j; is semantically equivalent to have a lower bound at least
equal toj inthe sum P 1.; Xk. The clauses 1 & 3 ensure the monotonicity of the sum,
while clauses 2 & 4 perform a channeling between the variab$ex; and s;; .

Adapting this encoding for an AtMost constraint is quite simple. In fact, it is su cient
to change the initial value of s,,.4 from true to unassigned. This way makes the constraint
satisedi Pjsq1:, X Bd.

Recall that AtMostSeqCard is de ned by a conjunction of Cardinality = and a set of
AtMost constraints. We denote by: SAT caq the (above) encoding forCardinality
and SAT amost the encoding applied to allAtMost constraints. Note that each AtMost
constraint is encoded independently with new variables chaneled only to option position
variables.

Another possible way for encoding the chain ofAtMost constraints can use similar
encoding of the Gen-Sequence constraint [8, 32]. For eachlssequence of sizg whose
latest index is i, we have the clause:

6. Sij = Si aj u

This encoding is denotedSAT seq.

Mayer-Eichberger and Walsh showed not only that the level ofpruning of SAT seq is
incomparable with SAT amost but also combining SAT card, SAT atmost » and SAT seq
maintains Arc Consistency on AtMostSeqCard [5]. Three SAT models for the car-
sequencing problem are therefore proposed. They all encodke basic model using the
following encodings of AtMostSeqCard

2. CNFs usesSAT carg and SAT seg.

3. CNFa s combinesSAT card, SAT atmost and SAT seq.

5.1.3 Experimental Results

We test the di erent approaches on the previous benchmarks bcar-sequencing (used in
Chapters 3 and 4). We reorganize the instances into three cagories.

1. EasySat: It contains all instances fromsetl and set2 All these instances (70 4)
are satis able and easy for all the methods tested here.

Chapter 5 Learning 97

2. HardSat: It contains the instances ofset4d These instances (7) are known to be
satis able but very hard to solve.

3. Unsat: It contains all unsatis able instances from set3 in addition to the 23 un-
known instances formsets

We ran the following models:

Hybrid CP/SAT We use Mistral-2.0" as a hybrid CP/SAT solver with backward
explanations. Our hybrid model is based on the Pseudo-Boodn formulation of the
problem, however, by usingAtMostSeqCard for capacity constraints. Note that the
rest of the constraints are either Cardinality or AtMost constraints. We explain
them in the same way we proposed previously in Section 5.1.1.

Using a hybrid solver has the advantage of using adaptive bmaching coming from the
SAT component as well as problem-speci ¢ heuristics. We theefore propose to test the
following con gurations di erentiated by the heuristic be ing used:

=

. Hybrid(VSIDS) : using VSIDS.
2. Hybrid(Slot): using the heuristic “opt; mid; ; ge (see Chapter 3).

3. Hybrid(Slot/VSIDS) : using rst Hybrid(Slot), then switching after 100 non-improving
restarts to Hybrid(VSIDS) .

4. Hybrid(VSIDS/Slot) : the reverse ofHybrid(Slot/VSIDS)

SAT We use the three SAT modelsCNFa, CNFs, and CNF5 s using Minisat[48]
(version 2.2.0) with default parameter settings.

CP and Pseudo-Boolean Models We compare against the following reference
approaches:

1. CPamsc : The pure CP model using AtMostSeqCard ~ without clause learning
with the same heuristic used inHybrid(Slot) and the same solver Mistral-2.0.

2. PBO-clauses A Pseudo-Boolean method relying on SAT encoding. We used Mk
iSat+ [49] on the Pseudo-Boolean encoding described in Sdoh 5.1.2.1.

3. PBO-cutting planes. A Pseudo-Boolean method with dedicated propagation and
learning based on cutting planes [45]. We used SAT4J [19] onhe same model,
with the CuttingPlanes algorithm.

 http://homepages.laas.fr/ehebrard/mistral.html

Chapter 5 Learning

98

All experiments are realized on Intel Xeon CPUs 2.67GHz undelLinux. For each in-

stance, we ran 5 randomized runs with Luby restarts and a 20 nmutes time cuto. The

summary of these results is given in Table 5.1. Recall that aun is said to be "success-
ful' i a solution is found or the search space is completely &plored without nding any
solution. For each category of instances, we report: the tal number of successful runs
(#suc); the averaged number of failures &vg fails) and the averaged CPU time {ime)
in seconds. The statistics time and avg fails are computed only for the successful

runs. We emphasize the statistics of the best method (w.r.t.#suc, ties broken by time)

for each category usingbold face fonts.

Table 5.1: Experimental comparison of CP, SAT, hybrid, and Pseudo-Boolean mod-
els for the car-sequencing problem

EasySat (74 5) HardSat (7 5) Unsat (28 5)

Method . . h ; : :
#suc |avg fails| time||#suc |avg fails| time|/#suc |avg fails| time|
CNFa 370 2073 1.71 28| 337194282.35| 85|249301|105.07
CNFsg 370 1114 0.87 31 60954 56.49| 65 220658 197.03
CNFa s 370 612 0.91 34| 32711 36.52| 77| 190915 128.09
Hybrid(VSIDS) 370 903] 0.23 16| 207211286.32| 35| 177806 224.78
Hybrid(VSIDS/Slot) 370 739 0.23 35| 762564 64.52| 37| 204858 248.24
Hybrid(Slot/VSIDS) 370 132 0.04)| 34 4568 2.50| 37| 23480Q 287.61
Hybrid(Slot) 370 132 0.04{ 35 6304 | 3.75 23| 174097 299.24
CPamsc 370| 43.06| 0.03 35| 57964 16.25 0 - -
PBO-clauses 277 538743236.94 0 - - 43| 175990 106.92
PBO-cutting planes|| 272 2149 52.62 0 - - 1 5031 53.38

From Table 5.1, we rst note that CP and hybrid models outperform other approaches
on satis able instances (i.e., EasySat and HardSat). The bet method in average for

both sets is the hybrid model usingCP branching. By considering all the results on these

instances, one can observe that models enforcing Arc Congéncy on AtMostSeqCard

are the best choices for nding solutions quickly. In fact, this claim is con rmed by the

poor performances of Pseudo-Boolean models on satis ablestances together with the

distinguished results of CNF s compared to other SAT models. Recall thatCNFa s

simulates ac on AtMostSeqCard

It is worth mentioning the importance of using

the crafted heuristic compared to VSIDS, at least within hybrid models. For instance,

on the dataset HardSat, we move from solving 16 instances vith Hybrid(VSIDS) to

35 instances with Hybrid(Slot) . In general, the results of satis able instances show that

propagation is by far the most crucial factor for nding solutions. Moreover, the use of

built-in heuristics is clearly bene cial compared to blin d branching when using hybrid

models.

Conversely to these observations, the results on the dataseUnsat instances clearly

show that clause learning is the most important ingredient or proving unsatis ability.

There are a number evidences supporting this claim. First, vile the CP model fails

Chapter 5 Learning 99

to build proofs on any instance for this set, its equivalent tybrid model (Hybrid(Slot))
succeeds on 23 instances. We stress here the impact of VSIDSthvhybrid models
as we move from 23 to 37 instances witlHybrid(Slot/VSIDS) or Hybrid(VSIDS/Slot) .
Next, the PBO-clauses model, which relies essentially on basic SAT encoding withat
any extra ltering, performs better that hybrid models on th is set with 43 successful
runs. Finally, the best results on this set come from the SAT nodels. Speci cally, the
lightest model CNF4 is, surprisingly, the best model for proving unsatis ability with
85 instances.

To summarize the experimental ndings, we rst observed that clause learning improves
the global performances generally. This is specially true Wen proving unsatis ability.
Second, we con rm a strong correlation between advanced ppmagation and nding solu-
tions quickly for this problem. However, for building proofs, clause learning is the most
crucial factor and propagation is less useful. Finally, regrding the choice of heuristic,
adaptive-branching is very bene cial for building proofs while problem-speci ¢ heuristics
are much helpful for nding solutions e ciently.

5.2 Reuvisiting Lazy Generation

We move now to the second part of our contributions regardingclause learning. We
revisit the lazy generation of Boolean variables for encodig the domains. In partic-
ular, we show how to avoid the issue mentioned in Section 2.3.2. Recall that when
lazily generating variables, clauses encoding the domainsecome redundant (see Sec-
tion 2.3.2.2 for more details). TheDomainFaithfulness constraint that we propose in
this section avoids such redundancy while ensuring the samlevel of consistency without
computational overhead.

This novel lazy generation is used in the next section with ou hybrid models for solving
scheduling problems. We consider only the lazy generationfaatoms of the type Jx BuK
since all propagators in our models performs only bound tigtening operations. Note
that this type of domain reduction is the most used for schedling problems in general.
Nevertheless, the generalization of our propositions withatoms of the type Jx vKis
quite simple and straightforward.

5.2.1 The DomainFaithfulness Constraint

We rst recall the redundancy issue related to lazy generaton. When an atom Jx BuK
has to be generated, we add the clausesix BaK- Jx BuK; Jx BuK- Jx BbKwhere a

and b are the nearest generated bounds ta with a @u @b. After adding these clauses,
the clause Jx BIK- Jx BuKbecomes redundant. We show how to avoid this redundancy.

Chapter 5 Learning 100

Instead of generating clauses to encode the di erent relabnships between the newly
generated atoms, we propose to encode such relations throbg new constraint called
DomainFaithfulness . This constraint has a twofold role: rstly, it simulates UP as if
the atoms were generated eagerly; secondly it performs a cqiete channeling between
the range variable and all its domain atoms.

Let x be a Range variable (i.e., with a domain of the form [;u). Let vi;:::;v, be
a sequence of integer values, andb; ::: b, be a sequence of lazily generated Boolean
variables s.t. Iy is the atom Jx Bv;K We assume thath is the ith generated Boolean
variable for all i. We de ne the DomainFaithfulness constraint as follows.

De nition 5.3. DomainFaithfulness “x; by:::by ; viiii;vn e

;b X By;

For each Range variablex, we use oneDomainFaithfulness constraint (denoted by
DomainFaithfulness (x)). Initially, the scope of DomainFaithfulness (x) contains
only x. Afterwards, whenever an atomb Jx BvKhas to be generated, we simply add
b to the scope ofDomainFaithfulness (x).

5.2.1.1 Propagating DomainFaithfulness

We present rst a complete ltering procedure for DomainFaithfulness in Algo-

rithm 14 running in O ne time complexity. Next, we show that one can enforce the
same propagation level with a constant amortized time compéxity down a branch of the
search tree.

Algorithm 14: AC(DomainFaithfulness “x; by:::by ; vi;iii;va)
1 ub min"max"xe;min"v; SD7lge " leee ;
2Ib max 'min"xe;1 max"v; SD e T Qeee ;
if ub@lb then

Lreturn U;

D°xe D"x*9 Ib;2& ;

5 D’xe D"xe9 2 ;ub ;

6 for i> 1;n do

if vi Cub then

L D be “1e;

if vi @b then

| D°he 7O

return D ;

We assume thatn A 1, otherwise no propagation is needed since no atom is genéed.
The rst step is to look for the tightest possible bounds for x. The new upper bound

Chapter 5 Learning 101

ub is the minimum between the current upper bound ofx and the minimum value v;
where Iy is assigned to 1. Similarly, the new lower boundb is the maximum between
the current lower bound and the maximum valuev; 1 whereb is assigned to 0. These
new bounds are computed at the rst two lines of Algorithm 14.

Regarding failure, there is only one way to make the constrait violated. This case
corresponds to the situation whenub is less thatlb (Line 3). The rest of the propagator
is quite straightforward. First, we update the domain of x with the new bounds (Line 4
and Line 5). Then, we assign the atomdh in the natural way (Line 6). That is, any

variable by is assigned to 1 ifv; Cuband to O if v; @b. Figure 5.1 visualizes the e ect of
propagating DomainFaithfulness on bh:::hb, .

Figure 5.1: Assigningby;:::; b,
Oll?lil:lilglllllzgé%;ii;..::: 0, 1o 11 :: 1

“b Sv; @b “h SbBv; @b ~|q5\/i

kb dddhagd111111119]

Theorem 5.4. Algorithm 14 enforces ac for DomainFaithfulness in O"ne.

Proof. The time complexity for this algorithm is clearly O"ne. We show how to build
supports for any possible assignment after propagatingpomainFaithfulness . Assign-
ing x to any value v > Ib;ub has clearly a support by assigning any atonty to 1 if vj Cv
and to O otherwise. For the rest of assignments, it is also egsto nd supports. We
distinguish two cases for building supports for assignmers of the type Jg 1K

“If v; Cub(i.e., by is already assigned to 1), we assigi to ub, and all unassigned
b to 0.

" If v @ub (i.e., b is unassigned), we assigix to Ib, and all unassignedy to 1.

Similarly, we build supports for the assignments of the typeJs OKas follows:

" If v; @b (i.e., by is already assigned to 0), we assigr to Ib, and all unassignedh
to 1.

“If v; Clb (i.e., b is unassigned), we assigix to ub, and all unassignedy to 0.

5.2.2 Incrementality

We introduce here an incremental procedure to propagatdDomainFaithfulness in a
constant amortized time complexity down a branch of the seach tree.

Chapter 5 Learning 102

We use two arrays calleds and g de ned as follows: For eachi > 1;n :

" If Tvig Svk @i ~g, thensi wherev max”vg Svg @vie, otherwisesi 0.
That is, the value of s i represents the indexj of the greatest valuev; that is
smaller than v; if such index exists, and 0 otherwise.

“If Tve Svc Avie~g,thengi wherev min~vg Svg Av;e, otherwisegi 0.
Thatis, g i represents the indexj of the smallest valuey; that is greater than v;
if such index exists, and O otherwise.

Consider now the example ofD"xes 17,83 and an atom b corresponding to Jx B 64K
(i.e., vk 64). Suppose now that assignindy to 1 is the only new event before propagat-
ing DomainFaithfulness . Itis easy to see that the only changes needed to maintaiac
on this constraint are the tightening of the upper bound of x to 64 and the assignment of
some atoms to 1. These atoms correspondtothe set “byy ;bBy gk ;Byggk ::Dast,®
where bast, is unassigned andhy ¢, is assigned to 1. The time complexity needed
for this propagation is O"S%®. Take now the same example, however, by having in
addition to assigning b, to 1, a new upper boundub* 48 as an event. In this
case, one can proceed exactly as in the previous example bysaming all atoms in
“bykibygk tByggk 1iiBast e to 1, then continue assigning other atoms to 1 to be
consistent with the new upper bound. The new setof atomsis® “hy ;b sk ;10 bupe
wherevy, min“vx Sv Cubfe. The time complexity in this case isO"SS S*S.

Our incremental lItering is organized in two parts:

Algorithm 15 depicts the main procedure for this incrementd propagator. It uses al-
gorithms 16, 17, and 18 as follows: Any event related to assigng an atom b to
1 is handled by Algorithm 16 (UB7i;iyp®); an event of assigningh to O is handled
by Algorithm 17(LB "i;i|p*); and the changes onD"xe are handled by Algorithm 18
(Update_Rang€ip;iyp; Ib; ube).

In Line 1 (respectively Line 2) of Algorithm 15, we setupi, (respectively i) as the index
of literal standing for the maximum (respectively minimum) value in "v; §j > 1;ne.
This initialization happens only in the rstcall. In subseq uent calls, we use their updated
values coming from the previous call. Moreover, these valieare re-established when
backtracking?.

2jwp and i are implemented as a "reversible" integer.

Chapter 5 Learning 103

Algorithm 15: Propagate(DomainFaithfulness “x; by:::by ; vi;iiiiva)

Ib false;
ub false;
changed false;
Il iy and i, can be modi ed later with UB7i;ip* and LB “i;i p* respectively.
fup argmax " vj § > Linee ;
ib argminj““vj S > Linee ;
/I is a list containing indices of newly assigned variables .
while is not empty do
[pope ;
if i A 1then
if D°be ~1e then
if UB"i;iype then
| ub true ;
else
if LB i;ipe then
| Ib true ;

if D Uthen
Lreturn U;

else
| changed true ;

if_ changedthen
| Update_Rang€ip;iyp; Ib; ub» ;

return D ;

We use a list containing indices of newly assigned variables in the scope of the con-
straint. We assume that is globally modi able by all algori thms and that the index
of the variable x is 0 andby isi forall i > 1::n .

We show how the two parts of Itering are maintained by one cal to Algorithm 15.

Simulating UP: Suppose that all atomshy;:::;b, are eagerly generated with all
domain clauses. The set of these clauses can be describedwit by -b 9> 1;n ,si X
O or™ b-by; S>1n,gi x0. There are two possible scenarios of propagation
depending on the assignment of a variabldy .

~

b becomes assigned to 1. In this casdJP propagates the clause b - by; by
assigninghy ; to 1 or triggers failure if D"by; « ~0-. If by; becomes assigned,
then UP should triggers propagation for clauses watched by, ; . This scenario
is triggered at Line 3 in Algorithm 15 and executed at Line 2, and Line 3 in
Algorithm 16.

Chapter 5 Learning 104

Algorithm 16: UB7i;i yp*)

//We rst update the index iy

if vgi @i, then

L b S

/[Here we simulate the propagation of the clause b - bnext
2 next gi ;

3 if next ~0then

if max"bhext® O then
D U:
return false;

else
D" bhext ® "1
:add nexte ;

//INow we perform the channeling between x and Iy
6 if min"xe Av; then

D U;

return false;

if vi @max~xe then

D°xe D'x*9 2 ;v ;

return true ;

else
L return false :

Algorithm 17: LB "i;ip*)
//We rst update the value of iy,
if vgi Avi, then

[ib gi;

/[Here we simulate the propagation of the clause bhey - b

2 next si ;
3 if next ~0then

if min"bhex* 1then
D U:;
| return false;

else
D" bhext ® "0 ;
:add nexte ;

//INow we perform the channeling between x and b
if max™xe @v; 1 then

D U;

return false;

if “vi 1¢ Amin~xe then
D°xe D'x*9 v 1,2 ;
return true ;

else
L return false ;

Chapter 5 Learning 105

Algorithm 18: Update Rang€ip;iyp;lb;ub)

next

lub 5

bound max“xe ;
if not”ube then

next

while next ~0 do

D" bhexte "1 ;
next s next ;
else
L next O;

ib;

bound min~xe ;
if not”lbe then

while next ~0 do

if Vhext @boundthen
D bhext® "0e ;
next gnext ;
else

L next O;

Let

b becomes assigned to 0: Conversely to the previous caséP propagates the
clause bg; - by by assigninghs; to O or triggers failure if D"by; ¢ “1e. If by
becomes assigned, theP should trigger propagation for clauses watched by ; .
This scenario is triggered at Line 4 in Algorithm 15 and exected at Line 2, and
Line 3 in Algorithm 17.

be the set of all atoms assigned by our algorithm. The worst cse time complexity

for simulating UP is clearly O"S$® which is the same as ifUP propagates with the
2-watched literals. Therefore, the time complexity of this part is O"ne down a branch
of the search tree, and subsequently corresponds to a consitaamortized complexity.

Channeling Between x and by;:::;b,: There are two cases to distinguish when

performing this channeling.

1.

Changing D" x* based on newly assigned atoms: When an atomig JX BviK
becomes assigned to 1, one have to check:

(a) If enforcing v; as a new upper bound forx can makeD” xe empty, and hence
failure should be triggered. This test is performed at Line 6of Algorithm 16.

(b) If v; can be the new upper bound ofx. This is performed at Line 8 of
Algorithm 16.

Chapter 5 Learning 106

The case wherdy becomes assigned to 0 is similarly handled at Line 6 and Line 8
in Algorithm 17.

tion is handled by Algorithm 18 (U pdate_Rang€ iyp;iyp; Ib;ubr). Clearly, when no
change occurs on D7xe before calling Algorithm 15
Propagate(DomainFaithfulness “x; by:::b, ; vi;:::;vh ¢), then no propaga-
tion is needed. This is exactly what happens at Line 5 in Algoithm 15 using the
Booleanchanged In the case whereD" xe changed, we treat each type of domain
change separately. We show the procedure used when the chagoncerns a new
upper bound. The case of a new lower bound is similar. Leti be the new upper
bound of x. We show that every atom by such that v; Cu is assigned to 1 when
the algorithm ends.

(a) If there exists an atom by in the initial list s.t. Algorithm 16 changes the
upper bound ofx to be v; at Line 8, then no further propagation is needed.

(b) Otherwise, every atom by with a value v; Cmax”xe should be assigned to 1.
This is done by means of an indexi,, as follows: We rst make sure that
every atom with a value that is greater than v;, is already assigned to 1.
Afterwards, we assign all atoms in the sequenceb,, bsi, ., bsi, ---»
Dast,,] 10 1 where vjast,, min“vi Sy Cmax"xee. This is exactly what
happens in the loop of Line 1 in Algorithm 18. Now regarding the indexip,
recall that it has to guarantee that all atoms with a value greater than v; , are
already assigned to 1. Therefore, we initialize ,, to the be the index of the
greatest possible valuev; (Line 1 in Algorithm 15). Then, whenever we nd
an atom b newly assigned to 1 and associated to a value that is smaller
than the current v; , , we updatei, with the value s k . Recall that the part
simulating UP guarantees that all atoms with a valuev Cvy are assigned to
1.

ub ?

Regarding the complexity of this part, observe that consideing iy, and iy, as reversible
integers makes the running time of this part alsoO"ne down a branch of the search tree
and therefore corresponds to a constant amortized compleii.

5.2.3 Explaining DomainFaithfulness

Since DomainFaithfulness is used in a Hybrid CP/SAT Solver, we must explain all
possible domain changes and failures triggered by this cotraint.

Chapter 5 Learning 107

5.2.3.1 Explaining Failure

There are several cases to nd a failure by our algorithms. Wegive for each one a
possible explanation using the current values ofext, min“xe, max“xe, and i at the
moment of propagation.

" Line 4 in Algorithm 16: Johex OK, Jo 1K U

" Line 7 in Algorithm 16: Jx Cmin"x+K, Jg 1K U

" Line 4 in Algorithm 17: Johex 1K, Jb OK U

" Line 7 in Algorithm 17: Jx Bmax"x+K, Jo 0K U

5.2.3.2 Explaining Pruning

Tightening the bounds of the range variablex is possible only when a Boolean variable
with the same bound value was previously set totrue / false. We therefore use the
following rules to explain Jx CIKand Jx B uKwithout saving any information (i.e.,
typically used with backward explanations):

T I OK XCIKst v |1

© b 1K XX BuKs.t v u

For the assignments of the typedb 1Kand Jb OK we make a clear distinction whether
they are assigned by Algorithms UB7i;i/LB i;ipe or by Algorithm
Update_Rang€ip;iyp;Ib;ube.

" Line 5in Algorithm 16: Jo 1K Jboex 1K
" Line 2 in Algorithm 18: Jx Bmax"xeK Jbhext 1K

" Line 5in Algorithm 17: Jb 0K Jboex OK

" Line 4 in Algorithm 18: J Cmin"x*K Joex OK

All these explanations are computed eagerly and saved in amiernal structure for later
use during con ict analysis. The reason we compute them at tle moment of propagation
is to recover the exact literal responsible for assigning eary bhext -

Chapter 5 Learning 108

5.3 Learning in Disjunctive Scheduling

We investigate in this part the impact of clause learning forsolving disjunctive scheduling
problems. We introduce a novel learning mechanism tailoredo this family of problems.

Speci cally, we use a property of these problems allowing taexplain a con ict using a

number of Boolean variables that is not function of the schedling horizon. The novel

con ict analysis procedure along with the alternative lazy generation mode that we pro-
posed in Section 5.2 are experimentally tested on well knowmmcademic benchmarks.
Both approaches give good experimental results and outpeofm the CP model in most
cases. While the prior target of this study is the evaluation of the new learning mech-
anisms that we propose, numerous observations are made basen the experimental

results. These observations include relations between thenstance size, the heuristic
choice, and the con ict analysis scheme. State-of-the-arfower bounds for a traditional

benchmark are improved thanks to our approach.

Disjunctive scheduling refers to a large family of schedutig problems having in common
the Unary Resource Constraint. That is, for each machine, ngair of tasks can overlap.
For a long time, the focus in constraint programming was to deign dedicated propa-
gation algorithms for the Unary Resource Constraint. For instance, the Edge-Finding
Itering [38, 99, 141] is inferring relationships of the form T must precede any task in

where: T is a task, and is a set of tasks to be scheduled on the same mache of
T. We refer the reader to [10] for a comprehensive introductio to Itering techniques
used in scheduling in general.

We are interested in this section in the impact of clause leaming rather than propagation.
Our models use minimalist propagation mechanisms. Our appach is implemented on
top of the so calledlight model wused in [71, 69, 70]. We shall use the classical job shop
problem (JSP) and open shop problem (OSP) as illustrations. The objective in both
problems is to minimize the total scheduling duration (i.e., the makespanCpnax). We
start by describing the ‘light' CP model for these problems.

5.3.1 Modeling

In the rest of this chapter, n and m denote two integers inN*. We consider the de nition
of a job as a set of tasks. Let] “Ji SLBi Bne be the set of jobs, andM "My S1B
k B me be the set of machines. Each johJ; is de ned by m tasks "Tyx S1 Bk B me
s.t. Ti requires machinek. Conversely, each machineMy is associated ton tasks
"Tk S1Bi Bne. Each task Tix is associated to a processing duratiomj in which the
machine My is allocated to jobi. Let ty be the variable representing the starting time
of task Tik. For all k > 1;m , the Unary Resource Constraint for machine My can be

Chapter 5 Learning 109

expressed as follows:

'i>Ln;!'j>1Ln sti@
| | J @ (5.1)
tik Pk Btk - tix Pjk Btik

We use a simple decomposition into rei ed constraints with O"n?s Boolean variables
kij Pper machineMy channeled to task variables as follows:

li>Ln;j>Ln;i@

0 tik Pk Btk

(5.2)
ol tik Pk Bti

In the following, we shall refer to this channeling with the Disjunctive (b;x;y; ok;dy)
constraint instantiated to (i , tik, tjk, Pik, Pjk)-

The Job Shop Problem In addition to the Disjunctive constraints, this problem
requires for each job a total order on its tasks. We thereforesuppose that T, is the
a" task required by job J;. Modeling the order of tasks for each Job is expressed by
means of Precedence constraints. Let x, y be variables andd be an integer. The
Precedence (X, y, d) constraint is de ned as follows:

x dBy (5.3)

For each jobi, we have the set ofPrecedence constraints:

la>1m 1
A (5.4)
Precedence “tiy,;tiv, ,iPiv.®

The JSP having the minimization of the makespanC,ax as an objective can be de ned
as follows:

minimize Cpax Subject to

1i>1n
tivm Piv B Crax
k>1Lm;li>Ln;lj>L4n;0 @ (5.5)
Disjunctive "~y ;tik; tjk ; Pik s Pjk *
i>Ln;ta>1m 1
Precedence “ti,;tiv, ,iPiv.®

Chapter 5 Learning 110

The Open Shop Problem The only dierence compared to the JSP problem is
that the order between tasks of the same job is part of the deaion. In other words, two

tasks of a same job cannot be executed at the same time but we @irfree to choose the
processing order. A job can therefore be considered as a uryaresource. Similarly to

the disjunctions on machines, we introduceO"m?s Boolean variables iy, for each job

i and post the constraints Disjunctive "~ iap;tia;tib; Pia; Pib® for all a@b> 1;m . The

OSP can therefore be de ned as follows:

minimize Cpnax Subject to

li>1n; k> 1;m
tic Pk BCmax
'k>1Lm;li>Lnlj>Ln;i@ (5.6)
Disjunctive "~y ;tik; tjk ; Pik s Pjk *
fi>Ln;ia>1Lm; b>1m;a@b
Disjunctive "~ jan;tia;tib; Pia; Pib®

5.3.2 Search

Our search strategies are essentially based on those propasin [71, 69].

5.3.2.1 The Global Search Scheme

Exploring the search space is performed in three steps. Fitly a greedy algorithm is
used to compute an initial upper bound (Uinit) for Cmax . The initial lower bound (linit)
is initialized to be the largest sum of durations between alljobs/machines. Second,
a dichotomic search is used to improve the initial upper/lower bounds for Cnax . Each
iteration is limited by a cuto on CPU time and on the number of propagation calls. The
initial dichotomy step starts with iyt ;Uinit as a domain forCpax . In each dichotomy
step i we try to solve the decision version of the problem (i.e., wihout an objective
function) where the upper bound of Cihax is equal to”lj 1 uj 1°~2 s.t. the valuesl; ;
and u; 1 are the best bounds found after stepi 1. We update the bounds ofCpax
depending on the outcome of a dichotomic step. If it is satis able then we store the
value of Cnax in the solution as u; and change the upper bound ofCnax accordingly.
Otherwise, we setl; to "l; 1 u; 1*~2. However, observe that we change the lower bound
of Chax only if the problem has been proven unsatis able at stepi, but not if the limit
has been reached. Finally, a branch and bound algorithm is lanched with the best real
lower/upper bound found (i.e., Min"Cmpax*;max Cmax®).

Chapter 5 Learning 111

5.3.2.2 Branching

It is very common in disjunctive scheduling to branch by xin g one of the possible
precedences in the unary resource constraints. The authorsf [71] proposed to branch
on the Boolean variables in theDisjunctive constraints which simulates that behavior.
Note that it is sucient to have all these Boolean variables assigned to decide the
problem. In fact, assigning all the tasks, along with the vaiable standing for makespan,
to the minimum possible value in their domain returns a soluton with the minimum
possible value forCnax W.r.t. the assignment of the Boolean variables.

Variable Ordering The variable ordering heuristics are inspired from the conict-
driven domain/weighted-degree heuristic proposed in [30] The idea is to assign rst
the variables involved in previous failures. The domain sie dom’ty ¢ of a task Tix is
equal to max“tie min“tke 1. The weight wy of a variable x is equal to the number
of times x is in the scope of the constraint triggering a failure. EveryBoolean variable
bin a Disjunctive (b;x;y;dx;dy) constraint can be evaluated using the following two
heuristics:

1. taskDom ~bw: W

2. taskDom~tw: W
x Wy

In both heuristics, the nal decision is randomly chosen betveen the two Boolean vari-
ables with minimum values.

We use slightly modi ed versions of the above heuristics in ar hybrid models. First,
following a remark in [70] stating that the greater the mini mum arity of constraints
in a problem, the less discriminatory the weight-degree herstic can be, we propose
to update the variables weight in the con icting clauses as bllows. When a failure

is triggered by a clausec, the weight of each variable in the clause is increased by
1
S

Boolean variableb in ¢, we share this value between the two tasks in theéDisjunctive
constraint rei ed by b. This is proposed because the weight of the Boolean variabdein
these cases would not bring new information totaskDom~tw. Finally, if we use lazy
generation, instead of updating the weight of the generatedatoms a Jtix B vK we
consider increasing the weight of taskTix (by éé

instead of 1. Next, with taskDom-tw, instead on incrementing the weight of any

We shall also consider VSIDS as another variable ordering tdrnative in our hybrid
models.

Chapter 5 Learning 112

Value Ordering Similarly to the solution guided approach proposed in [12]we assign
the chosen variable to the same value it has in the latest sohion.

5.3.3 Explaining Constraints

Observe rst that the constraints related to the makespan can be considered are
Precedence constraints (i.e., of the form x d By). We therefore have two types
of constraints to explain: Precedence , and Disjunctive . We give in the following
how to generate explanations for these constraints. To makehe notation lighter, we
denote Iy (respectively uy) the lower (respectively upper) bound in D™ xe.

5.3.3.1 Explaining Precedence (x, y, d)

To propagate Precedence , we need to update the upper bound ofx and the lower
bound of y. We give in Algorithm 19 a BC propagator for this constraint.

Algorithm 19: Precedence “x;y;de
if min"xe dAmax"ye then
| DU ;
else
if max"xe Amax“ye d then
| D°xs D'x*9 2 ;max’ys d ;
if min"ye @min~xe¢ dthen
| D"ys D7y*9 min"xe d;2 ;

return D ;
Explaining Failure The only way to have a failure in this constraint is when max”xe
is greater that max”ye d (Line 1 in Algorithm 19). The obvious explanation for this
failure is:

X CIxK, JyBuyK U
Explaining Pruning This propagator only tighten the upper bound of x and the

lower bound of y. Let v be an integer. To explain the literal Jy CvK it is clear that
X Cv dK Jy CvKis a valid explanation. Similarly, if Jx B vKis propagated by this
constraint, then we useJy Bv dK Jx BvKas an explanation for this propagation.

Chapter 5 Learning 113

These explanations are computed inO”1¢ regardless of the level/rank of the literals
being explained. Furthermore, we do not need to keep track tle exact bounds at the
time it was changed through propagation. The backward explaation mode suits very
well this constraint.

5.3.3.2 Explaining Disjunctive (b;X;y;dy;dy)

We start again by giving a full description of the Itering us ed for this constraint. We
show a BC propagator in Algorithm 20.

Algorithm 20: Disjunctive (b;X;y;dy;dy)
if $ S 1then

if D"b» ~0e then

| return Precedence "x;y;dye ;

else
| return Precedence "y;x;dye ;

else
if Iy dx Auy then
Db "1
| return Precedence “y;x;dye ;
else

if Iy dy Auy then
Db 70 ;
return Precedence “X;y;dye ;

Algorithm 20 does not prune the domains ofx nor y untii D"b» becomes singleton.
Furthermore, once D" b is assigned, the constraint becomes Brecedence . Therefore,
in order to explain Disjunctive , all the previous explanations are used along with the
current state of b. That is, if we want to explain ! (! is either a literal or a failure
U) made by this propagator because of a call toPrecedence , then it is su cient to
return Jb vK, I sit. D"b» “ve and is the explanation of ! based on the way
we explain Precedence .

The only missing explanations to generate are the ones relat to the assignments ofb.
We explain them using the following propagation rules:

X ClK, yBuyK Jb 1K
I ClyK, XBuxK Jb 0K

The valuesly, uy, ly, and uy must be those used at the time of propagation. We store
these values once the propagator assigrns

Chapter 5 Learning 114

5.3.4 Disjunctive -Based Learning

We introduce a novel learning scheme as an alternative to thdazy generation mode.
The main advantage o ered by this novel learning mechanism $ that the nal nogoods
do not contain any domain related atom.

Recall that our search strategies branch only on Boolean vaables of the Disjunctive
constraints. It follows that any bound literal (i.e., of the form Jx BvKand Jx CvK does
not correspond to a decision. Therefore such literals are #ier propagated, hence have a
non-null explanation, or have a level equal to the search rob Our new learning method
exploits precisely this property. Instead of generating baind atoms before learning a
new clause, we propose to start a second phase of con ict analis.

The rst step in the new Disjunctive -based learning is to perform con ict analysis as
usual to compute the 1-UIP nogood . Next, we make sure that the latest literal in

is not a bound literal. Otherwise, we keep explaining the laest literal in until having
such UIP. We know that this procedure terminates because thewvorst case would reach
the last decision which corresponds to a UIP that is not a boun literal. Let ¥ be the
resulting nogood. Observe that the backjump level in * might be di erent from the
one given by the 1-UIP nogood.

Consider now!| ~ly;:::;lh to be the set of bound literals in * before generating
atoms. Instead of performing lazy generation, we call the ppcedure Substitute(l; ¥)
(algorithm 21) as a second phase of conict analysis. This ppcedure keeps replacing
any bound literal with its explanation until having a nogood composed by only literals
related to some Boolean variables of théisjunctive constraints. In Algorithm 21, we
use:

visited: to represent a set containing bound literals already explaned
I': to represent the explanation of the current bound literal to resolve

' . to represent the set of bound literals in! .

Starting from the rst line in Algorithm 21, we split the nogo od under construction
in two parts: | to contain bound literals; and for the rest of literals (i.e ., literals
associated to Boolean variables coming from théisjunctive constraints). The idea
of Algorithm 21 is to explain every bound literal in | until no such literal exists. This is
exactly what happens at each iteration of the main loop. | is updated to contain new
bound literals from ' at Line 2. The rest of literals in the current explanation ! goes
in at Line 3 and Line 4.

The nal nogood contains only some Boolean variables from the Disjunctive con-
straints without any bound literal. It should be noted that t he backjump level remains

Chapter 5 Learning 115

the same as in ¥ since resolving a literall replaces it with a set of literals assigned at
least at the same level ofl.

Algorithm 21: Substitute(l; ¥)
¥ | -

visited g ;
while $A0 do
| choosel >I ;
visited visited 8 le ;
f reason’ls ;
I explain™f;l e ;
' "qSq>!, qis a bound litterals ;
I 187qSg>' , level'ge A0, qYvisitede ;
| | v
87qSg>! , level'ge AOe ;

return

The advantage of this approach is that the tasks' domains do ot matter any more in
size. The SAT engine focuses on learning clauses with only Béean variables coming
from the Disjunctive constraints. Note, however, that in this case con ict analysis is
likely to take more time to nish compared to the lazy generation mode since there are
more literals to explain.

5.3.5 Experiments

We implemented the learning mechanisms we propose within Mitral-2.0. This solver
supports backward explanations and semantic reduction. Tk source code is available
online via https://github.com/siala/Hybrid-Mistral and the tests can be repro-
duced following the guidance in Appendix A. All the experiments were performed on
Intel i7-4770 processors running on Ubuntu 12.04. We comparthe previousCP models
against our new learning methods. The two heuristicstaskDom ~bw and taskDom ~tw
are tested in both CP and hybrid solvers. V SIDS is also used as another hybrid model.
We use a geometric restart with a base of 256 failures and a far of 1:3. The total
time limit is xed to 3600s for all the experiments. Each dichotomy step is limited to a
cuto of 300s and 41 10° propagation call. We ran 10 randomized runs with di erent
seeds for each instance and con guration.

We use a clause reduction strategy based on the Size-BoundeRandomized (SBR)
method [75]. Everyf failures, we check whether the size of the clause databaseaghed a
given parameter !. If so, a parametrized deletion procedure
reduceClausesf;!; ;k; ; « is performed as follows. A clauset is considered “locked'
if there exists a literal p such that c is the reason for propagatingp. All locked clauses

Chapter 5 Learning 116

are not removed. The last non-locked clauses are also kept. Afterwards, the clauses
with size less than a parameterk are not deleted. The other clauses are deleted with
a probability . If the resulting number of clauses still greater than! , we call again
reduceClauses however, after decreasing by . We iterate this process until the clause
database is of size smaller tharw. The default values used for all the experiments for
af;!; ;k; ; A are @500Q 7500050000 12; 8;90% A

We shall evaluate experimentally the following models:

" Mistral(): The pure CP model using as a heuristic. The latter is denoted by

bool if we usetaskDom ~bw

task if we usetaskDom ~tw
" Hybrid(;): The hybrid model where:

is the heuristic and is denoted by:

* vsids if we use VSIDS
* bool if we usetaskDom ~bw

* task if we usetaskDom ~tw

indicates the learning method with “disj ' in the case of using theDisjunctive -
based learning and lazy' with the lazy generation approach with
DomainFaithfulness

We use a limit of 251 10° generated atoms with the models Hybrid(;lazy). Once this
limit is reached, we forget all clauses, delete the generateatoms, and restart.

We use the following format for all tables. Each instance reslts (i.e., using di erent
seeds) is depicted in one line. Each model is associated to alemn. We report for
each model and instance: the average CPU time (T); the percdage of instances found
optimal (%0); the minimum (min) and average (avg) upper bound (UB) across the
di erent seeds. We shall denote inbold the minimum makespan found for each instance
(can occur in di erent models). Furthermore, we add a line “average' at the bottom of
each table to show the average CPU time T and the average perogage of optimality %0
for each model. The last line contains the averagd’RD(percentage relative deviation)
of each model. The PRD of a modein for an instance C is computed with the formula:
100% % where Cp, is the minimum makespan found by modelm for this instance
(among the several randomized runs); andCpes; is the minimum makespan found by all
models for the instanceC. The average PRD can be considered as an "e ciency' measure
for the models. The bigger this value, the less e cient a modéis. The minimum possible
value of a PRD is 0 and means that the model returns always the bst makespan.

Chapter 5 Learning 117

5.3.5.1 JSP Results

We use two well studied benchmarks for the job shop problem: awrence [86] and Tail-
lard [134]. The former is much easier than the latter. We obsered in these instances
that taskDom-~tw performs slightly, but constantly, better than taskDom-~bw. There-

fore, the results that we report in this paragraph concern the models: Mistral(task),

Hybrid(vsids; disj), Hybrid(vsids;lazy), Hybrid(task; disj), and Hybrid(task; disj).

Lawrence Instances The detailed results of Lawrence instances are shown in Ta-
bles 5.2 and 5.3. The model Hybrid¢sids; disj) has the best PRD with a value of Q01
and the greatest percentage of optimal solutions (92%). Theonly case where theCP
model returns the best makespan was with instance la27, hower, without obtaining
the best average. As a comparison between the di erent hybd models, we observe
that the Disjunctive -based learning outperforms the lazy approach regardlessf ahe
branching strategy. We are not able, however, to argue on a ke heuristic here since
VSIDS performs better with the Disjunctive -based learning whereagaskDom ~tw is
the best choice of branching with lazy generation.

Taillard Instances These instances are much harder than Lawrence benchmark sia
a large number of them are still open in the literature and only 10 out of 70 instances
are proved optimal in our experiments. We start by giving a global view analysis before
empirically evaluating subsets of these instances.

The detailed results are given in Tables 5.4, 5.5, and 5.6. Awrding to the global average
PRD (shown at the end of Table 5.6), the best models for thesenistances are those using
taskDom~tw. The CP model is completely outperformed by hybrid models with a PRD
equal to 15474 compared to an average of:0487 with the models Hybrid(vsids;) and
an average of @B0185 with the models Hybrid(task;). Clearly, the branching choice is
the most important criteria for hybrid models. The choice of the con ict analysis scheme
does not seem to impact much the global behavior, although [zy generation performs
slightly better.

These results do not con rm our earlier claim with Lawrence instances stating that
Hybrid(vsids; disj) is the best learning con guration. We therefore propose toclassify
the results according to the instance size.

Taillard Statistics In table 5.7, each line depicts several statistics for a give set
of instances having the same number of disjunctions. We repb for each model: the
speed of exploration in terms of nodes explored by second (Mes/s); the average size
of learnt clauses (Size); and a performance metric M equal tthe pair @60, TA (%0 is

Table 5.2:

Job Shop: Lawrence (la-01-20) detailed results

Mistral(task)
uB

T

%0

Hybrid(vsids; disj)
uB

T

%0

Hybrid(vsids; lazy)
uB

T

%0

Hybrid(task; disj)
uB

T

%0

Hybrid(task; disj)
uB

T

%0

la01
la02
la03
la04
la05
1a06
la07
la08
1a09
lal10
lall
lal2
lal3
lal4
lal5
lal6
lal7
lal8
lal9
la20

avg

0
0.21
0.06
0.05

0
0.01
3600
0.03

0

0
0.04
0.11
0.03

0.27
0.31
0.08
0.03
0.37
0.11

avg
100
100
100
100
100
100

0
100
100
100
100
100
100
100
100
100
100
100
100
100

min
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902

avg
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902

avg

0
0.21
0.07
0.07

0
0.05
3600
0.07
0.01

0
0.71
0.22
0.18

0
3.29
0.27
0.07
0.04
0.27
0.06

avg
100
100
100
100
100
100

0
100
100
100
100
100
100
100
100
100
100
100
100
100

min
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902

avg
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902

avg
0.01
0.46
0.15
0.11
0
0.13
3600
0.09
0.06
0
0.70
0.36
0.13
0
49.27
0.53
0.11
0.06
0.57
0.12

avg
100
100
100
100
100
100

0
100
100
100
100
100
100
100
100
100
100
100
100
100

min
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902

avg
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902

avg

0
0.19
0.08
0.07

0
0.02
3600
0.03
0.01

0
0.05
0.07
0.07

0
0.54
0.26
0.11
0.05
0.40
0.10

avg
100
100
100
100
100
100

0
100
100
100
100
100
100
100
100
100
100
100
100
100

min
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902

avg
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902

avg

0
0.26
0.11
0.09

0
0.03
3600
0.04
0.03

0
0.05
0.09
0.05

0
0.33
0.48
0.16
0.06
0.62
0.15

avg
100
100
100
100
100
100

0
100
100
100
100
100
100
100
100
100
100
100
100
100

min
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902

avg
666
655
597
590
593
926
890
863
951
958
1222
1039
1150
1292
1207
945
784
848
842
902

Bulurea g Jerdeyd

8TT

Table 5.3:

Job Shop: Lawrence (la-21-40) detailed results

Mistral(task)

Hybrid(vsids; disj)

Hybrid(vsids; lazy)

Hybrid(task; disj)

Hybrid(task; disj)

T %0 uB T |%O0 uB T |%O0 uB T %0 uB T |%O uB

avg| avgl min avg avglavgl min avg avglavg| min avg avg| avgl min avg avglavgl min avg
la21 (|3501.39 101046 1046.2/1319.541001046 1046| 3600 0/1046 1047]2948.03 401046 1046.6/ 360Q 0/1046 1048.5
la22 || 78.96 100 927 927 78.92100 927 927 335.4610Q0 927 927 64.92 100 927 927 119.6410Q0 927 927
la23 0.31] 1001032 1032 0.431001032 1032 1.291001032 1032 0.27 1001032 1032 0.391001032 103Z
la24 || 190.55 100 935 935 96.02100 935 935 607.1710Q0 935 935| 146.52 100 935 935| 458.56100 935 935
la25 || 171.19 100 977 977 93.56100 977 977| 476.3010Q 977 977 114.64 10Q 977 977 452.6110Q0 977 977
la26 ||1742.60 601218 1219.9 232.441001218 1218|1130.811001218 1218| 62.97 1001218 1218| 992.87 901218 1218.1
la27 3600 01241 1259.9] 3600 0] 1246 1255.3 3600 0]12431270.6 3600 0 12431252.)} 3600 0] 12511262.7
la28 ||1487.91 801216 1216.7| 898.471 901216 1216.5/2723.81 401216 1218.6/1427.41 801216 1216.9/1245.71 701216 1216.7
la29 3600 0 1183 119§ 3600 0/11681178.6f 3600 0]11891201.4 3600 0/ 11711185.8 3600 0]11761194.8
la30 2.0)] 1001355 1355, 4.951001355 1355 9.731001355 1355 1.7 1001355 1355, 2.141001355 1355
la31 5.74 1001784 1784 59.191001784 1784| 402.94 901784 1786.9 3 1001784 1784 3.531001784 1784
la32 2.54 1001850 1850, 4.311001850 185Q| 5.091001850 185Q| 2.49 1001850 185Q| 2.651001850 1850
la33 3.81 1001719 1719 67.311001719 1719, 10.41001719 1719 5.11] 1001719 1719 6.871001719 1719
la34 || 72.37 1001721 1721|1332.11 901721 1721.3| 557.86 901721 1721.3] 14.87 1001721 1721 9.36§1001721 1721
la35 4.17. 1001888 18838| 17.911001888 1888 44.781001888 1888 3.84 1001888 18838 3.611001888 1888
la36 || 77.76 1001268 1268 43.3§1001268 1268| 119.791001268 1268 43.72 1001268 1268 90.191001268 1268
la37 || 246.81 1001397 1397| 264.101001397 1397 634.731001397 1397 310.01 1001397 1397| 528.601001397 1397
la38 || 233.55 1001196 1196, 221.761001196 1196|1246.131001196 1196| 204.52 1001196 1196, 730.261001196 1196
la39 || 26.53 1001233 1233 23.271001233 1233| 46.011001233 1233| 15.10 1001233 1233 23.301001233 1233
la40 || 229.06 1001222 1222| 284.701001222 1222|1295.481001222 1222| 250.74 1001222 1222| 497.411001222 1222
avg || 471.9788.75 396.20 92 602.51 88 410.5590.50 489.25 89
PRD 0.0321 0.010d 0.0489 0.0104 0.0372

Bulurea g Jerdeyd

6TT

Table 5.4:

Job Shop: Taillard (tai01 tai25) detailed results

Mistral(task)

Hybrid(vsids; disj)

Hybrid(vsids;lazy)

Hybrid(task; disj)

Hybrid(task;lazy)

T |%O uB T |%0 uB T |%0 uB T [%0O uB T |%O uB

avglavg| min avg|| avglavg min avg avglavg| min avg avglavg| min avg avglavg| min avg
tai0l|| 18.571001231 1231 9.551001231 1231 34.641001231 1231 8.31j1001231 1231 14.961001231 1231
tai02|| 136.431001244 1244]121.9711001244 1244 533.131001244 1244| 116.841001244 1244| 288.611001244 1244
tai03|| 116.051001218 1218| 59.301001218 1218| 304.751001218 1218| 115.111001218 1218| 412.971001218 1218
tai04|| 62.391001175 117%| 35.231001175 1175| 179.471001175 1175 34.891001175 1175 84.8§1001175 1175
tai05(|1212.271001224 1224]480.541001224 1224|2573.16 7011224 1224(1071.651001224 1224|3169.86 501224 1225.7(
tai06|| 360Q 0/1238 1243.3] 3600 01238 1240.2] 360Q 0| 12391244.4 3600 0/12381242.1] 3600 0| 1239 1246.7(
tai07|| 221.341001227 1227|201.761001227 1227|1112.441001227 1227| 226.891001227 1227| 1066.61001227 1227
tai08|| 141.511001217 1217/105.441001217 1217| 665.311001217 1217 130.741001217 1217| 609.061001217 1217
tai09|| 491.771001274 1274|117.211001274 1274 744.971001274 1274| 339.961001274 1274/1450.811001274 1274
tail0|| 161.881001241 1241 46.8711001241 1241 243.831001241 1241] 104.331001241 1241 457.061001241 1241
taill|| 360Q 0] 13961405.83 3600 01374 1385 360Q 0| 13751391.9 3600 0]13811397.§ 3600 0| 1386 1402.7(
tail2|| 360Q 0| 13931403.8 3600 01376 1387.4] 360Q 0| 13861400.F 3600 0]13881396.8 3600 0| 13821393.3(
tail3|| 360Q 0] 13501361.4 3600 01342 1353.2] 360Q 0| 13581370.5 3600 0]13431353.4 3600 Of13541361.3(
tail4|| 360Q 0/1345 1351 3600 01345 1350.4] 360Q 0| 13491355.9 3600 0/13451348.9] 3600 0]1345 1350.1(
tail5|| 360Q 0| 13751389.8 3600 0 13571371.1 360Q 0| 13631382.9 3600 0/13541374.4] 3600 0| 1360 1381.3(
tail6|| 360Q 0| 13881404.9 3600 0/13751384.7 360Q 0| 13761398.§ 3600 0]13791387.5 3600 Of13811391.5(
tail7|| 360Q 0| 14761488.} 3600 0 14781485.) 360Q 0| 14771489.8 3600 0]14761488.9 3600 0[1473 1483.5(
tail8|| 360Q 0| 1438 14535 3600 0] 14261438.2 360Q 0/1425 1455.1] 3600 O0]14271444.8§ 3600 0| 1428 1447.6(
tail9|| 360Q 0| 13671388.3 3600 0 1366 137} 360Q 0| 13711382.3 3600 0]13621378.1 3600 0]1351 1378.8(
tai20|| 360Q 0] 1363 138Q 3600 0 13611368.1 360Q 0| 13671376.§ 3600 0/13601373.5 3600 0| 1363 1375.9(
tai2l|| 360Q 0| 16621680.2 3600 0 16491662.9 360Q 0| 16501670.F 3600 0]16511670.2 3600 0[1643 1669.3(
tai22|| 360Q 0| 16371652.1 3600 0 1624 164¢ 360Q 0| 16301651.2 3600 0/16211636.1] 3600 0| 1623 1645.3(
tai23|| 360Q 0/1562 1591.7] 3600 0 15681578.4 360Q 0| 15761591.2 3600 0]15711585.] 3600 O 1567 1589.5(
tai24|| 360Q 0/1645 1655.1] 3600 0/1645 1655.1 360Q 0| 16521670.8 3600 0]1653 1659 3600 Of 1646 1659.1(
tai25|| 360Q 0| 1627 1644.1 3600 0/1601 1615.7 360Q 0| 16181636.9 3600 0/16011628.3] 3600 0| 16151631.7(

Bulurea g Jerdeyd

0cT

Table 5.5:

Job Shop: Taillard (tai26 tai50) detailed results

Mistral(task)

Hybrid(vsids; disj)

Hybrid(vsids; lazy)

Hybrid(task; disj)

Hybrid(task;lazy)

T %0 uB T %0 uB T (%0 uB T (%0 uB T %0 uB

avglavg| min avg|| avglavgy min avg| avglavg min avg|| avglavgl min avg|| avglavg min avg
tai26(|3600 0] 1689 1696.13600 0] 1679 1685.8360Q0 0| 1676 16933600 0/1672 1684.5(3600 0| 1674 1689.2(]
tai27||3600 0] 17011714.13600 0] 1697 17043600 0| 1701 17273600 0/1693 1704.8/3600 0| 1694 1718.4(
tai28||3600 0] 1623 1633.93600 0| 1616 1621.93600 0/1603 1622.913600 0| 1617 1621.93600 0/1603 1621.8(
tai29||3600 0] 1642 1650.2360Q 0| 1635 1639.23600 0| 16351651.13600 0[1630 1640.3)3600 0/1630 1647.3(
tai30(|3600 0] 1608 1633.8360Q 0| 1608 1617.43600 0| 1613 1625.%3600 0| 1608 1621.43600 0/1607 1627
tai31||3600 0] 1853 1885.43600 0] 1823 1853.9360Q 0/1808 1860.8/3600 0| 1846 1863.63600 0| 1825 1854.6(
tai32||3600 0] 1901 1931.33600 0] 1876 1895.4360Q 0| 1891 1906.83600 0/1867 1907.1|13600 0| 1873 1900
tai33||3600 0] 1914 19493600 0] 1897 1921.1360Q 0| 1876 1929.73600 0/1869 1916.8/3600 0| 1897 1920.5(]
tai34(|3600 0] 19321965.13600 0] 1927 1942.8360Q 0[1914 1947.9/]3600 0| 1916 1930.93600 0| 1923 1937.3(]
tai35(|3600 0j2007 2007.3|360Q 0|2007 2016.3]3600 0/2007 2018.8/3600 02007 2007.8/3600 0[2007 2007
tai36(|3600 0] 1904 1939.43600 0] 1886 1906§360Q 0[1878 1904.5/3600 0| 1897 1910.93600 0| 1888 1909.3(]
tai37||3600 0] 1861 1891.}1360Q 0| 1848 187(3600 0|1844 1876.4/3600 0| 18481871.83600 01844 1867.3(
tai38||3600 0] 1783 1803.13600 0| 1764 1777.6360Q 0|1752 1779.4/]360Q0 0|1752 1778|3600 0| 17551780.7(]
tai39||3600 0] 1854 1877.4360Q 0| 1831 1853.83600 0| 1832 1857.83600 0| 1827 1848.43600 0/1807 1839.9(
tai40(|3600 0] 1814 1840.63600 0] 1780 1802.%¥360Q 0/1763 1808.4/3600 0| 1789 1805.53600 0| 1766 1804.7(]
tai41||3600 0] 2151 2182.43600 0] 2123 2145.1360Q 0| 2114 2154.13600 0/2110 2134.4|3600 0| 2115 2133.2(]
tai42||3600 0] 2058 2082.113600 0]2006 2038.4/360Q 0| 2012 2045.23600 0| 2010 2033.83600 0| 2024 2039.6(]
tai43||3600 0] 1996 2022.}13600 0] 1953 1975.8360Q 0[1936 1973.6/3600 0| 1963 1982.%13600 0| 1961 1983.2(]
tai44(13600 0] 2098 2140.43600 0[2068 2100.8/360Q 0| 20752115.93600 0| 2085 21073600 0| 2086 2107.8(
tai45(|3600 0] 2089 2116.83600 02058 2081.6/360Q 0| 2075 2098.43600 0/2058 2088.9/13600 0| 2063 2092.6(]
tai46||3600 0] 21382157.93600 0] 2108 2126.8360Q 0[2095 2127.3|3600 0| 2103 2122.23600 0| 2104 2123.2(]
tai47||360Q 0] 2037 2057.243600 0] 1998 2017.6360Q 0| 1991 2008.833600 0/1988 2017.4/3600 0| 2015 2025.5(]
tai48||3600 0] 2086 2109.23600 0] 2055 20743600 0[2028 2067|3600 0| 2048 2072.33600 0| 2043 2059.3(]
tai49(|3600 0] 2099 2126.93600 02061 2082.3]360Q 0| 2073 2104.833600 0| 2070 2096.43600 0| 2063 2085.6(]
tai50(|3600 0] 2048 2082.4360Q 0| 2018 2045.43600 0| 2014 2047.13600 0| 2025 2045.13600 0]2001 2049.5(

Bulurea g Jerdeyd

TZT

Table 5.6: Job Shop: Taillard (tai51 tai70) detailed results

Mistral(task) Hybrid(vsids; disj) Hybrid(vsids; lazy) Hybrid(task; disj) Hybrid(task;lazy)
T %0 uB T %0 uB T %0 uB T |%O uB T %0 uB
avg| avgl min avg avg| avgl min avg avgl avgl min avg avglavgl min avg avg| avg| min avg

tai51|| 3600 02834 287Q 3600 0/2876 2889.5 3600 0 2868 2903.8 3600 0] 27862815.1 3600 0[2775 2819.1(
tai52|| 3600 0/2843 2869.4 3600 0/2845 2873.9 3600 0| 28552903.3 3600 0]27852811.8 3600 0[12769 2798.7(
tai53|| 3600 02777 2812.5 3600 02784 2801.§ 3600 0 2768 2808.2 3600 02729 2756.1 3600 0 2740 2763.9(]
tai54|| 3600 0/2847 2865.5 3600 02841 2878.1 3600 02871 2887 3600 02839 2840.6/ 3600 02839 2842.6(
tai55|| 3600 02802 2851.3 3600 0[2799 2845.2 3600 0 28132878.3 3600 02734 2788.2| 3600 0/ 2763 2782
tai56|| 3600 0/28702892.9 3600 02867 2894.3 3600 0| 28852939.6 3600 0] 28392854.4 3600 0|2829 2844.8(
tai57|| 3600 0/3002 3025.3 3600 0/30153047.5 3600 0| 3044 3081.63318.84 102943 2973|3319.22 102943 2974.5(
tai58|| 3600 02964 2996 3600 02961 2988.2 3600 0 2969 3040.F 3600 02888 2923| 3600 0] 2901 2922.3(
tai59|| 3600 02788 2821.2 3600 0/2800 2837.3 3600 0 28352872.8 3600 0]27312758.1 3600 0|2723 2765.4(
tai60|| 3600 0/28502867.5 3600 0/2846 2874.1 3600 0, 28712903.6 3600 02767 2805.8 3600 0| 2781 2807.8(
tai6l|| 3600 03076 3107.3 3600 0/3047 3081.9 3600 0| 3044 3081.8 3600 0]2985 3020.3] 3600 0] 2988 3015.8(
tai62|| 3600 03157 3185.9 3600 0/3126 3157.1 3600 0 31153183.6 3600 0[30453110.8 3600 0| 3053 3110.8(
tai63|| 3600 0/2896 2960.1 3600 02934 2954 3600 0[2849 2929.2| 3600 0] 28582891.6 3600 0| 2861 2895.4(
tai64|| 3600 0/2864 2895.5 3600 0/28852899.5 3600 0 28312899.6¢ 3600 0]28112837.4 3600 0[12794 2842.4(
tai65|| 3600 02948 2972.3 3600 0[2949 2961.9 3600 0, 28782931.9 3600 0]28702895.]f 3600 0|2849 2883.4(
tai66|| 3600 0/3044 3073.5 3600 013045 3077 3600 0 30183077.83 3600 0] 29562990.2 3600 0/2915 2983.6(
tai67|| 3600 0/30323051.1 3600 0/3004 3019.5 3600 0/ 29502998.1 3600 0]29232968.1 3600 0[2895 2962.8(
tai68|| 3600 02962 2988.1 3600 0/29352978.1 3600 0/ 29192977.6 3600 0] 28812913.4 3600 02869 2906
tai69|| 3600 0/31783223.8 3600 0/31833222.8 3600 0/ 31763253.83 3600 0] 31123154.83 3600 0/3101 3140.2(
tai70|| 3600 0/3217 3254.4 3600 0/3203 3255.§ 3600 0 3204 3251.9 3600 0;31193160.2| 3600 0/ 3131 3171
avg [|3173.7412.85 3153.9712.85 3228.4512.42 3163.82 13 3241.0612.28

PRD 1.5474 0.9955 0.9019 0.3322 0.2715

Bulurea g Jerdeyd

act

Chapter 5 Learning 123

the average optimality percentage and T is the average CPU tine) for the set tai-01-10

and to the average PRD for the rest of sets. The choice of M is tsed on the fact that

almost all instances have been proven optimal in the set taB1-10 whereas the others
are much harder and are not proved optimal (except one). We sbw the best values of
M in bold values. We indicate also the number of disjunctions per setfoinstances in a
separate column (Disj).

There are a number of clear observations from Table 5.7. Fits as expected, the CP
model is less e cient in general than any hybrid model for the instances taill, ...,
tai70. Second, the average size of the learnt clauses is alygashorter with VSIDS than
taskDom~w. Take for example the set of instances taill-20. The model
Hybrid(vsids; disj) learns clauses with size 31 (in average) whereas Hybritisk; disj)
learns clauses with size 41. Third, according to the number fonodes explored by sec-
ond, the CP model is faster than any hybrid model in general. As an illustation,
with instances taill-20, the speed of exploration of Mistr#(task) is 6509 Nodes/s while
the fastest hybrid model Hybrid(vsids;disj) explores 3970 Nodes/s. This behavior is
expected because of the amount of time to propagate clauses@ to learn from con ict.

Next, we observe that lazy generation slows down considerdy the exploration speed
compared toDisjunctive -based learning. For instance, with tail1-20, Hybrid{sids; disj)
explores 3970 Nodes/s whereas Hybridsids;lazy) explores 520 Nodes/s. Further-
more the exploration speed seems to be constant on hard setsa{-11 .. .tai-70) irre-
spectively of the instance size. Indeed, it ranges from 4130t 698 Nodes/s. We be-
lieve that this behavior is due to the additional amount of time needed to propagate
DomainFaithfulness constraints compared to Disjunctive -based learning.

Finally, this table shows that taskDom-~tw is always slower than VSIDS with
Disjunctive -based learning. Take again the set of instances tai-11-2Qye move from
3970 Nodes/s with Hybrid(vsids; disj) to 2715 Nodes/s with Hybrid(task; disj).

Now regarding the overall e ciency, we can see that Hybrid(vsids; disj) seems to be the
best choice with small instances and Hybrid{ask;lazy) is by far the best choice with

large instances. MoreovertaskDom~w is in general more e cient than VSIDS when

the size of the instance grows. Finally, theDisjunctive -based learning performs much
better than the lazy mode with small/medium-sized instances and vice versa.

Lawrence Statistics In order to con rm our latest claims, we show the same statis-
tics described above with Lawrence instances. We propose tgive these statistics for
the hardest instances in this set. An instance is considerechard if at least one model
fails to prove its optimality at least once (i.e., using any sed). The hardest instances in
this set are divided in two sets:

Chapter 5 Learning 124

Table 5.7: Job Shop: Taillard statistics

Instances Mistral(task) Hybrid(vsids;disj) | Hybrid(vsids;lazy) | Hybrid(task;disj) Hybrid(task;lazy)
Disji M |Nodes/S|Size M |Nodes/S|Siz M |Nodes/S|Size M |Nodes/S|Siz M |Nodes/S|Size

%O| T %Ol T %O| T %O| T %O|| T

tai 01-10 || 1575 90(616| 8871 0| 90| 477 6814(18|| 87/999 1213|| 25 90574 4869 21| 85||1115 1261 34
PRD PRD PRD PRD PRD

tai 11-20 || 2850 3.2381 6509, 0| 3.0350 3970 31| 1.8937 520|| 43| 0.4808 2715 41| 0.1169 539| 66

tai 21-30 || 3800 0.7302 3935 0| 0.2769 2424 33| 0.4756 413|| 46| 0.2485 1752 45| 0.1557 437| 73

tai 31-40 || 6525 1.7227 4503 0] 0.7109 2598| 51|| 0.3043 555|| 65| 0.6016 1517 76| 0.4103 566|111

tai 41-50 || 8700 2.2161 2570, 0| 0.4798 1530| 70||0.3036 413|| 86| 0.5420 994 97| 0.6163 443]140

tai 51-60 ||{18375 2.0798 1952 0| 2.2847 2602 57|| 2.7990 562|| 44{0.1621 1131 91| 0.2419 698 89

tai 61-70 ||24500 3.2381 1349 0| 3.0350 2183| 64|| 1.8937 522|| 50| 0.4808 920/ 121 0.1169 584(123

1. Open: the set of instances for which all models fail to prove optinality. This set
contains the instances la07, 1a27, and la29

2. Opt: the rest of hard instances. This set contains the instance$a21, la26, la28,
la31, and la34.

It should be noted that the number of disjunctions in these sé¢s ranges from 525 to 4350.
We can therefore consider then as small and medium-sized iteces (w.r.t. Taillard
instances). Table 5.8 gives the statistics for each set of stances in a separate line.

Table 5.8: Job Shop: Lawrence Statistics

I Mistral(task) | Hybrid(vsids;disj) | Hybrid(vsids;lazy) | Hybrid(task;disj) | Hybrid(task;lazy) |

%O| T |Nodes/S|Size/%O| T |Nodes/S|Size|%O| T |[Nodes/S|Size|%O| T [Nodes/S|Size(%O| T |[Nodes/S|Size|

Opt

70(1362] 11520 O| 96| 768 8507 26| 64(1683| 1746 3l| 84(891 6745 35| 72|1170) 3380| 40

Open|| 0.4280 18581 O| 0.1343 10159 23| 0.6530 1000 3l| 0.1393 6782 3l| 0.4969 1322 49

PRD |[Nodes/S|Sizel PRD |Nodes/S|Sizel PRD [Nodes/S|Size] PRD [Nodes/S|Sizel PRD [Nodes/S|Size]|

Table 5.8 shows clearly that Hybrid(vsids; disj) outperforms the other models on these
instances. This model proves 96% of the instances i@pt to optimality and has a PRD
of 0:1343 on the set of instance®©pen Overall, the statistics presented in this table sup-
ports our previous observations with Taillard instances sih as the speed of exploration,
the average size of learnt clauses, and more importantly theutstanding performances
of Disjunctive -based learning compared to lazy generation with small/meédim-sized
instances.

Improving the Lower Bounds for Taillard Open Instances Many of the Taillard
instances are still open in the literature. Our results do nd improve any upper bound
for these instances, but what about the lower bound? Recall hat the way we perform
dichotomy steps is focused only on improving the current uper bound. Indeed, if
step i ends without nding a solution nor proving unsatis ability , then we setl; to
“li 1 uj 1*~2. We propose to alter this particular behavior so that the purpose becomes

Chapter 5 Learning 125

nding better lower bounds. This is simply done by starting t he next iteration after
setting u; (instead of [;) to “I; 1 uj 1°~2.

We ran again the tests with the new dichotomy strategy for all open Taillard instances.
We change the dichotomy breaking conditions to be only a 140 time limit. All other
settings are the same.

The new results are presented in Table 5.9. For each model andstance, we report the
maximum (max) and average (avg) lower bound found for the 10 andomized runs. The
best bound found by our models is shown inbold fonts for each instance. Moreover,
the last column stands for the best known lower bound for eachinstance [1f

Table 5.9: Lower bound experiments for open Taillard instances

Mistral(task) |Hybrid(vsids; disj) [Hybrid(vsids;lazy) [Hybrid(task;disj)[Hybrid(task;lazy)

Instance Lower bound Lower bound Lower bound Lower bound Lower bound Best known
max avg || max avg || max avg || max avg || max avg
taill 1273 1266.90|1294 1287.70|| 1273 1266.9¢| 1281 1271| 1273 1269.7Q 1323
tail2 1297 1271.7Q|1300 1296.80|| 1275 1274| 1298 1270.5Q| 1276 1267.10Q 1351
tail3 1278 1268.50|1305 1296.40|| 1282 1268.5(| 1291 1284| 1281 1268.7Q 1282
tails 1283 1267|1288 1281|| 1270 1262.14(1288 1277.60|| 1284 1267.2Q 1304
tail6 1276 1267.4Q|1293 1288.40|| 1280 1275| 1276 1273.2Q| 1274 1258.3(Q 1304
tail8 1303 1285|1306 1301.90|| 1281 1277.2Q| 1300 1284.4(Q| 1300 1279.4Q 1369
tail9 1202 1202||1202 1202||1202 1202||1202 1202||1202 1202 1304
tai20 1306 1302.20|1318 1314.30|| 1306 1301.4qQ| 1313 1307.7Q| 1307 1301.40Q 1318
tai2l 1592 1586.60|1613 1607.40|| 1602 1598.7Q| 1597 1591.9¢| 1595 1587.3(Q 1573
tai22 1522 1498.60|1529 1511.40|| 1520 1503.6(Q| 1524 1504 | 1524 1504.7Q 1542
tai23 1502 1495.60|1514 1502.50|| 1502 1497.8(0| 1503 1499.4(Q| 1502 1497.8(Q 1474
tai24 1571 1561.30|1588 1574.50|| 1573 1567.30| 1573 1566.7¢| 1572 1568.2(Q 1606
tai25 1525 1519.20|1543 1535.80|| 1529 1522.1qd| 1530 1523.6qQ| 1529 1523.40Q 1518
tai26 1557 1546.7Q|1561 1553.50|| 1552 1543.4(Q| 1559 1552| 1555 1546.60Q 1558
tai27 1596 1590.70|1607 1600|| 1593 1588.8(| 1601 1597.8(0| 1604 1598.3(Q 1617
tai28 1568 1564.10|1583 1579.70|| 1579 1567.5(| 1568 1565.6Q| 1578 1566.9Q 1591
tai29 1556 1542.90|1573 1562.30|| 1563 1555.9¢| 1560 1554.4(Q| 1560 1547.3(Q 1525
tai30 1499 1472.90|1508 1502.10|| 1504 1495.6Q| 1500 1479.1Q| 1474 1469.5Q 1485
tai32 1774 1774|1774 1774|1774 1774|1774 1774|1774 1774 1774
tai33 1729 1729||1729 1729||11729 1729||1729 1729||1729 1729 1778
tai34 1828 1828||1828 1828||1828 1828||1828 1828||1828 1828 1828
tai40 1602 1602||1602 1602||1602 1602||1602 1602||1602 1602 1631
tai4l 1830 1830||1830 1830||1830 1830/|1830 1830/|1830 1830 1876
taid2 1761 1761||1761 1761||1761 1761||1761 1761||1761 1761 1867
tai43 1694 1694||1694 1694||1694 1694(|1694 1694(|1694 1694 1809
taid4 1787 1787||1787 1787||1787 1787||1787 1787||1787 1787 1927
tai4s 1731 1731)|1731 1731||1731 1731||1731 1731||1731 1731 1997
tai46 1856 1856||1856 1856||1856 1856||1856 1856||1856 1856 1940
taid7 1690 1690||1690 1690||1690 1690||1690 1690||1690 1690 1789
tai48 1744 1744||1744 1744||1744 1744(|1744 1744(|1744 1744 1912
tai49 1758 1758||1758 1758||1758 1758||1758 1758||1758 1758 1915
tai50 1674 1674||1674 1674||1674 1674||1674 1674(|1674 1674 1807

Thanks to the model using VSIDS along with our new con ict analysis procedure (i.e.,
Hybrid(vsids; disj)), we were able to nd new lower bounds for 7 instances. These

3As by March 15th, 2015, we noticed an accepted paper to the CPAIOR'15 conference [142] in which
the authors report several new bounds for these instances (and many other scheduling benchmarks).
Their lower bounds are greater than or equal to the values found in our experiments. It should be noted,
however, that they use a 30000s time cuto, a parallelizatio n phase with two threads, in addition to
starting search by using the best known bounds as an additional information. Our approach is quite
di erent since we start search from scratch without paralle lization, and each instance is limited to 3200s
time cuto .

Chapter 5 Learning 126

instances are tail3, tai21, tai23, tai25, tai26, tai29, andai30. The old lower bounds are
based on the work of [65] and are reported in [1]. The model Hytid(vsids; disj) solely
nd these new bounds and is by far the best choice for buildingproofs for all instances.

It should be noted that in general the di erence between the aerage and the maximum
bound per instance is not large. In fact, almost all averagedor the instances with new
lower bounds are better than the best known lower bound.

5.3.5.2 OSP Results

We use three benchmarks for this problem: Gueret and Prins [Z]; Taillard [134];
and Brucker et al. [33]. Note that all these instances were peviously closed thanks
to [71]. Conversely to the previous problem, we observed thataskDom~bw was slightly
better than taskDom~w for this problem. We shall therefore report the results of:
Mistral(boo), Hybrid(vsids;disj), Hybrid(vsids;lazy), Hybrid(bool;disj), and
Hybrid(bool; disj).

The rst two benchmarks are extremely easy for all the models Gueret and Prins
instances are all solved to optimality within an average CPUtime less than 0.02s for each
instance with any model and any seed. Taillard instances arelso solved to optimality,
however, with slightly longer runtime. Their detailed results are shown in Appendix B.
We shall give more attention to Brucker et al. instances in the rest of this evaluation.
The number of disjunctions ranges from 18 to 448 in these insinces. We can therefore
consider them as (very) small instances. Tables 5.10 and Slipresent the detailed results
of these instances.

These tables show clearly that clause learning is particuldy not helpful in these in-
stances. First, the lazy generation mode decreases clearthe performances on these
instances since only Mistralpool), Hybrid(vsids;disj), and Hybrid(bool;disj) succeed
to prove optimality to all con gurations. Moreover, the ave rage running time per in-
stance is equal to 3121s with Mistral(bool) and 11971s with Hybrid(;disj).

To investigate further the of impact of clause learning in this set, we propose to decrease
the clause database size from a limit of 75000 to 10000. The weparametrized reduction
strategy is @500Q 1000Q 500, 12; 8;90% A instead of @500Q 75000 5000Q 12; 8;90% A

The new results are shown in Tables 5.12 and 5.13. The perforamces of the models
Hybrid(;disj) are greatly improved with an average runtime of 3595 and 4025 instead

of 11746s and 12197s respectively. TheCP model, however, has a slightly better
runtime with 31:21s. It should be pointed out that the global performances oflazy

generation are not improved with the new reduction strategy

Table 5.10: OSP results: Brucker et al. instances (j3-per0-1 j5-per202)

Instance Mistral(boo) Hybrid(vsids; disj) |Hybrid(vsids; lazy) | Hybrid(bool; disj) | Hybrid(bool; lazy)
T |%0| UB T |%0| UB T |%0| UB T |%0| UB T |%0| UB
avglavgl min avg| avglavgl min avg|| avgavgl min avg|| avglavg| min avg|| avglavg| min avg

j3-per0-1 011001127 1127 0{1001127 1127 0}1001127 1127| 0{1001127 1127, 0/1001127 1127

j3-per0-2 0/1001084 1084 0{1001084 1084| 0/1001084 1084| 01001084 1084, 0/1001084 1084

j3-perl0-d| 0/1001131 11314 0/10011311131 0/1001131 1131 0/1001131 1131 0/1001131 1131

j3-perl0-1j] 0/1001069 1069| 0/1001069 1069| 01001069 1069| 0/1001069 1069| 0/1001069 1069

j3-perl0-2| 0/1001053 1053| 0/1001053 1053| 0/1001053 1053| 0/1001053 1053| 0/1001053 1053

j3-per20-d| 0/1001026 1026| 0/1001026 1026/ 0/1001026 1026| 0/1001026 1026| 0[{1001026 1026

j3-per20-1] 01001000 100Q| 0/1001000 1000, 0/1001000 100Q| 0/1001000 1000/ 0{1001000 1000

j3-per20-2| 01001000 100Q| 0{1001000 1000, 0/1001000 100Q| 0/1001000 1000, 0{1001000 1000

j4-per0-0 01001055 1055| 0{1001055 1055| 0/1001055 1055| 01001055 1055, 0/1001055 1055

j4-per0-1 0/1001180 1180 0{1001180 118Q| 0/10011801180| 0{1001180 1180, 01001180 118Q

j4-per0-2 0/1001071 1071 0{1001071 1071 0/10010711071| 0(1001071 1071 01001071 1071

j4-per10-J| 0/1001041 1041 0/1001041 1041 0/1001041 1041 0/1001041 1041 0/1001041 1041

j4-perl0-1}] 0/1001019 1019| 0/10010191019| 0/1001019 1019 0/10010191019| 0/1001019 1019

j4-perl0-2| 0/1001000 100Q| 0{1001000 1000/ 0/1001000 100Q| 0/1001000 1000/ 0{1001000 1000

j4-per20-J| 0{1001000 100Q| 0[1001000 1000, 0/1001000 100Q| 0/1001000 1000| 0{1001000 1000

j4-per20-1}] 01001004 1004| 0/1001004 1004/ 0/1001004 1004| 0/1001004 1004 0/1001004 1004

j4-per20-2| 01001009 1009| 0/1001009 1009/ 0/1001009 1009| 0/1001009 1009| 0/1001009 1009

j5-per0-0 (|0.041001042 1042/0.051001042 1042(0.101001042 1042|0.07/1001042 1042|0.141001042 1042

j5-per0-1 0/1001054 1054| 0{1001054 1054| 0/1001054 1054/ 01001054 1054, 0/1001054 1054

j5-per0-2 (|0.011001063 1063]0.021001063 1063|0.04 1001063 1063|0.03 1001063 1063|0.041001063 1063

j5-per10-J| 0/1001004 1004| 0/1001004 1004/ 0/1001004 1004| 0/1001004 1004| 0/1001004 1004

j5-perl0-1j] 0/1001002 1002] 0/1001002 1002| 0/1001002 100Z2| 0/1001002 1002| 0/1001002 1002

j5-perl0-2| 0/1001006 1006| 0/1001006 1006(0.01/1001006 1006| 0/1001006 1006|0.011001006 1006

j5-per20-d| 0{1001000 100Q| 0{1001000 1000, 0/1001000 100Q| 0/1001000 100Q| 0{1001000 1000

j5-per20-1}] 01001000 100Q| 0{1001000 1000/ 0/1001000 100Q| 0/1001000 1000/ 0{1001000 1000

j5-per20-2| 0/1001012 1012] 0/1001012 1012(0.01j1001012 1012| 0/1001012 1012|0.011001012 1012

Bulurea g Jerdeyd

LT

Table 5.11:

OSP results: Brucker et al. instances (j6-per0-0 j8-per202)

Mistral(boo)

Hybrid(vsids; disj)

Hybrid(vsids;lazy)

Hybrid(bool; disj)

Hybrid(bool; lazy)

Instance ||+ g0 UB T |%0| UB T | %0 UB T |%0| UB T | %0 UB

avglavgl min avg avglavg| min avg avg| avg min avg avglavg| min avg avg| avg min avg
j6-per0-0 | 6.3111001056 1056, 13.571001056 1056| 83.34 1001056 1056 14.971001056 1056, 76.84 1001056 1056
j6-per0-1 0/1001045 1045 01001045 1045| 0.01 1001045 1045 0/1001045 1045 0 1001045 1045
j6-per0-2 || 0.051001063 1063 0.041001063 1063] 0.09 1001063 1063 0.061001063 1063 0.13 1001063 1063
j6-perl0-0| 0.041001005 1005, 0.041001005 1005 0.09 1001005 10053 0.051001005 1005 0.10 1001005 1005
j6-perl0-1 01001021 1021 01001021 1021 0 1001021 1021 01001021 1021 0 1001021 1021
j6-perl0-2| 0.021001012 1012 0.0210010121012] 0.04 1001012 1012/ 0.0310010121012| 0.04 1001012 1012
j6-per20-¢| 0.021001000 1000, 0.041001000 100Q| 0.07 1001000 1000/ 0.031001000 1000 0.0 1001000 1000
j6-per20-1 0/1001000 1000 0/1001000 1000 0 1001000 1000 0/1001000 1000 0 1001000 1000
j6-per20-2 0/1001000 1000 0/1001000 1000 0 1001000 1000Q 01001000 1000/ 0.01 1001000 1000
j7-per0-0 ||547.131001048 1048|2684.991001048 1048| 3600 0]1048 1049.40/2258.201001048 1048| 3600 0]1048 1048.8(
j7-per0-1 || 2.041001055 1055 1.841001055 1055 6.25 1001055 10553 2.381001055 1055 6.30 1001055 1055
j7-per0-2 1.011001056 1056| 0.981001056 1056| 2.9 1001056 1056/ 1.111001056 1056| 3.15 1001056 1056
j7-perl0-Q| 1.781001013 1013 1.9710010131013] 7.63 1001013 1013 2.781001013 1013 8.27 1001013 1013
j7-perl0-1] 0.061001000 1000, 0.101001000 1000 0.13 1001000 1000/ 0.081001000 1000 0.1 1001000 1000
j7-perl0-2| 70.521001011 1011 148.981001011 1011]1026.13 1001011 1011| 260.551001011 1011|1106.26 1001011 1011
j7-per20-0 0/1001000 1000 01001000 1000| 0.014 1001000 1000 0/1001000 1000 0 1001000 1000
j7-per20-1| 0.4111001005 1005, 0.231001005 1005 0.65 1001005 10053 0.461001005 1005 0.89 1001005 1005
j7-per20-2| 1.301001003 1003, 0.681001003 1003] 2.48 1001003 1003 1.111001003 1003 2.48 1001003 1003
j8-per0-1 {|723.601001039 1039|2399.621001039 1039| 3600 0/1039 1041.302775.711001039 1039| 3600 0]1039 1040.3(
j8-per0-2 | 9.781001052 1052| 10.941001052 1052| 43.34 1001052 1052| 16.401001052 1052| 49.25 1001052 1052
j8-perl0-Q| 22.461001017 1017, 40.561001017 1017 186.31 1001017 1017 66.051001017 1017| 201.28 1001017 1017
j8-perl0-1| 58.681001000 100Q| 283.501001000 100Q|1442.98 90/1000 1000.10| 302.861001000 100Q| 907.38 901000 1000.1¢
j8-perl0-2|177.641001002 1002| 519.641001002 1002|2330.50 1001002 1002| 638.961001002 1002|2827.89 1001002 1002
j8-per20-¢| 0.121001000 1000, 0.121001000100Q| 0.29 1001000 1000/ 0.321001000 1000 0.19 1001000 1000
j8-per20-1| 0.0111001000 1000, 0.021001000 100Q| 0.02 1001000 1000/ 0.021001000 1000 0.02 1001000 1000
j8-per20-2| 0.041001000 1000, 0.061001000 1000 0.10 1001000 10040/ 0.111001000100Q| 0.07 1001000 1000
average || 31.2110Q 117.4610Q 237.1895.96 121.9710Q 238.2995.96

Bulurea g Jerdeyd

8¢T

	Contents

