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Abstract

Sequencing and scheduling involve the organization in timeof operations subject to

capacity and resource constraints. We propose in this dissertation several improvements

to the constraint satisfaction and combinatorial optimization methods for solving these

problems. These contributions concern three di�erent aspects: how to choose the next

node to explore (search)? how much, and how e�ciently, one can reduce the search

space (propagation)? and what can be learnt from previous failures (learning)?

Our contributions start with an empirical study of search heuristics for the well known

car-sequencing problem. This evaluation characterizes the key aspects of a good heuris-

tic and shows that the search strategy is as important as the propagation aspect in this

problem. Second, we carefully investigate the propagationaspect in a class of sequenc-

ing problems. In particular, we propose an algorithm for �lt ering a type of sequence

constraints which worst case time complexity is lower than the best known upper bound,

and indeed optimal. Third, we investigate the impact of clause learning for solving the

car-sequencing problem. In particular, we propose reducedexplanations for the new

�ltering. The experimental evaluation shows compelling evidence supporting the impor-

tance of clause learning for solving e�ciently this problem. Next, we revisit the general

approach of lazy generation for the Boolean variables encoding the domains. Our propo-

sition avoids a classical redundancy issue without computational overhead. Finally, we

investigate con�ict analysis algorithms for solving disjunctive scheduling problems. In

particular, we introduce a novel learning procedure tailored to this family of problems.

The new con�ict analysis di�ers from conventional methods by learning clauses whose

size are not function of the scheduling horizon. Our comprehensive experimental study

with traditional academic benchmarks demonstrates the impact of the novel learning

scheme that we propose. In particular, we �nd new lower bounds for a well known

scheduling benchmark.

Keywords: Arti�cial intelligence, constraint programming, Boolean satis�ability, com-

binatorial optimization, sequencing, scheduling.
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Résumé

Les problèmes de séquencement et d'ordonnancement formentune famille de problèmes

combinatoires qui implique la programmation dans le temps d'un ensemble d'opérations

soumises à des contraintes de capacités et de ressources. Nous contribuons dans cette

thèse à la résolution de ces problèmes dans un contexte de satisfaction de contraintes

et d'optimisation combinatoire. Nos propositions concernent trois aspects di�érents :

comment choisir le prochain n÷ud à explorer (recherche) ? comment réduire e�cacement

l'espace de recherche (propagation) ? et que peut-on apprendre des échecs rencontrés lors

de la recherche (apprentissage) ?

Nos contributions commencent par une étude approfondie desheuristiques de bran-

chement pour le problème de séquencement de chaîne d'assemblage de voitures. Cette

évaluation montre d'abord les paramètres clés de ce qui constitue une bonne heuristique

pour ce problème. De plus, elle montre que la stratégie de branchement est aussi im-

portante que la méthode de propagation. Deuxièmement, nousétudions les mécanismes

de propagation pour une classe de contraintes de séquencement à travers la conception

de plusieurs algorithmes de �ltrage. En particulier, nous proposons un algorithme de

�ltrage complet pour un type de contrainte de séquence avec une complexité temporelle

optimale dans le pire cas. Troisièmement, nous investiguons l'impact de l'apprentissage

de clauses pour résoudre le problème de séquencement de véhicules à travers une nou-

velle stratégie d'explication réduite pour le nouveau �ltr age. L'évaluation expérimentale

montre l'importance de l'apprentissage de clauses pour ce problème. Ensuite, nous pro-

posons une alternative pour la génération retardée de variables booléennes pour encoder

les domaines. Finalement, nous revisitons les algorithmesd'analyse de con�its pour ré-

soudre les problèmes d'ordonnancement disjonctifs. En particulier, nous introduisons

une nouvelle procédure d'analyse de con�its dédiée pour cette famille de problèmes.

La nouvelle méthode di�ère des algorithmes traditionnels par l'apprentissage de clauses

portant uniquement sur les variables booléennes de disjonctions. En�n, nous présentons

les résultats d'une large étude expérimentale qui démontrel'impact de ces nouveaux

mécanismes d'apprentissage. En particulier, la nouvelle méthode d'analyse de con�its a

permis de découvrir de nouvelle bornes inférieures pour desinstances largement étudiées

de la littérature.

Mot-clés : Intelligence arti�cielle, programmation par contraintes , satis�abilité boo-

léenne, optimisation combinatoire, séquencement, ordonnancement
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Chapter 1

Introduction

Many real world problems involve sequencing a set of operations subject to resource

constraints. Depending on the problem at hand, the objective might be optimizing an

economic-related cost or simply �nding satisfactory solutions. Sequencing and schedul-

ing problems have direct applications in a variety of areas such as manufacturing, project

management, and timetabling. The work presented in this thesis considers solving prob-

lems of this family in a combinatorial context. From a computational complexity theory

perspective, many of these problems are NP-hard. Therefore, there is no known poly-

nomial time algorithm for solving them.

There exist numerous techniques for solving combinatorialoptimization problems rang-

ing from heuristic to exact methods. Integer Linear Programming (ILP) is probably the

best known and used approach. In this framework, the problemmust be formulated as

a system of linear equations. Typically, an ILP solver uses abranch-and-bound algo-

rithm in which the lower bound is the optimal solution of the l inear relaxation of the

problem. Another restricted format is the one used by SAT solvers. The problem is

stated using clauses, each of which being a disjunction of literals, where each literal is

a propositional variable or its negation. Modern SAT solvers [95] are essentially based

on the Davis-Putnam-Logemann-Loveland (DPLL) [41] algorithm augmented with res-

olution [112]. DPLL is a backtracking system using a simple form of inferences called

Unit-propagation ( UP ). The integration of resolution within DPLL enables a strong in-

ference through new clauses derived from con�icts during search. Constraint program-

ming (CP) is another declarative paradigm for solving combinatorial problems based

on a far richer language than ILP and SAT. In CP, a problem is de�ned with a set of

relations, called constraints, operating on variables associated to sets of possible values

called domains. CP solvers typically rely on propagating the constraints while explor-

ing a search space. Constraint propagation is a fundamentalconcept in CP aiming at

pruning the search space as much as possible. In fact, each constraint is associated to

a propagator (or �ltering algorithm) responsible for reduc ing the domains according to

1
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some rules. InCP, we often distinguish search from propagation , and slightly more

recently, from learning .

I report in this dissertation several contributions on each one of these aspects within

constraint programming approaches to sequencing and scheduling problems. This case

study strongly supports my thesis, that modern constraint programming solvers may not

underestimate any of these three aspects.

Search Constraint programming solvers are typically implemented on top of back-

tracking systems. The search space is explored via a tree where every node corresponds

to a decision restricting the search space to a smaller problem. The tree is often explored

following a Depth-First Search (DFS) scheme. Whenever a failure is encountered, the

solver backtracks to the last node, reverses the last decision, then resumes the explo-

ration. The `search' aspect inCP is related to the decisions made to explore the search

tree.

A decision in CP is usually performed heuristically by shrinking a speci�c variable do-

main to a value. We often make the distinction between variable ordering and value

ordering heuristics. Variable ordering heuristics are typically designed following the

`fail-�rst' principle [73, 129, 13]: �To succeed, try �rst w here you are most likely to

fail.�. As such, one tries to prune inconsistent subtrees assoon as possible. Value

ordering is usually less important and follows generally anopposite principle, called

`succeed-�rst' or `promise' [61]. Indeed, the value with best chances to lead to a solu-

tion is preferred. These heuristics can be customized to theproblem at hand or follow

a standard scheme. Examples of standard variable ordering heuristics include: lexico-

graphical order, minimum domain size, and maximum variabledegree (i.e., how much a

variable is constrained). General purpose value heuristics are less common, trivial ones

(such as branching on the minimum or maximum value in the domain) are often used by

default. When we have some information about the structure of the problem, however,

dependent heuristics can be useful. We quote for instance [54, 130, 126, 51, 122].

Search strategies can have a dramatic e�ect on the overall e�ciency as they guide the

exploration of the search space [73, 28, 9, 63, 104]. In fact,a �bad� decision can cause the

exploration to become trapped in an unsatis�able sub-tree that can take an exponential

time to explore.

Propagation Constraint propagation is a fundamental concept in CP aiming at re-

ducing the search space by pruning dead-end branches. The level of pruning is usually

characterized by a property called local consistency. The principle is that if an assign-

ment is part of no solution of a relaxation of the problem, then it can not be part of a

solution of the complete problem; it is inconsistent. Often, the problem is relaxed simply
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by considering a subset of the constraints and/or variables. For instance, Arc Consis-

tency1(ac ) [89, 90] considers constraints one at a time. Algorithms implementing ac

were proposed in the 70s by Waltz [146] and Gaschnig [60]. Subsequently, `higher' local

consistencies were introduced, for instance by Montanari in [94] and Freuder in [56, 57].

The propagation methods based on local consistencies were originally �generic� in the

sense that the constraint relation is part of the input. As a consequence, combining

strong pruning and computational e�ciency is di�cult. The n otion of `global con-

straint' moves the relation from the input to the de�nition o f the problem, making it

far easier to reconcile these two objectives. The idea is to capture patterns occurring in

many problems and to design dedicated algorithm to �lter out inconsistent values for

these particular cases.

There is a signi�cant amount of work in the CP literature regarding the proposition,

reformulation, and extension of global constraints [109, 110, 111, 21, 139, 96, 97, 121, 26].

The canonical example of global constraint is theAllDifferent constraint, ensuring

that all variables are pair-wise distinct. Take for instance three variables x1, x2, x3

subject to x1 x x2 , x2 x x3 , x1 x x3. We can rewrite this asAllDifferent ˆx1; x2; x3•.

Now assume that the domain forx1 and x2 is ˜ 1; 2• and for x3 is ˜ 1; 2; 3• . Enforcing

ac on each constraint separately does not change the domains. However, the fact that

all variables must have pairwise di�erent values prevents the assignment ofx3 to 1 or 2

to be part of any solution. Making this inference via stronger local consistencies would

take exponential time. However, it is possible to enforceac on the AllDifferent

constraint in polynomial time [109].

Learning When exploring a search tree, we repeat many times the same decisions. It

is therefore natural to try to learn from a failure (a dead-end in the tree), in order to avoid

doing the same mistake again. By de�nition, an exact set of decisions is never explored

twice is a search tree. However, it may happen that only a partof the current branch, a

`nogood', entails a failure. When this is the case, it is possible to learn something useful

in order to avoid failing more than once with the same reason.

The notion of nogood goes back originally to Stallman in the 70s [133]. The �rst formal

adaptation to CP was proposed by Dechter in [43]. Other approaches to nogood record-

ing were proposed later in [105, 113, 66]. In these approaches, a nogood is de�ned as a

set of assignments that can not lead to any solution. This de�nition prevented learning

from being more broadly used in constraint solvers. The success of nogood learning in

the SAT community was, however, spectacular in the decade following Dechter's semi-

nal work. This success is due to papers by Bayardo and Schrag [76], Marques-Silva and

Sakallah [123, 124], Moskewicz et al. [95] and Zhang et al. [147]. Con�ict Driven Clause

1The terms `Domain Consistency' and `Generalized Arc Consistency' are also used in the literature.
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Learning (CDCL) [95] constitutes the backbone of modern SAT-solvers. In CDCL, no-

goods are built by computing cuts in the graph drawn from the deductions made by

Unit-propagation.

Nogood recording has gained considerable attention in theCP literature essentially

during the past decade and a half [79, 78, 80, 77, 82, 35, 87, 34, 36, 37, 101, 106]. The

notion of `explanation' is the central component in these works. In order to compute a

nogood, every propagation outcome should be explained in the form of a set of decisions

and/or earlier propagations that logically imply it. Learn ing in CP has taken a new

start in the past decade thanks to Katsirelos's Generalizednogoods [82, 81] and more

recently to Lazy Clause Generation (LCG) [100, 101]. The latter mimics propagators in

CDCL by considering them as generators of clauses. Propagators in LCG are allowed

to use literals of the form Jx � vK, Jx x vK, Jx B vK, and Jx CvKto express any domain

change. All these types of literals can be used to explain any�ltering outcome in a

clausal form.

CP solvers can bene�t from learning by `discovering' new �ltering rules, in the form of

clauses, that propagators alone are not able to perform. Potentially, hybrid CP/SAT

solvers have features coming from both approaches such as powerful propagation mech-

anisms, clause learning, adaptive branching, etc. However, this holds only when prop-

agators, including those proposed for global constraints,are able to explain all their

pruning.

Thesis Overview

This dissertation shows, by a thorough case-study of a classof sequencing and scheduling

problems that all these aspects are important and must all betaken into account in order

to design e�cient solution methods.

We give a summary of the contributions presented in this thesis.

1. An empirical heuristic study for the car-sequencing proble m

Car-sequencing is a well known sequencing problem coming from the automotive

industry. In 2005, a challenge has been organized by the French Operations Re-

search and Decision Support Society (ROADEF2) for solving optimization versions

of the problem provided by the RENAULT 3 automobile manufacturer [131]. In

this problem, a set of cars has to be sequenced on an assembly line subject to

capacity and demand constraints. Each car belongs to a classof vehicles that is

de�ned with a set of options to install (like the sunroof and t he air-conditioner).
2http://challenge.roadef.org/2005/en
3http://group.renault.com



Chapter 1 Introduction 5

We investigate the `search' component for e�ciently solving this problem. First, we

propose a new heuristic classi�cation for this problem. This classi�cation is based

on a set of four criteria: branching variables, exploration directions, selection

of branching variables and aggregation functions for this selection. Thanks to

this classi�cation, we discovered new combinations of existing criteria leading to

superior heuristics.

Based on large experimental tests, we indicate with a relatively high con�dence

which is the most robust strategy, or at least outline a smallset of potentially best

strategies. Speci�cally, we show that the way of selecting the most constrained

option is critical, and the best choice is fairly reliably the �load� of an option, that

is the ratio between its demand and the capacity of the corresponding machine.

Similarly, branching on the class of vehicle is more e�cient than branching on

the use of an option. Finally, we show that the choice of the heuristic is often as

important as the propagation method in this problem.

2. Propagation in sequencing problems

Motivated by a simple observation in [111] about �nding fail ures for the car-

sequencing problem, we design a simple �ltering rule calledSlack-Pruning . This

�ltering relies on reasoning simultaneously about capacity and demand constraints.

However, it is applicable with very limited branching scenarios. We propose there-

fore to generalize theSlack-Pruning in the form of a complete �ltering for a

new global constraint that we call AtMostSeqCard . This constraint can be

used to model a number of sequencing problems including car-sequencing and

crew-rostering.

AtMostSeqCard can in fact be considered as a particular case of well known

constraints. In [139], two algorithms designed for the AmongSeq constraint

were adapted to this constraint with an Oˆ2qn• and Oˆn3• worst case time com-

plexity, respectively. In [91], another algorithm similar ly adaptable to �lter the

AtMostSeqCard constraint was proposed with Oˆn2:logˆn•• time complexity

down a branch of the search tree with an initial compilation of Oˆq:n2•. We

propose a complete �ltering algorithm for this constraint w ith an Oˆn• (hence op-

timal) worst case time complexity. Furthermore, we show that this algorithm can

be adapted to achieve a complete �ltering for some extensions of this constraint.

In particular, the conjunction of a set of m AtMostSeqCard constraints sharing

the same scope can be �ltered inOˆnm•.

The experimental results on car-sequencing and crew-rostering benchmarks show

how competitive and e�cient our �ltering is compared to stat e-of-the-art propa-

gators.

3. Learning in car-sequencing
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We investigate the learning aspect for solving car-sequencing instances using our

�ltering for AtMostSeqCard . In order to use AtMostSeqCard in a hybrid

CP/SAT solver, one has to explain every single domain change made by the prop-

agator. We therefore propose a procedure explainingAtMostSeqCard that runs

in linear time complexity in the worst case. Any hybrid model using these expla-

nations bene�ts from the complete �ltering for this constra int along with clause

learning and potentially many other CP/SAT features.

Our experiments include a variety of models with Pseudo-Boolean and SAT for-

mulations. We show how clause learning improves the global performances in most

cases. We witness a strong correlation between advanced propagation and �nding

solutions quickly for this problem. Moreover, for building proofs, clause learning

is the most important ingredient and propagation is less useful.

4. Revisiting lazy generation

We revisit in this part the lazy generation of Boolean variables for encoding the

domains. The issue that we address is related to the redundancy of clauses used

when lazily encoding a domain [53]. In fact, when a Boolean variable Jx BuKhas

to be generated, the clauses Jx BaK- Jx BuK;  Jx BuK- Jx BbKare added wherea

and bare the nearest generated bounds tou. After adding these clauses, the clause

 Jx B lK- Jx BuKbecomes redundant. TheDomainFaithfulness constraint that

we propose avoids such redundancy while ensuring the same level of consistency

without any computational overhead. The novel lazy generation method is used

in the next part with a large number of disjunctive scheduling instances.

5. Learning in disjunctive scheduling

The last part of our contributions addresses the impact of clause learning for

solving disjunctive scheduling problems. We propose a novel con�ict analysis pro-

cedure tailored to this family of problems. In fact, we use a property of disjunctive

scheduling allowing to learn clauses using a number of Boolean variables that is

not function of the domain size. Our propositions give good experimental results

and outperform the standard CP model in most cases. Furthermore, we observe

a relationship between the instance size, the branching choice, and the con�ict

analysis scheme. Our method improved the best known lower bounds on several

instances of a classic data set.

The work presented in this thesis is funded by CNRS4 and `midi-Pyrénées' region56.

The CNRS grant was attributed to the ROC team7 at LAAS-CNRS8 jointly with a
4http://www.cnrs.fr
5http://www.midipyrenees.fr
6The region grant number is 11050449.
7https://www.laas.fr/public/en/roc
8https://www.laas.fr/public/en
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Google research award on SAT-based scheduling9. Many parts of the dissertation has

been published in the following international journals and conferences:

1. Two clause learning approaches for disjunctive scheduling. Mohamed Siala, Chris-

tian Artigues, and Emmanuel Hebrard. In Principles and Practice of Constraint

Programming - 21st International Conference, CP 2015, Cork, Ireland, August

31-September 4. Proceedings (to appear), 2015 [119]

2. A study of constraint programming heuristics for the car-sequencing problem.

Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet.Engineering Appli-

cations of Arti�cial Intelligence , 38(0):34 � 44, 2015 [122].

3. SAT and hybrid models of the car sequencing problem10. Christian Artigues, Em-

manuel Hebrard, Valentin Mayer-Eichberger, Mohamed Siala, and Toby Walsh. In

Integration of AI and OR Techniques in Constraint Programmi ng - 11th Interna-

tional Conference, CPAIOR 2014, Cork, Ireland, May 19-23, 2014. Proceedings,

pages 268�283, 2014 [5].

4. An optimal arc consistency algorithm for a particular case of sequence con-

straint. Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. Con-

straints, 19(1):30�56, 2014 [121].

5. An optimal arc consistency algorithm for a chain of atmost constraints with car-

dinality 11. Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet. In

Principles and Practice of Constraint Programming - 18th International Confer-

ence, CP 2012, Québec City, QC, Canada, October 8-12, 2012. Proceedings, pages

55�69, 2012 [120].

The structure of the dissertation follows globally the contributions order. Chapter 2

introduces the formal background and all notations used throughout the thesis. We

present in Chapter 3 our heuristic study for the car-sequencing problem. In Chapter 4,

we investigate the propagation aspect in a class of sequencing problems. We present in

Chapter 5 our threefold learning propositions: learning incar-sequencing; revisiting lazy

generation; learning in disjunctive scheduling problems.Finally, we conclude the thesis

in Chapter 6 and give potential future research directions.

9http://www2.cnrs.fr/presse/communique/2093.htm
10 This part constitutes a joint work with Valentin Mayer-Eich berger and Toby Walsh. While the

experimental observations were discussed together, the rest of the paper is organized in two clear di�erent
parts. The SAT part is solely proposed by Mayer-Eichberger a nd Walsh while the hybrid propositions
constitutes our own contributions.

11 The paper is awarded with an �Honorable mention�.





Chapter 2

Formal Background

Introduction

We present in this chapter the necessary background and notions used throughout the

thesis. This chapter is divided in three sections: Constraint programming (Section 2.1),

Boolean Satis�ability (Section 2.2), and learning in CP (Section 2.3).

2.1 Constraint Programming

Constraint programming is a framework for modeling and solving combinatorial prob-

lems. Unknowns are modeled with variables drawing their values from a discrete do-

main, and the possible relations between variables are represented as constraints. The

Constraint Satisfaction Problem (CSP) consists in deciding whether there exists an as-

signment of the variables satisfying all the constraints. In this section, we formally de�ne

this formalism and introduce several notational conventions.

2.1.1 Constraint Network

2.1.1.1 Domains, Tuples, and Constraints

Let � be a set. We use the notation S� Sto denote the cardinality of �. A sequence S

de�ned in � is an ordered list of elements in �. We use the same n otation S to denote

a sequenceS or the set of elements inS.

Let n >N‡ and X � � x1; : : : ; xn � be a �nite sequence of distinct variables Adomain for X ,

denoted by D, is a mapping from variables to �nite sets of values. For eachvariable x ,

we call Dˆ x• the domain of the variable x . We suppose thatDˆ x i • is a �nite subset

9
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of Z for all i > � 1; : : : ; n� . We usemin ˆx i • to denote the minimum value in Dˆ x i • and

maxˆx i • to denote the maximum value in Dˆ x i •. A domain D is singleton i� ¦ x >X ,

SDˆ x•S� 1. A fail domain is the special domainÙ where all variables x > X have a

domain equal to g (i.e., SDˆ x•S� 0). The domain of a variable x is called Boolean i�

Dˆ x• � ˜ 0; 1• . In a propositional context, we sometimes denote 0 byfalse and 1 by

true . When a domain Dˆ x • is equal to a set of values of the form˜ l; l � 1; l � 2; ::; u•

(where l and u are two integers s.t. u Cl), we say that Dˆ x• is a range domain and will

be denoted by� l; u� . Finally, we say that v is assigned to the variable x i� Dˆ x• � ˜ v• .

Given two domainsD1 and D2 de�ned over the same sequence of variablesX � � x1; : : : ; xn � ,

we say that D1 is stronger (respectively strictly stronger ) than D2 i� ¦ x; D1ˆx • b

D2ˆx • (respectively ¦ x; D1ˆx • b D2ˆx • and §x i ; D1ˆx i • ` D2ˆx i •). In this case, D2 is

said to be weaker (respectively strictly weaker ) than D1.

A n� tuple (or simply a tuple) � � `v1; : : : ; vn e is a sequence ofn values. We use� � i � to

denote the valuevi . Given a tuple � � `v1; : : : ; vn eand a sub-sequenceS � � xs1 ; : : : ; xsk � b

X , we denote by � �S the k� tuple � œ� `vs1 ; : : : ; vsk e and is called the projection of �

on S.

Let X be a sequence of variables,D a domain for X , and S � � x1; : : : ; xk � a sequence of

variables in X . A constraint C de�ned over S is a �nite subset of Zk . S is called the

scope of C (denoted by X ˆ C•) and SSSis called the arity of C. We sometimes use the

notation CˆS• to denote a constraint C having S as a scope. Aninstantiation of S

is a k� tuple � . � is said to be:

ˆ consistent for C (or satisfying C) if it belongs to C.

ˆ inconsistent for C (or violating C) if it is not consistent for C.

ˆ valid in D if � � i � >Dˆ x i • for all i >� 1; : : : ; n� .

We distinguish two classes of constraints: �rstly constraints given in extension (called

also Table Constraints) where all the acceptable tuples aregiven explicitly in a list; sec-

ondly constraints expressed intentionally by a formula. Example 2.1 shows two possible

representations for the same constraint.

Example 2.1. A constraint de�ned intentionally and extensionally.

Let x1, x2 and x3 be three variables s.t. Dˆ x1• � Dˆ x2• � Dˆ x3• � ˜ 1; 2; 3• . The

AllDifferent ˆx1; x2; x3• stating that the three variables should have pairwise di�erent

values can be de�ned intentionally by the formula:x1 ~� x2 , x2 ~� x3 , x1 ~� x3 or exten-

sionally using the following list of acceptable tuples̀1; 2; 3e, `1; 3; 2e, `2; 1; 3e, `2; 3; 1e,

`3; 1; 2e, `3; 2; 1e.
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All constraints used in this thesis are de�ned intentionally. A constraint type is

a family of constraints sharing a general de�nition. The AllDifferent ˆx1; x2; x3•

constraint given in Example 2.1 is nothing but an instance of the constraint type

AllDifferent where all variables in the scope should have pairwise di�erent values.

The AllDifferent constraint type is de�ned as follows:

De�nition 2.1. AllDifferent ˆ� x1; : : : ; xn �• : x i ~� x j for all i ~� j .

Another typical example of constraint type is the Cardinality constraint given in

De�nition 2.2 where � x1; : : : ; xn � is a sequence of Boolean variables.

De�nition 2.2. Cardinality ˆ� x1; : : : ; xn � ; d•: P n
i � 1 x i � d

Cardinality is in fact a particular case of a more general constraint typecalled Pseudo-

Boolean. Given a sequence of Boolean variables� x1; : : : ; xn � , a Pseudo-Boolean con-

straint 1 has the form of P i � n
i � 1 ai � x i Nk where ai ; k >Z and N is an operator in ˜ B; C; � • .

We shall use the term constraint to denote either a constraint or a constraint type where

no ambiguity is possible.

2.1.1.2 Constraint Satisfaction Problem

De�nition 2.3. Constraint network

A constraint network (CN) is de�ned by a triplet P � ˆX ; D; C• where

ˆ X � � x1; : : : ; xn � is a sequence of variables

ˆ D is a domain for X

ˆ C is a set of constraints de�ned over subsets ofX .

A solution for a constraint network ˆX ; D; C• is an instantiation � de�ned in D s.t. for

all C > C, � � X ˆ C• is consistent for C. A constraint network is said to be satisfiable

if it has a solution; unsatisfiable otherwise. We assume throughout the thesis for

every variable x > X that x is in the scope of at least one constraint and thatx has a

non-empty (initial) domain.

A Constraint Satisfaction Problem (CSP) consists of deciding whether a constraint

network has a solution or not.

Since the SAT problem [39] can be considered as a particular case of CSP (the domain of

each variable is˜ 0; 1• and each clause is considered as a constraint) then the constraint

1That is what Mixed Integer Programming people call a linear c onstraint on binary variables.



Chapter 2 Formal background 12

satisfaction problem isNP-Hard in general. Moreover, if all constraints are checkable in

polynomial time, i.e., each constraintC has a functionCheck C � ZSX ˆ C•S� ˜ false; true •

computable in polynomial time and answers �true � i� the tuple given in input is con-

sistent for C, then the constraint satisfaction problem becomesNP-Complete.

We �nd mainly three approaches in the literature for solving constraint satisfaction

problems: backtracking algorithms, local search and algebraic resolution. We consider

in this thesis, only (complete) backtracking algorithms where the solver explores the

search tree according to some strategies while performing propagation and possibly

learns from con�ict.

2.1.1.3 Backtracking Search

We give in Algorithm 1 a baseline backtracking Solver. One call of the recursive function

TreeSearch() determines the satis�ability of the current constraint network. The �nal

outcome will therefore indicates the satis�ability of the i nitial problem.

This algorithm uses a basic checking function (Algorithm 2) to �nd failures. The deci-

sions are made based on Algorithm 3 �Decide()�.It uses a simple form of decisions: it

chooses an unassigned variable, and assigns it to a value in its domain. The decision

is applied in Line 3. The choice of the next decision to make istypically performed

following a variable/value heuristic.

Algorithm 1: TreeSearch()

1 if !Check() then
return false

else
if D is singleton then

return true
else

oldDomain � D ;
2 ˆx; v• � Decideˆ• ;
3 Dˆ x• � ˜ v• ;

if TreeSearch() then
return true;

else
D � oldDomain ;
Dˆ x• � Dˆ x• � ˜ v• ;
return TreeSearch();

Backtracking algorithms can naturally be traced into trees. Vertices stand for calls

to TreeSearch() and there is an edge between two calls if theyare parent and child.
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Algorithm 2: Check()

if §x s:t : Dˆ x• is empty then
return false ;

1 foreach C >C do
if The domain of X ˆ C• is singleton then

if C is not satis�ed then
return false ;

return true ;

Algorithm 3: Decide()

x � Choose one unassigned variable ;
v � Choose one value inDˆ x • ;
return ˆx; v• ;

The term `search' is used throughout the thesis to describe any process related to the

decisions made to explore the search tree.

With Backtracking Solvers, the domain will be subject to several changes. We will there-

fore suppose thatD (respectively Dˆ x•) denotes the current domain ofX (respectively

the variable x), and Dinitial (respectively Dinitial ˆx •) the initial domain (respectively of

the variable x).

In constraint programming, backtracking solvers are augmented with reduction rules

(known as propagators or �ltering algorithms) that are usually characterized by some

conditions they enforce (called local consistency). Reduction rules aim to reduce the

search space using inferences based on the current state of the constraint network. When

the constraints are given in intention, CP solvers typically use domain-based tightening.

That is, operations on networks, keeping the same set of constraints and solutions, while

returning stronger domains.

2.1.2 Constraint Propagation

2.1.2.1 Propagators

We use a similar formalism to [115, 114] for de�ning propagators.

De�nition 2.4. Let Cˆ� x1; : : : ; xk �• be a constraint. A propagator f for C is a mapping

from domains to domains respecting the following properties for any domain D:

ˆ f ˆD• is stronger than D [Filtering property].
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ˆ Any tuple satisfying C that is valid in D is also valid in f ˆD• [Correctness prop-

erty].

ˆ If Dˆ x i • � ˜ vi • ¦ i > � 1::k� , then f ˆD• � D if `v1; : : : ; vke satis�es C, and f ˆD• � Ù

otherwise [Checking property] .

The scope ofC is also called the scope off and is denoted byX ˆ f •. We assume thatf

operates only onX ˆ f •. That is, if f ˆD• xÙ, then ¦ x ¶ X ˆ C•, f ˆD•ˆ x• � Dˆ x•.

Returning a fail domain Ù is interpreted as �nding a failure. That is, there is no possible

way to satisfy the constraint under the domain D. We suppose that all propagators

return Ù if there exists a variable whose domain is empty. By default we denote any

propagator with the same name as the constraint.

Example 2.2. Propagating Cardinality ˆ� x1; : : : ; xn � ; d•

We show in Algorithm 4 a possible propagator forCardinality ˆ� x1; : : : ; xn � ; d•. This

algorithm satis�es the �ltering, correctness, and checking properties.

Algorithm 4: Cardinality ˆ� x1; : : : ; xn � ; d•

if S̃x j SDˆx j • � ˜ 1•• SAd then
1 D �Ù ;

if S̃x j SDˆx j • � ˜ 0•• SAn � d then
2 D �Ù ;

if S̃x j SDˆx j • � ˜ 1•• S� d then
foreach i > ˜1::n• do

if Dˆx i • � ˜ 0; 1• then
3 Dˆx i • � ˜ 0• ;

else
if S̃x j SDˆx j • � ˜ 0•• S� n � d then

foreach i > ˜1::n• do
if Dˆx i • � ˜ 0; 1• then

4 Dˆx i • � ˜ 1• ;

return D ;

Propagators are executed within backtracking search sequentially before taking any de-

cision. We describe the basicGeneric Iteration Algorithm used in [4, 114, 20] to iterate

over a set of propagators. Algorithm 5 depicts a possible pseudo-code that returns a

Boolean indicating if propagation �nish without �nding a fa ilure.

In this algorithm, F is a set of propagators andOpen is a list, initialized with F ,

containing a subset of propagators to execute. Each iteration in the main loop chooses
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Algorithm 5: Propagate()

Open � F ;
while Open ~� g do

Choosef >Open ;
Open � Open� ˜ f • ;
D � f ˆD• ;
if D � Ù then

return false ;

for x >X ˆf • s:t: Dˆx• changeddo
Open � Open8 ˜ g Sg >F , x >X ˆg•• ;

return true ;

a propagator f in Open; executes f ; then updates the list Open. All propagators

not in Open and having at least one variable whose domain is changed byf will be

added to Open. The �ltering property that we used in the de�nition propaga tors makes

Algorithm 5 terminates [4, 114].

The incorporation of propagators into a backtracking solver is simply done by replacing

the checking function in the TreeSearch algorithm (Line 1 inAlgorithm 1) with a call to

Propagate(). Modern CP-Solvers deploy propagation based on Algorithm 5, however,

with several improvements like the notion of idempotency and priority of propagators,

among others. We shall not detail further this iterative process. We give, however, more

attention on how to �measure� the �ltering level between pro pagators.

Given two propagators f , g , we say that f is stronger than g i� f ˆD• is stronger than

gˆD• for all domain D. In this case, we say also thatf subsumesthe �ltering/pruning

of g. The �ltering of f and g is said to be incomparable i� none of them is stronger

than the other. It is common in CP modeling to combine incomparable propagators

together in order to prune further the search space. This wasfor instance the modeling

choice in [11, 140, 139, 25]. There is of course a tradeo� between �ltering strength and

computational cost, and it is not always obvious to choose the most practical propagator.

We shall draw a link to this modeling choice later when we introduce the notion of global

constraint.

2.1.2.2 Local Consistency

Characterizing the level of �ltering is usually associatedwith the notion of local consis-

tency. A local consistency is a property that characterizes some necessary conditions

on values (or instantiations) to belong to solutions [20]. The most known and widely

used local consistency property is Arc Consistency.

De�nition 2.5. Support
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A support on a constraint C in a domain D is an instantiation of X ˆC• satisfying C

and valid in D.

We say that an assignment x i � v has a support on a constraintCˆ� x1; : : : ; xk �• in D

i� there exists a support � on C in D s.t. � � i � � v. Another way to look at the notion

of support is that if a propagator for C prunes a valuev from Dˆ x i •, then necessarily

x i � v does not have a support inC (due to the correctness property).

De�nition 2.6. Arc Consistency

A constraint Cˆ� x1; : : : ; xk �• is Arc Consistent (ac) on a domain D i� for all i >� 1; k� ,

any value v >Dˆ x i • has a support onC in D.

We shall use the term �complete �ltering� to describe a propa gator enforcingac . Indeed,

enforcing ac on a constraint C guarantees that every possible assignment can be part

of a consistent instantiation for C.

Example 2.3. ac on Cardinality ˆ� x1; : : : ; xn � ; d•

The propagator depicted in Algorithm 4 enforcesac on Cardinality ˆ� x1; : : : ; xn � ; d•

in Oˆn•.

There is a close computational relationship between enforcing ac and solving. If decid-

ing whether a given constraint C is satis�able or not costs Oˆ� • time complexity, then

enforcingac on this constraint can run in Oˆ� � P x >X ˆC• SDˆ x•S• by checking every pos-

sible assignment onX ˆ C•. The reverse sense works as follows: ifac runs in Oˆ� • time,

then deciding the constraint runs in Oˆ� • and �nding a solution costs OˆSX ˆ C•S� � • .

Arc Consistency is sometimes very costly to enforce. One maytypically consider instead

a weaker form of propagation called Bound Consistency.

De�nition 2.7. Bound Support

A bound support on a constraint Cˆ� x1; : : : ; xk �• in a domain D is a k� tuple � satisfying

C s.t. ¦ i >� 1; k� , � � i � >�min ˆx i •; maxˆx i •� .

De�nition 2.8. Bound consistency

A constraint Cˆ� x1; : : : ; xk �• is bound consistent (bc) in a domain D i� for all i >� 1; k� ,

min ˆx i • and maxˆx i • have a bound support in D.

Bound Consistency is obviously weaker than Arc Consistency. Note, however, that they

are equivalent in some cases. Take for example the constraint x1 B x2. ac and bc are

equivalent since for any bound support, we can easily build asupport for this constraint.

We shall omit mentioning the domain D when describing supports,ac , and bc as it is

supposed to be the current domain.
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2.1.3 Decomposition & Global Constraints

2.1.3.1 Decomposition

We say that a constraint C can bedecomposedinto a �nite set of constraints ˜ c1; : : : ; ck •

i� for any solution � for the constraint C‡ de�ned by c1 , : : : , ck , we have� � X ˆ C• is a

solution for C. Notice that there might exist some variablesX ‡
C in the scope ofc1 : : : ck

that do not belong to the scope ofC. In this case we use the termchanneling to denote

the constraints having in their scope variables from bothX ˆ C• and X ‡
C .

It is known that decomposing constraints hinders propagation in general. Consider

again the AllDifferent ˆx1; x2; x3• constraint in Example 2.1 with Dˆ x1• � Dˆ x2• �

˜ 1; 2• and Dˆ x3• � ˜ 1; 2; 3• . Enforcing ac on each constraint of the decomposition

would leave the domain as it is whereas there is no possible way to satisfy the original

constraint when assigning 1 or 2 tox3. In this example, the constraints x1 ~� x2, x2 ~�

x3, and x1 ~� x3 are ac whereasAllDifferent ˆx1; x2; x3• is not. Achieving ac on

AllDifferent ˆx1; x2; x3• in this case reduces the domain ofx3 to ˜ 3• .

There exists, however, a few particular cases where the decomposition maintains ac . We

use in this thesis two known cases whereac on a constraint C is equivalent to enforcing

ac on a decomposition. The �rst case, described below, is related to the notion of Berge

acyclicity in the constraint graph, whereas the second caseis related to the notion of

monotonicity (a constraint of this type is studied in Section 4.2).

Let P � ˆX ; D; C• be a CN. The constraint graph of P is a hypergraph H P in which

one associates each variable to a node and each constraint scope to an hyperedge. A

Berge cycle [18] in H P is a sequence�C1; x1; ::; Ck ; xk ; Ck� 1� (k A 1) where : x1 . . . xk

are distinct variables; C1 . . . Ck are distinct constraints; Ck� 1 is C1; and x i is in X ˆCi •

and X ˆCi � 1•. H P is said to be Berge cyclic if it contains a Berge cycle; and Berge

acyclic otherwise. Notice than if two distinct variables x1 and x2 are in the scope of

two constraints C1 and C2, then the constraint graph is necessarily Berge cyclic. The

sequence�C1; x1; C2; x2; C1� is a Berge cycle in this case.

Let C be a constraint that can be decomposed into a �nite set of constraints ˜ c1; ::; ck • .

If the constraint graph of the CN formed by c1, . . . , ck is Berge acyclic, thenC is ac i�

ci is ac for all i >� 1; k� [14].

2.1.3.2 Global Constraints

The notion of global constraint [27, 137] is a fundamental concept in CP. We consider

the de�nition of a global constraint as a constraint type de�ned over a non-�xed
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number of variables. In practice, they represent sub-problems or patterns occurring in

many problems.

The AllDifferent constraint given in De�nition 2.1 is a typical example. Ther e is a

wide range of problems in which one can useAllDifferent . Sudoku for instance is a

typical example where one can post anAllDifferent constraint for each row, column,

and square. The same constraint can also be used in scheduling problems with unary

resources. If all tasks of a machineM have a duration of one unit of time, then the

resource constraint related toM is nothing but an AllDifferent constraint on the

variables representing the start time of each task.

A global constraint is usually introduced in the CP literature together with a polynomial

time �ltering algorithm. The fact that they occur in several applications has attracted

a lot of attention to develop special-purpose propagators making them practical tools

for tackling hard combinatorial problems. The global constraint catalog 2 [16] contains

descriptions (in terms of graph properties, automata, or �rst order logical formula) for

more than 400 global constraints. Such a rich language may sometimes make it di�cult

to make the best the modeling choices.

We give in the following the de�nition of the Global Cardinality Constraint (Gcc )

and the Global Sequencing Constraint (Gsc) that are used throughout this thesis.

Let � x1; : : : ; xn � be a sequence of variables and �� � n
i � 1 Dˆx i •. Let low and upp be

two mappings on integers such thatlowˆ j • B upp̂ j • for all j . The Global Cardinality

Constraint Gcc [110] is de�ned as follows:

De�nition 2.9. Gcc ˆ low; upp;� x1; : : : ; xn �• � � j >� lowˆ j • BS̃i Sx i � j •SBupp̂ j •

Gcc ˆ low; upp;� x1; : : : ; xn �• limits the occurrences of any valuej > � in the sequence

� x1; : : : ; xn � to be in the interval � lowˆ j •; upp̂ j •� . It can be seen as a generalization of

AllDifferent if we restrict the intervals � lowˆ j •; upp̂ j •� to be �0; 1� . Arc Consistency

on Gcc can be enforced inOˆS� S:n2• [110]. Quimper et al. showed a Bound Consistency

algorithm for this constraint running in Oˆt � n• where t is the time to sort the bounds

of the domains of the variables [107].

The Global Sequencing ConstraintGsc is de�ned with a conjunction between a Gcc

and a chain of Among constraints. An Among constraint (De�nition 2.10) limits the

occurrences of values of a set of integers� to be bounded between two integerl and u

(l @u).

De�nition 2.10. Among ˆ l; u; � x1; : : : ; xq� ; � • � l BS̃i Sx i >� •SBu

The Gsc constraint is de�ned as follows:
2The latest version is available via http://sofdem.github.io/gccat/ .
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De�nition 2.11. Gscˆ l; u; q; low; upp;� x1; : : : ; xn � ; � • �

n� q

�
i � 0

Among ˆ l; u; � x i � 1; : : : ; x i � q� ; � • , Gcc ˆ low; upp;� x1; ::; xn �•

We mention now an important complexity property related to ac for global constraints.

For a more complete background on the subject, we refer the reader to [24].

De�nition 2.12. ac -poly-time [24]

An ac -poly-time decomposition of a global constraint is a decomposition where ac can

be enforced in polynomial time w.r.t. the size of the original constraint and domains.

Theorem 2.13. [24]

If enforcing ac on a global constraint is NP-Hard, then there is noac -poly-time decom-

position of the original constraint that achievesac on C.

Theorem 2.13 gives a clear statement when to consider lower �ltering compared to ac .

Obviously, one does not use in practiceac algorithms when they are NP-Hard. Instead,

lower �ltering (usually bc) is typically used is this case since any decomposition would

hinder propagation anyway. Arc Consistency onGsc for instance is NP-Hard [22]. Régin

and Puget proposed a reformulation of this constraint into a set of Gcc constraints.

Their �ltering is therefore hindering propagation.

The modeling choice between several global constraints should take into account the

�ltering level to enforce along with the complexity of such propagation. This tradeo� is

often the motivation behind proposing new global constraints. The latter are usually ei-

ther extensions or particular cases of other global constraints that might occur in a num-

ber of applications. It should be noted that the more generalis a constraint, the higher

the complexity of enforcing a given level of consistency on it. For instance, enforcing

ac on Gcc can be done inOˆS� S:n2• time [110] while enforcingac on AllDifferent

takes OˆS� S:n1:5• time [109]. Sometimes, generalizing constraints can make them in-

tractable. For example, considerGcc in which, instead of integer bounds of occurrences

(i.e.,lowˆ j • and upp̂ j • for all j > �), we have variables. That is, the occurrence of

each valuej > � has to be equal to a variable � j . ac for this constraint is NP-Hard to

enforce [108].

2.1.4 Search

The search aspect is related to the decisions made to explorethe search tree. A decision

in CP is often performed heuristically by reducing a speci�c variable domain to a value

(in a similar way to Algorithm 3). Variable ordering heurist ics are typically designed
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following the `fail-�rst' principle [73, 129, 13]: �To succ eed, try �rst where you are most

likely to fail.�. As such, one tries to avoid inconsistent subtrees as soon as possible.

Value ordering is usually less important and follows generally an opposite principle,

called `succeed-�rst' or `promise' [61]. Indeed, the valuewith best chances to lead to

a solution is preferred. These heuristics can be customizedto the problem at hand

or follow a standard scheme. Examples of problem dependent heuristics can be found

in [54, 130, 126, 51, 122]. Examples of standard variable ordering heuristics include:

lexicographical order, minimum domain size, and maximum variable degree (i.e., how

much a variable is constrained). General purpose value heuristics are less common,

trivial ones (such as branching on the minimum or maximum value in the domain) are

often used by default.

Search strategies can have a dramatic e�ect on the overall e�ciency as they guide the

exploration of the search space [73, 28, 9, 63, 104]. In fact,a �bad� decision can cause the

exploration to become trapped in an unsatis�able sub-tree that can take an exponential

time to explore.

2.1.4.1 Boosting Search through Randomization and Restart s

The authors of [67], have shown that the `hardness' of �ndingsolutions is not entirely

related to the instance at hand, but rather to the combination `instance ` determin-

istic algorithm'. This observation is supported by the e�ci ency gain witnessed when

adding randomization to a deterministic search algorithm. Randomization is typically

performed when making decisions. For instance, one can use randomization when tie

breaking choices that rank equally with respect to the heuristic at hand. Another ex-

ample is to choose randomly across a number of best choices.

It was observed int [67] that at any time during the experiment there is a non-negligible

probability of hitting a problem that requires exponential ly more time to solve than

any that has been encountered before [67]. This phenomenon explains that runtime

distributions on random instances, or on random runs for a given instance, are often

heavy tailed .

Restarts has been proposed as a solution to avoid this phenomenon. Thesearch is

bounded by a given cuto�. Once the cuto� reached, the exploration is stopped, and

restarted from the search root. One usually uses the number of failures as a restart

cuto�. Using randomization when branching on nodes makes the explored trees di�er

from restart to restart.

We �nd in the literature two common restart policies. A geometric restart [144] uses

a limit of b� f k� 1 for the kth restart where b is called a base andf is called a factor. A

Luby policy [88], on the other hand, follows the sequence 1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1,
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2, 4, 8, . . . multiplied by a baseb. The i th element of the luby sequence i is de�ned

recursively by the formula:

¢̈
¨
¦
¨̈
¤

2k� 1 if §k >N; i � 2k � 1

 i � 2k � 1 � 1 if §k >N; 2k� 1 Bi @2k � 1
(2.1)

2.2 Boolean Satis�ability

The Boolean Satis�ability Problem (SAT) is the question of d eciding a Boolean expres-

sion de�ned in a Conjunctive Normal Form. That is, a conjunct ion of clauses, each of

which is a disjunction of literals, and each literal represents a Boolean variable or its

negation. As such, SAT can be considered as a particular caseof CSP. This restriction

has made SAT solvers bene�t from several enhancements that are not available in pure

constraint programming solvers.

We describe in this section the organization of modern SAT solvers by formally de�ning

this formalism and introducing some related notions.

2.2.1 A Background on Propositional Logic

An atom a is a propositional (i.e., Boolean) variable. A literal p denotes either an

atom a or its negation  a. The former is called positive literal whereas the latter is

called negative literal. We use the notationsa and  a for each atom a to denote its

positive and negative literals respectively. We extend thenegation operator to literals

following the rule   p � p. A clause c is a disjunction of literals p1 - : : : - pk . We

suppose, without loss of generality, that all literals in a clause are pairwise distinct and

there is no literals p,  p in the same clause. We use the two notations:pi > c for any

literal appearing in the clause c; and ScSas the size of the clause (i.e., the number of

literals in the disjunction). Let c, cœbe clauses andp be a literal. We denote by: p - c

the clause obtained by the disjunction of p with all literals in c; and c - cœthe clause

de�ned by the disjunction of all literals in c and cœ. Finally, a propositional formula � is

given in a Conjunctive Normal Form (CNF) if it is de�ned by a conjunction of clauses

c1 , :: , cn .

With that being de�ned, a CNF can be considered as a constraint network ˆX ; D; C• s.t.

X is the set of atoms, andC is the set of clauses. The Boolean Satis�ability Problem

(SAT) is to decide the satis�ability of a CNF formula [39].

A literal p is said to be:
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ˆ true i� p is positive and its atom is assigned to the value 1 orp is negative and its

atom is assigned to the value 0.

ˆ false i�  p is true .

A literal p is said to satisfy a clausec i� p > c and p is true . Conversely, a literal p is

said to strengthen a clausec i� p >c and p is false .

A clause c is satis�ed i� there exists a literal satisfying c. Similarly, c is violated i�

¦ p > c, p falsi�es c. A clause c is called unit when it contains exactly one unassigned

literal and the rest strengthen c. Finally, an empty clause Ùclause is a clause with no

literals.

2.2.2 Con�ict Driven Clause Learning

Conflict Driven Clause Learning (CDCL) [123, 124, 95, 48] is a state-of-the-art com-

plete algorithm underlying most modern SAT solvers. CDCL is essentially based on the

Davis-Putnam-Logemann-Loveland (DPLL) [41] algorithm augmented with

resolution [112]. DPLL is a backtracking system using one type of propagation called

Unit-propagation (UP).

We associate two values to each assigned literalp: level( p) represents the number of

decisions in the path between the root and the node in whichp is assigned; andrank( p)

represents the rank ofp in the sequence of assignments of its level, in chronological order.

We shall start counting rank from 0 at each level. Therefore, any decision has a rank

equal to 0.

We introduce the notion of propagation rule as a mechanism todescribe the outcome

of some propagation.A propagation rule is a logical implication of the form 	 � p

where 	 is a conjunction of literals and p is either a literal or a failure Ù. 	 is said to

be the explanation for (propagating) p and will be denoted by explain( p) .

UP triggers propagation in two possible ways. First, whenevera clausec becomes unit,

it enforces the only unassigned literalp in c to be true since it is the only possible way to

satisfy c. The propagation rule describing this �ltering is � qxp>c  q � p. Second, when

all literals in a clause c falsi�es c, a failure Ù is triggered (c is said to be theconflict

clause in this case). We use� q>c  q � Ù to describe this propagation. If q is the last

propagated literal in the con�ict clause, then we call q and  q conflicting literals .

Finally a nogood is a conjunction of literals su�cient to make the CN unsatis� able if

they are true . It follows from any propagation rule of the form 	 � Ù that 	 is a

nogood.
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As previously said, modern SAT solvers implement Con�ict Driven Clause Learning

(CDCL) [123, 124, 95, 48], i.e., essentially DPLL in which new clauses are learnt from

failures [123, 124]. However, CDCL solvers feature many enhancements, we describe the

most important.

2.2.2.1 Con�ict Analysis

Whenever a failure occurs during search, a new nogood is computed. The latter is trans-

lated into a clause that will be added to the base and used to perform non-chronological

backtrack (known with the term backjump). The whole machinery is calledconflict

analysis and is based on the notion of cuts in theImplication Graph

De�nition 2.14. Implication graph

The implication graph GˆN; E • is a directed acyclic graph built as follows:

ˆ Each assigned literal is associated to a vertex inN .

ˆ There exists a directed edge in E from p to q (p ~� q) if p >explain ˆq•.

ˆ When a failure is detected by a clause c, we �rst add a vertex q s.t. q is the

con�icting literal in c. Then, any literal p x q > c is associated to a directed edge

going from p to q. Finally, there is a special vertex Ù having edges coming fromq

and  q.

From De�nition 2.14, one can observe that all decisions haveno incident edge inGˆN; E •.

We give an example of implication graph. Suppose that the setof clauses contains the

following �ve clauses, among others: (1) a -  b; (2) b - h - c; (3)  g -  c -  d; (4)

 c - d -  e; and (5)  c - e.

We suppose that: g and a are true and correspond to decisions made at levels 4 and

9 respectively;  h is propagated at level 6; the propagation after assigninga follows

the following propagation order: clause 1 propagates b, clause 2 propagatesc, clause 3

propagates d, clause 5 propagatese, and clause 4 triggers failure.

We show a part of the implication graph leading to failure. A nodeplYr in the implication

graph stands for the assignment ofp as the r -th consequence of thel-th decision (i.e.,

l � levelˆp• and r � rank ˆp•). Note that decisions will always have the form of pnY0

since their rank is always equal to 0. Grey vertices are decisions while white vertices are

propagated literals. The con�icting literals in this examp le are e and  e.

The implication graph is built while searching by recording for each assigned literalp its

reason, that is, explain ˆp• if p is propagated andnull otherwise (i.e., p is a decision).
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Figure 2.1: Example of implication graph

 b9Y1 c9Y2a9Y0

 h6Y13

e9Y4

 e9Y5 d9Y3

Ù

g4Y0

Figure 2.2: Cuts in the implication graph

During con�ict analysis, new nogoods will be produced. Theycorrespond to cuts in the

implication graph. We de�ne a cut as a bipartition of GˆN; E •. We distinguish two

disjoint sets: the con�ict part and the reason part. The conflict part always contains

the Ù vertex whereas thereason part contains all decisions. The conjunction of literals

in the reason side that have an edge going to at least one literal in the con�ict side leads

to a contradiction. It is therefore a nogood. The clause equal to the negation of the

nogood is therefore logically implied by the CN. Di�erent cuts will therefore produce

di�erent clauses. We show in Figure 2.2 two di�erent cuts for the implication graph

used in the previous example of Figure 2.1. The two cuts correspond to the nogoods

c , g and g , a ,  h. Hence we can learn the clauses c -  g and  g -  a - h.

When a nogood c is identi�ed, c is �rstly learnt and secondly used to perform non-

chronological backtracking (calledbackjumping ). The condition for backjumping is that
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c contain only one literal p in the latest level. In this case, c can be seen as 	 Ô� p

where 	 �  p1 , :: ,  pn s.t. pi ~� p > c and pi are assigned at previous levels. We

�rst backtrack to the greatest level between levelˆpi •, then c directly propagates p. For

instance, with the clause g -  a - h in the previous example, we backtrack to level 6

and assign a to true immediately.

Learning schemes are essentially di�erentiated by their methods for building cuts. The

�rst method proposed in the literature is the one used in the relsat system [76] where

cuts are built s.t. the literal in the last level is always the latest decision. Modern

SAT-solvers, however, use any Unique Implication Point (UIP), that is, a dominator of

the con�icting literals in the last level.

De�nition 2.15. Domination in the Implication Graph [147]

A vertex V dominates another vertexV œin the implication graph if any path from the

decision vertex of the level ofV to V œhas to go through V .

De�nition 2.16. Unique Implication point [147] A Unique Implication point (UIP)

is a vertex in the current level that dominates both con�icti ng literals.

Choosing cuts based on UIPs was originally proposed in Grasp[123, 124]. As we can

see in Figure 2.3, several UIPs can be found in a same implication graph. In this �gure,

every path from the latest decision (i.e., a) to the con�icting literals e and  e has to

pass througha, b and c. Three di�erent UIP cuts are therefore possible in this example.

Among the several possibilities, there exists one UIP cut that is particularly interesting.

By considering all UIPs by their reverse order of propagation, the �rst one (i.e., the

nearest to the con�ict), called the �rst Unique Implication point ( 1-UIP), guarantees

the best backjump level (i.e. the nearest to the root). 1-UIP cuts have been shown to

be extremely e�cient in practice [147] and are widely used in modern SAT Solvers.

Algorithm 6: 1-UIP

d � current level ;
	 � explain ˆÙ• ;

while S̃q >	 Slevelˆq• � d•SA1 do
1 p � arg maxqˆ˜ rank ˆq• Slevelˆq• � d , q >	 •• ;
2 	 � 	 8 ˜ q Sq >explain ˆp• , levelˆq• A 0• � ˜ p• ;

return 	 ;

Algorithm 6 shows a possible algorithm for computing the 1-UIP nogood. It returns a

nogood 	 having one literal assigned at the last decision level d. 	 is initialized with

the explanation of failure. Each iteration in the main loop substitutes a literal in 	 with

its explanation. The choice of the next literal to substitut e is performed at Line 1 with

the literal of 	 assigned at the last decision level and of maximum rank.
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Figure 2.3: Unique Implication Points in an implication graph

Algorithm 6 is usually implemented with a worst case time complexity of Oˆ � • where �

is the number of propagated literals in the last level. Indeed this requires exploring the

sequence of assigned literals in the latest level starting from the last propagated literal.

It should be pointed out that modern SAT solvers usually try t o reduce the �nal nogood

	 [132]. A common strategy of reduction is to eliminate liter als having their explanation

in 	.

In the example used in Figure 2.1, the 1-UIP clause is g -  c, and the literal c is the

�rst UIP. The solver then backtracks to the level of assigning g (i.e., 4 in this case),

assignsc to false , then continues the exploration. We show a step-by-step execution of

algorithm 6 for building the nogood in this example.

1. 	 � c ,  d , e

2. p � e

3. 	 � c ,  d (i.e., 	 � 	 8 ˜ c• � ˜ e• )

4. p �  d

5. 	 � c , g

We use the term clause database in the rest of this thesis to denote the set of learnt

clauses.
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2.2.2.2 2-Watched Literals

Unit-propagation is typically implemented with lazy data s tructures. The 2-watched

literals [95, 62] is the most known lazy propagation scheme used with modern SAT

solvers. Brie�y, the idea is associate each clausec to two literals p; q > c (said to be

watching c). No propagation check is needed forc as long as the two literals watching

c are unassigned. Without loss of generality, ifp becomes assigned, but strengthen the

clause, Unit-propagation looks for a new unassigned literal to watch c. If no such literal

exists, Unit-propagation assignsq to true if q is unassigned and triggers failure ifq is

assigned but falsi�esc.

2.2.2.3 Activity-Based Branching

One of the most known and widely used variable ordering heuristic in SAT solvers is

the so-calledVariable State Independent Decaying Sum (VSIDS) [95]. This heuristic

has been shown to be extremely e�cient is practice. One can �nd a variety of imple-

mentations for VSIDS. The �rst description of a VSIDS orderi ng follows the following

steps [95]:

ˆ Each literal has an `activity' value initialized to 0.

ˆ Whenever a literal occurs in a learnt clause, its activity i s incremented.

ˆ The (unassigned) literal with the highest activity is chos en at each decision.

ˆ All activity values are periodically divided by a constant so that literals in recent

learnt clauses are preferred.

2.2.2.4 Clause Database Reduction

Learning clauses without controlling the clause database size can lead to a memory

explosion with the increasing number of clauses. This explosion is likely to increase

the amount of time required for enforcing UP . Several deletion strategies have been

proposed in the literature [124, 95, 48, 7, 75]. One usually prefers the shortest clauses,

or the most `active' clauses. The latter are selected based on literal activities computed

along with VSIDS. It is important to note that clauses responsible for propagating some

literals in the current branch should not be deleted as they might be needed during

con�ict analysis.
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2.2.2.5 Restarts

We have discussed in Section 2.1.4.1 the importance of restarts for combinatorial algo-

rithms in general. CDCL can bene�t further from restarts by u sing the learnt clauses

and activity counting. The learnt clause prevents previous branches to be explored

twice. Moreover, the activity of literals can be extremely useful to bring information

from previous restarts to the search strategy.

2.3 Clause Learning in CP

When exploring a search tree, we repeat many times the same decisions. It is therefore

natural to try to learn from failures, in order to avoid doing the same mistake again. By

de�nition, an exact set of decisions is never explored twiceis a search tree. However, it

may happen that only a part of the current branch entails a failure. When this is the

case, it is possible to learn something useful in order to avoid failing more than once

with the same reason.

We have seen in the previous section how nogoods are derived from con�icts in SAT

solvers. Nogood learning inCP, however, predates CDCL. Indeed, the notion of nogood

goes back originally to the 70s in the seminal work of Stallman and Sussman [133]. And

the �rst formal adaptation to CP was proposed by Dechter in [43]. A nogood (or con�ict

set in [43]) is de�ned as a set of assignments that can not leadto any solution. Other

approaches to nogood recording were proposed later in [105,113, 66].

Nogood learning in CP had not the same impact of CDCL in SAT solvers in the early

days. It has gained, however, considerable attention progressively during the last decade

and a half [79, 78, 80, 77, 82, 35, 34, 36, 37, 101, 106]. The notion of `explanation' is

the central component in these works. In order to compute a nogood, every propagation

outcome should be explained in the form of a set of decisions and/or earlier propagations

that logically imply it.

Learning in CP has taken a new start in the past decade thanks to Katsirelos's

generalized nogoods [82, 81]. A generalized nogood extends the notion of nogood to

contain both assignments and non-assignments (i.e., pruning). Lazy clause generation 3

(LCG) [100, 101] is a similar approach to Katsirelos'. However, propagators in LCG are

allowed to use literals of the formJx � vK, Jx x vK, Jx BvK, and Jx CvKto express domain

changes. All these types of literals can be used to explain domain reductions in a clausal

form. The explanations are used essentially to mimic CDCL.

3Note that the term �lazy� might refer to completely di�erent notions depending on the context (such
as Integer Linear Programming). We therefore insist to ment ion that we use this term to respect the
exact terminology used in [100, 101, 53, 52].
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We give an illustrative example. Let � be a Boolean variable andx1 : : : x11 be variables

with a domain de�ned by: Dˆx1• � � 1; 30� , Dˆ x2• � � 9; 30� , Dˆ x3• � � 0; 3� , Dˆ x4• �

� 0; 30� , Dˆ x5• � � 24; 50� , Dˆ x6• � � 5; 10� , Dˆ x7• � � 2; 10� , Dˆ x8• � � 9; 30� , Dˆ x9• �

� 13; 16� , Dˆ x10• � � 0; 3� , and Dˆ x11• � � 15; 100� . These variables are subject to the

following constraints: (1) x1 � x7 C4, (2) x2 � x10 C11, (3) x3 � x9 � 16, (4) x5 Cx8 � x9,

(5) � � ˆx9 � x4 � 14•, (6) � � ˆx6 C7•, (7) � � ˆx6 � x7 B 9•, and (8) x11 Cx9 � x10.

Observe that no pruning happens in the initial state of the problem. Now consider the

following decisions in the chronological order:

1. Assign x1 to 1: The only subsequent propagation is to make 3 the lower bound of

x7 by constraint (1), i.e., Jx7 C3K.

2. Assign x2 to 9: Constraint (2) propagates Jx10 C2K.

3. Assign x3 to 2: In this case, constraint (3) enforcesJx9 � 14K, then constraint (8)

propagatesJx11 C16K.

4. Assignx4 to 0: Constraint (5) propagates � to 1. Constraint (6) enforcesJx6 C7K.

And constraint (7) �nds failure.

The implication graph corresponding to this example is shown in Figure 2.4. The solver

learns the new clauseJx7 B2K- J� � 0K following the 1-UIP scheme, backtracks to the

�rst level, assigns � to 0, and resumes the exploration of the search space.

Figure 2.4: Example of an implication graph with a hybrid CP /SAT solver

CP-solvers can bene�t from clause leaning by `discovering' new �ltering rules, in the form

of clauses, that propagators alone are not able to perform. In the previous example for
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instance, when enforcingJx7 C3K, no �ltering suggest that � should be assigned to 0. It is

only by means of the learnt clauseJx7 B2K- J� � 0Kthat the solver performs such �ltering.

Hybrid CP/SAT solvers may combine features coming from both approaches such as

powerful propagation mechanisms, clause learning, and adaptive branching. However,

this holds only when propagators, including those proposedfor global constraints, are

able to explain all their pruning.

In the rest of this section, we cover in more details the principles of Lazy Clause Gen-

eration [101, 100, 53] as it is the framework that we use to design the approach in-

troduced in this dissertation. The latest architecture [53] is implemented on top of a

CP-solver augmented with most SAT features (clause learning, non-chronological back-

track, adaptive-Branching, etc).

2.3.1 A Baseline Hybrid Solver

2.3.1.1 Domain Encoding

The atoms on which the learning is performed are related to some propositional facts

about the variable domains. These atoms are channeled through a set of clauses to ensure

a correct domain representation. The most known domain encodings in the literature

are the direct encoding [42, 145] and theorder encoding [40, 135] .

We assume without loss of generality that x is a variable with a domain Dˆ x • �

˜ v1; v2; : : : ; vk • where vi @vi � 1 for all i >� 1; k � 1� .

The Direct Encoding The direct encoding usesk atoms denoted byJx � vj K(j >

�1; k� ) s.t. Jx � vj Kis semantically equivalent to assigningx to vj . Two types of clauses

are used to represent the di�erent relations between these atoms.

ˆ at-least-one: a clause is used to express the fact thatx has to be assigned to a

value:

Jx � v1K- Jx � v2K- : : : - Jx � vkK

ˆ at-most-one: k2 � k
2 clauses are used to express the fact thatx has to be assigned

to only one value.

¦ l @h >�1; k� ,  Jx � vl K-  Jx � vkK.
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The Order Encoding Here alsok atoms are used, however, each atom (denoted by

Jx B vj K, j > �1; k� ) is equivalent to have an upper bound forx less than vj . As for the

domain clauses,k � 1 clauses are used as follows:

¦ j >� 1; k � 1� ;  Jx Bvj � 1K- Jx Bvj K

To make the notation lighter, we denote by Jx x vKthe literal  Jx � vKand Jx CvKthe

literal  Jx Bv � 1K.

Following lazy clause generation, we use these two types of atoms together. In this case,

the domain related clauses have to ensure a complete domain representation between

these atoms. For instance, ifJx B 3K is true, then Jx � 4K and Jx � 5K should be set

to false. A clausal representation of such relationships can be found in [100] under the

term Domain Faithfulness (which is essentially a channeling between the direct and

order encoding). Without loss of generality, for every variable x s.t. D ˆx• � � l; u� , we

have the following clauses (referenced later bydom( x) ):

1.  Jx BdK- Jx Bd � 1K, ¦ d >� l; u � 1�

2.  Jx � dK- Jx BdK, ¦ d >� l; u � 1�

3.  Jx � dK-  Jx Bd � 1K, ¦ d >� l � 1; u�

4. Jx � lK-  Jx B lK

5. Jx � dK-  Jx BdK- Jx Bd � 1K, ¦ d >� l � 1; u�

6. Jx � uK- Jx Bu � 1K

2.3.1.2 Solver Description

All domain related atoms and clauses described above are generated before search. The

UP engine acts as a global constraint whose scope contains all these atoms, and whose

semantics is given by the set of domain related clauses. During search, every propagator

is expected to explain each domain change it performs. Sinceevery domain change must

be represented by a literal, propagators are limited to changes that can be expressed as

conjunctions of literals of the following types:

ˆ Assignment: an assignment operation assignsx to a value v in its domain, written

Dˆ x• � ˜ v• .

ˆ Pruning: conversely to assignments, a pruning operation removes a valuev from

a variable domain, written Dˆ x• � Dˆ x• � ˜ v• .
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ˆ Upper bound tightening: an upper bound tightening operati on changes the upper

bound of x to a value u >�min ˆx•; maxˆx• � 1� , written Dˆ x• � Dˆ x•9� � ª ; u� .

ˆ Lower bound tightening: a lower bound tightening operatio n changes the lower

bound of x to a value l >�min ˆx• � 1; maxˆx•� , written Dˆ x• � Dˆ x• 9 � l; �ª� .

The notion of `explanation' and `propagation rule' that we introduced in Section 2.2.2

for clauses are extended to propagators as follows. First, each domain operation is

mapped to one of the literals Jx � vK, Jx x vK, Jx B vK, and Jx CvKin the natural way.

Second, once a domain operation is executed by a propagatorf , the solver assigns the

corresponding domain literal accordingly. For instance, if f enforces a new upper bound

u for a variable x with Dˆ x• � Dˆ x•9� � ª ; u� , then the literal Jx B uKis assigned to

true. Any propagator executing a domain operation associated to a literal p is asked to

explain p with a propagation rule of the form 	 � p where 	, called an explanation

for p, is a conjunction of literals. The explanation 	 should be of course valid in the

sense where if the set of domain operations corresponding toliterals in 	 are called on

the initial domain, then f executes (at least) the domain operation associated top.

Example 2.4. Propagation rule

Let f be the propagator forx C y � 10 described in Algorithm 7. When tightening the

lower bound ofx to 13 becausey is assigned to3 (Line 2), f can generate the propagation

rule Jy � 3K� Jx C13Kwhich corresponds to the clauseJy x 3K- Jx C13K.

Algorithm 7: x Cy � 10

if min ˆy• � 10 Amaxˆx• then
1 D �Ù ;

else
if ˆmin ˆy• � 10• Amin ˆx• then

2 Dˆ x• � Dˆ x• 9 � min ˆy• � 10; �ª� ;

if ˆmaxˆx• � 10• @maxˆy• then
3 Dˆ y• � Dˆ y•9� � ª ; maxˆx• � 10� ;

return D ;

Similarly to CDCL, propagation rules are expanded to explain failures. That is, when

a propagator f returns the fail domain Ù, a propagation rule associated to this failure

is a logical implication 	 � Ù s.t. 	 is a su�cient condition for f to detect a failure.

Example 2.5. Explaining Failure

Consider the same constraintx Cy � 10 with Dˆ x• � � 3; 8� and Dˆ y• � ˜ 3• . In this case,

the propagator f when triggering a failure (Line 1 in Algorithm 7)) can generate the

explanation Jy � 3K, Jx B8K� Ù which gives the con�ict clauseJy x 3K- Jx C9K.
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Propagation rules are added to the UP-Engine as clauses already propagated. The same

behavior applies when a con�ict is raised by a propagator. The clause explaining the

failure is added to the UP-Engine, however, as the con�ict clause. The con�ict analysis

procedure is performed exactly the same way in CDCL.

It should be pointed out that any assignment by UP is re�ected on the domain every

time UP successfully terminates propagation. For instance, ifUP propagates the literal

Jx B7Kto be true then the upper bound tightening Dˆ x• � Dˆ x•9� � ª ; 7� is executed

if maxˆx• A7.

2.3.2 Engineering a Hybrid Solver: Modern Techniques

We describe here three modern techniques used in hybrid solvers: backward explana-

tions, lazy generation, and semantic reduction.

2.3.2.1 Backward Explanations

The concept ofbackward (or lazy) explanations [59, 64, 98, 52] can simply be understood

as generating explanations only when they are needed. The main motive behind using

backward explanations is that generating a clause for each single propagation might

make the clause database grow extremely large. Moreover these clauses do not make

any di�erence to the propagation engine. They are only useful during con�ict analysis,

where only a fraction of them may be explored. Avoiding generating these clauses could

therefore save time. We give a simple way for using backward explanations.

First, as usual, when a domain operation is being executed bya propagator f , the

correspondent literal p should be assigned accordingly. However, instead of generating a

propagation rule for l , the solver recordsf as the reason for assigningp. Any propagator

using the backward mode is supposed to be able to generate a propagation rule for its

actions during con�ict analysis.

Algorithm 8 depicts a slightly modi�ed version of the 1-UIP p rocedure in order to handle

backward explanations. The di�erence between Algorithm 8 and Algorithm 6 is the use

of a function called reason( p) to return the propagator f responsible for the domain

operation represented byp. Moreover, the correspondent propagation rule is expected

to be computed by the call to the function explain ˆ f; l • . The same behavior applies

when explaining a failure with reasonˆÙ• and explain ˆ f; Ù•.

Note that the way we presented Algorithm 8 allows any propagator to adapt any mode

of generating explanations (i.e., eagerly at the moment of propagation, or during con�ict

analysis).
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Algorithm 8: 1-UIP-backward

d � current level ;
f � reasonˆÙ• ;

1 	 � explain ˆ f; Ù• ;

2 while S̃q >	 Slevelˆq• � d•SA1 do
3 p � arg maxqˆ˜ rank ˆq• Slevelˆq• � d , q >	 •• ;
4 f � reasonˆp• ;

	 � 	 8 ˜ q Sq >explain ˆ f; p • , levelˆq• A 0• � ˜ p• ;

5 return 	 ;

2.3.2.2 Lazy (Atom) Generation

In order to have a reasonable number of atoms inside theUP engine, this technique is

used to lazily generate atoms related to domain operations only when they are needed

[53, 52]. Recall that for a variable domain of sizek, the number of atoms is 2k and the

number of clauses is about 4k (using the domˆx• encoding). When the domain size is

too large, hybrid models becomes hardly e�cient because of the amount of time needed

for propagating these clauses. The notion of `lazy generation' appeared recently in the

literature as a mechanism dealing with that issue.

We describe this mechanism following the latest propositions in [52] which are improve-

ments of [53]. We use their term l̀azy generation ' to describe this technique.

The main transformation needed for using lazy generation isto reshape propagation

rules to contain both literals and domain operations. The gain here is that one does not

need the atoms generated from the beginning. Take for instance the propagation rule in

Example 2.4 Jy � 3K� Jx C13K. The propagator does not need to use the atomJy � 3K

to explain Jx C13K. Instead, it can inform the solver that the operation assigning y to

3 is responsible for the lower bound tightening ofx to 13. We shall use the notations

Jx � vK, Jx x vK, Jx BvK, and Jx CvKfor literals associated to generated atoms as well as

the correspondent domain operations.

The skeleton of con�ict analysis is the same as Algorithm 8. Few adaptations are,

however, necessary. First, the nogood under construction 	 can contain both literals

and domain operations andp can be either a literal or a domain operation. Next, one

should be able to recover the values oflevel, rank and reason for each domain constraint

operation. Note that the rank is needed only in Line 3 to compute the last assigned

literal in 	. Finally, before returning 	 in Line 5, all domai n operations in 	 should

either be replaced by their corresponding literals if they are already generated, or be

associated to newly generated atoms.

Three scenarios are possible when lazily generating an atomJx BuK.
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1. If there is no valuea � max˜ uœSJx BuœKis generated , uœ@u• , we add the clause

 Jx BuK- Jx BbKif there exists a valueb � min ˜ uœSJx BuœKis generated , uœAu• .

2. If there is no valueb� min ˜ uœSJx BuœKis generated , uœAu• , we add the clause

 Jx BaK- Jx BuKif there exists a valuea � max˜ uœSJx BuœKis generated , uœ@u•

3. Otherwise, we add the clauses Jx BaK- Jx B uKand  Jx BuK- Jx B bKwhere a �

max˜ uœSJx BuœKis generated , uœ@u• and b� min ˜ uœSJx BuœKis generated , uœA

u• .

If an atom Jx � vK has to be generated, one �rst generatesJx B vK and Jx B v � 1K

following the above way (if they are not already generated),then posts the clauses 2, 3,

and 5 of domˆx•.

The main problem with lazy generation is that there is a redundancy regarding the

generation of bound literals. After adding the clauses Jx BaK- Jx BuKand  Jx BuK- Jx B

bK the clause  Jx B lK- Jx B uK becomes redundant. There might ben � 2 redundant

clauses after generatingn atoms for a given variable.

We shall propose in Section 5.2 a new way for using lazy generation in order to avoid

this redundancy whilst being computationally equivalent to UP as if the atoms were

generated from the beginning.

Recall that if the literals are eagerly generated then for any domain change, one as-

signs its corresponding literal to true which might trigger UP. Such a procedure is not

necessary with lazy generation since not every domain operation is associated to a lit-

eral. Instead, the domain changes must be re�ected on the generated literals. Feydy et

al. [52] propose to associate a map for each variablex from values to domain operations4.

Whenever Dˆx• changes, the map can be used to determine the newly executed domain

operations already having an associated literal. These literals must then be assigned

accordingly.

2.3.2.3 Semantic Reduction

In general, there is no complete qualitative evaluation for comparing di�erent

nogoods/explanations. Take for instance the nogoodsa ,  b, c � Ù , e, c � Ù , and

a ,  b � Ù . Unless we have additional information regardinga, b, and e, we cannot

determine the best choice betweena ,  b, c � Ù and e, c � Ù even though the latter

is shorter. The strict inclusion, however, gives a simple and straightforward way for

comparison. For instancea ,  b � p is clearly preferable toa ,  b, c � p.

4We had also a personal communication with Thibaut Feydy on th e subject.
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Reasoning about the semantic of each literal/domain operation enables a new way for

reduction. Suppose that 	 � Jx B17K, Jx B10K, Jy C5K, Jy C9K, p � Ù is the �nal

nogood found before converting domain operations into literals. SinceJx B 10Kcan be

considered as a plausible explanation forJx B17K, then we can safely remove it from 	.

The same observation goes withJy C9Kas a reason forJy C5K. The �nal nogood in this

case isJx B10K, Jy C9K, p � Ù .

Semantic reduction revises the �nal nogood to contain for each variable the smallest

possible upper bound and the largest possible lower bound literals. Not only has the

�nal nogood a better quality, but also the number of lazily generated atoms is smaller.



Chapter 3

An Empirical Heuristic Study for

the Car-Sequencing Problem

Introduction

Car-sequencing [102] is a well known sequencing problem coming from the automotive

industry and has a long history in constraint programming [44, 17, 128, 111, 139]. In

this problem, a set of cars has to be sequenced on an assembly line subject to capacity

and demand constraints. Each car belongs to a class of vehicles that is de�ned with a set

of options to install (such as sunroof and air-conditioner). In 2005, a challenge has been

organized by the French Operations Research and Decision Support Society (ROADEF 1)

for solving optimization versions of the problem provided by the RENAULT 2 automobile

manufacturer. We refer the reader to [131] for a survey regarding exact and heuristic

methods used in this challenge.

In this chapter, we are interested in the search aspect for solving the car-sequencing

problem. The latter is used as a test benchmark throughout this thesis. Through a

comprehensive evaluation of search strategies for this problem. We show the interest

of several new branching heuristics and we measure the overall impact of the choice of

search strategy.

This empirical study is built on a new classi�cation of heuristics for this problem. This

classi�cation is based on a set of four criteria: the type of branching decisions, the

exploration directions, the selection of branching values(`options' in this model) and

the aggregation function for this selection. In particular, we show that the way of

selecting the most constrained option is critical, and the best choice is fairly reliably

1http://challenge.roadef.org/2005/en
2http://group.renault.com

37
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the �load� of an option, that is the ratio between its demand a nd the capacity of the

corresponding machine. Similarly, branching on the class of vehicle is more e�cient than

branching on the use of an option. Overall, even though results can vary greatly from

instance to instance, we are able to indicate with a relatively high con�dence which is

the most robust strategy, or at least outline a small set of potentially best strategies.

The remaining of the chapter is organized as follows. In Section 3.1, we describe the

car-sequencing problem and discuss the related constraintsatisfaction models. In Sec-

tion 3.2, we propose and classify a number of new and existingheuristics. And �nally,

we empirically evaluate and analyze the new classi�cation in Section 3.3.

3.1 The Car-Sequencing Problem

3.1.1 Problem Description

In the car-sequencing problem,n vehicles have to be produced on an assembly line.

There are k classes of vehicles andm types of options. Each classc > ˜1; : : : ; k• is

associated with a demanddclass
c , that is, the number of occurrences of this class on the

assembly line, and a set of optionsOc b ˜ 1; : : : ; m• . Each option is handled by a working

station able to process only a fraction of the vehicles passing on the line. The capacity

of an option j is de�ned by two integers pj and qj , such that no subsequence of sizeqj

may contain more than pj vehicles requiring option j .

A solution of the problem is then a sequence of cars satisfying both demand and capacity

constraints. This problem is NP-hard [84, 50].

For convenience, we shall also de�ne, for each optionj , the corresponding set of classes

of vehicles requiring this option Cj � ˜ c Sj > Oc• , and the option's demand dopt
j �

P c>Cj
dclass

c .

Example 3.1. Consider a simple case of 5 slots (i.e.,n � 5) with 3 classes˜ c1; c2; c3•

and 4 options such that:

ˆ Oc1 � ˜ 1; 2• , Oc2 � ˜ 1; 3; 4• , Oc3 � ˜ 2• .

ˆ dclass
c1

� 2, dclass
c2

� 2, dclass
c3

� 1

ˆ pi ~qi (lexicographically): 3~4; 2~3; 1~3; 1~2.

From above, we obtain:
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ˆ C1 � ˜ 1; 2• , C2 � ˜ 1; 3• , C3 � ˜ 2• and C4 � ˜ 2•

ˆ dopt
1 � 4, dopt

2 � 3, dopt
3 � 2 and dopt

4 � 2

The sequence� c1, c2, c1, c3, c2� is a possible solution for this instance.

3.1.2 Modeling

We use a standardCP model3 with two sets of variables. The �rst set corresponds to

n integer variables ˜ x1; : : : ; xn • (called class variables) taking values in˜ 1; : : : ; k• and

standing for the class of vehicles in each slot of the assembly line. The second set of

variables corresponds tonm Boolean variables ˜ y1
1; : : : ; ym

n • (called option variables),

where yj
i stands for whether the vehicle in thei th slot requires option j .

There are three sets of constraints.

1. Demand constraints: for each classc > ˜ 1::k• , S̃i Sx i � c•S� dclass
c . These con-

straints are usually enforced with aGlobal Cardinality Constraint (Section 2.1.3.2.

2. Capacity constraints: for each option j > ˜1::m• , no subsequence of sizeqj involves

more than pj cars requiring option j . That is, P
i � qj � 1
l � i yj

l Bpj , ¦ i > ˜1; : : : ; n� qj � 1• .

In order to factor out as much as possible the propagation aspect from the study,

we use several models in order to diversify the data set. Moreprecisely, we shall

consider four models, di�erentiated by how capacity constraints are modeled and

thus propagated. For each optionj , these constraints can be expressed in one of

the following alternatives:

(a) A naive decomposition using sum constraints. This model is denoted

decompose .

(b) Let card be a mapping on integers such thatcardˆc• � dclass
c ; ¦ c > ˜1; : : : ; k• .

For each option j , we post the following Global Sequencing Constraint(Sec-

tion 2.1.3.2):

Gscˆ0; pj ; qj ; card; card; � x1; : : : ; xn � ; Cj •

This model is denotedgsc .

(c) For each option j , we post the following AtMostSeqCard constraint (de-

�ned later in Section 4.3):

3This model can be found for instance in Ilog-Solver 6.7.
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AtMostSeqCard ˆpj ; qj ; dopt
j

; � yj
1; : : : ; yj

n �•

This model is denotedamsc.

(d) We post both Gscˆ0; pj ; qj ; card; card; � x1; : : : ; xn � ; Cj • and

AtMostSeqCard ˆpj ; qj ; dopt
j

; � yj
1; : : : ; yj

n �• for each option.

This model is denotedgsc ` amsc.

3. Channeling: Option and class variables are channeled through simple constraints:

yj
i � 1 � j > Cx i ; ¦ j > ˜ 1; :::; m• ; ¦ i > ˜ 1; :::; n• : Each constraint is implemented

using a set of simple binary constraintsx i � c � yj
i � 1; ¦ j >Oc and x i � c � yj

i �

0; ¦ j >˜ 1; : : : ; m• � Oc.

3.1.3 Related Work

Regarding the search strategy, two main principles are known to be important for the

car-sequencing problem. First, the sequence of variables to branch should follow the

assembly line itself. Indeed, the structure in chain of capacity constraints makes it

di�cult to achieve any inference far away from a modi�ed vari able in the sequence

[128]. Second, one should assign the most constrained classor option �rst. This has been

perceived as a fail-�rst strategy, hence surprising since succeed-�rst strategies should be

better for selecting the next branch to follow. However, as pointed out in [128], since

the solutions to this problem are permutations of a multiset of values, choosing the most

constrained one when it is still possible actually yields the least constrained sub-problem.

Therefore, in this sense, it is indeed a succeed-�rst strategy.

In [128], a lexicographical exploration of the integer variables x1, . . . , xn , standing for

classes of vehicles, was advocated as an interesting searchstrategy. Three parameters

were considered for choosing the most constrained class: the number of options per class

(denoted asmax option ), the tightness of each option (i.e., the capacity constraint q~p)

and the usage of each option (i.e., usage rated:q~p
n ).

In [111], the authors proposed to branch on option variablesyj
i , exploring the sequence

consistently with their position on the assembly line, however starting from the middle

towards the extremities. Indeed variables at both ends are subject to fewer capacity

constraints than variables within the sequence. Moreover,they introduced for the �rst

time the notion of slack for selecting the most constrained option.

In [68], several heuristics were compared for solving an optimization variant of this

problem. These heuristics are based on the usage rate previously de�ned for selecting the

next variables to assign in the sequence. They consider two ways for aggregating these

values (using lexicographically the maximum value, or a simple sum) when branching

on class variables. Two possibilities of using the usage rate were compared : static
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and dynamic (i.e., updated at each node). Note that the static values of usage rate,

load or slack are all equivalent. Their experiments showed essentially the interest of

dynamic heuristics comparatively to static ones. The same observation is made in [29]

where a dynamic load was used with class variable branching and a simple summation

to aggregate the values.

3.2 Heuristics Classi�cation

3.2.1 Classi�cation Criteria

We propose to classify the heuristics related to this problem according to four criteria:

ˆ The type of branching decisions: that is, whether we branch on classes or options.

ˆ The order in which we explore the variables along the assembly line: one can start

from the left of the sequence and progress to the right, or start from the middle of

the assembly line widen to the sides.

ˆ The measure used to select the most constrained options.

ˆ The function used to aggregatethe evaluation of the di�erent options in order to

choose the next class of vehicles to branch on.

Notice that among the many combinations of these four criteria, some correspond to

existing heuristics, however some are novel. For each criterion, there are several alter-

natives, we present each of them below.

3.2.1.1 Branching

We can branch either by assigning a class to a slot, that is, branching on class variables

x i , or by assigning an option to a slot, that is, branching on option variables yj
i . The

former was used in [128], while the latter was proposed in [111]. Notice that when

branching on option variables, we always set it to the value 1, which amounts at forcing

the corresponding option to be represented in that slot. We therefore consider these two

cases denoted respectivelyclass and opt.

3.2.1.2 Exploration

Heuristics that do not follow the sequence of variables along the assembly line generally

have poor performances [128]. We �nd in the literature two main exploration orders:
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either following a lexicographical order on class variables or from the middle to the sides

of the sequence. We therefore consider these two exploration cases denoted respectively

lex and mid .

3.2.1.3 Selection

The best heuristics are those selecting �rst the most constrained option or class. Observe

that since each class is de�ned by a set of options, then it allgoes down to the hardness

of the options. We therefore consider the following indicators proposed in the literature

to select the most constrained option:

ˆ The capacity qj ~pj : The greater the ratio qj ~pj , the more constrained is the option.

In fact, a greater ratio qj ~pj has more impact on neighboring slots as it is shown

in Example 3.2.

Example 3.2. Let o1 and o2 be two options s.t. p1 � 1; p2 � 2, and q1 � q2 � 3.

Consider now a sequence of5 slots in which we have to choose betweeno1 and o2

in the third position. The two parts of the following �gure show the impact of each

option. In fact, by choosing o1, all neighboring slots can no longer contain this

option because of the at most1~3 constraints.

y1
i y2

i

0 0 1 0 0 . . 1 . .

ˆ The residual demand dopt
j : This value is equal to the total demand (of a given

option) minus the number of cars containing this option already allocated (dopt
j �

ˆdopt
j � P n

i � 1 min ˆyj
i •). Clearly, a greater demand makes it more di�cult to �t the

cars requiring this option on the assembly line.

ˆ The load � j : This parameter combines the residual demand with the capacity ratio:

� j � dopt
j � qj

pj
. In fact the ceiling of � j is always an upper bound for the number

of slots required to mount dopt
j times the option j . A greater value of the load is

therefore more constrained.

ˆ The slack � j : Let n j be the number of slots available for optionj . The slack of an

option j is � j � n j � � j . Since we want higher values to indicate more constrained

options, we use in factn � � j .

ˆ The usage rate � j : This value is de�ned as the load divided by the number of

remaining slots: � j � � j ~n j . It therefore represents how much of the remaining

space will be occupied by vehicles requiring this option.
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Based on these indicators, we consider four methods to evaluate the options. Each

method returns an indicative value on how constrained is an option. In other words, the

option maximizing the given parameter will be preferred in the next decision. In the

following, we denote the above selection criteria byq~p, dopt, � , n � � and � , respectively.

3.2.1.4 Aggregation

In the case ofclass branching, since classes are de�ned as a set of options, the decision

is most often made by summing up the �scores� of the options for each class. However,

there are many ways to aggregate these values. We therefore propose to add the method

used for the aggregation as a fourth criterion.

Let f � ˜ 1; : : : ; m• ( R be a scoring function. We denotef ˆO c• the tuple formed

by the sorted scores of classc's options, i.e., f ˆO c• � `f ˆ j 1•; : : : ; f ˆ j SOcS•e such that

˜ j 1; : : : ; j SOcS• � Oc and f ˆ j l • C f ˆ j l � 1• ¦ l > � 1; : : : ;SOcS� 1� . We shall consider the

following ordering relations between classes:

ˆ Sum of the elements (BP ): c1 BP c2 i� P v>f ˆO c1 • v BP v>f ˆO c2 • v.

ˆ Euclidean norm ( BEuc ): c1BEuc c2 i� P v>f ˆO c1 • v2 BP v>f ˆO c2 • v2.

ˆ Lexicographical order ( Blex ): c1Blex c2 i� f ˆO c2 • comes lexicographically after

f ˆO c1 •.

Example 3.3. We give an illustrative example. We consider Example 3.1 andsuppose

that one branches on classes. In Table 3.1, we give the di�erent values of each selection

parameter for all options.

Table 3.1: Values of the selection criteria for each option

h h h h h h h h h h h h h h h hhSelection parameter
Options

1 2 3 4

q~p 1,33 1.5 3 2
dopt 4 3 2 2

� 5,32 4.5 6 4
n � � 5,32 4.5 6 4

� 1,064 0.9 1,2 0,8

In order to emphasize the impact of aggregation functions, we propose to study the dif-

ferent scores for each class using thedopt parameter. Recall that each class is de�ned by

a set of options, we obtain in Table 3.2 the corresponding values for each class.

In Table 3.3, we report the order of preferences given by the di�erent aggregations. The

class having the higher score will be selected �rst and so on.
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Table 3.2: Classes' scores using the parameterdopt

X X X X X X X X X X XOptions
Classes

c1 c2 c3

1 4 4 -
2 3 - 3
3 - 2 -
4 - 2 -

Table 3.3: Scores & Heuristic decisions

Agg. Scores Heuristic preferences
c1 c2 c3

BP 7 8 3 [c2, c1, c3]
BEuc 25 24 9 [c1, c2, c3]
Blex [4, 3, -, -] [4, 2,-,-] [3,-,-,-] [c1, c2, c3]

Although we treat a simple case, one can observe that decisions can be in�uenced by

aggregation functions. The behavior ofBP is di�erent from BEuc and Blex . It prefers c2

whereas the others preferc1.

3.2.2 Heuristics Structure

In the rest of the chapter, we denote the set of heuristics as follows:

`˜ class; opt• ; ˜ lex; mid • ; ˜ q~p; dopt; �; n � �; �; 1• ; ˜ BP ; BEuc ; Blex •e. Note that we consid-

ered the constant function 1 as another possible selection criterion. This is proposed so

that our classi�cation also includes the max option heuristic [128] where each class is

evaluated simply by its number of options.

Observe, however, that not all combinations make sense. Forinstance, the aggrega-

tion function does not matter when branching on options. Therefore, using the new

classi�cation, we obtain 42 possible heuristics:

ˆ `˜ class• ; ˜ lex; mid • ; ˜ q~p; dopt; �; n � �; � • ; ˜ BP ; BEuc ; Blex •e: The 30 heuristics that

branches onclass variables with the two exploration strategies ˜ lex; mid • , the

�ve selection parameters ˜ q~p; dopt ; �; n � �; � • and the 3 aggregation techniques

˜ BP ; BEuc ; Blex • .

ˆ `˜ opt• ; ˜ lex; mid • ; ˜ q~p; dopt; �; n � �; � • ; ge: 10 heuristics branching on option vari-

ables with the two exploration possibilities ˜ lex; mid • and the �ve selection pa-

rameters ˜ q~p; dopt; �; n � �; � • .
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ˆ `˜ class• ; ˜ lex; mid • ; ˜ 1• ; ˜ BP •e: The two possible heuristics related to the partic-

ular case ofmax option .

Among the many combinations de�ned by this structure, there are several existing

heuristics as well as new ones. In the literature, only few heuristics have been studied.

First, the max option heuristic proposed in [128] branches onclass variables lexico-

graphically (lex) and the most constrained class is then selected using the sum ˆBP •

aggregation. It therefore corresponds tò class; lex;1; BP e. Second, in [68], the authors

proposed to use the usage rage withclass branching, lexicographical exploration (lex)

and BP , Blex for aggregation. They correspond to`class; lex; �; ˜ BP ; Blex •e. Similarly,

the authors of [29] proposed aclass branching usingBP for aggregation in a lexicograph-

ical exploration (lex), however, using the load� and the capacity q~p for selection (i.e.,

`class; lex; ˜ �; q~p• ; BP e). Finally, the heuristic proposed in [111] is based onoption

branching, exploring the sequence from the middle to the sides using the slack as a

selection criteria. This heuristic corresponds to`opt; mid; n � �; ge.

To the best of our knowledge, all other heuristics are new andthere is no comparative

study for evaluating the impact of each classi�cation criterion.

3.3 Evaluating the new Structure

In this section, we evaluate experimentally the impact of the proposed criteria classi-

�cation for the heuristics. We slightly perform randomizat ion as follows: with a low

probability (2% for classes and 5% for options4), the second best choice (provided by

the heuristic) is taken.

All the experiments were run on Intel Xeon CPUs 2.67GHz underLinux. The detailed

results are available via http://homepages.laas.fr/msiala/car-sequencing . For

each instance, we launched �ve randomized runs per heuristic with a 20 minutes time

cut-o�. All models are implemented using Ilog-Solver 6.7.

We use benchmarks available from the CSPLib [2] divided intothree groups. The �rst

group of the CSPLib contains 70 satis�able instances having200 cars, 5 options and from

18 to 30 classes, it is denoted byset1. The second group of the CSPLib corresponds to

instances with 100 cars, 5 options and from 19 to 26 classes. In this group there are 4

satis�able instances , denoted byset2 and 5 unsatis�able instances denoted byset3. The

third group of the CSPLib contains 30 larger instances (ranging from 200 to 400 vehicles,

5 options and from 19 to 26 classes). The 7 instances from thisgroup that are known

to be satis�able are grouped together in set4. At the top of each table, we mention,

4Those values were arbitrarily chosen. The impact of branchi ng on an option variable being lower, a
higher probability was necessary.
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for each data set, the total number of instances with an indication on their feasibility

(i.e., satis�able: S and unsatis�able U). The status of the 23 remaining instancesset5

is still unknown. They are often treated in an optimization context, hence they are not

considered in these experimentations.

The set of heuristics `˜ class; opt• ; ˜ lex; mid • ; ˜ 1; q~p; dopt; �; n � �; � • ; ˜ BP ; BEuc ; Blex •e

combined with the four models decompose , amsc, gsc , and gsc ` amsc leads to 168

di�erent con�gurations. The latter is applied to each set of instances (i.e., 70� 4 � 5 � 7

instances) with 5 randomized runs. The total CPU time for that was devoted to these

experiments is around 244 days.

We say that a run (related to an instance and a given con�guration) is successful if

either a solution was found or unsatis�ability was proven. For each set of instances, we

report the percentage of successful runs (%sol) 5, the CPU time ( time) in seconds both

averaged over all successful runs and number of instances.

Experimental results are divided in thee parts. We �rst compare the many combinations

of heuristic factors by giving the results for each one. Then, we study the proposed

classi�cation by evaluating each factor separately. Finally, we provide a comparison

related to the e�ciency and con�dence of each factor

3.3.1 Impact of each Heuristic

In this paragraph, we report the results of each heuristic separately on each set of

instances averaged over the four propagators.

The set of heuristics corresponds to all possible combinations of parameters given by:

`˜ class; opt• ; ˜ lex; mid • ; ˜ 1; q~p; dopt; �; n � �; � • ; ˜ BP ; BEuc ; Blex •e leading to the 42 heuris-

tics presented in Section 3.2.

Table 3.4 shows the global results of our experiments. For each heuristic, we indicate

in column (`Ref.') whether it is already known (with the corr esponding reference) or

not (with `-'). Recall that, in these experiments, we consider only dynamic evaluation

with the four criteria : demand, load, usage rate and slack. For each set of instances,

we report the percentage of successful runs (%sol) and their average CPU time (time ).

The last two columns summarize the results over all set of instances. The column (%tot)

gives the total percentage of solved instances and the column (%dev) gives the deviation

in percent of a given heuristic to the heuristic solving the maximum number of instances.

Bold values give the best heuristics w.r.t. %sol.

5Sinceset3 contains only unsatis�able instances, then % sol corresponds to the percentage of instances
for which the solver proves unsatis�ability.
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Table 3.4: Comparison of heuristics averaged over propagation rules

Heuristics Ref. Instances Total
set 1 (70; S) set 2 (4; S) set 3 (5; U) set 4 (7; S)

Sel. Br. Expl. Aggr. %sol time %sol time %sol time %sol time %tot %dev

�
class

lex
Blex [68] 100.00 0.6 52.50 59.1 0.00 - 25.71 2.9 85.93 1.00
BP [68] 100.00 0.6 48.75 0.2 0.00 - 10.71 84.4 84.53 2.61

BEuc - 100.00 0.6 30.00 0.2 0.00 - 12.85 156.3 83.84 3.42

mid
Blex - 99.92 0.5 53.75 163.5 0.00 - 16.42 50.0 85.17 1.88
BP - 100.00 0.5 51.25 236.6 0.00 - 18.57 5.4 85.29 1.74

BEuc - 100.00 0.5 51.25 249.3 0.00 - 17.14 30.2 85.17 1.88

opt
lex - - 87.00 1.9 75.00 33.3 25.00 211.3 5.71 533.4 76.22 12.19
mid - - 87.64 2.9 31.25 0.4 23.00 233.6 14.28 171.1 75.29 13.26

n � �
class

lex
Blex - 100.00 0.6 52.50 59.2 0.00 - 25.71 2.8 85.93 1.00
BP - 100.00 0.6 48.75 0.2 0.00 - 10.71 78.6 84.53 2.61

BEuc - 100.00 0.6 48.75 0.1 0.00 - 10.71 79.4 84.53 2.61

mid
Blex - 100.00 0.6 53.75 169.7 0.00 - 18.57 33.1 85.41 1.61
BP - 100.00 0.5 51.25 236.9 0.00 - 22.14 29.0 85.58 1.41

BEuc - 99.92 0.5 51.25 236.3 0.00 - 22.14 28.8 85.52 1.48

opt
lex - - 32.71 21.7 43.75 236.8 13.00 190.7 0.00 - 29.42 66.11
mid - [111] 38.14 13.0 26.25 33.7 18.00 260.8 0.00 - 33.31 61.62

�
class

lex
Blex - 100.00 0.6 71.25 42.4 0.00 - 25.71 3.0 86.80 0.00
BP [29] 100.00 0.6 48.75 0.3 0.00 - 10.71 100.2 84.53 2.61

BEuc - 100.00 0.6 48.75 0.3 0.00 - 10.71 87.3 84.53 2.61

mid
Blex - 100.00 0.5 37.50 38.2 0.00 - 15.00 51.5 84.36 2.81
BP - 100.00 0.5 68.75 167.9 0.00 - 20.71 42.8 86.28 0.60

BEuc - 100.00 0.5 68.75 166.5 0.00 - 20.00 16.2 86.22 0.67

opt
lex - - 98.57 1.2 36.25 111.7 0.00 - 22.85 5.8 83.78 3.48
mid - - 98.92 3.7 43.75 3.8 0.00 - 21.42 88.8 84.29 2.89

q~p
class

lex
Blex - 82.85 7.8 0.00 - 0.00 - 0.00 - 67.44 22.31
BP [29] 83.35 10.1 18.75 0.1 0.00 - 0.00 - 68.72 20.84

BEuc - 83.42 11.3 18.75 0.09 0.00 - 0.00 - 68.77 20.77

mid
Blex - 84.71 7.9 18.75 95.7 0.00 - 0.00 - 69.82 19.56
BP - 85.35 7.7 18.75 100.9 0.00 - 0.00 - 70.34 18.96

BEuc - 84.64 7.5 18.75 96.0 0.00 - 0.00 - 69.77 19.63

opt
lex - - 65.71 73.3 0.00 - 0.00 - 0.00 - 53.48 38.38
mid - - 70.71 29.8 12.50 606.4 0.00 - 0.00 - 58.14 33.02

dopt
class

lex
Blex - 90.92 1.2 37.50 47.4 0.00 - 25.71 55.3 77.84 10.32
BP - 95.07 1.9 41.25 48.5 0.00 - 17.14 21.5 80.70 7.03

BEuc - 94.50 0.7 43.75 106.5 0.00 - 23.57 40.2 80.87 6.83

mid
Blex - 90.64 1.9 75.00 83.4 0.00 - 24.28 5.3 79.24 8.71
BP - 94.71 0.6 67.50 68.9 0.00 - 13.57 53.9 81.33 6.30

BEuc - 94.57 0.6 75.00 83.2 0.00 - 15.71 50.7 81.74 5.83

opt
lex - - 73.78 2.9 56.25 79.5 0.00 - 0.71 282.0 62.73 27.73
mid - - 77.28 13.7 43.75 5.2 0.00 - 7.85 16.5 65.58 24.45

1 class
lex BP [128, 29] 86.92 13.2 18.75 0.1 0.00 - 0.00 - 71.62 17.49
mid BP - 89.92 8.3 63.75 20.3 0.00 - 0.00 - 76.16 12.26

For the easiest set (set1), 16 heuristics solve all instances in less than a second. Among

them, 3 are known heuristics whereas 13 correspond to new combinations. It should be

noted that all these con�gurations use aclass branching and a load-based selection (i.e.,

�; �; n � � ). Interestingly, changing a single parameter of a heuristic can have a dramatic

e�ect. For instance, the heuristic `opt; lex; n � �; ge resolves only 32; 71% of this set

whereas changing only the branching criterion toclass (i.e., `class; lex; n � �; ˜ Blex ; BP

; BEuc •e) leads to a complete resolution (i.e., 100%).

For set2 and set3, the heuristic `opt; lex; �; ge gives the best results with 75% in 33:3s for

set2 and 25% in 211:3s for set3. Also, the heuristics `class; mid; dopt ; ˜ Blex ; BEuc •e has
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the same number of successful runs compared tòopt; lex; �; ge but with higher runtime.

All of these heuristics correspond to new con�gurations.

Finally, for set4, the best heuristics resolve 25:71% in approximately 3s and correspond to

the con�gurations `class; lex; ˜ �; �; n � � • ; Blex e. Another heuristic `class; lex; dopt ; Blex e

obtains the same percentage but with higher runtime (55:3s).

Overall, the heuristic that has the best results across all data sets and therefore seems

to be the more robust is`class; lex; �; Blex e with 86:8% of solved instances (according to

the column `Total'). More generally, heuristics using load-based selection (i.e.,� , n � �

and � ) and class branching obtain better results than the other con�gurations.

3.3.2 Criteria Analysis

In this part, we aim to evaluate the relative impact of each classi�cation criterion. For

each criterion and each data set, we divide all the runs into as many sets as the number

of possible values for this criterion. Then, we average the results within each set. For

instance, exploration can be done either lexicographically (lex), or from the middle to

the sides (mid ). We will thus report two sets of statistics, one for lex and one for

mid . Each average corresponds to one run per possible set of heuristics (21), �ltering

algorithms (4), randomized runs (5), and instances in the data set.

The following Tables (3.5, 3.6, 3.7 and 3.8) are split in two parts. We report in the upper

part the results for each set and each possible criterion w.r.t. the criterion being used

averaged over all other criteria. The lower part shows the best results obtained for any

possible combination of the other criteria. In these tables, we report the percentage of

successful runs (%sol), the CPU time ( time) in seconds both averaged over all successful

runs, instances and heuristic criteria. Bold values indicate best results in terms of

successful runs (%sol). Moreover, in the upper tables, the last column (%tot) gives the

percentage of solved instances over all the sets.

3.3.2.1 Branching Strategy

Here we compare the two branching strategies:class and opt. We tested all the pos-

sible combinations of heuristics for each strategy. However, as the constant selection

parameter 1 is not de�ned for opt variables, we do not consider its heuristics in this

part.

When branching on opt variables, we have de�ned 10 heuristics (since aggregationfunc-

tions are omitted): `opt;˜ lex ; mid • ; ˜ q~p; dopt; �; n � �; � • ; ge, that is 200 tests for each
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instance. To have consistent comparison withclass branching, we separate its re-

sults by aggregation functions. That is `class;˜ lex ; mid • ; ˜ q~p; dopt ; �; n � �; � • ; Blex e,

`class;˜ lex ; mid • ; ˜ q~p; dopt; �; n � �; � • ; BEuc e and `class;˜ lex ; mid • ; ˜ q~p; dopt; �; n �

�; � • ; BP e.

Table 3.5: Evaluation of the branching variants

Av. Bran. set1 (70; S) set2 (4; S) set3 (5; U) set4 (7; S) Global
(� 200) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot

opt 73.0 102023.9 14.1 36.8 287139.5 82.0 7.9 53275.4 225.6 7.2 207502.8 107.9 62.2
class; Blex 94.9 26120.0 2.0 45.2 481410.8 84.9 0.0 - - 17.7 98707.8 22.5 80.7
class; BP 95.8 27209.1 2.1 46.3 327601.5 95.7 0.0 - - 12.4 156300.3 44.6 81.1

class; BEuc 95.7 27563.3 2.1 45.5 463196.6 107.9 0.0 - - 13.2 107599.7 52.9 81.0
Best Bran.

opt 100.0 98577.4 10.3 75.0 7251.3 0.5 40.0 46211.8 261.8 25.7 629016.8 130.7
class; Blex 100.0 184.7 0.0 100.0 730687.4 89.5 0.0 - - 28.5 29632.6 58.5
class; BP 100.0 184.2 0.0 95.0 904739.2 96.3 0.0 - - 25.7 34705.3 54.8

class; BEuc 100.0 184.4 0.0 100.0 211830.5 128.8 0.0 - - 28.5 47435.1 75.4

The upper part of Table 3.5 shows that branching on classes isusually better than

branching on options. However, the latter is more e�cient on proving infeasibility (i.e.,

line opt on set3). The most e�cient branching averaged over the other factors uses

the BP aggregation, but the two other aggregation options (Blex or BEuc ) are close in

performances. This result is con�rmed by the lower part of the table.

3.3.2.2 Exploration

To evaluate the exploration parameters, we consider for each ! >˜ lex; mid • the following

heuristics:

ˆ `class; !; ˜ q~p; dopt ; �; n � �; � • ; ˜ BP ; BEuc ; Blex •e.

ˆ `opt; !; ˜ q~p; dopt ; �; n � �; � • ; ge.

ˆ `class; !; ˜ 1• ; ˜ BP •e.

These three sets cover all possible combinations of heuristics leading to 420 tests for

each parameter! >˜ lex; mid • and each instance. The results are shown in Table 3.6.

In the �rst part of Table 3.6, we can see that exploring the sequence from the middle

then widening to the sides is in average slightly but consistently bene�cial. Recall that

the rationale for starting in the middle is that variables in the extremities are subject

to fewer capacity constraints.

However, in the second part of Table 3.6, we can see that in terms of successful runs,

exploring the sequence using the lexicographical order leads to better results for proving
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Table 3.6: Evaluation of the exploration variants

Av. Expl. set1 (70; S) set2 (4; S) set3 (5; U) set4 (7; S) Global
(� 420) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot

lex 89.2 50617.6 5.6 40.0 259229.0 46.6 1.8 52295.1 204.3 11.3 120652.6 54.2 75.5
mid 90.3 42167.0 4.1 46.7 479360.9 126.5 1.9 54184.0 245.5 12.7 139829.4 42.8 76.8

Best Expl.
lex 100.0 184.8 0.0 100.0 730687.4 89.5 40.0 46211.8 261.9 28.5 29632.6 58.5
mid 100.0 183.5 0.0 100.0 213028.8 129.1 36.0 63984.8 307.6 28.5 1357.4 9.2

unsatis�ability. This could be explained by the fact that wh en starting in the middle

of the sequence, we e�ectively split the problem into essentially disjoint subproblems

(there is actually a weak link through demand constraints).

Overall, the exploration parameter does not seem to be as critical as the branching

parameter.

3.3.2.3 Selection

Here, we evaluate the selection criterion for choosing the most-constrained option. In this

case, there are two possible sets of heuristics for each parameter ! >˜ q~p; dopt; �; n � �; � • :

ˆ `class;˜ lex; mid • ; !; ˜ BP ; BEuc ; Blex •e

ˆ `opt;˜ lex; mid • ; !; ge

That is 8 heuristics for each ! combined with the 4 propagators and the 5 runs. We

therefore have 160 tests for each instance (reported in Table 3.7).

The special case ofmax option is presented separately at the end of Table 3.7 because

the number of tested heuristics is di�erent. In this case, there is only 2 heuristics

`class;1; ˜ lex; mid • ; ˜ BP •e, that is 40 tests for each instance.

The upper part of Table 3.7 shows that using theload solves more instances in average

over all the sets and for satis�able sets (set1, set2 and set4) only. Surprisingly, the

load gives better results than slack and usage rate, despite the fact that both slack and

usage rateare de�ned using the load and the number of available slots in the variable's

sequence. However theusage ratecriteria seems to work better both in average and for

the best results for unsatis�able instances. Moreover, in the second part of the table,

one can note that the demand obtains good results.

This can be explained by the manner in which the benchmarks were generated. In fact,

these instances, especially the hardest ones, are built in such way that they have a usage

rate close to 1 [2]. Since the number of available slots is initially identical for all options,
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Table 3.7: Evaluation of the selection variants

Av. Selec. set1 (70; S) set2 (4; S) set3 (5; U) set4 (7; S) Global
(� 160) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot

� 96.8 1628.8 1.0 49.2 480035.3 99.9 6.0 49922.8 222.0 15.1 136850.7 81.7 82.6
n � � 83.8 5773.4 2.3 47.0 699885.1 126.9 3.8 58466.5 231.4 13.7 103897.2 33.3 71.7

� 99.6 3292.6 1.0 52.9 254264.1 74.8 0.0 - - 18.3 98161.0 41.5 85.1
q~p 80.0 195896.5 17.7 13.2 135511.2 123.0 0.0 - - 0.0 - - 65.8
dopt 88.9 25988.2 2.7 55.0 254347.0 68.8 0.0 - - 16.0 185381.6 36.8 76.2

1 (� 40) 88.4 130722.2 10.7 41.2 28165.2 15.8 0.0 - - 0.0 - - 73.8
Best Selec.

� 100.0 184.8 0.0 75.0 7251.3 0.5 40.0 46211.8 261.9 25.7 4843.0 0.4
n � � 100.0 184.8 0.0 75.0 1009607.4 124.1 32.0 75445.9 351.0 25.7 4843.0 0.4

� 100.0 184.8 0.1 100.0 730687.4 89.5 0.0 - - 25.7 4843.0 0.4
q~p 98.8 7208.4 3.4 25.0 68.2 0.1 0.0 - - 0.0 - -
dopt 100.0 178.7 1.2 100.0 213028.8 129.1 0.0 - - 28.5 29632.6 58.5

1 99.7 58773.0 9.9 85.0 51740.9 36.9 0.0 - - 0.0 - -

they also have the same (low) slack and the same (high) load. Therefore the heuristics

based on these criteria (ie. load, slack and usage rate) cannot e�ectively discriminate

values at the root of the search tree. However, recall that the load is de�ned as the

product of the demand and the capacity. These two factors do not contribute equally,

and therefore will favor di�erent sets of options. In other words, one of them is bound

to take a better decision, whilst the other is bound to take a worse one. We believe that

this bias in the generation of the benchmarks explains the surprisingly good results of

the demand (dopt) as well as the bad results of the capacityq~p along with the load, the

slack and the usage rate.

3.3.2.4 Aggregation

Aggregation functions are only used with class branching. For each parameter ! >

˜ Blex ; BP ; BEuc • , we have the 10 following heuristics combined with the propagators and

the random runs (i.e., 200 tests for each! and each instance):

ˆ `class;˜ lex; mid • ; ˜ q~p; dopt; �; n � �; � • ; ! e

The constant parameter for selection 1 is not considered in these experiments since it is

only de�ned with the BP aggregation. The results are given in Table 3.8.

As we can see in the �rst part of this table, the three aggregation functions provide in

average similar results except for the hardest instances (set4) where Blex solved more

instances. Considering all instances,BP solves the largest number of problems. No

solution was found for unsatis�able instances as in our case, only opt branching can

solve these instances (i.e., which by default does not use any aggregation function).

However, regarding the best results in the second part of thetable, when usingBlex and

BEuc , one can obtain better performances in terms of resolved instances.
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Table 3.8: Evaluation of the aggregation variants

Av. Agg. set1 (70; S) set2 (4; S) set3 (5; U) set4 (7; S) Global
(� 200) %sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time %tot

Blex 94.9 26120.0 2.0 45.2 481410.8 84.9 0.0 - - 17.7 98707.8 22.5 80.7
BP 95.8 27209.1 2.1 46.3 327601.5 95.7 0.0 - - 12.4 156300.3 44.6 81.1

BEuc 95.7 27563.3 2.1 45.5 463196.6 107.9 0.0 - - 13.2 107599.7 52.9 81.0
Best Agg.

Blex 100.0 184.7 0.0 100.0 730687.4 89.5 0.0 - - 28.5 29632.6 58.5
BP 100.0 184.2 0.0 95.0 904739.2 96.3 0.0 - - 25.7 34705.3 54.8

BEuc 100.0 184.4 0.0 100.0 211830.5 128.8 0.0 - - 28.5 47435.1 75.4

3.3.3 A Summary Regarding the Criteria

We have previously evaluated the average best choice of eachcriterion (in terms of

solved instances). However, this choice is not the best on each set of instances. Instead,

we can determine the best choice for each data set, called the�perfect" choice. The

� Confidence � of the average best choice can then be de�ned by the ratio between the

average best choice and the perfect choice. Similarly, we can consider the �worst" choice

for each data set, and subsequently, de�ne the �Significance � of a given factor using

the ratio between the worst and the perfect choice as 1� worst~perfect .

Table 3.9: Con�dence and Signi�cance for each factor

Con�dence Signi�cance

Branching 0.989 0.247
Selection 0.995 0.231

Exploration 1.000 0.017
Aggregation 0.995 0.015

In Table 3.9, we give the values ofCon�dence and Signi�cance for each factor (branch-

ing, selection, exploration, and aggregation).This tableshows that there is high con�-

dence for each selected average best choice (between 0.989 and 1.0): that is, exploration

from middle to sides using a class branching, load selection, and a sum aggregation.

When considering the Signi�cance of each criterion, one can observe that only two of

them (branching and selection) have a valuable impact. For the two other criteria (i.e.,

exploration and aggregation), there is little impact on the results when changing the

parameters.

Therefore, the most robust heuristics will be those branching on classes variables and

selecting options using the load criterion, that is `class;˜ lex; mid • ; �; ˜ BP ; BEuc ; Blex •e.
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3.4 Search vs. Propagation

An empirical evaluation of our propositions regarding the propagation aspect is given

in the next chapter. We consider here, however, how important is the search strat-

egy compared to propagation. In addition to all the previous models, we consider

a new one incorporating the Slack-Pruning (proposed in the next chapter, Sec-

tion 4.1) within the decompose model. As we mention in Section 4.1, this rule can

be applied only with lex branching. Therefore, we use the following set of heuristics

`˜ class; opt• ; lex; ˜ 1; q~p; dopt ; �; n � �; � • ; ˜ BP ; BEuc ; Blex •e. That is 21 di�erent heuristics

for each �ltering algorithm. The experiments concern 9030 con�gurations per propaga-

tor.

Table 3.10: Evaluation of the �ltering variants (averaged over all heur istics)

Filtering ( � 21)
set1 (70 � 5) set2 (4 � 5) set3 (5 � 5) set4 (7 � 5)

%sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time
decompose 75.8 190636.0 11.2 22.6 792179.8 44.4 0.0 - - 7.7 194651.7 17.0

gsc 94.8 1639.4 4.2 44.0 38673.7 49.2 2.8 49417.9 260.8 12.1 35302.0 64.3
amsc 91.2 36285.7 3.9 49.2 411514.8 46.2 1.5 68873.9 15.1 13.1 239317.8 41.4

gsc ` amsc 95.1 1585.1 4.3 44.0 35711.3 45.4 2.8 46330.2 248.6 12.5 32258.4 80.9
slack-pruning 90.5 55384.8 3.8 43.3 627443.4 43.9 1.7 82815.9 16.1 12.2 356073.4 34.8

Table 3.11: Best results for �ltering variants

Filtering
set1 (70 � 5) set2 (4 � 5) set3 (5 � 5) set4 (7 � 5)

%sol avg bts time %sol avg bts time %sol avg bts time %sol avg bts time
decompose 100 184.8 0 75 7251.3 0.5 0 - - 25.7 4843 0.4

gsc 100 184.8 1.2 75 18073.7 58.2 40 46211.8 261.9 28.5 29632.6 58.5
amsc 100 184.8 0 100 730687.4 89.5 20 60460.4 13.5 28.5 31617.6 6

gsc ` amsc 100 184.8 1.2 75 16923.7 55 40 46196.7 259.7 28.5 17252.6 40.8
slack-pruning 100 184.3 0 75 510189.0 35.1 20 70573.6 14 28.5 332430.9 34.3

Table 3.10 shows that the extra �ltering of Slack-Pruning , AtMostSeqCard , or Gsc

does help a lot. For instance, at least 90% of the instances ofthe �rst set are resolved

irrespectively of the heuristic being used against 75,89% with the default decomposition

(i.e., decompose ). The di�erence is even greater for the other sets.

Consider now the propagation method as a �fth criterion (i.e., in addition to the heuristic

factors). We calculate its Con�dence and Signi�cance according to the same formula

given in Section 3.3.3. Their values are equal to 0:996 and 0:217, respectively. This is

similar to the other criteria in terms of Con�dence (i.e., close to 1:0), but slightly less

than the Signi�cance of branching and selection. This emphasizes the importanceof

these factors which are at least as important as the propagation level.

Overall, we observe that the choice of the search strategy has a very signi�cant impact on

the e�ciency of the method. For instance, on the set of easiest instances, when averaging
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across all heuristics, the �worst� �ltering method (decomp osition into sum constraints)

is successful in about 20% less runs than the best (Gsc+ AtMostSeqCard ). However,

now averaging across all four models, the worst heuristic̀opt; lex; n � �; �e , is successful

56% less runs than one of the many heuristics solving all easyinstances (see Table 3.4).

For harder instances (set2, set3 and set4), these choices are even more important, with

a 42% gap between the best and worst model, whilst the worst heuristics (in this case

`opt; lex; p~q;�e ) do not solve any instances.

It is hardly a surprise to observe that the choice of search strategy is a critical one.

However, whilst the aim of this study was to better understand what makes a good

heuristic for the car-sequencing problem, it was relatively surprising to �nd out that

minor variations around known heuristics would bring such asubstantial gain.

Summary

We empirically studied in this chapter a large set of heuristics for the car-sequencing

problem and proposed to classify these heuristics using 4 criteria: the type of branching

decisions; the exploration order; the selection of the mostconstrained options; and the

aggregation function for the options. Several new heuristics arise from this classi�cation

as untested combinations. Our experiments show that a single criterion can drastically

impact the behavior of the heuristic. Moreover, it also gives a clear separation between

the most important criteria (branching and selection) and the other factors (exploration

and aggregation). Furthermore, this study shows that branching and variable ordering

are as important as the propagation aspect in this problem.
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Introduction

Sequence constraints are useful in a number of applications. Constraints of this class

enforce upper and/or lower bounds on all sub-sequences of variables of a given length

within a main sequence. For instance, in crew-rostering, wemay want to have an

upper bound on the number of worked days in every sub-sequence to meet working

regulations. Several constraints of this class have been studied in the CP literature such

as Gen-Sequence and AmongSeq [111, 17, 32, 91, 139, 96]. An even more general

constraint, Regular , can be used to enforce arbitrary patterns on all sub-sequences.

However, as we explained in Section 2.1.3.2, the more general a constraint is, the higher

is the complexity of reasoning about it. In this context, we focus on particular cases of

sequence constraints where we have variables subject simultaneously to AtMost (i.e.,

of the form P i � n
i � 1 x i Bp) and Cardinality (Section 2.3) constraints.

Our contributions start with a simple �ltering rule that we c all Slack-Pruning , ded-

icated to the car-sequencing problem. This rule reasons simultaneously about capac-

ity and demand constraints. This simple �ltering is generalized later as a new global

constraint called AtMostSeqCard . The latter is useful in car-sequencing and crew-

rostering problems. Following [139], ac on this constraint can be enforced with

Gen-Sequence in Oˆn3• time or with cost-Regular in Oˆ2qn• time where q is

the size of the sliding window. Furthermore, the Gen-Sequence �ltering of [91] is

adaptable to AtMostSeqCard with Oˆn2:logˆn•• time complexity down a branch of

the search tree with an initial compilation of Oˆq:n2•. We propose a new algorithm

achieving Arc Consistency on this constraint with an Oˆn• (hence optimal) worst case

time complexity. Next, we show that this algorithm can be easily modi�ed to achieve
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Arc Consistency on some extensions of this constraint. In particular, the conjunction

of a set of m AtMostSeqCard constraints sharing the same scope can be �ltered in

Oˆnm•. The e�ciency of our �ltering is proven through a large exper imental evaluation.

We start this chapter with the simple Slack-Pruning rule specially designed for solv-

ing the car-sequencing problem. Then, after giving a short background on sequence

constraints in Section 4.2, we show how this reasoning can begeneralized as a global

constraint in Section 4.3. We show in Section 4.4 how to extend the new constraint

without a computational overhead. The experimental results in Section 4.5 emphasize

the e�ciency of our �ltering propositions.

4.1 Slack-Pruning

When analyzing the heuristics for the car-sequencing problem (Chapter 3), we have seen

that selecting the options using load, slack, or usage rate is bene�cial. In this section,

we shall see that one can go one step further and use the same idea to prune the search

tree at a very cheap computational cost. We suppose in this section that we are using

the decompose model (Section 3.1.2) for the car-sequencing problem.

4.1.1 Triggering Failure via Slack

We �rst recall some of the notations that we used for car-sequencing in Section 3.1:

ˆ n: the number of vehicles that have to be produced on the assembly line.

ˆ k: the number of classes of vehicles.

ˆ m: the number of types of options.

ˆ dclass
c : the required demand for the class of vehiclesc.

ˆ dopt
j : the required demand for the option j .

ˆ Oc b ˜ 1; : : : ; m• : the set of options de�ning the class of vehiclesc.

ˆ pj and qj : used to represent the capacity constraint related to an option j as

follows: no subsequence of sizeqj may contain more than pj vehicles requiring

option j .

ˆ The load of an option j : � j � dopt
j � qj

pj
.

ˆ The slack of an option j : � j � n j � � j wheren j is the number of slots available for

option j .
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In [111], it is observed that if the slack (� j ) of an option j is negative, then the problem

is unsatis�able. Indeed, the load (� j ) tends to represent the number of required slots

to mount all the occurrences of an option. Since the slack is the di�erence between the

available number of slots and the load, a negative value suggests infeasibility since we

need more slots than are available. However, one has to be careful about boundaries

issues since the capacity constraints are truncated at the extremities of the assembly

line. For instance, consider an optionj with pj � 1, qj � 3 and dopt
j � 2. The slack is

negative as soon as there are less than six slots remaining (n j @6). However, a line with

only four slots is su�cient if we put the two classes requiring this option on both ends of

the line. In other words, the load is an accurate measure of how many slots are needed

for a given option, however only for large values of demand and length of the assembly

line.

We show in the following how to compute the the exact minimum number of slots to

mount dopt
j times an option j while respecting capacity constraints. We assume, however,

that we explore the assembly line from left to right, and that the unassigned slots are

contiguous in the assembly line.

Consider the following greedy rule (calledlex_assignment ):

1. Assign the �rst pj variables to 1, and the qj � pj next variables to 0.

2. Repeat step 1ˆ� dopt
j ~pj � � 1• times.

3. Fill the remaining variables with the value 1.

Let � œ
j be the length of the sequence obtained bylex_assignment . The value of � œ

j is

given by the formula:

� œ
j � qj ˆ� dopt

j ~pj � � 1• �
¢̈
¨
¦
¨̈
¤

pj if dopt
j mod pj � 0

dopt
j mod pj otherwise

Proposition 4.1. For each option j , � œ
j is the minimum number of contiguous slots to

mount dopt
j times the option j .

Proof. The sequence returned bylex_assignment clearly satis�es all capacity con-

straints and has a cardinality equal to dopt
j . Moreover, every subsequence of length

qj has exactly pj times the value 1, therefore, it is not possible to obtain thesame car-

dinality in a shorter sequence. Hence,� œ
j is the minimum length to mount dopt

j times

option j . j

In the following, the value of � œ
j is refereed as the `real' load. Note that an equivalent

formula can be found in [31].
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4.1.2 Filtering the Domains

We suppose now that all variables up to a ranki � 1 are assigned. To make the notation

lighter we rename the sequence of unassigned variablesyi ; : : : ; yn to: y0; : : : ; yn� i .

When the real load � œis greater than the residual number of slotsn � i � 1, then we

should fail since � œis the minimum number of required slots. Moreover, we can prune

inconsistent values in the domains of the option variables when the load is equal to the

remaining number of slots. Khichane et al. [83] proposed to �x the �rst unassigned slot

to contain the option at hand. We show that this �ltering can b e extended for many

slots in the sequence. We illustrate this situation in Example 4.1.

Example 4.1. Consider a sequence of unassigned variablesyj
0; : : : ; yj

16, with capacity 3~5

and demand11. Note that the load is � œ
j � 5 � ˆ4 � 1• � 2 � 17, which is precisely equal to

the number of unassigned slots. Consider the two slots indexed 5 and 6, corresponding

to the variables yj
5 and yj

6. On the left, there are 5 slots, hence we can �t at most3

vehicles with the optionj since �tting 4 vehicles requires6 � 5ˆ� 4~3� � 1• � 4 mod 3 slots.

Similarly, on the right, one cannot �t more than 6 vehicles with option j since �tting 7

vehicles would require11 slots. Therefore, since the total demand is11, we can conclude

that 11� 6 � 3 � 2 vehicles with option j must �t in the slots 5 and 6. In other words,

both yj
5 and yj

6 must be equal to1. This example is depicted in Figure 4.1.

Figure 4.1: Instantiation of an option with capacity 3 ~5.

y j
0 1 1 1 2 1 3 0 4 0 5 1 6 1 7 1 8 0 9 0 10 1 11 1 12 1 13 0 14 0 15 1 16 1

3 2 6

Now we formally de�ne the Slack-Pruning rule that can detect all such forced assign-

ments (e.g., it detects all bold faced 1's in Figure 4.1).

Theorem 4.2. The following �ltering rule is correct:

If � œ
j � n � i � 1, then if dopt

j mod pj � 0, we imposeyj
i � 1 for all i such that i mod qj @

pj . Otherwise (i.e., dopt
j mod pj ~� 0), we impose yj

i � 1 for all i such that i mod qj @

ˆdopt
j mod pj •.

Proof. Suppose that (dopt
j mod pj x 0). Then there exists two integersk and r such that

dopt
j � k:pj � r . Notice that in this case, we have� œ

j � qj :k � r . Consider a subsequence

yj
a; : : : ; yj

b such that a mod qj � 0 and b� a � r � 1, i.e., such that the rule above applies.

Then there exist two integers � and � such that a � � � qj and n � i � b � � � qj (since

n � i � 1 � � œ
j � qj :k � r ).

Now usingn � i � b � � �qj , we show that n � i � 1 � � �qj � a� r then n � i � 1 � ˆ � � � • �qj � r

and hencek � � � � (since n � i � 1 � qj :k � r ).
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However, by de�nition of � and � , we may argue that the number of occurrences of the

value 1 onyj
0; : : : ; yj

a� 1 is at most � � pj and at most � � pj on yj
b� 1; : : : ; yj

n� i .

Now since the demanddopt
j � ˆ � � � • :pj � r then all the pj variables in the subsequence

yj
a; : : : ; yj

b must take the value 1.

We use a similar argument for the second case. Suppose thatdopt
j mod pj � 0, consider

a subsequenceyj
a; : : : ; yj

b such that a mod qj � 0 and b � a � pj � 1. Then there exist

two integers � and � such that a � � � qj and n � i � b � � � qj . Therefore, the number

of occurrences of the value 1 onyj
0; : : : ; yj

a� 1 is at most � � pj and at most � � pj on

yj
b� 1; : : : ; yj

n� i .

Now using the demand dopt
j � k � pj , and � œ � qj ˆ� dopt

j ~pj � � 1• � pj we show that

n � i � 1 � qj ˆk � 1• � p. However, sinceb � a � pj � 1, a � � � qj and n � i � b � � � qj , then

k � � � � � 1 and all pj variables the subsequenceyj
a; : : : ; yj

b must take the value 1. j

Figure 4.2 and 4.3 depict the proposed pruning. On the one hand, when dopt
j mod pj � 0,

the only possible arrangement of vehicles that satisfy the capacity constraint is to start

the sequence withpj vehicles requiring the option, then qj � pj vehicles not requiring

the option and repeat (see Figure 4.2). Notice that because of the capacity constraint,

all other variables must take the value 0. On the other hand, when dopt
j mod pj x 0,

one must start the sequence withdopt
j mod pj vehicles requiring the option, then the

following qj � ˆdopt
j mod pj • slots can be �lled arbitrarily as long as exactly pj vehicles

requiring this options are �tted in the qj �rst slots. Here again, the initial sequence

must be repeated throughout (see Figure 4.3).

Figure 4.2: Filtering when dopt
j mod pj � 0

pj qj � pj

11 .. 1 00.. 0

pj qj � pj

11 .. 1 00.. 0 ..

pj qj � pj

11 .. 1 00.. 0

pj

11 .. 1

Figure 4.3: Filtering when r � dopt
j mod pj x 0

r qj � r

11 .. 1 xx.. x
r qj � r

11 .. 1 xx.. x ..
r qj � r

11 .. 1 xx.. x
r

11 .. 1

4.1.3 Time Complexity

This rule is extremely cheap to enforce. Once one has computed the real load, the domain

�ltering can be achieved in Oˆk• where k is the number of option variables forced to

take the value 1. Indeed, whendopt
j mod pj x 0 we can jump over the variables which are

not forced to take the value 1, since their position is given by a simple recursion. In the

worst case (i.e., whendopt
j mod pj � 0), k is equal to the number of unassigned variables

and therefore the time complexity can reachOˆn•.
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In the next sections, we generalize theSlack-Pruning rule in the form of an Arc

Consistency algorithm for a new global constraint that we call AtMostSeqCard . The

latter can be used for solving a large family of sequencing problems. This constraint will

be introduced after a short background regarding sequence constraints.

4.2 Sequence Constraints

There are several variants of theSequence constraints. We �rst review them and

then motivate the need for the variant proposed in this chapter: the AtMostSeqCard

constraint which extends the Slack-Pruning .

4.2.1 Decomposition via slide

We start with an important decomposition property related t o sequence constraints in-

troduced in [23]. For any constraint C, we denote byD8
C the set of values� x >X ˆC• Dˆx•.

De�nition 4.3. Monotonicity

A constraint C is said to be monotone i� there exists a total order h on D8
C s.t. for any

two values � h � , � can replace� in any support on C.

Example 4.2. A monotone constraint

Let P i � n
i � 1 x i Bp be the constraint ensuring that the sum of the Boolean variables x1 : : : xn

is at most p. We show that this constraint is monotone. The total orderh chosen here

is the `less than' (i.e. @) operator on integers. It is clear that the value0 can replace the

value 1 in any support for this constraint. j

De�nition 4.4. The slide meta-constraint

Let C be a constraint of arity k. The slide ˆC; � x1; : : : ; xn �• constraint is de�ned by the

conjunction of all Cˆ� x i ; : : : ; x i � k� 1�• where i >�1; n � k � 1� .

The slide (meta-)constraint can be used to model many sequencing problems. The idea

is to slide the same `type' of constraints over a sequence of variables.

Theorem 4.5. Arc Consistency on slide [23]

If C is monotone thenac on slide ˆC; � x1; : : : ; xn �• is equivalent toac on each constraint

C.

Theorem 4.5 gives an easy su�cient condition for making the decomposition of slide

not hindering propagation. This property is used in Section4.2.2.1 to decompose a chain

of AtMost constraints.
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4.2.2 Chains of Among Constraints:

In the following de�nitions, � is a set of integers andl; u; q are integers. Sequence con-

straints are conjunctions of Among constraints, constraining the number of occurrences

of a set of values in a set of variables.

De�nition 4.6. Among ˆ l; u; � x1; : : : ; xq� ; � • � l BS̃i Sx i >� •SBu

The AmongSeq constraint, �rst introduced in [17], is a chain of Among constraints of

width q slid along a vector ofn variables.

De�nition 4.7. AmongSeq ˆ l; u; q; � x1; : : : ; xn � ; � • � � n� q
i � 0 Among ˆ l; u; � x i � 1; : : : ; x i � q� ; � •

Note �rst that Among is not monotone in general. Therefore Theorem 4.5 does not

apply and ac on each Among will not necessarily establish ac on AmongSeq . We

use the same example given in [139] to show how decompositionhinders propagation.

In AmongSeq ˆ2; 3; 5; � x1; : : : ; x7� ; ˜ 1•• where Dˆ x1• � Dˆ x2• � 1, Dˆ x3• � Dˆ x4• �

Dˆ x5• � Dˆ x7• � ˜ 0; 1• , and Dˆ x6• � 0, eachAmong constraint is ac while the assign-

ment x7 � 0 does not have a support onAmongSeq .

The �rst (incomplete) algorithm for �ltering this constrai nt was proposed in 2001 [15].

Then, in [139, 138], two complete algorithms for �ltering th eAmongSeq constraint were

introduced: �rstly, a reformulation using the Regular constraint using 2q� 1 states

achieving ac in Oˆ2qn• time; secondly, an algorithm achieving ac with a worst case

time complexity of Oˆn3•. Moreover, this last algorithm is able to handle arbitrary sets

of Among constraints on consecutive variables (denotedGen-Sequence ), however in

Oˆn4•. Last, two �ow-based algorithms were introduced in [91]. The �rst achieves ac

on AmongSeq in Oˆn3~2 logn logp•, while the second achievesac on Gen-Sequence

in Oˆn3• in the worst case. These two algorithms have an amortized complexity down

a branch of the search tree ofOˆn2• and Oˆn3•, respectively.

4.2.2.1 Chain of AtMost Constraints

Although useful in both applications, the AmongSeq constraint does not model exactly

the type of sequences useful in car-sequencing and crew-rostering applications. First,

there is often no lower bound for the cardinality of the subsequences, i.e.,l � 0. Therefore

AmongSeq is unnecessarily general in that respect. Moreover, the capacity constraint

on subsequences is often paired with a cardinality requirement.

For instance, in car-sequencing, classes of car requiring agiven option cannot be clustered

together, because a working station can only handle a fraction of the cars passing on the

line (at most p times in any sequence of lengthq). The total number of occurrences of
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these classes is a requirement, and translates as an overallcardinality constraint rather

than lower bounds on each subsequence.

In crew-rostering, allowed shift patterns can be complex, hence theRegular constraint

is often used to model them. However, working in at mostp shifts out of q is a useful

particular case. If days are divided into three 8h shifts,AtMostSeq with p � 1 and

q � 3 makes sure that no employee work more than one shift per dayand that there

must be a 24h break when changing shifts. Moreover, similarly to car-sequencing, the

lower bound on the number of worked shifts is global (monthly, for instance). In other

words, we often have a chain ofAtMost constraints.

De�nition 4.8. AtMost ˆp;� x1; : : : ; xq� ; � • � Among ˆ0; p;� x1; : : : ; xq� ; � •

To simplify notation, when the variables are Boolean and � � ˜ 1• , we denote by

AtMost ˆ� x1; : : : ; xq� ; p• the AtMost ˆp;� x1; : : : ; xq� ; � • constraint. Note that

AtMost ˆ� x1; : : : ; xq� ; p• is in fact the monotone constraint P i � n
i � 1 x i B p given in Ex-

ample 4.2. We can easily show that the generalAtMost ˆp;� x1; : : : ; xq� ; � • is similarly

monotone.

A chain of AtMost constraints can be de�ned as follows:

De�nition 4.9. AtMostSeq ˆp; q;� x1; : : : ; xn � ; � • � � n� q
i � 0 AtMost ˆp;� x i � 1; : : : ; x i � q� ; � •

Observe that ac on AtMostSeq is maintained using the decomposition of de�nition 4.9.

In fact since AtMost is monotone, then Arc Consistency is established onAtMostSeq

i� each AtMost is ac .

A good tradeo� between �ltering power and complexity can be achieved by reasoning

about the total number of occurrences of values from the set� together with the chain

of AtMost constraints.1 We therefore introduce the AtMostSeqCard constraint,

de�ned as the conjunction of an AtMostSeq with a cardinality constraint on the total

number of occurrences of values in� :

De�nition 4.10. AtMostSeqCard ˆp; q; d;� x1; : : : ; xn � ; � • �

AtMostSeq ˆp; q;� x1; : : : ; xn � ; � • , S̃i Sx i >� •S� d

The two ac algorithms introduced in [138] were adapted in [139] to achieve ac on the

AtMostSeqCard constraint. First, in the same way that AmongSeq can be encoded

with a Regular constraint, AtMostSeqCard can be encoded with acost-Regular

constraint, where the cost stands for the overall demand, and it is increased on tran-

sitions labeled with the value 1. This procedure has the sameworst case time com-

plexity, i.e., Oˆ2qn• [139]. Second, the more general version of the polynomial algorithm
1This modeling choice is used in [139] on car-sequencing.
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(Gen-Sequence ) is used, to �lter the following decomposition of the AtMostSeqCard

constraint into a conjunction of Among :

AtMostSeqCard ˆp; q; d;� x1; : : : ; xn � ; � • �
n� q

�
i � 0

Among ˆ0; p;� x i � 1; : : : ; x i � q� ; � • , Among ˆd; d;� x1; : : : ; xn � ; � •

The algorithm of van Hoeve et al. [139] runs inOˆn3• time complexity on this decompo-

sition. Similarly, the algorithm of Maher et al. [91] runs in Oˆn2:logˆn•• down a branch

of the search tree with anOˆq:n2• initial compilation. The algorithm we propose in this

chapter (�rst published as [120]) runs in linear time and is therefore optimal. Finally,

another linear time algorithm based on the graph representation of [91] was subsequently

proposed by Narodytska and Walsh in [136].

4.2.2.2 Global Sequencing Constraint

The Global Sequencing Constraint that we introduced in De�nition 2.11 is in fact nothing

but a conjunction between anAmongSeq and a Gcc . That is:

De�nition 4.11. Gscˆ l; u; q; low; upp;� x1; : : : ; xn � ; � • �

AmongSeq ˆ l; u; q; � x1; ::; xn � ; � • , Gcc ˆ low; upp;� x1; ::; xn �•

4.3 The AtMostSeqCard Constraint

In this section, we introduce a linear �ltering algorithm fo r the AtMostSeqCard

constraint. We �rst give a simple greedy algorithm for �ndin g a support with an Oˆnq•

time complexity. Then, we show that one can use two calls to this procedure to enforce

ac . Last, we show that its worst case time complexity can be reduced to Oˆn•.

It was observed in [139] and [91] that we can consider Booleanvariables and � � ˜ 1• ,

since the following decomposition ofAmong (or AtMost ) does not hinder propagation

as it is Berge acyclic:

Among ˆ l; u; � x1; : : : ; xq� ; � • �
q

�
i � 1

ˆx i >� � xœ
i � 1• , l B

q

Q
i � 1

xœ
i Bu

Therefore, throughout the chapter, we consider� x1; : : : ; xn � as a sequence of Boolean

variables, and use the following restriction of theAtMostSeqCard constraint with

� � ˜ 1• :



Chapter 4 Propagation in Sequencing Problems 64

De�nition 4.12.

AtMostSeqCard ˆp; q; d;� x1; : : : ; xn �• �
n� q

�
i � 0

ˆ
q

Q
l � 1

x i � l Bp• , ˆ
n

Q
i � 1

x i � d•

4.3.1 Finding a Support

Let w be ann-tuple in ˜ 0; 1• n , SwS� P n
i � 1 w� i � its cardinality, and w� i � j � the projection

of w on the subsequence� x i ; : : : ; x j � .

We �rst show that one can �nd a support by greedily assigning variables in a lexicograph-

ical order to the value 1 whenever possible, that is, while taking care of not violating the

AtMostSeq constraint. More precisely, doing so leads to an instantiation of maximal

cardinality, which may easily be transformed into an instantiation of cardinality d.

The greedy procedureleftmost (Algorithm 9) computes an instantiation w that maxi-

mizes the cardinality of the sequencê x1; : : : ; xn • subject to an AtMostSeq constraint

(with parameters p and q),

Algorithm 9: leftmost

1 foreach i >�1; : : : ; n� do w� i � � min ˆx i •;
foreach i >�1; : : : ; q� do w�n � i � � 0;
cˆ1• � w�1� ;
foreach j >�2; : : : ; q� do cˆ j • � cˆ j � 1• � w� j � ;
foreach i >�1; : : : ; n� do

2 if SDˆ x i •SA1 & max j >� 1;q� ˆcˆ j •• @p then
w� i � � 1;

3 foreach j >�1; : : : ; q� do cˆ j • � cˆ j • � 1;

4 foreach j >�2; : : : ; q� do cˆ j � 1• � cˆ j •;
5 cˆq• � cˆq � 1• � w� i � q� � w� i � ;

return w;

Algorithm leftmost works as follows. First, the tuple w is initialized to the minimum

value in the domain of each variable in Line 1. Then, at each step i > �1; : : : ; n� of

the main loop, the cardinality of the j th subsequence involving the variablex i with

respect to the current value of w is stored in cˆ j •. In other words, at step i , we have

cˆ j • � P
min ˆn;i � j � 1•
l � max ˆ1;i � q� j • w� l � .

When exploring variable x i , such that Dˆ x i • � ˜ 0; 1• we setw� i � to 1 i� this would not

violate the capacity constraints, that is, if cˆ j • @p for all j >� 1; : : : ; q� (Condition Line 2).

In that case, the cardinality of every subsequence involving x i is incremented (Line 3).

Finally, when moving to the next variable, the values of cˆ j • are shifted (Line 4), and

the value of cˆq• is obtained by adding the value ofw� i � q� and subtracting w� i � to its
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previous value (Line 5).

From now on, we shall use the following notations:

ˆ Ð�w denotes the instantiation found by leftmost on the sequencex1; : : : ; xn .

ˆ �Ðw denotes the instantiation found by the same algorithm, however on the sequence

xn ; : : : ; x1, that is, from right to left. Notice that, in order to simplif y the notations,
�Ðw � i � shall denote the value assigned byleftmost to the variable x i , and not xn� i � 1

as it would actually be if we gave the reversed sequence as input.

Example 4.3. We illustrate the behavior of leftmost on a simple example (see Fig-

ure 4.4). Let � x1; : : : ; x22� be a sequence of variables with a capacity constraint of2~4,

that is, constrained by: AtMostSeq ˆ2; 4; � x1; : : : ; x22�• . Dots in the �rst row stand for

unassigned variables. The second row shows the computed instantiation Ð�w , and the next

rows show the state of the variablescˆ1•; cˆ2•; cˆ3• and cˆ4• at the start of each iteration

of the main loop. The last row stands for the maximum value ofcˆ j •. The bold values

indicate that leftmost assigns the value1.

Dˆ x i • . 0 . 1 . . . 0 . 0 1 . . 1 . . . . . . . 1
Ð�w � i � 1 0 0 1 1 0 0 0 1 0 1 0 0 1 1 0 0 1 1 0 0 1
cˆ1• 0 1 1 2 1 2 2 1 0 0 2 2 1 2 1 2 2 1 1 2 2 2
cˆ2• 0 1 2 1 1 2 1 0 0 2 2 1 2 1 1 2 1 0 1 2 2 1
cˆ3• 0 2 1 1 1 1 0 0 1 2 1 2 1 1 1 1 0 0 1 2 1 1
cˆ4• 1 1 1 1 0 0 0 1 1 1 2 1 1 1 0 0 0 1 1 1 1 1

maxˆc• 1 2 2 2 1 2 2 1 1 2 2 2 2 2 1 2 2 1 1 2 2 2

Figure 4.4: Sequence of maximum cardinality obtained byleftmost .

Lemma 4.13. leftmost maximizes P n
i � 1 x i subject to AtMostSeq ˆp; q;� x1; : : : ; xn �• .

Proof. Let Ð�w be the instantiation found by leftmost , and suppose that there exists

another instantiation w (consistent for AtMostSeq ˆp; q;� x1; : : : ; xn �• ) such that SwSA

SÐ�wS. Let i be the smallest index such thatÐ�w � i � x w� i � . By de�nition of Ð�w , we know

that Ð�w � i � � 1 hencew� i � � 0. Now, let j be the smallest index such thatÐ�w � j � @w� j �

(it must exists since SwSASÐ�wS).

We �rst argue that the instantiation wœequal to w except that wœ� i � � 1 andwœ� j � � 0 (as

in Ð�w ) is consistent for AtMostSeq . Clearly, its cardinality is not a�ected by this swap,

henceSwœS� SwS. Now, we consider all the sum constraints whose scopes are changed by

this swap, that is, the sumsP a� q� 1
l � a wœ� l � on intervals � a; a � q� 1� such that a B i @a � q

or a B j @a � q. There are three cases:
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1. Suppose �rst that a B i @j @a � q: in this case, the value of the sum is the same

in w and wœ, therefore it is lower than or equal to p.

2. Suppose now thati @a B j @a � q: in this case, the value of the sum is decreased

by 1 from w to wœ, therefore it is lower than or equal to p.

3. Last, suppose thata B i @a � q B j : in this case, for any l > �a; a � q � 1� , we have

wœ� l � B Ð�w � l � since j is the smallest integer such thatÐ�w � j � @w� j � , hence the sum

is lower than or equal to p.

Therefore, given a sequencew of maximum cardinality that di�ers from Ð�w at rank i , we

can build a sequence of equal cardinality that does not di�er from Ð�w until rank i � 1.

By iteratively applying this argument, we can obtain a sequence identical to Ð�w , albeit

with cardinality SwS, therefore contradicting our hypothesis that SwSASÐ�wS. j

Corollary 4.14. Let Ð�w be the instantiation returned by leftmost . There exists a

solution of AtMostSeqCard ˆp; q; d;� x1; : : : ; xn �• i� the three following propositions

hold:

(1) AtMostSeq ˆp; q;� x1; : : : ; xn �• is satis�able (2) P n
i � 1 min ˆx i • Bd

(3) SÐ�wSCd.

Proof. It is easy to see that these conditions are all necessary: (1)and (2) come from

the de�nition, and (3) is a direct application of Lemma 4.13. Now, we prove that they

are su�cient by showing that if these properties hold, then a solution exists. Since

AtMostSeq ˆp; q;� x1; : : : ; xn �• is satis�able, Ð�w does not violate the chain ofAtMost

constraints as the value 1 is assigned tox i only if all subsequences involvingx i have

cardinality p � 1 or less. Moreover, sinceP n
i � 1 min ˆx i • B d B SÐ�wS, then there are at

least SÐ�wS� d variables such that min ˆx i • � 0 and Ð�w � i � � 1. Assigning them to 0 in
Ð�w does not violate the AtMostSeq constraint. Hence we can build a support for

AtMostSeqCard . j

Lemma 4.13 and Corollary 4.14 give us a polynomial support-seeking procedure for

AtMostSeqCard . Indeed, the worst case time complexity of Algorithm 9 is inOˆnq•.

There aren steps and on each step, Lines 2, 3 and 4 involveOˆq• operations. Therefore,

for each variablex i , a support for x i � 0 or x i � 1 can be found inOˆnq•. Consequently,

we have a naiveac procedure running in Oˆn2q• time.

4.3.2 Filtering the Domains

In this section, we show that we can �lter out all the values inconsistent with respect to

the AtMostSeqCard constraint within the same time complexity as Algorithm 9.
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First, we show that there can be inconsistent values only in the case where the cardinality

SÐ�wSof the instantiation returned by leftmost is exactly d: in any other case, the

constraint is either violated (when SÐ�wS@d) or ac , (when SÐ�wSAd). The following lemma

formalizes this:

Lemma 4.15. The constraint AtMostSeqCard ˆp; q; d;� x1; : : : ; xn �• is ac if the three

following propositions hold:

1. AtMostSeq ˆp; q;� x1; : : : ; xn �• is ac

2. P n
i � 1 min ˆx i • Bd

3. SÐ�wSAd

Proof. By Corollary 4.14 we know that AtMostSeqCard ˆp; q; d� 1; � x1; : : : ; xn �• is

satis�able. Let w be a satisfying instantiation, and consider without loss ofgenerality

a variable x i such that SDˆ x i •SA 1. Assume �rst that w� i � � 1. The solution wœequal

to w except that wœ� i � � 0 satis�es AtMostSeqCard ˆp; q; d;� x1; : : : ; xn �• . Indeed,

SwœS� SwS� 1 � d and sinceAtMostSeq ˆp; q;� x1; : : : ; xn �• was satis�ed by w it must be

satis�ed by wœ. Hence, for every variablex i such that SDˆ x i •SA1, there exists a support

for x i � 0.

Suppose that w� i � � 0, and let a (respectively b) be the largest (respectively small-

est) index such that a @i , w�a� � 1 and Dˆ xa• � ˜ 0; 1• (respectively b A i , w�b� � 1

and Dˆ xb• � ˜ 0; 1• ). Let wœ be the instantiation such that wœ� i � � 1, wœ� a� � 0,

wœ� b� � 0, and w � wœotherwise. We have SwœS� d, and we show that it satis�es

AtMostSeq ˆp; q;� x1; : : : ; xn �• . Consider a subsequencex j ; : : : ; x j � q� 1. If j � q B i or

j A i then P j � q� 1
l � j wœ� l � BP j � q� 1

l � j w� l � Bp, so only indicesj s.t. j B i @j � q matter. There

are two cases:

1. Either a or b or both are in the subsequence (j Ba @j � q or j Bb@j � q). In that

caseP j � q� 1
l � j wœ� l � BP j � q� 1

l � j w� l � .

2. Neither a nor b are in the subsequence (a @j and j � q B b). In that case,

sinceDˆ x i • � ˜ 0; 1• and sinceAtMostSeq ˆp; q;� x1; : : : ; xn �• is ac , we know that

P j � q� 1
l � j min ˆx l • @p. Moreover, since a @j and j � q B b, there is no variable

x l in that subsequence such thatw� l � � 1 and 0 > Dˆ x l •. Therefore, we have

P j � q� 1
l � j w� l � @p, henceP j � q� 1

l � j wœ� l � Bp.

In both caseswœsatis�es all capacity constraints. Hence it is support for the value 1. j

Remember that achieving ac on AtMostSeq is trivial since AtMost is monotone.

Therefore we focus of the case whereAtMostSeq is ac , and SÐ�wS� d. In particular,
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Lemmas 4.16, 4.17, 4.19 and 4.20 only apply in that case. The equality SÐ�wS� d is

therefore implicitly assumed in all of them.

Lemma 4.16. If SÐ�w �1 � i � 1�S� S�Ðw � i � 1 � n�S@d then x i � 0 is not ac .

Proof. Suppose that we haveSÐ�w �1 � i � 1�S� S�Ðw � i � 1 � n�S@d and suppose that there

exists a consistent instantiation w such that w� i � � 0 and SwS� d.

By Lemma 4.13 on the sequencex1; : : : ; x i � 1 we know that P i � 1
l � 1 w� l � BSÐ�w �1 � i � 1�S.

By Lemma 4.13 on the sequencexn ; : : : ; x i � 1 we know that P n
l � i � 1 w� l � BS�Ðw � i � 1 � n�S.

Therefore, sincew� i � � 0, we haveSwS� P n
l � 1 w� l � @d, thus contradicting the hypothesis

that SwS� d. Hence, there is no support forx i � 0. j

Lemma 4.17. If SÐ�w �1 � i �S� S�Ðw � i � n�SBd then x i � 1 is not ac .

Proof. Suppose that we haveSÐ�w �1 � i �S� S�Ðw � i � n�SB d and suppose that there exists a

consistent instantiation wœsuch that wœ� i � � 1 and SwœS� d.

By Lemma 4.13 on the sequencex1; : : : ; x i we know that P i
l � 1 wœ� l � BSÐ�w �1 � i �S.

By Lemma 4.13 on the sequencexn ; : : : ; x i we know that P n
l � i wœ� l � BS�Ðw � i � n�S.

Therefore, sincewœ� i � � 1, we haveSwœS� P i
l � 1 wœ� l � � P n

l � i wœ� l � � 1 @d, thus contradicting

the hypothesis that SwœS� d. Hence there is no support forx i � 1. j

Lemmas 4.16 and 4.17 entail a pruning rule. In a �rst pass, from left to right, one

can use an algorithm similar to leftmost to compute and store the values ofSÐ�w �1 � i �S
for all i > � 1; : : : ; n� . In a second pass, the values ofS�Ðw � i � n�Sfor all i > � 1; : : : ; n� are

similarly computed by simply running the same procedure on the same sequence of

variables, however reversed, i.e., from right to left. Using these values, one can then

apply Lemma 4.16 and Lemma 4.17 to �lter out the value 0 and 1, respectively. We

detail this procedure in the next section.

We �rst show that these two rules are complete, that is, if AtMostSeq is ac , and the

overall cardinality constraint is ac then an instantiation x i � 0 (respectively x i � 1) is

inconsistent i� Lemma 4.16 (respectively Lemma 4.17) applies. The following Lemma

shows that the greedy rule maximizes the density of 1s on any subsequence starting on

x1, and therefore minimizes it on any subsequence �nishing onxn . Let leftmost ˆk•

denote the algorithm corresponding to applyingleftmost , however stopping whenever

the cardinality of the instantiation reaches a given valuek.

Lemma 4.18. Let w be a satisfying instantiation of AtMostSeq ˆp; q;� x1; : : : ; xn �• .

If k B SwSthen the instantiation Ð�w k computed byleftmost ˆk• is such that, for any

1 B i Bn: P n
l � i

Ð�w k � l � BP n
l � i w� l � .
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Proof. Let m be the index at which leftmost ˆk• stops. We distinguish two cases. If

i A m, for any value l in �m � 1; : : : ; n� , Ð�w k � l � B w� l � (since Ð�w k � l � � min ˆx l •), hence

P n
l � i

Ð�w k � l � B P n
l � i w� l � . When i B m, clearly for i � 1, P n

l � i
Ð�w k � l � B P n

l � i w� l � since

SÐ�w kSB SwS. Now consider the case ofi ~� 1. Since SÐ�w kSB SwS, then P n
l � i

Ð�w k � l � B

SwS� P i � 1
l � 1

Ð�w k � l � . Thus, P n
l � i

Ð�w k � l � B P n
l � i w� l � � ˆP i � 1

l � 1 w� l � � P i � 1
l � 1

Ð�w k � l �• . Moreover,

by applying Lemma 4.13, we show thatP i � 1
l � 1

Ð�w k � l � is maximum, hence larger than or

equal to P i � 1
l � 1 w� l � . Therefore, P n

l � i
Ð�w k � l � BP n

l � i w� l � . j

Lemma 4.19. If AtMostSeq ˆp; q;� x1; : : : ; xn �• is ac , and SÐ�w �1 � i � 1�S� S�Ðw � i � 1 � n�SC

d then x i � 0 has a support.

� C

Ð�w
1

Ð�w �1 � i � 1� 0 �Ðw d� L � i � n�

x ix j x j � q� 1

L d � L

Support for x i � 0 Ð�w �1 � i � 1�
0 �Ðw d� L � i � n�

Figure 4.5: Illustration of Lemma 4.19's proof. Horizontal arrows represent assign-
ments.

Proof. Let Ð�w be the instantiation found by leftmost . We consider, without loss of

generality, a variable x i such that Dˆ x i • � ˜ 0; 1• and SÐ�w �1 � i � 1�S� S�Ðw � i � 1 � n�SC d,

and show that one can build a support forx i � 0. If Ð�w � i � � 0 or �Ðw � i � � 0 then there exists

a support for x i � 0, hence we only need to consider the case whereÐ�w � i � � �Ðw � i � � 1.

Let L � SÐ�w �1 � i � 1�Sand �Ðw d� L be the result of leftmost ˆd � L • on the subsequence

xn ; : : : ; x i . We will show that w, de�ned as the concatenation ofÐ�w �1 � i � 1� and �Ðw d� L � i �

n� is a support for x i � 0.

First, we show that w� i � � 0, that is �Ðw d� L � i � � 0. By hypothesis, sinceSÐ�w �1 � i � 1�S�

S�Ðw � i � 1 � n�SC d, we have �Ðw � i � 1 � n� C d � L . Now, consider the sequencex i ; : : : ; xn ,

and let wœbe the instantiation such that wœ� i � � 0, and wœ� �Ðw � i � 1 � n� otherwise. Since

wœ� �Ðw � i � 1 � n� Cd� L , by Lemma 4.18, we know thatwœhas a higher cardinality than
�Ðw d� L on any subsequence starting ini , hencew� i � � �Ðw d� L � i � � wœ� i � � 0.

Now, we show that w does not violate the AtMostSeq constraint. Obviously, since it

is the concatenation of two consistent instantiations, it can violate the constraint only

on the junction, i.e., on a subsequencex j ; : : : ; x j � q� 1 such that j B i and i @j � q.

We show that the sum of any such subsequence is less than or equal to p by comparing

with Ð�w , as illustrated in Figure 4.5. We haveP j � q� 1
l � j

Ð�w � l � Bp, and P i � 1
l � j

Ð�w � l � � P i � 1
l � j w� l � .
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Moreover, by Lemma 4.18, sinceSÐ�w � i � n�S� S�Ðw d� L S� d � L we have P j � q� 1
l � i

�Ðw d� L � l � B

P j � q� 1
l � i

Ð�w � l � henceP j � q� 1
l � i w� l � BP j � q� 1

l � i
Ð�w � l � . Therefore, we can conclude thatP j � q� 1

l � j w� l � B

p. j

Lemma 4.20. If AtMostSeq ˆp; q;� x1; : : : ; xn �• is ac , and SÐ�w �1 � i �S� S�Ðw � i � n�SA d

then x i � 1 has a support.

�

�

C

Ð�w
1 0 0: : : 0

Ð�w L � 1
0 0 0: : : 1 �Ðw d� L

0 0: : : 0

�Ðw d� L � 1
0 0 0: : : 1

x ixa

xb

L � 1 d � L � 1

Support for x i � 1 Ð�w L � 1
1 �Ðw d� L

Figure 4.6: Illustration of Lemma 4.20's proof. Horizontal arrows represent assign-
ments.

Proof. Let Ð�w and �Ðw be the instantiations found by leftmost , on respectivelyx1; : : : ; xn

and xn ; : : : ; x1. We consider, without loss of generality, a variablex i such that Dˆ x i • �

˜ 0; 1• and SÐ�w �1 � i �S� S�Ðw � i � n�SA d, and show that one can build a support for x i � 1.

If Ð�w � i � � 1 or �Ðw � i � � 1 then there exists a support for x i � 1, hence we only need to

consider the case whereÐ�w � i � � �Ðw � i � � 0.

Let L � SÐ�w �1 � i �S� SÐ�w �1 � i � 1�S(this equality holds since Ð�w � i � � 0). Let Ð�w L � 1 be the

instantiation obtained by using leftmost ˆL � 1• on the subsequencex1; : : : ; x i � 1, and let
�Ðw d� L be the instantiation returned by leftmost ˆd� L • on the subsequencexn ; : : : ; x i � 1.

We show that w such that w� i � � 1, equal to Ð�w L � 1 on x1; : : : ; x i � 1 and to �Ðw d� L on

x i � 1; : : : ; xn , is a support.

Clearly SwS� d, therefore we only have to make sure that all capacity constraints are

satis�ed. Moreover, since it is the concatenation of two consistent instantiations, it can

violate the constraint only on the junction, i.e., on a subsequencex j ; : : : ; x j � q� 1 such

that j B i and i @j � q.

We show that the sum of any such subsequence is less than or equal to p by comparing

with Ð�w and �Ðw d� L (see Figure 4.6). First, note that on the subsequencex1; : : : ; x i � 1,
Ð�w L � 1 � Ð�w , except for the largest indexa such that Ð�w �a� � 1 and w�a� � 0. Similarly on

xn ; : : : ; x i � 1, we have�Ðw d� L � �Ðw d� L � 1, except for the smallestb such that �Ðw d� L � 1� b� � 1.

There are two cases:
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Suppose �rst that j Aa. In that case, P j � q� 1
l � j w� l � � P j � q� 1

l � i
�Ðw d� L � 1� l � if j � q� 1 Cb, and

otherwise it is equal to 1. It is therefore always less than orequal to p since i Cj (and

we assumep C1).

Now suppose that j Ba. In that case, consider �rst the subsequencex j ; : : : ; x i . On this

interval, the cardinality of w is the same as that ofÐ�w , i.e., P i
l � j w� l � � P i � 1

l � j
Ð�w L � 1� l � � 1 �

P i
l � j

Ð�w � l � . On the subsequencex i � 1; : : : ; x j � q� 1, note that Sw� i � 1 � n�S� SÐ�w � i � 1 � n�S�

d� L , hence by Lemma 4.18, we haveP j � q� 1
l � i � 1 w� l � � P j � q� 1

l � i � 1
�Ðw d� L � l � BP j � q� 1

l � i � 1
Ð�w � l � . There-

fore P j � q� 1
l � j w� l � BP j � q� 1

l � j
Ð�w � l � Bp. j

4.3.3 Algorithmic Complexity

Using Lemmas 4.16, 4.17, 4.19 and 4.20, one can design a �ltering algorithm with the

same worst case time complexity asleftmost . In this section, we introduce a linear

time implementation of leftmost . We denote this algorithm leftmost_count , since we

use it to compute an array �count� containing the values of SÐ�w �1 � i �Sfor all values of i .

We give the pseudo code for this procedure in Algorithm 10. The key idea that allows to

reduce the complexity is that, at each step, a single new subsequence is to be considered.

However, we also need to compute the new maximum across current subsequences, and

increment all subsequences when assigning the value 1 tow� i � , both in constant time.

It is easy to see thatleftmost_count has anOˆn• worst case time complexity. In order

to prove its correctness, we will show that the instantiation computed by leftmost_count

is the same as that computed byleftmost .

Lemma 4.21. Algorithms 9 and 10 return the same instantiation w.

Proof. We �rst prove the following three invariants, true at the beg inning of each step

of the main loop:

ˆ The cardinality of the j th subsequence is equal toc�ˆ i � j � 2• mod q� � count� i � 1� .

ˆ The number of subsequences of cardinality k is equal to occ�n � count� i � 1� � k� .

ˆ The cardinality maximum of any subsequence is equal to maxc.

Then, it is easy to check that leftmost_count computes the exact same instantiation as

leftmost . Furthermore, at the end of the algorithm, we will have count� i � � SÐ�w �1 � i �S
for all i >� 1; n� .

Cardinality of the subsequences.

Let wi denote the assignmentw after i � 1 steps of the loop. Notice that at the beginning

and the end of the sequence of variables, subsequences are truncated. However, to
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Algorithm 10: leftmost_count
Data : p; q;� x1; : : : ; xn �
Result : count � � 0; : : : ; n� ( � 0; : : : ; n�
foreach i >�1; : : : ; n� do

w� i � � min ˆx i •;
occ� i � � 0;

foreach i >�0; : : : ; n� do count� i � � 0;
c� 0� � w�1� ;
foreach i >�1; : : : ; p� do occ�n � i � � 0;
foreach i >�1; : : : ; q� do

w�n � i � � 0;
if i @q then c� i � � c� i � 1� � w� i � 1� ;
;
occ�n � c� i � 1�� � occ�n � c� i � 1�� � 1;

maxc � maxˆ˜ c� i � Si >�0; : : : ; q � 1�•• ;
foreach i >�1; : : : ; n� do

1 if maxc @p & SDˆ x i •SA1 then
maxc � maxc � 1;
count� i � � count� i � 1� � 1;
w� i � � 1;

else count� i � � count� i � 1� ;
2 prev � c�ˆ i � 1• mod q� ;
3 next � c�ˆ i � q � 2• mod q� � w� i � q� � w� i � ;

c�ˆ i � 1• mod q� � next ;
if prev x next then

4 occ�n � prev� � occ�n � prev� � 1;
5 occ�n � next � � occ�n � next � � 1;

if next � count� i � Amaxc then maxc � maxc � 1 ;
if occ�n � prev� � 0 & prev � count� i � � maxc then

maxc � maxc � 1;

return count;

simplify the notations, we will consider that w� � q� ; w� � q � 1� ; : : : ; w� � 1� exist and are

equal to 0. Thus we can write that the cardinality of the j th is equal to P i � j � 1
l � i � q� j wi � l � .

We prove the �rst invariant by induction, i.e., let Pˆ i • denote the fact that the following

equalities hold at the beginning of a stepi :

ˆ
i � j � 1

Q
l � i � q� j

wi � l �• � ˆc� i � j � 2 modq� � count� i � 1�• ¦ j >� 1; : : : ; q�

The base casePˆ1• is easily checkable from the initialization of c.

Now suppose thatPˆ i • holds, and consider the state ofc at the beginning of step i � 1.

First, note that at step i of the loop, only the value of c� i � 1 modq� changes. Consider
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j > �1; : : : ; q � 1� . In this case, ˆˆ i � 1• � j � 2 modq• � ˆ i � j � 1 modq• x ˆ i � 1 modq•.

Therefore, c�ˆ i � 1• � j � 2 modq� has not changed between stepi and step i � 1, and

sincePˆ i • holds, we have:

ˆ
i � ˆ j � 1• � 1

Q
l � i � q� ˆ j � 1•

wi � l �• � ˆc� i � ˆ j � 1• � 2 modq� � count� i � 1�•

which can be rewritten as follows:

ˆ
ˆ i � 1• � j � 1

Q
l � ˆ i � 1• � q� j

wi � l �• � ˆc�ˆ i � 1• � j � 2 modq� � count� i � 1�•

Now there are two possibilities. Either count is incremented, i.e., count� i � � count� i �

1� � 1, and in that casewi � 1� i � � wi � i � � 1. Or count is not incremented, and in that case

wi � 1� i � � wi � i � .

In both cases we have:

ˆ i � 1• � j � 1

Q
l � ˆ i � 1• � q� j

wi � 1� l � �
ˆ i � 1• � j � 1

Q
l � ˆ i � 1• � q� j ;lxi

wi � l � � wi � 1� i �

sincewi � 1� l � � wi � l � for all l x i . Hence we obtain:

ˆ
ˆ i � 1• � j � 1

Q
l � ˆ i � 1• � q� j

wi � 1� l �• � ˆc� i � ˆ j � 1• � 2 modq� � count� i � 1�• � wi � i � � wi � 1� i �

which can be rewritten as:

ˆ
ˆ i � 1• � j � 1

Q
l � ˆ i � 1• � q� j

wi � 1� l �• � ˆc�ˆ i � 1• � j � 2 modq� � count� i �•

Thus Pˆ i � 1• holds.

Now we look at the last case:j � q. Here, at step i the value of c� i � 1 modq� is set to

c� i � q� 2 modq� � wi � 1� i � q� � wi � 1� i � . SincePˆ i • holds, we can replacec� i � q� 2 modq�

by P i � q� 1
l � i wi � l �• � count� i � 1� , so at the beginning of stepi � 1 we have:

c�ˆ i � 1• � q � 2 modq� � ˆ
i � q� 1

Q
l � i

wi � l �• � count� i � 1� � wi � 1� i � q� � wi � 1� i �

however, sinceP i � q� 1
l � i wi � l �• � wi � i � � P i � q� 1

l � i � 1 wi � 1� l �• we have:

c�ˆ i � 1• � q � 2 modq� �
i � q

Q
l � i � 1

wi � 1� l � � count� i � 1� � wi � i � � wi � 1� i �
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Therefore, sincecount� i � � count� i � 1� � wi � 1� i � � wi � i � , the following holds:

c�ˆ i � 1• � q � 2 modq� �
i � q

Q
l � i � 1

wi � 1� l � � count� i �

We have shown that Pˆ i • implies Pˆ i � 1•, and we can therefore conclude that at the

beginning of each stepi of the loop Pˆ i • (that is, the �rst invariant) holds.

Occurrences of each cardinality.

We proceed as for the �rst invariant, and prove it by inductio n. The base case is easy

to check sincecount� 0� � 0, and since the arrayc is properly initialized.

Now we assume that there are exactlyocc�n � count� i � 1� � k� subsequences involving

x i whose cardinality is equal tok in wi , and we show that at the beginning of stepi � 1

there are occ�n � count� i � � k� subsequences involvingx i � 1 of cardinality k in wi � 1.

There are two reasons for cardinalities to change.

First, when moving up to the next step in the loop, we move fromsubsequences involving

x i to subsequences involvingx i � 1. There are q � 1 subsequences involving bothx i and

x i � 1. So we simply need to make sure that the occurrences are updated to re�ect

the fact that the subsequencex i � q� 1; : : : ; x i should not be counted anymore, whilst the

subsequencex i � 1; : : : ; x i � q should now be. Let k1 (respectively k2) be the cardinality

of the former (respectively latter) subsequence. As established by the �rst invariant,

k1 � c�ˆ i � 1• mod q� � count� i � 1� , that is the value prev in Line 2 is set to k1 � count� i � 1� .

Moreover, next is given the value c�ˆ i � q � 2• mod q� � w� i � q� � w� i � . However, from

invariant 1, we have c�ˆ i � q � 2• mod q� � count� i � 1� � P i � q� 1
l � i w� l � . It follows that

next �
i � q� 1

Q
l � i

w� l � � w� i � q� � w� i � � count� i � 1� �
i � q

Q
l � i � 1

w� l � � count� i � 1�

therefore next � k2 � count� i � 1� . To maintain invariant (2), we therefore need to

increment the value of occ�n � count� i � 1� � k2� and decrement the value ofocc�n �

count� i � 1� � k1� . This is precisely what is done in Lines 4 and 5.

Second, when the conditions in Line 1 are met, the value ofw� i � is set to 1. Since its

value was previously 0, the cardinality of every subsequence involving w� i � should be

incremented before starting the next step (i � 1). This happens automatically because

in this case the value ofcount� i � will be set to count� i � 1� � 1. Indeed, for any integer

k, the number of occurrences of subsequences of cardinalityk � 1 at the beginning of

step i is occ�n � count� i � 1� � k � 1� . Therefore, sincecount� i � � count� i � 1� � 1, at the

beginning of stepi � 1, we haveocc�n � ˆcount� i � � 1• � k � 1� , that is, occ�n � count� i � � k� .

Cardinality maximum.
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Here we show that the maximum value of the cardinalities of the current subsequences is

properly maintained. When the number of occurrences of a cardinality k becomes non-

null and if k Amaxc, then maxc is set to k. Similarly, When the number of occurrences

of a cardinality k becomes null and ifk � maxc, then maxc is decreased. Last, when the

cardinality of all subsequences is incremented,maxc is incremented too.

These operations are correct because from one stepi to i � 1, the value of maxc cannot

change by more than 1. Indeed, only the �rst subsequence is removed, the other q � 1

subsequences remain unchanged. Moreover, the �rst subsequence is replaced by the

last subsequence to which a valuea > �0; 1� is added, and another valueb > �0; 1� is

subtracted. Therefore its value cannot change by more than 1, hencemaxc.

Now having these three invariants, one can check that at eachstep i the values ofw� i �

will be the same as in Algorithm 9.

j

4.3.4 Achieving Arc-Consistency on AtMostSeqCard

Now, we can prove our main result, that ac on a constraint

AtMostSeqCard ˆp; q; d;� x1; : : : ; xn �• can be achieved inOˆn• time by Algorithm 11.

First, in Line 1, we achieve ac on AtMostSeq ˆp; q;� x1; : : : ; xn �• , so that the �rst con-

dition for Lemma 4.15 holds. Achieving ac on AtMostSeq can be done in linear time

using a procedure essentially similar toleftmost_count . Indeed, since the constraint

AtMost is monotone, we simply need to achieveac on every AtMost . Moreover, a

constraint AtMost ˆp;� x i 1 ; : : : ; x i q �• may prune the domain of a variable only if p other

variables in � x i 1 ; : : : ; x i q �• are assigned to 1. To do that, we run a truncated version of

leftmost_count : the values ofw� i � are never updated, i.e., they are set to the minimum

value in the domain and we never enter the if-then-else blockstarting at condition 1 in

Algorithm 10. Now, if at step i we havemaxc � p, then there are p variables assigned

to 1 in at least one subsequence involvingx i , hence it should be set to 0 if possible.

Second, in Line 2, we achieveac on the cardinality constraint, in order to satisfy the

second condition of Lemma 4.15.

Third, in Line 4 we compute the vector L that maps each index i to the value of

SÐ�w �1 � i �S� P j � i
j � 1 min ˆx j •. This is given by the array count returned by leftmost_count

on the sequence� x1; : : : ; x i � . Notice that, we work with the residual demand, com-

puted in Line 3, rather than the original demand. At this poin t, the third condition of

Lemma 4.15 can be checked, and we know whether the constraintis ac , inconsistent, or

if some pruning may be possible.
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In the latter case, we compute the vectorR, that maps each index i to the value of

S�Ðw � i � n�S� P j � n
j � i min ˆx j • , in Line 5.

Finally, we can activate the pruning rules that are shown to be correct and su�cient by

Lemmas 4.16 and 4.19 for Line 6, and Lemmas 4.17 and 4.20 for Line 7.

Algorithm 11: ac (AtMostSeqCard ˆp; q; d;� x1; ::; xn �••

1 if ac ˆAtMostSeq ˆp; q;� x1; : : : ; xn �•• � Ù then
return Ù ;

2 if ac ˆP n
i � 1 x i � d• � Ù then

return Ù;

3 dres � d � P n
i � 1 min ˆx i •;

4 L � leftmost_count ˆ� x1; : : : ; xn � ; p; q•;
if L � n� � dres then

5 R � leftmost_count ˆ� xn ; : : : ; x1� ; p; q•;
foreach i >�1; : : : ; n� such that Dˆ x i • � ˜ 0; 1• do

6 if L � i � � R�n � i � 1� Bdres then Dˆ x i • � ˜ 0• ;
7 if L � i � 1� � R�n � i �@dres then Dˆ x i • � ˜ 1• ;

else if L � n� @dres then
return Ù ;

return D ;

Theorem 4.22. Algorithm 11 achievesac on AtMostSeqCard with an optimal worst

case time complexity.

Proof. The soundness of Algorithm 11 is a straight application of Lemmas 4.16 and 4.17.

Its completeness is a consequence of Lemmas 4.15, 4.19 and 4.20.

Achieving ac on AtMostSeq (Line 1) can be done with one call toleftmost_count .

Achieving ac on a simple cardinality constraint (Line 2) can be done trivially in Oˆn•

time. Finally, pruning the domains requires at most two calls to leftmost_count , plus

going through the sequence of variable to actually change the domains, that is, Oˆn•

time.

The worst case time complexity of Algorithm 11 is then Oˆn•, hence optimal. j j

Example 4.4. We give an example of the execution of Algorithm 11 in Figure 4.7 for

computing the ac of constraint AtMostSeqCard with p � 4; q � 8 and d � 12.

The �rst line stands for current domains, dots are unassigned variables (hencedres � 10).

The two next lines give the instantiationsÐ�w and �Ðw obtained by runningleftmost_count

from left to right and from right to left, respectively. The third and fourth lines stand for

the values ofL � i � � SÐ�w �1 � i �S� P j � i
j � 1 min ˆx j • and R�n � i � 1� � S�Ðw � i � n�S� P j � n

j � i min ˆx j •.

The �fth and sixth lines correspond to the application of, respectively, Lemma 4.16
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Dˆ x i • . 0 . . . . . . 0 1 0 . . . . . . . . . . 1
Ð�w � i � 1 0 1 1 1 0 0 0 0 1 0 1 1 1 0 0 0 1 0 1 1 1
�Ðw � i � 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 1 1 1 1
L � i � 0 1 1 2 3 4 4 4 4 4 4 4 5 6 7 7 7 7 8 8 9 10 10

R�n � i � 1� 10 9 9 9 8 7 6 6 6 6 6 6 5 4 3 3 3 3 3 2 1 0 0
L � i � � R�n � i � 1� 11 10 11 12 12 1110 10 10 10 10 11 11 1110 10 10 11 11 11 11 10
L � i � 1� � R�n � i � 9 10 10 10 10 10 10 10 10 10 109 9 9 10 10 10 10 109 9 10

ac ˆDˆ x i •• 1 0 . . . . 0 0 0 1 0 1 1 1 0 0 0 . . 1 1

Figure 4.7: ac on AtMostSeqCard ˆp � 4; q � 8; d � 12; � x1; : : : ; xn �•

and 4.17. Last, the seventh line gives the Arc Consistent domains. Bold values indicate

pruning.

4.4 Extensions

In this section, we show that the �ltering algorithm describ ed in the previous section

can be extended in a number of ways to enforceac on more general constraints.

Some generalizations are straightforward. For instance, the parameter p does not need

to be the same for all subsequences. Indeed neither Algorithm 9 nor Algorithm 10 relies

on the fact that p is constant across all subsequences. We can easily give a list of upper

bounds, one for each subsequence. Another relatively straightforward generalization is

to have a variable, rather than a single value, for the demandd.

4.4.1 The AtMostSeq � Card Constraint

Let � be a variable, we de�ne theAtMostSeq � Card as follows:

De�nition 4.23.

AtMostSeq � Card ˆp; q; �; � x1; : : : ; xn �• �
n� q

�
i � 0

ˆ
q

Q
l � 1

x i � l Bp• , ˆ
n

Q
i � 1

x i � � •

We show how one can achieveac on the above generalization. The changes to Algo-

rithm 11 required to handle this generalization are minimal. Indeed, tight lower and

upper bounds on� are easy to compute.

They are given, respectively byP n
i � 1 min ˆx i •, and SÐ�wS. Moreover, by Lemma 4.15, we

know there can be inconsistent values for a variablex i only if SÐ�wSBd. It follows that we

only need to care about the lower bound of� . We show these changes in Algorithm 12.

The domain of � is updated in Line 2 for the lower bound, and Line 5 for the upper
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bound. Also, the lower bound of � (min ˆ � •) is used to compute the residual demand to

reach in Line 3 instead ofd.

Algorithm 12: ac ˆAtMostSeq � Card ˆp; q; �; � x1; ::; xn �• )

1 if ac ˆAtMostSeq ˆp; q;� x1; : : : ; xn �•• � Ù then
return Ù ;

2 if ac ˆP n
i � 1 x i � � • � Ù then

return Ù ;

3 dres � min ˆ � • � P n
i � 1 min ˆx i •;

4 L � leftmost_count ˆ� x1; : : : ; xn � ; p; q•;
5 Dˆ � • � Dˆ � • 9 �0; L �n� � P n

i � 1 min ˆx i •� ;
6 if L � n� � dres then

R � leftmost_count ˆ� xn ; : : : ; x1� ; p; q•;
foreach i >�1; : : : ; n� such that Dˆ x i • � ˜ 0; 1• do

if L � i � � R�n � i � 1� Bdres then Dˆ x i • � ˜ 0• ;
if L � i � 1� � R�n � i �@dres then Dˆ x i • � ˜ 1• ;

7 else if L � n� @dres then
return Ù ;

return D ;

Theorem 4.24. Algorithm 12 achieves ac on AtMostSeq � Card with an optimal

worst case time complexity.

Proof. First, we need to �lter inconsistent values from the domain of � . By Lemma 4.13,

the cardinality SÐ�wSof the instantiation returned by leftmost is a valid upper bound

for � . Moreover, because of the cardinality constraint, P n
i � 1 min ˆx i • is a valid lower

bound. It is easy to see that any valued within these bounds satis�es the condi-

tions of Lemma 4.14. In other words, we can assign� to any value in the interval

�P n
i � 1 min ˆx i •;SÐ�wS� and extend it to an ac support of

AtMostSeq � Card ˆp; q; �; � x1; : : : ; xn �• . These bounds are therefore tight.

Second, we need to prune values inDˆ x i • for all i in 1; : : : ; n that are not supported

by any value in Dˆ � •. A naive algorithm for checking that would be to run leftmost

for each value in Dˆ � • and compute the union of possible values for the variablesx i .

However, one can avoid this by distinguishing two cases after line 5. Suppose that

SDˆ � •SA 1, in this case, Line 1 and Line 2 and 5 imply that Lemma 4.15 holds for

d � min ˆ � •. Hence all values for the variablesx i are consistent and in this case we will

never enter lines 6 and 7. Suppose now thatSDˆ � •S� 1, in this case, we can simply apply

the same �ltering (Line 6) that we proposed previously for a � xed cardinality.

The whole procedure requires at most two calls toleftmost_count , which takes Oˆn•

time. j
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Table 4.1: Maximal cardinality instantiations.

x i : . . . . . . . 0 . . . . . 0 . . . . . 0 . .
Ð�w on 4.1: 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0SÐ�wS� 11
Ð�w on 4.2: 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1SÐ�wS� 10

Ð�w on 4.1 & 4.2: 1 0 1 0 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 0 1 0SÐ�wS� 8

4.4.2 The MultiAtMostSeqCard Constraint

We show here that we can easily modify Algorithm 11 (or Algorithm 12) to achieve ac

on the conjunction of severalAtMostSeqCard constraints.

For instance, in crew-rostering problems, the work pattern of an employee might re-

quire a conjunction of AtMostSeqCard : one to limit the number of shifts per day,

and another to limit the number of shifts per week. In the crew-rostering bench-

marks that we consider in Section 4.5, we have a variablex i for each working shift

i . Moreover, we want each employee to work at most one shift perday, at most �ve

shifts per week, and between 17 and 18 shifts on the whole period. We model this

with two AtMostSeq � Card constraints: AtMostSeq � Card ˆ1; 3; �; � x1; : : : ; xn �•

and AtMostSeq � Card ˆ5; 21; �; � x1 ; : : : ; xn �• s.t. Dˆ � • � ˜ 17; 18• . However, ac on

these two constraints is not equivalent toac on their conjunction. We illustrate this in

Example 4.5 (using smaller instances of the constraints).

Example 4.5. Consider the conjunction of the two followingAtMostSeqCard con-

straints:

AtMostSeqCard ˆ1; 2; 9; � x1; : : : ; x22�• & (4.1)

AtMostSeqCard ˆ2; 5; 9; � x1; : : : ; x22�• (4.2)

Now, suppose thatDˆ x8• � Dˆ x14• � Dˆ x20• � ˜ 0• , whilst all other domains are equal

to ˜ 0; 1• . The �rst line of Table 4.1 shows the domains of � x1; : : : ; x22� , with a dot

(:) standing for a full domain (˜ 0; 1• ) and the value 0 standing for the domain re-

duced to the singleton˜ 0• . The second and third lines show the results ofleftmost

on � x1; : : : ; x22� for p~q � 1~2 and p~q � 2~5, respectively. Since the demandd is equal

to 9, both constraints 4.1 and 4.2 areac . Last, the third line shows an instantiation

of maximum cardinality respecting simultaneouslyAtMostSeq ˆ1; 2; � x1; : : : ; x22�• and

AtMostSeq ˆ2; 5; � x1; : : : ; x22�• . It is obtained using the same principle asleftmost ,

however by checking two sets of subsequences, one for eachAtMostSeqCard con-

straint. It is easy to see that the arguments of Lemma 4.13 arestil l valid when consid-

ering any number of subsequences. Therefore, the total cardinality of 8 is a valid upper

bound, and sinced is equal to9, the conjunction of the two constraints has no solution.
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We de�ne the constraint MultiAtMostSeqCard , and show that the algorithm intro-

duced in this chapter can be adapted to enforceac on this constraint in Oˆnm• time,

where m is the number of chains ofAtMost constraints.

De�nition 4.25. MultiAtMostSeqCard ˆp1; ::; pm ; q1; ::; qm ; d; � x1; : : : ; xn �• �

m

�
k� 1

n� qk

�
i � 0

ˆ
qk

Q
l � 1

x i � l Bpk• , ˆ
n

Q
i � 1

x i � d•

Theorem 4.26. One can achieveac on MultiAtMostSeqCard in Oˆnm• time.

Proof. The main argument to show that this theorem holds is that all previous proofs

and algorithms can be easily adapted to this case. We therefore only sketch its proof.

First, note that one can modify the procedureleftmost (or leftmost_count ) to handle

a conjunction of AtMostSeq constraints instead of a single one. All we need to do is

to duplicate m times the structures maintaining the cardinalities of the subsequences.

We obtain a procedure that checksm chains in Oˆnm• if we use Algorithm 10.

Second we show that Lemma 4.13 still holds with this new procedure, and with respect to

several chains ofAtMost constraints. In other words, greedily assigning the value �1�

while respectingm chains of AtMost will produce a sequence of maximal cardinality.

The argument used in the proof of Lemma 4.13 generalizes without modi�cation to

several chains. We show that if we make the hypothesis that aninstantiation w of

cardinality higher than of SÐ�wSfound by the greedy procedure leads to a contradiction.

For each value of q, the same three cases arise, and can be analyzed in exactly the

same way. Hence we can show thatw can be made equal toÐ�w without changing its

cardinality, hence a contradiction.

In all subsequent proofs, we check subsequences of lengthq and show that they do not

violate capacity constraints. Obviously, these proofs hold for any value of q (within

�1; n� ). In fact, the only di�erence is that when considering multi ple chains, we might

have to check subsequences of di�erent lengths. j j

4.5 Experimental Results

We tested our �ltering algorithms on two benchmarks: car-sequencing and crew-rostering.

SinceSlack-Pruning is a particular case ofAtMostSeqCard and in all cases cannot

�lter more than AtMostSeqCard then it will be omitted in these experiments. All

models are implemented using Ilog-Solver 6.7. All experiments ran on Intel Xeon CPUs

2.67GHz under Linux. Since we compare propagators, we averaged the results across

several branching heuristics to reduce the bias that these can have on the outcome.



Chapter 4 Propagation in Sequencing Problems 81

Moreover, these heuristics were randomized and for each instance and each heuristic we

launched 5 randomized runs with a 20 minutes time cuto�2. For each considered data

set, we primarily compare the total number of successful runs, denoted �#solved�. Then,

we consider the CPU time in seconds and number of backtracks,denoted #backtracks,

both restricted to successful runs. When appropriate, we emphasize the statistics of the

best method using bold face fonts.

4.5.1 Car-Sequencing

We use the same con�guration used in the previous chapter (Section 3.3). That is, 4

models (decompose , gsc , amsc, and gsc ` amsc) and 42 heuristics. For each model,

we report the average number of solved instances in Table 4.2, the average CPU time

on solved instances in Table 4.3 and the average number of backtracks in Table 4.4. In

each table, we also report the minimum and maximum value (forany heuristic, though

averaged over randomized runs) as well as the standard deviation over the di�erent

heuristics.

Table 4.2: Evaluation of the �ltering methods (solved instances count)

propagation
#solved in set1 (70 � 5) #solved in set2 (4 � 5)
avg min max dev avg min max dev

decompose 268.33 70.00 350.00 88.95 2.95 0.00 15.00 3.66
gsc 333.52 154.00 350.00 42.16 10.11 0.00 20.00 5.25

amsc 321.35 80.00 350.00 64.05 11.19 0.00 20.00 5.22
gsc ` amsc 334.11 154.00 350.00 41.88 10.45 0.00 20.00 5.06

propagation
#solved in set3 (5 � 5) #solved in set4 (7 � 5)
avg min max dev avg min max dev

decompose 0.00 0.00 0.00 0.00 2.35 0.00 9.00 2.65
gsc 0.73 0.00 10.00 2.35 4.64 0.00 10.00 3.69

amsc 0.38 0.00 5.00 1.21 5.09 0.00 10.00 3.75
gsc ` amsc 0.76 0.00 10.00 2.41 4.80 0.00 10.00 3.65

Table 4.2 shows that in all cases, the best method is eithergsc ` amsc or amsc. In

some cases a stronger �ltering seems to be key andgsc ` amsc solves more instances

than other methods: 95:46% ofset1 and 3:04% ofset3. In other cases, exploration speed

is more important and amsc is better: 55:95% and 14:55% of solved instances forset2

and set4, respectively. Overall, as witnessed by Table 4.4,gsc and gsc ` amsc usually

require exploring a much smaller tree thanamsc. However, the propagator for Gsc

slows down the search by a substantial amount. Considering Table 4.3 as well as data

from unsolved instances, we observed a factor 12.5 on the number of nodes explored per

second between these two models. Moreover, the level of �ltering obtained by these two

2The approximate total CPU time is one year.
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Table 4.3: Evaluation of the �ltering methods (CPU time on solved insta nces)

propagation
CPU time (in sec.) on set1 (70 � 5) CPU time (in sec.) on set2 (4 � 5)

avg min max dev avg min max dev
decompose 10.49 0.02 1145.20 80.39 58.74 0.01 766.25 178.88

gsc 3.16 0.52 1100.54 33.17 109.45 0.11 1096.37 237.46
amsc 3.79 0.03 1197.88 51.49 70.56 0.01 1014.57 186.87

gsc ` amsc 3.03 0.53 1017.74 33.60 99.71 0.11 1155.40 222.85

propagation
CPU time (in sec.) on set3 (5 � 5) CPU time (in sec.) on set4 (7 � 5)

avg min max dev avg min max dev
decompose - - - - 30.85 0.03 985.75 136.43

gsc 276.06 29.22 988.79 308.64 53.61 1.63 975.03 147.35
amsc 8.62 1.06 18.07 6.72 38.45 0.03 1171.78 124.29

gsc ` amsc 285.43 6.01 1131.19 337.24 61.61 1.62 1180.53 175.23

Table 4.4: Evaluation of the �ltering methods (search tree size on solved instances)

propagation
#backtracks on set1 (70 � 5) #backtracks on set2 (4 � 5)

avg min max dev avg min max dev
decompose 174017 148 25062202 1341281 1101723 78 15324348 3439897

gsc 1408 99 2320312 34519 131062 58 1595137 306448
amsc 33600 92 13888040 468527 665205 61 10254401 1827516

gsc ` amsc 1007 92 1180605 23649 104823 56 1055307 244135

propagation
#backtracks on set3 (5 � 5) #backtracks on set4 (7 � 5)
avg min max dev avg min max dev

decompose - - - - 378475 170 13767766 1754180
gsc 55365 5852 218590 63211 23897 151 467396 75097

amsc 40326 5991 83454 29690 215349 146 5624744 653498
gsc ` amsc 57725 1120 244787 69705 22974 146 428523 71552

methods are incomparable. Therefore combining them is always better than using Gsc

alone.

In [139] the authors applied their method to set1, set2 and set3 only. For their

experiments, they considered the best result provided by 2 heuristics. When using

cost-Regular or Gen-Sequence �ltering alone, 50 :7% of problems are solved and

when combining either cost-Regular or Gen-Sequence with Gsc, 65:2% of prob-

lems are solved (with a time out of 1 hour). In our experiments, in average over the 42

heuristics and the 5 randomized runs,AtMostSeqCard and Gsc solve respectively

84:29% and 87:19% of instances and combiningAtMostSeqCard with Gsc solves

87:42% instances in a time out of 20 minutes. Moreover, using themodel gsc ` amsc,

the best heuristic was able to solve 96:20% of these instances.
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4.5.2 Crew-Rostering

Problem Description In this problem, working shifts have to be attributed to em-

ployees over a period, so that the required service is met at any time and working

regulations are respected. The latter condition can entaila wide variety of constraints.

Previous work [93, 103] used allowed (or forbidden) patterns to express successive shift

constraints. For example, with 3 shifts of 8 hours per day: D (day), E (evening) and

N (night), ND can be forbidden since employees need some restafter night shifts. We

consider here a simple case involving 20 employees with 3 shifts of 8 hours per days

where no employee can work more than one 8h shift per day, no more than 5 days per

period of 7 days, and the break between two worked shifts mustbe at least 16h. The

planning horizon is of 28 days, and each employee must work 17shifts over the 4 weeks

period (i.e., 34 hours per week in average).

Models and Heuristics We use a model with one Boolean variableeij for each of

the m employees and each of then shifts stating if employee i works on shift j . The

demand ds
j on each shift j is enforced through a sum constraintP m

i � 1 eij � ds
j . The other

constraints are stated using twoAtMostSeqCard constraints per employee, one with

ratio p~q � 1~3, another with ratio 5~21, and both with the same demandd � 17. We

compare four models. In the �rst (decompose ), we use a decomposition in a chain of

AtMost constraints. In the second (amsc) we use twoAtMostSeqCard constraints

per employeej , of the form:

AtMostSeqCard ˆp; q; d;� ei 1; : : : ; ein �•

In the �rst constraint we have p � 1; q � 3; d � 17 and in the second constraint we havep �

5; q � 21; d � 17. Both are propagated using Algorithm 11. In the third model (gsc ), we

use the followingGsc constraint to encode the constraintAtMostSeqCard ˆp; q; d;� ei 1; : : : ; ein �• :

Gscˆ0; p; q;˜ 0 � n � d;1 � d• ; ˜ 0 � n � d;1 � d• ; � ei 1; : : : ; ein � ; ˜ 1••

Note that in this case, since the domains are Boolean, theGsc is in this case equivalent

to AtMostSeqCard . Therefore, it cannot prune more since the latter enforcesac .

However, it is stronger than the decomposition. Last, in thefourth model (mamsc) the

conjunction of the two AtMostSeqCard constraints is propagated using Algorithm 12.

We used the following four variable ordering heuristics.

1. Lexicographic: Explores shifts chronologically and picks an employee at random;

2. Middle: Similar as above, however we start exploring shifts from the middle;
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3. Employee: Picks an employee with min slack, then a possible shift of max demand;

4. Shift: Similar as above, however, the shift is selected before theemployee.

In all cases, we branch by assigning the value 1 to the chosen pair (employee, shift).

Benchmarks We generated 341 instances, with worker availability ranging from 82%

to 48% by increment of 0.1. This value denotes the probability that a given employee is

willing to work during a given shift. It allows to vary the con strainedness of the problem.

228 of these instances were found feasible, 77 infeasible and 36 remain open. We report

results for the satis�able and unsatis�able sets with 5 random runs per instance.

Table 4.5: Evaluation of the �ltering methods: static branching (high est success
counts are in bold fonts)

Lexicographic

Model
satis�able (1140) unsatis�able (385)

#sol
CPU time #backtracks

#sol
CPU time #backtracks

avg dev avg dev avg dev avg dev
decompose 0 - - - - 170 0.05 0.02 86 452

gsc 25 308.93 344.29 74074 84301 175 2.56 9.71 262 1794
amsc 125 164.36 239.56 1828347 2759080 213 1.76 21.95 22621 292152

mamsc 534 87.29 188.81 685720 1491867 271 2.80 45.02 27150 444913
From the middle to the sides

Model
satis�able (1140) unsatis�able (385)

#sol
CPU time #backtracks

#sol
CPU time #backtracks

avg dev avg dev avg dev avg dev
decompose 1 166.76 0.00 5716015 0 160 0.04 0.00 0 0

gsc 7 253.20 301.63 53763 63110 165 1.07 0.08 0 0
amsc 57 161.38 267.23 2207676 3621762 201 0.20 1.46 1622 15809

mamsc 336 134.95 239.11 1410458 2525422 265 0.05 0.00 0 0

We report the results for the static heuristics in Table 4.5 and for the dynamic heuris-

tics in Table 4.6. The �rst column indicates the total number of successful runs (#sol),

then we report CPU time and number of backtracks, averaged over all instances and

runs, as well as the standard deviation on this sample. Clearly, achieving ac on the

(Multi )AtMostSeqCard constraint have a signi�cant impact on the e�ciency of the

model. The decomposition into sum constraints cannot solveany satis�able instance

with lexicographic branching, and only one when starting from the middle of the se-

quence. The model usingGsc o�ers a much more potent �ltering, however, it is not

as strong asac on the AtMostSeqCard constraint and moreover, it is much slower.

On the other hand, the model using Algorithm 11 for the AtMostSeqCard constraint
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achievesac whilst being as fast as the decomposed model in terms of exploration. More-

over, combining the two AtMostSeqCard constraints and using Algorithm 12 allows

to solve about four times more satis�able instances withLexicographic branching and

six times more with Middle branching.

The cost-Regular constraint could be used to enforce the same level of consistency

as the combination of two AtMostSeqCard constraints. The possible patterns can

be encoded through a �nite automaton whilst the overall cardinality is encoded by the

counter. Notice that using a Regular constraint (i.e., without cost) and modeling

the overall work load with a cardinality constraint would no t enforce a higher level of

consistency than the decomposition into cardinality constraints (i.e., model decompose )

sinceAtMost constraints are monotone. A worst case analysis would indicate that the

number of states in the automaton is too large.

Table 4.6: Evaluation of the �ltering methods (dynamic branching)

Most constrained employee

Model
satis�able (1140) unsatis�able (385)

#sol
CPU time #backtracks

#sol
CPU time #backtracks

avg dev avg dev avg dev avg dev
decompose 772 21.93 104.91 205087 1000794 165 0.06 0.00 0 2

gsc 746 65.75 180.29 14133 42235 175 0.98 0.09 0 3
amsc 818 20.51 103.76 147479 761261 215 0.13 0.55 330 2582

mamsc 842 20.78 111.00 125886 676061 270 0.05 0.01 0 2
Most constrained shift

Model
satis�able (1140) unsatis�able (385)

#sol
CPU time #backtracks

#sol
CPU time #backtracks

avg dev avg dev avg dev avg dev
decompose 987 20.76 102.53 169964 853020 352 19.74 99.61 180161 967933

gsc 1006 33.30 107.08 8875 31586 335 15.97 95.36 5145 35824
amsc 1061 10.07 65.02 90247 593928 362 12.19 77.37 108797 736775

mamsc 1074 10.94 77.37 91222 667176 377 14.63 107.58 110244 834887

When using dynamic heuristics (see Table 4.6), the di�erence between the di�erent

models becomes much less spectacular. However, the trend isthe same, with the model

combining the pairs of AtMostSeqCard constraint dominating the other models.

Summary

We �rst proposed a simple �ltering rule that reasons about capacity and demand con-

straints simultaneously for solving the car-sequencing problem. This pruning is then gen-

eralized to an optimal Arc Consistency algorithm for the AtMostSeqCard constraint.
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Moreover, we showed how to adapt the �ltering with more general constraints while keep-

ing a reasonable worst case time complexity. Our computational results demonstrate the

e�ciency of our approach for solving car-sequencing and crew-rostering benchmarks.



Chapter 5

Learning

Introduction

In the past decade, hybrid CP/SAT solvers have been redesigned to bene�t fromCP

and SAT features as much as possible. In this chapter, we showthat enabling clause

learning via hybrid models can greatly improve the performances ofCP models in many

sequencing and scheduling problems.

Lazy Clause Generationis a general framework for hybrid solvers in which propagators

should be able to explain their pruning in a clausal form. A trend has subsequently

emerged aiming at proposing e�ective and e�cient explanati ons for (global) constraints

(see for instance [47, 46, 116, 58, 55]). In this context, we investigate the learning

aspect for solving car-sequencing benchmarks using our �ltering for AtMostSeqCard

in Section 5.1. We propose a procedure explainingAtMostSeqCard that runs in

linear time complexity in the worst case. Any hybrid model using these explanations

bene�ts from the complete �ltering for this constraint alon g with clause learning and

potentially many other CP/SAT features. We show experimentally how clause learning

improves the global performances in most cases. We con�rm a strong correlation between

advanced propagation and �nding solutions quickly for this problem. Moreover, for

building proofs, clause learning appears in these experiments to be the most important

ingredient while propagation is less useful.

The rest of the contributions presented in this chapter are related to the question of

designing `lazy' data structures in order to e�ciently tack le large scaled instances. Back-

ward explanations and lazy generation (see Section 2.3.2) are typically the type of `lazy'

data structures that we address. However, these techniquesare relatively new in hybrid

solvers and might be improved in a number of ways.

87
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We revisit in Section 5.2 the lazy generation of Boolean variables for encoding the

domains. The issue that we address is related to the redundancy of clauses used when

lazily encoding a domain [53] (detailed in Section 2.3.2.2). The DomainFaithfulness

constraint that we propose avoids such redundancy while ensuring the same level of

consistency without any computational overhead.

Section 5.3 addresses the impact of clause learning for solving disjunctive scheduling

problems. We consider a large number of disjunctive scheduling instances, on which we

test the lazy generation method proposed in Section 5.2. Furthermore, we propose a

novel con�ict analysis scheme, calledDisjunctive -based learning, tailored to this family

of problems. Disjunctive -based learning uses a property of these problems allowing to

learn clauses using a number of Boolean variables that is notfunction of the domain size.

Our propositions give good experimental results and outperform the CP model in most

cases. Furthermore, we con�rm a correlation between the instance size, the branching

choice, and the con�ict analysis scheme. State-of-the-artlower bounds for a traditional

benchmark are improved thanks to the new con�ict analysis scheme.

5.1 Learning in Car-Sequencing

We investigate in this section the impact of clause learningfor solving the car-sequencing

problem. We �rst show how to explain our complete �ltering fo r AtMostSeqCard .

These explanations are later used in several hybrid models for solving the car-sequencing

problem.

5.1.1 Explaining AtMostSeqCard

We �rst recall the de�nition of AtMostSeqCard . Given a sequence of Boolean vari-

ables� x1; : : : ; xn � and three integersp, q, d, AtMostSeqCard is de�ned by a conjunc-

tion between a chain ofAtMost constraints (called AtMostSeq ) and Cardinality .

AtMostSeqCard ˆp; q; d;� x1; : : : ; xn �• �
n� q

�
i � 0

ˆ
q

Q
l � 1

x i � l Bp• , ˆ
n

Q
i � 1

x i � d•

To explain AtMostSeqCard , we brie�y recall the complete �ltering that we pro-

posed in Section 4.3. Let� x1; ::; xn � be a sequence of Boolean variables subject to

AtMostSeqCard ˆp; q; d;� x1; ::; xn �•• . The �rst step is to make sure that

AtMostSeq ˆp; q;� x1; : : : ; xn �• and Cardinality ˆ� x1; : : : ; xn � ; d• are ac . The remain-

ing of the �ltering is based on a greedy rule calledleftmost . The outcome of leftmost

is an instantiation w with a maximum cardinality on � x1; ::; xn � respecting all AtMost

constraints. We use a linear time implementation of leftmost called leftmost_count
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to complete the �ltering. The procedure leftmost_count returns an array L where

L � i � � P j � i
j � 1 w� j � � P j � i

j � 1 min ˆx j •. The value of L � i � represents the maximum possible

cardinality that the sequence � x1; ::; x i � might additionally have while respecting all the

AtMost constraints. We de�ne the array R to be the result of leftmost_count on the

reverse sequence� xn ; ::; x1� . Let dres � d � P n
i � 1 min ˆx i • be the remaining cardinality to

satisfy. To complete the �ltering, we use the following rules:

1. If L � n� @dres , then a failure is raised.

2. If L � n� � dres , then for all unassigned variablex i :

ˆ If L � i � � R�n � i � 1� Bdres , then x i is assigned to 0.

ˆ If L � i � 1� � R�n � i �@dres , then x i is assigned to 1.

Now in order to explain AtMostSeqCard , we make the distinction between the possi-

ble changes made byAtMostSeq or Cardinality on one hand, and the extra �ltering

that we obtain using leftmost_count on the other hand.

5.1.1.1 Explaining AtMostSeq & Cardinality

Explaining AtMostSeq We proceed here by propagating

AtMostSeq ˆp; q;� x1; : : : ; xn �• with the decomposition into all possible AtMost con-

straints of size q. Recall that this decomposition does not hinder propagation (Sec-

tion 4.2). Algorithm 13 shows an ac propagator for AtMost ˆ� x1; : : : ; xq� ; p•.

Algorithm 13: AtMost ˆ� x1; : : : ; xq� ; p•

if S̃x j SDˆx j • � ˜ 1•• SAp then
1 D �Ù ;

else
2 if S̃x j SDˆx j • � ˜ 1•• S� p then

foreach i >˜ 1::q• do
if Dˆx i • � ˜ 0; 1• then

3 Dˆx i • � ˜ 0• ;

return D ;

On the one hand, when a failure is raised because of Line 1, theset of all variables

assigned to 1 constitutes a possible reason triggering the failure. We therefore use the

following propagation rule to explain a failure:

� Dˆx i • � ˜ 1• Jx i � 1K� Ù
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This explanation can be reduced as follows. Sincep� 1 assignments of the typeJx i � 1K

are su�cient to have a failure on AtMost ˆ� x1; : : : ; xq� ; p•, then any conjunction de�ned

on a subset of˜ Jx i � 1KSDˆx i • � ˜ 1•• of sizep � 1 is a valid explanation of the failure.

On the other hand, any assignment made by this propagator (only of the type Dˆx i • �

˜ 0• in this case) in Line 3 is triggered because of thep assigned variables to 1 (i.e., the

test in Line 2). We therefore return the set of assigned variables to 1 as an explanation

for Jx i � 0K.

� Dˆx j • � ˜ 1• Jx j � 1K� Jx i � 0K

Explaining Cardinality Notice �rst that �ltering AtMost (Algorithm 13) is very

close to �ltering Cardinality as we proposed earlier in Algorithm 4. We use therefore

similar reasoning to explain the following scenarios:

If a failure is raised in Line 1 (Algorithm 4):

� Dˆx i • � ˜ 1• Jx i � 1K� Ù

Similarly to failures on AtMost , this explanation can be reduced by considering any

subset of sized � 1 from ˜ Jx i � 1KSDˆx i • � ˜ 1•• .

If a failure is raised in Line 2 (Algorithm 4):

� Dˆx i • � ˜ 0• Jx i � 0K� Ù

This explanation can also be reduced by considering any subset of size n � d � 1 from

˜ Jx i � 0KSDˆx i • � ˜ 0•• .

To explain assignments, we return the set of assigned variables responsible for the domain

change at hand:

� Dˆx j • � ˜ 1• Jx j � 1K� Jx i � 0K (propagated at Line 3, Algorithm 4)

� Dˆx j • � ˜ 0• Jx j � 0K� Jx i � 1K (propagated at Line 4, Algorithm 4)

5.1.1.2 Explaining the Extra-Filtering

We move now to explaining the extra-�ltering of AtMostSeqCard . We start by giving

a procedure explaining the failure triggered whenL �n� @dres . Next, we show how to

use this procedure to explain domain reductions.
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Explaining Failure The set of current assignments is a possible naive explanation

for the failure. We propose in the following a procedure generating more compact

explanations.

In example 5.1, the sequence� x1; ::; x6� is subject to AtMostSeqCard ˆ2; 5; 3; � x1::x6�• .

The left part of the example shows the propagator triggeringa failure on a domain D

de�ned as follows: Dˆ x1• � ˜ 1• , Dˆ x3• � Dˆ x6• � ˜ 0• , and all other variables are

unassigned. The current sequence is unsatis�able sinceL �6� @dres . Consider now

the same sequence, however, with a domainDœwhere all variables are unassigned ex-

cept Dœ̂x6• � ˜ 0• . This corresponds to the right part of the example. The results of

leftmost on D and on Dœare identical. Therefore the set of assignments inD and the

set of assignments inDœare both valid explanations for this failure. They correspond

respectively to the propagation rulesJx1 � 1K, Jx3 � 0K, Jx6 � 0K� Ù and Jx6 � 0K� Ù .

The second explanation is clearly preferable since it is strictly included in the �rst one.

Example 5.1. Irrelevant assignments

D 1 . 0 . . 0

w 1 1 0 0 0 0

L 0 1 1 1 1 1

dres � 2

L ˆ6• � 1

� Failure

Dœ . . . . . 0

w 1 1 0 0 0 0

L 1 2 2 2 2 2

dres � 3

L ˆ6• � 2

� Failure

The idea behind our algorithm for computing shorter explanations is to characterize

some assignments with no impact on the behavior of the propagator, and thus can be

removed from the naive explanation. The domain obtained by the assignments in the

shorter explanation is clearly weaker than the domain from which the failure is triggered.

We need to recall and de�ne some notations related toleftmost in order to de�ne this

weaker domain and to prove our propositions.

Recall that leftmost computes an instantiation of maximum cardinality w that is con-

sistent with all AtMost constraints. The instantiation w is initialized with min ˆx i •

for all i . Afterwards, we greedily assign (fromi � 1 to i � n) w� i � to the value 1 if the

following holds:

1. x i is unassigned.

2. max j >� 1;q� ˆcˆ j •• @p where cˆ j • is the cardinality in w of the j th subsequence

including i .

We use in this paragraph slightly modi�ed notations compared to Chapter 4. In fact,

many notations are parametrized by the input domain D and even sometimes depend
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on the i th iteration when computing leftmost . We therefore need to refer toD in dres ,

w and L with dres D , wD and L D respectively. Furthermore, at the beginning of any

iteration i , we denote by:

ˆ wi
D the current instantiation w.

ˆ maxD ˆ i • the value of max j >� 1;q� ˆcˆ j •• .

ˆ cardD ˆ I; i • the cardinality of a sub-sequenceI .

Now we have all the notations needed to describe the shorter explanations and to prove

our results.

Let � x1; : : : ; xn � be a sequence of Boolean variables subject to

AtMostSeqCard ˆp; q; d;� x1; : : : ; xn �• . We associate any domainD for x1 : : : xn to

a weaker domain ÂD de�ned as follows:

ÂDˆ x i • � ˜ 0; 1• if Dˆ x i • � ˜ 0• , maxD ˆ i • � p
ÂDˆ x i • � ˜ 0; 1• if Dˆ x i • � ˜ 1• , maxD ˆ i • x p
ÂDˆ x i • � Dˆ x i • otherwise

We prove in the following that the outcome of leftmost on D and ÂD is the same. Hence

the propagator behavior is the same on both domains.

Lemma 5.1. w ÂD � wD .

Proof. Suppose that there exists an indexi > �1::n� s.t. w ÂD � i � x wD � i � and let k be

the smallest index verifying this property. Since ÂD is weaker than D and leftmost is

a greedy procedure assigning the value 1 whenever possible from left to right, it follows

that wD � k� � 0 and w ÂD � k� � 1. HencemaxD ˆk• � p and max ÂD ˆk• @p. In other words,

there exists a subsequenceI containing xk s.t. cardD ˆ I; k • is equal to p, and card ÂD ˆ I; k •

is less thanp. From this we deduce that there exists a variablex j >I such that wk
D � j � � 1

and wk
ÂD
� j � � 0.

We show by contradiction that the latter statement cannot hold. Observe �rst that

j must be greater than k becausek is the smallest index whereleftmost behaves

di�erently. Next, from wk
D � j � � 1 and wk

ÂD
� j � � 0, only two cases are possible:

1. x j is unassigned inD and ÂD: In this case, sincej A k, then at iteration k both

wk
D ˆ j • and wk

ÂD
ˆ j • are equal to 0 becauseleftmost changes the values ofw greedily

following the lexicographical order. Hence the �rst contradiction.
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2. x j is assigned inD but not in ÂD: It follows that Dˆ x j • � ˜ 1• since wk
D � j � � 1.

Moreover, since ÂDˆ x j • � ˜ 0; 1• then the de�nition of ÂD implies that maxD ˆ j • ~� p.

Recall now that cardD ˆ I; k • � p, therefore maxD ˆ j • � p which is impossible.

j

Theorem 5.2. If a failure is raised becauseL D � n� @dresD , then

�
ÂDˆx i • � ˜ 1•

Jx i � 1K, �
ÂDˆx i • � ˜ 0•

Jx i � 0K� Ù

is a valid explanation.

Proof. We show that the set of assignments inÂD is su�cient to have a failure. In other

words, we show that L ÂD � n� @dres ÂD . Let � be the number of variables having˜ 1• as a

domain in D but unassigned in ÂD. It is clear that dres ÂD � dres D � � . By Lemma 5.1, we

know that wD and w ÂD are equal. It follows that L ÂD � n� � L D � n� � � . Therefore, since

L D � n� @dres then L ÂD � n� @dres ÂD .

j

Theorem 5.2 gives us a linear time procedure to explain a failure. In fact, it is su�cient to

compute the valuesmaxD ˆ i • in order to construct ÂD. All these values can be computed

using one call to leftmost_count which is linear in time. Example 5.2 illustrates the

explanation procedure.

Example 5.2. Reducing the default explanation

D 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0: : : 1

maxD 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2

wD 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1

L D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

dresD � 2 and L D � 25� � 1 @dres D Ô� Failure
ÂD 1 1 : : : : : : 1 1 : : : : 0 0 0 0 : 0 0 : : : 1

w ÂD 1 1 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 0 0 1 0 0 1

L ÂD 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 2 3 3 3 3

dres ÂD � 4 and L ÂD � 25� � 3 @dres ÂD Ô� Failure

We illustrate here the explanation of a failure onAtMostSeqCard ˆ2; 5; 9; � x1::x25�•

triggered using the extra-�ltering rules. Observe �rst that AtMostSeq and Cardinality

are both ac . Next, the propagator returns a failure sinceL D ˆ25• � 1 @dres D � 2. The

default explanation corresponds to the set of all the assignments in D, whereas our pro-

cedure generates a more compact explanation by consideringonly the assignments inÂD.
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Red values in themaxD line represent the indices corresponding to variables being unas-

signed in ÂD. As we can see,w ÂD is identical to wD . Therefore, the propagator behaves

the same way on both domains. As a result, we reduce the size ofthe explanation from

22 to 11.

Note that this reduction is not optimal w.r.t. the explanati on size. For instance, the

�rst assignment Jx1 � 1Kin Example 5.2 can be removed from the reduced explanation

and the rest of the assignments still lead to a failure.

Explaining Pruning Suppose that an assignmentJx � vK was triggered by the

propagator for an input domain D at level l with a rank r . Consider the new domainDœ

identical to D at level l and rank r � 1 except forx with Dœ̂x• � ˜ 1� v• (i.e., the opposite

of v). Since the pruning is correct, the constraint is unsatis�able on Dœ. Let 	 � Ù be

the propagation rule explaining this failure using the previous mechanism. Observe that

Jx � 1 � vKhas to be in 	, otherwise we have a failure without assigning x to 1 � v which

contradicts our �rst hypothesis that Jx � vKwas triggered by the propagator onD at level

l and rank r . The propagation rule can be reformulated as follows: 	œ, Jx � 1 � vK� Ù

(s.t. 	 œ� � qxJx � 1� vK>	 ) which is equivalent to 	 œ� Jx � vK. We can therefore use the

same algorithm to explain failures and pruning.

5.1.2 Pseudo-Boolean & SAT Models for the Car-Sequencing Pr oblem

We show �rst a Pseudo-Boolean model for the car-sequencing problem that serves as a

starting point for the SAT formulations. The SAT models that we use are those proposed

by Mayer-Eichberger and Walsh in [5, 92].

5.1.2.1 A Pseudo-Boolean Formulation

The decompose model (Section 3.1) of this problem can be easily translatedinto a

Pseudo-Boolean model since all constraints are in fact sum expressions. We use the

same Boolean variablesyj
i standing for whether the vehicle in thei th slot requires option

j . Moreover, the integer domains of class variablesx1; : : : ; xn are expressed based on

the direct encoding with n � k Boolean variablescj
i standing for whether the i th vehicle

is of classj . Since we use a Pseudo-Boolean model, we have the choice between using

clauses to encode the di�erent relationship betweencj
i or simply post one constraint per

class variable usingP j cj
i � 1 for all i > � 1::n� . The Pseudo-Boolean formulation of this

problem that we adopt is the following.

1. Demand constraints: ¦ j >� 1::k� , P i cj
i � dclass

j
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2. Capacity constraints: P
i � qj � 1
l � i yj

l Bpj , ¦ i >˜ 1; : : : ; n � qj � 1•

3. Channeling:

ˆ ¦ i >� 1::n� , ¦ l >� 1::k� , we have:

� ¦ j >Ol , cl
i - yj

i

� ¦ j ¶Ol , cl
i - yj

i

ˆ ¦ i >� 1::n� , j >� 1::m� ; yj
i - - l>Cj cl

i

4. Class constraints: ¦ i >� 1::n� , P j cj
i � 1

5.1.2.2 From Pseudo-Boolean to SAT

Notice that the above Pseudo-Boolean model contains only clauses, AtMost , and

Cardinality constraints. A simple and straightforward way to formulate this problem

into SAT is to encode eachAtMost / Cardinality constraint into a CNF. The latter

has been intensively studied in the last decade (see for instance [127, 49, 125, 6, 3]). We

use, however, the three SAT encodings proposed for this problem by Mayer-Eichberger

and Walsh in [5, 92]. They correspond in fact to three di�erent ways of encoding

AtMostSeqCard . All of them are based on the Sequential Counter [127]. We give a

brief description for these models and refer the reader to [5] for more details.

The �rst step is to show the encoding used forCardinality ˆ� x1; : : : ; xn � ; d•.

ˆ Variables:

� si;j : ¦ i >� 0::n� , ¦ j >� 0::d � 1� , si;j is true i� P k>� 1::i � xk Cj

ˆ Clauses: ¦ i >� 1::n�

� ¦ j >� 0::d � 1�

1.  si � 1;j - si;j

2. x i -  si;j - si � 1;j

� ¦ j >� 1::d � 1�

3.  si;j - si � 1;j � 1

4.  x i -  si � 1;j � 1 - si;j

ˆ Initial values:

5. s0;0 � true ; s0;1 � false ; sn;d � true ; sn;d� 1 � false ;
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In this encoding, ˆn � 1• � ˆd � 1• atoms si;j are used in addition to the variables

� x1; : : : ; xn � . An atom si;j is semantically equivalent to have a lower bound at least

equal to j in the sum P k>� 1::i � xk . The clauses 1 & 3 ensure the monotonicity of the sum,

while clauses 2 & 4 perform a channeling between the variables x i and si;j .

Adapting this encoding for an AtMost constraint is quite simple. In fact, it is su�cient

to change the initial value of sn;d from true to unassigned. This way makes the constraint

satis�ed i� P i >� 1::n � x i Bd.

Recall that AtMostSeqCard is de�ned by a conjunction of Cardinality and a set of

AtMost constraints. We denote by: SAT Card the (above) encoding forCardinality ;

and SAT Atmost the encoding applied to allAtMost constraints. Note that eachAtMost

constraint is encoded independently with new variables channeled only to option position

variables.

Another possible way for encoding the chain ofAtMost constraints can use similar

encoding of the Gen-Sequence constraint [8, 32]. For each subsequence of sizeq whose

latest index is i , we have the clause:

6.  si;j - si � q;j � u

This encoding is denotedSAT Seq.

Mayer-Eichberger and Walsh showed not only that the level ofpruning of SAT Seq is

incomparable with SAT Atmost but also combining SAT Card , SAT Atmost , and SAT Seq

maintains Arc Consistency on AtMostSeqCard [5]. Three SAT models for the car-

sequencing problem are therefore proposed. They all encodethe basic model using the

following encodings ofAtMostSeqCard :

1. CNFA usesSAT Card and SAT Atmost .

2. CNFS usesSAT Card and SAT Seq.

3. CNFA� S combinesSAT Card , SAT Atmost and SAT Seq.

5.1.3 Experimental Results

We test the di�erent approaches on the previous benchmarks of car-sequencing (used in

Chapters 3 and 4). We reorganize the instances into three categories.

1. EasySat: It contains all instances fromset1 and set2. All these instances (70� 4)

are satis�able and easy for all the methods tested here.
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2. HardSat: It contains the instances ofset4. These instances (7) are known to be

satis�able but very hard to solve.

3. Unsat: It contains all unsatis�able instances from set3 in addition to the 23 un-

known instances formset5.

We ran the following models:

Hybrid CP/SAT We use Mistral-2.01 as a hybrid CP/SAT solver with backward

explanations. Our hybrid model is based on the Pseudo-Boolean formulation of the

problem, however, by usingAtMostSeqCard for capacity constraints. Note that the

rest of the constraints are either Cardinality or AtMost constraints. We explain

them in the same way we proposed previously in Section 5.1.1.1.

Using a hybrid solver has the advantage of using adaptive branching coming from the

SAT component as well as problem-speci�c heuristics. We therefore propose to test the

following con�gurations di�erentiated by the heuristic be ing used:

1. Hybrid(VSIDS) : using VSIDS.

2. Hybrid(Slot) : using the heuristic `opt; mid; �; g e (see Chapter 3).

3. Hybrid(Slot/VSIDS) : using �rst Hybrid(Slot) , then switching after 100 non-improving

restarts to Hybrid(VSIDS) .

4. Hybrid(VSIDS/Slot) : the reverse ofHybrid(Slot/VSIDS)

SAT We use the three SAT modelsCNFA , CNFS, and CNFA� S using Minisat[48]

(version 2.2.0) with default parameter settings.

CP and Pseudo-Boolean Models We compare against the following �reference�

approaches:

1. CPAMSC : The pure CP model usingAtMostSeqCard without clause learning

with the same heuristic used inHybrid(Slot) and the same solver Mistral-2.0.

2. PBO-clauses: A Pseudo-Boolean method relying on SAT encoding. We used Min-

iSat+ [49] on the Pseudo-Boolean encoding described in Section 5.1.2.1.

3. PBO-cutting planes: A Pseudo-Boolean method with dedicated propagation and

learning based on cutting planes [45]. We used SAT4J [19] on the same model,

with the �CuttingPlanes� algorithm.
1http://homepages.laas.fr/ehebrard/mistral.html
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All experiments are realized on Intel Xeon CPUs 2.67GHz under Linux. For each in-

stance, we ran 5 randomized runs with Luby restarts and a 20 minutes time cuto�. The

summary of these results is given in Table 5.1. Recall that a run is said to be `success-

ful' i� a solution is found or the search space is completely explored without �nding any

solution. For each category of instances, we report: the total number of successful runs

(#suc ); the averaged number of failures (avg fails) and the averaged CPU time (time)

in seconds. The statistics �time� and � avg fails� are computed only for the successful

runs. We emphasize the statistics of the best method (w.r.t.#suc, ties broken by time)

for each category usingbold face fonts.

Table 5.1: Experimental comparison of CP , SAT, hybrid, and Pseudo-Boolean mod-
els for the car-sequencing problem

Method
EasySat (74� 5) HardSat (7 � 5) Unsat (28 � 5)

#suc avg fails time #suc avg fails time #suc avg fails time

CNFA 370 2073 1.71 28 337194282.35 85 249301 105.07
CNFS 370 1114 0.87 31 60956 56.49 65 220658 197.03

CNFA� S 370 612 0.91 34 32711 36.52 77 190915 128.09
Hybrid(VSIDS) 370 903 0.23 16 207211286.32 35 177806 224.78

Hybrid(VSIDS/Slot) 370 739 0.23 35 76256 64.52 37 204858 248.24
Hybrid(Slot/VSIDS) 370 132 0.04 34 4568 2.50 37 234800 287.61

Hybrid(Slot) 370 132 0.04 35 6304 3.75 23 174097 299.24
CPAMSC 370 43.06 0.03 35 57966 16.25 0 - -

PBO-clauses 277 538743236.94 0 - - 43 175990 106.92
PBO-cutting planes 272 2149 52.62 0 - - 1 5031 53.38

From Table 5.1, we �rst note that CP and hybrid models outperform other approaches

on satis�able instances (i.e., EasySat and HardSat). The best method in average for

both sets is the hybrid model usingCP branching. By considering all the results on these

instances, one can observe that models enforcing Arc Consistency on AtMostSeqCard

are the best choices for �nding solutions quickly. In fact, this claim is con�rmed by the

poor performances of Pseudo-Boolean models on satis�able instances together with the

distinguished results ofCNFA� S compared to other SAT models. Recall thatCNFA� S

simulates ac on AtMostSeqCard . It is worth mentioning the importance of using

the crafted heuristic compared to VSIDS, at least within hybrid models. For instance,

on the dataset �HardSat�, we move from solving 16 instances with Hybrid(VSIDS) to

35 instances withHybrid(Slot) . In general, the results of satis�able instances show that

propagation is by far the most crucial factor for �nding solu tions. Moreover, the use of

built-in heuristics is clearly bene�cial compared to �blin d� branching when using hybrid

models.

Conversely to these observations, the results on the dataset �Unsat� instances clearly

show that clause learning is the most important ingredient for proving unsatis�ability.

There are a number evidences supporting this claim. First, while the CP model fails
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to build proofs on any instance for this set, its equivalent hybrid model (Hybrid(Slot) )

succeeds on 23 instances. We stress here the impact of VSIDS with hybrid models

as we move from 23 to 37 instances withHybrid(Slot/VSIDS) or Hybrid(VSIDS/Slot) .

Next, the PBO-clausesmodel, which relies essentially on basic SAT encoding without

any extra �ltering, performs better that hybrid models on th is set with 43 successful

runs. Finally, the best results on this set come from the SAT models. Speci�cally, the

�lightest� model CNFA is, surprisingly, the best model for proving unsatis�abili ty with

85 instances.

To summarize the experimental �ndings, we �rst observed that clause learning improves

the global performances generally. This is specially true when proving unsatis�ability.

Second, we con�rm a strong correlation between advanced propagation and �nding solu-

tions quickly for this problem. However, for building proofs, clause learning is the most

crucial factor and propagation is less useful. Finally, regarding the choice of heuristic,

adaptive-branching is very bene�cial for building proofs while problem-speci�c heuristics

are much helpful for �nding solutions e�ciently.

5.2 Revisiting Lazy Generation

We move now to the second part of our contributions regardingclause learning. We

revisit the lazy generation of Boolean variables for encoding the domains. In partic-

ular, we show how to avoid the issue mentioned in Section 2.3.2.2. Recall that when

lazily generating variables, clauses encoding the domainsbecome redundant (see Sec-

tion 2.3.2.2 for more details). TheDomainFaithfulness constraint that we propose in

this section avoids such redundancy while ensuring the samelevel of consistency without

computational overhead.

This novel lazy generation is used in the next section with our hybrid models for solving

scheduling problems. We consider only the lazy generation of atoms of the type Jx BuK

since all propagators in our models performs only bound tightening operations. Note

that this type of domain reduction is the most used for scheduling problems in general.

Nevertheless, the generalization of our propositions withatoms of the type Jx � vK is

quite simple and straightforward.

5.2.1 The DomainFaithfulness Constraint

We �rst recall the redundancy issue related to lazy generation. When an atom Jx B uK

has to be generated, we add the clauses Jx BaK- Jx B uK;  Jx BuK- Jx B bKwhere a

and b are the nearest generated bounds tou with a @u @b. After adding these clauses,

the clause Jx B lK- Jx BuKbecomes redundant. We show how to avoid this redundancy.
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Instead of generating clauses to encode the di�erent relationships between the newly

generated atoms, we propose to encode such relations through a new constraint called

DomainFaithfulness . This constraint has a twofold role: �rstly, it simulates UP as if

the atoms were generated eagerly; secondly it performs a complete channeling between

the range variable and all its domain atoms.

Let x be a Range variable (i.e., with a domain of the form� l; u� ). Let � v1; : : : ; vn � be

a sequence of integer values, and�b1 : : : bn � be a sequence of lazily generated Boolean

variables s.t. bi is the atom Jx B vi K. We assume that bi is the i th generated Boolean

variable for all i . We de�ne the DomainFaithfulness constraint as follows.

De�nition 5.3. DomainFaithfulness ˆx; � b1 : : : bn � ; � v1; : : : ; vn �• �

¦ i; bi � x Bvi

For each Range variablex, we use oneDomainFaithfulness constraint (denoted by

DomainFaithfulness (x)). Initially, the scope of DomainFaithfulness (x) contains

only x. Afterwards, whenever an atomb � Jx BvKhas to be generated, we simply add

b to the scope ofDomainFaithfulness (x).

5.2.1.1 Propagating DomainFaithfulness

We present �rst a complete �ltering procedure for DomainFaithfulness in Algo-

rithm 14 running in Oˆn• time complexity. Next, we show that one can enforce the

same propagation level with a constant amortized time complexity down a branch of the

search tree.

Algorithm 14: AC(DomainFaithfulness ˆx; � b1 : : : bn � ; � v1; : : : ; vn �• )

1 ub � min ˆmaxˆx•; min ˆvi SDˆbi • � ˜ 1••• ;
2 lb � maxˆmin ˆx•; 1 � maxˆvi SDˆbi • � ˜ 0••• ;

if ub@lb then
3 return Ù ;

4 Dˆx• � Dˆx• 9 � lb;�ª � ;
5 Dˆ x• � Dˆ x•9� � ª ; ub� ;
6 for i >�1; n� do

if vi Cub then
Dˆ bi • � ˜ 1• ;

if vi @lb then
Dˆ bi • � ˜ 0• ;

return D ;

We assume thatn A� 1, otherwise no propagation is needed since no atom is generated.

The �rst step is to look for the tightest possible bounds for x. The new upper bound
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ub is the minimum between the current upper bound of x and the minimum value vi

where bi is assigned to 1. Similarly, the new lower boundlb is the maximum between

the current lower bound and the maximum value vi � 1 wherebi is assigned to 0. These

new bounds are computed at the �rst two lines of Algorithm 14.

Regarding failure, there is only one way to make the constraint violated. This case

corresponds to the situation whenub is less that lb (Line 3). The rest of the propagator

is quite straightforward. First, we update the domain of x with the new bounds (Line 4

and Line 5). Then, we assign the atomsbi in the natural way (Line 6). That is, any

variable bi is assigned to 1 ifvi Cub and to 0 if vi @lb. Figure 5.1 visualizes the e�ect of

propagating DomainFaithfulness on �b1 : : : bn � .

Figure 5.1: Assigning b1; : : : ; bn

0 0 : : : 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

˜ 0; 1• ˜ 0; 1• : : : ˜ 0; 1•
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

1 1 : : : 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

˜ bi Svi @lb• ˜ bi Slb Bvi @ub• ˜ bi Svi Cub•

Theorem 5.4. Algorithm 14 enforces ac for DomainFaithfulness in Oˆn•.

Proof. The time complexity for this algorithm is clearly Oˆn•. We show how to build

supports for any possible assignment after propagatingDomainFaithfulness . Assign-

ing x to any value v >� lb; ub� has clearly a support by assigning any atombi to 1 if vi Cv

and to 0 otherwise. For the rest of assignments, it is also easy to �nd supports. We

distinguish two cases for building supports for assignments of the type Jbi � 1K.

ˆ If vi Cub (i.e., bi is already assigned to 1), we assignx to ub, and all unassigned

bj to 0.

ˆ If vi @ub (i.e., bi is unassigned), we assignx to lb, and all unassignedbj to 1.

Similarly, we build supports for the assignments of the typeJbi � 0Kas follows:

ˆ If vi @lb (i.e., bi is already assigned to 0), we assignx to lb, and all unassignedbj

to 1.

ˆ If vi Clb (i.e., bi is unassigned), we assignx to ub, and all unassignedbj to 0.

j

5.2.2 Incrementality

We introduce here an incremental procedure to propagateDomainFaithfulness in a

constant amortized time complexity down a branch of the search tree.
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We use two arrays calleds and g de�ned as follows: For eachi >�1; n� :

ˆ If ˜ vk Svk @vi • ~� g , then s� i � � � wherev� � max˜ vk Svk @vi • , otherwise s� i � � 0.

That is, the value of s� i � represents the indexj of the greatest value vj that is

smaller than vi if such index exists, and 0 otherwise.

ˆ If ˜ vk Svk Avi • ~� g , then g� i � � � where v� � min ˜ vk Svk Avi • , otherwise g� i � � 0.

That is, g� i � represents the indexj of the smallest valuevj that is greater than vi

if such index exists, and 0 otherwise.

Consider now the example ofDˆ x• � � 17; 83� and an atom bk corresponding toJx B64K

(i.e., vk � 64). Suppose now that assigningbk to 1 is the only new event before propagat-

ing DomainFaithfulness . It is easy to see that the only changes needed to maintainac

on this constraint are the tightening of the upper bound of x to 64 and the assignment of

some atoms to 1. These atoms correspond to the set� � ˜ bg� k� ; bg� g� k�� ; bg� g� g� k��� : : : blast k •

where blast k is unassigned andbg� last k � is assigned to 1. The time complexity needed

for this propagation is OˆS� S•. Take now the same example, however, by having in

addition to assigning bk to 1, a new upper bound ub‡ � 48 as an event. In this

case, one can proceed exactly as in the previous example by assigning all atoms in

� � ˜ bg� k� ; bg� g� k�� ; bg� g� g� k��� : : : blast k • to 1, then continue assigning other atoms to 1 to be

consistent with the new upper bound. The new set of atoms is� ‡ � ˜ bs� k� ; bs� s� k�� ; : : : ; bub•

where vub � min ˆvk Svk Cub‡•. The time complexity in this case is OˆS� S� S� ‡S•.

Our incremental �ltering is organized in two parts:

1. Simulating UP as if the atoms b1; : : : ; bn were eagerly generated with all domain

clauses.

2. Performing the channeling betweenx and b1; : : : ; bn .

Algorithm 15 depicts the main procedure for this incremental propagator. It uses al-

gorithms 16, 17, and 18 as follows: Any event related to assigning an atom bi to

1 is handled by Algorithm 16 (UBˆ i; i ub•); an event of assigningbi to 0 is handled

by Algorithm 17( LB ˆ i; i lb•); and the changes onDˆx• are handled by Algorithm 18

(Update_ Rangê i lb; iub; lb; ub•).

In Line 1 (respectively Line 2) of Algorithm 15, we setupiub (respectively i lb) as the index

of literal standing for the maximum (respectively minimum) value in ˜ vj Sj > �1; n�• .

This initialization happens only in the �rst call. In subseq uent calls, we use their updated

values coming from the previous call. Moreover, these values are re-established when

backtracking2.

2 i ub and i lb are implemented as a "reversible" integer.
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Algorithm 15: Propagate(DomainFaithfulness ˆx; � b1 : : : bn � ; � v1; : : : ; vn �• )

lb � false ;
ub � false ;
changed� false ;
// iub and i lb can be modi�ed later with UBˆ i; i ub• and LB ˆ i; i lb• respectively.

1 iub � arg maxj ˆ˜ vj Sj >�1; n�•• ;
2 i lb � arg minj ˆ˜ vj Sj >�1; n�•• ;

//� is a list containing indices of newly assigned variables .
while � is not empty do

i � � :pop̂ • ;
if i A� 1 then

3 if Dˆ bi • � ˜ 1• then
if UBˆ i; i ub• then

ub � true ;

4 else
if LB ˆ i; i lb• then

lb � true ;

if D � Ù then
return Ù ;

else
changed� true ;

5 if changedthen
Update_ Rangê i lb; iub; lb; ub• ;

return D ;

We use a list � containing indices of newly assigned variables in the scope of the con-

straint. We assume that � is globally modi�able by all algori thms and that the index

of the variable x is 0 and bi is i for all i >� 1::n� .

We show how the two parts of �ltering are maintained by one call to Algorithm 15.

Simulating UP: Suppose that all atoms b1; : : : ; bn are eagerly generated with all

domain clauses. The set of these clauses can be described with ˜  bs� i � - bi Si >�1; n� , s� i � x

0• or ˜  bi - bg� i � Si > �1; n� , g� i � x 0• . There are two possible scenarios of propagation

depending on the assignment of a variablebi .

ˆ bi becomes assigned to 1: In this case,UP propagates the clause bi - bg� i � by

assigningbg� i � to 1 or triggers failure if Dˆ bg� i � • � ˜ 0• . If bg� i � becomes assigned,

then UP should triggers propagation for clauses watched bybg� i � . This scenario

is triggered at Line 3 in Algorithm 15 and executed at Line 2, and Line 3 in

Algorithm 16.
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Algorithm 16: UBˆ i; i ub•)
//We �rst update the index iub

if vs� i � @vi ub then
1 iub � s� i � ;

//Here we simulate the propagation of the clause  bi - bnext

2 next � g� i � ;
3 if next ~� 0 then

if maxˆbnext • � 0 then
4 D �Ù ;

return false ;

else
5 Dˆ bnext • � ˜ 1• ;

� :add̂ next• ;

//Now we perform the channeling between x and bi

6 if min ˆx• Avi then
7 D �Ù ;

return false ;

8 if vi @maxˆx• then
Dˆ x• � Dˆ x•9� � ª ; vi � ;
return true ;

else
return false ;

Algorithm 17: LB ˆ i; i lb•)
//We �rst update the value of i lb

if vg� i � Avi lb then
1 i lb � g� i � ;

//Here we simulate the propagation of the clause  bnext - bi

2 next � s� i � ;
3 if next ~� 0 then

if min ˆbnext • � 1 then
4 D �Ù ;

return false ;

else
5 Dˆ bnext • � ˜ 0• ;

� :add̂ next• ;

//Now we perform the channeling between x and bi

6 if maxˆx• @̂ vi � 1• then
7 D �Ù ;

return false ;

8 if ˆvi � 1• Amin ˆx• then
Dˆ x• � Dˆ x• 9 � vi � 1; �ª � ;
return true ;

else
return false ;
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Algorithm 18: Update_ Rangê i lb; iub; lb; ub• )

next � iub ;
bound� maxˆx• ;
if notˆub• then

1 while next ~� 0 do
if vnext Cbound then

2 Dˆ bnext • � ˜ 1• ;
next � s� next � ;

else
next � 0 ;

next � i lb;
bound� min ˆx• ;
if notˆ lb• then

3 while next ~� 0 do
if vnext @bound then

4 Dˆ bnext • � ˜ 0• ;
next � g� next � ;

else
next � 0 ;

ˆ bi becomes assigned to 0: Conversely to the previous case,UP propagates the

clause bs� i � - bi by assigningbs� i � to 0 or triggers failure if Dˆ bs� i � • � ˜ 1• . If bs� i �

becomes assigned, thenUP should trigger propagation for clauses watched bybs� i � .

This scenario is triggered at Line 4 in Algorithm 15 and executed at Line 2, and

Line 3 in Algorithm 17.

Let � be the set of all atoms assigned by our algorithm. The worst case time complexity

for simulating UP is clearly OˆS� S• which is the same as ifUP propagates with the

2-watched literals. Therefore, the time complexity of this part is Oˆn• down a branch

of the search tree, and subsequently corresponds to a constant amortized complexity.

Channeling Between x and b1; : : : ; bn : There are two cases to distinguish when

performing this channeling.

1. Changing Dˆ x• based on newly assigned atoms: When an atomsbi � Jx B vi K

becomes assigned to 1, one have to check:

(a) If enforcing vi as a new upper bound forx can makeDˆ x• empty, and hence

failure should be triggered. This test is performed at Line 6of Algorithm 16.

(b) If vi can be the new upper bound ofx. This is performed at Line 8 of

Algorithm 16.
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The case wherebi becomes assigned to 0 is similarly handled at Line 6 and Line 8

in Algorithm 17.

2. Assigning some atoms fromb1; : : : ; bn to be coherent with Dˆ x•. This propaga-

tion is handled by Algorithm 18 ( Update_ Rangê i lb; iub; lb; ub•). Clearly, when no

change occurs on Dˆ x• before calling Algorithm 15

�Propagate( DomainFaithfulness ˆx; � b1 : : : bn � ; � v1; : : : ; vn �• )�, then no propaga-

tion is needed. This is exactly what happens at Line 5 in Algorithm 15 using the

Boolean changed. In the case whereDˆ x• changed, we treat each type of domain

change separately. We show the procedure used when the change concerns a new

upper bound. The case of a new lower bound is similar. Letu be the new upper

bound of x. We show that every atom bi such that vi C u is assigned to 1 when

the algorithm ends.

(a) If there exists an atom bj in the initial � list s.t. Algorithm 16 changes the

upper bound of x to be vj at Line 8, then no further propagation is needed.

(b) Otherwise, every atom bi with a value vi Cmaxˆx• should be assigned to 1.

This is done by means of an indexiub as follows: We �rst make sure that

every atom with a value that is greater than vi ub is already assigned to 1.

Afterwards, we assign all atoms in the sequence [bi ub , bs� i ub � , bs� s� i ub �� . . . ,

blast ub ] to 1 where vlast ub � min ˆvk Svk C maxˆx•• . This is exactly what

happens in the loop of Line 1 in Algorithm 18. Now regarding the index iub,

recall that it has to guarantee that all atoms with a value greater than vi ub are

already assigned to 1. Therefore, we initializeiub to the be the index of the

greatest possible valuevi (Line 1 in Algorithm 15). Then, whenever we �nd

an atom bk newly assigned to 1 and associated to a valuevk that is smaller

than the current vi ub , we update iub with the value s� k� . Recall that the part

simulating UP guarantees that all atoms with a value v Cvk are assigned to

1.

Regarding the complexity of this part, observe that considering iub and i lb as reversible

integers makes the running time of this part alsoOˆn• down a branch of the search tree

and therefore corresponds to a constant amortized complexity.

5.2.3 Explaining DomainFaithfulness

SinceDomainFaithfulness is used in a Hybrid CP/SAT Solver, we must explain all

possible domain changes and failures triggered by this constraint.
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5.2.3.1 Explaining Failure

There are several cases to �nd a failure by our algorithms. Wegive for each one a

possible explanation using the current values ofnext , min ˆx•, maxˆx•, and i at the

moment of propagation.

ˆ Line 4 in Algorithm 16: Jbnext � 0K, Jbi � 1K� Ù

ˆ Line 7 in Algorithm 16: Jx Cmin ˆx•K, Jbi � 1K� Ù

ˆ Line 4 in Algorithm 17: Jbnext � 1K, Jbi � 0K� Ù

ˆ Line 7 in Algorithm 17: Jx Bmaxˆx•K, Jbi � 0K� Ù

5.2.3.2 Explaining Pruning

Tightening the bounds of the range variablex is possible only when a Boolean variable

with the same bound value was previously set totrue / false . We therefore use the

following rules to explain Jx C lK and Jx B uK without saving any information (i.e.,

typically used with backward explanations):

ˆ Jbk � 0K� Jx ClKs.t. vk � l � 1

ˆ Jbk � 1K� Jx BuKs.t. vk � u

For the assignments of the typeJb � 1Kand Jb � 0K, we make a clear distinction whether

they are assigned by Algorithms UBˆi; i ub•/ LB ˆ i; i lb• or by Algorithm

Update_ Rangê i lb; iub; lb; ub•.

ˆ Line 5 in Algorithm 16: Jbi � 1K� Jbnext � 1K

ˆ Line 2 in Algorithm 18: Jx Bmaxˆx•K� Jbnext � 1K

ˆ Line 5 in Algorithm 17: Jbi � 0K� Jbnext � 0K

ˆ Line 4 in Algorithm 18: Jx Cmin ˆx•K� Jbnext � 0K

All these explanations are computed eagerly and saved in an internal structure for later

use during con�ict analysis. The reason we compute them at the moment of propagation

is to recover the exact literal responsible for assigning every bnext .
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5.3 Learning in Disjunctive Scheduling

We investigate in this part the impact of clause learning forsolving disjunctive scheduling

problems. We introduce a novel learning mechanism tailoredto this family of problems.

Speci�cally, we use a property of these problems allowing toexplain a con�ict using a

number of Boolean variables that is not function of the scheduling horizon. The novel

con�ict analysis procedure along with the alternative lazy generation mode that we pro-

posed in Section 5.2 are experimentally tested on well knownacademic benchmarks.

Both approaches give good experimental results and outperform the CP model in most

cases. While the prior target of this study is the evaluation of the new learning mech-

anisms that we propose, numerous observations are made based on the experimental

results. These observations include relations between theinstance size, the heuristic

choice, and the con�ict analysis scheme. State-of-the-artlower bounds for a traditional

benchmark are improved thanks to our approach.

Disjunctive scheduling refers to a large family of scheduling problems having in common

the Unary Resource Constraint. That is, for each machine, nopair of tasks can overlap.

For a long time, the focus in constraint programming was to design dedicated propa-

gation algorithms for the Unary Resource Constraint. For instance, the Edge-Finding

�ltering [38, 99, 141] is inferring relationships of the form � T must precede any task in

� � where: T is a task, and � is a set of tasks to be scheduled on the same machine of

T. We refer the reader to [10] for a comprehensive introduction to �ltering techniques

used in scheduling in general.

We are interested in this section in the impact of clause learning rather than propagation.

Our models use minimalist propagation mechanisms. Our approach is implemented on

top of the so calledlight model used in [71, 69, 70]. We shall use the classical job shop

problem (JSP) and open shop problem (OSP) as illustrations. The objective in both

problems is to minimize the total scheduling duration (i.e., the makespanCmax ). We

start by describing the `light' CP model for these problems.

5.3.1 Modeling

In the rest of this chapter, n and m denote two integers inN‡. We consider the de�nition

of a job as a set of tasks. LetJ � ˜ J i S1 Bi Bn• be the set of jobs, andM � ˜ M k S1 B

k B m• be the set of machines. Each jobJ i is de�ned by m tasks ˜ Tik S1 B k B m•

s.t. Tik requires machinek. Conversely, each machineM k is associated ton tasks

˜ Tik S1 B i B n• . Each task Tik is associated to a processing durationpik in which the

machine M k is allocated to job i . Let t ik be the variable representing the starting time

of task Tik . For all k >�1; m� , the Unary Resource Constraint for machine M k can be



Chapter 5 Learning 109

expressed as follows:

¦ i >� 1; n� ; ¦ j >� 1; n� s:t: i @j

t ik � pik Bt jk - t jk � pjk Bt ik
(5.1)

We use a simple decomposition into rei�ed constraints with Oˆn2• Boolean variables

� kij per machineM k channeled to task variables as follows:

¦ i >� 1; n� ; ¦ j >� 1; n� ; i @j

� kij �
¢̈
¨
¦
¨̈
¤

0 � t ik � pik Bt jk

1 � t jk � pjk Bt ik
(5.2)

In the following, we shall refer to this channeling with the Disjunctive (b; x; y; dx ; dy )

constraint instantiated to ( � kij , t ik , t jk , pik , pjk ).

The Job Shop Problem In addition to the Disjunctive constraints, this problem

requires for each job a total order on its tasks. We thereforesuppose that Tiv a is the

ath task required by job J i . Modeling the order of tasks for each Job is expressed by

means of Precedence constraints. Let x, y be variables andd be an integer. The

Precedence (x, y, d) constraint is de�ned as follows:

x � d By (5.3)

For each job i , we have the set ofPrecedence constraints:

¦ a >�1; m � 1�

Precedence ˆt iv a ; t iv a � 1 ; piv a •
(5.4)

The JSP having the minimization of the makespanCmax as an objective can be de�ned

as follows:

minimize Cmax subject to

¦ i >� 1; n�

t iv m � piv m BCmax

¦ k >�1; m� ; ¦ i >� 1; n� ; ¦ j >� 1; n� ; i @j

Disjunctive ˆ � kij ; t ik ; t jk ; pik ; pjk •

¦ i >� 1; n� ; ¦ a >�1; m � 1�

Precedence ˆt iv a ; t iv a � 1 ; piv a •

(5.5)
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The Open Shop Problem The only di�erence compared to the JSP problem is

that the order between tasks of the same job is part of the decision. In other words, two

tasks of a same job cannot be executed at the same time but we are free to choose the

processing order. A job can therefore be considered as a unary resource. Similarly to

the disjunctions on machines, we introduceOˆm2• Boolean variables� iab for each job

i and post the constraints Disjunctive ˆ � iab ; t ia ; t ib; pia ; pib• for all a @b > �1; m� . The

OSP can therefore be de�ned as follows:

minimize Cmax subject to

¦ i >� 1; n� ; ¦ k >�1; m�

t ik � pik BCmax

¦ k >�1; m� ; ¦ i >� 1; n� ; ¦ j >� 1; n� ; i @j

Disjunctive ˆ � kij ; t ik ; t jk ; pik ; pjk •

¦ i >� 1; n� ; ¦ a >�1; m� ; ¦ b >�1; m� ; a @b

Disjunctive ˆ � iab ; t ia ; t ib; pia ; pib•

(5.6)

5.3.2 Search

Our search strategies are essentially based on those proposed in [71, 69].

5.3.2.1 The Global Search Scheme

Exploring the search space is performed in three steps. Firstly a greedy algorithm is

used to compute an initial upper bound (uinit ) for Cmax . The initial lower bound ( l init )

is initialized to be the largest sum of durations between all jobs/machines. Second,

a dichotomic search is used to improve the initial upper/lower bounds for Cmax . Each

iteration is limited by a cuto� on CPU time and on the number of propagation calls. The

initial dichotomy step starts with � l init ; uinit � as a domain forCmax . In each dichotomy

step i we try to solve the decision version of the problem (i.e., without an objective

function) where the upper bound of Cmax is equal to ˆ l i � 1 � ui � 1•~2 s.t. the values l i � 1

and ui � 1 are the best bounds found after stepi � 1. We update the bounds ofCmax

depending on the outcome of a dichotomic stepi . If it is satis�able then we store the

value of Cmax in the solution as ui and change the upper bound ofCmax accordingly.

Otherwise, we setl i to ˆ l i � 1 � ui � 1•~2. However, observe that we change the lower bound

of Cmax only if the problem has been proven unsatis�able at stepi , but not if the limit

has been reached. Finally, a branch and bound algorithm is launched with the best real

lower/upper bound found (i.e., �min ˆCmax •; maxˆCmax •� ).
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5.3.2.2 Branching

It is very common in disjunctive scheduling to branch by �xin g one of the possible

precedences in the unary resource constraints. The authorsof [71] proposed to branch

on the Boolean variables in theDisjunctive constraints which simulates that behavior.

Note that it is su�cient to have all these Boolean variables assigned to decide the

problem. In fact, assigning all the tasks, along with the variable standing for makespan,

to the minimum possible value in their domain returns a solution with the minimum

possible value forCmax w.r.t. the assignment of the Boolean variables.

Variable Ordering The variable ordering heuristics are inspired from the con�ict-

driven domain/weighted-degree heuristic proposed in [30]. The idea is to assign �rst

the variables involved in previous failures. The domain size domˆt ik • of a task Tik is

equal to maxˆt ik • � min ˆ t ik • � 1. The weight wx of a variable x is equal to the number

of times x is in the scope of the constraint triggering a failure. EveryBoolean variable

b in a Disjunctive (b; x; y; dx ; dy) constraint can be evaluated using the following two

heuristics:

1. taskDom~bw: domˆx• � domˆy•
wb

2. taskDom~tw: domˆx• � domˆy•
wx � wy

In both heuristics, the �nal decision is randomly chosen between the two Boolean vari-

ables with minimum values.

We use slightly modi�ed versions of the above heuristics in our hybrid models. First,

following a remark in [70] stating that �the greater the mini mum arity of constraints

in a problem, the less discriminatory the weight-degree heuristic can be�, we propose

to update the variables weight in the con�icting clauses as follows. When a failure

is triggered by a clausec, the weight of each variable in the clause is increased by
1

ScS
instead of 1. Next, with taskDom~tw, instead on incrementing the weight of any

Boolean variableb in c, we share this value between the two tasks in theDisjunctive

constraint rei�ed by b. This is proposed because the weight of the Boolean variables in

these cases would not bring new information totaskDom~tw. Finally, if we use lazy

generation, instead of updating the weight of the generatedatoms a � Jt ik B vK, we

consider increasing the weight of taskTik (by 1

ScS
).

We shall also consider VSIDS as another variable ordering alternative in our hybrid

models.
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Value Ordering Similarly to the solution guided approach proposed in [12],we assign

the chosen variable to the same value it has in the latest solution.

5.3.3 Explaining Constraints

Observe �rst that the constraints related to the makespan can be considered are

Precedence constraints (i.e., of the form x � d B y). We therefore have two types

of constraints to explain: Precedence , and Disjunctive . We give in the following

how to generate explanations for these constraints. To makethe notation lighter, we

denote lx (respectively ux ) the lower (respectively upper) bound in Dˆ x•.

5.3.3.1 Explaining Precedence (x, y, d)

To propagate Precedence , we need to update the upper bound ofx and the lower

bound of y. We give in Algorithm 19 a BC propagator for this constraint.

Algorithm 19: Precedence ˆx; y; d•

if min ˆx• � d Amaxˆy• then
1 D �Ù ;

else
if maxˆx• Amaxˆy• � d then

2 Dˆ x• � Dˆ x•9� � ª ; maxˆy• � d� ;

if min ˆy• @min ˆx• � d then
3 Dˆ y• � Dˆ y• 9 �min ˆx• � d; �ª � ;

return D ;

Explaining Failure The only way to have a failure in this constraint is when maxˆx•

is greater that maxˆy• � d (Line 1 in Algorithm 19). The obvious explanation for this

failure is:

Jx ClxK, Jy BuyK� Ù

Explaining Pruning This propagator only tighten the upper bound of x and the

lower bound of y. Let v be an integer. To explain the literal Jy C vK, it is clear that

Jx Cv � dK� Jy CvK is a valid explanation. Similarly, if Jx B vK is propagated by this

constraint, then we useJy Bv � dK� Jx BvKas an explanation for this propagation.
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These explanations are computed inOˆ1• regardless of the level/rank of the literals

being explained. Furthermore, we do not need to keep track the exact bounds at the

time it was changed through propagation. The backward explanation mode suits very

well this constraint.

5.3.3.2 Explaining Disjunctive (b; x; y; dx ; dy)

We start again by giving a full description of the �ltering us ed for this constraint. We

show a BC propagator in Algorithm 20.

Algorithm 20: Disjunctive (b; x; y; dx ; dy)

if SDˆ b•S� 1 then
if Dˆ b• � ˜ 0• then

return Precedence ˆx; y; dx • ;

else
return Precedence ˆy; x; dy • ;

else
if lx � dx Auy then

Dˆ b• � ˜ 1• ;
return Precedence ˆy; x; dy • ;

else
if ly � dy Aux then

Dˆ b• � ˜ 0• ;
return Precedence ˆx; y; dx • ;

Algorithm 20 does not prune the domains of x nor y until Dˆ b• becomes singleton.

Furthermore, onceDˆ b• is assigned, the constraint becomes aPrecedence . Therefore,

in order to explain Disjunctive , all the previous explanations are used along with the

current state of b. That is, if we want to explain ! (! is either a literal or a failure

Ù) made by this propagator because of a call toPrecedence , then it is su�cient to

return Jb� vK, 	 � ! s.t. Dˆ b• � ˜ v• and 	 is the explanation of ! based on the way

we explain Precedence .

The only missing explanations to generate are the ones related to the assignments ofb.

We explain them using the following propagation rules:

Jx ClxK, Jy BuyK� Jb� 1K

Jy ClyK, Jx BuxK� Jb� 0K

The values lx , ux , ly , and uy must be those used at the time of propagation. We store

these values once the propagator assignsb.
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5.3.4 Disjunctive -Based Learning

We introduce a novel learning scheme as an alternative to thelazy generation mode.

The main advantage o�ered by this novel learning mechanism is that the �nal nogoods

do not contain any domain related atom.

Recall that our search strategies branch only on Boolean variables of the Disjunctive

constraints. It follows that any bound literal (i.e., of the form Jx BvKand Jx CvK) does

not correspond to a decision. Therefore such literals are either propagated, hence have a

non-null explanation, or have a level equal to the search root. Our new learning method

exploits precisely this property. Instead of generating bound atoms before learning a

new clause, we propose to start a second phase of con�ict analysis.

The �rst step in the new Disjunctive -based learning is to perform con�ict analysis as

usual to compute the 1-UIP nogood 	. Next, we make sure that the latest literal in 	

is not a bound literal. Otherwise, we keep explaining the latest literal in 	 until having

such UIP. We know that this procedure terminates because theworst case would reach

the last decision which corresponds to a UIP that is not a bound literal. Let 	 ‡ be the

resulting nogood. Observe that the backjump level in 	 ‡ might be di�erent from the

one given by the 1-UIP nogood.

Consider now I � ˜ l1; : : : ; ln • to be the set of bound literals in 	 ‡ before generating

atoms. Instead of performing lazy generation, we call the procedure �Substitute( I ; 	 ‡)�

(algorithm 21) as a second phase of con�ict analysis. This procedure keeps replacing

any bound literal with its explanation until having a nogood composed by only literals

related to some Boolean variables of theDisjunctive constraints. In Algorithm 21, we

use:

ˆ visited : to represent a set containing bound literals already explained

ˆ ! : to represent the explanation of the current bound literal to resolve

ˆ ' : to represent the set of bound literals in! .

Starting from the �rst line in Algorithm 21, we split the nogo od under construction

in two parts: I to contain bound literals; and 	 for the rest of literals (i.e ., literals

associated to Boolean variables coming from theDisjunctive constraints). The idea

of Algorithm 21 is to explain every bound literal in I until no such literal exists. This is

exactly what happens at each iteration of the main loop. I is updated to contain new

bound literals from ' at Line 2. The rest of literals in the current explanation ! goes

in 	 at Line 3 and Line 4.

The �nal nogood 	 contains only some Boolean variables from the Disjunctive con-

straints without any bound literal. It should be noted that t he backjump level remains
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the same as in 	 ‡ since resolving a literal l replaces it with a set of literals assigned at

least at the same level ofl .

Algorithm 21: Substitute( I ; 	 ‡)

1 	 � 	 ‡ � I ;
visited � g ;

while SI SA0 do
l � choosel >I ;
visited � visited 8 ˜ l• ;
f � reasonˆ l• ;
! � explain ˆ f; l • ;
' � ˜ q Sq >! , q is a bound litteral • ;

2 I � I 8 ˜ q Sq >' , levelˆq• A0 , q ¶ visited • ;
3 ! � ! � ' ;
4 	 � 	 8 ˜ q Sq >! , levelˆq• A0• ;

return 	 ;

The advantage of this approach is that the tasks' domains do not matter any more in

size. The SAT engine focuses on learning clauses with only Boolean variables coming

from the Disjunctive constraints. Note, however, that in this case con�ict analysis is

likely to take more time to �nish compared to the lazy generation mode since there are

more literals to explain.

5.3.5 Experiments

We implemented the learning mechanisms we propose within Mistral-2.0. This solver

supports backward explanations and semantic reduction. The source code is available

online via https://github.com/siala/Hybrid-Mistral and the tests can be repro-

duced following the guidance in Appendix A. All the experiments were performed on

Intel i7-4770 processors running on Ubuntu 12.04. We compare the previousCP models

against our new learning methods. The two heuristicstaskDom~bw and taskDom~tw

are tested in both CP and hybrid solvers. V SIDS is also used as another hybrid model.

We use a geometric restart with a base of 256 failures and a factor of 1:3. The total

time limit is �xed to 3600s for all the experiments. Each dichotomy step is limited to a

cuto� of 300s and 4‡ 106 propagation call. We ran 10 randomized runs with di�erent

seeds for each instance and con�guration.

We use a clause reduction strategy based on the Size-BoundedRandomized (SBR)

method [75]. Everyf failures, we check whether the size of the clause database reached a

given parameter ! . If so, a parametrized deletion procedure

reduceClauseŝ f; !; �; k; �; � • is performed as follows. A clausec is considered `locked'

if there exists a literal p such that c is the reason for propagatingp. All locked clauses
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are not removed. The last � non-locked clauses are also kept. Afterwards, the clauses

with size less than a parameterk are not deleted. The other clauses are deleted with

a probability � . If the resulting number of clauses still greater than ! , we call again

reduceClauses, however, after decreasingk by � . We iterate this process until the clause

database is of size smaller thanw. The default values used for all the experiments for

@f; !; �; k; �; � A are @5000; 75000; 50000; 12; 8; 90% A.

We shall evaluate experimentally the following models:

ˆ Mistral( � ): The pure CP model using� as a heuristic. The latter is denoted by

� bool if we usetaskDom~bw

� task if we usetaskDom~tw

ˆ Hybrid( �; � ): The hybrid model where:

� � is the heuristic and is denoted by:

* vsids if we use VSIDS

* bool if we usetaskDom~bw

* task if we usetaskDom~tw

� � indicates the learning method with d̀isj ' in the case of using theDisjunctive -

based learning and 'lazy' with the lazy generation approach with

DomainFaithfulness .

We use a limit of 2:5 ‡ 105 generated atoms with the models Hybrid(�; lazy ). Once this

limit is reached, we forget all clauses, delete the generated atoms, and restart.

We use the following format for all tables. Each instance results (i.e., using di�erent

seeds) is depicted in one line. Each model is associated to a column. We report for

each model and instance: the average CPU time (T); the percentage of instances found

optimal (%O); the minimum (min) and average (avg) upper bound (UB) across the

di�erent seeds. We shall denote inbold the minimum makespan found for each instance

(can occur in di�erent models). Furthermore, we add a line `average' at the bottom of

each table to show the average CPU time T and the average percentage of optimality %O

for each model. The last line contains the averagePRD(percentage relative deviation)

of each model. The PRD of a modelm for an instanceC is computed with the formula:

100‡ Cm � Cbest
Cbest

, whereCm is the minimum makespan found by modelm for this instance

(among the several randomized runs); andCbest is the minimum makespan found by all

models for the instanceC. The average PRD can be considered as an `e�ciency' measure

for the models. The bigger this value, the less e�cient a model is. The minimum possible

value of a PRD is 0 and means that the model returns always the best makespan.
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5.3.5.1 JSP Results

We use two well studied benchmarks for the job shop problem: Lawrence [86] and Tail-

lard [134]. The former is much easier than the latter. We observed in these instances

that taskDom~tw performs slightly, but constantly, better than taskDom~bw. There-

fore, the results that we report in this paragraph concern the models: Mistral(task),

Hybrid( vsids; disj ), Hybrid( vsids; lazy), Hybrid( task; disj ), and Hybrid( task; disj ).

Lawrence Instances The detailed results of Lawrence instances are shown in Ta-

bles 5.2 and 5.3. The model Hybrid(vsids; disj ) has the best PRD with a value of 0:01

and the greatest percentage of optimal solutions (92%). Theonly case where theCP

model returns the best makespan was with instance la27, however, without obtaining

the best average. As a comparison between the di�erent hybrid models, we observe

that the Disjunctive -based learning outperforms the lazy approach regardless of the

branching strategy. We are not able, however, to argue on a best heuristic here since

VSIDS performs better with the Disjunctive -based learning whereastaskDom~tw is

the best choice of branching with lazy generation.

Taillard Instances These instances are much harder than Lawrence benchmark since

a large number of them are still open in the literature and only 10 out of 70 instances

are proved optimal in our experiments. We start by giving a global view analysis before

empirically evaluating subsets of these instances.

The detailed results are given in Tables 5.4, 5.5, and 5.6. According to the global average

PRD (shown at the end of Table 5.6), the best models for these instances are those using

taskDom~tw. The CP model is completely outperformed by hybrid models with a PRD

equal to 1:5474 compared to an average of 0:9487 with the models Hybrid(vsids; � ) and

an average of 0:30185 with the models Hybrid(task; � ). Clearly, the branching choice is

the most important criteria for hybrid models. The choice of the con�ict analysis scheme

does not seem to impact much the global behavior, although lazy generation performs

slightly better.

These results do not con�rm our earlier claim with Lawrence instances stating that

Hybrid( vsids; disj ) is the best learning con�guration. We therefore propose toclassify

the results according to the instance size.

Taillard Statistics In table 5.7, each line depicts several statistics for a given set

of instances having the same number of disjunctions. We report for each model: the

speed of exploration in terms of nodes explored by second (Nodes/s); the average size

of learnt clauses (Size); and a performance metric M equal tothe pair @%O,TA (%O is



C
hapter

5
Learning

118

Table 5.2: Job Shop: Lawrence (la-01-20) detailed results

Mistral( task) Hybrid( vsids; disj ) Hybrid( vsids; lazy) Hybrid( task; disj ) Hybrid( task; disj )
T %O UB T %O UB T %O UB T %O UB T %O UB
avg avg min avg avg avg min avg avg avg min avg avg avg min avg avg avg min avg

la01 0 100 666 666 0 100 666 666 0.01 100 666 666 0 100 666 666 0 100 666 666
la02 0.21 100 655 655 0.21 100 655 655 0.46 100 655 655 0.19 100 655 655 0.26 100 655 655
la03 0.06 100 597 597 0.07 100 597 597 0.15 100 597 597 0.08 100 597 597 0.11 100 597 597
la04 0.05 100 590 590 0.07 100 590 590 0.11 100 590 590 0.07 100 590 590 0.09 100 590 590
la05 0 100 593 593 0 100 593 593 0 100 593 593 0 100 593 593 0 100 593 593
la06 0.01 100 926 926 0.05 100 926 926 0.13 100 926 926 0.02 100 926 926 0.03 100 926 926
la07 3600 0 890 890 3600 0 890 890 3600 0 890 890 3600 0 890 890 3600 0 890 890
la08 0.03 100 863 863 0.07 100 863 863 0.09 100 863 863 0.03 100 863 863 0.04 100 863 863
la09 0 100 951 951 0.01 100 951 951 0.06 100 951 951 0.01 100 951 951 0.03 100 951 951
la10 0 100 958 958 0 100 958 958 0 100 958 958 0 100 958 958 0 100 958 958
la11 0.04 100 1222 1222 0.71 100 1222 1222 0.70 100 1222 1222 0.05 100 1222 1222 0.05 100 1222 1222
la12 0.11 100 1039 1039 0.22 100 1039 1039 0.36 100 1039 1039 0.07 100 1039 1039 0.09 100 1039 1039
la13 0.03 100 1150 1150 0.18 100 1150 1150 0.13 100 1150 1150 0.07 100 1150 1150 0.05 100 1150 1150
la14 0 100 1292 1292 0 100 1292 1292 0 100 1292 1292 0 100 1292 1292 0 100 1292 1292
la15 0.27 100 1207 1207 3.29 100 1207 1207 49.27 100 1207 1207 0.54 100 1207 1207 0.33 100 1207 1207
la16 0.31 100 945 945 0.27 100 945 945 0.53 100 945 945 0.26 100 945 945 0.48 100 945 945
la17 0.08 100 784 784 0.07 100 784 784 0.11 100 784 784 0.11 100 784 784 0.16 100 784 784
la18 0.03 100 848 848 0.04 100 848 848 0.06 100 848 848 0.05 100 848 848 0.06 100 848 848
la19 0.37 100 842 842 0.27 100 842 842 0.57 100 842 842 0.40 100 842 842 0.62 100 842 842
la20 0.11 100 902 902 0.06 100 902 902 0.12 100 902 902 0.10 100 902 902 0.15 100 902 902



C
hapter

5
Learning

119

Table 5.3: Job Shop: Lawrence (la-21-40) detailed results

Mistral( task) Hybrid( vsids; disj ) Hybrid( vsids; lazy) Hybrid( task; disj ) Hybrid( task; disj )
T %O UB T %O UB T %O UB T %O UB T %O UB
avg avg min avg avg avg min avg avg avg min avg avg avg min avg avg avg min avg

la21 3501.39 101046 1046.2 1319.541001046 1046 3600 0 1046 1047 2948.05 401046 1046.6 3600 0 1046 1048.5
la22 78.96 100 927 927 78.92100 927 927 335.46100 927 927 64.92 100 927 927 119.64100 927 927
la23 0.31 1001032 1032 0.43 1001032 1032 1.29 1001032 1032 0.27 1001032 1032 0.39 1001032 1032
la24 190.55 100 935 935 96.02100 935 935 607.17100 935 935 146.52 100 935 935 458.56100 935 935
la25 171.19 100 977 977 93.56100 977 977 476.30100 977 977 114.64 100 977 977 452.61100 977 977
la26 1742.60 601218 1219.9 232.441001218 1218 1130.811001218 1218 62.97 1001218 1218 992.87 901218 1218.1
la27 3600 0 1241 1259.9 3600 0 1246 1255.3 3600 0 1243 1270.6 3600 0 1243 1252.7 3600 0 1251 1262.2
la28 1487.91 801216 1216.7 898.47 901216 1216.5 2723.81 401216 1218.6 1427.41 801216 1216.9 1245.71 701216 1216.7
la29 3600 0 1183 1196 3600 0 1168 1178.6 3600 0 1189 1201.6 3600 0 1171 1185.8 3600 0 1176 1194.3
la30 2.01 1001355 1355 4.95 1001355 1355 9.73 1001355 1355 1.78 1001355 1355 2.14 1001355 1355
la31 5.74 1001784 1784 59.191001784 1784 402.94 901784 1786.9 3 1001784 1784 3.53 1001784 1784
la32 2.54 1001850 1850 4.31 1001850 1850 5.09 1001850 1850 2.49 1001850 1850 2.65 1001850 1850
la33 3.81 1001719 1719 67.311001719 1719 10.4 1001719 1719 5.11 1001719 1719 6.87 1001719 1719
la34 72.37 1001721 1721 1332.11 901721 1721.3 557.86 901721 1721.3 14.87 1001721 1721 9.36 1001721 1721
la35 4.17 1001888 1888 17.911001888 1888 44.781001888 1888 3.84 1001888 1888 3.61 1001888 1888
la36 77.76 1001268 1268 43.381001268 1268 119.791001268 1268 43.72 1001268 1268 90.191001268 1268
la37 246.81 1001397 1397 264.101001397 1397 634.731001397 1397 310.01 1001397 1397 528.601001397 1397
la38 233.55 1001196 1196 221.761001196 1196 1246.131001196 1196 204.52 1001196 1196 730.261001196 1196
la39 26.53 1001233 1233 23.271001233 1233 46.011001233 1233 15.10 1001233 1233 23.301001233 1233
la40 229.06 1001222 1222 284.701001222 1222 1295.481001222 1222 250.74 1001222 1222 497.411001222 1222
avg 471.9788.75 396.20 92 602.51 88 410.5590.50 489.25 89
PRD 0.0321 0.0100 0.0489 0.0104 0.0372
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Table 5.4: Job Shop: Taillard (tai01 � tai25) detailed results

Mistral( task) Hybrid( vsids; disj ) Hybrid( vsids; lazy) Hybrid( task; disj ) Hybrid( task; lazy)
T %O UB T %O UB T %O UB T %O UB T %O UB
avg avg min avg avg avg min avg avg avg min avg avg avg min avg avg avg min avg

tai01 18.571001231 1231 9.55 1001231 1231 34.641001231 1231 8.31 1001231 1231 14.961001231 1231
tai02 136.431001244 1244 121.971001244 1244 533.131001244 1244 116.841001244 1244 288.611001244 1244
tai03 116.051001218 1218 59.301001218 1218 304.751001218 1218 115.111001218 1218 412.971001218 1218
tai04 62.391001175 1175 35.231001175 1175 179.471001175 1175 34.891001175 1175 84.881001175 1175
tai05 1212.271001224 1224 480.541001224 1224 2573.16 701224 1224 1071.651001224 1224 3169.86 501224 1225.70
tai06 3600 0 1238 1243.3 3600 0 1238 1240.2 3600 0 1239 1244.4 3600 0 1238 1242.1 3600 0 1239 1246.70
tai07 221.341001227 1227 201.761001227 1227 1112.441001227 1227 226.891001227 1227 1066.61001227 1227
tai08 141.511001217 1217 105.441001217 1217 665.311001217 1217 130.741001217 1217 609.061001217 1217
tai09 491.771001274 1274 117.271001274 1274 744.971001274 1274 339.961001274 1274 1450.871001274 1274
tai10 161.881001241 1241 46.871001241 1241 243.831001241 1241 104.351001241 1241 457.061001241 1241
tai11 3600 0 1396 1405.3 3600 0 1374 1385 3600 0 1375 1391.9 3600 0 1381 1397.8 3600 0 1386 1402.70
tai12 3600 0 1393 1403.8 3600 0 1376 1387.4 3600 0 1386 1400.7 3600 0 1388 1396.8 3600 0 1382 1393.30
tai13 3600 0 1350 1361.4 3600 0 1342 1353.2 3600 0 1358 1370.5 3600 0 1343 1353.5 3600 0 1354 1361.30
tai14 3600 0 1345 1351 3600 0 1345 1350.4 3600 0 1349 1355.9 3600 0 1345 1348.9 3600 0 1345 1350.10
tai15 3600 0 1375 1389.8 3600 0 1357 1371.1 3600 0 1363 1382.9 3600 0 1354 1374.4 3600 0 1360 1381.30
tai16 3600 0 1388 1404.9 3600 0 1375 1384.7 3600 0 1376 1398.6 3600 0 1379 1387.5 3600 0 1381 1391.50
tai17 3600 0 1476 1488.7 3600 0 1478 1485.7 3600 0 1477 1489.8 3600 0 1476 1488.9 3600 0 1473 1483.50
tai18 3600 0 1438 1455 3600 0 1426 1438.2 3600 0 1425 1455.1 3600 0 1427 1444.8 3600 0 1428 1447.60
tai19 3600 0 1367 1388.3 3600 0 1366 1377 3600 0 1371 1382.3 3600 0 1362 1378.1 3600 0 1351 1378.80
tai20 3600 0 1363 1380 3600 0 1361 1368.1 3600 0 1367 1376.6 3600 0 1360 1373.5 3600 0 1363 1375.90
tai21 3600 0 1662 1680.2 3600 0 1649 1662.9 3600 0 1650 1670.7 3600 0 1651 1670.2 3600 0 1643 1669.30
tai22 3600 0 1637 1652.1 3600 0 1624 1646 3600 0 1630 1651.2 3600 0 1621 1636.7 3600 0 1623 1645.30
tai23 3600 0 1562 1591.7 3600 0 1568 1578.4 3600 0 1576 1591.2 3600 0 1571 1585.7 3600 0 1567 1589.50
tai24 3600 0 1645 1655.1 3600 0 1645 1655.1 3600 0 1652 1670.8 3600 0 1653 1659 3600 0 1646 1659.10
tai25 3600 0 1627 1644.1 3600 0 1601 1615.7 3600 0 1618 1636.9 3600 0 1601 1628.3 3600 0 1615 1631.70
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Table 5.5: Job Shop: Taillard (tai26 � tai50) detailed results

Mistral( task) Hybrid( vsids; disj ) Hybrid( vsids; lazy) Hybrid( task; disj ) Hybrid( task; lazy)
T %O UB T %O UB T %O UB T %O UB T %O UB
avg avg min avg avg avg min avg avg avg min avg avg avg min avg avg avg min avg

tai26 3600 0 1689 1696.13600 0 1679 1685.83600 0 1676 16933600 0 1672 1684.5 3600 0 1674 1689.20
tai27 3600 0 1701 1714.13600 0 1697 17043600 0 1701 17273600 0 1693 1704.8 3600 0 1694 1718.40
tai28 3600 0 1623 1633.93600 0 1616 1621.93600 0 1603 1622.9 3600 0 1617 1621.93600 0 1603 1621.80
tai29 3600 0 1642 1650.23600 0 1635 1639.23600 0 1635 1651.13600 0 1630 1640.3 3600 0 1630 1647.30
tai30 3600 0 1608 1633.83600 0 1608 1617.43600 0 1613 1625.73600 0 1608 1621.43600 0 1607 1627
tai31 3600 0 1853 1885.93600 0 1823 1853.93600 0 1808 1860.8 3600 0 1846 1863.63600 0 1825 1854.60
tai32 3600 0 1901 1931.33600 0 1876 1895.43600 0 1891 1906.33600 0 1867 1907.1 3600 0 1873 1900
tai33 3600 0 1914 19493600 0 1897 1921.13600 0 1876 1929.73600 0 1869 1916.8 3600 0 1897 1920.50
tai34 3600 0 1932 1965.13600 0 1927 1942.53600 0 1914 1947.9 3600 0 1916 1930.93600 0 1923 1937.30
tai35 3600 0 2007 2007.3 3600 0 2007 2016.3 3600 0 2007 2018.8 3600 0 2007 2007.8 3600 0 2007 2007
tai36 3600 0 1904 1939.93600 0 1886 19063600 0 1878 1904.5 3600 0 1897 1910.93600 0 1888 1909.30
tai37 3600 0 1861 1891.73600 0 1848 18703600 0 1844 1876.4 3600 0 1848 1871.83600 0 1844 1867.30
tai38 3600 0 1783 1803.73600 0 1764 1777.63600 0 1752 1779.4 3600 0 1752 1778 3600 0 1755 1780.70
tai39 3600 0 1854 1877.43600 0 1831 1853.33600 0 1832 1857.83600 0 1827 1848.43600 0 1807 1839.90
tai40 3600 0 1814 1840.63600 0 1780 1802.73600 0 1763 1808.4 3600 0 1789 1805.53600 0 1766 1804.70
tai41 3600 0 2151 2182.43600 0 2123 2145.13600 0 2114 2154.13600 0 2110 2134.4 3600 0 2115 2133.20
tai42 3600 0 2058 2082.73600 0 2006 2038.4 3600 0 2012 2045.23600 0 2010 2033.83600 0 2024 2039.60
tai43 3600 0 1996 2022.73600 0 1953 1975.83600 0 1936 1973.6 3600 0 1963 1982.73600 0 1961 1983.20
tai44 3600 0 2098 2140.43600 0 2068 2100.8 3600 0 2075 2115.93600 0 2085 21073600 0 2086 2107.80
tai45 3600 0 2089 2116.83600 0 2058 2081.6 3600 0 2075 2098.43600 0 2058 2088.9 3600 0 2063 2092.60
tai46 3600 0 2138 2157.93600 0 2108 2126.83600 0 2095 2127.3 3600 0 2103 2122.23600 0 2104 2123.20
tai47 3600 0 2037 2057.23600 0 1998 2017.63600 0 1991 2008.33600 0 1988 2017.4 3600 0 2015 2025.50
tai48 3600 0 2086 2109.23600 0 2055 20743600 0 2028 2067 3600 0 2048 2072.33600 0 2043 2059.30
tai49 3600 0 2099 2126.93600 0 2061 2082.3 3600 0 2073 2104.33600 0 2070 2096.43600 0 2063 2085.60
tai50 3600 0 2048 2082.43600 0 2018 2045.43600 0 2014 2047.13600 0 2025 2045.13600 0 2001 2049.50
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Table 5.6: Job Shop: Taillard (tai51 � tai70) detailed results

Mistral( task) Hybrid( vsids; disj ) Hybrid( vsids; lazy) Hybrid( task; disj ) Hybrid( task; lazy)
T %O UB T %O UB T %O UB T %O UB T %O UB
avg avg min avg avg avg min avg avg avg min avg avg avg min avg avg avg min avg

tai51 3600 0 2834 2870 3600 0 2876 2889.5 3600 0 2868 2903.3 3600 0 2786 2815.1 3600 0 2775 2819.10
tai52 3600 0 2843 2869.4 3600 0 2845 2873.9 3600 0 2855 2903.3 3600 0 2785 2811.8 3600 0 2769 2798.70
tai53 3600 0 2777 2812.5 3600 0 2784 2801.6 3600 0 2768 2808.2 3600 0 2729 2756.1 3600 0 2740 2763.90
tai54 3600 0 2847 2865.5 3600 0 2841 2878.7 3600 0 2871 2887 3600 0 2839 2840.6 3600 0 2839 2842.60
tai55 3600 0 2802 2851.3 3600 0 2799 2845.2 3600 0 2813 2878.3 3600 0 2734 2788.2 3600 0 2763 2782
tai56 3600 0 2870 2892.9 3600 0 2867 2894.3 3600 0 2885 2939.6 3600 0 2839 2854.4 3600 0 2829 2844.80
tai57 3600 0 3002 3025.3 3600 0 3015 3047.5 3600 0 3044 3081.63318.84 102943 2973 3319.22 102943 2974.50
tai58 3600 0 2964 2996 3600 0 2961 2988.2 3600 0 2969 3040.7 3600 0 2888 2923 3600 0 2901 2922.30
tai59 3600 0 2788 2821.2 3600 0 2800 2837.3 3600 0 2835 2872.8 3600 0 2731 2758.1 3600 0 2723 2765.40
tai60 3600 0 2850 2867.5 3600 0 2846 2874.1 3600 0 2871 2903.6 3600 0 2767 2805.8 3600 0 2781 2807.80
tai61 3600 0 3076 3107.3 3600 0 3047 3081.9 3600 0 3044 3081.8 3600 0 2985 3020.3 3600 0 2988 3015.80
tai62 3600 0 3157 3185.9 3600 0 3126 3157.7 3600 0 3115 3183.6 3600 0 3045 3110.8 3600 0 3053 3110.80
tai63 3600 0 2896 2960.1 3600 0 2934 2954 3600 0 2849 2929.2 3600 0 2858 2891.6 3600 0 2861 2895.40
tai64 3600 0 2864 2895.5 3600 0 2885 2899.5 3600 0 2831 2899.6 3600 0 2811 2837.8 3600 0 2794 2842.40
tai65 3600 0 2948 2972.3 3600 0 2949 2961.9 3600 0 2878 2931.9 3600 0 2870 2895.7 3600 0 2849 2883.40
tai66 3600 0 3044 3073.5 3600 0 3045 3077 3600 0 3018 3077.3 3600 0 2956 2990.2 3600 0 2915 2983.60
tai67 3600 0 3032 3051.1 3600 0 3004 3019.5 3600 0 2950 2998.7 3600 0 2923 2968.1 3600 0 2895 2962.80
tai68 3600 0 2962 2988.1 3600 0 2935 2978.1 3600 0 2919 2977.6 3600 0 2881 2913.4 3600 0 2869 2906
tai69 3600 0 3178 3223.8 3600 0 3183 3222.8 3600 0 3176 3253.3 3600 0 3112 3154.3 3600 0 3101 3140.20
tai70 3600 0 3217 3254.4 3600 0 3203 3255.8 3600 0 3204 3251.9 3600 0 3119 3160.2 3600 0 3131 3171
avg 3173.7412.85 3153.9712.85 3228.4512.42 3163.82 13 3241.0612.28
PRD 1.5474 0.9955 0.9019 0.3322 0.2715
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the average optimality percentage and T is the average CPU time) for the set tai-01-10

and to the average PRD for the rest of sets. The choice of M is based on the fact that

almost all instances have been proven optimal in the set tai-01-10 whereas the others

are much harder and are not proved optimal (except one). We show the best values of

M in bold values. We indicate also the number of disjunctions per set of instances in a

separate column (Disj).

There are a number of clear observations from Table 5.7. First, as expected, theCP

model is less e�cient in general than any hybrid model for the instances tai11, . . . ,

tai70. Second, the average size of the learnt clauses is always shorter with VSIDS than

taskDom~tw. Take for example the set of instances tai11-20. The model

Hybrid( vsids; disj ) learns clauses with size 31 (in average) whereas Hybrid(task; disj )

learns clauses with size 41. Third, according to the number of nodes explored by sec-

ond, the CP model is faster than any hybrid model in general. As an illustration,

with instances tai11-20, the speed of exploration of Mistral( task) is 6509 Nodes/s while

the fastest hybrid model Hybrid(vsids; disj ) explores 3970 Nodes/s. This behavior is

expected because of the amount of time to propagate clauses and to learn from con�ict.

Next, we observe that lazy generation slows down considerably the exploration speed

compared toDisjunctive -based learning. For instance, with tai11-20, Hybrid(vsids; disj )

explores 3970 Nodes/s whereas Hybrid(vsids; lazy) explores 520 Nodes/s. Further-

more the exploration speed seems to be constant on hard sets (tai-11 . . . tai-70) irre-

spectively of the instance size. Indeed, it ranges from 413 to 698 Nodes/s. We be-

lieve that this behavior is due to the additional amount of ti me needed to propagate

DomainFaithfulness constraints compared toDisjunctive -based learning.

Finally, this table shows that taskDom~tw is always slower than VSIDS with

Disjunctive -based learning. Take again the set of instances tai-11-20,we move from

3970 Nodes/s with Hybrid(vsids; disj ) to 2715 Nodes/s with Hybrid( task; disj ).

Now regarding the overall e�ciency, we can see that Hybrid(vsids; disj ) seems to be the

best choice with small instances and Hybrid(task; lazy) is by far the best choice with

large instances. Moreover,taskDom~tw is in general more e�cient than VSIDS when

the size of the instance grows. Finally, theDisjunctive -based learning performs much

better than the lazy mode with small/medium-sized instances and vice versa.

Lawrence Statistics In order to con�rm our latest claims, we show the same statis-

tics described above with Lawrence instances. We propose togive these statistics for

the hardest instances in this set. An instance is considered�hard� if at least one model

fails to prove its optimality at least once (i.e., using any seed). The hardest instances in

this set are divided in two sets:
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Table 5.7: Job Shop: Taillard statistics

Instances Mistral( task ) Hybrid( vsids; disj ) Hybrid( vsids; lazy ) Hybrid( task; disj ) Hybrid( task; lazy )
Disj M Nodes/S Size M Nodes/S Size M Nodes/S Size M Nodes/S Size M Nodes/S Size

%O T %O T %O T %O T %O T
tai 01-10 1575 90 616 8871 0 90 477 6814 18 87 999 1213 25 90 574 4869 21 85 1115 1261 34

PRD PRD PRD PRD PRD
tai 11-20 2850 3.2381 6509 0 3.0350 3970 31 1.8937 520 43 0.4808 2715 41 0.1169 539 66
tai 21-30 3800 0.7302 3935 0 0.2769 2424 33 0.4756 413 46 0.2485 1752 45 0.1557 437 73
tai 31-40 6525 1.7227 4503 0 0.7109 2598 51 0.3043 555 65 0.6016 1517 76 0.4103 566 111
tai 41-50 8700 2.2161 2570 0 0.4798 1530 70 0.3036 413 86 0.5420 994 97 0.6163 443 140
tai 51-60 18375 2.0798 1952 0 2.2847 2602 57 2.7990 562 44 0.1621 1131 91 0.2419 698 89
tai 61-70 24500 3.2381 1349 0 3.0350 2183 64 1.8937 522 50 0.4808 920 121 0.1169 584 123

1. Open: the set of instances for which all models fail to prove optimality. This set

contains the instances la07, la27, and la29

2. Opt: the rest of hard instances. This set contains the instancesla21, la26, la28,

la31, and la34.

It should be noted that the number of disjunctions in these sets ranges from 525 to 4350.

We can therefore consider then as small and medium-sized instances (w.r.t. Taillard

instances). Table 5.8 gives the statistics for each set of instances in a separate line.

Table 5.8: Job Shop: Lawrence Statistics

Mistral( task ) Hybrid( vsids; disj ) Hybrid( vsids; lazy ) Hybrid( task; disj ) Hybrid( task; lazy )

%O T Nodes/S Size %O T Nodes/S Size %O T Nodes/S Size %O T Nodes/S Size %O T Nodes/S Size
Opt 70 1362 11520 0 96 768 8507 26 64 1683 1746 31 84 891 6745 35 72 1170 3380 40

PRD Nodes/S Size PRD Nodes/S Size PRD Nodes/S Size PRD Nodes/S Size PRD Nodes/S Size
Open 0.4280 18581 0 0.1343 10159 23 0.6530 1000 31 0.1393 6782 31 0.4969 1322 49

Table 5.8 shows clearly that Hybrid(vsids; disj ) outperforms the other models on these

instances. This model proves 96% of the instances inOpt to optimality and has a PRD

of 0:1343 on the set of instancesOpen. Overall, the statistics presented in this table sup-

ports our previous observations with Taillard instances such as the speed of exploration,

the average size of learnt clauses, and more importantly theoutstanding performances

of Disjunctive -based learning compared to lazy generation with small/medium-sized

instances.

Improving the Lower Bounds for Taillard Open Instances Many of the Taillard

instances are still open in the literature. Our results do not improve any upper bound

for these instances, but what about the lower bound? Recall that the way we perform

dichotomy steps is focused only on improving the current upper bound. Indeed, if

step i ends without �nding a solution nor proving unsatis�ability , then we set l i to

ˆ l i � 1 � ui � 1•~2. We propose to alter this particular behavior so that the purpose becomes
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�nding better lower bounds. This is simply done by starting t he next iteration after

setting ui (instead of l i ) to ˆ l i � 1 � ui � 1•~2.

We ran again the tests with the new dichotomy strategy for all open Taillard instances.

We change the dichotomy breaking conditions to be only a 1400s time limit. All other

settings are the same.

The new results are presented in Table 5.9. For each model andinstance, we report the

maximum (max) and average (avg) lower bound found for the 10 randomized runs. The

best bound found by our models is shown inbold fonts for each instance. Moreover,

the last column stands for the best known lower bound for eachinstance [1]3

Table 5.9: Lower bound experiments for open Taillard instances

Instance
Mistral( task ) Hybrid( vsids; disj ) Hybrid( vsids; lazy ) Hybrid( task; disj ) Hybrid( task; lazy )

Best knownLower bound Lower bound Lower bound Lower bound Lower bound
max avg max avg max avg max avg max avg

tai11 1273 1266.90 1294 1287.70 1273 1266.90 1281 1271 1273 1269.70 1323
tai12 1297 1271.70 1300 1296.80 1275 1274 1298 1270.50 1276 1267.10 1351
tai13 1278 1268.50 1305 1296.40 1282 1268.50 1291 1284 1281 1268.70 1282
tai15 1283 1267 1288 1281 1270 1262.10 1288 1277.60 1284 1267.20 1304
tai16 1276 1267.40 1293 1288.40 1280 1275 1276 1273.20 1274 1258.30 1304
tai18 1303 1285 1306 1301.90 1281 1277.20 1300 1284.40 1300 1279.40 1369
tai19 1202 1202 1202 1202 1202 1202 1202 1202 1202 1202 1304
tai20 1306 1302.20 1318 1314.30 1306 1301.40 1313 1307.70 1307 1301.40 1318
tai21 1592 1586.60 1613 1607.40 1602 1598.70 1597 1591.90 1595 1587.30 1573
tai22 1522 1498.60 1529 1511.40 1520 1503.60 1524 1504 1524 1504.70 1542
tai23 1502 1495.60 1514 1502.50 1502 1497.80 1503 1499.40 1502 1497.80 1474
tai24 1571 1561.30 1588 1574.50 1573 1567.30 1573 1566.70 1572 1568.20 1606
tai25 1525 1519.20 1543 1535.80 1529 1522.10 1530 1523.60 1529 1523.40 1518
tai26 1557 1546.70 1561 1553.50 1552 1543.40 1559 1552 1555 1546.60 1558
tai27 1596 1590.70 1607 1600 1593 1588.80 1601 1597.80 1604 1598.30 1617
tai28 1568 1564.10 1583 1579.70 1579 1567.50 1568 1565.60 1578 1566.90 1591
tai29 1556 1542.90 1573 1562.30 1563 1555.90 1560 1554.40 1560 1547.30 1525
tai30 1499 1472.90 1508 1502.10 1504 1495.60 1500 1479.10 1474 1469.50 1485
tai32 1774 1774 1774 1774 1774 1774 1774 1774 1774 1774 1774
tai33 1729 1729 1729 1729 1729 1729 1729 1729 1729 1729 1778
tai34 1828 1828 1828 1828 1828 1828 1828 1828 1828 1828 1828
tai40 1602 1602 1602 1602 1602 1602 1602 1602 1602 1602 1631
tai41 1830 1830 1830 1830 1830 1830 1830 1830 1830 1830 1876
tai42 1761 1761 1761 1761 1761 1761 1761 1761 1761 1761 1867
tai43 1694 1694 1694 1694 1694 1694 1694 1694 1694 1694 1809
tai44 1787 1787 1787 1787 1787 1787 1787 1787 1787 1787 1927
tai45 1731 1731 1731 1731 1731 1731 1731 1731 1731 1731 1997
tai46 1856 1856 1856 1856 1856 1856 1856 1856 1856 1856 1940
tai47 1690 1690 1690 1690 1690 1690 1690 1690 1690 1690 1789
tai48 1744 1744 1744 1744 1744 1744 1744 1744 1744 1744 1912
tai49 1758 1758 1758 1758 1758 1758 1758 1758 1758 1758 1915
tai50 1674 1674 1674 1674 1674 1674 1674 1674 1674 1674 1807

Thanks to the model using VSIDS along with our new con�ict analysis procedure (i.e.,

Hybrid( vsids; disj )), we were able to �nd new lower bounds for 7 instances. These
3As by March 15th, 2015, we noticed an accepted paper to the CPAIOR'15 conference [142] in which

the authors report several new bounds for these instances (and many other scheduling benchmarks).
Their lower bounds are greater than or equal to the values found in our experiments. It should be noted,
however, that they use a 30000s time cuto�, a parallelizatio n phase with two threads, in addition to
starting search by using the best known bounds as an additional information. Our approach is quite
di�erent since we start search from scratch without paralle lization, and each instance is limited to 3200s
time cuto�.
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instances are tai13, tai21, tai23, tai25, tai26, tai29, andtai30. The old lower bounds are

based on the work of [65] and are reported in [1]. The model Hybrid( vsids; disj ) solely

�nd these new bounds and is by far the best choice for buildingproofs for all instances.

It should be noted that in general the di�erence between the average and the maximum

bound per instance is not large. In fact, almost all averagesfor the instances with new

lower bounds are better than the best known lower bound.

5.3.5.2 OSP Results

We use three benchmarks for this problem: Gueret and Prins [72]; Taillard [134];

and Brucker et al. [33]. Note that all these instances were previously closed thanks

to [71]. Conversely to the previous problem, we observed that taskDom~bw was slightly

better than taskDom~tw for this problem. We shall therefore report the results of:

Mistral( bool), Hybrid( vsids; disj ), Hybrid( vsids; lazy), Hybrid( bool; disj ), and

Hybrid( bool; disj ).

The �rst two benchmarks are extremely easy for all the models. Gueret and Prins

instances are all solved to optimality within an average CPUtime less than 0.02s for each

instance with any model and any seed. Taillard instances arealso solved to optimality,

however, with slightly longer runtime. Their detailed results are shown in Appendix B.

We shall give more attention to Brucker et al. instances in the rest of this evaluation.

The number of disjunctions ranges from 18 to 448 in these instances. We can therefore

consider them as (very) small instances. Tables 5.10 and 5.11 present the detailed results

of these instances.

These tables show clearly that clause learning is particularly not helpful in these in-

stances. First, the lazy generation mode decreases clearlythe performances on these

instances since only Mistral(bool), Hybrid( vsids; disj ), and Hybrid( bool; disj ) succeed

to prove optimality to all con�gurations. Moreover, the ave rage running time per in-

stance is equal to 31:21s with Mistral( bool) and 119:71s with Hybrid( �; disj ).

To investigate further the of impact of clause learning in this set, we propose to decrease

the clause database size from a limit of 75000 to 10000. The new parametrized reduction

strategy is @5000; 10000; 500; 12; 8; 90% A instead of @5000; 75000; 50000; 12; 8; 90% A.

The new results are shown in Tables 5.12 and 5.13. The performances of the models

Hybrid( �; disj ) are greatly improved with an average runtime of 35:95 and 40:25 instead

of 117:46s and 121:97s respectively. TheCP model, however, has a slightly better

runtime with 31 :21s. It should be pointed out that the global performances oflazy

generation are not improved with the new reduction strategy.
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Table 5.10: OSP results: Brucker et al. instances (j3-per0-1 � j5-per20-2)

Instance
Mistral( bool) Hybrid( vsids; disj ) Hybrid( vsids; lazy) Hybrid( bool; disj ) Hybrid( bool; lazy)

T %O UB T %O UB T %O UB T %O UB T %O UB
avg avg min avg avg avg min avg avg avg min avg avg avg min avg avg avg min avg

j3-per0-1 0 1001127 1127 0 1001127 1127 0 1001127 1127 0 1001127 1127 0 1001127 1127
j3-per0-2 0 1001084 1084 0 1001084 1084 0 1001084 1084 0 1001084 1084 0 1001084 1084
j3-per10-0 0 1001131 1131 0 1001131 1131 0 1001131 1131 0 1001131 1131 0 1001131 1131
j3-per10-1 0 1001069 1069 0 1001069 1069 0 1001069 1069 0 1001069 1069 0 1001069 1069
j3-per10-2 0 1001053 1053 0 1001053 1053 0 1001053 1053 0 1001053 1053 0 1001053 1053
j3-per20-0 0 1001026 1026 0 1001026 1026 0 1001026 1026 0 1001026 1026 0 1001026 1026
j3-per20-1 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000
j3-per20-2 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000
j4-per0-0 0 1001055 1055 0 1001055 1055 0 1001055 1055 0 1001055 1055 0 1001055 1055
j4-per0-1 0 1001180 1180 0 1001180 1180 0 1001180 1180 0 1001180 1180 0 1001180 1180
j4-per0-2 0 1001071 1071 0 1001071 1071 0 1001071 1071 0 1001071 1071 0 1001071 1071
j4-per10-0 0 1001041 1041 0 1001041 1041 0 1001041 1041 0 1001041 1041 0 1001041 1041
j4-per10-1 0 1001019 1019 0 1001019 1019 0 1001019 1019 0 1001019 1019 0 1001019 1019
j4-per10-2 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000
j4-per20-0 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000
j4-per20-1 0 1001004 1004 0 1001004 1004 0 1001004 1004 0 1001004 1004 0 1001004 1004
j4-per20-2 0 1001009 1009 0 1001009 1009 0 1001009 1009 0 1001009 1009 0 1001009 1009
j5-per0-0 0.04 1001042 1042 0.05 1001042 1042 0.10 1001042 1042 0.07 1001042 1042 0.14 1001042 1042
j5-per0-1 0 1001054 1054 0 1001054 1054 0 1001054 1054 0 1001054 1054 0 1001054 1054
j5-per0-2 0.01 1001063 1063 0.02 1001063 1063 0.04 1001063 1063 0.03 1001063 1063 0.04 1001063 1063
j5-per10-0 0 1001004 1004 0 1001004 1004 0 1001004 1004 0 1001004 1004 0 1001004 1004
j5-per10-1 0 1001002 1002 0 1001002 1002 0 1001002 1002 0 1001002 1002 0 1001002 1002
j5-per10-2 0 1001006 1006 0 1001006 1006 0.01 1001006 1006 0 1001006 1006 0.01 1001006 1006
j5-per20-0 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000
j5-per20-1 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000
j5-per20-2 0 1001012 1012 0 1001012 1012 0.01 1001012 1012 0 1001012 1012 0.01 1001012 1012
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Table 5.11: OSP results: Brucker et al. instances (j6-per0-0 � j8-per20-2)

Instance
Mistral( bool) Hybrid( vsids; disj ) Hybrid( vsids; lazy) Hybrid( bool; disj ) Hybrid( bool; lazy)

T %O UB T %O UB T %O UB T %O UB T %O UB
avg avg min avg avg avg min avg avg avg min avg avg avg min avg avg avg min avg

j6-per0-0 6.31 1001056 1056 13.571001056 1056 83.34 1001056 1056 14.971001056 1056 76.84 1001056 1056
j6-per0-1 0 1001045 1045 0 1001045 1045 0.01 1001045 1045 0 1001045 1045 0 1001045 1045
j6-per0-2 0.05 1001063 1063 0.04 1001063 1063 0.09 1001063 1063 0.06 1001063 1063 0.13 1001063 1063
j6-per10-0 0.04 1001005 1005 0.04 1001005 1005 0.09 1001005 1005 0.05 1001005 1005 0.10 1001005 1005
j6-per10-1 0 1001021 1021 0 1001021 1021 0 1001021 1021 0 1001021 1021 0 1001021 1021
j6-per10-2 0.02 1001012 1012 0.02 1001012 1012 0.04 1001012 1012 0.03 1001012 1012 0.04 1001012 1012
j6-per20-0 0.02 1001000 1000 0.04 1001000 1000 0.07 1001000 1000 0.03 1001000 1000 0.06 1001000 1000
j6-per20-1 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000
j6-per20-2 0 1001000 1000 0 1001000 1000 0 1001000 1000 0 1001000 1000 0.01 1001000 1000
j7-per0-0 547.131001048 1048 2684.991001048 1048 3600 0 1048 1049.402258.201001048 1048 3600 0 1048 1048.80
j7-per0-1 2.04 1001055 1055 1.84 1001055 1055 6.25 1001055 1055 2.38 1001055 1055 6.30 1001055 1055
j7-per0-2 1.01 1001056 1056 0.98 1001056 1056 2.96 1001056 1056 1.11 1001056 1056 3.15 1001056 1056
j7-per10-0 1.78 1001013 1013 1.97 1001013 1013 7.63 1001013 1013 2.78 1001013 1013 8.27 1001013 1013
j7-per10-1 0.06 1001000 1000 0.10 1001000 1000 0.13 1001000 1000 0.08 1001000 1000 0.16 1001000 1000
j7-per10-2 70.521001011 1011 148.981001011 1011 1026.13 1001011 1011 260.551001011 1011 1106.26 1001011 1011
j7-per20-0 0 1001000 1000 0 1001000 1000 0.01 1001000 1000 0 1001000 1000 0 1001000 1000
j7-per20-1 0.41 1001005 1005 0.23 1001005 1005 0.65 1001005 1005 0.46 1001005 1005 0.89 1001005 1005
j7-per20-2 1.30 1001003 1003 0.68 1001003 1003 2.48 1001003 1003 1.11 1001003 1003 2.48 1001003 1003
j8-per0-1 723.601001039 1039 2399.621001039 1039 3600 0 1039 1041.302775.711001039 1039 3600 0 1039 1040.30
j8-per0-2 9.78 1001052 1052 10.941001052 1052 43.34 1001052 1052 16.401001052 1052 49.25 1001052 1052
j8-per10-0 22.461001017 1017 40.561001017 1017 186.31 1001017 1017 66.051001017 1017 201.28 1001017 1017
j8-per10-1 58.681001000 1000 283.501001000 1000 1442.98 901000 1000.10 302.861001000 1000 907.38 901000 1000.10
j8-per10-2 177.671001002 1002 519.641001002 1002 2330.50 1001002 1002 638.961001002 1002 2827.89 1001002 1002
j8-per20-0 0.12 1001000 1000 0.12 1001000 1000 0.29 1001000 1000 0.32 1001000 1000 0.19 1001000 1000
j8-per20-1 0.01 1001000 1000 0.02 1001000 1000 0.02 1001000 1000 0.02 1001000 1000 0.02 1001000 1000
j8-per20-2 0.04 1001000 1000 0.06 1001000 1000 0.10 1001000 1000 0.11 1001000 1000 0.07 1001000 1000
average 31.21100 117.46100 237.1895.96 121.97100 238.2995.96
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