H. M. Adapted, V. Lalande, R. G. Ling, and . Miller, Hoechst 33342 dye uptake as a probe of membrane permeability changes in mammalian cells, Du 2014 Nature. References [1], pp.78-363, 1981.

A. B. Shapiro and V. Ling, Extraction of Hoechst 33342 from the Cytoplasmic Leaflet of the Plasma Membrane by P-Glycoprotein, European Journal of Biochemistry, vol.34, issue.1, pp.122-129, 1997.
DOI : 10.1006/abio.1994.1134

A. B. Shapiro and V. Ling, Positively Cooperative Sites for Drug Transport by P-Glycoprotein with Distinct Drug Specificities, European Journal of Biochemistry, vol.33, issue.1, pp.130-137, 1997.
DOI : 10.1073/pnas.93.20.10668

F. Tang, H. Ouyang, J. Z. Yang, and R. T. Borchardt, Bidirectional transport of rhodamine 123 and Hoechst 33342, fluorescence probes of the binding sites on P-glycoprotein, across MDCK???MDR1 cell monolayers, Journal of Pharmaceutical Sciences, vol.93, issue.5, pp.93-1185, 2004.
DOI : 10.1002/jps.20046

C. G. Blackmore, P. A. Mcnaughton, and H. W. Van-veen, Multidrug transporters in prokaryotic and eukaryotic cells: physiological functions and transport mechanisms, Molecular Membrane Biology, vol.19, issue.1, pp.97-103, 2001.
DOI : 10.1002/hep.510270422

B. Poolman, M. K. Doeven, E. R. Geertsma, E. Biemans-oldehinkel, W. N. Konings et al., Functional analysis of detergent-solubilized and membranereconstituted ATP-binding cassette transporters, Methods Enzymol, pp.400-429, 2005.

C. Alemán, A. M. Namba, and J. Casanovas, Acid-Base and Electronic Structure-Dependent Properties of Hoechst 33342, Journal of Biomolecular Structure and Dynamics, vol.13, issue.1, pp.29-36, 2005.
DOI : 10.1021/ja00124a002

S. Murakami, R. Nakashima, E. Yamashita, T. Matsumoto, and A. Yamaguchi, Crystal structures of a multidrug transporter reveal a functionally rotating mechanism, Nature, vol.55, issue.7108, pp.173-179, 2006.
DOI : 10.1038/nature05076

M. A. Seeger, Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism, Science, vol.313, issue.5791, pp.1295-1298, 2006.
DOI : 10.1126/science.1131542

J. Rigaud and D. Lévy, Reconstitution of Membrane Proteins into Liposomes, Methods Enzymol, vol.372, pp.65-86, 2003.
DOI : 10.1016/S0076-6879(03)72004-7

J. R. Aires and H. Nikaido, Aminoglycosides Are Captured from both Periplasm and Cytoplasm by the AcrD Multidrug Efflux Transporter of Escherichia coli, Journal of Bacteriology, vol.187, issue.6, pp.1923-1929, 2005.
DOI : 10.1128/JB.187.6.1923-1929.2005

M. Goldberg, T. Pribyl, S. Juhnke, and D. H. Nies, Energetics and Topology of CzcA, a Cation/Proton Antiporter of the Resistance-Nodulation-Cell Division Protein Family, Journal of Biological Chemistry, vol.274, issue.37, pp.274-26065, 1999.
DOI : 10.1074/jbc.274.37.26065

A. Welch, C. U. Awah, S. Jing, H. W. Van-veen, and H. Venter, Promiscuous partnering and independent activity of MexB, the multidrug transporter protein from Pseudomonas aeruginosa, Biochem. J, pp.430-355, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00509878

H. I. Zgurskaya and H. Nikaido, Bypassing the periplasm: Reconstitution of the AcrAB multidrug efflux pump of Escherichia coli, Proc. Natl. Acad. Sci. USA 96, pp.7190-7195, 1999.
DOI : 10.1073/pnas.96.13.7190

N. R. Clement and J. M. Gould, Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles, Biochemistry, vol.20, issue.6, pp.1534-1538, 1981.
DOI : 10.1021/bi00509a019

E. G. Sedgwick and P. D. Bragg, Differential movement of ions in artificial phospholipid vesicles, FEBS Letters, vol.20, issue.1-2, pp.272-81, 1990.
DOI : 10.1016/0014-5793(90)80453-P

H. Nikaido, Multidrug Resistance in Bacteria, Annual Review of Biochemistry, vol.78, issue.1, pp.119-146, 2009.
DOI : 10.1146/annurev.biochem.78.082907.145923

M. A. Seeger, Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism, Science, vol.313, issue.5791, pp.1295-1298, 2006.
DOI : 10.1126/science.1131542

S. Murakami, R. Nakashima, E. Yamashita, T. Matsumoto, and A. Yamaguchi, Crystal structures of a multidrug transporter reveal a functionally rotating mechanism, Nature, vol.55, issue.7108, pp.173-179, 2006.
DOI : 10.1038/nature05076

H. I. Zgurskaya and H. Nikaido, Bypassing the periplasm: Reconstitution of the AcrAB multidrug efflux pump of Escherichia coli, Proceedings of the National Academy of Sciences, vol.96, issue.13, pp.7190-7195, 1999.
DOI : 10.1073/pnas.96.13.7190

J. R. Aires and . Nikaido, Aminoglycosides Are Captured from both Periplasm and Cytoplasm by the AcrD Multidrug Efflux Transporter of Escherichia coli, Journal of Bacteriology, vol.187, issue.6, pp.1923-1929, 2005.
DOI : 10.1128/JB.187.6.1923-1929.2005

M. Picard, A. Verchère, and I. Broutin, Monitoring the active transport of efflux pumps after their reconstitution into proteoliposomes: Caveats and keys, Analytical Biochemistry, vol.420, issue.2, pp.194-196, 2012.
DOI : 10.1016/j.ab.2011.09.025

E. Racker and W. Stoeckenius, Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation

!. 8. Clement and N. R. Gould, Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles, Biochemistry, vol.20, issue.6, pp.1534-1538, 1981.
DOI : 10.1021/bi00509a019

E. G. Sedgwick and . Bragg, Differential movement of ions in artificial phospholipid vesicles, FEBS Letters, vol.20, issue.1-2, pp.81-84, 1990.
DOI : 10.1016/0014-5793(90)80453-P

J. D. Rigaud and . Lévy, Reconstitution of Membrane Proteins into Liposomes, Meth. Enzymol, vol.372, pp.65-86, 2003.
DOI : 10.1016/S0076-6879(03)72004-7

M. Seigneuret and J. Rigaud, Analysis of passive and light-driven ion movements in large bacteriorhodopsin liposomes reconstituted by reverse-phase evaporation. 1. Factors governing the passive proton permeability of the membrane, Biochemistry, vol.25, issue.21, pp.6716-6722, 1986.
DOI : 10.1021/bi00369a059

M. Al-shawi, Catalytic and transport cycles of ABC exporters, Essays In Biochemistry, vol.283, pp.63-83, 2011.
DOI : 10.1096/fj.08-121855

E. B. Tikhonova, V. K. Devroy, S. Y. Lau, and H. Zgurskaya, Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB, Molecular Microbiology, vol.182, issue.3, pp.895-910, 2007.
DOI : 10.1111/j.1365-2958.2006.05549.x

S. D. Modali and H. Zgurskaya, The periplasmic membrane proximal domain of MacA acts as a switch in stimulation of ATP hydrolysis by MacB transporter, Molecular Microbiology, vol.1794, issue.4, pp.937-951, 2011.
DOI : 10.1111/j.1365-2958.2011.07744.x

H. Akama, Crystal Structure of the Membrane Fusion Protein, MexA, of the Multidrug Transporter in Pseudomonas aeruginosa, Journal of Biological Chemistry, vol.279, issue.25, pp.25939-25942, 2004.
DOI : 10.1074/jbc.C400164200

V. Mokhonov, Multidrug transporter MexB of Pseudomonas aeruginosa: overexpression, purification, and initial structural characterization, Protein Expression and Purification, vol.40, issue.1, pp.91-100, 2005.
DOI : 10.1016/j.pep.2004.10.002

D. Oesterhelt and W. Stoeckenius, [69] Isolation of the cell membrane of Halobacterium halobium and its fractionation into red and purple membrane, Meth. Enzymol, vol.31, pp.667-678, 1974.
DOI : 10.1016/0076-6879(74)31072-5

. Mexa, MexB from Pseudomonas aeruginosa 1. Transform the plasmids harboring the MexA and MexB genes in an E. coli production strain (e.g. C43 DE3) Plate on LB Agar medium supplemented with the appropriate antibiotic. Pick a single colony to inoculate an O/N preculture. The next morning, inoculate the preculture in 1 L of LB and grow at 37 ?C under agitation

E. Granseth, Membrane protein structural biology ??? How far can the bugs take us? (Review), Molecular Membrane Biology, vol.13, issue.4, pp.5-6, 2007.
DOI : 10.1002/prot.20817

H. Nikaido, Multidrug Resistance in Bacteria, Annual Review of Biochemistry, vol.78, issue.1, 2009.
DOI : 10.1146/annurev.biochem.78.082907.145923

K. M. Pos, Drug transport mechanism of the AcrB efflux pump, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1794, issue.5, p.782, 2009.
DOI : 10.1016/j.bbapap.2008.12.015

S. Murakami, Crystal structures of a multidrug transporter reveal a functionally rotating mechanism, Nature, vol.55, issue.7108, p.173, 2006.
DOI : 10.1038/nature05076

M. A. Seeger, Structural Asymmetry of AcrB Trimer Suggests a Peristaltic Pump Mechanism, Science, vol.313, issue.5791, p.1295, 2006.
DOI : 10.1126/science.1131542

G. Sennhauser, M. A. Bukowska, C. Briand, and M. G. Grutter, Crystal Structure of the Multidrug Exporter MexB from Pseudomonas aeruginosa, Journal of Molecular Biology, vol.389, issue.1, p.134, 2009.
DOI : 10.1016/j.jmb.2009.04.001

C. C. Su, Crystal structure of the CusBA heavy-metal efflux complex of Escherichia coli, Nature, vol.104, issue.7335, p.558, 2011.
DOI : 10.1038/nature09743

H. Nikaido and Y. Takatsuka, Mechanisms of RND multidrug efflux pumps, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1794, issue.5, p.769, 2009.
DOI : 10.1016/j.bbapap.2008.10.004

J. L. Rigaud and D. Levy, Reconstitution of Membrane Proteins into Liposomes, Methods in enzymology, vol.372, p.65, 2003.
DOI : 10.1016/S0076-6879(03)72004-7

J. R. Aires and H. Nikaido, Aminoglycosides Are Captured from both Periplasm and Cytoplasm by the AcrD Multidrug Efflux Transporter of Escherichia coli, Journal of Bacteriology, vol.187, issue.6, p.1923, 2005.
DOI : 10.1128/JB.187.6.1923-1929.2005

M. Picard, A. Verchere, and I. Broutin, Monitoring the active transport of efflux pumps after their reconstitution into proteoliposomes: Caveats and keys, Analytical Biochemistry, vol.420, issue.2, p.194, 2012.
DOI : 10.1016/j.ab.2011.09.025

A. Verchere, I. Broutin, and M. Picard, Photo-induced proton gradients for the in vitro investigation of bacterial efflux pumps, Scientific Reports, vol.31, p.306, 2012.
DOI : 10.1038/srep00306

S. T. Abedon, S. J. Kuhl, B. G. Blasdel, and E. M. Kutter, Phage treatment of human infections, Bacteriophage, vol.7, issue.2, pp.66-85, 2011.
DOI : 10.1016/S0041-1345(03)00525-6

J. R. Aires and H. Nikaido, Aminoglycosides Are Captured from both Periplasm and Cytoplasm by the AcrD Multidrug Efflux Transporter of Escherichia coli, Journal of Bacteriology, vol.187, issue.6, pp.1923-1929, 2005.
DOI : 10.1128/JB.187.6.1923-1929.2005

H. Akama, M. Kanemaki, M. Yoshimura, T. Tsukihara, T. Kashiwagi et al., Crystal Structure of the Drug Discharge Outer Membrane Protein, OprM, of Pseudomonas aeruginosa: DUAL MODES OF MEMBRANE ANCHORING AND OCCLUDED CAVITY END, Journal of Biological Chemistry, vol.279, issue.51, pp.52816-52819, 2004.
DOI : 10.1074/jbc.C400445200

C. Andersen, E. Koronakis, E. Bokma, J. Eswaran, D. Humphreys et al., Transition to the open state of the TolC periplasmic tunnel entrance, Proceedings of the National Academy of Sciences, vol.99, issue.17, pp.11103-11108, 2002.
DOI : 10.1073/pnas.162039399

I. Bagai, W. Liu, C. Rensing, N. J. Blackburn, and M. M. Mcevoy, Substratelinked conformational change in the periplasmic component of a Cu(I)/Ag(I) efflux system, The Journal of Biological Chemistry, vol.282, issue.35, pp.695-730, 2007.

A. Bangham, Liposomes-The Babraham connection Chemistry and Physics of Lipids, pp.275-285, 1993.

V. N. Bavro, Z. Pietras, N. Furnham, L. Pérez-cano, J. Fernández-recio et al., Assembly and Channel Opening in a Bacterial Drug Efflux Machine, Molecular Cell, vol.30, issue.1, pp.114-121, 2008.
DOI : 10.1016/j.molcel.2008.02.015

J. M. Blair, R. M. La-ragione, M. J. Woodward, and L. J. Piddock, Periplasmic adaptor protein AcrA has a distinct role in the antibiotic resistance and virulence of Salmonella enterica serovar Typhimurium, Journal of Antimicrobial Chemotherapy, vol.64, issue.5, pp.965-972, 2009.
DOI : 10.1093/jac/dkp311

J. A. Bohnert, B. Karamian, and H. Nikaido, Optimized Nile Red Efflux Assay of AcrAB-TolC Multidrug Efflux System Shows Competition between Substrates, Antimicrobial Agents and Chemotherapy, vol.54, issue.9, 2010.
DOI : 10.1128/AAC.00620-10

W. Boos and J. Lucht, Escherichia coli and Salmonella: Cellular and Molecular Biology, Neidhardt FC, 1996.

P. Boyer, THE ATP SYNTHASE???A SPLENDID MOLECULAR MACHINE, Annual Review of Biochemistry, vol.66, issue.1, pp.717-749, 1997.
DOI : 10.1146/annurev.biochem.66.1.717

P. Christie, K. Atmakuri, V. Krishnamoorthy, S. Jakubowski, and E. Cascales, BIOGENESIS, ARCHITECTURE, AND FUNCTION OF BACTERIAL TYPE IV SECRETION SYSTEMS, Annual Review of Microbiology, vol.59, issue.1, pp.451-85, 2005.
DOI : 10.1146/annurev.micro.58.030603.123630

N. Clement and J. Gould, Pyranine (8-hydroxy-1,3,6-pyrenetrisulfonate) as a probe of internal aqueous hydrogen ion concentration in phospholipid vesicles, Biochemistry, vol.20, issue.6, pp.20-1534, 1981.
DOI : 10.1021/bi00509a019

F. Collu, A. V. Vargiu, J. Dreier, M. Cascella, and P. Ruggerone, Recognition of Imipenem and Meropenem by the RND-Transporter MexB Studied by Computer Simulations, Journal of the American Chemical Society, vol.134, issue.46, pp.19146-19158, 2012.
DOI : 10.1021/ja307803m

D. Angelis, J. Lee, O. Connell, J. Miercke, L. Verschueren et al., Metal-induced conformational changes in ZneB suggest an active role of membrane fusion proteins in efflux resistance systems, Proceedings of the National Academy of Sciences, vol.107, issue.24, pp.38-49, 2010.
DOI : 10.1073/pnas.1003908107

M. Dezi, D. Cicco, A. Bassereau, P. Lévy, and D. , Detergent-mediated incorporation of transmembrane proteins in giant unilamellar vesicles with controlled physiological contents, Proceedings of the National Academy of Sciences, vol.110, issue.18, pp.7276-7281, 2013.
DOI : 10.1073/pnas.1303857110

E. Paka, J. , N. Ekendeb, E. Kiflea, E. G. Iiia et al., Structures of intermediate transport states of ZneA, a Zn(II)/proton antiporter, Proceedings of the National Academy of Sciences, vol.110, issue.46, 2013.
DOI : 10.1073/pnas.1318705110

Y. Elbaz, S. Steiner-mordoch, T. Danieli, and S. Schuldiner, In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state, Proceedings of the National Academy of Sciences of the United States of America101, pp.1519-1524, 2004.
DOI : 10.1073/pnas.0306533101

C. A. Elkins and H. Nikaido, Chimeric Analysis of AcrA Function Reveals the Importance of Its C-Terminal Domain in Its Interaction with the AcrB Multidrug Efflux Pump, Journal of Bacteriology, vol.185, issue.18, pp.5349-5356, 2003.
DOI : 10.1128/JB.185.18.5349-5356.2003

. Depolarization, Bacterial Membrane Composition, and the Antimicrobial Action of Ceragenins, Antimicrobial Agents and Chemotherapy, vol.54, issue.9, pp.3708-3713

L. Federici, D. Du, F. Walas, H. Matsumura, J. Fernández-recio et al., The Crystal Structure of the Outer Membrane Protein VceC from the Bacterial Pathogen Vibrio cholerae at 1.8 A Resolution, Journal of Biological Chemistry, vol.280, issue.15, pp.15307-15314, 2005.
DOI : 10.1074/jbc.M500401200

J. Fernández-recio, F. Walas, L. Federici, J. Venkatesh-pratap, V. N. Bavro et al., A model of a transmembrane drug-efflux pump from Gram-negative bacteria, FEBS Letters, vol.277, issue.1-2, pp.5-9, 2004.
DOI : 10.1016/j.febslet.2004.10.097

S. Franke, G. Grass, C. Rensing, and D. H. Nies, Molecular Analysis of the Copper-Transporting Efflux System CusCFBA of Escherichia coli, Journal of Bacteriology, vol.185, issue.13, pp.3804-3812, 2003.
DOI : 10.1128/JB.185.13.3804-3812.2003

D. Gilbert, R. Moellering, G. Eliopoulos, H. Chambers, and . Saag, The Sanford Guide Of Antimicrobial Therapy, 2010.

M. Goldberg, T. Pribyl, S. Juhnke, and D. H. Nies, Energetics and Topology of CzcA, a Cation/Proton Antiporter of the Resistance-Nodulation-Cell Division Protein Family, Journal of Biological Chemistry, vol.274, issue.37, pp.26065-26070, 1999.
DOI : 10.1074/jbc.274.37.26065

N. P. Greene, P. Hinchliffe, A. Crow, A. Ababou, C. Hughes et al., Structure of an atypical periplasmic adaptor from a multidrug efflux pump of the spirochete Borrelia burgdorferi, FEBS Letters, 2013.

L. Guan and T. Nakae, Identification of Essential Charged Residues in Transmembrane Segments of the Multidrug Transporter MexB of Pseudomonas aeruginosa, Journal of Bacteriology, vol.183, issue.5, pp.1734-1739, 2001.
DOI : 10.1128/JB.183.5.1734-1739.2001

R. Hall and H. Stokes, Integrons: Novel DNA elements which capture genes by site-specific recombination, Genetica, vol.217, issue.2-3, pp.115-147, 1993.
DOI : 10.1007/BF01435034

K. Hede, Antibiotic resistance: An infectious arms race, Nature, vol.509, issue.7498, pp.2-3, 2014.
DOI : 10.1038/509S2a

R. Henderson and P. N. Unwin, Three-dimensional model of purple membrane obtained by electron microscopy, Nature, vol.181, issue.5521, pp.28-32, 1975.
DOI : 10.1038/257028a0

M. K. Higgins, J. Eswaran, P. Edwards, G. F. Schertler, C. Hughes et al., Structure of the Ligand-blocked Periplasmic Entrance of the Bacterial Multidrug Efflux Protein TolC, Journal of Molecular Biology, vol.342, issue.3, pp.697-702, 2004.
DOI : 10.1016/j.jmb.2004.07.088

E. C. Hobbs, X. Yin, B. J. Paul, J. L. Astarita, and G. Storz, Conserved small protein associates with the multidrug efflux pump AcrB and differentially affects antibiotic resistance, Proceedings of the National Academy of Sciences of the United States of America, pp.16696-16701, 2012.
DOI : 10.1073/pnas.1210093109

D. Hooper, Mechanisms of Action and Resistance of Older and Newer Fluoroquinolones, Clinical Infectious Diseases, vol.31, issue.Supplement 2, pp.24-28, 2000.
DOI : 10.1086/314056

K. Huangt, H. Bayley, M. Liao, and E. L. Khorana, Refolding of an Integral Membrane Protein, The Journal of Biological Chemistry, vol.256, issue.8, pp.1-8, 2001.

F. Husain and H. Nikaido, Substrate path in the AcrB multidrug efflux pump of Escherichia coli, Molecular Microbiology, vol.285, issue.2, pp.320-330, 2010.
DOI : 10.1111/j.1365-2958.2010.07330.x

R. N. Hvorup, B. Winnen, A. B. Chang, Y. Jiang, X. F. Zhou et al., The multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) exporter superfamily, European Journal of Biochemistry, vol.183, issue.5, pp.799-813, 2003.
DOI : 10.1046/j.1432-1033.2003.03418.x

J. N. Israelachvili, Physical principles of membrane organization, Quarterly Reviews of Biophysics, vol.29, issue.02, pp.121-200, 1980.
DOI : 10.1146/annurev.bb.06.060177.000511

M. L. Jackson and B. J. Litman, Rhodopsin-phospholipid reconstitution by dialysis removal of octyl glucoside, Biochemistry, vol.21, issue.22, pp.5601-5608, 1982.
DOI : 10.1021/bi00265a033

M. L. Jackson and B. J. Litman, Rhodopsin-egg phosphatidylcholine reconstitution by an octyl glucoside dilution procedure, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.812, issue.2, pp.369-376, 1985.
DOI : 10.1016/0005-2736(85)90311-6

T. K. Janganan, L. Zhang, V. N. Bavro, D. Matak-vinkovic, N. P. Barrera et al., Opening of the Outer Membrane Protein Channel in Tripartite Efflux Pumps Is Induced by Interaction with the Membrane Fusion Partner, Journal of Biological Chemistry, vol.286, issue.7, pp.5484-5493, 2011.
DOI : 10.1074/jbc.M110.187658

K. Kano and J. Fendler, Pyranine as a sensitive pH probe for liposome interiors and surfaces. pH gradients across phospholipid vesicles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.509, issue.2, pp.289-99, 1978.
DOI : 10.1016/0005-2736(78)90048-2

E. Kipnis, T. Sawa, and J. Wiener-kronish, Targeting mechanisms of??Pseudomonas??aeruginosa pathogenesis, M??decine et Maladies Infectieuses, vol.36, issue.2, pp.78-91, 2006.
DOI : 10.1016/j.medmal.2005.10.007

M. A. Kohanski, D. J. Dwyer, and J. J. Collins, How antibiotics kill bacteria: from targets to networks, Nature Reviews Microbiology, vol.106, issue.6, pp.423-43510, 1038.
DOI : 10.1038/nrmicro2333

G. Krishnamoorthy, E. B. Tikhonova, G. Dhamdhere, and H. I. Zgurskaya, On the role of TolC in multidrug efflux: the function and assembly of AcrAB-TolC tolerate significant depletion of intracellular TolC protein, Molecular Microbiology, vol.1794, issue.5, pp.982-997, 2013.
DOI : 10.1111/mmi.12143

T. Kuroda and T. Tsuchiya, Multidrug efflux transporters in the MATE family, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1794, issue.5, 2009.
DOI : 10.1016/j.bbapap.2008.11.012

J. Labaer, The Pseudomonas aeruginosa PA01 Gene Collection, Genome Research, vol.14, issue.10b, 2004.
DOI : 10.1101/gr.2482804

X. Z. Li, H. Nikaido, and K. Poole, Role of mexA-mexB-oprM in antibiotic efflux in Pseudomonas aeruginosa, Antimicrobial Agents and Chemotherapy, vol.39, issue.9, 1948.
DOI : 10.1128/AAC.39.9.1948

D. Lichtenberg, H. Ahyayauch, A. Alonso, and F. M. Goñi, Detergent solubilization of lipid bilayers: a balance of driving forces, Trends in Biochemical Sciences, vol.38, issue.2, pp.85-93, 2013.
DOI : 10.1016/j.tibs.2012.11.005

D. M. Livermore, Multiple Mechanisms of Antimicrobial Resistance in Pseudomonas aeruginosa: Our Worst Nightmare?, Clinical Infectious Diseases, vol.34, issue.5, pp.1-7, 2002.
DOI : 10.1086/338782

K. P. Locher, Structure and mechanism of ATP-binding cassette transporters, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.21, issue.14, pp.239-245, 2009.
DOI : 10.1096/fj.07-8610com

I. R. Loftin, S. Franke, N. J. Blackburn, and M. M. Mcevoy, CusF as revealed by atomic resolution crystallography and X-ray absorption spectroscopy, Protein Science, vol.128, issue.10, pp.2287-2293, 2007.
DOI : 10.1110/ps.073021307

F. Long, C. C. Su, H. T. Lei, J. R. Bolla, S. V. Do et al., Structure and mechanism of the tripartite CusCBA heavy-metal efflux complex, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.19, issue.2, pp.1047-1058, 2006.
DOI : 10.1128/CMR.19.2.382-402.2006

W. Lu, M. Zhong, and Y. Wei, Folding of AcrB Subunit Precedes Trimerization, Journal of Molecular Biology, vol.411, issue.1, 2011.
DOI : 10.1016/j.jmb.2011.05.042

W. Lu, Q. Chai, M. Zhong, L. Yu, J. Fang et al., Assembly of AcrB trimer in cell membrane, Journal of Molecular Biology, pp.1-43, 2012.

M. Le-maire, P. Champeil, and J. V. Moller, Interaction of membrane proteins and lipids with solubilizing detergents, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1508, issue.1-2, pp.86-111, 2000.
DOI : 10.1016/S0304-4157(00)00010-1

W. Mao, M. S. Warren, D. S. Black, T. Satou, T. Murata et al., On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic loops of MexD from Pseudomonas aeruginosa are involved in substrate recognition, Molecular Microbiology, vol.96, issue.3, pp.889-901, 2002.
DOI : 10.1046/j.1365-2958.2002.03223.x

C. Marshall, I. Lessard, I. Park, and G. Wright, Glycopeptide antibiotic resistance genes in glycopeptide-producing organisms, Antimicrobial Agents Chemotherapy, vol.42, pp.2215-2235, 1998.

S. Matsuzaki, J. Uchiyama, I. Takemura-uchiyama, and M. Daibata, Perspective: The age of the phage, Nature, vol.347, issue.7498, 2014.
DOI : 10.1038/509S9a

M. May, Drug development: Time for teamwork, Nature, vol.30, issue.7498, pp.4-5, 2014.
DOI : 10.1038/509S4a

D. Mazel, Integrons: agents of bacterial evolution, Nature Reviews Microbiology, vol.91, issue.8, pp.608-628, 2006.
DOI : 10.1038/nrmicro1462

P. Mazurkiewicz, A. Driessen, and W. Konings, Energetics of wild-type and mutant multidrug resistance secondary transporter LmrP of Lactococcus lactis, Biochimica et Biophysica Acta (BBA) - Bioenergetics, vol.1658, issue.3, pp.252-61, 2004.
DOI : 10.1016/j.bbabio.2004.06.004

S. Mehmood, C. Domene, E. Forest, and J. Jault, Dynamics of a bacterial multidrug ABC transporter in the inward- and outward-facing conformations, Proceedings of the National Academy of Sciences of the United States of America, pp.10832-10836, 2012.
DOI : 10.1073/pnas.1204067109

URL : https://hal.archives-ouvertes.fr/hal-01004601

J. K. Middlemiss and K. Poole, Differential Impact of MexB Mutations on Substrate Selectivity of the MexAB-OprM Multidrug Efflux Pump of Pseudomonas aeruginosa, Journal of Bacteriology, vol.186, issue.5, pp.1258-1269, 2004.
DOI : 10.1128/JB.186.5.1258-1269.2004

J. Mikolosko, K. Bobyk, H. I. Zgurskaya, and P. Ghosh, Conformational Flexibility in the Multidrug Efflux System Protein AcrA, Structure, vol.14, issue.3, pp.577-587, 2006.
DOI : 10.1016/j.str.2005.11.015

V. Mokhonov, E. Mokhonova, E. Yoshihara, R. Masui, M. Sakai et al., Multidrug transporter MexB of Pseudomonas aeruginosa: overexpression, purification, and initial structural characterization, Protein Expression and Purification, vol.40, issue.1, pp.91-100, 2005.
DOI : 10.1016/j.pep.2004.10.002

Y. Morita, K. Kodama, S. Shiota, T. Mine, A. Kataoka et al., NorM, a putative multidrug efflux protein, of Vibrio parahaemolyticus and its homolog in Escherichia coli, Antimicrobial Agents Chemotherapy, pp.42-1778, 1998.

S. Murakami, R. Nakashima, E. Yamashita, and A. Yamaguchi, Crystal structure of bacterial multidrug efflux transporter AcrB, Nature, vol.11, issue.6907, pp.587-593, 1050.
DOI : 10.1107/S0021889891004399

S. Murakami, Multidrug efflux transporter, AcrB???the pumping mechanism, Current Opinion in Structural Biology, vol.18, issue.4, pp.459-465, 2008.
DOI : 10.1016/j.sbi.2008.06.007

R. Nakashima, K. Sakurai, S. Yamasaki, K. Hayashi, C. Nagata et al., Structural basis for the inhibition of bacterial multidrug exporters, Nature, vol.322, issue.7460, pp.1-6, 2013.
DOI : 10.1038/nature12300

S. Narita, S. Eda, E. Yoshihara, and T. Nakae, Linkage of the efflux-pump expression level with substrate extrusion rate in the MexAB???OprM efflux pump of Pseudomonas aeruginosa, Biochemical and Biophysical Research Communications, vol.308, issue.4, pp.922-926, 2003.
DOI : 10.1016/S0006-291X(03)01512-2

H. Nikaido, Molecular Basis of Bacterial Outer Membrane Permeability Revisited, Microbiology and Molecular Biology Reviews, vol.67, issue.4, pp.593-656, 2003.
DOI : 10.1128/MMBR.67.4.593-656.2003

H. Nikaido and Y. Takatsuka, Mechanisms of RND multidrug efflux pumps, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1794, issue.5, pp.769-781, 2009.
DOI : 10.1016/j.bbapap.2008.10.004

K. Nordstrom and S. Austin, Mechanisms that Contribute to the Stable Segregation of Plasmids, Annual Review of Genetics, vol.23, issue.1, pp.37-69, 1989.
DOI : 10.1146/annurev.ge.23.120189.000345

B. Normark and S. Normark, Evolution and spread of antibiotic resistance, Journal of Internal Medicine, vol.8, issue.2, pp.91-106, 2002.
DOI : 10.1128/AAC.45.1.105-116.2001

R. Nutiu and Y. Li, Aptamers with fluorescence-signaling properties, Methods, vol.37, issue.1, pp.16-25, 2005.
DOI : 10.1016/j.ymeth.2005.07.001

D. Oesterhelt and W. Stoeckenius, Rhodopsin-like Protein from the Purple Membrane of Halobacterium halobium, Nature New Biology, vol.233, issue.39, pp.149-152, 1971.
DOI : 10.1038/newbio233149a0

J. P. Overington, B. Al-lazikani, and A. L. Hopkins, How many drug targets are there?, Nature Reviews Drug Discovery, vol.355, issue.12, pp.993-996, 2006.
DOI : 10.1038/nrd2199

M. T. Paternostre, M. Roux, and J. Rigaud, Mechanisms of membrane protein insertion into liposomes during reconstitution procedures involving the use of detergents. 1. Solubilization of large unilamellar liposomes (prepared by reversephase evaporation) by Triton X-100, octyl-glucoside, and sodium cholate, Biochemistry, issue.8, pp.27-2668, 1988.

I. Paulsen, M. Brown, and R. Skurray, Proton-dependent multidrug efflux systems, Microbiology and Molecular Biology Review, vol.60, pp.575-608, 1996.

G. Phan, H. Benabdelhak, M. B. Lascombe, P. Benas, S. Rety et al., Structural and Dynamical Insights into the Opening Mechanism of P. aeruginosa OprM Channel, Structure, vol.18, issue.4, pp.507-517, 2010.
DOI : 10.1016/j.str.2010.01.018

M. Picard, A. Verchère, and I. Broutin, Monitoring the active transport of efflux pumps after their reconstitution into proteoliposomes: Caveats and keys, Analytical Biochemistry, vol.420, issue.2, pp.194-196, 2012.
DOI : 10.1016/j.ab.2011.09.025

T. L. Pitt, Pseudomonas, Burkholderia, and related genera, Microbiology and Microbial Infections, pp.1109-1138, 1998.

L. Ponchon, M. Catala, B. Seijo, . Khouri, M. El et al., Co-expression of RNA-protein complexes in Escherichia coli and applications to RNA biology, Nucleic Acids Research, vol.41, issue.15, pp.1-13, 2013.
DOI : 10.1093/nar/gkt576

B. Poolman, M. K. Doeven, E. R. Geertsma, E. Biemans-oldehinkel, W. N. Konings et al., Functional Analysis of Detergent???Solubilized and Membrane???Reconstituted ATP???Binding Cassette Transporters, Methods in Enzymology, vol.400, issue.05, pp.429-459, 2005.
DOI : 10.1016/S0076-6879(05)00025-X

J. Popot, T. Althoff, D. Bagnard, J. Banères, P. Bazzacco et al., Amphipols From A to Z*, Annual Review of Biophysics, vol.40, issue.1, pp.379-408, 2011.
DOI : 10.1146/annurev-biophys-042910-155219

K. M. Pos, Drug transport mechanism of the AcrB efflux pump, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1794, issue.5, pp.782-793, 2009.
DOI : 10.1016/j.bbapap.2008.12.015

E. Racker and W. Stoeckenius, Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation, Journal of Biological Chemistry, vol.249, issue.2, pp.662-663, 1974.

M. Raunest and C. Kandt, Locked on One Side Only: Ground State Dynamics of the Outer Membrane Efflux Duct TolC, Biochemistry, vol.51, issue.8, pp.51-1719, 2012.
DOI : 10.1021/bi201814s

D. Rowe-magnus and D. Mazel, Resistance gene capture, Current Opinion in Microbiology, vol.2, issue.5, pp.483-88, 1999.
DOI : 10.1016/S1369-5274(99)00004-1

D. Rowe-magnus and D. Mazel, The role of integrons in antibiotic resistance gene capture, International Journal of Medical Microbiology, vol.292, issue.2, pp.115-140, 2002.
DOI : 10.1078/1438-4221-00197

B. Sarkadi, L. Homolya, G. Szakacs, and A. Varadi, Human Multidrug Resistance ABCB and ABCG Transporters: Participation in a Chemoimmunity Defense System, Physiological Reviews, vol.86, issue.4, pp.1179-1236, 2006.
DOI : 10.1152/physrev.00037.2005

G. Schröder and E. Lanka, The mating pair formation system of conjugative plasmids???A versatile secretion machinery for transfer of proteins and DNA, Plasmid, vol.54, issue.1, pp.1-25, 2005.
DOI : 10.1016/j.plasmid.2005.02.001

S. Schuldiner, EmrE, a model for studying evolution and mechanism of ioncoupled transporters, Biochimica et Biophysica Acta. Proteins and Proteomics, vol.1794, issue.5, 2009.

R. Schulz and U. Kleinekathöfer, Transitions between Closed and Open Conformations of TolC: The Effects of Ions in Simulations, Biophysical Journal, vol.96, issue.8, pp.3116-3125, 2009.
DOI : 10.1016/j.bpj.2009.01.021

R. Schulz, A. V. Vargiu, P. Ruggerone, and U. Kleinekathöfer, Role of Water during the Extrusion of Substrates by the Efflux Transporter AcrB, The Journal of Physical Chemistry B, vol.115, issue.25, pp.8278-8287, 2011.
DOI : 10.1021/jp200996x

M. Schumacher and R. Brennan, Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors, Molecular Microbiology, vol.96, issue.4, pp.885-93, 2002.
DOI : 10.1038/35053138

E. G. Sedgwick and P. D. Bragg, Differential movement of ions in artificial phospholipid vesicles, FEBS Letters, vol.20, issue.1-2, pp.81-84, 1990.
DOI : 10.1016/0014-5793(90)80453-P

K. M. Pos, Engineered disulfide bonds support the functional rotation mechanism of multidrug efflux pump AcrB, Nature Structural Molecular Biology, vol.15, pp.199-205, 2008.

M. Seeger, K. Diederichs, T. Eicher, L. Brandstatter, A. Schiefner et al., The AcrB Efflux Pump: Conformational Cycling and Peristalsis Lead to Multidrug Resistance, Current Drug Targets, vol.9, issue.9, pp.729-749, 2008.
DOI : 10.2174/138945008785747789

M. A. Seeger and H. W. Van-veen, Molecular basis of multidrug transport by ABC transporters, Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol.1794, issue.5, pp.725-737, 2009.
DOI : 10.1016/j.bbapap.2008.12.004

G. Sennhauser, M. A. Bukowska, C. Briand, and M. G. Grütter, Crystal Structure of the Multidrug Exporter MexB from Pseudomonas aeruginosa, Journal of Molecular Biology, vol.389, issue.1, pp.134-145, 2009.
DOI : 10.1016/j.jmb.2009.04.001

K. S. Sharma, G. Durand, F. Gabel, P. Bazzacco, C. Le-bon et al., Non-Ionic Amphiphilic Homopolymers: Synthesis, Solution Properties, and Biochemical Validation, Langmuir, vol.28, issue.10, pp.4625-4664, 2012.
DOI : 10.1021/la205026r

URL : https://hal.archives-ouvertes.fr/hal-01332196

S. Singer, Architecture and topography of biological membrane, 1975.

M. Soskine, S. Mark, N. Tayer, R. Mizrachi, and S. Schuldiner, On Parallel and Antiparallel Topology of a Homodimeric Multidrug Transporter, Journal of Biological Chemistry, vol.281, issue.47, pp.36205-36212, 2006.
DOI : 10.1074/jbc.M607186200

C. Su, M. Li, R. Gu, Y. Takatsuka, G. Mcdermott et al., Conformation of the AcrB Multidrug Efflux Pump in Mutants of the Putative Proton Relay Pathway, Journal of Bacteriology, vol.188, issue.20, pp.7290-7296, 2006.
DOI : 10.1128/JB.00684-06

M. F. Symmons, E. Bokma, E. Koronakis, C. Hughes, and V. Koronakis, The assembled structure of a complete tripartite bacterial multidrug efflux pump, Proceedings of the National Academy of Sciences, vol.106, issue.17, pp.7173-7178, 2009.
DOI : 10.1073/pnas.0900693106

G. Szakacs, A. Varadi, C. Ozvegy-laczka, and B. Sarkadi, The role of ABC transporters in drug absorption, distribution, metabolism, excretion and toxicity (ADME???Tox), Drug Discovery Today, vol.13, issue.9-10, pp.379-393, 2008.
DOI : 10.1016/j.drudis.2007.12.010

Y. Takatsuka and H. Nikaido, Site-Directed Disulfide Cross-Linking Shows that Cleft Flexibility in the Periplasmic Domain Is Needed for the Multidrug Efflux Pump AcrB of Escherichia coli, Journal of Bacteriology, vol.189, issue.23, pp.8677-8684, 2007.
DOI : 10.1128/JB.01127-07

Y. Takatsuka and H. Nikaido, Covalently Linked Trimer of the AcrB Multidrug Efflux Pump Provides Support for the Functional Rotating Mechanism, Journal of Bacteriology, vol.191, issue.6, pp.1729-1737, 2009.
DOI : 10.1128/JB.01441-08

E. B. Tikhonova, Q. Wang, and H. I. Zgurskaya, Chimeric Analysis of the Multicomponent Multidrug Efflux Transporters from Gram-Negative Bacteria, Journal of Bacteriology, vol.184, issue.23, pp.6499-6507, 2002.
DOI : 10.1128/JB.184.23.6499-6507.2002

E. B. Tikhonova and H. Zgurskaya, AcrA, AcrB, and TolC of Escherichia coli Form a Stable Intermembrane Multidrug Efflux Complex, Journal of Biological Chemistry, vol.279, issue.31, pp.32116-32124, 2004.
DOI : 10.1074/jbc.M402230200

E. B. Tikhonova, V. K. Devroy, S. Y. Lau, and H. I. Zgurskaya, Reconstitution of the Escherichia coli macrolide transporter: the periplasmic membrane fusion protein MacA stimulates the ATPase activity of MacB, Molecular Microbiology, vol.182, issue.3, 2007.
DOI : 10.1111/j.1365-2958.2006.05549.x

E. B. Tikhonova, Y. Yamada, and H. I. Zgurskaya, Sequential Mechanism of Assembly of Multidrug Efflux Pump AcrAB-TolC, Chemistry & Biology, vol.18, issue.4, pp.454-463, 2011.
DOI : 10.1016/j.chembiol.2011.02.011

S. Trépout, J. Taveau, S. Mornet, H. Benabdelhak, A. Ducruix et al., Organization of reconstituted lipoprotein MexA onto supported lipid membrane, European Biophysics Journal, vol.275, issue.8, pp.1029-1037, 2007.
DOI : 10.1007/s00249-007-0208-5

M. Vaara, Antibiotic-supersusceptible mutants of Escherichia coli and Salmonella typhimurium., Antimicrobial Agents and Chemotherapy, vol.37, issue.11, pp.2255-60, 1993.
DOI : 10.1128/AAC.37.11.2255

L. Vaccaro, V. Koronakis, and M. S. Sansom, Flexibility in a Drug Transport Accessory Protein: Molecular Dynamics Simulations of MexA, Biophysical Journal, vol.91, issue.2, pp.558-564, 2006.
DOI : 10.1529/biophysj.105.080010

L. Vaccaro, K. A. Scott, and M. S. Sansom, Gating at Both Ends and Breathing in the Middle: Conformational Dynamics of TolC, Biophysical Journal, vol.95, issue.12, pp.5681-5691, 2008.
DOI : 10.1529/biophysj.108.136028

H. B. Van-den-berg-van-saparoea, J. Lubelski, R. Van-merkerk, P. S. Mazurkiewicz, and A. J. Driessen, Proton Motive Force-Dependent Hoechst 33342 Transport by the ABC Transporter LmrA of Lactococcus lactis, Biochemistry, issue.51, pp.44-16931, 1021.

A. Verchère, M. Dezi, I. Broutin, and M. Picard, Investigation of an efflux pump membrane protein: a roadmap, pp.1-20, 2012.

A. Verchère, I. Broutin, and M. Picard, Photo-induced proton gradients for the in vitro investigation of bacterial efflux pumps, Scientific Reports, 2012.
DOI : 10.1038/srep00306

A. Verchère, I. Broutin, and M. Picard, Hoechst likes to play hide and seek...use it with caution! Analytical Biochemistry, pp.117-119, 2013.

A. Verchère, M. Dezi, I. Broutin, and M. Picard, In vitro Investigation of the MexAB Efflux Pump From Pseudomonas aeruginosa, Journal of Visualized Experiments, issue.84, pp.10-3791, 2014.

C. Walsh, Molecular mechanisms that confer antibacterial drug resistance, Nature, issue.6797, pp.406-775, 2000.

R. E. Wang, Y. Zhang, J. Cai, W. Cai, and T. Gao, Aptamer-Based Fluorescent Biosensors, Current Medicinal Chemistry, vol.18, issue.27, pp.4175-4184, 2011.
DOI : 10.2174/092986711797189637

C. Wehmeier, S. Schuster, E. Fähnrich, W. Kern, and J. Bohnert, Site-Directed Mutagenesis Reveals Amino Acid Residues in the Escherichia coli RND Efflux Pump AcrB That Confer Macrolide Resistance, Antimicrobial Agents and Chemotherapy, vol.53, issue.1, pp.329-330, 2009.
DOI : 10.1128/AAC.00921-08

B. Weisblum, Erythromycin resistance by ribosome modification, Antimicrobial Agents and Chemotherapy, vol.39, issue.3, pp.577-85, 1995.
DOI : 10.1128/AAC.39.3.577

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC162587

C. Wickstrand, R. Dods, A. Royant, and R. Neutze, Bacteriorhodopsin: Would the real structural intermediates please stand up?$ Biochemica et Biophysica Acta - General Subjects, 2014.

D. N. Wilson, Ribosome-targeting antibiotics and mechanisms of bacterial resistance, Nature Reviews Microbiology, vol.326, issue.1, pp.35-48, 2014.
DOI : 10.1038/nrmicro3155

Y. Xu, M. Lee, A. Moeller, S. Song, B. Y. Yoon et al., Funnel-like Hexameric Assembly of the Periplasmic Adapter Protein in the Tripartite Multidrug Efflux Pump in Gram-negative Bacteria, Journal of Biological Chemistry, vol.286, issue.20, pp.17910-17920, 2011.
DOI : 10.1074/jbc.M111.238535

X. Yao, H. Kenzaki, S. Murakami, and S. Takada, Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations, Nature Communications, vol.81, issue.8, p.117, 2010.
DOI : 10.1038/ncomms1116

L. Yu, W. Lu, and Y. Wei, AcrB Trimer Stability and Efflux Activity, Insight from Mutagenesis Studies, PLoS ONE, vol.3, issue.12, 2011.
DOI : 10.1371/journal.pone.0028390.t002

H. Zgurskaya and H. Nikaido, Bypassing the periplasm: Reconstitution of the AcrAB multidrug efflux pump of Escherichia coli, Proceedings of the National Academy of Sciences, vol.96, issue.13, pp.96-7190, 1999.
DOI : 10.1073/pnas.96.13.7190

H. I. Zgurskaya and H. Nikaido, Cross-Linked Complex between Oligomeric Periplasmic Lipoprotein AcrA and the Inner-Membrane-Associated Multidrug Efflux Pump AcrB from Escherichia coli, Journal of Bacteriology, vol.182, issue.15, pp.4264-4267, 2000.
DOI : 10.1128/JB.182.15.4264-4267.2000

H. I. Zgurskaya and H. Nikaido, Multidrug resistance mechanisms: drug efflux across two membranes, Molecular Microbiology, vol.96, issue.2, pp.219-225, 2000.
DOI : 10.1006/jmbi.1998.2313