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Chapter 1

Introduction

1.1 Textures, algorithms and models

Textures are one of the few concepts to apply to all the human senses. This synesthetic
essence makes the texture category easy to grasp intuitively, albeit quite challenging to define
properly. As opposed to intensity or persistence, generic categories which address quantitative
aspects of perception, textures seem to be intrinsically qualitative. In other words qualities
such as intensity and persistence are straightforwardly measurable – respectively by energy

and scale – but the natural scientific framework for textures is much more complex and
certainly not to be characterized by a single quantity.

A commonly mentionned characteristic of textures is overall “homogeneity” or “unifor-
mity”, as opposed to shapes whose purpose is to encapsulate and distinguish separate en-
tities. Indeed, textures and shapes are very complementary concepts, and one could even
argue that textures describe precisely everything that shapes don’t. One way to apprehend
this complementarity comes from the modeling perspective. Mathematically, a shape might
be best described as a “deterministic” object (a curve, a surface etc.), whereas a probabilistic
model (random functions or fields) is often best suited to describe a texture.

The modern study of the visual perception of textures goes back to Julesz, who made
the first hypotheses on their fundamental probabilistic properties [63]. He famously claimed
that textures that shared first and second order statistics were somehow indistinguishable,
a hypothesis that was later proven incorrect [68]. Julesz also defended the decomposition
of textures into atomic elements – textons – and spatially homogeneous probabilistic distri-
butions of these elements [65]. Athough mostly driven by the perception of textures, Julesz
built the foundations of texture analysis which has been drawing a lot of interest, with many
applications e.g. in medical, industrial, satellite or astronomical imagery. For instance,
mammographic density – a quantity that can be approached through texture analysis of
mammographs – happens to be a very relevant parameter with respect to the risk of breast
cancer, as discussed in [19]. The measure of anisotropy is also relevant in the evaluation of
the risk of bone fracture induced by ostheoporosis, as argued in [18]. Generally speaking,
modeling textures involves two parts:

• A set of parameters (e.g. a mean and an autocovariance function).

9



10 Chapter 1. Introduction

• A stochastic field on a domain D, e.g. R2, that is specified by the aforementioned set
of parameters (e.g. a stationary Gaussian field).

A model often conveys – at least indirectly – statistical estimators of the parameters that
specify the model (e.g. the average and the auto-correlation function of input images).

Texture analysis can also be used to feed processed data to a texture synthesis algo-
rithm, a very active area in computer graphics. Texture synthesis refers to a clearly defined
task: outputing images that conform to the chosen description of a texture, and a set of
desired characteristics, typically resemblance to an input image. Hence, texture synthesis is
performed by an algorithm, fed by data. More precisely:

• A dataset, e.g. an image (or a collection of images), or a set of numerical parameters
captures the “local” information of the texture at different relevent scales.

• The algorithm may or may not be stochastic. It should take the dataset as a first
argument, and arbitrary dimensions as a second argument. It should output an image
with the designed dimensions.

Two requirements on the output of the texture algorithm should impose two fundamental
invariance principles that textures require, namely invariance with respect to dimensions (a
texture should not be limited in space) and translations (a texture should be the same ev-
erywhere). To guarantee this spatial homogeneity, the law of any local subpart of the output
image should only vary with the first argument (the data input) and never with the second
argument (the dimensions input). Moreover, such a law should not depend on the location
of the local section.

Our work is mainly concerned with texture analysis in a broad sense, and to a lesser ex-
tend synthesis. Most of the work presented here can be traced back to a very specific type
of textures, namely Gaussian and Random Phase Noise textures as introduced in [83], [127]
and more recently discussed in [51] where they are refered to as “micro-textures”. As we
shall discuss, these texture models are only based on first and second order statistics, such
as the mean and the covariance function. They intensively involve the Fourier transform and
the fast Fourier transform algorithm in their implementation. As a consequence textures are
implicitly assumed to be periodical, an assumption that we shall discuss below. A strength of
these models is the convenient framework for many aspects of texture analysis they offer. In
particular, as we shall discuss in Chapter 2, this allows for a strongly localized representation
which paves the way for sparse and localized representations of Gaussian and Random Phase
Noise textures. Sparse representations of signals have recently been a very active topic in
applied mathematics, mostly thanks to the results of compressed sensing (see e.g. [21], [22]
and [38]). However, to our knowledge, sparsity within representations of textures has been
mainly left out of focus, with the exception of [79] and [114] which follow approaches very
different from ours. The importance of the Fourier phase in our work (especially in Chapter
2) relates to a widely documented phenomenon, namely “the importance of phase in signals”
[106], that we further discuss and somewhat challenge in Chapter 3. The “micro-textures”
framework also allows for asymptotical analysis of texture models, both while scaling up the
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dimensions of the texture (Chapter 2) and zooming in within a continuous model (Chapters
4 and 5). The continuous model is connected to the study of random Fourier series, which
has been first developped by Zygmund along with Paley [108], [109], [110] and Salem [119],
and widely discussed still in the one-dimensional case by Kahane [69] and in more general-
ity by Marcus and Pisier [96]. In Chapter 4 and 5, we focus on extending to the general
finite-dimensional case some results which are well known in the one-dimensional case with
respect to convergence ([15] and [69]), continuity ([15], [69], [45] and [32]) and regularity ([69]
and [32]). Recent papers have been working on a similar path of generalizations from the
one-dimensional to the finite-dimensional case with a focus on continuity, let us cite e.g. [27].

In the remaining of this section, we propose a non-exhaustive tour of texture algorithms
and models. As discussed supra, randomness plays a very important role within texture al-
gorithms/models. As we shall see, they can indeed be characterized by a varying degree of
randomness. Indeed, a continuum can be drawn from deterministic tilings to filtered white
noise algorithms, which can be translated in terms of information theory by an increasing
entropy from deterministic textures (strongly structured) to noises (strongly unstructured).
In between these two extremes lie two important families of texture algorithms: examplar-
based synthesis, which can be characterized as “weakly structured”, and noise synthesis based
on statistical analysis qualified as “weakly unstructured”. The former roughly consists in
adding randomness to deterministic algorithms supported by rigid structures, and the latter
in adding control to noisy images through constraints based on statistical analysis of some
inputs.

1.1.1 Structured textures

Tiling. Tiling is one of the simplest and most structured texture synthesis algorithm. It
consists in repeating tiles from an image dataset over the plane according some given tiling
rule, or algorithm. There are many different ways of tiling the plane, periodical or even
non-periodical – see e.g. Penrose [111] – which may be applied to render strongly structured
textures such as brick walls, floor tilings etc. However, one requirement for visual relevance
is that the tiles need to match seamlessly, which is of both great interest and difficulty for
photo realistic input images. Moisan proposed an original solution to the seamless single
tile problem [99]. However, a major drawback of tiling algorithms is that, except for small
dimensions (with respect to the input image), the display of the super-structure (the tiling
rule) tends to be visually overwhelming for the observer – see e.g. Rao [116] for empirical
evidence of the importance of periodicity in texture perception. Hence, the repetition due
to the underlying structure may discard outputs of tiling algorithms as realistic textures for
many applications.

Weakly structured textures. Examplar-based texture synthesis algorithms can be con-
sidered as stochastic adaptations of tiling algorithms. Indeed, examplar-based texture algo-
rithms aim at relaxing the tiling rule by injecting a dose of randomness into it, hence the
qualification “weakly structured”. The purpose is to avoid the strict repetition and the trivial
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predictibility of patterns and the display of super-structure. Another shortcoming of tilings
is overcome as weakly structured models avoid exact matches between independent outputs.

These algorithms perform a stochastic mapping from the output domain Dout to the ini-
tial domain Din over which the input image uin is defined. More precisely, each coordinate
(xout, yout) from Dout is stochastically associated with a coordinate P in

(xout,yout)
in Din, and

the final texture uout is defined by applying uin to the mapped coordinate: uout(xout, yout) =
uin(P

in
(xout,yout)

) (see Figure Figure 1.1). Thus, the main problem becomes to build algorithms
that provide relevant stochastic mapping functions. Efros and Leung breakthrough in their
seminal paper [42], started a rich literature of computer vision, which was thoroughly surveyed
in [129]. They proposed a construction of P in based on an approximate Markov random field
model. The texture is grown sequentially, pixel by pixel (typically in raster or print order),
by matching the output neighborhood N(xout,yout) of the last synthesized pixel to its closest
equivalents from the input sample uin and sampling randomly among these neighborhoods.
Many improvement were invented: Wei and Levoy [130] introduced a data structure to accel-
erate the repeated exhaustive nearest-neihbor searches ; Efros and Freeman in [41] replaced
the “one pixel at a time” synthesis by a“one patch at a time” approach, improving the overall
quality and speed of the synthesis ; Kwatra et al. [75] introduced graphcut techniques to find
the optimal cut path over the overlapping patches ; parallel implementations of the patch-
based synthesis, to take advantage of multi-core processing units that have been recently
flourishing, see [81] for a pyramidal synthesis where all parts of the output is simultaneously
synthesized, the synthesis being refined along a decreasing sequence of scales.

Figure 1.1: Left: input image “cell” and its canonical mapping. Right: output image obtained
with the Efros-Leung algorithm [42] (implementation [2]) and its stochastic mapping.

From many perspectives, these algorithms are very well suited for texture synthesis, and their
output are often of spectacular quality. However, examplar-based synthesis does not require
any statistical processing of the input, and has thus been of very limited interest from a
texture analysis perspective so far.

1.1.2 Noisy textures

Procedural noise. At the upper extreme on the entropy spectrum lie the strongly un-
structured “procedural noise textures”. Perlin invented what is now known as Perlin noise –
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see his seminal paper “An Image Synthesizer” [112] – after working on the graphics of the
Disney movie “Tron” [87].

Since then the topic has attracted considerable attention, and is still – as of today – an
indispensable source of texture synthesis in computer graphics. The literature on the subject
encompasses hundreds of articles for which we refer to the recent survey in [76], Section 3.
Basically, the setup of these algorithms is as follow:

• The dataset consists in a few explicit parameters (e.g. an exponent that characterizes
a frequency spectrum).

• The algorithm synthesizes noise images of any size, parametered by the input parame-
ters.

Most of the time, these algorithms output approximations of a filtered Gaussian white
noise, which are in turn assembled to render visually compelling textures. Indeed, many
functions can be applied (such as scalar products, norms, functions defined over the domain
etc.) to any raw output field, which can in turn be superposed in order to emulate different
classes of textures such as water, fire, clouds, marble etc. The main advantage of such
algorithms is that they are local: the value at one point only depend on the value of a
few neighbors, which can be very useful for computer graphics performance such as linear
computational cost and high memory efficiency. Several improvements and variants have
been proposed. For instance, Cook and DeRose [29] proposed the “wavelet noise” algorithm
in order to gain precision over the band-limits of the spectrum. Indeed, lack of precision
imposes a tradeoff between aliasing and blur at high frequencies for Perlin noise.

A slightly less computationally efficient noise synthesis consists in Gaussian white noise
filtering in the Fourier domain as developped in [3] (see also [120] and [128] for fractal models).
Direct filtering allows perfect control over the frequency spectrum and thus directional parti-
tions of the spectrum which is of particular interest for anisotropy [55]. These techniques were
later used by Van Wijk for spot noise synthesis [127], where the frequency spectrum is speci-
fied by the Fourier transform of an input “spot”. Although less computationally efficient, and
less memory efficient (non-local), Fourier synthesis performance became competitive thanks
to the fast Fourier transform (FFT) implementations [31] [30]. For 2-dimensional signals, the
FFT runs with O(MN log(MN)) operations instead of O((MN)(M +N)) with more naive
approaches.

These techniques provide an efficient way to create building blocks that can in turn be
assembled in order to render more elaborate textures. However, a major drawback is that
this part of the process can hardly be automated. It thus still requires a lot of creative work,
and some artistic talent.

Noise and statistical analysis. The purpose of statistical-based noise textures is to auto-
mate the “artisanal” process of turning the building blocks provided by procedural synthesis
into a realistic texture. The idea is to estimate parameters (that may or may not be selected
through a learning strategy) from an input texture and use an appropriate synthesis algorithm
with these estimated parameters. Hence, two main tasks arise with such algorithms: first,
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find the relevant statistics (analysis), and second, implement efficient synthesis algorithms
based on these statistics. Relevance of the statistics is hard to define objectively. This task
is often rooted in the study of human perception of textures – e.g. Julesz [63], [68], [65], [67],
Bergen [9], Malik and Perona [90], see Landy and Graham [78] for a quite recent survey – and
neuroscientific study of the visual cortex, especially V1 – e.g. Knierim and Van Essen [73],
Olshausen [103], along with Field [104], [105], and with Simoncelli [124]. The purpose is to
provide relevant mathematical tools to describe the vision of textures. An important feature
of these models is the sparsity of the set of relevant parameters. Hence, these algorithms
successively perform texture analysis and synthesis as follows.

• Analysis: estimate the relevant parameters of an input image. The relevance of param-
eters can be either predetermined or learned.

• Synthesis: according to a given model that can be specified via the estimated param-
eters, synthesize random samples of a field compliant with the stochastic law of the
model.

Let us now run through a few fundamental examples. Among these, we can extract two
main families, according to the processing methods used for texture analysis. The wavelet-
based and the Fourier-based algorithms, following two prominent representations of signals.
We refer to Section 4 in [76] for a more complete overview.

Wavelet analysis The wavelet-based methods can be connected to studies suggesting that
a process similar to wavelet pyramidal decomposition is likely performed by the human visual
cortex for texture discrimination [9], [90], [103]. Let us mention a few examples here.

In their pioneering work, Heeger and Bergen [59] draw an analogy with the use of trichro-
matic color synthesis – based in the knowledge of color perception in the eye as shown in
[125] – and suggest that a similar strategy should be adopted in order to provide a robust
illusion of texture fidelity. They proposed to match histograms profiles of both plain RGB
values and learned coefficients in a multiscale (pyramidal) wavelet decomposition of images,
starting from Gaussian white noise. The convergence is then “visually” validated.

Zhu, Wu and Mumford developped a very general framework in [134] and [135], and
proposed to derive the maximum entropy law, given learned constraints based on wavelet
coefficients. These are incrementally chosen to maximize a distance between the observed
distribution and the theoretical distribution derived by entropy maximization. Major advan-
tages of this method are that no prior assumption over the distributions is needed, and that
the marginal laws for each selected statistic are independent.

Portilla and Simoncelli [115] developped a framework combining a Markov chains Monte
Carlo approach (as initiated by [133]) and an analysis performed over the wavelet coefficients
of a collection of input image. As in Heeger and Berger’s initial method, the variables of
interest are learned and picked semi-automatically. As the number of such relevant statistics
increases, more and more textures from the database end up being adequately synthesized.

A major drawback of these algorithms is that the analysis is often very computationally
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costly or needs to be performed semi-automatically, due to the large set of coefficients from
which the selection is drawn. A design to select efficiently a critical set of relevant statistics in
a multi-scale wavelet decomposition is still an active area of research. Moreover, the synthesis
is also very costly as multiple steps are often needed in order to provide a compelling result
(multiple white noise projections in [59] and [115], multiple entropy maximisations in [134]).

Fourier analysis The discrete Fourier transform (DFT) of images is very largely used in
signal processing. The Fourier representation of signals is not localized, so each coefficient
catches a “global” feature of the input. More precisely, the action of a translation over
the Fourier transform of an image is simply a pointwise multiplication: the translations are
diagonal operators in the Fourier basis. This is a strong theoretical argument to consider the
Fourier representation as a fundamental tool for textures, since translations are of particular
importance in the field.

Fourier synthesis has been largely used since the introduction of the fast Fourier transform.
One reason is that in the Fourier domain, periodic convolutions are simple pointwise multi-
plications. Hence, the cost of a periodic convolution to output an image of dimensions M×N
can be lowered down to O(MN log(MN)). This compares favorably to direct convolution,
except maybe for extremely sparse convolution kernels S, namely when |S| = O(log(MN))

where |S| denotes the cardinality of |S|.
As discussed above, Fourier synthesis is deeply connected with Gaussian textures.
Lewis [83] was one of the first to suggest a synthesis algorithm based on the spectrum of

a sub-sample taken from an image texture, both through FFT and sparse convolution.
Van Wijk [127] who proposed a texture design based on the Fourier transform of spots.

Moreover, he developped an idea that Lewis had briefly suggested, which consists in taking
the phases at random without modifying about the law of the modulus. However, he surpris-
ingly rejected the idea of taking a texture image as input “spot” because of the “tautological
character of this solution”.

The recent paper [51] bridged that gap. In a nutshell, they proposed to take the average
and the periodic auto-correlation of an input texture image – obtained thanks to the FFT
– as estimators of the mean and the covariance function of an underlying periodic Gaussian
field. They clearly established that the "random phase noise" model was not equivalent to
the periodic Gaussian model, although they both produce extremely similar outcomes.

1.2 Micro-textures

We now discuss in more detail the class of “micro-textures” as defined in [51], upon which most
of the work of this thesis is built. In a nutshell, these textures have the property to display
no structure at all, but can still be parametrized by input images and render compelling
noisy textures such as clouds, water, grass (from a distance) etc. In [51], Galerne et al.

introduced “micro-textures” as the class of input images that could be faithfully synthesized
through either asymptotic spot noise or Fourier phase randomization, which are detailed
infra. They further noticed that the two algorithm mostly output visually indistinguishible
results. Rectifying an unproven claim by Van Wijk, they noticed that the output of the phase
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randomisation synthesis algorithm would be a non-Gaussian field. They renamed this field
“Random Phase Noise”, and we shall refer to it as RPN in the following.

Figure 1.2: Left: input image “wood”. Right: output image obtained with the RPN algorithm
[51] (implementation [50]).

Gaussian textures. Let us consider a stationary periodic real Gaussian field Ug defined
over the discrete rectangular domain D. Ug is entirely characterized by its expectation
E[U(x)] which does not depend on x thanks to stationarity, and its covariance function
γUg defined thanks to stationarity by

γUg(x− y) := E[Ug(x)Ug(y)] (1.1)

for x and y in D. Ug is equivalently characterized but its expectation and its power spectrum
(E[|Ûg(ξ)|2])ξ∈D. Moreover, the discrete Fourier transform of such a stationary Gaussian field
Ug has the following properties:

• for each ξ in D \ {0}, Ûg(ξ) is a complex Gaussian random variable

• for each D′ ⊂ D \ 0 such that −D′ ∩D′ = ∅, (Û(ξ))ξ∈D′ is a complex Gaussian vector
with independent entries.

A property of any complex Gaussian variable Z is to write as Z = ReiΦ with R real non-
negative random variable and Φ variable in R/2πZ. Moreover, R and Φ have the following
properties: Φ is uniformly distributed over R/2πZ ; R follows a Rayleigh law ; R and Φ are
independent. Thus, the Fourier transform of a Gaussian texture synthesis based on image u
can be written as

Ûg(ξ) = û(ξ)R(ξ)eiΦ(ξ) (1.2)

where (R(ξ)eiΦ(ξ))ξ∈D is the Fourier transformation of a real Gaussian white noise over D.
Two main algorithms: white noise convolved with an input images or a sparse sample of
input image [83]; asympotic discrete spot noise (ADSN) obtained by throwing an image (or a
spot) u with uniform Poisson density over a periodic field, summing and renormalizing [127],
[51]. The main shortcoming of the ADSN is its low convergence speed, since convergence is
typically of order O( 1√

k
) with k shots.
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Random phase textures. In [127] Van Wijk proposed an alternative synthesis algorithm,
named the Random Phase Noise (RPN) algorithm in [51]. In a nutshell, this algorithm is
directly based on the Fourier transform, and only the phase part of an image u is randomized
(the Rayleigh noise R is removed). In this model, a texture based on image u can be described
in the Fourier domain as

ÛRPN (ξ) = û(ξ)eiΦ(ξ) (1.3)

where (Φ(ξ))ξ∈D is a random phase, that is

• Φ(−ξ) = −Φ(ξ) (modulo 2π) for each ξ in D

• Φ(ξ) is uniformly distributed over R/2πZ for ξ 6= −ξ.

As noticed in [51], the RPN algorithm outputs textures that are indistinguishable from their
Gaussian counterparts with a very large majority of inputs – actually only synthetic (and
somewhat pathological) inputs yield visually distinguishable outputs. As we shall discuss in
Chapter 2 (see also [36]), this can be explained by the fact that a Gaussian texture can be
deduced from a RPN texture by the convolution of a signal that is very close to a Dirac
mass at the spatial origin. To fully understand the connection between RPN and Gaussian
textures, let us assume that we observe a unique sample of a Gaussian texture U0. We want
to simulate a texture U1

• that is different of the observation U0(ω)

• that has the same law as U0.

Of course, one possibility would be to convolve U0 with a Gaussian white noise W assumed to
be independent from U0. However, this solution has many drawbacks: the resulting texture
would fail to be Gaussian (it would only be Gaussian conditionally on U0) ; iterations of
this procedure converge almost surely to a constant field. Synthesizing U1 based on U0 with
the RPN algorithm preserves the original Gaussian law and shows an interesting stability
property: successive samples based on the last iteration still follow the same (Gaussian) law.
Moreover

E[‖ U0 − U1 ‖22 |U0] =
∑

ξ∈D
E[|Û0(ξ)|2|eiΦU0

(ξ) − eiΦ(ξ)|2 |U0] = 2 ‖ U0 ‖22 (1.4)

so U0 and U1 differ significantly. Hence, the RPN algorithm is well suited to resynthesize a
Gaussian random field from a single Gaussian sample.

Going one step further in the discussion, we prove in Chapter 2 (see also [36]) that a
suitably normalized RPN synthesis based on a deterministic spectrum converges in finite
dimensional law, as its dimensions tend to infinity, to a discrete Gaussian field over Z2.
Another interpretation of this similarity between RPN and Gaussian textures consists in
noticing that the two algorithms essentially differ from the convolution with a random signal
that is very close to a weighted Dirac mass located at the spatial origin.
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Fourier transform texture analysis. Both micro-texture synthesis algorithms can be
decomposed in an analysis and a synthesis part. Importantly, there are only two parameters
that matter for both of them: the mean and the covariance function.

• Analysis: estimate the mean and the covariance function, typically by computing the
auto-correlation of a given input image. This step can be performed in the frequency
domain for optimized computational cost through FFT.

• Synthesis: a field corresponding to the estimated covariance function is synthesized.
This step can be performed by computing the inverse Fourier transform of the Hermitian-
symmetric complex Gaussian field associated with the frequency-spectrum estimated
thanks to texture analysis.

Both RPN and ADSN algorithms estimate the mean by the average and the covariance by the
periodic auto-correlation. However, other estimation strategies of the power-spectrum/covariance
have been proposed. Indeed, since the auto-correlation function and the power spectrum of a
texture image are often quite noisy, a solution is to look for smooth (in the Fourier domain)
estimations of the power spectrum. Gabor kernels have been proposed as a projection basis
by Gilet in [54], and further developped in [52], in order to bring an interactive texture design
tool to the computer graphics community. Sparse approximations of the texton of an image,
as introduced in [117], are also smooth spectrum estimations as discussed in Chapter 2.

1.3 Sparse representation of micro-textures

Noise samples are somewhat incompressible from the information theory point of view [28]
since they inherently have a high Shannon entropy [122]. However, their probabilistic law
can often be accurately described with simple stochastic rules and a small set of parameters.
Their pseudo-random implementations might thus be very concise – in other words, they
migh have a low Kolmogorov “algorithmic” complexity [84].

As discussed supra, textures can be characterized by a high level of redundancy of pat-
terns, and the overall homogeneity of their aspect. In other words, under the homogeneity
hypothesis, zooming in at two distant neighborhoods of a given domain shall yield statisti-
cally indistinguishable results (at least over several independent samples). Thus, at a given
level of details, the dimensions or size of a texture image appears to be an information that is
irrelevant to its probabilistic nature. Hence, for each texture, both a critical (minimal) size
and an amount of information bounded by this size should intuitively exist and characterize
the texture.

An important motivation to focus on sparse texture representations is their direct contri-
bution to the dimensionality reduction literature, a very dynamic research area involving both
the statistics, machine learning and signal processing communities [48]. Low dimensionality
is of particular interest for predictive models, since the training time of learning algorithms
is often a non-decreasing function of the number of parameters. Moreover, lowering the di-
mension of the input might help avoid overfitting, a well known problem in machine learning
and statistical estimation.
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Another argument in favor of the study of sparsity in textures is that it has long been
hypothesized that human vision itself performs high level sparse representation of scenes (see
e.g. [5] and [6]), and in particular textures. In celebrated articles (see e.g. [67]), Julesz de-
velopped a theory that preattentive texture discrimination involved two main characteristics:
the density (particularly its first and second order statistics [63]) and the shape of elementary
structures that he named textons.

Let us state the general “texture sparsity problem” as follows: “given a texture model,
determine a minimal set of information that characterizes, exactly or approximatively, this
texture model”. Of course, this so-called “minimal set” may be specific to the underlying
model.

Research on sparse texture representations has been surprisingly scarce to this day. Let
us mention however the works of Lazebnik et al. [79] and Peyré [114]. In [79] the authors
propose the extraction of a sparse set of local descriptors that are intended for texture clas-
sification. They depart from the homogeneity paradigm and impose for these descriptors to
be robust under the transformations of a 3-dimensional scene such as rotations. In [114],
for each texture, a redundant dictionnary is learned, which provides a basis for both sparse
synthesis and analysis.

Our approach to sparsity can be traced back to the work of Lewis [83] and van Wijk [127].
In [83] the author proposes to draw directly a sparse sample of an input texture to perform
a synthesis through convolution with a white noise. In [127] a similar design based on a
synthetic spot is introduced, along with the explicit random phase algorithm, further studied
in [51]. More precisely, in the asymptotic shot noise and random phase models à la van Wijk,
a stronger version of the “texture sparsity problem” can be stated as follows: based on one
single sample, is it possible to find, exactly or approximately, the sparse spot that yielded
a given texture? The answer of this question is still quite open, but the deep relationship
between synthesis and analysis of micro-textures makes them particularly promising subjects
for the “texture sparsity problem”.

The research presented in Chapter 2 (see also [117], [35] and [36]) stands for a first step
towards a solution to these problems. Let us now introduce our approach and present some of
our contributions here. It has been known for decades that the Fourier phase is an important
part of the signal, as stated in detail in [106]. Precisely, the phase has been accounted for
encoding the shapes of images, which we shall discuss in more detail below. On the other
hand, discrete periodic real Gaussian fields have, modulo Hermitian symmetry, independent
Fourier coefficients, and in particular independent phase [83] [127] [51]. As a consequence,
these texture synthesis models are invariant by the multiplication of any Hermitian symmetric
phase field. Let us moreover mention that invariance of the distribution of probabilistic images
with respect to periodic translations also implies a weak form of phase independence, namely
pairwise independence [117]. Thus, given an input image u defined over a domain D, we
introduced the set of images Mu = {s ∈ RD; ŝ(0) = û(0) and |ŝ(ξ)| = |û(ξ)| ∀ξ 6= 0} that
is the class of images that define the same ADSN and RPN models as u and experimented
deformations of u obtained by manipulating its phase.
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Interestingly, the null-phase representative element of the class Mu displays particular
concentration around the spatial origin, and we chose to name this special representant the
texton of its micro-texture class, after the naming by Julesz in [65].

Definition (Texton of an image). The texton of an image u : D → R is the image T (u) :

D → R that has the same mean value as u, the same Fourier amplitude as u, and identically

null phases except maybe at the spatial origin 0. In others words, T (u) is characterized in

Fourier domain by

T̂ (u)(0) = û(0) and ∀ξ ∈ Ω \ {0}, T̂ (u)(ξ) = |û(ξ)| (1.5)

or, equivalently, in the spatial domain by

∀x ∈ D, T (u)(x) =
1

|D| û(0) +
1

|D|
∑

ξ∈D,ξ 6=0

|û(x)|e2iπ〈x,ξ〉. (1.6)

Interestingly, the texton can be characterized as a solution of some variational problems.
In [117] we introduced

(P1) : max
v∈Mu

v(0)

and proved the following result.

Proposition (Property of spatial concentration). For any image u : Ω → R, T (u) is the

unique solution of (P1).

Another variational formulation of the concentration problem, first introduced in [34], can
be stated as follows.

(P2) : min
v∈Mu

∑

x∈Ω
A(x)v(x)2, (1.7)

where A(x) is a penalty function that should increase as |x| increases. We proved a range
of results about optimal concentration problems at the spatial origin (P2) satisfied by the
texton.

Proposition (Property of spatial concentration). Let u : D → R be an image with a non-

negative mean value. Let A : D → R be a symmetric weight image such that A(0) = 0

and

∀ξ ∈ D \ {0}, Â(ξ) ≤ 0. (1.8)

Then, A is non-negative and T (u) is a solution of the optimization problem (P2) associated

to A (Equation (2.15)).

Starting with this concentrated representation of micro-textures, we studied several strate-
gies to design sparse and faithful approximations. Such approximations are best judged de-
pending on the task that they are used to performed. For texture synthesis, the criterion is
visual and based on the distinguishability of textures generated by the texton and its sparse
approximation. In this case, hard thresholding appears to be the best suited procedure to
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Figure 1.3: Top: the micro-texture samples based on the texton (left) and its sparse approx-
imation (right) are indistinguishable up to an affine contrast change. Bottom: the texton
(left) is very concentrated around the spatial origin and a sparse approximation (right) can
be obtained through hard thresholding.

sparsely approximate textons. In this procedure, T (u) is approximated by v = fhardα,β (T (u)),
where fhardα,β is a hard-thresholding function

fhardα,β (t) =





t if t ≤ −α
0 if −α < t < β

t if β ≤ t

and the choice of α and β is to be optimized. Our approach thus provides a new tool, which
could be of useful for texture analysis tasks e.g. texture classification and segmentation. To
illustrate this point, let us cite a result about the Fréchet distance between textures found in
[39] and [132].

Theorem ([39], [132]). Let u0 and u1 be two images with zero mean. Then, the Fréchet

distance between the two Gaussian distributions ADSN(u0) and ADSN(u1) is given by the L2

distance between their respective textons:

d (ADSN(u0),ADSN(u1))
2 = min

U0∼ADSN(u0)
U1∼ADSN(u1)

E
(
‖U0 − U1‖22

)
= ‖T (u0)− T (u1)‖22.

The same result holds also for the Fréchet distance between the two RPN distributions RPN(u0)

and RPN(u1):

d (RPN(u0),RPN(u1))
2 = min

U0∼RPN(u0)
U1∼RPN(u1)

E
(
‖U0 − U1‖22

)
= ‖T (u0)− T (u1)‖22.
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Sparse color textures. The extension of our approach to color images raised many dif-
ficulties and proved to be a quite challenging step. A strategy consisted to keep working
directly on the phases of each RGB channel. In the case of color images, the link between
the empirical periodic covariance Γu and the Fourier transform is given by

∀ξ ∈ D, Γ̂u(ξ) =
1

|D| û(ξ)û(ξ)
∗,

where û(ξ) is considered as a column matrix in C3 and the notation ∗ denotes the conjugate
transpose of a complex matrix. A natural extension of the class Mu to color images requires
that both the color mean and auto-correlation are preserved

Proposition. A necessary and sufficient condition for u and v to have the same color mean

and auto-correlation is that there exists a phase field ϕ : D −→ R/2πZ such that ϕ(−ξ) =

−ϕ(ξ) for all ξ in D and

∀ξ ∈ D, T̂ (u)(ξ) = eiϕ(ξ)û(ξ).

We thus define, for each color image u, the class

Mu = {s ∈ R3D; ∃ϕ : D → 2πR/Z, (∀ξ ∈ D), (ϕ(−ξ) = −ϕ(ξ)) and (ŝ(ξ) = eiϕ(ξ)û(ξ))}

and a color texton that relies on the phase of a grey-scale projection of the input color image
u as follows.

Definition (α-color texton). For a phase field ϕ : D → R satisfying the Hermitian-symmetry

condition ϕ(−ξ) = −ϕ(ξ) for all ξ ∈ D, let us denote by Sϕ the operator defined on color

images u by shifting the phases of all the channels with the phase field ϕ. That is, if u is a

color image, then Sϕu is also a color image, given by

∀ξ ∈ Ω, Ŝϕu(ξ) = e−iϕ(ξ)û(ξ).

For α ∈ R3, let us define the α-color texton by the operator

u 7→ Tα(u) := Sϕα·uu, where ϕα·u is the phase field of α · û.

This approach was arguably motivated by the following result on the projections of such
α-color textons onto real (grey-scale) images.

Proposition. For any color image u and any α in R3, we have the identity

α · Tα(u) = T (α · u),

where T is the texton operator on grey-level images defined in Equation (2.16). As a conse-

quence, the α-color texton is solution of the two following optimization problems:

α · Tα(u)(0) = max
v∈Mu

α · v(0) and Tα(u) = Argmin
v∈Θu

∑

x∈D
A(x) (α · v(x))2 ,

where A is a real-valued image with non-positive Fourier transform, as defined in Proposition

2.5.
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The choice of α can be optimized for each input u through principal component analysis.
Indeed, the principal component α̃ seems to be empirically always the best choice in terms
of spatial concentration. This can be interpreted in light of the following proposition which
shows that the color direction α̃ is the one that captures, in expectation, most of the “energy”
of the phase-shifted images.

Proposition. Let u be a color image and let α ∈ R3 be any color direction. Let A be a

real-valued image with non-positive Fourier transform, as defined in Proposition 2.5, and let

the weighted energy of a phase-shift Sϕu in the α direction be defined by

EA,α(Sϕu) =
∑

x∈D
A(x) |α · Sϕu(x)|2.

Then, taking the expectation of this energy when the ϕ(ξ) are i.i.d. (up to the Hermitian

symmetry condition) uniform on [0, 2π), we get

E[EA,α(Sϕu)] = 2|D|


 ∑

ξ∈D+\{0}
λξ


 tαΓu(0)α,

where λξ = − 1
|D|Â(ξ) are positive coefficients. Therefore, whatever A, E[EA,α(Sϕu)] as a

function of α ∈ S2 (S2 is here the unit sphere of R3) is maximal when α = α̃.

Computing a sparse approximation to the α̃-texton turns out to be more challenging than
its grey-scale counterpart. Indeed, not only intra-channel variance is lost by the process, which
was already observed for grey-scale images, but also cross-channel correlations are modified,
which can radically alter the color spectrum of textures. One simple way to compensate for
this color loss follows. For any given sparsely supported function χ (a support either imposed
or derived e.g. by hard thresholding):

• compute m0 the empirical mean and Γ0 the color-covariance matrix of the orginal color
image u0

• compute mχ the empirical mean and Γχ the color-covariance matrix of the texton
approximation χTα(u)

• perform orthogonal diagonalizations Γ0 = O0D0O
∗
0 and Γχ = OχDχO

∗
χ

• compute the equalization matrix Meq = O0D
1/2
0 D

−1/2
c O∗

c

• compute the adjusted sparse-approximate color texton as Meq(χ(x)T (u)(x)−mχ)+m0

for each x in D.

The results for color micro-texture synhtesis after this equalization step are visually com-
pelling (see figures in Chapter 2).
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1.4 Phase and projection of signals

In a celebrated article [106], Oppenheim and Lim discussed how the information contained in
the phase (denoted ϕu where û = |û|eiϕu) is of particular importance as regards the shapes
contained in image u. Interestingly, the definition of the “texton” for micro-textures is yet
another example of a very general phenomenon in signal processing, namely “the importance
of phase”.

Figure 1.4: The importance of phase in images. From left to right: “Lena”, “clouds” and the
image obtained by taking the phase of “Lena” and the modulus of “clouds” as defined in (3.4).

In the grey-scale setting, the texton is indeed a particular case of this phenomenon. More
precisely, it is straightforward to see that the texton is the image with the phase of δ0 –
the Dirac mass at the origin – and the modulus of the input texture image. In other word,
the remarkable concentration of the texton at the spatial origin (Propositions 2.3 and 2.5)
illustrates what could be refered to as a strong “plasticity” property of the set of images with
a given Fourier modulus such as Mu (recall that Mu = {s ∈ CD; |ŝ(0)| = û(0) and |ŝ(ξ)| =
|û(ξ)| (∀ξ ∈ D \ {0})}).

Thus, our research on the phase lead us to investigate beyond their commonly accepted
role. Indeed, given two images u and v, we realized that the phase/modulus swap defined by

ŵ(ξ) = 1{û(ξ) 6=0}
û(ξ)

|û(ξ)| |v̂(ξ)| (1.9)

could be interpreted as an orthogonal projection onto some (non-convex) set Mv, as

w ∈ argmin
s∈Mv

‖ s− u ‖2 . (1.10)

Hence, we adopted this more general framework and performed a few experiments of
orthogonal projection of an image u onto different sets of images, that were designed to both
impose the phase of the projection and leave enough degrees of freedom (plasticity) to find
visually compelling approximations of the projected image. Most notably, we introduced the
sets D(π)

v = RD ∩ {s ∈ CD; ŝ(ξ) ∈ R.v̂(ξ) (∀ξ ∈ D)} and D(2π)
v = RD ∩ {s ∈ CD; ŝ(ξ) ∈

R+.v̂(ξ) (∀ξ ∈ D)} which have the property of imposing respectively modulo π or modulo
2π the phase of images. We then performed orthogonal projections of images u onto these
constraint sets.
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Proposition. The set D(π)
v is a linear subspace of RD and D(2π)

v is a convex cone. Moreover

argmin
s∈D(π)

v

‖ s− u ‖2= {PD(π)
v

(u)} (1.11)

and

argmin
s∈D(2π)

v

‖ s− u ‖2= {PD(2π)
v

(u)} (1.12)

where PD(π)
v

(u) (resp. PD(2π)
v

(u)) is the orthogonal projections of u onto D(π)
v (resp. D(2π)

v )

which can be defined through their discrete Fourier transform by

̂PD(π)
v

(u)(ξ) = 1{v̂(ξ) 6=0}Re
(
û(ξ)v̂(ξ)

) v̂(ξ)

|v̂(ξ)|2 (1.13)

and
̂PD(2π)
v

(u)(ξ) = 1{Re(û(ξ)v̂(ξ))>0}Re
(
û(ξ)v̂(ξ)

) v̂(ξ)

|v̂(ξ)|2 . (1.14)

The interest of these constructions lies both in the fact that they can be easily imple-
mented, thanks to their algebraic simplicity, and in the constraints that they impose. Since
the phase of both PD(2π)

v
(u) and PD(π)

v
(u) are constrained to be radically different from the

phase of u, a common interpretation of Oppenheim and Lim suggests that the “shapes” of u
should be absent of these images. Surprisingly, we observe that some shapes of u can easily

Figure 1.5: Images of the projections of “Lena” (as the target image u) onto two constraint
sets defined by “clouds” (as v). In particular, all the images shown here have the phase of
“clouds” either modulo π (left) or modulo 2π (right), but “Lena” is somewhat recognizable
in each projection. Left: PD(π)

v
(u) (phase of “clouds” modulo π). Right: PD(2π)

v
(u) (phase of

“clouds” modulo 2π).

be recognized by human vision in both PD(2π)
v

(u) and PD(π)
v

(u). Moreover, we can show that
these projections allow for exact reconstruction, and direct formulas can even be provided,
under easily satisfied hypotheses. These reconstructions arguably compete with the exact re-
construction scheme proposed by Oppenheim and Lim in their seminal paper [106], as up to
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50% of the signal can be reconstructed based solely on projections (see discussion in Chapter
3).

The perceptual phenomenon of recognition of the original image also occurs in more
restricted sets of images, where not only the phase, but also the modulus can be somehow
constrained, see the experiments in Chapter 3. Interestingly, this recognition phenomenon
also occurs – albeit to a noticeably lesser extend – when the discrete Fourier transform is
replaced by a unitary operator drawn at random. This further supports the hypothesis that
the importance of the phase in signal is actually due to the fact that the phase characterizes
the projection onto a large enough set (see (3.4)). Such a replacement, however, allows for
recognition results of a lesser quality than with the original Fourier transform. A tentative
explanation lies in the particular interaction between the Fourier transform and some edge
detector operators, like gradients or smoothed gradients.

For instance we show that for the constraint set S being either Mv, D(π)
v or D(2π)

v }, the
projections onto these sets satisfy

PS(u) ∈ argmin
s∈S

‖ ∇s−∇u ‖2 (1.15)

where the gradient operator is classically defined by ∇u = (∂1u, ∂2u) : D → R2 for any image
u : D → R.

1.5 Asymptotics of the random phase algorithm

At this stage of the discussion, images have always been considered to be defined over a finite
grid, typically Z/MZ×Z/NZ. Shannon-Nyquist theory shows that this setting is well suited
to actually sample “real” images (defined over the infinite domain R2) perfectly, provided that
they can satisfy two hypotheses, namely

• compactness: an image assumed to be periodical or compactly supported

• smoothness: the Fourier transform is itself assumed to have a compact support.

These two assumptions are ubiquitous and often implicit in image processing. They are
also generally considered to form a framework adapted to computer vision. Indeed, physical
limitations of optical devices – most notably diffraction inherent to the measurement of
local light intensities with photoreceptors – legitimate the smoothness assumption. The
compactness assumption seems to stand for an obvious consequence of spatial restrictions of
any measurement system.

However, as regards textures, these hypotheses might appear somehow limiting: both
infinite size and arbitrary levels of non-trivial detail might be of particular interest. As we
shall see, these two directions out of the discrete-finite paradigm amounts to studying limits
of the random phase model by growing the domain Z/MZ × Z/NZ either to Z2 (non-local
textures) or to R2/Z2 (non-discrete or continuous textures).
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1.5.1 Non-local textures

As argued supra, a texture is an object of arbitrary dimensions, and thus a non-compact
framework seems quite natural. In Chapter 2 (also [36]) we investigated the asymptotics
of the random phase algorithm when adapted to output textures over Z2. In other words,
assuming a constant level of details, the domain is expanded to infinity and the periodicity
assumption is thus waived. Interestingly, we found the limit to be a Gaussian field. More
precisely, let us define a spectrum S as a real non-negative function defined over R2, periodic
(with a group of periods containing 2πZ2) with the following assumptions:

• S is symmetric: S(−ξ) = S(ξ);

• S(0) = 0;

• S is bounded and piecewise continuous on R2.

For any integers M and N , we can define a RPN model UMN based on the spectrum
function S which dimensions are M ×N (that is, which is MZ×NZ periodic). In DMN

ÛMN (ξ) = S(ξ)eiϕ(ξ)

for any ξ in 2π
M Z × 2π

M Z with ϕ(ξ) i.i.d. modulo Hermitian-symmetry over DMN . In the
spatial domain Z2, DFT translates this to

UMN (x) =
1

MN

∑

ξ∈DMN

S(ξ)eiϕ(ξ)e2iπx·ξ

for any x in Z2. Interestingly, the finite-dimensional distributions of a proper renormalisation
of UMN converge to a Gaussian field over Z2.

Proposition. Under the set of hypotheses upon S above, ŨMN =
√
MNUMN converges

towards a Gaussian field U defined over Z2 in finite-dimensional distributions, as (M,N)

tends towards infinity. The covariance of the limit random field U is given by

Cov(U(x), U(x′)) =
1

4π2

∫ π

−π

∫ π

−π
S(ξ1, ξ2)

2 cos((x− x′).(ξ1, ξ2))dξ1dξ2 (1.16)

for any x and x′ in Z2.

This further explains the similarities of the outputs of the two algorithms ADSN and
RPN as mentionned in [51].

1.5.2 Continuous textures

Textures are ubiquitous in images. For an image with infinite resolution, one could argue
that locally “almost every pixel” (in the sense of measure theory) is part of a texture sub-
image. Thus an important aspect of texture analysis is to understand the local properties
when gathering an arbitrary level of detail.
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In particular, we are interested in the study of sample paths regularity from fields gen-
erated by the RPN algorithm from a given spectrum defined over Z2. Regularity of random
fields is an important area of modern mathematical research. For instance, multifractal anal-
ysis is mainly concerned with regularity analysis of random processes and fields, and has
drawn considerable attention since the seminal work of Mandelbrot [92]. These developments
have been of great interest for the image processing research community [113], [131].

The study of the limit of the RPN model over R2/Z2 turns out to be, in many respects, less
straightforward than the Z2 Gaussian limit presented above. Reaching an infinite resolution
amounts to grow the initial discrete domain Z/MZ × Z/NZ ≡ ( 1

MZ)/Z × ( 1
NZ)/Z to the

continuous torus R2/Z2, and the Fourier domain to infinite discrete plane Z2.
We chose to extend the random phase algorithm by considering stochastic sums over Zd

∑

n∈Zd

ane
i(n·t+Φn) (1.17)

with the following properties:

• H1: “(an)n∈Zd is a deterministic, real, non-negative, even (a−n = an for all n in Zd)
square summable family with a0 = 0"

• H2: “(Φn)n∈Zd is a pure phase noise field, that is for all n in Zd, Φ−n = −Φn (modulo 2π)
almost surely, Φn has uniform distribution over R/2πZ and (Φn)n∈A are independent
for all A ⊂ Zd such that A and −A do not intersect."

Properties of such fields are the object of Chapters 4 and 5 (and articles [118] and [14]),
whose results are summarized below.

Marginal law. To highlight the difference of nature between this work and the asymp-
totics presented above, we notice that for any square summable familly (bn)n∈N the sum∑

n∈N bne
iΦn is non-Gaussian – actually non-infinitely divisible – as its characteristic func-

tion vanishes. In Chapter 4 (also [118]) we prove that the density function of the marginal
law is uniformly continuous and bounded over R as long as at least three (non-symmetrical)
components do not vanish.

Sums over Zd. In this work, we extended results already known for random series of
functions

∑
n∈Z ane

i(nt+Φn) (d = 1) for sums over Zd with arbitrary d, as defined in (1.17).
In particular, we have been interested in sample paths continuity without modification. The
celebrated Kolmogorov continuity Theorem (see [80] Chapter 11) was thus of little help.
The study of both a pointwise and a uniform limit was needed. Interestingly, as we shall
discuss below (see Theorem 4.1), these limits happen to be equivalent under some reasonable
hypotheses.

One difficulty arising when dealing with Fourier sums over Zd is that there is no canonical
way to define infinite summation, which makes the definition of both pointwise and uniform
limits ambiguous.

We thus defined “methods of summation”, inspired by Kahane’s summation matrices [69]
in the one-dimensional configuration, as follows.
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Definition (Method of summation). (Ak)k∈N is said to be a (symmetrical) method of sum-

mation over Zd if

1. for each k, Ak is a finite subset of Zd (such that −Ak = Ak);

2. for each k, Ak ⊂ Ak+1 ;

3.
⋃

k∈NAk = Zd.

Given a Banach space B, a family (xn)n∈Zd of elements in B is said to be summable according

to (Ak)k∈N if
∑

n∈Ak
xn converges in B as k → ∞.

Interestingly, in our case as defined by Equation (1.17), independence with respect to
the methods of summation can be obtained, just as with summation matrices in the one-
dimensional case ([69] Chapter 2).

Proposition. Let (Ak)k∈N be a symmetrical method of summation in Zd. Assume that,

almost surely, the sequence of functions

SAk
: t 7→

∑

n∈Ak

ane
i(n·t+Φn) (1.18)

converges uniformly (resp. is uniformly bounded) on Td as k → ∞ and call SA its limit.

Then, under the hypotheses H1 and H2, for any other method of summation (Bk)k∈N, the

sequence of functions

SBk
: t 7→

∑

n∈Bk

ane
i(n·t+Φn) (1.19)

converges a. s. uniformly to SA (resp. is a. s. uniformly bounded) on Td as k → ∞.

Continuity of samples. This independence result allows an extension of a theorem by
Billard [15] and Kahane [69] to the more general case where d ≥ 2, which is the main result
of Chapter 3. Part of this result had already been proved in the general case where the circle is
replaced by any compact abelian or non-abelian group (see [47]). Our purpose was to extend
the result of Billard and Kahane to our modeling of micro-textures (random Fourier sums
defined over R2/Z2) and the step from R/Z to R2/Z2 paved the way to the generalization to
Rd/Zd.

Theorem (Billard-Kahane, extended in dimension d). Under the hypotheses H1 and H2, the

following conditions are equivalent:

(i) ω-almost surely, there exists a continuous function X(ω, ·), such that (ane
iΦn(ω))n∈Zd

are the Fourier coefficients of X(ω, ·);

(ii) there exists a method of summation (Ak)k∈N such that, almost surely, (SAk
)k∈N con-

verges uniformly;

(iii) for all methods of summation (Ak)k∈N, almost surely, (SAk
)k∈N converges uniformly;
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(iv) there exists a method of summation (Ak)k∈N such that, almost surely, (SAk
)k∈N is

bounded;

(v) for all methods of summation (Ak)k∈N, almost surely, (SAk
)k∈N is bounded;

(vi) for all methods of summation (Ak)k∈N, almost surely, for all t in Td, (SAk
(t))k∈N

converges.

This result turns out to be quite unpractical, and the results proved in Chapter 4 aim at
complementing its claims with a more tractable approach. We are indeed looking for tractable
conditions for the equivalence chain – denoted by (⋆) – in Theorem 1.5.2 to hold true. This
area of research has been also widely studied in the one-dimensional case [69], [32]. Let us
also mention the breakthrough by Fernique [45], first introducing metric entropy methods
to the field, which paved the way for necessary and sufficient conditions on random Fourier
series defined over R. Unfortunately, these latter conditions have many drawbacks: they
are practically intractable and they are hard to extend to dimensionality greater than one.
Hence, we developped a framework of hypotheses to provide continuity results for random
sums (1.17).

Assume that Hypothesis H1 is satisfied and assume that (Nk)k∈N is an increasing sequence
of integers and that (Ak)k∈N is a method of summation such that, for each k, Ak ⊂ B∞(Nk)

the l∞ ball. Let us state the two hypothesis

• H3:
∑

k∈N


log(Nk+1)

∑

n∈Ak+1\Ak

a2n




1/2

<∞

• H4:
∑

k∈N

1

Nk
<∞.

Theorem. Assume that hypotheses H1, H2, H3 and H4 are satisfied. Then (⋆) holds.

Interestingly, an almost converse results can be stated. For all k in N, let us define σk ≥ 0

by
σ2k :=

∑

2k<|n|∞≤2k+1

a2n. (1.20)

Theorem. Assume hypotheses H1, H2 and

H7 :
∑

k∈N
σk = ∞

are satisfied, with σ2k defined by (5.40). Then (⋆) does not hold, and (SAk
)k∈N is almost surely

unbounded for every method of summation (Ak)k∈N.
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Hölder regularity. In order to quantify the degree of regularity of the samples of random
phase fields, we introduced the Hölder regularity and extended again results already known in
the case d = 1 to the general case. In order to gain some insight over anisotropic properties of
these fields, we introduced coefficients and summation sets defined by quasi-norms [13]. Let
E = diag(α1, . . . , αd) be a diagonal matrix with positive eigenvalues α1, . . . , αd ∈ (0,+∞)

and τE be a quasi-norm associated with E [13] and let us denote α = min
1≤j≤d

αj . Assume that

Hypothesis H1 is satisfied and, for all k in N, define στ
E
,k ≥ 0 by

σ2τ
E
,k :=

∑

2k<τ
E
(n)≤2k+1

α2
n. (1.21)

Theorem. Assume that hypotheses H1, H2 and

H8(τE ) : ∃β ∈ (0, a) and C > 0 ; ∀k ∈ N, στ
E
,k ≤ C2−βk

are satisfied, with σ2τ
E
,k defined by (5.69). Then, almost surely, (⋆) holds and, for any method

of summation, the limit function X satisfies that almost surely, there exists a constant C > 0

such that

∀t, s ∈ Td, |X(t)−X(s)| ≤ CτE (t− s)β log(1 + τE (t− s)−1)1/2.

We may obtain a partial converse in the isotropic case for E = I, considering τE = | · |∞.
Actually, in this setting, we extend the classic condition for the case d = 1 (see [69], Chapter
7, Theorem 3).

Proposition. Let f : Td 7→ R be a α-Hölder function. Then for all k in N
∑

2k<|n|∞≤2k+1

|f̂n|2 ≤ Cf2
−αk (1.22)

holds for some constant Cf , where f̂n denotes the n-th Fourier coefficient given by

f̂n =
1

(2π)d

∫

Td

f(t)e−in·tdt.

These conditions allow to derive many tractable examples of spectrum profiles and to
compute their Hölder regularity with a fair precision. For instance, we derive the critical
Hölder exponent with isotropic power spectrum, where an = |n|−α

2 for some α in (0, 1).
Indeed, the theorem stated in the last paragraph (Theorem 5.1 in Chapter 5) yields that if
α > d/2, the condition (⋆) holds. Moreover sum-integral comparison allows to derive two
constants C1 and C2 such that

C12
k(d−2α)/2 ≤ σk ≤ C22

k(d−2α)/2. (1.23)

Thus, for any norm ν the random phase field associated with an = ν(n)−α is almost surely

• β-Hölder for all β < α − d

2
thanks to the theorem in this paragraph (Theorem 5.3 in

Chapter 5)

• not β-Hölder for β > α − d

2
thanks to the proposition in this paragraph (Proposition

5.3in Chapter 5).
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1.6 Outline

The rest of this thesis is organized as follows.

Chapter 2 gathers our work on what we defined as texton and a sparse and localized
representation of textures, along with the asymptotical analysis of the RPN model defined
over Z2. In this Chapter, we first present the basic properties of the gray-scale texton, and
provide a few results with respect to its spatial concentration properties. After discussing
scaling properties of Gaussian periodic textures, we establish the convergence of Random
Phase Noise textures towards a Gaussian field with appropriate renormalization. We then
move on to build sparsely supported approximations of textons. The last section of Chapter 2
is devoted to studying the extension of the gray-scale case to color images, and two approach
are proposed: first, a color texton is constructed via the phase field of a projection onto
real (gray-scale) images ; second, a matricial color texton is introduced as a matricial square
root of the covariance function. Finally, sparse approximation strategies for color textons are
discussed.

Part of this work has already been published as conference proceedings, see [34] and [35].
A more thorough version has been submitted for publication in a journal.

Chapter 3 focuses on our experiments and tentative explanations on the phase-constrained
projections. In this Chapter, we develop the following argument: the “importance of phase
in signals”, as detailed by Oppenheim and Lim in [106], can be considered as a case of a
more general human vision recognition phenomenon. Namely, it appears that recognition of
large error approximations (LEA) of images occurs for a much broader range of sets than
the sets defined by constraining the Fourier modulus from an image. We illustrate our
purpose by choosing sets where the phase itself is constrained, and show a few surprising
results. We extend our range of experiments by replacing the Fourier transform by more
generic unitary transforms and discuss how the fact that the Fourier transform diagonalizes
translation operators could explain why it is so well suited to LEA.

Chapter 4 dives into the continuous texture asymptotics. We provide basic results on the
continuous limit of the random phase noise model. We introduce our “method of summation”
framework to deal with infinite summations over multi-dimensional domains (without total
order). We propose a generalization of the Billard-Kahane Theorem on the equivalence be-
tween many different almost sure convergences, most notably uniform convergence, pointwise
convergence, and boundedness. This work has been accepted for publication in the Journal
of Fourier Analysis and Applications.

Chapter 5 studies continuous texture asymptotics further, by focusing on conditions for
almost sure regularity. Both continuity and Hölder regularity are investigated and in each
case, both sufficient and necessary conditions are stated. Taking advantage of the multi-
dimensional framework, we emphasize the anisotropic aspect of textures. This work has been
submitted for publication.
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Chapter 6 concludes by summing up the main findings and the some research perspective
that can be drawn from our work.
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Chapter 2

A Texton for Random Phase and

Gaussian Textures

2.1 Introduction

2.1.1 The notion of texton

It is a very general problem to find a good descriptor of a texture that can be used at the same
time for the analysis of the texture (or its discrimination) and for its synthesis. In his seminal
work, Julesz ([63], [64], [65], [66]) introduced the notion of texton to describe “the putative
units of pre-attentive human texture perception”. This notion, first introduced for artificial
texture patterns, has then been generalized in the literature for different types of textures.
Let us mainly mention the paper of Zhu et al. “What are Textons” [136] and the ones of
Leung and Malik [82] and Malik et al. [89]. In these papers, the authors aim at answering
the problem raised by Zhu et al.: “Unfortunately, the word “texton” remains a vague concept
in the literature for lack of a good mathematical model.” This will be one of the aim of
this chapter: to give a good mathematical model of the texton. In Zhu et al., the authors
learn the texton dictionary of a natural texture image by fitting a generative model to the
observed images. They study the geometric (for static texture images), dynamic (for video
sequences, and moving textons are called “motons”) and photometric (for images representing
a 3D surface under varying illuminations, and the texton is then called a “lighton” in that
framework) structures of the texton representation. In Leung and Malik, the textons are
local image patches obtained as the K centers (obtained by K-means) of the filter responses
to a filter bank (made of Gaussian and difference of Gaussian filters). This definition is also
extended to relief textures (images of a material under different illuminations), and in that
framework they obtained a so-called 3D texton model.

Here, in this chapter, we will consider two particular models of texture that are either
Gaussian stationary random fields or random phase noises. These are two mathematical
models of textures that are precisely defined, and this will allow us to give a precise mathe-
matical definition of their texton. We will also be able to give theoretical properties of this
texton, in particular about its sparsity. Gaussian and Random Phase textures are models of

35
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textures that are widely used in Computer Graphics (because they are limits of spot noise
type models [127], see also e.g. [77]) but also for medical images. In particular, Gaussian
textures encompass all 1/fα noise models (sometimes also called power-law noise or pink
noise). All these are micro-textures models, as opposed to macro-textures, according to the
discussion in [51]. Macro-textures can be described as images containing spatially organized
visual elements, like a periodic brick of wall, or a cheetah skin image for instance. On the con-
trary, micro-textures do not contain well-identified “objects” and are characterized by the fact
that they are perceptually invariant under randomizing the phases in the Fourier transform.
This property is not true for macro-textures, because changing the phases then completely
destroys the “objects” of the image. Among all possible realizations for the phase field, we
will here focus on the one that has identically null phases. This is a very simple choice, but
it leads to very interesting properties for both texture analysis and texture synthesis. We
will call this particular image the texton of the micro-texture, and will we show that it can
be related to the two fundamental aspects of textures according to Julesz: the second-order
statistics and the texton as a notion of an elementary shape that characterizes the texture.

In that framework, the texton we define can be used for the synthesis of the texture on
domains of arbitrary size but also for the discrimination of textures. Indeed, we have a natural
distance between textures (given by the optimal transportation distance between probabilistic
distributions) that we will prove to be simply equal, in the case of gray-level images, to the
L2 distance between their respective texton. Being able to discriminate different textures via
their texton can then be used for image segmentation as done for instance by Malik et. al. in
[89]. The notion of texton we develop here has been first described in a preliminary version
of this work [35]. It as been used in [132] for texture synthesis and mixing (using the optimal
transportation distance), and also extended to dynamic textures.

This chapter is organized as follows. We first start by defining the framework and the
notations. We also recall the precise definitions of Gaussian Textures (GT) and of Random
Phase Noise (RPN). In Section 2.2 we define the texton of a gray-level image (as the image
that has the same Fourier amplitudes and null phases) and we give many properties of this
texton, in particular in terms of “concentration”. Then in Section 2.3, we discuss the way a
small support texton can be obtained from the original texton, and the way a texture can be
synthesize on a domain of arbitrary size. In Section 2.4, the definition of texton is extended
to color texture images. The extension is not straightforward, and there are two different
definitions: the texton as a color image or the texton as a matrix-valued image (this second
definition is more general and contains the first one). Finally, we end the chapter with some
conclusions and perspectives.

2.1.2 Framework and notations

We first describe here the framework and the notations that will be used in the following. For
an integer n ≥ 1, we will denote by In the discrete interval defined by {−n−1

2 , . . . ,−1, 0, 1, . . . , n−1
2 }

when n is odd and by {−n
2 , . . . ,−1, 0, 1, . . . , n2 − 1} when n is even, also associated with the

cyclic group Z/nZ. In all cases the cardinality of In is n. Moreover we will denote by I0n the
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points of In that do not have a distinct symmetric point in In, that is, I0n = {0} when n is
odd and I0n = {0,−n

2 } when n is even.
Let u : D → R be a discrete M×N gray-level image, defined on the domain D = IM×IN .

For x ∈ D, u(x) represents the intensity of the pixel x. Notice that it is not very usual to
have negative spatial coordinates for the pixels, but because of the properties of the texton
(symmetry and concentration around the point 0 = (0, 0)), it is more convenient to consider
that the point 0 is located at the center of the image.

The (non-unitary) Discrete Fourier Transform (DFT) of u is the complex-valued function
defined on D by

∀ξ ∈ D, û(ξ) =
∑

x∈D
u(x)e−2iπ〈x,ξ〉, (2.1)

where the inner product between x = (x1, x2) and ξ = (ξ1, ξ2) is defined by 〈x, ξ〉 = 1
M x1ξ1+

1
N x2ξ2 to have simpler formulas. As usual, the image u can be recovered from its Fourier
transform û by the (non-unitary) Inverse Discrete Fourier Transform:

∀x ∈ D, u(x) =
1

|D|
∑

ξ∈D
û(ξ)e2iπ〈x,ξ〉, (2.2)

where |D| =MN is the size of the domain D. In particular, the mean value of u, defined as

mu =
1

|D|
∑

x∈D
u(x), (2.3)

satisfies |D|mu = û(0).
A function ϕ : D → S1 is a phase of u if it satisfies û(ξ) = |û(ξ)|eiϕ(ξ) for all ξ ∈ D (note

that ϕ(ξ) may take any value when û(ξ) = 0). Since the image u is real-valued, we necessarily
have ϕ(−ξ) = −ϕ(ξ) for all ξ ∈ D such that û(ξ) 6= 0. More precisely, if û does not vanish
on D, the image u is real-valued if and only if the following constraints are satisfied:

{
|û(−ξ)| = |û(ξ)| and ϕ(−ξ) = −ϕ(ξ) for ξ ∈ D \ I0M × I0N ,

ϕ(ξ) ∈ {0, π} for ξ ∈ I0M × I0N .
(2.4)

In the following, we will impose this set of constraints (2.4) even when the Fourier transform
of u may vanish. To have simpler notations, unless specified otherwise we will assume in the
following that M and N are odd, and define

D+ =

(
{0} ×

{
1, 2, . . . ,

N − 1

2

})
∪
({

1, 2, . . . ,
M − 1

2

}
× IN

)
, (2.5)

so that the domain D can be partitioned into D = D+∪ (−D+)∪{0} (disjoint union). Then,
to define a real-valued image on D, thanks to (2.4) it is enough to specify the values of its
Fourier phases and amplitudes on D+ ∪ {0}. Let us insist on the fact that we assume M
and N odd in the theoretical results only to simplify the proofs but in practice, from the
numerical and experimental point of view, M and N can be of any parity.

Given an image u : D → R, we may consider its periodic extension to Z2 as the image
u̇ : Z2 → R defined by

∀x = (x1, x2) ∈ Z2, u̇(x) = u (x1 (modM), x2 (modN)) . (2.6)
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This allows us to define the periodic convolution between two images u : D → R and v : D →
R as the image u ⋆ v : D → R given by

∀x ∈ D, (u ⋆ v)(x) =
∑

y∈D
u(y) v̇(x− y).

This convolution is described more simply in Fourier domain, since the convolution/product
exchange property, which will be extensively used throughout this chapter, states that

∀x ∈ D, û ⋆ v(ξ) = û(ξ)v̂(ξ). (2.7)

We shall also make use of Parseval’s Theorem: if the L2 norm of a (real-valued or complex-
valued) image u : D → C is defined by ‖u‖2 =

(∑
x∈D |u(x)|2

)1/2
, then one simply has

‖û‖22 = |D| · ‖u‖22.

2.1.3 Gaussian random fields and Fourier transform

Stationary Gaussian textures form a widely used model of textures. For instance, the ADSN
model that we introduce infra from [51] – the limit of a renormalized shot noise field with
infinitely many shots – are known to be Gaussian. Such models are very well characterized
in the Fourier domain (in the periodic case). Indeed, we have the following result.

Theorem 2.1. Let (U(x))x∈D be a real-valued random field on D. Then (U(x))x∈D is a

zero-mean Gaussian periodic stationary random field if and only if the random variables

{
Û(0),Re Û(ξ), Im Û(ξ); ξ ∈ D+

}

are independent zero-mean Gaussian variables. Moreover, in this case, if Γ denotes the co-

variance of U defined by Γ(x) = Cov(U(x), U(0)) for all x ∈ D, then

Var(Û(0)) = |D| · Γ̂(0) and ∀ξ ∈ D+, Var(Re Û(ξ)) = Var(Im Û(ξ)) =
1

2
|D| · Γ̂(ξ).

(2.8)

The proof is given in the Appendix. This theorem gives a characterization of periodic sta-
tionary Gaussian textures: the phases (ϕ(ξ))ξ∈D+ are independent identically distributed uni-
formly on [0, 2π) and independent from the Fourier amplitudes (R(ξ))ξ∈D+ which are indepen-

dent random variables following each a Rayleigh distribution of parameter σ =
√

1
2 |D| · Γ̂(ξ);

except at ξ = 0 where Û(0) follows a zero-mean normal distribution with variance |D| · Γ̂(0).
The simplest case of a Gaussian stationary random field is the white noise: the U(x) are i.i.d.
following the N (0, 1) distribution. Then, in this case Γ(x) = δ0 (the indicator function of
{0}), and thus Γ̂(ξ) = 1 for all ξ ∈ D.

In the following, we will denote by GT(Γ) (GT stands for Gaussian Texture) the law of
the zero-mean Gaussian periodic stationary random field with covariance function Γ.
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2.1.4 Two mathematical models of micro-textures

The mathematical models of micro-textures that we will consider are the two following models
of discrete random fields, called (following the terminology of Galerne et al. [51]) respectively
RPN (for Random Phase Noise) and ADSN (for Asymptotic Discrete Spot Noise). These
two models define, from an original image u, a stationary random field (a random image)
whose first and second order moments are given by the corresponding empirical moments of
u. Since the first moment (the mean value of the field) can be treated separately by adding a
constant value to the random image, we will systematically drop the DC term and focus on
zero-mean random fields. This convention sligthly changes the definitions of the RPN and
ADSN models, but yields a simplification that will be particularly convenient in Section 2.3.

Definition 2.1. The ADSN associated to a kernel k : D → R is the random image

U = k ⋆ W, (2.9)

where W is a white noise with variance 1, that is, the random variables W (x), x ∈ D are

i.i.d. following the normal distribution N (0, 1). We will denote by ADSN(k) the law of U .

Definition 2.2. The (extended) RPN associated to a kernel k : D → R is the random image

U : D → R defined (in Fourier domain) by

Û(0) =
√
|D| k̂(0)W and ∀ξ ∈ D \ {0}, Û(ξ) =

√
|D| |k̂(ξ)|eiΦ(ξ), (2.10)

where the Φ(ξ), ξ ∈ D+ are uniformly distributed on [0, 2π) and independent modulo the

constraint (2.4), and independent of W ∼ N (0, 1). We will denote by RPN(k) the law of U .

We first recall the first and second-order statistics of these two models.

Proposition 2.1 (statistics of the ADSN and extended RPN models). If U ∼ ADSN(k) or

U ∼ RPN(k), then E(U(x)) = 0 for all x ∈ D and

∀x,y ∈ D, E(U(x)U(y)) = Γk(y − x),

where Γk is the D-periodic function defined by

∀z ∈ Z2, Γk(z) =
1

|D|
∑

x∈D
k(x)k̇(x− z). (2.11)

Proof. First, notice that E[Û(ξ)] = 0 for all ξ so thanks to linearity of the inverse Fourier
transform and expectation operators E(U(x)) = 0 for all x ∈ D.

Moreover for all x and y in D, E(U(x)U(y)) = E[ 1
|D|
∑

z∈D U(x + z)U̇(y + z)] = E[U ⋆

U(x−y)] thanks to the stationarity of U . Now simply notice that E[Û ⋆ U(ξ)] = E[|Û |2(ξ)] =
|û|2(ξ) for all ξ to conclude.
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The function Γu−mu that naturally appears for the RPN model is nothing but the empiri-
cal covariance of u, also called auto-correlation. When mu = 0, the two models have the same
statistics up to second order. Contrary to the RPN model, the ADSN model is Gaussian: the
random field U ∼ ADSN(u) is a stationary zero-mean Gaussian random field whose covari-
ance function is Γu (that is, ADSN(u) = GT(Γu)). Conversely, for any D-periodic covariance
function Γ : Z2 → R, GT(Γ) = ADSN(u) whenever u satisfies |û(ξ)|2 = |D| · Γ̂(ξ) for all
ξ ∈ D. This means that the two models GT and ADSN are the same for gray-level textures.
We will see however that this property is not true anymore for color textures.

In practice, as we explained above, the synthesis of a RPN or ADSN texture that looks
like an given examplar texture image u is obtained with mu + U where U ∼ RPN(u) or
U ∼ ADSN(u − mu). Notice that for any c ∈ R, one has RPN(u + c) = RPN(u) (and in
particular RPN(u−mu) = RPN(u)), but ADSN(u+ c) 6= ADSN(u) if c 6= 0.

The difference between the models RPN and ADSN can be simply understood in Fourier
domain. Indeed, if U ∼ ADSN(u), then

∀ξ ∈ D, Û(ξ) = û(ξ)Ŵ (ξ). (2.12)

The random variables Û(ξ), ξ ∈ D+, are i.i.d. and can be written Û(ξ) = R(ξ)eiΦ(ξ), where
each R(ξ) follows a Rayleigh distribution with parameter σ = |û(ξ)|/

√
2 and is independent

from Φ(ξ), which is uniformly distributed on [0, 2π). Hence, the ADSN model can be viewed
as a RPN process (uniform phase randomization) followed by a random perturbation (a
Rayleigh-distributed multiplicative noise) of the modulus of the Fourier transform. This
perturbation has no perceptual impact (see [51]), but it makes the model Gaussian. It is
also interesting to notice that contrary to the RPN model for which |Û(ξ)| = |û(ξ)| is a
deterministic equality for any ξ 6= 0, one has for the ADSN model

∀ξ ∈ D, E
(
|Û(ξ)|2

)
= |û(ξ)|2 and E

(
|Û(ξ)|

)
=





√
π
2 |û(ξ)| if ξ 6= 0,
√

2
π |û(0)| if ξ = 0.

(2.13)

2.2 Definition and properties of the texton

2.2.1 A variational characterization of the texton

As we already explained in the introduction, a micro-texture image is characterized by the
fact that it is perceptually invariant under phase randomization. This can be formalized by
associating, to an image u : D → R, the set Mu of images that have the same mean value as
u and only differ from u by their phase function:

Mu = {v : D → R; v̂(0) = û(0) and ∀ξ 6= 0, |v̂(ξ)| = |û(ξ)|} . (2.14)

Any element of Mu defines the same RPN or ADSN model as u. Now, we would like to find,
among all equivalent members of Mu, one representative that will be as most “concentrated”
or “sparse” as possible. There are many ways to measure the “concentration” of an image.
Since applying a periodic translation of an image only changes its phase function, we can
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choose to measure the concentration around a specific point, choosen to be 0, the center of
the image. We can then formulate the problem of finding the “more concentrated” image in
a variational way by looking for instance to the solution of

(P1) : max
v∈Mu

v(0).

Another possible variational formulation of the concentration problem is

(P2) : min
v∈Mu

∑

x∈D
A(x)v(x)2, (2.15)

where A(x) is a penalty function that should increase as |x| increases. As we will see in
details in Section 2.2.3, it turns out that for some particular A, the solution of (P2) is simple
and is the same as the one of (P1): just take v̂(ξ) = |û(ξ)| for all ξ 6= 0. In other terms,
among all possible phase functions that define the different elements of Mu, the null function
is, as we shall see, particularly interesting. This is why we introduce the following definition
for the texton.

Definition 2.3 (Texton of an image). The texton of an image u : D → R is the image

T (u) : D → R that has the same mean value as u, the same Fourier amplitude as u, and

identically null phases outside 0. In others words, T (u) is characterized in Fourier domain

by

T̂ (u)(0) = û(0) and ∀ξ ∈ D \ {0}, T̂ (u)(ξ) = |û(ξ)| (2.16)

or, equivalently, in the spatial domain by

∀x ∈ D, T (u)(x) =
1

|D| û(0) +
1

|D|
∑

ξ∈D,ξ 6=0

|û(ξ)|e2iπ〈x,ξ〉. (2.17)

The reason for which the coefficient T̂ (u)(0) has not exactly the same definition as the
others is that we want the texton T (u) to have the same mean value as u (which is equivalent
to have the same Fourier coefficient in ξ = 0). Thus, an equivalent definition would be to
define first T by T̂ (v) = |v̂| for any zero-mean image v, and then extend it to any u : D → R
by T (u) = T (u −mu) +mu. Hence, since it is not a restriction, we shall consider later in
several occasions only images that have a null mean value.

2.2.2 Elementary properties

Proposition 2.2 (Elementary properties). The texton operator T has the following elemen-

tary properties:

1. For any image u, T (u) is a symmetric (and real-valued) image, that is, T (u)(−x) =

T (u)(x) for all x ∈ D.

2. T (T (u)) = T (u), which means that T (u) is its own texton.

3. The operator T is 1-Lipschitz for the L2-norm, that is: if u and v are images on D,

then ‖T (u)− T (v)‖2 ≤ ‖u− v‖2.
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4. The texton is translation invariant: given any y ∈ Z2, if uy is the image defined on D

by uy(x) = u̇(x− y), then T (uy) = T (u).

5. The set of images with mean value 0 is stable under the operator T .

6. For any image u, and for any real numbers α and β, we have T (u+β) = T (u)+β and

T (αu) = |α|T (u) + (α− |α|)mu. In particular when α ≥ 0, one has T (αu) = αT (u).

7. For any images u and v, T (u ⋆ v) = T (u) ⋆ T (v).

Proof. Since u is a real-valued image, we have û(ξ) = û(−ξ)∗ for all ξ ∈ D (here the
star denotes the complex conjugate). Thus T̂ (u)(ξ) = |û(ξ)| = T̂ (u)(−ξ) = T̂ (u)(ξ)∗,
which implies that T (u) is real-valued and symmetric. The second property comes from
the definition of the texton by Equation (2.16), because T̂ (u)(ξ) = |T̂ (u)(ξ)| for ξ 6= 0 and
T̂ (u)(0) = û(0). Property 3 is a consequence of Parseval’s Theorem and the second triangular
inequality. Indeed,

‖T (u)− T (v)‖22 =
1

|D|
∑

ξ∈D
(|û(ξ)| − |v̂(ξ)|)2 ≤ 1

|D|
∑

ξ∈D
|û(ξ)− v̂(ξ)|2 = ‖u− v‖22.

Property 4 is a consequence of the fact the translating the image is equivalent to shifting
the phases of its Fourier transform while keeping the amplitudes unchanged (more precisely,
we have ûy(ξ) = e2iπ〈y,ξ〉û(ξ) for any ξ ∈ D). As for Property 5, it is a direct consequence
of the equality û(0) = |D|mu. Property 6 is obtained by computing the Fourier coefficients
of v = αu + β. Indeed, since v̂ = αû + |D|βδ0, one has T̂ (v)(ξ) = |α||û(ξ)| for ξ 6= 0,
and T̂ (v)(0) = αû(0) + |D|β = |α|û(0) + |D|(α − |α|)mu + |D|β. Then, taking the inverse
Fourier transform, we have the result. Property 7 is a consequence of the product/convolution
property of the Fourier transform: for all ξ ∈ D, we have û ⋆ v(ξ) = û(ξ)v̂(ξ), so that
̂T (u ⋆ v)(ξ) = T̂ (u)(ξ)T̂ (v)(ξ) and thus T (u ⋆ v) = T (u) ⋆ T (v).

2.2.3 Spatial concentration properties

In this section, we are interested in the spatial concentration properties of the texton. In
particular, we prove that the texton solves the concentration properties formulated by (P1)

and (P2).

Proposition 2.3 (Property of spatial concentration). For any image u : D → R, T (u) is

the unique solution of (P1).

Proof. As mentioned earlier, it is enough to prove the property for u with zero-mean (mu = 0).
Then, for any image v ∈ Mu we have

v(0) = Re(v(0)) =
1

|D|
∑

ξ∈D
Re(v̂(ξ)) ≤ 1

|D|
∑

ξ∈D
|v̂(ξ)| = 1

|D|
∑

ξ∈D
|û(ξ)| = T (u)(0).

Moreover, the equality holds if and only if Re(v̂(ξ)) = |v̂(ξ)| = |û(ξ)| for all ξ ∈ D, which
means that v = T (u).
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Notice also that the texton T (u) achieves its maximum value at the spatial origin, since

∀x ∈ D, T (u)(x) =
1

|D| û(0) +
2

|D|
∑

ξ∈D+

|û(ξ)| cos(2π〈x, ξ〉) ≤ T (u)(0).

Moreover, it can also be shown that the texton T (u) is, among all images that have same
Fourier modulus as u, the one that optimizes the continuous even-order partial derivatives at
0. To be more precise, we have that if we define, for any m,n integers,

∂2m+2nv

∂2mx1∂2nx2
(0) :=

(
2iπ

M

)2m(2iπ

N

)2n 1

|D|
∑

ξ∈D
ξ2m1 ξ2n2 v̂(ξ)

then

max
v∈Mu

(−1)m+n ∂2m+2nv

∂2mx1∂2nx2
(0) is achieved when v = T (u).

Notice that all odd-order derivatives are equal to 0 at the spatial origin 0 of D because of
the symmetry property of the texton.

We will be interested in investigating further decay properties of the texton. Now, it is
well-known that the decay property of a function can be seen on the regularity of its Fourier
transform. This is why we will here be interested in the regularity of the Fourier transform
of the texton of an image. We will then, in a second step, analyze the consequences of this
result on the decay of the texton itself.

We first show a general property of the texton in Fourier domain: it is optimally smooth
in the sense of generalized gradient Lp norms.

Proposition 2.4 (Property of regularity in the Fourier domain). Let u : D → R be an image

with a non-negative mean value. Let {λω}ω∈D+ be a family of non-negative real numbers,

and let p > 0. Then T (u) is a solution of the following optimization problem:

(P3) : min
v∈Mu

∑

ξ∈D

∑

ω∈D+

λω| ˙̂v(ξ + ω)− v̂(ξ)|p. (2.18)

An interesting particular case corresponds to the family {λω} that has only two non-zero
components λ(0,1) = λ(1,0) = 1. In this case, (P3) corresponds to the minimization of the Lp

norm (for p ≥ 1) of the usual discrete gradient of v̂.

Proof. Given two non-negative numbers r1 and r2, one clearly has

min
θ1,θ2∈S1

∣∣∣r1eiθ1 − r2e
iθ2
∣∣∣
p
= |r1 − r2|p,

the minimum being attained if and only if θ1 = θ2. Consequently, for any ξ ∈ D and ω ∈ D+,
the minimum value of | ˙̂v(ξ+ω)− v̂(ξ)|p (over v ∈ Mu) is achieved if and only if the complex
numbers ˙̂v(ξ + ω) and v̂(ξ) have the same argument. When v = T (u), all values of v̂ are
non-negative real numbers (argument 0), so this condition is fulfilled for all ξ, ω. Since all
λω are non-negative, this proves that v = T (u) is a solution of (P3).
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A remark on uniqueness. The question of the uniqueness of the solution of (P3) can
be addressed by considering the graph associated to the family λ = {λω} and to u as follows.
Let G(û, λ) be the non-oriented graph whose vertices are the points ξ ∈ D such that û(ξ) 6= 0

(that is the support of û, denoted by Supp(û)) and whose edges are the (ξ, ξ′) ∈ Supp(û) such
that λξ−ξ′ 6= 0 or λξ′−ξ 6= 0. Then the solution of (P3) is unique if and only if the graph
G(û, λ) is connected. Otherwise, one can choose a constant phase equal to 0 or π (these
are the only possible values to have real-valued images) independently on each connected
component of the graph that do not contain 0. An important characterization of the texton
is that for any image u, there exists a family λ such that the graph G(û, λ) is connected.
Indeed, any family λ with support the whole set D works.

Proposition 2.4 can be transposed in the spatial domain to get another result of spatial
concentration for the texton.

Proposition 2.5 (Property of spatial concentration). Let u : D → R be an image with a

non-negative mean value. Let A : D → R be a symmetric weight image such that A(0) = 0

and

∀ξ ∈ D \ {0}, Â(ξ) ≤ 0. (2.19)

Then, A is non-negative and T (u) is a solution of the optimization problem (P2) associated

to A (Equation (2.15)).

Proof. Since A is real and symmetric, so is Â and the Fourier Inversion Theorem yields

∀x ∈ D, A(x) =
1

|D|Â(0) +
2

|D|
∑

ω∈D+

Â(ω) cos(2π〈x,ω〉). (2.20)

Subtracting the same equality applied to x = 0, we get, since A(0) = 0,

∀x ∈ D, A(x) =
2

|D|
∑

ω∈D+

(−Â(ω)) · (1− cos(2π〈x,ω〉)), (2.21)

so that A(x) ≥ 0 as all the terms of the sum are non-negative. Moreover, if we consider the
family of non-negative real numbers {λω}ω∈D+ defined by λω = −Â(ω)/|D|2, we can rewrite
(2.21) as

∀x ∈ D, A(x) = |D|
∑

ω∈D+

λω|e−2iπ〈x,ω〉 − 1|2. (2.22)

Now Parseval’s Theorem yields
∑

x∈D
A(x)v(x)2 =

∑

ω∈D+

λω|D|
∑

x∈D
|(e−2iπ〈x,ω〉 − 1)v(x)|2 =

∑

ω∈D+

λω
∑

ξ∈D
| ˙̂v(ξ + ω)− v̂(ξ)|2,

(2.23)
which proves that the energies to be minimized in (P2) and (P3) (in the case p = 2) are the
same. We conclude, thanks to Proposition 2.4, that v = T (u) is a solution of (P2).

For example the function

A(x1, x2) = sin2
(
π
x1
M

)
+ sin2

(
π
x2
N

)
, (2.24)



2.2. Definition and properties of the texton 45

which corresponds to λ(1,0) = λ(0,1) = (4|D|)−1 and λω = 0 otherwise, is an admissible
function. Since it satisfies A(0) = 0 and increases as x1 and x2 move away from 0, the
variational formulation (P2) is a good characterization of the concentration (or decay) of the
texton.

We can also ask about the regularity of the texton. Now, since the texton has no special
property of decay in the Fourier domain (the amplitudes are exactly the same as the original
image), one cannot hope for more spatial regularity. And indeed, we have the following result.

Proposition 2.6. For any image v ∈ Mu, one has ‖v‖2 = ‖u‖2 and ‖∇v‖2 = ‖∇u‖2. In

particular, ‖T (u)‖2 = ‖u‖2 and ‖∇T (u)‖2 = ‖∇u‖2.

Proof. Let v ∈ Mu. Because of Parseval’s Theorem, it is straightforward that ‖v‖2 = ‖u‖2.
For the gradient, thanks again to Parseval’s theorem, we can write

‖∇v‖22 =
∑

ξ=(ξ1,ξ2)∈D
|v̂(ξ)|2

(
sin2

(
πξ1
M

)
+ sin2

(
πξ2
N

))
. (2.25)

And since |v̂(ξ)| = |û(ξ)| for all ξ, we have the result.

Notice that the proof is valid for any (generalized) gradient form. Hence, with respect to
this particular measure of the regularity of an image, the texton T (u) is not smoother than
the original image u, or than any phase-shifted verson of u. This is of particular interest as
regards the RPN algorithm: all realization of the RPN model associated to a given image
u have the same gradient norm as u, which means that these RPN textures are just as
smooth as the original image (with respect of this particular regularity measure). This can
be extended to the ADSN algorithm, provided that we consider the expectation of the norm
of the gradient.

Proposition 2.7. Let u : D → R be an image. If U is a random image distributed according

to the law RPN(u), then

‖∇U‖22 = ‖∇u‖22. (2.26)

If U is a random image distributed according to the law ADSN(u), then ‖∇U‖22 is a (non-

constant) random variable that satisfies

E
(
‖∇U‖22

)
= ‖∇u‖22. (2.27)

Proof. Equation (2.26) directly follows from Proposition 2.6 above. In the case of the ADSN
model, Equation (2.27) is a direct consequence of (2.13) and (2.25) applied to v = U .

Another way to see the spatial concentration properties of texton images is to make the
link between the texton and the empirical covariance of the image. This is the purpose of
the following section.
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2.2.4 Texton and empirical covariance

A simple texture analysis task consists in computing its second-order statistics, namely its
empirical variance and its empirical covariance function. Since these quantities are unchanged
when adding a constant to the image, we will, in the following, consider images that have a
null mean value (mu = 0). Let us start by establishing the link between the texton and the
empirical covariance of an image.

Proposition 2.8. Let u : D → R be an image with mean value 0, and let the empirical

covariance of u, denoted Cu, be defined by

∀y ∈ D, Cu(y) =
1

|D|
∑

x∈D
u(x)u̇(x− y). (2.28)

Then Ĉu = 1
|D| |û|2, or, equivalently,

Cu =
1

|D|T (u) ⋆ T (u), (2.29)

which means that Cu is, up to a constant, the auto-convolution of the texton T (u).

Proof. The proof is a direct consequence of the convolution/product property of the Fourier
transform. Indeed, if u− denotes the symmetric image of u given by u−(y) = u(−y) then
Cu = 1

|D|u ⋆ u
−. Consequently, for all ξ ∈ D, we have

Ĉu(ξ) =
1

|D| û(ξ)û
−(ξ) =

1

|D| û(ξ)û(ξ)
∗ =

1

|D| |û(ξ)|
2.

Then, taking the inverse Fourier transform and using the symmetry property of the texton,
we obtain Cu = 1

|D|T (u) ⋆ T (u) as announced.

A consequence of (2.29) is that the texton is generally less blurry than the covariance,
which, as we shall see later, can be easily noticed on experiments. It is also generally more
“concentrated” (intuitively, the area of the “support” of the covariance is four times the one of
the texton). Another advantage of the texton (compared to the empirical covariance function)
is that it belongs to the space of images: its values are in the same unit as the grey levels
of the image, whereas the covariance is rather seen in the units of an “energy”. A second
consequence of Proposition 2.8 is that the empirical covariance is exactly preserved by the
realizations of the RPN model, and preserved in expectation for the ADSN model. Let us
display an example of a texton based on a natural texture image taken from the website
http://www.lemog.fr/lemog_textures/.

We can see in Figure 2.1 the original texture image, a RPN sample from it, its empirical
covariance, its texton and we measure the concentration of the texton by plotting the propor-
tion of energy outside a disc of radius r centered at the origin as a function of the percentage
of pixels inside this disc. More precisely, for r between 0 and max(M,N), let Discr denote
the discrete disc of radius r centered at 0. Then we plot

∑
x∈D\Discr

(u(x)−mu)
2

∑
x∈D(u(x)−mu)2

as a function of 100× |Discr|
|D| , (2.30)
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for both the texture image and its texton. For the texture image, this is an almost linear
function, since the energy in a domain is, up to statistical fluctuations, proportional to the
size of the domain. Now, for the texton, this curve decreases very fast in around 0 because
of the concentration of the texton. See also Figure 2.4 for more examples.

Notice that in order to avoid boundary effects (all the definitions and properties assume
the periodicity of the texture image), we first process any sample image u by replacing it by
its periodic component obtained from its periodic+smooth decomposition [99]. As remarked
in [51], this does not affect the geometrical and statistical properties of the texture image and
prevents undesirable artefacts that could be caused by the non-periodic nature of the sample
image used to define the RPN or ADSN texture models.

2.2.5 Distance between textures

To compare two texture models, one can use the Fréchet distance [49], as was done in [132].
Let us recall this definition.

Definition 2.4. Let P and Q be two probability laws with values in the same space V . Assume

that both P and Q are the of laws of L2 random variables. The Fréchet distance between P
and Q is defined by

d (P,Q)2 min
(X,Y )
X∼P
Y∼Q

E
(
‖X − Y ‖22

)
.

The distance between two Gaussian models can be very simply expressed in function of
their respective covariances [39], but we shall see now that an even simpler expression can be
obtained by using their respective textons. The result is also extended to the RPN model.

Theorem 2.2. Let u0 and u1 be two images with null mean value. Then, the Fréchet distance,

between the two Gaussian distributions ADSN(u0) and ADSN(u1) is given by the L2 distance

between their respective textons:

d (ADSN(u0),ADSN(u1))
2 = min

U0∼ADSN(u0)
U1∼ADSN(u1)

E
(
‖U0 − U1‖22

)
= ‖T (u0)− T (u1)‖22.

The same result holds also for the Fréchet distance between the two RPN distributions RPN(u0)

and RPN(u1):

d (RPN(u0),RPN(u1))
2 = min

U0∼RPN(u0)
U1∼RPN(u1)

E
(
‖U0 − U1‖22

)
= ‖T (u0)− T (u1)‖22.

Proof. The distribution ADSN(uj) (for j = 0 or 1) is a centered multivariate normal distri-
bution on RD with covariance matrix Γj given by Γj(x,y) = Cuj (x− y). Then according to
[132] and [39], the Fréchet distance between ADSN(u0) and ADSN(u1) is given by

d (ADSN(u0),ADSN(u1))
2 = tr

(
Γ0 + Γ1 − 2(Γ

1/2
1 Γ0Γ

1/2
1 )1/2

)
, (2.31)

where A1/2 is the unique symmetric positive semi-definite square root of a symmetric positive
semi-definite matrix A.



48 Chapter 2. A Texton for Random Phase and Gaussian Textures

50 100 150 200 250 300 350 400 450 500
100

50

0

50

100

150

200

250

300

350

400

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.1: Top: the original stone wall texture image u. Second line: on the left, the
empirical covariance of u; on the right, the texton T (u). The vizualisation of the texton is
not easy since its values around the spatial origin 0 are generally much larger than the usual
grey level values between 0 and 255. To visualize it here, we have simply saturated the values
above 255. One can clearly observe that the texton is less blurry and more concentrated than
the covariance. This is confirmed by the next graphic.Third line: on the left we show a 1D
slice through the origin of the texton (in red), the empirical covariance (in green) and of the
original texture u (dotted line). On the right, we give a measure of the concentration of the
texton by plotting the proportion of energy outside a disc of radius r centered at the origin
as a function of the percentage of pixels inside this disc. For the original texture this gives
the linear dotted curve (the energy in the disc is proportional to its area), whereas for the
texton (red curve), we see that a disc of radius approximately 50 (that thus contains 10% of
the pixels) already captures 80% of the total energy.
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Now since the covariance matrices Γ0 and Γ1 are circulant, they are diagonalized in the
Fourier basis. More precisely, let F denote the |D| × |D| normalized Fourier Transform
matrix, whose coefficients are F (ξ,x) = 1√

|D|
e−2iπ〈x,ξ〉, then F is a unitary matrix and one

has û(ξ) =
√
|D|(Fu)(ξ) for any u ∈ RD. Now, a simple computation shows that for all

ξ, ξ′ ∈ D,

(FΓjF
∗)(ξ, ξ′) =

∑

z,t∈D
F (ξ, z)Cuj (z− t)F ∗(t, ξ′) = Ĉuj (ξ)δξ=ξ′ = |ûj(ξ)|2δξ=ξ′ .

Then, using the fact that tr(A) = tr(FAF ∗) and tr(A1/2) = tr((FAF ∗)1/2) for any symmetric
positive semi-definite matrix A, we obtain

tr
(
Γ0 + Γ1 − 2(Γ

1/2
1 Γ0Γ

1/2
1 )1/2

)
= tr

(
FΓ0F

∗ + FΓ1F
∗ − 2F (Γ

1/2
1 Γ0Γ

1/2
1 )1/2F ∗

)

=
∑

ξ∈D

(
|û0(ξ)|2 + |û1(ξ)|2 − 2|û0(ξ)||û1(ξ)|

)

=
∑

ξ∈D
(|û0(ξ)| − |û1(ξ)|)2 = ‖T (u0)− T (u1)‖22.

For the Fréchet distance between two RPN distributions, we first notice that if U0 ∼
RPN(u0) and U1 ∼ RPN(u1), then if Φ0 and Φ1 are uniform distributions on [0, 2π) then

‖U0 − U1‖22 =
∑

ξ

∣∣∣|û0(ξ)|eiΦ0(ξ) − |û1(ξ)|eiΦ1(ξ)
∣∣∣
2
≥
∑

ξ

(|û0(ξ)| − |û1(ξ)|)2

and the equality holds when Φ0 = Φ1, which ends the proof.

2.2.6 Textons of some micro-textures

In this section we give several examples of textons. These examples are either theoretical
examples, synthetic examples or examples from natural texture images. Let us start with
theoretical examples.

Theoretical examples

Let u be a zero-mean image, we are interested in the textons of realizations of the RPN
and ADSN models associated to u. Are they equal or at least “close” to the texton of u?
For the RPN model (U ∼ RPN(u)), since Fourier amplitudes are exactly preserved, we have
T (U) = T (u), that is, the texton remains unchanged. For the ADSN model, U ∼ ADSN(u)

means that U = u ⋆ W , where W is a Gaussian white noise, and as a consequence (see last
property of Proposition 2.2) we have T (U) = T (u) ⋆ T (W ). We thus need to compute the
law of T (W ), which is the aim of the following

Proposition 2.9. Let W be a white noise image defined on D, with variance 1
|D| (that is, the

W (x) are i.i.d. and N (0, 1
|D|) distributed). Then T (W ) is a random image and its moments

are

E(T (W )(0)) =

√
π

2

(
1− 1

|D|

)
and Var(T (W )(0)) =

1

|D|2 +
4− π

2|D|

(
1− 1

|D|

)
, (2.32)
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∀x ∈ D \ {0}, E(T (W )(x)) = −
√
π

2|D| and Var(T (W )(x)) =
1

|D|2 +
4− π

4|D|

(
1− 2

|D|

)
,

(2.33)

∀x,y ∈ D, x 6= y,x 6= −y, Cov (T (W )(x), T (W )(y)) =
π − 2

2|D|2 . (2.34)

Proof. We can write, thanks to the inverse Fourier transform,

∀x ∈ D, T (W )(x) =
Ŵ (0)

|D| +
2

|D|
∑

ξ∈D+

|Ŵ (ξ)| cos(2π〈x, ξ〉). (2.35)

Now the random variables
{
Ŵ (0); |Ŵ (ξ)|, ξ ∈ D+

}
are independent, and Ŵ (0) ∼ N (0, 1).

In addition, for any ξ ∈ D+, |Ŵ (ξ)| follows a Rayleigh distribution with parameter σ = 1√
2
,

so that

E(|Ŵ (ξ)|) =
√
π

2
and Var(|Ŵ (ξ)|) = 4− π

4
. (2.36)

Recalling that |D+| = (|D| − 1)/2, we easily obtain from (2.35) the two formulas of (2.32).
Besides, for any x ∈ D \ {0}, one has

∑
ξ∈D+

cos(2π〈x, ξ〉) = −1/2 (just write the Fourier
representation of the Dirac image δ0), while

∑

ξ∈D+

cos2(2π〈x, ξ〉) = |D+|
2

+
1

2

∑

ξ∈D+

cos(2π〈2x, ξ〉) = |D| − 2

4
. (2.37)

By using these relations in conjonction with (2.36) in (2.35), we easily obtain the two formulas
of (2.32). Now let us consider x,y ∈ D with x 6= y and x 6= −y. The bilinearity of the
covariance implies, thanks to (2.35) and the fact that the random variables {Ŵ (ξ)}ξ∈D+∪{0}
are independent, that

Cov (T (W )(x), T (W )(y)) =
1

|D|2Var(Ŵ (0)) +
4

|D|2
∑

ξ∈D+

Var(|Ŵ (ξ)|) cos(2π〈x, ξ〉) cos(2π〈y, ξ〉)

=
1

|D|2 +
4− π

|D|2 · 1
2

∑

ξ∈D+

(cos(2π〈x+ y, ξ〉) + cos(2π〈x− y, ξ〉))

=
1

|D|2 − 4− π

2|D|2 =
π − 2

2|D|2 .

Proposition 2.9 shows that as the size of D increases, the first moments of T (W ) (up
to order 2) converge to those of a a weighted Dirac mass located in 0, that is,

√
π
2 δ0. As a

consequence, when U ∼ ADSN(u) and |D| is large, one expects to observe that

T (U) ≈
√
π

2
T (u).

Remark: As precised in the introduction, we here assumed that the dimensions M
and N of the rectangular domain D were odd numbers. When M and/or N are even, the
formulas that appear in Proposition 2.9 for the moments of T (W ) are slightly changed, but
the asymptotic behavior of the first moments of T (W ) remains the same.
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Synthetic examples

A first simple way to produce a synthetic texton is to specify some symmetric positive Fourier
coefficients and take the inverse Fourier transform. For instance, one can define the texton
Tα of a pink noise by specifying its Fourier coefficients:

∀ξ ∈ D \ {0}, T̂α(ξ) =
1

‖ξ‖α and T̂α(0) = 0.

An example of the texton Tα thus defined is shown on the first column of Figure 2.2, with
α = 1.8 and M = N = 256.

A second way to synthesize textons is to take the auto-convolution of an image. This will
indeed define a texton since the Fourier transform of such an image is the squared modulus of
the Fourier transform of the original image. For instance, if we start with a centered binary
disc we will obtain what we will call a cone texton. Or if we start with a centered binary
indicator function of a snake-like shape, we will obtain what we will call a snake texton.
These two examples are illustrated in Figure 2.2.

A third way to build a texton is to start from an image u, and then take the inverse
Fourier transform of its Fourier amplitude (this is exactly the definition of the texton). Some
examples of this are given in Figure 2.3. For each example, we show the original image u –
which is here the indicator function of respectively a square, two discs, a T-shaped polygon
– the texton T (u) (which, in these cases, is not equal to u, because the Fourier transform
of u is not positive), and some samples of RPN(u). The geometry of the texton of a simple
indicator function as the ones of Figure 2.3 is already quite complex.

Remark: The examples above raise a natural question: Can an indicator function be its
own texton? The answer is yes, but all solutions are very peculiar. More precisely, a solution
has to be the indicator function of a sublattice (that is, a discrete additive subgroup) of D,
and its Fourier transform has to be the indicator function of the dual lattice. In other words,
it can be proved that if u = 1IR with R ⊂ D is such that T (u) = u (which is equivalent to say
that û(ξ) is real and positive for all ξ ∈ D), then û = |R|1IR′ with |R|× |R′| = |D|. Moreover:
(a) for all x and y in R, one has x− y ∈ R (which means that R is a lattice in D); (b) R′ is
also a lattice of D; and (c) they are dual, in the sense that ∀x ∈ R, ∀ξ ∈ R′, 〈x, ξ〉 = 0. The
simplest example is obtained when u is the indicator function of D or of {0}. But there are
other non degenerate lattices, for instance R = IM ×{0}, which leads to R′ = {0}× IN – or,
assuming that m divides M and n divides N , R = {km}k∈IM/m

×{kn}k∈IN/n
, which leads to

R′ = {kM/m}k∈Im × {kN/n}k∈In .

Textons of some natural textures

We end this section by showing in Figure 2.4 the texton of several natural texture images
taken from the website http://www.lemog.fr/lemog_textures/.

For each texture, we show the texton and we illustrate the concentration of the texton by
plotting the relative energy in a disc centered at the origin as a function of the percentage of
pixels in it (as defined in (2.30)). As expected, the texton shows a high amount of concen-
tration, but important variations can be observed depending on the considered texture. For



52 Chapter 2. A Texton for Random Phase and Gaussian Textures

Figure 2.2: Synthetic examples of textons. On the first line we show three textons, and on the
second line we show a RPN realization for each of them. From left to right, the three textons
are: a pink noise (power law with exponent α = 1.8) texton given by T̂α(ξ) = 1/‖ξ‖α for
ξ 6= 0 and with M = N = 256; a 512× 512 “cone” texton (obtained as the auto-convolution
of the indicator function of a centered disc of radius 20); a 512×512 “snake” texton (obtained
as the auto-convolution of the indicator function of a snake-like shape).
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Figure 2.3: First row: we show the original image u which is here the indicator function of
respectively a square (of side size 200 in a 512 × 512 domain, two discs of radius 40 in a
512× 512 domain and a T shape in a 256× 256 domain. Second row: the texton T (u). For a
better display, the grey level values that exceed 255 are saturated. Third row: samples from
RPN(u).
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instance, the texture displayed on the right of Figure 2.4 contains a periodic pattern, and its
concentration curve is significantly above the one of the fur texture (displayed on the left).

2.3 Sparse representations

The notion of texton we have introduced lets us represent a RPN or a Gaussian texture model
by an image which is concentrated around the origin. However, we would like in this section
to go a step further and consider representations that are not only concentrated, but have a
“small” support. There are several motivations for such a kind of sparse representation. One
is the possibility of representing a texture with a small number of coefficients, which may be
useful both for texture synthesis and texture analysis. Another motivation is, as we shall see
now, the possibility of conveniently defining textures on arbitrary large domains.

2.3.1 Extending Gaussian textures to Z2

Given a zero-mean Gaussian texture model defined by an image v : D → R (which has not
necessarily mean 0), how to produce Gaussian texture samples defined on a larger domain?
In other terms, how to extend to a larger domain the Gaussian texture model? The relation
between the Gaussian model and the shot noise model (see e.g. [51]) is useful to address this
issue. As we saw in (2.9), the Gaussian model of D-periodic textures can be written

∀y ∈ Z2, U(y) = v ⋆ WD(y) =
∑

x∈D
v(x)ẆD(y − x), (2.38)

where (WD(x))x∈D is a white Gaussian noise with marginal distribution N (0, |D|−1). Note
that the symbol ⋆ in (2.38) corresponds to a periodic convolution, which means that the right-
hand term (here WD) is extended to Z2 as a D-periodic image. This periodicity convention
yields a nice relationship with the Discrete Fourier Transform and with the RPN model. Its
consequence is that the random image U is also periodic, which means that it can be nicely
tiled on the plane without creating spurious boundaries. This property is not necessarily
desirable, since real-world textures are not periodic, and tiling might not be a satisfactory
way to produce large texture samples. Hence, it is natural to consider the non-periodic variant
of (2.38), which defines a stationary Gaussian texture on the whole plane Z2 by

∀y ∈ Z2, U(y) = v ⋆ WZ2(y) =
∑

x∈D
v(x)WZ2(y − x), (2.39)

where (WZ2(x))x∈Z2 is a set of i.i.d. random variables distributed as N (0, |D|−1). The
difference between models (2.38) and (2.39) can be analyzed through the covariance function
of both Gaussian fields. In the periodic case corresponding to (2.38), the covariance is the
function Γv defined in (2.11). In the non-periodic case (0-padding of v) corresponding to
(2.39), the covariance of U writes

∀z ∈ Z2, Γ0
v(z) =

1

|D|
∑

x∈D,y∈D
y−x=z

v(x)v(y). (2.40)
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Figure 2.4: First row: the texture image u. Second row: the texton T (u). Third row: the
proportion of energy in a disc centered at the origin as a function of the percentage of pixels
it contains (see Equation (2.30)), for both the texton (red curve), and the original texture
(dotted curve).
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Writing S = Supp(v) the support of v, we can notice that Γ0
v has a finite support, contained in

S+(−S) = {y−x; x ∈ D,y ∈ D}, whereas Γv is D-periodic. More precisely, if D = IM×IN ,
then

∀(z1, z2) ∈ Z2, Γv(z1, z2) =
∑

(k,l)∈Z2

Γ0
v(z1 + kM, z2 + lN),

which is nothing but the D-periodization of Γ0
v. If S + (−S) ⊂ D, then Γ0

v and Γv are
identical on the subset D of Z2, which means that the model defined by (2.38) is simply
obtained by considering the restriction of (2.39) to D, and thus shows that (2.39) is a natural
way to extend to Z2 the periodic Gaussian model (2.38). Of course, if we want the condition
S + (−S) ⊂ D to be satisfied, we shall not take for v the (centered) original texture sample
u −mu, which has no reason to vanish outside a neighborhood of 0 since it is supposed to
look like the realization of a stationary random field. The texton v = T (u) is an interesting
candidate, since it defines through (2.38) the same periodic Gaussian field as u. Its support
S = Supp(v) does not fulfill the relation S + (−S) ⊂ D either in general, but since it is
concentrated around 0 we can expect to find a good approximation of it that satisfies this
condition. Several ways to achieve this approximation (and, more generally, to approximate
a texton by an image supported by a neighborhood of 0) will be discussed in Section 2.3.4.

2.3.2 Extending Gaussian textures to a finite domain

The extension of a Gaussian texture to Z2 that we discussed above yields a natural extension
to a finite domain D1 ⊃ D. Indeed, there are essentially two possibilities.

Periodic extension. First, we can consider the extension as a D1-periodic texture,
obtained by

∀y1, U(y) =
∑

x∈D
v(x)WD1(y − x), (2.41)

where (WD1(x))x1 is a set of i.i.d. random variables distributed as N (0, |D|−1). In other
terms, U is the Gaussian model on D1 associated to the image αvD1 , where vD1 is the
extension of v to D1 obtained by zero-padding (that is, setting vD1(x) = 0 for all x1) and
α = (|D1|/|D|)1/2 is a normalization constant that compensates for the fact that the marginal
variance of WD1 is |D1|−1 (and not |D|−1) in the Gaussian model. Ideally, D1 should be large
enough to ensure that D1 ⊃ D+ (−D) (or, at least, D1 ⊃ S + (−S) where S = Supp(v)), so
that the covariance is preserved around 0. Taking the Discrete Fourier Transform of (2.41)
in the domain D1, we obtain

∀ξ1, Û(ξ) = v̂D1(ξ)ŴD1(ξ), (2.42)

where vD1 is the extension of v to D1 obtained by setting vD1(x) = 0 for all x1. Thanks to
(2.42), the simulation of U is thus direct in Fourier Domain.

Non-periodic extension. Another possibility is to consider the extension to D1 as a
restriction of the extension to Z2. Given v : D → R, we follow (2.39) to define the non-
periodic Gaussian field U : D1 → R by

∀y1, U(y) =
∑

x∈D
v(x)WD2(y − x), (2.43)
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where D2 = D1 + (−D) and (WD2(x))x2 is a set of i.i.d. random variables distributed as
N (0, |D|−1). Interestingly enough, the synthesis of this Gaussian field can also be realized
in Fourier domain. Indeed, since no term of (2.43) involves a periodic extension of WD2 , we
can see that the right term of (2.43) is the periodic convolution of vD2 (v extended to D2 by
zero-padding) with WD2 , evaluated in a given point of D1. Therefore, the simulation of U
can be realized through the simulation of the D2-periodic field vD2 ⋆ WD2 (which is, as we
remarked before, direct in Fourier domain), followed by a simple restriction to D1.

2.3.3 Extending RPN textures

Taking the Discrete Fourier Transform of (2.38) leads to

∀ξ ∈ D, Û(ξ) = v̂(ξ) · ŴD(ξ), (2.44)

and the structure of the field (ŴD(ξ))ξ∈D can be made completely explicit thanks to Theorem
2.1. This establishes a natural link with the RPN model that can be written, like (2.44), under
the form

∀ξ ∈ D, Û(ξ) = v̂(ξ) · Z(ξ), (2.45)

where Z(0) = 0 and for all ξ 6= 0, Z(ξ) is equal to Ŵ (ξ) conditionally to |Ŵ (ξ)| = 1. In
other terms, the complex-valued random variables (Z(ξ))ξ∈D+ are uniformly distributed on
the complex unit circle |z| = 1, and one has Z(−ξ) = Z(ξ)∗ for all ξ ∈ D+. Considering
the discussion about the Gaussian model above, the extension of the RPN model to a larger
finite domain D1 is quite straightforward. Indeed, given an image v : D → R2, the associated
RPN model on D1 ⊃ D is simply the classical RPN model on D1 associated to αvD1 , where,
like in the Gaussian model, vD1 is the extension of v to D1 obtained by zero-padding and
α = (|D1|/|D|)1/2. Note that this coefficient α ensures that the covariance functions of the
models RPN(v) and RPN(αvD1) are identical on D.

Now a natural question arises: is it possible to extend the RPN model to non-periodic
textures defined on Z2, as we did for the Gaussian model? Given an image v : Z2 → R
supported by D, we can define its Fourier Transform by

∀ξ ∈ R2, v̂(ξ) =
∑

x∈Z2

v(x)e−ix·ξ =
∑

x∈D
v(x)e−ix·ξ,

where (x1, x2) · (ξ1, ξ2) = x1ξ1 + x2ξ2. This function v̂ is 2π-periodic along each direction,
and we have the reconstruction formula

∀x ∈ Z2, v(x) =
1

4π2

∫

[−π,π]2
v̂(ξ)eix·ξ dξ.

Hence, given a random field ζ : R2 → R that is 2π-periodic along both directions, we could
consider, when it makes sense, the random field U defined by

∀x ∈ Z2, U(x) =
1

4π2

∫

[−π,π]2
v̂(ξ)eix·ξζ(ξ) dξ. (2.46)

When ζ is a Gaussian random field, a sense can be given to this integral (a Wiener integral)
and we can obtain a spectral formulation of the random field specified by (2.39). However,



58 Chapter 2. A Texton for Random Phase and Gaussian Textures

to the best of our knowledge, there is not way to give a sense to (2.46) when ζ satisfy the
constraints of the RPN model, that is, when the random variables (ζ(ξ))ξ∈[−π,π]2 are inde-
pendent (modulo the symmetry constraints that ensure that U is real-valued) and uniformly
distributed on the complex circle |z| = 1.

Moreover, the following result indicates that the “natural” extension of the RPN model
to Z2 is in fact the Gaussian model (2.39). Indeed, we show that asymptotically, a given
subpart of a RPN model with growing support tends to a Gaussian field.

Proposition 2.10. Let S : R2 → R be a non-negative, 2πZ2-periodic, symmetric, bounded,

and piecewise continuous function. For any integers M and N , we consider the RPN random

field UMN defined on DMN = IM × IN by

UMN (x1, x2) =
1√
MN

∑

(ξ1,ξ2)∈DMN\{0}
S(ξ1, ξ2)e

iΦ(ξ1,ξ2)e2iπ(
x1ξ1
M

+
x2ξ2
N

),

where (Φ(ξ))ξ∈(DMN )+
are independent and uniformly distributed on [0, 2π), and Φ(−ξ) =

−Φ(ξ). Then, UMN converges towards a Gaussian random field U : Z2 → R in the sense of

finite-dimensional distributions as (M,N) tends towards infinity, and the covariance of the

limit random field U is given by

∀x,y ∈ Z2, Cov(U(x), U(y)) =
1

4π2

∫

[−π,π]2
S(ξ)2 cos((x− y) · ξ) dξ. (2.47)

The proof is given in Appendix.

2.3.4 Compact approximations of a texton

We saw in the previous sections the interest of a compact representation of a texture u, that
is, an image v with small support that defines the same Gaussian and RPN model as u. In
practice, of course, the exact representation of u with a compact image is quite hard, but
interesting approximations can be found based on its texton. In this section, we discuss
several possibilities to approximate the texton T (u) associated to a texture u with an image
v that has a small support.

Notice that looking for an approximation of T (u) with a small support is akin to looking
for a smooth approximation of T̂ (u) = |û|. Moreover, extending such an approximation to a
larger support through zero padding is exactly equivalent to zooming in its Fourier spectrum
with the sinC interpolation.

Remarks on texton approximation

In the following, we define and compare several simple strategies to approximate the texture
model associated to u (or, equivalently, to T (u)) and the corresponding model for another
image v with small support. A natural way to discuss the quality of an approximation comes
through the transport distance between the Gaussian textures defined on D by u and v,


|û(0)− v̂(0)|2 +

∑

ξ∈D,ξ 6=0

(|û(ξ)| − |v̂(ξ)|)2



1/2

. (2.48)
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As we said above, we consider zero-mean texture models (since the constant (DC) term
can be added separately to the synthetized image), so that the original image u satisfies
û(0) = 0 (that is, mu = 0). Hence, the Gaussian model we shall consider with the texton
approximation v will not be ADSN(v), but ADSN(v −mv), so that the term |û(0) − v̂(0)|2
is zero. With that convention, the distance we obtain corresponds to the Fréchet distance
between the RPN models, that is,

d(u, v) = ‖T (u)− T (v)‖2 =


 ∑

ξ∈D,ξ 6=0

(|û(ξ)| − |v̂(ξ)|)2



1/2

. (2.49)

Let us remark that if the support S of v is a strict subset of D, then v and v + α1IS
do not define the same RPN and ADSN models. More precisely, there exists a value of α
that minimizes the distance d(u, v+α1IS), but this value may not be unique since the convex
function α→ d(u, v + α1IS) may not be strictly convex.

Let us now discuss the issue of the normalization of v. More precisely, let us consider the
rescaled versions αv (with α > 0) of v. On the one hand, we want to impose that v is optimally
scaled for the distance measure (2.49), which means that the minimum of α → d(u, αv) is
obtained for α = 1. Under this constraint, we easily derive that ‖v̂‖22 =< |û|, |v̂| >, which
means that in general we will observe that for such a v, ‖v̂‖2 < ‖û‖2. On the other hand,
we might rather want to impose the normalization ‖v̂‖2 = ‖û‖2, since this ensures that, in
the Gaussian model, the marginal distribution of each pixel are the same in the exact (u)
and approximate (v) models. These two constraints (optimality and energy conservation)
are generally incompatible, and we may want to adapt the rescaling factor depending on the
final objective. Thus, in the following we shall consider a modified texton “pseudo-distance”,
which does not depend on a rescaling factor

d′(u, v) = d

(
u,

‖u‖2
‖v‖2

· v
)
. (2.50)

Specified support

A first simple strategy to obtain an approximation of a texton T (u) : D → R by an image v
with small support consists in restricting T (u) to a given support, that is,

v = T (u) · 1S , (2.51)

where S is a (generally symmetric) subdomain of D. It is often interesting to choose, instead
of a fixed domain S, a parametric collection of domains (Sθ)θ∈Θ and to select θ according to
the respective values of |Sθ| (the size of the domain Sθ) and d′(u, vθ) (where vθ = T (u) · 1Sθ

).
Among classical cases are

Sr = {(k, l) ∈ D; k2 + r2 < r2} (discs),

Sa,b = {(k, l) ∈ D; |k| < a, |l| < b} (rectangles),

and Sa,b,α =

{
(k, l) ∈ D;

(k cosα+ l sinα)2

a2
+

(−k sinα+ l cosα)2

b2
< 1

}
(ellipses).
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Figure 2.5: Texture approximation with texton cropping (discs). The texton of grass

image (left) is multiplied by the indicator function of the discrete disc DiscR = {x ∈ Z2, |x| ≤
R}, and the resulting texture model VR is compared to the original one, U (obtained with
the full texton). Each plot displays the relative distance between U and VR (see (2.50))
as a function of |DiscR| (the area of DiscR). The different graphs correspond to different
approximation strategies: simple crop (black curve), variance equalization (red), optimal
scaling (blue), and optimal shift and scaling (green). We can observe that in terms of distance,
the four strategies are very similar: only the variance equalization process is slightly worse
than the simple crop. Another remark is that the first half of the distance is attained for a
very small support, but the gain brought by increasing further the support size is quite slow.

We show in Figure 2.5 an example of such a texton approximation and the corresponding
distance plots

A 7→ inf{d′(u, vθ); |Sθ| ≤ A},

that show, for each A ∈ N, the minimum error that can be achieved by approximating the
texton T (u) with an image whose support has an area less than A.

Thresholding

Another strategy consists in applying a thresholding procedure to apprimate T (u) by v =

f(T (u)), where f can be the hard-thresholding function

fhardα,β (t) =





t if t ≤ −α,
0 if −α < t < β,

t if β ≤ t,
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or the soft-thresholding function

f softα,β (t) =





t+ α if t ≤ −α,
0 if −α < t < β,

t− β if β ≤ t

(here, α and β are two positive parameters that can be chosen equal or not). Notice that in
both cases, the approximations can be decomposed in two steps:

1. the selection of the support

Sα,β = {x ∈ D, T (u) 6∈ (−α, β)};

2. the approximation of T (u) in that support, according to the chosen f .

Thus, additional geometric constraints can be easily incorporated in this approximation strat-
egy, in particular :

• the constraint that the support S of v is connected (take for S the connected component
of Sα,β that contains 0);

• the constraint S ⊂ D(0, R), simply enforced by setting S = Sα,β ∩D(0, R).

As before, the distance plot

A 7→ inf{d′(u, vα,β); |Sα,β | ≤ A},

can be used to select the thresholding procedure and the parameters α, β, as illustrated in
Fig. Figure 2.5.

2.4 Textons for color images

In the following, we investigate the generalization of the notion of texton to color images.
Let us consider a color image u : D → R3 (we assume as usual that color is represented by a
3-D vector corresponding to red, green and blue channels, but all what follows can be easily
transposed in the more general case of a vector image u : D → Rd). The color RPN model
associated to u is the random color image U : D → R3 defined by

∀x ∈ D, U(x) =
1

|D|R0û(0) +
1

|D|
∑

ξ∈D,ξ 6=0

e−iϕ(ξ)e2iπ〈x,ξ〉û(ξ), (2.52)

where û is the DFT of the color image u (obtained by processing each channel independently),
R0 is a N (0, 1) random variable and ϕ(ξ) a random set of uniform phases, independent
modulo the Hermitian symmetry constraint. It is important to notice that in the color RPN
model, the phase randomization is realized simultaneously on all channels, with the same
phase translation function ϕ. An independent phase randomization of each channel yields
poor results in general [51]. As in the monochromatic case, the ADSN model associated to u
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can be defined in several equivalent ways, either by adding in (2.52) a multiplicative Rayleigh
noise term R(ξ) of parameter 1

2 , with R(ξ) = R(−ξ), leading to

∀x ∈ D, Ug(x) =
1

|D|R0û(0) +
1

|D|
∑

ξ∈D,ξ 6=0

R(ξ)e−iϕ(ξ)e2iπ〈x,ξ〉û(ξ) (2.53)

(note that R(ξ)e−iϕ(ξ) is a Gaussian complex random variable), or directly with

∀x ∈ D, Ug(x) = (W ⋆ u)(x) =
∑

y∈D
W (x− y)u(y), (2.54)

where W : D → R is a Gaussian white noise (extended to Z2 by D-periodicity) such that
each each W (x) has variance 1.

As in the grey-level case, we will assume that all images have a zero mean on D, that is

mu =
1

|D|
∑

x∈D
u(x) = 0,

which is equivalent to say that each channel has zero mean. We will again use the notation
M0(Ω) to denote the set of R3-valued images with zero mean.

For a color image u = (u1, u2, u3) ∈ M0(Ω), we define its empirical covariance as

∀y ∈ D, Γu(y) = (Γu(y)k,l)1≤k,l≤3 with Γu(y)k,l =
1

|D|
∑

x∈D
uk(x)ul(x− y).

In the case of color images, the link between the covariance and the Fourier transform is given
by

∀ξ ∈ D, Γ̂u(ξ) =
1

|D| û(ξ)û(ξ)
∗,

where û(ξ) is considered as a column matrix in C3 and the notation A∗ denotes the conjugate
transpose of a (complex) matrix A.

As in the grey-level case, we have that the color RPN model (Equation (2.52)) exactly
preserves the empirical covariance of the image, whereas the color Gaussian model (defined
by Equation (2.53) or equivalently by Equation (2.54)) preserves it only in expectation. That
is

ΓU = Γu when U ∼ RPN(u) and E(ΓUg) = Γu when Ug ∼ ADSN(u).

Proposition 2.11. The optimal transport (OT) distance, also called Fréchet distance, be-

tween two color Gaussian textures ADSN(u) and ADSN(v) is equal to the distance between

their RPN models, and it is given by:

d(ADSN(u),ADSN(v))2 = d(RPN(u),RPN(v))2 =
∑

ξ∈D
(‖û(ξ)‖2 + ‖v̂(ξ)‖2 − 2|û(ξ)∗v̂(ξ)|).

Proof. As in the monochromatic case, the proof uses Parseval theorem and the following
result: if a and b are in C3 and seen as complex column matrices, then

min
θ∈[0,2π)

‖a− eiθb‖2 = ‖a‖2 + ‖b‖2 − 2|a∗b|.
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Notice that here the term |û(ξ)∗v̂(ξ)| is in general, contrarily to the monochromatic case,
not equal to ‖û(ξ)‖‖v̂(ξ)‖, and therefore the optimal transport distance will not be as simple
as in the case of grey-level textures.

2.4.1 The α-color texton

As already mentioned, the important point about the color RPN model and the color Gaussian
model is that the same phase field ϕ is used simultaneoulsy on all channels. The poor results
obtained when performing an independant phase randomization on each channel is explained
by the fact that such a randomization does not preserve the values ûk(ξ)ûl(ξ)∗ for k 6= l (only
the covariances of each channel are preserved but not the cross-covariances between different
channels). Therefore, using the same phase field on all channels is the only possible choice
to preserve the covariance of the image.

Definition and properties

To define the texton of a color image, we have different possibilities. A first possibility is to
find a phase field ϕ such that when adding it to the phases of each channel, we obtain a color
image that has some optimal concentration properties. In the grey-level case, with such a
point of view, we saw that the optimal choice was to take for ϕ the opposite of the phase of
û, in such a way that the resulting texton was a grey-level image with null phases, that is real
positive Fourier transform. In the case of a color image u, one can project it as a grey-level
image by considering for any α = (α1, α2, α3) ∈ R3, the real-valued image

α · u =

3∑

k=1

αkuk.

For instance, the intensity of the color image corresponds to α = (13 ,
1
3 ,

1
3), while its luminance

(perceived brightness) is obtained for α = (0.299, 0.587, 0.114). Taking the phases of α · u
to shift the phases of the three channels of the image is a first possibility to define a color
texton, and we will see that its has some of the desired concentration properties. To be more
precise, here is the definition.

Definition 2.5 (α-color texton). For a phase field ϕ : D → R satisfying the anti-symmetry

condition ϕ(−ξ) = −ϕ(ξ) for all ξ ∈ D, let us denote by Sϕ the operator defined on color

images u by shifting the phases of all the channels with the phase field ϕ. That is, if u is a

color image, then Sϕu is also a color image, given by

∀ξ ∈ D, Ŝϕu(ξ) = û(ξ)e−iϕ(ξ).

For α ∈ R3, let us define the α-color texton by the operator

u 7→ Tα(u) := Sϕα·uu, where ϕα·u is the phase field of α · û.

As in the case of grey-level textures, we also introduce the set of all images obtained from
u by a phase shift, i.e. we define

Θu = {v = Sϕu for ϕ anti-symmetric phase field }.
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Notice that for any λ real, α and λα define the same color texton. The link between the
α-color texton and the texton of grey-level images that we have defined and studied in the
first sections of this chapter is given by the following proposition.

Proposition 2.12. For any color image u and any α in R3, we have the identity

α · Tα(u) = T (α · u),

where T is the texton operator on grey-level images defined in Equation (2.16). As a conse-

quence, the α-color texton is solution of the two following optimization problems:

α · Tα(u)(0) = max
v∈Θu

α · v(0) and Tα(u) = Argmin
v∈Θu

∑

x∈D
A(x) (α · v(x))2 ,

where A is a real-valued image with non-positive Fourier transform, as defined in Proposition

2.5.

Proof. Let α ∈ R3 and let u be a color image. In the Fourier domain, we have for all ξ ∈ D,

̂α · Tα(u)(ξ) = α · T̂α(u)(ξ) = α · û(ξ)e−iϕα·u(ξ)

= |α · û(ξ)| = ̂T (α · u)(ξ).

The second part of the proposition is a direct consequence of the optimality properties of the
grey-level texton given in Propositions 2.4 and 2.5.

The synthesis of textures from an α-color texton is straightforward: we simply use either
the color RPN model of Equation (2.52) or the color Gaussian model of Equations (2.53) or
(2.54) with the color image Tα(u). Since Tα(u) is obtained from u by a simple phase shift,
both models have the same law as with the original image u.

On the choice of α

Of course, one of the main questions is the choice of α. Many choices are possible, for instance:
one of the channel (that is α = (1, 0, 0), or (0, 1, 0) or (0, 0, 1)), the intensity (αint = (13 ,

1
3 ,

1
3)),

the usual luminance (αlum = (0.299, 0.587, 0.114)), or eigenvectors of the covariance matrix
Γu(0). Indeed, the eigenvector corresponding to the largest eigenvalue of this matrix defines
a color direction α̃ that captures most the information between the different channels of the
color image, and is therefore a good choice for defining a α-color texton. We will illustrate
this on some examples (see bottom left graphics of Figure 2.7, Figure 2.8, Figure 2.9 and
Figure 2.10). On the contrary, the two other eigenvectors are far from being good choices. To
make this statement more precise, we compare the concentration properties of the different
α-color texton by plotting, in a way similar to the grey-level case, the energy outside a disk
of radius r centered at the origin as a function of the percentage of pixels inside this disk.
The lower the obtained curve is, the better the concentration of the color texton is. More
precisely, we plot

∑
x∈D\Dr

‖Tα(u)(x)‖2∑
x∈D ‖Tα(u)(x)‖2

as a function of 100× |Dr|
|D| , (2.55)
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where ‖ · ‖ is the euclidean norm on R3. The plots obtained for different possible α’s and for
different textures are shown on Figure 2.7, Figure 2.8, Figure 2.9 and Figure 2.10.

These curves are all bounded from below by the one that corresponds to the color image
made of the three textons of the three channels, i.e. the image given by (T (u1), T (u2), T (u3)).
Recall that this is not an admissible choice since, in general, it is not the result of a single
phase shift. However, the energy curve it gives (denoted “3 textons” in the plots) is the best
bound that can be achieved, or not, by a phase shift Sϕ.

From these examples, and from other experiments we have made, we can draw the follow-
ing conclusions: the eigenvector α̃ corresponding to the highest eigenvalue of the covariance
matrix Γu(0) is always the best possible α, while the two other eigenvectors are the worst
choices. For natural textures, αint and αlum have concentration performances that are very
close to the ones of α̃, and very close also to best possible ones given by the 3 textons. For
synthetic examples (example 3 that is the RPN of a natural but not micro-texture, and exam-
ple 4 that is a color image made of three different grey-level textures in the three channels),
α̃ is still the best choice, but it does not reach the optimal bound.

The fact that α̃ seems to be always the best choice is a consequence of the following
proposition. Indeed, this proposition shows that the color direction α̃ is the one that captures,
in expectation, most of the “energy” of the phase-shifted images.

Proposition 2.13. Let u be a color image and let α ∈ R3 be any color direction. Let A be a

real-valued image with non-positive Fourier transform, as defined in Proposition 2.5, and let

the weighted energy of a phase-shift Sϕu in the α direction be defined by

EA,α(Sϕu) =
∑

x∈D
A(x) |α · Sϕu(x)|2.

Then, taking the expectation of this energy when the ϕ(ξ) are i.i.d. (up to the Hermitian

symmetry condition) uniform on [0, 2π), we get

E[EA,α(Sϕu)] = 2|D|


 ∑

ξ∈D+\{0}
λξ


 tαΓu(0)α,

where λξ = − 1
|D|Â(ξ) are positive coefficients. Therefore, whatever A, E[EA,α(Sϕu)] as a

function of α ∈ S2 (S2 is here the unit sphere of R3) is maximal when α = α̃.

Proof. By linearity of the expectation we have

E(EA,α(Sϕu)) =
∑

x∈D
A(x) tαE(Sϕu(x)

tSϕu(x))α.

Now, because of the stationarity of the model RPN(u) we have that E(Sϕu(x)tSϕu(x)) is
independent of x and it is equal to Γu(0). Therefore

E(EA,α(Sϕu)) =

(∑

x∈D
A(x)

)
tαΓu(0)α.



66 Chapter 2. A Texton for Random Phase and Gaussian Textures

To end the proof, we simply notice that, according to Proposition 2.5,

∑

x∈D
A(x) = Â(0) = 2|D|

∑

ξ∈D+\{0}
λξ.

The conclusion of this section is that we can define the color texton of a color image
by choosing a color direction α. Many possible choices are available for α, and in terms
of concentration property, the best choice seems to be α = α̃, the eigenvector associated
with the largest eigenvalue of the covariance matrix Γu(0). However, for natural micro-
texture images, other reasonnable choices of α (intensity, or luminance for instance), lead
to similar concentration performances. To analyze further the concentration performances of
the different possible α’s, we will consider their ability to re-synthesize the original texture
after being cropped, as a function of the spatial size of the remaining support. This will be
analyzed in Section 2.4.3.

2.4.2 The matricial color texton

Recall that the texton of a grey-scale image u is a square root – for the convolution operation
– of the periodic auto-correlation. For color images, one may want to follow that idea, and
define alternative textons by x 7→ M(x) where for each x ∈ D, M(x) is matrix of rank at
most one and such that M ⋆ M = Γu, thus of dimensions either 3 × 1, 3 × 2 or 3 × 3. In
the Fourier domain, this is equivalent to M̂(ξ)M̂(ξ)∗ = Γ̂u(ξ) for all ξ ∈ D. We propose an
analysis where M(x) is assumed to be a 3× 3 matrix with rank less that one for all x in the
following.

As in the case of the grey-level texton, among all possible choices for M , we will choose
the one that is the most concentrated at 0, and we get the following definition.

Definition 2.6. The matricial texton of a color image u is the matrix-valued function x 7→
MT (u)(x) ∈ M3(R) such that its Fourier transform is given by

∀ξ ∈ D, M̂T (u)(ξ) =
1

‖û(ξ)‖ û(ξ)û(ξ)
∗.

Moreover we have the property that, among all matrices M such that M̂(ξ)M̂(ξ)∗ = Γ̂u(ξ),

then

tr(M(0)) is maximal when M =MT (u).

The maximal property of tr(M(0)) comes from the following computation: assume that
M is such that M̂(ξ)M̂(ξ)∗ = Γ̂u(ξ), then since Γ̂u(ξ) is a matrix with rank at most one
with all columns proportional to û(ξ), M̂(ξ) is also necessary a matrix with rank at most
one. Moreover, Γ̂u(ξ) must be of the form M̂(ξ) = û(ξ)γ(ξ)∗, where γ(ξ) ∈ C3 satisfies
γ(ξ)∗γ(ξ) = 1. Then

tr(M(0)) =
∑

ξ

tr(M̂(ξ)) =
∑

ξ

tr(û(ξ)γ(ξ)∗),
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and it is maximal when γ(ξ) = 1
‖û(ξ)‖ û(ξ).

Notice furthermore that the matricial texton of a color image u is given, in the Fourier
domain, by Hermitian matrices. Indeed, we have

∀ξ ∈ D, M̂T (u)(ξ) = M̂T (u)(ξ)
∗.

Thus, as defined above, the matricial color texton is the unique 3×3-matrix-valued function,
whose values are all symmetrical and whose convolution square is Γu, the auto-correlation
function of u.

We have just seen that the matricial texton MT (u) of a color image u satisfies a con-
centration property in 0 that is analogous to the property (P1) in the grey-level case. In a
straighforward way, we also have that it satisfies another concentration property analogous
to (P2). More precisely, we have that MT (u) = ArgminM

∑
xA(x)‖M(x)‖2F , where A is a

real-valued weight image with Â(ξ) ≤ 0 for all ξ ∈ D \ {0} (as in Proposition 2.5), ‖ · ‖F de-
notes the Frobenius norm, and where the matrices M on which the minimum is taken satisfy
M̂(ξ)M̂(ξ)∗ = Γ̂u(ξ) for all ξ, M̂(ξ) is Hermitian for all ξ and M̂(0) is moreover positive.

To explore the link between the matricial color texton and the α-color textons, we claim
that the matricial texton is more general in the sense that we can always recover the α-color
texton for any color direction α ∈ R3 with the formula

∀ξ ∈ D, T̂α(u)(ξ) = û(ξ)
û(ξ)∗α
|û(ξ)∗α| =

tr(M̂T (u)(ξ))√
α∗M̂T (u)(ξ)∗M̂T (u)(ξ)α

M̂T (u)(ξ)α.

The synthesis of the texture models ADSN(u) or RPN(u) from the matricial texton are
obtained the following way. Let W : D 7→ R3 be a vector-valued Gaussian white noise
with variance 1/|D|, which means that W = (W1,W2,W3) with Wk independent real-valued
Gaussian white noises with variance 1/|D|. Then, the ADSN(u) and RPN(u) models are
respectively synthezised by defining in the Fourier domain

Ûg(ξ) = M̂T (u)(ξ)Ŵ(ξ).

and

Û(ξ) = M̂T (u)(ξ)Ẑ(ξ), with Ẑ(ξ) =
eiϕ(ξ)

‖û(ξ)‖ û(ξ),

where the ϕ(ξ) are random uniform phases, independent up to the Hermitian symmetry
constraint.

As we already mentioned, the matricial texton MT (u) of a color image u has the property
of being such that all M̂T (u)(ξ) are matrices of rank at most one. But it is theoretically
possible to define matricial “textons” that yield matrices in the Fourier domain of any rank
up to 3. Although such textons cannot be directly based on any exemplar image, the case
might arise from compression (cropping around 0).

Let us first define general Gaussian models for color textures. In the case of grey-level
images, we have the equivalence: U is a real-valued Gaussian periodic stationnary random
field on D if and only if there exists a real-valued image u such that U ∼ ADSN(u). Now,
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for color images, the situation is different, all Gaussian periodic stationnary color textures
are not of the form ADSN(u). They are, in the general case, given in the Fourier domain by

Û(ξ) = M̂(ξ)Ŵ(ξ),

where Ŵ is a vector-valued complex white noise and where M̂(ξ) is a complex matrix, not
necessarily of rank one. In the most general case, the covariance of the Gaussian model is
given by

Γ̂(ξ) = M̂(ξ)M̂(ξ)∗ = E(Γ̂U(ξ)).

This covariance is in general a Hermitian matrix of any rank up to 3, whereas all Fourier
transform coefficients of an empirical covariance have a rank less than one. In the following
we will denote by GT(Γ) such a model of color Gaussian texture. For any color image u,
then ADSN(u) and GT(Γu) define the same model. But on the inverse, a model GT(Γ) is
equal to a model ADSN(u) if and only if all Γ̂(ξ), for ξ ∈ D are rank one matrices.

The texton of a general GT(Γ) model can be defined the following way:

∀ξ ∈ D, M̂T (ξ) = Γ̂(ξ)1/2,

where the notation Γ̂(ξ)1/2 denotes the unique positive square root of the positive matrix
Γ̂(ξ). This definition implies in particular that here again the Fourier transform M̂T (ξ)

of the matricial texton are Hermitian matrices. The synthesis from the general matricial
texton is then a consequence of the fact U ∼ GT(Γ) is equivalent in the Fourier domain to
Û(ξ) = M̂T (ξ)Ŵ(ξ) or in the space domain to U = MT ⋆W, where W is vector-valued
white noise.

Although the pertinence of such general Gaussian (or RPN) synthesis is debatable to
synthesize realistic visual textures, it might be of interest in order to synthesize new kinds of
textures

On the different examples shown on Figure 2.7, Figure 2.8, Figure 2.9 and Figure 2.10, we
show for each texture its α̃-color texton, its matricial texton (shown as two color images: one
corresponds to the diagonal elements of the matricial texton, and the other one to the off-
diagonal elements of the matricial texton). We also compare the concentration performances
of the different textons on the bottom left graphic of these figures.

2.4.3 Sparse color representation

Since the α-color textons and the matricial texton of a color image are concentrated around
x = 0, we can obtain, as in the grey-level case, a sparse representation of a color texture
u by a simple crop of one of these textons. More precisely, let χ denote a crop function
(for instance it is the indicator function of a disk of radius r centered at 0). Then we can
consider the cropped color texton Tc : x 7→ χ(x)Tα(u)(x), or the cropped matricial texton
Mc : x 7→ χ(x)MT (u)(x). And we can synthesize again color textures from these two models
(either with RPN or ADSN for Tc, and with a GT for Mc).
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Optimal constant before the crop

As in the case of grey-level images, instead of performing directly the crop of the color texton
Tu, we can look for an optimal constant β ∈ R3 such that the OT distance between the
original texture u and the texture obtained from the crop of Tu + β is as small as possible.
From Proposition 2.11, we have that this distance is given by

d(ADSN(u),ADSN(v))2 = d(RPN(u),RPN(v))2 =
∑

ξ∈D
(‖û(ξ)‖2 + ‖v̂(ξ)‖2 − 2|û(ξ)∗v̂(ξ)|),

with v = χ(Tu+β). There is no closed formula to get the optimal β, but as in the grey-level
case, we can easily compute the gradient of the above OT distance seen as a function of β.

Analogous computations can be performed with the matricial color texton, where in that
case the constant β becomes a 3× 3 matrix.

Covariance equalization after the crop

In the case of grey-level images, it is straightforward to see that our way of cropping textons
induces a loss of variance for the texture and that therefore a variance correction had to be
performed. Here, for color textures, the same phenomenon appears, in a more striking way
because not only the variance of each channel is reduced, but the co-variances between the
different channels is also modified, resulting sometimes in the “lost” of some colors. This is
illustrated on Figure 2.6 where we show why a covariance equalization is needed after the
crop. More precisely, the sparse color representation of a color texture u is performed the
following way:

1. Choose a crop function χ and compute either the cropped color texton Tc or the cropped
matricial texton Mc.

2. Perform the covariance equalization, that is find a matrix B ∈ M3(R) such that

B
∑

ξ

T̂c(ξ)T̂c(ξ)
∗B∗ =

∑

ξ

û(ξ)û(ξ)∗ = Γu(0), or B
∑

ξ

M̂c(ξ)M̂c(ξ)
∗B∗ = Γu(0).

3. Synthesize new textures from BTc with ADSN(BTc) or RPN(BTc), or from BMc with
GT(BMcM

∗
cB

∗).

On the choice of B. Notice that there are a priori infinitely many possible choices
for the matrix B used to equalize the covariances. Indeed, let us denote Γc the matrix∑

ξ T̂c(ξ)T̂c(ξ)
∗ (or

∑
ξ M̂c(ξ)M̂c(ξ)

∗) and Γ0 = Γu(0), then these are two positive definite
symmetric matrices and we can choose for B any matrix that satisfies BΓcB

∗ = Γ0. If we
diagonalize Γ0 and Γc in orthogonal basis we can write

Γ0 = O0D0O
∗
0 and Γc = OcDcO

∗
c ,

where O0 and Oc are orthogonal matrices (with determinant +1) and D0 and Dc are diagonal
matrices with positive coefficients arranged in decreasing order on the diagonal. Then,

∀O ∈ O3(R), B = O0D
1/2
0 OD−1/2

c O∗
c satisfies BΓcB

∗ = Γ0. (2.56)
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Now, let us address the problem of the choice for B among all these possibilities. A first
possible criterion is to choose B such that it changes the image the less, which means for
instance that we choose B such that ‖B − I‖2F = tr((B − I)(B∗ − I)) is as small as possible
(I denotes here the identity matrix in R3 and ‖ · ‖F stands for the Frobenius norm). Another
possibility is to take B such that the OT distance between the original model and the cropped
and equalized model ADSN(BTc) (or GT(BMcM

∗
cB

∗)) is the smallest. Unfortunately, unlike
the monochromatic case, there is no closed formula to solve this optimization problem. We
propose to choose O = I3 (Identity of R3) in (2.56), leading to the equalization matrix

B = O0D
1/2
0 D−1/2

c O∗
c

wich yield in practice very good results for both performance criteria.

To compare the synthesis performances of the different α-color textons and of the matrical
texton, we have plotted for different textures the OT-distance between the original model and
the model after the crop and the covariance equalization. That is, we plot

d(ADSN(BTc),ADSN(u)) as a function of 100×
∑

x χ(x)

D
,

where we take for χ the indicator function of a ball of radius r.
We do it the same way for the cropped matricial texton. But in that case, after the crop

and the equalization, the matrices B̂Mc(ξ) are not necessarily of rank one, and therefore the
Gaussian model given by BMc is not necessarily an ADSN model. In that case, to compute
the OT-distance the two stationary Gaussian models, we need to use the full formula:

d(GT(Γ1),GT(Γ2)) =
∑

ξ

tr(Γ̂1(ξ) + Γ̂2(ξ)− 2(Γ̂1(ξ)
1/2Γ̂2(ξ)Γ̂1(ξ)

1/2)1/2).

Remark: To compute numerically this distance in an efficient way we first notice that
when one of the two matrices Γ̂1(ξ) or Γ̂2(ξ) is of rank at most one (which is the case when
we compute the distance to a model ADSN(u)), then Γ̂1(ξ)

1/2Γ̂2(ξ)Γ̂1(ξ)
1/2 is also of rank at

most one and therefore we can use the fact that if A is a positive symmetric matrix of rank at
most one, then tr(A1/2) = tr(A)1/2. Moreover to have more stable numerical results, we also
use the identity: tr(A1)+ tr(A2)−2tr(A1A2)

1/2 = tr(A2−A1)+2tr(A1(A1−A2))/(tr(A1)+

tr(A1A2)
1/2).

To conclude this section on the matricial texton we point out that, unlike the α-color
texton, the matricial texton is defined for any color Gaussian texture. For real textures, it
is practically equivalent (in terms of concentration property) to the α̃-color texton as shown
on the following figures.

2.5 Appendix

2.5.1 Proof of Theorem 2.1

Proof. Since Fourier transform is an invertible linear operator, (U(x))x∈Ω is a centered Gaus-
sian vector if and only if {Û(0),Re Û(ξ), Im Û(ξ); ξ ∈ Ω+} is a centered Gaussian vector. We
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Figure 2.6: First line: the original texture “wall” (size 512×512) and the off-diagonal matricial
texton. Second line: the diagonal of the matricial texton and diagonal of the matricial texton
after a crop with a disk of radius 20 pixels. Third line: texture synthesized with the cropped
matricial texton (notice how the blue-grey shades of the original texture are almost lost) and
same texture after covariance equalization. Fourth line: joint distribution of the values of
the red and blue channels of the synthesized texture before covariance equalization (on the
left) and after (on the right). This second joint distribution is exactly equal to the one of the
original texture.
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Figure 2.7: First line: left, the original texture image; right, the α̃-color texton. Second line:
the matricial texton visualized as two color images: the diagonal elements on the left, and
the off-diagonal elements on the right. Third line: left, energy of the different textons as a
function of the percentage of pixels in a disk centered at 0; right, square OT distance of the
different cropped textons after covariance equalization.
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Figure 2.8: First line: left, the original texture image; right, the α̃-color texton. Second line:
the matricial texton visualized as two color images: the diagonal elements on the left, and
the off-diagonal elements on the right. Third line: left, energy of the different textons as a
function of the percentage of pixels in a disk centered at 0; right, square OT distance of the
different cropped textons after covariance equalization.
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Figure 2.9: First line: left, the original texture image; right, the α̃-color texton. Second line:
the matricial texton visualized as two color images: the diagonal elements on the left, and
the off-diagonal elements on the right. Third line: left, energy of the different textons as a
function of the percentage of pixels in a disk centered at 0; right, square OT distance of the
different cropped textons after covariance equalization.
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Figure 2.10: First line: left, the original texture image; right, the α̃-color texton. Second
line: the matricial texton visualized as two color images: the diagonal elements on the left,
and the off-diagonal elements on the right. Third line: left, energy of the different textons as
a function of the percentage of pixels in a disk centered at 0; right, square OT distance of
the different cropped textons without covariance equalization. Here, the diagonal matrices
in (2.56) are not numerically invertible.
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need now to compute how their covariances are related. Now, assume that (U(x))x∈Ω is a
centered Gaussian periodic stationnary random field, and we denote Γ(x) = Cov(U(x), U(0))

for all x ∈ Ω. Because U is perodic stationnary we have that Γ(x) = Cov(U(x + y), U(y))

for all x,y ∈ Ω. Moreover Γ(x) = Γ(−x) and as a consequence, Γ̂ is real.
Let ξ and ξ′ in Ω+, we start for instance by computing Cov(Re Û(ξ),Re Û(ξ′)). We get

Cov(Re Û(ξ),Re Û(ξ′)) = E

((∑

x∈Ω
U(x) cos(2π〈x, ξ〉)

)(∑

x∈Ω
U(x) cos(2π〈x, ξ′〉)

))

=
∑

x∈Ω

∑

y∈Ω
E(U(x)U(x+ y)) cos(2π〈x, ξ〉) cos(2π〈x+ y, ξ′〉)

=
∑

y∈Ω
Γ(y)

∑

x∈Ω
cos(2π〈x, ξ〉) cos(2π〈x+ y, ξ′〉)

=
∑

y∈Ω
Γ(y)

MN

2
cos(2π〈y, ξ〉)δξ=ξ′ =

MN

2
Γ̂(ξ)δξ=ξ′ .

Similar computations can be made for the imaginary parts of Û(ξ) and Û(ξ′), and also for
the covariance between the real and the imaginary parts.
The converse part of the theorem works also in a very similar way.

2.5.2 Proof of Proposition 2.10

Proof. Let ‖S‖∞ denote the upper bound of S over [−π, π]2. Thanks to periodicity, this is
also the upper bound of S over R2. Let x1, . . . ,xl denote l distinct points in Z2. Take (M,N)

in N2 and consider (ŨM,N (x1), . . . , ŨM,N (xl)) and the joint characteristic function:

ΦM,N (t1, . . . , tl) = E[exp(it1ŨM,N (x1) + . . .+ itlŨM,N (xl))]

defined for any (t1, . . . , tl) in Rl. For any x ∈ Z2, we have, using the hypothesis on S and the
symmetry condition on φ, that

ŨM,N (x) =
1√
MN

∑

ξ∈ΩMN

S(ξ)eiφ(ξ)e2iπx·ξ

=
2√
MN

∑

ξ∈ΩMN+

S(ξ) cos(φ(ξ) + 2πx · ξ).

Then, using the independance of the φ(ξ) for ξ in ΩMN+, we get

log ΦM,N (t1, . . . , tl) =
∑

ξ∈ΩMN+

logE

(
e
i 2√

MN

∑l
j=1 tjS(ξ) cos(φ(ξ)+2πxj ·ξ)

)
.

Now, for ξ ∈ ΩMN+ let us denote

Xξ =
2√
MN

l∑

j=1

tjS(ξ) cos(φ(ξ) + 2πxj · ξ).
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It is straightforward to see that Xξ is bounded independently of ξ by

|Xξ| ≤
2√
MN

(|t1|+ . . .+ |tl|)‖S‖∞.

We can also compute the first two moments of Xξ and we obtain, using the property that for
any uniform random variable φ over R/2πZ then E(cos(φ+u)) = 0 and E(cos(φ+u) cos(φ+
v)) = 1

2 cos(u− v),

E(Xξ) = 0 and E(X2
ξ) =

2

MN

l∑

j,k=1

tjtkS(ξ)
2 cos(2π(xj − xk) · ξ).

Now, for any ε small enough in R, we have by Taylor formula that

|eiε − 1− iε+
1

2
ε2| ≤ ε3 and | log(1 + ε)− ε| ≤ 2ε2.

Therefore, there exists a constant C independant of M,N and ξ such that

∀ξ ∈ ΩMN+, | logE(eiXξ) +
1

MN

l∑

j,k=1

tjtkS(ξ)
2 cos(2π(xj − xk) · ξ)| ≤

C

(MN)3/2
.

Then

| log ΦM,N (t1, . . . , tl) +
1

MN

∑

ξ∈ΩMN+

l∑

j,k=1

tjtkS(ξ)
2 cos(2π(xj − xk) · ξ)| ≤

C√
MN

.

Thus, as (M,N) grows to infinity, since S is assumed to be piecewise continuous, the Riemann
sum converges and we finally obtain

log ΦM,N (t1, . . . , tl) −→
M,N→∞

− 1

4π2

l∑

j,k=1

tjtk

∫

[−π,π]2
S(ξ)2 cos((xj − xk) · ξ) dξ.

That concludes the proof.
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Chapter 3

Large Error Approximations of Images

We revisit the importance of phase of the Fourier transform of signals through a paradigm of
“large error approximations” (LEA) of signals. We investigate variants of this approximation
that either challenge or comfort the commonly accepted interpretation that the shapes of an
image are coded within the phase. We also discuss the importance of the discrete Fourier
transform itself, as a choice among other unitary operators.

3.1 Introduction

Many tasks in signal processing can be described as finding a signal, within a given set, close
to an initial signal in either a quantifiable or a perceptual way. For instance, lossy signal
compression problems can be stated in the following way:

• the initial signal is a raw collection of sampled measurements

• the approximation set is characterised by the sparsity of its elements in some represen-
tation (a given ratio of non-zero entries with respect to some representation, see e.g.

[62] for the DCT and [91] for orthogonal wavelets)

• the error can be measured by the distance induced by the ‖ · ‖2 norm, but is often
assessed by tests with respect to human perception.

Such examples share the characteristic that the approximations they render are of somewhat
“small error”, typically with a relative distance less than 10%.

In different contexts however, the need for such a small distance from the original image
is irrelevant to the processing task. Histogram equalization, as highlighted by the morpho-
logical model [57], may yield results that are, by design, far from the initial image – the
error can often be higher than 50%. However, the resulting image remains “faithful” to the
original, in the sense that the former can easily be recognized in the latter by human vision.
We call such processing tasks “large error approximations” (LEA). Examples of LEA are
countless and comprise approximations of images with constant patches (down-sampling or
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pixelation), dominos or ASCII characters (see Knowlton and Harmon in [74] and [58]), photo-
graphic patches from a library (photomosaics as pioneered by Silvers in [123]), patches from
a texturing image (texture transfer, see Efros and Freeman [41]), stipples (see e.g. Deussen
in [37], and Secord [121]), dots of different sizes (halftones, see e.g. Ostromoukhov [107]) and
even “Traveling Salesman Problem” paths (see Bosch and Kaplan [71]). We refer to Figure 3.1
for a few graphic examples.

Figure 3.1: “Lena” and three large error approximations. Top left: pixellized 64 × 64 sub-
sampling. Top right: photomosaics as pioneered in [123] (credit: [1]). Bottom left: stippling
(6000 stipples). Bottom right: TSP art (credit Seb Perez-Duarte via Flickr).

The fact that the initial signal can be recognized in large error approximations can be of
great importance for vision psychologists and physiologist, neuroscientists, brain modelers etc.
For instance, the recognition of photomosaics or downsamplings of an image (see Figure 3.1),
along with the experiments of Oliva and Torralba (see e.g. [102]) are quite well explained, e.g.

thanks to the findings of Campbell and Robson [20]: visual neurons respond to specific spatial
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fequencies. Navon [101] offered a concurrent explanation: in certain conditions (especially
scene vision), perception follows a hierarchy from global to local.

Many LEA can be obtained as the solution of a projection problem. More precisely, let
D denote sampling set. Let S be a subset of RD (resp. CD) – the “constraint set” – e.g. the
set of images with some given histogram in the task of histogram equalization. Let u – the
“target image” – be an image, modeled by an element in RD. We consider images s∗ in the
“best approximation set” defined by

argmin
s∈S

‖ s− u ‖2 . (3.1)

We shall refer to LEA obtained through projections as “large error projections” (LEP). For
instance, the operator that maps images onto the set of images with a prescribed histogram
is a projection and finds the closest image, within the (non-convex) set of images with a
prescribed histogram, from the initial image.

This chapter deals with a particular LEP that was discussed by Oppenheim and Lim in
a celebrated article [106]. This classical phenomenon in signal processing, namely “the im-
portance of phase in signals”, is still quite puzzling for the scientific understanding of human
vision. Morrone and Burr have suggested that the phase of signals could be somehow “hard-
wired” in human perception system [100], but this hypothesis has turned out to be hard to
test.

The purpose of this chapter is to revisit the findings described by Oppenheim and Lim
in [106], with the LEA/LEP paradigm in mind. We argue that the importance of phase
is deeply connected to the fact that the phase characterizes the solutions of a LEP under
constraints on the mean and the (periodical) auto-correlation, which is detailed in Section
2. In Section 3, we support this argument by providing experiments of LEA/LEP where the
constraints on the modulus are replaced by constraints on the phase itself, which surprisingly
lead to the regognition of the target image. In Section 4, we provide further experiments in
order to investigate the role of the Fourier transform itself and discuss an argument as for
its specificity among other unitary transforms. In Section 5, we conclude by discussing the
connection between LEA and LEP.

3.2 The importance of phase in signals as a LEA problem

In this section, we detail a LEP problem that is deeply connected to Oppenheim and Lim
observations in [106] where they pointed out the importance of phase of the discrete Fourier
transform of signals. One common interpretation is that some critical information of a signal
(e.g. the edges and contours of an image) is roughly coded within its phase. The rationale
for this interpretation is that the phase is essential to form edges from the summation of
planar sine waves. Under some over-sampling hypotheses, the information in the phase alone
is accurate enough to exactly retrieve the signal (see Section 5 in [106]).
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Figure 3.2: Top left: “Lena”. Top right: “clouds”. Bottom left: the Oppenheim-Lim image
w as defined by (3.2), with “Lena” as u (phase) and “clouds” as v (modulus). Bottom right:
the Oppenheim-Lim image w as defined by (3.2) with “clouds” as u (phase) and “Lena” as v
(modulus).

3.2.1 The LEP problem

Let u and v be two grey-scale images defined over the domain D (i.e. two elements in RD),
and let û and v̂ denote their discrete Fourier transforms. In order to point the importance of
the phase of the Fourier transform, Oppenheim and Lim consider the signal w in RD defined
by its Fourier transform as follows: for all ξ in D

ŵ(ξ) = 1{û(ξ) 6=0}
û(ξ)

|û(ξ)| |v̂(ξ)|. (3.2)

In other words, w is the image that has the phase of u, φu ( ŵ(ξ)
|ŵ(ξ)| =

û(ξ)
|û(ξ)| = eiφu(ξ) – where

φu(ξ) is in R/2πZ – for all ξ such that û(ξ) 6= 0) and the modulus of v (|ŵ(ξ)| = |v̂(ξ)| for
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all ξ in D), which has been documented as being “similar” to the image u. Let us show that
w solves a very particular LEA problem of the form defined by (3.1).

Proposition 3.1. Define

Mv := {s ∈ CD; |ŝ(ξ)| = |v̂(ξ)| (∀ξ ∈ D)}. (3.3)

Then

w ∈ argmin
s∈Mv

‖ s− u ‖2 . (3.4)

Moreover, w is the unique point in argmin
s∈Mv

‖ s− u ‖2 if and only if

∀ξ ∈ D (û(ξ) = 0) ⇒ (v̂(ξ) = 0). (3.5)

Proof. For simplicity we adopt the unitary definition of the discrete Fourier transform.
Thanks to Parseval identity, ‖ s − u ‖2=‖ ŝ − û ‖2, and since minimizing ‖ s − u ‖2 is
equivalent to minimizing ‖ s− u ‖22, we have the following identity

argmin
s∈Mv

‖ s− u ‖2= argmin
s∈Mv

∑

ξ∈D
|ŝ(ξ)− û(ξ)|2. (3.6)

Now notice that for one fixed non-zero complex number a, and a variable complex number
z with a fixed modulus |z| = |b| > 0, the quantity |z−a| is minimal if and only if z = |b| a

|a| , i.e.

when a and z are on the same half-line starting at 0 on the complex plane (see Figure 3.3).

0

✻
|b| a

|a|
✻
a

❅❅❘
b✫✪

✬✩
{z; |z| = |b|}

Figure 3.3: Orthogonal projection onto a circle.

Hence, for each ξ in D, for s ∈ Mv, |ŝ(ξ) − û(ξ)| is minimal when ŝ(ξ) = |v̂(ξ)|eiφu(ξ).
Thus w, as defined by (3.2), is in argmin

s∈Mv

∑

ξ∈D
|ŝ(ξ) − û(ξ)|2. Notice that w is indeed a real

image since u is itself a real image and thus for all ξ in D, eiφu(−ξ) = e−iφu(ξ) which implies
in turn that ŵ(−ξ) = ŵ(ξ).

The uniqueness condition is straightforward.

Remark 3.1. The error of the LEA problem (3.4), defined by min
s∈Mv

‖ s − u ‖2, is exactly

‖ |v̂| − |û| ‖2.

Remark 3.2. The choice of the ‖ · ‖2 distance in (3.4) shows that w defined by (3.2) is an

“orthogonal projection” of u onto the set Mv. We write

w = PMv(u). (3.7)
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Remark 3.3. The space Mv is generally non-convex and argmin
s∈Mv

‖ s − u ‖2 is generally

not reduced to a singleton. More precisely if there exists ξ0 in D \ {0} such that û(ξ0) = 0

and v̂(ξ0) 6= 0, replacing the value of PMv(u)(ξ0) (resp. PMv(u)(−ξ0)) by v̂(ξ0)e
iφ (resp.

v̂(ξ0)e
−iφ) for any phase φ in R/2πZ provides another point in argmins∈Mv

‖ s − u ‖2.
However, if u is assumed to be such that for all ξ in D, û(ξ) 6= 0, then for all v, argmin

s∈Mv

‖
s− u ‖2 is a singleton.

Remark 3.4. Notice that PMv(λu) = PMv(u) for all λ > 0. However, PMv(λu) = −PMv(u)

for all λ < 0.

Now, for all s in CD, let us write

ms =
1

D

∑

x∈D
s(x) (3.8)

the means of s and, for all x in D

Γs(x) =
1

|D|
∑

y∈D
(s(y)−ms)(s(y + x)−ms) (3.9)

the periodical autocorrelation of s (y + x is defined in the finite group D). Recall that

Γ̂s(ξ) = |ŝ(ξ)|2 (3.10)

for all ξ in D \ {0} and thus for all s in CD we have the following

{s ∈ RD; |ms| = |mv| and Γs(x) = Γv(x) (∀x ∈ D)} = Mv. (3.11)

3.2.2 The texton as an approximation of the Dirac mass

In Chapter 2, we defined a representation of Gaussian and Random Phase Noise textures u
by defining its texton by

T̂ (u) = |û|. (3.12)

Recall that δ0 denotes the Dirac at 0 is defined by δ0(x) = 1 if x = 0 and δ0(x) = 0 otherwise.
Proposition 3.1 implies the following result.

Corollary 3.1. For all u

T (u) = PMu(δ0). (3.13)

Moreover, T (u) is the only image in RD to satisfy

T (u) ∈ argmin
s∈Mu

‖ s− δ0 ‖2 . (3.14)

Proof. Simply notice that δ̂0(ξ) = 1√
D

6= 0 for all ξ in D, so that

δ̂0(ξ)

|δ̂0(ξ)|
= 1 (3.15)

for all ξ in D.
For the uniqueness property, notice that δ̂0(ξ) 6= 0 for all ξ in D, so as mentionned in

Remark 3.3, condition (3.5) is always satisfied, regardless of u.
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This result can be linked to the fact that textons are “concentrated” around 0. Indeed, δ0
is the most concentrated signal around 0 and T (u) is the closest signal to δ0 according to the
l2(D) distance, with the constraint ΓT (u) = Γu and |mu| = |mT (u)| (recall identity (3.11)).
Notice that Remark 3.4 yields T (u) = PMu(λδ0) for all λ > 0.

3.3 Four large error projections with constraints on the phase

Figure 3.4: Images of the projections of “Lena” (as the target image u) onto different constraint
sets defined by “clouds” (as v). In particular, all the images shown here have the phase of
“clouds” (modulo π and 2π), but “Lena” is somewhat recognizable in each projection. Top
left: PD(π)

v
(u) (phase of “clouds” modulo π). Top right: PD(2π)

v
(u) (phase of “clouds” modulo

2π). Bottom left: PF(π)
v

(u) (phase of “clouds” modulo π, modulus of “clouds”). Bottom right:
PF(2π)

v
(u) (phase of “clouds” modulo π, modulus of “clouds” or zero).
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In this section, we are interested in how well a given image can be approximated, while
their phase is strongly constrained, typically by imposing them from a different image. The
purpose is to reconsider and nuance the proverbial importance of phase in signals. Thus, we
focus on LEP onto sets that are defined by the phase of its elements. We investigate the
possibility of preserving the geometry of the target image despite such constraints. We shall
first consider the projections onto the set of images which phase modulo π are given (e.g.
taken from a given different image), and restrict this to the phase modulo 2π. As we shall
illustrate in Figure 3.4 and Figure 3.6, these projections allow a fair recognition of the target
image. Interestingly, under somewhat weak hypotheses, a small number of these projections
allow for exact reconstruction of the entire target image.

Given an image v, we also investigate projections onto the set of images where the whole
Fourier coefficients can be either kept identical or gotten rid of, and projections onto the set
of images where the Fourier coefficients can only be kept identical or multiplied by −1.

3.3.1 Projections with constraints on the phase

Let us consider the two following constraint sets

D(π)
v = {s ∈ RD; ŝ(ξ) ∈ R.v̂(ξ) (∀ξ ∈ D)} (3.16)

D(2π)
v = {s ∈ RD; ŝ(ξ) ∈ R+.v̂(ξ) (∀ξ ∈ D)}. (3.17)

Notice that D(2π)
v ⊂ D(π)

v . We are considering the LEA problems based on the target image
u and the constraint sets D(π)

v and D(2π)
v . These constraint sets are designed to preserve

the phase of the image v. Notice that in D(π)
v the constraint holds on the phase modulo

π, whereas D(2π)
v the constraint holds on the phase modulo 2π. Thus, in the corresponding

projection PD(π)
v

(resp. PD(2π)
v

) defined infra, the optimization is performed on the signed
Fourier modulus of the optimized variable (resp. its unsigned modulus). We now derive the
solutions of the LEP.

Proposition 3.2. The set D(π)
v is a linear subspace of RD and D(2π)

v is a convex cone.

Moreover

argmin
s∈D(π)

v

‖ s− u ‖2= {PD(π)
v

(u)} (3.18)

and

argmin
s∈D(2π)

v

‖ s− u ‖2= {PD(2π)
v

(u)} (3.19)

where PD(π)
v

(u) (resp. PD(2π)
v

(u)) is the orthogonal projections of u onto D(π)
v (resp. D(2π)

v ).

They can be defined through their discrete Fourier transform by

̂PD(π)
v

(u)(ξ) = 1{v̂(ξ) 6=0}Re
(
û(ξ)v̂(ξ)

) v̂(ξ)

|v̂(ξ)|2 (3.20)

and
̂PD(2π)
v

(u)(ξ) = 1{Re(û(ξ)v̂(ξ))>0}Re
(
û(ξ)v̂(ξ)

) v̂(ξ)

|v̂(ξ)|2 . (3.21)
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Proof. Clearly D(π)
v is a R-linear subspace of CD as the image of a R-linear subspace of CD

through the inverse Fourier transform, which is R-linear. The fact that D(π)
v is a subset of

RD is straightforward thanks to the symmetry condition. To prove that D(2π)
v is a convex

cone, notice that it is an intersection of convex cones, namely RD and {s ∈ CD; ŝ(ξ) ∈
R+.v̂(ξ) (∀ξ ∈ D)}. The formulas for the Fourier transforms of the projections of u onto D(π)

v

(resp. D(2π)
v ) PD(π)

v
(u) (resp. PD(2π)

v
(u)) are simple consequence of Parseval identity, since

argmin
s∈S

‖ s− u ‖2= argmin
s∈S

‖ ŝ− û ‖22 . (3.22)

for any subset S of CD.

0

✻
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❅❅■

Re(ab)b

|b|2
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❅
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��
��

{z; z ∈ R.b}
Figure 3.5: Orthogonal projection onto a line.

Now, as in the proof of Theorem 3.1, simply notice that for one fixed non-zero complex
number a, and a complex non-zero number z in R.b (with b 6= 0), the quantity |z − a| is

minimal if and only if z =
Re(ab)b

|b|2 , regardless of the sign of Re(ab). Moreover, notice that

for one fixed non-zero complex number a, and a complex non-zero number z in R+.b (with

b 6= 0), the quantity |z − a| is minimal if and only if z =
Re(ab)b

|b|2 whenever Re(ab) > 0 and

z = 0 otherwise. See Figure 3.5 for an illustration.

Remark 3.5. The phase of PD(2π)
v

(u) is identical to the phase of v (modulo 2π), except on

the subset of the Fourier domain {ξ ∈ D;Re(û(ξ)v̂(ξ)) ≤ 0} where the phase is not properly

defined. Notice that this set collects the points ξ in the Fourier domain where the complex

numbers û(ξ) and v̂(ξ) form an obtuse angle in the complex plane (see Figure 3.5).

3.3.2 Reconstruction formulas

We now state a straightforward result of exact reconstruction from the projections. The
interest of such a result lies mostly in the comparison with the exact reconstruction algorithm
that Oppenheim and Lim used to illustrate the importance of phase. For two images v1 and
v2, let us state the following hypothesis

(H): v̂1(ξ)v̂2(ξ) /∈ R for all ξ in D.

In other words, Hypothesis (H) guarantees that for each spatial frequency ξ, the com-
plex numbers v̂1(ξ) and v̂2(ξ) are R-independent. Moreover, Hypothesis (H) is quite easily
satisfied, as illustrates the following result.
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Proposition 3.3. Let v1 and v2 be two images such that v̂1(ξ) 6= 0 (resp. v̂2(ξ) 6= 0) for

all ξ. Define RPN(v2) the random phase noise image associated with v2 as defined in [51].

Then, almost surely v1 and RPN(v2) satisfy Hypothesis (H).

Proof. For each ξ in D, recall that ̂RPN(v2)(ξ) = v̂2(ξ)e
iΦ(ξ) where Φ(ξ) is a random vari-

able uniformly distributed on the circle. Thus, for each ξ, ̂RPN(v2)(ξ) and v̂1(ξ) are R-
independent with probability 1. Since there is a finite number of such ξ, the conclusion
follows.

We now state a result of exact reconstruction based on the projections onto sets of the
form D(π)

v .

Proposition 3.4. Let v1 and v2 be such that they satisfy Hypothesis (H). Then, every image

u can be exactly reconstructed from v1, v2, PD(π)
v1

(u) and PD(π)
v2

(u) by

û(ξ) = α1(ξ)v̂1(ξ) + α2(ξ)v̂2(ξ) (3.23)

where α1(ξ) and α2(ξ) are defined by




α1(ξ) =
|v̂2(ξ)|2 ̂PD(π)

v1

(u)(ξ)v̂1(ξ)−Re(v̂1(ξ)v̂2(ξ)) ̂PD(π)
v2

(u)(ξ)v̂2(ξ)

|v̂1(ξ)|2|v̂2(ξ)|2 −Re(v̂1(ξ)v̂2(ξ))2

α2(ξ) =
|v̂1(ξ)|2 ̂PD(π)

v2

(u)(ξ)v̂2(ξ)−Re(v̂2(ξ)v̂1(ξ)) ̂PD(π)
v1

(u)(ξ)v̂1(ξ)

|v̂1(ξ)|2|v̂2(ξ)|2 −Re(v̂1(ξ)v̂2(ξ))2
.

Proof. Hypothesis (H) ensures that for each ξ, v̂1(ξ) and v̂2(ξ) are R-independent vectors
of R2. Thus, for each ξ there are a unique couple (α1(ξ), α2(ξ)) in R2 such that û(ξ) =

α1(ξ)v̂1(ξ) + α2(ξ)v̂2(ξ). Let us show that α1(ξ) and α2(ξ) solve (uniquely) the R-linear
system 



α1(ξ)|v̂1(ξ)|2 + α2(ξ)Re(v̂1(ξ)v̂2(ξ)) = ̂PD(π)

v1

(u)(ξ)v̂1(ξ)

α1(ξ)Re(v̂1(ξ)v̂2(ξ)) + α2(ξ)|v̂2(ξ)|2 = ̂PD(π)
v2

(u)(ξ)v̂2(ξ).
(3.24)

Indeed, recall that by definition ̂PD(π)
v1

(u)(ξ) = Re(û(ξ)v̂1(ξ))
|v̂1(ξ)|2 v̂1(ξ). Hence, on the one hand

Re(û(ξ)v̂1(ξ)) = ̂PD(π)
v1

(u)(ξ)v̂1(ξ)

and on the other hand

Re(û(ξ)v̂1(ξ)) = α1(ξ)|v̂1(ξ)|2 + α2(ξ)Re(v̂1(ξ)v̂2(ξ))

which yields the first equation of the system. The second equation follows by symmetry.
Notice that the system is always determinate since |v̂1|2|v̂2|2 − Re(v̂1v̂2) > 0 thanks to Hy-
pothesis (H). The formulas for α1(ξ) and α2(ξ) follow by inverting the 2 × 2 matrix of the
system.

We can now prove a similar result of exact reconstruction based on the projections onto
sets of the form D(2π)

v .
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Proposition 3.5. Let v1 and v2 be such that they satisfy Hypothesis (H). Then, every image

u can be exactly reconstructed from v1, v2, w
+
1 = PD(2π)

v1

(u), w−
1 = PD(2π)

−v1

(u), w+
2 = PD(2π)

v2

(u)

and w−
2 = PD(2π)

−v2

(u) by

û(ξ) = β1(ξ)ε1(ξ)v̂1(ξ) + β2(ξ)ε2(ξ)v̂2(ξ) (3.25)

where ε1(ξ) = + (resp. ε2(ξ) = +) if w+
1 6= 0 (resp. if w+

2 6= 0) and ε1(ξ) = − (resp.

ε2(ξ) = −) otherwise, β1(ξ) and β2(ξ) solve (uniquely) the R-linear system





β1(ξ) =
|v̂2(ξ)|2̂wε1(ξ)

1 (ξ)v̂1(ξ)− ε1(ξ)ε2(ξ)Re(v̂1(ξ)v̂2(ξ))
̂
w

ε2(ξ)
2 (ξ)v̂2(ξ)

|v̂1(ξ)|2|v̂2(ξ)|2 −Re(v̂1(ξ)v̂2(ξ))2

β2(ξ) =
|v̂1(ξ)|2̂wε2(ξ)

2 (ξ)v̂2(ξ)− ε1(ξ)ε2(ξ)Re(v̂2(ξ)v̂1(ξ))
̂
w

ε1(ξ)
1 (ξ)v̂1(ξ)

|v̂1(ξ)|2|v̂2(ξ)|2 −Re(v̂1(ξ)v̂2(ξ))2
.

Proof. Let us prove that for each ξ, β1(ξ) and β2(ξ) solve (uniquely) the R-linear system



β1(ξ)|v̂1(ξ)|2 + β2(ξ)ε1(ξ)ε2(ξ)Re(v̂1(ξ)v̂2(ξ)) = ε1(ξ)

̂
w

ε1(ξ)
1 (ξ)v̂1(ξ)

β1(ξ)ε1(ξ)ε2(ξ)Re(v̂1(ξ)v̂2(ξ)) + β2(ξ)|v̂2(ξ)|2 = ε2(ξ)
̂
w

ε2(ξ)
2 (ξ)v̂2(ξ).

First, notice that ŵ+
j (ξ)+ ŵ

−
j (ξ) = εj(ξ)ŵj(ξ) and that ŵ+

j (ξ) and ŵ−
j (ξ) cannot be non-zero

at the same time. The remaining of the proof is identical to the proof of Proposition 3.4.

Let us compare these results to the result of reconstruction obtained by Oppenheim
and Lim [106]. The authors of the latter article describe an algorithm that allows exact
reconstruction based on the information of the phase only, under the hypothesis that a large
number of coefficients of the image (actually 75%) are zeroes. In other words, a phase-only
image, or an image with inaccurate modulus, allows for perfect reconstruction of roughly
25% of the image. Comparatively, according to Proposition 3.4, projections onto phase cones
of the form D(π)

v allow for reconstruction of 25% of the signal, since four images of the
dimension of u are needed. According to Proposition 3.5, projections onto phase cones of the
form D(2π)

v allow for reconstruction of one sixth of the signal. Actually these estimations turn
out to be quite conservative. Indeed, under the hypothesis that for each ξ in D \ {0} both
Re(v̂1(ξ)û(ξ)) 6= 0 and Re(v̂2(ξ)û(ξ)) 6= 0, the information of D(π)

v1 and D(π)
v2 (resp. D(2π)

v1 ,
D(2π)

−v1 , D(2π)
v2 and D(2π)

−v2 ) are sufficient for exact reconstruction. These hypothesis are quite
easily satisfied as they are clearly satisfied by two independent RPN textures V1 and V2.
Under these more favorable hypotheses, projections onto phase cones of the form D(π)

v allow
for reconstruction of one half of the signal and projections onto phase cones of the form
D(2π)

v allow for reconstruction of one quarter of the signal, which compares favorably with
the Oppenheim-Lim reconstruction framework.

3.3.3 Constraints on both the phase and the modulus

The relative quality of the results of the projections onto D(π)
v and D(2π)

v (see discussion in the
next subsection along with Figure 3.4 and Figure 3.6) led us to investigate the conservation
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of shapes of the target image u through the projections onto smaller sets. In particular we
wonder whether one can constrain both the phase and the modulus through a projection and
still recognize the target image u. Hence, we now consider the following constraint sets

F (π)
v := {s ∈ RD; ŝ(ξ) ∈ {v̂(ξ),−v̂(ξ)} (∀ξ ∈ D)} (3.26)

F (2π)
v := {s ∈ RD; ŝ(ξ) ∈ {v̂(ξ), 0} (∀ξ ∈ D)}. (3.27)

Notice that F (π)
v ⊂ D(π)

v and F (2π)
v ⊂ D(2π)

v .
Notice furthermore that both sets F (π)

v and F (2π)
v are finite sets. It is straightforward to

compute the cardinalities of F (π)
v and F (2π)

v along with the topological dimensions of D(π)
v

and D(2π)
v , which satisfy

|F (π)
v | = |F (2π)

v | = 2dim(D(π)
v ) = 2dim(D(2π)

v ) = 2|{ξ∈D\{0}; v̂(ξ) 6=0}|/2. (3.28)

Notice that |F (π)
v | = |F (2π)

v | < 2D, which is the size of the set of binary images over D. Thus,
projecting onto F (π)

v and F (π)
v allows for even fewer bits than the binary projection. We now

turn to the solution of the optimization problem for F (π)
v and F (2π)

v .

Proposition 3.6.

argmin
s∈F(π)

v

‖ s− u ‖2= {wF(π)} (3.29)

and

argmin
s∈F(2π)

v

‖ s− u ‖2= {wF(2π)}. (3.30)

where wF(π) and wF(2π) are defined through their discrete Fourier transform by

ŵ
(π)
F (ξ) = sgn(Re(û(ξ)v̂(ξ)))v̂(ξ) (3.31)

and
̂
w

(2π)
F (ξ) = 1{2Re(û(ξ)v̂(ξ))>|v̂(ξ)|2}v̂(ξ). (3.32)

Proof. The proof is almost identical to the proof of Proposition 3.2, with different set of
constraints on the frequency domain. Simply notice that |a − b| ≤ |b| if and only if |a|2 ≤
2Re(ab) and |a− b| ≤ | − a− b| if and only if Re(ab) ≥ 0.

3.3.4 Experiments

In Figure 3.4, we can observe that all of the projections PD(π)
v

(u), PD(2π)
v

(u), PF(π)
v

(u) and
PF(2π)

v
(u) exhibit shapes from the target image u. This is surprising since these images are de-

signed to have the phase of v, an image with radically different shapes than u. More precisely,
in this figure the phase of v is chosen randomly like in a Gaussian or Random Phase Noise
texture – see [51]. Arguably, the degree of recognition grows with the size (or the inclusion
relationships) of the sets onto which “Lena” is projected: PD(π)

v
(u) is the best approximation

of u, followed by PD(2π)
v

(u), PF(π)
v

(u) and PF(2π)
v

(u).
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Figure 3.6: Images of the projections of “Lena” (as the target image u) onto different constraint
sets defined by “Scarlett Johansson” (as v). In particular, all the images shown here have the
phase of “Scarlett Johansson” (modulo 2π or π), but “Lena” is always somewhat recognizable.
Top left: PD(π)

v
(u) (phase of “Scarlett Johansson” modulo π, projected modulus of “Lena”).

Top right: PD(2π)
v

(u) (phase of “Scarlett Johansson” modulo 2π, projected modulus of “Lena”).
Bottom left: PF(π)

v
(u) (phase of “Scarlett Johansson” modulo π, modulus of “Lena”). Bottom

right: PF(2π)
v

(u) (phase of “Scarlett Johansson” modulo 2π, modulus of “Lena” or zero).

In Figure 3.6, we can also observe that PD(π)
v

(u), PD(2π)
v

(u), PF(π)
v

(u) and PF(2π)
v

(u) exhibit
shapes from the target image u. However, both PD(2π)

v
(u) and PF(2π)

v
(u) concurrently exhibit

shapes from the “Scarlett Johansson” image v that defines the constraint sets D(2π)
v and F (2π)

v .
Hence, when the phase of v is chosen to be kept modulo 2π, its shapes still appear in the
projections onto D(2π)

v (resp. F (2π)
v ). Interestingly, the imprints of original images u and v

in PD(2π)
v

(u) and PF(2π)
v

(u) seem to be comparable on the perceptual level. Let us also notice



92 Chapter 3. Large Error Approximations of Images

that these experiments highlight that the phase taken modulo π alone is quite irrelevant for
image approximations à la Oppenheim and Lim.

3.4 The importance of the Fourier transform

In this section, we are interested in the role of the Fourier transform in the LEA/LEP ex-
periments discussed in previous sections. We first discuss an experiment where the Fourier
transform is replaced by a unitary transform chosen at random. We then address the speci-
ficity of the Fourier transform by highlighting the relationship of the Fourier transform with
respect to derivation operators.

3.4.1 Replacing the Fourier transform: experiments

Figure 3.7: Images of the projections of “Lena” (as u) onto sets defined by “clouds” (as v).
Top row: projections onto sets that are defined by the Fourier transform – from left to right
Mv, D(π)

v , D(2π)
v , F (π)

v and F (2π)
v . Bottom row: the real part of their equivalent where the

Fourier transform is replaced by a random unitary transform U .

Let u and v be two images (in RD). For any unitary transform U over D (U : CD → CD

such that U∗U = ID), the Fourier transform can be replaced by U in the sets Mv, D(π)
v ,

D(2π)
v , F (π)

v and D(2π)
v . More precisely, we define the sets

MU,v = {s ∈ CD; |Us(ξ)| = |Uv(ξ)| for all ξ in D} (3.33)

D(π)
U,v = {s ∈ CD; Us(ξ) ∈ Uv(ξ) · R for all ξ in D} (3.34)

D(2π)
U,v = {s ∈ CD; Us(ξ) ∈ Uv(ξ) · R+ for all ξ in D} (3.35)

F (π)
U,v = {s ∈ CD; Us(ξ) ∈ {Uv(ξ),−Uv(ξ)} for all ξ in D} (3.36)

and
F (2π)
U,v = {s ∈ CD; Us(ξ) ∈ {Uv(ξ), 0} for all ξ in D} (3.37)

and consider the optimization problem

argmin
s∈S

‖ s− u ‖2
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for each of these sets. Solutions are easily computed based on Propositions 3.1, 3.2 and 3.6
. Let us remark that without further assumption on U , images in the sets have no reason to
belong to RD. However, for the sake of the experiment, we compute the real parts of these
images in CD. Let us notice that the imaginary parts seem to convey no particular visual
information distinguishable from noise.

We choose U randomly with the Haar probability measure over the compact group U(|D|) of
unitary matrices of size |D| (recall that |D| denotes the cardinality of D). Let us recall that
U(|D|) is a compact topological group and thus admits a single probability law, the Haar prob-
ability law PHaar, such that for each measurable subset S of U(|D|), PHaar(US) = PHaar(S)
for all U in U(|D|). A simple and well known way to get unitary matrices randomly according
to the Haar measure is described in [40] and is based on the Gram-Schmidt algorithm. More
precisely, it can be proven that the matrix obtained by

1. drawing a square matrix N of size D with i.i.d. centered complex Gaussian entries with
a non-zero variance σ > 0

2. performing the Gram-Schmidt Hermitian orthonormalization algorithm upon N

follows the Haar probability over U(|D|). Unfortunately, this algorithm does not scale very
well for a large number of entries, so limited ourselves to 64 × 64 images – which already
requires computing the Hermitian orthonormalization of a 4096× 4096 complex matrix.

Let us comment the results of the experiment as shown in Figure 3.7. The projection
onto the random unitary set MU,v appears to be more noisy than the projection onto Mv.
However, the extent to which “Lena” can be recognized in the (real part of the) projection
is somehow comparable in both cases. The same observations hold for the set D(π)

v and its
random unitary counterpart D(π)

U,v. However, in the case of the random unitary equivalents

of F (π)
v and F (2π)

v , which are finite sets, “Lena” cannot be distinguished in the results of the
projections.

3.4.2 Fourier transformation and the gradient

The gradient of an image plays a fundamental role in computer vision, e.g. for edge and
contour detection (see Canny [23] and Kass [72]). A point with a high gradient norm is likely
to be sampled from an image that exhibits an edge in the direction orthogonal to the direction
of the gradient.

We consider the periodical partial derivatives of an image ∂js (for j = 1 or 2) defined
by ∂1s(x1, x2) = s(x1 + 1, x2) − s(x1, x2) (resp. ∂2s(x1, x2) = s(x1, x2 + 1) − s(x1, x2)) for
all (x1, x2) in the domain D (recall that we consider D as the group Z/N1Z× Z/N2Z). For
j = 1 or 2, let us consider the following LEP

argmin
s∈S

‖ ∂js− ∂ju ‖2 (3.38)

for each of the Fourier-based constraint sets S that we have defined supra. We have the
following result.
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Proposition 3.7. For all j = 1 or 2, and for any constraint set S in {Mv,D(π)
v ,D(2π)

v ,F (π)
v ,F (2π)

v }
the following holds

PS(u) ∈ argmin
s∈S

‖ ∂js− ∂ju ‖2 . (3.39)

Proof. First, recall that for each j in {1, 2},

∂̂js(ξ) = 2i sin(πξj/Nj)ŝ(ξ) (3.40)

for all ξ in D. From here, the argument is very similar to the proof of Propositions 3.1, 3.2
and 3.6. Parseval identity yields that ‖ ∂js− ∂ju ‖2=‖ ∂̂js− ∂̂ju ‖2 and thus

argmin
s∈S

‖ ∂js−∂ju ‖2= argmin
s∈S

∑

ξ∈D
|∂̂js(ξ)−∂̂ju|2 = argmin

s∈S

∑

ξ∈D
|2i sin(πξj/Nj)ŝ(ξ)−2i sin(πξj/Nj)û|2

= argmin
s∈S

∑

ξ∈D
|2 sin(πξj/Nj)|2|ŝ(ξ)− û|2 (3.41)

for any constraint set S in {Mv,D(π)
v ,D(2π)

v ,F (π)
v ,F (2π)

v }.

The arguments that prove that PS(u) ∈ argmin
s∈S

‖ ŝ − û ‖2 in Propositions 3.1, 3.2 and

3.6 also prove that PS(u) ∈ argmin
s∈S

‖ ∂js− ∂ju ‖2.

Notice that, as opposed to Propositions 3.1, 3.2 and 3.6, argmin
s∈S

‖ ∂js − ∂ju ‖2 is never

a singleton. Indeed, for any constant signal s0, ∂js0(x) = 0 for all x in D, so one can add

a non-zero constant image s0 to s while the distance ‖ ̂∂j(s+ s0)− ∂̂ju ‖2 remains unchanged.

Let us define the gradient operator ∇ classically by ∇s = (∂1s, ∂2s) : D → R2.

Corollary 3.2. For any constraint set S in {Mv,D(π)
v ,D(2π)

v ,F (π)
v ,F (2π)

v } the following holds

PS(u) ∈ argmin
s∈S

‖ ∇s−∇u ‖2 . (3.42)

Proof. First, notice that

argmin
s∈S

‖ ∇s−∇u ‖2= argmin
s∈S

∑

ξ∈D

2∑

j=1

|∂js(ξ)− ∂ju(ξ)|2. (3.43)

To conclude, recall that

PS(u) ∈ argmin
s∈S

∑

ξ∈D
|∂js(ξ)− ∂ju(ξ)|2 (3.44)

for each j in {1, 2} and thus

PS(u) ∈ argmin
s∈S

2∑

j=1

∑

ξ∈D
|∂js(ξ)− ∂ju(ξ)|2 = argmin

s∈S

∑

ξ∈D

2∑

j=1

|∂js(ξ)− ∂ju(ξ)|2

= argmin
s∈S

‖ ∇s−∇u ‖22= argmin
s∈S

‖ ∇s−∇u ‖2 . (3.45)
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The validity of the inclusion

argmin
s∈S

‖ s− u ‖⊂ argmin
s∈S

‖ ∇s−∇u ‖ (3.46)

is clearly not true for all sets S. In particular, the fact that the Fourier operator diagonalizes
the gradient operator is crucial in the proof of Corollary 3.2. Notice that the argument in the
proof of Proposition 3.7 still holds if one replaces the Fourier transform by any unitary trans-
form that diagonalizes the translations, such as e.g. Fk1,k2 defined for any k1 in {1, . . . , N1}
and k2 in {1, . . . , N2} by

(Fk1,k2u)(ξ1, ξ2) =
1√
N1N2

∑

0≤x1<N1 0≤x2<N2

u(x1, x2)e
i(

k1x1
N1

+
k2x2
N2

)2π
(3.47)

for all u in CD. It is also worth noting that the gradient operator in Corollary 3.2 can be
replaced by other edge detector such as a smoothed gradient, since the smooth operator is a
convolution and can thus also be expressed diagonally in the Fourier domain.

3.5 Concluding remarks

3.5.1 The l
2 norm

Let us briefly discuss the role of the l2(D) norm in LEP problems (3.1). The point of this
subsection is to show that the l2(D) norm that has been used so far in our discussion on
LEP can be replaced by other norms while conserving visually compelling results. First,
notice that many other norms than the canonical l2(D) norm allow to formulate problems
that are equivalent to (3.1). Indeed, for all real p ≥ 1, changing the l2(D) norm with the
norm νp : u 7→‖ û ‖p shall not change the solutions of the LEP discussed in Sections 2 and 3.

Figure 3.8: Images of the solutions of Problem (3.48) with various choices of parameter
p, “Lena” (as u) and “clouds” (as v). From left to right, respectively l1, l3/2, l5/2 and l3

minimisations.

We now briefly discuss variants of the orthogonal projection onto D(π)
v . More precisely, for

any choice of p ≥ 1, we consider the set

argmin
s∈D(π)

v

‖ s− u ‖p . (3.48)

Unless p = 2, solutions to Problem (3.48) are not a priori easily solved by a formula. However,
since the constraint set is a R-linear sub-space of the R-linear space CD, Problem (3.48) is
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a convex optimization problem where algorithmic solutions are well known. Note that a
non-convex projection set such as Mv would yield a much harder problem.

Figure 3.8 shows the results of Problem (3.48), with “Lena” as target (u) and a constaint
set Dv defined by v chosen to be the “clouds” image. Interestingly, the choice of p appears
to be connected to the nature of the noise of the projected image. For instance, the l1

optimization that has been documented to lead to results close to l0 (support) optimization,
produces a noise that leaves whole areas identical from the projection to the target image
and other areas at extreme values.

3.5.2 LEA and LEP

In this chapter, we have mostly been focusing on LEP solutions for LEA problems. However,
LEP might not be appropriate to find visually compelling approximations of images. For
instance, let u be some image (e.g. “Lena”) with real values, mu be the empirical mean of u,
σu the distance to the constant image mu, σu =‖ u−mu ‖2. Consider the set S = R.1D∪{s ∈
RD; ‖ s − u ‖2> σu}. Clearly, S is a connected set and argmin

s∈Sε

‖ s − u ‖2= {mu}, so the

solution to the LEP defined by S is a constant image. However, for any ε > 0, u + σu + ε

also belongs to S and shall always reproduce the shapes from u better than a constant image.
Thus, the LEA problem of finding an image in S that is “faithful” to u is not solved by solving
the associated LEP.

This example raises broader questions about the properties of sets that contain faithful ap-
proximations of a wide range target images. Indeed, checking that such approximations exist
within a given set becomes a much harder task if it cannot be accomplished by simply check-
ing that the closest approximation of a target image (the projection) is faithfull. Thus we
are left with two puzzling questions. First, when can the existence check of a LEA in a set S
be done through the LEP onto S? Second, how can such an approximation be found if the
projection is exluded?



Chapter 4

The Billard Theorem for Multiple

Random Fourier Series

We propose a generalization of a classical result on random Fourier series, namely the Billard
Theorem, for random Fourier series over the d-dimensional torus. We provide an investigation
of the independence with respect to a choice of a sequence of partial sums (or method of

summation). We also study some probabilistic properties of the resulting sum field such as
stationarity and characteristics of the marginal distribution.

4.1 Introduction

In this Chapter and the following, we study some local asymptotic properties of micro-
textures as defined in the Introduction and Chapter 2. We are particularly interested in the
definition of RPN models with infinite spatial frequencies: in a sense, our analysis consists in
taking into account signals with an arbitrary (maybe not compact or band-limited) Fourier
spectrum support. This allows the study of the regularity of our models, an important feature
for some classes of stationnary signals. As our proofs seldom depend on the dimensionality
of the definition domain of the functions, we consider signals defined over the d-dimensional
torus for an arbitrary integer d. Our purpose is thus to define and study the limit of the
finite random sums of the RPN model when we consider infinitely many terms, i.e. random
multiple Fourier series.

Random Fourier series have a long and rich history. First introduced by Paley and Zyg-
mund in a series of papers [108] [109] and [110] in the 1930’s, the subject has been drawing
attention ever since. The most prominent work on the matter, along with many applications
to harmonic analysis, has been synthesized by Kahane in [69] and Marcus and Pisier in [96],
and many problems are still open as of today.

The purpose of this chapter is to prove the equivalence between different important prop-
erties for multiple random Fourier series. In dimension 1, the celebrated Billard Theorem (as
stated in Kahane’s famous book [69], Theorem 3 p. 58 — the original article by Billard [15]
attemps to prove a slightly weaker result) claims a chain of equivalences between almost sure
continuity, uniform convergence, uniform boundedness, and pointwise convergence of random

97
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Fourier series. This chain is very surprising since it connects properties that are obviously
non-equivalent under general non-probabilistic hypotheses. One interesting point of such a
result is that it allows one to define 2π-periodical processes through the law of their Fourier
coefficients. Moreover, continuity is proven to hold over the pointwise limit of the series, and
not over some modified processes as it is often the case in probability theory.

Interestingly, the Billard Theorem has been partially extended in different directions. The
equivalence between almost sure uniform convergence and almost sure uniform boundedness
for Gaussian random Fourier series is well known (see e.g. [80] Theorem 13.4). Most notably,
the same equivalence for Fourier series on any compact group has been proven in [47], without
assuming the Fourier coefficients to be Gaussian. However, a proof of an extension of the
whole chain of equivalences to the case of Fourier series on the d-dimensional torus (for d > 1)
was missing. This chapter proposes to extend the techniques introduced by Kahane in order
to provide such a proof.

In order to state such an extension, we shall write our hypotheses in Section 2. In Section
3, we introduce a notion of convergence for non absolutely summable sums taken over Zd and
claim a result of independence with respect to the variations of this notion. This independence
is largely based on the Itô-Nisio Theorem [60]. In Section 4, we state and prove an extension
of Billard Theorem to the d-dimensional torus. Moreover, we discuss direct generalizations
which include the Gaussian case. In Section 5, we study the law of the resulting process under
the hypothesis of uniform convergence of the partial sums of the random Fourier series.

4.2 Notations and Hypotheses

4.2.1 Notations

Throughout this chapter and the following, we consider (Ω,F ,P) a complete probability
space, and Td := Rd/2πZd the d-dimensional torus over which we consider the usual Lebesgue
measure. We are interested in real stationary centered second-order processes defined on Td.
Our purpose in this chapter is to define such processes through the law of their random
Fourier representation. For any function f in L2(Td) with real or complex values, let us write
the Fourier coefficients

f̂n :=< f, en >=

∫

Td

f(t)e−in·tdt (4.1)

where en : t 7→ ein·t for all n in Zd (a · b denotes the canonical inner product in Rd and
< g, h > the canonical Hermitian inner product in L2(Td)).

Let X : Ω × Td → R denote a second-order process, i.e. such that X(·, t) (often written
X(t) in the following) is in L2(Ω) for all t in Td. Moreover, X is assumed to be centered,
i.e. such that E[X(t)] = 0 for all t, and weakly stationary, i.e. such that Cov(X(s), X(t))

only depends on t− s. In particular, E[X(t)2] <∞ and this quantity does not depend on t.
Thus, thanks to Fubini-Tonelli Theorem, it follows that the sample paths of X belong almost
surely to the space L2(Td) of square integrable functions. Hence, for some real non-negative
random variables (An)n∈Zd that are almost surely in l2(Zd) and (Φn)n∈Zd random variables
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in R/2πZ, one can write

X(ω, ·) L2(Td)
=

∑

n∈Zd

An(ω)e
iΦn(ω)en (4.2)

almost surely (recall that (en)n∈Zd is a Hilbert basis of L2(Td)). In other words X̂n(ω) =

An(ω)e
iΦn(ω).

However, (5.1) does not hold a priori in the sense “almost surely for all t in Td". Thus,
defining a second-order process over Td through the law of its random Fourier coefficients
is generally not straightforward. Indeed, two second-order processes Y and Z that have
the same random Fourier representations (Ŷn = Ẑn for all n in Zd almost surely) do not
necessarily satisfy finite-dimensional distribution equality (e.g., one could have Y (0) = 0

a.s. and Z(0) = 1 a.s.). Moreover, for any set of null Lebesgue-measure N ⊂ T, there
exists a function f in C0(Td) such that the Dirichlet sums

∑N
n=−N f̂nen diverge, as proven

by Kahane and Katznelson [70]. Thus, defining a process unambiguously only through its
Fourier coefficients can turn out to be difficult.

4.2.2 Two Strategies to Define a Process through its Fourier Coefficients

There are several ways to overcome these difficulties – e.g. random general functions as
defined in [53]. Let us propose two radically different elementary strategies, that will turn
out to be equivalent in our context. The first strategy consists in restricting our study to
processes with continuous sample paths, since continuous functions with identical Fourier
coefficients (hence L2(Td) equivalent) are equal everywhere. Since the inclusion of C0(Td)

into L2(Td) is strict, we shall seek conditions for a random family of Fourier coefficients to
represent a continuous function almost surely. Another advantage of this strategy is that
processes with sample paths that are almost surely in C0(Td) are Radon random variables,
and thus there is equivalence between equality in law as random variables in the Banach space

C0(Td) and equality in finite-dimensional law (see Ledoux and Talagrand [80] p. 46).

Remark 4.1. In the following, when considering the law of a random function that is almost

surely in C0(Td), we shall consider its finite dimensional law or the law of the entire process

indifferently.

The second strategy consist in considering the pointwise convergence of partial sums and
focus on random Fourier coefficients that yield convergence everywhere almost surely. For that
matter, a sequence of partial sums or “method of summation" needs to be specified. Indeed,
it can be the case that for the same Fourier coefficients (an)n∈Zd , a sequence of partial sums
(
∑

n∈Ak
anen)k∈N is convergent almost everywhere and another sequence (

∑
n∈Bk

anen)k∈N is
divergent on a set of positive measure. This has been pointed out by Fefferman in [44] and
[43] for the case d = 2.

4.2.3 The Billard Theorem in Dimension 1

In this chapter, we focus on random Fourier coefficients that have the following properties:
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• H1: “(An)n∈Zd = (an)n∈Zd is a deterministic, non-negative, even (a−n = an for all n in
Zd) square summable family with a0 = 0.”

• H2: “(Φn)n∈Zd is a pure phase noise field, that is for all n in Zd, Φ−n = −Φn (modulo 2π)
almost surely, Φn has uniform distribution over R/2πZ and (Φn)n∈A are independent
for all A ⊂ Zd such that A and −A do not intersect."

Notice that H1 is equivalent to restrict ourselves to real functions. Interestingly, under
the hypotheses H1 and H2, the two strategies turn out to be equivalent, as we shall see in
the Section 4. This generalizes the Billard Theorem (see Billard [15] and Kahane [69] p. 58),
obtained in the case where d = 1, stating that under hypotheses H1 and H2, the conditions

(i) ω-a.s. convergence everywhere of the Dirichlet sums (
∑k

n=−k An(ω)e
i(n·t+Φn(ω)))k∈N

(ii) ω-a.s. uniform convergence of the Dirichlet sums

(iii) ω-a.s. boundedness of the Dirichlet sums

(iv) ω-a.s. existence of a continuous functionX with Fourier coefficients (An(ω)e
i(nt+Φn(ω)))n∈Z

are equivalent.

4.2.4 Discussion on the hypotheses

The evenness hypothesis in H1 is equivalent to considering only real-valued processes. As we
shall see in Section 5, assuming that (An)n∈Zd are deterministic is equivalent to considering
only second-order processes with a deterministic autocorrelation function. We shall also
consider relaxations of this hypothesis in Section 3.

Furthermore, the set of hypotheses H1 and H2 can also be interpreted as an asymptotical
extension of an image processing model (d = 2) for texture synthesis. Indeed the random
phase noise model (first introduced by van Wijk [127]) has recently drawn a lot of attention,
see e.g. Galerne et al. [51]. In a nutshell, this model of texture synthesis defines a random
field over the discrete 2-dimensional torus T = (Z/M1Z) × (Z/M2Z) by taking the inverse
discrete Fourier transform of (aneiΦn)n∈T where the following hypotheses are satisfied:

• H∗
1: “(an)n∈T is non-negative and even (a−n = an for all n in T )";

• H∗
2: “(Φn)n∈T is a finite pure phase noise field: for all n in T , Φ−n = −Φn (modulo 2π)

almost surely, Φn has uniform distribution over R/2πZ and (Φn)n∈A are independent
if A and −A do not intersect."

4.3 Methods of summation in Zd

As we shall see in the next section, one of the difficulty in extending Billard Theorem to
the case where d ≥ 2 is that there is no straightforward equivalent of the canonical Dirichlet
sums. In other words, if d ≥ 2, there is no increasing sequence of subsets of Zd, say (Ak)k∈N,
such that any other increasing sequence of subsets of Zd, say (Bk)k∈N, is also a subsequence
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of (Ak)k∈N. This has been a major difficulty for generalizing Carleson’s theorem in all finite
dimensions, as discussed by Ash and Welland in [4], Fefferman in [44] and [43] (see also [126]),
and more broadly for the study of Fourier series in multiple dimensions. In the following, we
shall focus on increasing sequences of finite and symmetrical subsets of Zd. This assumption
combined with hypotheses H1 and H2 allows us to focus on real functions.

Definition 4.1. (Ak)k∈N is said to be a (symmetrical) method of summation over Zd if

1. for each k, Ak is a finite subset of Zd (such that −Ak = Ak);

2. for each k, Ak ⊂ Ak+1 ;

3.
⋃

k∈NAk = Zd.

Given a Banach space B, a family (xn)n∈Zd of elements in B is said to be summable according

to (Ak)k∈N if
∑

n∈Ak
xn converges in B as k → ∞.

Remark 4.2. A method of summation can be seen as a subsequence of an ordering sequence

over Zd.

Let us consider (C0(Td), ‖ · ‖∞) the Banach space of all continuous functions over Td

endowed with the uniform convergence topology.

Remark 4.3. Under Hypothesis H2, for each n 6= 0 in Zd, t 7→ cos(n · t+Φn) is a symmetri-

cally distributed random variable in C0(Td). So Hypothesis H2 implies that for any symmetri-

cal method of summation (Ak)k∈N, the incremental partial sums t 7→∑
n∈Ak+1\Ak

ane
i(n·t+Φn)

are independent and symmetrically distributed.

The following result builds upon this remark and allows us to overcome the difficulties
that arise with sums over Zd.

Proposition 4.1. Let (Ak)k∈N be a symmetrical method of summation in Zd. Assume that,

almost surely, the sequence of functions

SAk
: t 7→

∑

n∈Ak

ane
i(n·t+Φn) (4.3)

converges uniformly (resp. is uniformly bounded) on Td as k → ∞ and call SA its limit.

Then, under the hypotheses H1 and H2, for any other method of summation (Bk)k∈N, the

sequence of functions

SBk
: t 7→

∑

n∈Bk

ane
i(n·t+Φn) (4.4)

converges uniformly to SA (resp. is uniformly bounded) on Td as k → ∞.

Proof. We first prove the claim for uniform convergence. Notice that each sum over a sym-
metrical subset E ⊂ Zd such that 0 /∈ E satisfies

∑

n∈E
ane

i(n·t+Φn) =
∑

n∈E
an cos(n · t+Φn) (4.5)
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for every t in Td, thanks to H1 and H2. Moreover, thanks to H2, t 7→ cos(n · t + Φn) are
symmetrical random variables and thus so are t 7→∑

n∈E ane
i(n·t+Φn). Hence, for each k ≥ 2,

SAk
= SA0 +

∑k−1
p=0 SAp+1\Ap

is a sum of independent symmetrical random variables in the
Banach space C0(Td).

Proposition 4.1 can be deduced as from a well known consequence of the Lévy-Itô-Nisio
Theorem (see [60] or [80]) that we recall here. If (Yk)k∈N is a sequence of independent
symmetrical random variables in some Banach space (B, ‖ . ‖), and if Sk denotes

∑k
l=1 Yl,

then (see e.g. [80] p. 48 and Theorem 1 in [69] p. 13), the following conditions are equivalent:

(i) (Sk)k∈N converges almost surely

(ii) (Sk)k∈N converges in probability

(iii) there exists some subsequence (Skp)p∈N that converges almost surely.

We apply this result to the Banach space of continuous function (C0(Td), ‖ · ‖∞).
Notice that, since Ak ⊂ Ak+1 and

⋃
k∈NAk = Zd, for any finite subset E ⊂ Zd one

has E ( Ak for k large enough. Let us define a new method of summation (ABk)k∈N
by induction. AB0 = A0, AB1 =

⋂
l,AB0 Bl

Bl, AB2 =
⋂

l,AB1 Al
Al, and by induction

AB2k =
⋂

l,AB2k−1 Al
Al (resp. AB2k+1 =

⋂
l,AB2k Bl

Bl) for all k in N. Notice that this
reasoning provides us (pk)k∈N and (qk)k∈N, two strictly increasing sequences of integers such
that AB2k = Apk and AB2k+1 = Bqk . Moreover, (ABk)k∈N is clearly a symmetrical method
of summation.

Since (SAB2k
)k∈N is a subsequence of (SAk

)k∈N, it converges almost surely in C0(Td)

to SA. Hence, thanks to the consequence of Lévy-Itô-Nisio Theorem mentionned earlier,
(SABk

)k∈N converges also almost surely in C0(Td) to SA thanks to the uniqueness of limits. It
follows that (SAB2k+1

)k∈N converges also almost surely in C0(Td) to SA, as a subsequence of
(SABk

)k∈N. Thus, since (SAB2k+1
)k∈N is a subsequence of (SBk

)k∈N, the latter converges also
almost surely to SA in C0(Td), thanks to the same consequence of Lévy-Itô-Nisio Theorem.
Thus (SAk

)k∈N,(SBk
)k∈N and (SABk

)k∈N converge simultaneously to the same limit almost
surely.

The proof for boundedness uses a slightly different consequence of the Lévy-Itô-Nisio
Theorem. Namely with the same hypotheses and notations, the following propositions are
equivalent (see e.g. Theorem 1 in [69] p. 13):

(vi) (Sk)k∈N is bounded almost surely

(v) there exists some subsequence (Skp)p∈N that is bounded almost surely.

Assume that (SAk
)k∈N is almost surely bounded in C0(Td). Then, so is (SAB2k

)k∈N as a
subsequence of (SAk

)k∈N. Hence, thanks to the consequence of Lévy-Itô-Nisio mentionned
earlier, (SABk

)k∈N is also bounded in C0(Td) almost surely. Hence, (SAB2k+1
)k∈N is also

bounded in C0(Td) almost surely, as a subsequence of (SABk
)k∈N. Thus, since (SAB2k+1

)k∈N
is a subsequence of (SBk

)k∈N, the latter is also bounded in C0(Td) almost surely, thanks to
the same consequence of Lévy-Itô-Nisio Theorem.
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An important consequence of Proposition 4.1 is that the choice of a method of summation
does not matter for the uniform convergence or for the uniform boundedness. As long as
uniform convergence (resp. uniform boundedness) happens almost surely for some method of
convegence, it also happens almost surely for any other method of convergence and the limit
is the same.

4.4 Billard’s theorem in arbitrary finite dimension

We can now turn to an extension of Billard’s theorem to the case where d ≥ 2 (recall that
the sequence (SAk

)k∈N has been defined by equation (4.33)).

Theorem 4.1. Under the hypotheses H1 and H2, the following conditions are equivalent:

(i) almost surely, there exists a continuous function X, such that (ane
iΦn)n∈Zd are the

Fourier coefficients of X;

(ii) there exists a method of summation (Ak)k∈N such that, almost surely, (SAk
)k∈N con-

verges uniformly;

(iii) for all methods of summation (Ak)k∈N, almost surely, (SAk
)k∈N converges uniformly;

(iv) there exists a method of summation (Ak)k∈N such that, almost surely, (SAk
)k∈N is

bounded;

(v) for all methods of summation (Ak)k∈N, almost surely, (SAk
)k∈N is bounded;

(vi) for all methods of summation (Ak)k∈N, almost surely, for all t in Td, (SAk
(t))k∈N

converges.

The fact that (ii) ⇔ (iii) (resp. (iv) ⇔ (v)) follows from Proposition 4.1. Moreover, (iii)

implies clearly all the other statements.

Remark 4.4. A somewhat weaker equivalence between boundedness and continuity, which

depends on a method of summation, was proven with much more generality for any compact

group instead of Td by Figa-Talamanca in [47].

Definition 4.2. Under any of the equivalent conditions of Theorem 4.1, the limit X in C0(Td)

is called a random phase noise (RPN) process.

The remaining of this section is dedicated to the proof of Theorem 4.1.

4.4.1 Proof of (v) ⇒ (iii)

Proposition 4.2. Let (Yk)k∈N be a sequence of independent random variables with value in

C0(Td). Assume that

1. for each k ∈ N, Yk is symmetrically distributed i.e. −Yk and Yk have the same law ;
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2. for each k ∈ N, Yk is stationary i.e. Yk(· − τ) and Yk have the same law for any τ in

Td;

3. the sequence (
∑

k≤l Yk)l∈N is almost surely bounded in C0(Td), according to the ‖ · ‖∞
norm.

Then, almost surely, (
∑

k≤l Yk)l∈N converges in C0(Td).

Proposition 4.2 is a straightforward extension of Proposition 13 p. 55 in [69] and the
proof is postponed in Appendix. We can now prove that (v) implies (iii). Assume (v),
and recall that under Hypothesis H2, Remark 4.3 ensures that the incremental partial sums
Yk := t 7→∑

n∈Ak+1\Ak
ane

i(n·t+Φn) satisfy the three hypotheses of Proposition 4.2. Thus, for

any symmetrical method of summation (Ak)k∈N, (SAk
)k∈N converges almost surely in C0(Td)

and (iii) holds.

The end of this section is largely built upon ideas found in Kahane [69] pp. 48 and 59-
60. However, we found the details of our proof to be significantly different from the case
d = 1, so we provide them in the core of the text.

4.4.2 Proof of (vi) ⇒ (iv)

To prove that (vi) implies (iv) we need to prove more intermediate results. The first one
deals with trigonometric polynomials. For a trigonometric polynomial P defined on Td by

P (t) =
∑

n∈E
bne

in·t (4.6)

where bn 6= 0 is in C for each n in the finite set E ⊂ Zd, we define the degree of P as

d(P ) := max
n∈E

|n|∞ (4.7)

where |x|∞ := maxi |xi| denotes the max norm for x in Rd. In the following we denote
B∞(t, r) = {s ∈ Td; |t− s|∞ < r} the projection onto Td of the Rd open ball of radius r and
center t with respect to | · |∞ onto Td.

Proposition 4.3. Let E be a finite subset of Zd and P (t) =
∑

n∈E bne
i(n·t+φn) be a complex

trigonometric polynomial defined on Td. Assume that there exists q ≥ 1 in N and l in Zd

such that E ⊂ l+ qZd, so t 7→ |P (t)| is 2π
q -periodic in every direction. Assume moreover that

the degree of P is less than K where K ≥ q
2π .

Then for every radius ε ≥ 2π/q, and center t in Td, there exists t′ in B∞(t, ε) such that

B∞(t′, ε′) ⊂ B∞(t, ε) (4.8)

with ε′ ≥ (2K)−1 and

|P (s)| ≥ 1/2 ‖ P ‖∞ (4.9)

for all s in B∞(t′, ε′).
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The proof is postponed in Appendix. We now state a result of symmetrization, useful for
the remainder of the proof of Theorem 4.1.

Lemma 4.1. Let (an)n∈Zd and (Φn)n∈Zd satisfy to Hypotheses H1 and H2. Let (Ak)k∈N be

any method of summation and B be a subset of Zd. Assume that there exists a random variable

T such that with non-zero probability (resp. almost surely) the complex-valued sequence


 ∑

n∈Ak∩B
ane

i(n·T+Φn)




k∈N

(4.10)

diverges. Then there exists B∗ a symmetrical subset of Zd such that with non-zero probability

(resp. almost surely) the real-valued sequence


 ∑

n∈Ak∩B∗
ane

i(n·T+Φn)




k∈N

(4.11)

diverges.

We can now prove the implication (vi) ⇒ (iv). Let us assume that (vi) holds and that
(iv) does not, and let us aim at a contradiction. Let (Ak)k∈N be any method of summation.
The sequence of partial sums (SAk

)k∈N is not almost surely bounded in C0(Td). Hence, the
event

E = {ω ∈ Ω; (SAk
(ω))k∈N is bounded in C0(Td)} (4.12)

has probability less than 1. For each k, define the σ-algebra Fk generated by {eiΦn}n∈Ak

and notice that Fk ⊂ Fk+1. The event E belongs to the asymptotic σ-algebra of (Fk)k∈N,
since E is independent of any finite subset of the random variables (eiΦn)n∈Zd . Thanks to
the independance hypothesis in H2, the zero-one law applies and P(E) = 0, which in turns
implies that, almost surely, (SAk

)k∈N is unbounded in C0(Td).

Symmetrization In order to obtain a contradiction, we shall construct B a (non-random)
subset of Zd, a method of summation (Ak)k∈N and a random variable T such that, with
non-zero probability,

the sequence


 ∑

n∈B∩Ak

ane
i(n·T+Φn)




k∈N

does not converge as k → ∞. (4.13)

Thanks to Lemma 4.1, there shall exist B∗ a (non-random) symmetrical subset of Zd such
that, with non-zero probability,

the sequence


 ∑

n∈B∗∩Ak

ane
i(n·T+Φn)




k∈N

does not converge as k → ∞. (4.14)
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Let us consider the random Fourier coefficients (εnaneiΦn)n∈Zd where εn = 1 whenever n ∈ B∗

and εn = −1 otherwise. Thanks to H2, this family has the same law as (aneiΦn)n∈Zd . Hence,

SAk
: t 7→

∑

n∈Ak

ane
i(n·t+Φn) (4.15)

has the same law in the Banach space C0(Td) as

S′
Ak

: t 7→
∑

n∈Ak

εnane
i(n·t+Φn) (4.16)

and since (SAk
)k∈N is assumed to converge everywhere almost surely, (S′

Ak
)k∈N shall also

converge everywhere almost surely. Hence, the sum

SAk
+ S′

Ak
: t 7→ 2

∑

n∈B∗∩Ak

ane
i(n·t+Φn) (4.17)

shall in turn converge everywhere almost surely. This is contradictory with (4.14).

Construction Let us now build such a set B and a method of summation (Ak)k∈N. Let
Ak = {n ∈ Zd; |n|∞ ≤ k}. Let us define the events

E
(1)
k := {ω ∈ Ω; sup

j≤k
‖ SAj (ω, ·) ‖∞> 2} (4.18)

for each k in N and notice that E(1)
k ⊂ E

(1)
k+1 for each k. Since almost surely, (SAk

)k∈N

is unbounded in C0(Td), P(E(1)
k ) → 1 as k → ∞, so there is an integer k1 such that the

probability of the event E(1)
k1

is larger than 1/2. Furthermore, whenever ω belongs to E(1)
k1

,
thanks to Proposition 4.3 (with q = 1, K = k1 and ε > π so B∞(t, ε) = Td), there exists a
random ball U1(ω) = B∞(T1(ω), ε1) with radius ε1 = (2k1)

−1 such that

sup
j≤k1

|SAj (ω, t)| > 1 (4.19)

for all t in B∞(T1(ω), ε1). For ω ∈ Ω \ E(1)
k1

we set U1(ω) = Td. Finally, we define B1 = Ak1 .
Define q1 = ⌈2π/ε1⌉ = ⌈4πk1⌉. Let us consider the partition of Zd \ Ak1 into qd1 subsets

C1,l = (l + q1Z
d) \ Ak1 (4.20)

for each l in {n ∈ Nd; |n|∞ < q1}. For k ≥ k1, there are (2q1 + 1)d random sequences of
functions (S

(1,l)
k )k∈N defined by

S
(1,l)
k (t) :=

∑

n∈Ak∩C1,l
ane

i(n·t+Φn) (4.21)

for each l in {n ∈ Nd; |n|∞ < q1} and they satisfy
∑

l∈{n∈Nd;|n|∞<q1}
S
(1,l)
k = SAk\Ak1

= SAk
− SAk1

(4.22)
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for k > k1. Since (SAk\B1
)k∈N is almost surely unbounded in C0(Td), so must be at least one

of the sequences (S
(1,l)
k )k∈N. Thus for at least one of these sequences, say (S

(1,l1)
k )k∈N,

P((S(1,l1)
k )k∈N is unbounded) > 0. (4.23)

Thanks to the zero-one law, (S
(1,l1)
k )k∈N must be unbounded with probability 1. For each

k > k1, define the event

E
(2)
k := {ω ∈ Ω| sup

k1<j≤k
‖ S(1,l1)

j (ω, ·) ‖∞> 2} (4.24)

and notice that E(2)
k ⊂ E

(2)
k+1 for all k ≥ k1 in N. Since P(E(2)

k ) → 1 as k → ∞, there

exists an integer k2 (non-random) such that P(E(2)
k2

) > 1/2. Thus, whenever ω belongs

to E
(2)
k2

, thanks to Proposition 4.3 (invoked with q = q1, K = k2 and ε = ε1) we know
that U1(ω) = B∞(T1(ω), ε1) contains a random ball U2(ω) = B∞(T2(ω), ε2) with radius
ε2 = (2k2)

−1 such that

sup
k1<j≤k2

∣∣∣∣∣∣
∑

n∈C1,l1∩Aj

ane
i(n·t+Φn)

∣∣∣∣∣∣
> 1 (4.25)

for each t in B(T2(ω), ε2). For ω in Ω \ E(2)
k2

, we choose U2(ω) = U1(ω). Finally, we choose
B2 := C1,l1 ∩ Ak2 .

Induction By induction, using the same arguments (Proposition 4.3 invoked with q = qp,
K = kp+1 and ε = εp), we construct

• two increasing sequences (kp)p∈N and (qp)p∈N with values in N and a real sequence
(εp)p∈N such that

∀p, qp = ⌈2π/εp⌉ = ⌈4πkp⌉ (4.26)

• a sequence (lp)p∈N with values in Zd and a sequence (Bp)p≥1 of finite subsets of Zd such
that

Bp+1 ⊂
(
lp + qpZ

d
)
∩ (Akp+1 \ Akp) (4.27)

• a sequence of events (E
(p)
kp

)p∈N with probability at least 1/2 such that

∀ω ∈ E
(p)
kp

, sup
kp≤j≤kp+1

sup
t∈Td

|
∑

n∈Bp∩Aj

ane
i(n·t+Φn)| > 2 (4.28)

• a sequence (Tp)p∈N of random variables with values in Td

• a sequence of decreasing random open balls (Up)p∈N defined by either Up(ω) = B∞(Tp(ω), εp)

if ω ∈ E
(p)
kp

, or Up(ω) = Up−1(ω) otherwise. such that

∀ω ∈ E
(p)
kp

, ∀t ∈ Up(ω), sup
kp≤j≤kp+1

|
∑

n∈Bp∩Aj

ane
i(n·t+Φn)| > 1. (4.29)
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Let us denote U∗(ω) =
⋂

p Up(ω). Since the sets (Bp)p∈N are disjoint, and thanks to H2,

the events (E
(p)
kp

)p∈N are independent. Moreover since P(E(p)
kp

) ≥ 1/2,
∑

p P(E
(p)
kp

) = ∞ and

thanks to the Borel-Cantelli Lemma, almost surely, P(lim infpE
(p)
kp

) = 1. Hence, ω-almost
surely, there is one and only one (random) point T ∗(ω) in U∗(ω). Define B =

⋃
p Bp. By

construction, almost surely, the complex sequence

 ∑

n∈B∩Ak

ane
i(n·T ∗+Φn)




k∈N

(4.30)

is not Cauchy since T ∗(ω) belongs to each Up(ω) and (4.29) holds for all p in N.
We conclude the proof of the implication (vi) ⇒ (iv) by noticing that the method of

summation (Ak)k∈N, the random variable T ∗ and the subset B ⊂ Zd satisfy the condition
(4.13).

4.4.3 Proof of (i) ⇒ (ii)

Define |x|1 =
∑d

i=1 |xi| (x in Rd) and let us choose Dk := {n ∈ Zd; |n|1 ≤ k} (k in N) as a
method of summation. We consider the (2d − 1)-Cesàro means of the sequence of functions
(SDk

)k∈N

CD
(2d−1,k) :=

1(
k+2d−1

k

)
k∑

l=0

(
k − l + 2d− 2

k − l

)
SDl

(4.31)

for k in N as introduced in [8]. One easily checks that the sums SDk+1\Dk
are symmetrically

distributed and independent. Moreover, notice that the sums CD
(2d−1,k) can be rewritten as

CD
(2d−1,k) =

k−1∑

l=0

bk,lSDl+1\Dl
(4.32)

for each k, with bk,l :=

(
k−l+2d−1

k−l

)
(
k+2d−1

k

) for l ≤ k (and bk,l := 0 otherwise). The coefficients

(bk,l)k,l∈N satisfy the properties of a matrix of summation, namely that bk,l → 0 as l → ∞
and bk,l → 1 as k → ∞ (see Kahane [69] p. 12). Since (i) implies that CD

(2d−1,k)converges
uniformly as proven by Berens and Xu in [8]), Theorem 1 p. 13 in [69] yields that (SDk

)k∈N
converges uniformly almost surely, and thus (ii) holds.

This concludes the proof of Theorem 4.1.

4.4.4 Discussion and Extension

Our extension of the Billard Theorem can be generalized to weaker hypotheses. For instance,
consider the Hypothesis

H∗∗
1 : “(An)n∈Zd is such that (An)n∈A are independant whenever A and −A do not inter-

sect ; (An)n∈Zd is independent of Φ ; E[
∑
Zd A2

n] <∞ ; A0 = 0 almost surely".
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Write
SAk

(ω, t) =
∑

n∈Ak

An(ω)e
i(Φn(ω)+n·t) (4.33)

for all ω in Ω and t in Td. The following result can be easily deduced from Theorem 4.1.

Corollary 4.1. Under the hypotheses H∗∗
1 and H2, the chain of equivalence of Theorem 1

holds with An instead of an and SAk
defined by (4.33).

Proof. To prove that, notice that E[
∑
Zd A2

n] < ∞ implies that (An)n∈Zd is almost surely
square summable, and thus almost surely, Theorem 4.1 can be applied conditionnally on
F(An, n ∈ Zd), the σ-algebra generated by (An)n∈Zd , since Φ is independent of F(An, n ∈
Zd).

Remark 4.5. This is of particular interest since Gaussian processes satisfy H∗∗
1 and H2.

Notice however that Hypothesis H2 cannot be much relaxed. As argued by Cohen
and Cuny in [25], the symmetry assumption on Ane

iΦn for each n cannot be replaced by
E[Ane

iΦn ] = 0 for each n.

4.5 Properties of Random Phase Noise Processes

Throughout this section, we assume both hypotheses H1 and H2 to hold. Moreover, we
assume the equivalent hypotheses in Theorem 4.1 to hold, and thus the sample paths of the
random phase noise field X are almost surely continuous. Explicit conditions (e.g. on the
coefficients (an)n∈Zd) have been thoroughly studied in the case d = 1, e.g. in Kahane [69],
Chapter 7.

4.5.1 Stationarity

Proposition 4.4. A random phase noise (RPN) process X is a centered second-order process,

with covariance

cX(t) = Cov(X(t+ s), X(s)) =
∑

n∈Zd

a2n cos(n · t) (4.34)

for all s and t in Td (weak stationarity). Moreover, X is strongly stationary in the sense that

(X(t))t∈Td and (X(t+ τ))t∈Td have the same law for any τ in Td.

Finally, the autocorrelation of X defined as

RX(τ) =
1

(2π)d

∫

Td

X(t)X(t+ τ)dt, τ ∈ Td, (4.35)

is deterministic and a.s. equal to cX .

Proof. For each t in Td, X(t) is the almost sure limit of a centered martingale (Xk(t))k∈N
(Xk(t) =

∑
n∈Ak

ane
in·t+Φn for any method of summation (Ak)k∈N), that is bounded by∑

n∈Zd a2n in the space L2(Ω), so it is a centered random variable in L2(Ω). It follows that
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E[X(s)X(t)] = E[X(s)X(t)] = lim
k→+∞

E[Xk(s)Xk(t)] =
∑

n∈Zd

a2ne
in·(s−t) =

∑

n∈Zd

a2n cos(n·(s−t))

(4.36)
holds thanks to H1.

Recall that the Fourier coefficients of t 7→ X(t − τ) are (ein·τ X̂n)n∈Zd . By the definition
of X̂n and H2, (ein·τ X̂n)n∈Zd and (X̂n)n∈Zd have the same finite dimensional law. Thus, X
and X(· − τ) have the same finite dimensional law and the same law thanks to the almost
sure continuity (Remark 4.1).

Finally, thanks to Parseval identity,

1

(2π)d

∫

Td

X(t)X(t+ τ)dt =
1

(2π)d

∫

Td

X(t)X(t+ τ)dt =
∑

n∈Zd

a2n cos(n · τ) (4.37)

holds for all τ a.s., so we can conclude that RX = cX a.s.

Hence, a single sample path contains enough information to fully determine the covari-
ance and the law of the entire process, which can have various applications. For instance,
one only needs one sample path to get as many independent sample paths with the same
law. Interestingly, a second-order process that has a deterministic autocorrelation also has
deterministic Fourier modulus.

Proposition 4.5. Let Y : Ω × Td 7→ R a centered process with sample paths almost surely

in C0(Td). Assume that there exists a (deterministic) continuous even function ρ : Td → R
satisfying

RY = ρ (4.38)

almost everywhere, almost surely. Then, there exists a unique sequence or non-negative real

numbers (an)n∈Zd and a random phase field Φ such that

Y (ω, t) =
∑

n∈Zd

ane
i(n·t+Φn(ω)) (4.39)

holds in L2(Td) almost surely.

Proof. Almost surely, we can write

Y (ω, ·) L2(Td)
=

∑

n∈Zd

An(ω)e
iΦn(ω)en (4.40)

for some random variables (An)n∈Zd and (Φn)n∈Zd , with An choosen non-negative for all n.
Thanks to Parseval identity, we can rewrite

RY (ω)(τ) =
1

(2π)d

∫

Td

Y (ω, t)Y (ω, t+ τ)dt =
∑

n∈Zd

An(ω)
2ein·τ (4.41)

and
ρ(τ) =

∑

n∈Zd

bne
in·τ (4.42)
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for some non-negative Fourier coefficients (bn)n∈Zd thanks to Herglotz Theorem. Take an =√
bn for each n, and conclude thanks to the uniqueness of Fourier coefficients.

Remark 4.6. The result also holds under the assumption that the sample paths are almost

surely in L2(Td).

4.5.2 Marginal laws

The law of the marginal, say X(0) =
∑

n∈Zd an cos(Φn), has already been studied by Blevins
in [16] for series with a finite number of terms. We complete this study to fit our more general
case of an infinite series that converges in L2(Ω). Let us recall that in H1 we assume that
a0 = 0. Then, one can compute the normalized Kurtosis. Indeed, E[|X(0)|2] = ∑

n∈Zd a2n
according to Proposition 4.4 and thus E[|X(0)|2]2 = (

∑
n∈Zd a2n)

2. Moreover recall that for
Φ uniformly distributed in R/2πZ, E[cos2(Φ)] = 1

2 and E[cos4(Φ)] = 3
8 , and thus for A ⊂ Zd

such that A ∩−A = ∅ and A ∪−A = Zd \ {0} (so X(0) = 2
∑

n∈A an cos(Φn))) and

E[|X(0)

2
|4] =

∑

n∈A
a4nE[cos(Φn)

4] + 3
∑

(l,m)∈A2,l 6=m

a2l a
2
mE[cos(Φl)

2]E[cos(Φm)2]

=
3

8

∑

n∈A
a4n +

3

4

∑

(l,m)∈A2,l 6=m

a2l a
2
m =

3

4
(
∑

n∈A
a2n)

2 − 3

8

∑

n∈A
a4n (4.43)

so the kurtosis β2 of X(0) is given by

β2 =
E[|X(0)|4]
E[|X(0)|2]2 = 3− 3

2

∑
n∈A a

4
n

(
∑

n∈A a
2
n)

2
= 3− 3

∑
n∈Zd a4n

(
∑

n∈Zd a2n)
2
< 3, (4.44)

which proves that X(0) is not Gaussian.

Remark 4.7. Actually X(0) is not infinitely-divisible, and thus not Gaussian. Indeed, thanks

to the independence hypothesis on Φ in H2, one easily checks that the characteristic function

of X(0) is the (maybe infinite) product

E[eiξX(0)] =
∏

n∈A
E[ei2anξ cos(Φn)] =

∏

n∈A
J0(2anξ) (4.45)

with J0 the Bessel function of the first kind, which admit zeroes on the real line. Hence, the

characteristic function of X(0) cannot be the characteristic function of an infinitely divisible

random variable (see Theorem 5.3. p. 108 of [88]).

Proposition 4.6. X(0) is sub-Gaussian. More precisely, for all λ in R,

E[eλX(0)] ≤ eλ
2
∑

n∈Zd
a2n . (4.46)

Proof. First, notice that a centered random variable Y bounded by one is sub-Gaussian.
Indeed, let λ ∈ R, then eλY ≤ cosh(λ) + Y sinh(λ) since |Y | ≤ 1 and x 7→ eλx is convex.
Then, using the fact that Y is centered we get E

(
eλY

)
≤ cosh(λ) ≤ eλ

2/2. Now let (Φn)n∈Zd
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be a a pure phase noise field. For a finite sum Xk(0) =
∑

|n|∞≤k an cos(Φn), thanks to the
independence hypothesis for a subset A ⊂ Zd such that A∩−A = ∅ and A∪−A = Zd \ {0}

E[eλXk(0)] =
∏

n∈A,|n|∞≤k

E[eλ2an cos(Φn)] ≤
∏

n∈A,|n|∞≤k

e(λ2an)
2/2 = eλ

2
∑

|n|∞≤k a2n (4.47)

holds for all λ ∈ R, since (cos(Φn))n∈A are independent centered random variables bounded
by one.

For a general sum X(0) =
∑

n∈Zd an cos(Φn) where (an)n∈Zd is a square summable family,

let λ be any real number and notice that E[eλXk(0)] ≤ eλ
2
∑

|n|∞≤k a2n ≤ eλ
2
∑

n∈Zd
a2n . Moreover

Xk(0) → X(0) almost surely, thus eλXk(0) → eλX(0) almost surely and we can apply Fatou’s
lemma and conclude that (4.46) holds.

Proposition 4.7. Assume that (an)n∈Zd is a family satifying H1 and H2, such that

1. there exists n1, n2, n3 in Zd with an1an2an3 6= 0 ;

2. {n1, n2, n3} ∩ {−n1,−n2,−n3} = ∅.

Then X(0) admits a density function that is uniformly continuous and bounded over R.

The proof is postoned to Appendix. Interestingly, in the cases where only one or two
coefficients are non-zero, the resulting Random Phase Noise process has an unbounded density
function.

4.6 Appendix: Proofs

4.6.1 Proof of Proposition 4.2

Proposition 4.2 is based on Proposition 13 pp. 55-56 in [69], we provide a proof for the sake
of completeness. Let us first show a lemma, itself based on Proposition 12 p. 55 in Kahane
[69].

Lemma 4.2. Let (uk)k∈N be a sequence in C0(Td) with real or complex values, such that

lim sup
k

‖ uk ‖∞> 0. (4.48)

Let (Ψk)k∈N be a sequence of independent random variables uniformly distributed on Td.

Then, almost surely, there exists T (random) in Td such that

lim sup
k

|uk(T −Ψk)| > 0. (4.49)

Proof. Since lim supk ‖ uk ‖∞> 0 by assumption, there exists both some η > 0 and a
subsequence (kp)p∈N such that

‖ ukp ‖∞> η (4.50)

for all p. Thanks to continuity, ukp(t) > η for t in an open ball B∞(tp, εp). Thus, |ukp(t −
Ψkp)| > η holds for t in a random open ball Up := B∞(Tp, εp) whose center is a random
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variable Tp := tp + Ψkp that is equidistributed on Td. Moreover (Tp)p∈N is i.i.d. since
(Ψk)k∈N is assumed to be i.i.d.

Now, let us show that lim supp Up is almost surely non-empty (it can be shown that it
is actually almost surely dense). Let t be any point in Td, ε > 0 be a positive number and
denote U := B∞(t, ε). For each p, P(Up ∩ U 6= ∅) ≥ P(Tp ∈ U) = vol(U)/(2π)d since Tp is
equidistributed on Td. Thus

∑
p P(Up∩U 6= ∅) = ∞, and since the events {ω|Up(ω)∩U 6= ∅}

are independent, it follows thanks to Borel-Cantelli Lemma that almost surely Up ∩ U 6= ∅
happens for infinitely many p. Thus, almost surely, lim supp Up 6= ∅.

Let us pick some random T in lim supp Up and notice that lim supp |ukp(T − Ψkp)| > η

almost surely since T belongs to infinitely many Up. This concludes the proof.

Let us now prove Proposition 4.2.
First, let us recall that since for all k the random variable Yk (in C0(Td)) is assumed to

be symmetric, Itô-Nisio Theorem applies. Hence, the series
∑

k Yk converges almost surely
in C0(Td) if and only if any subsequence converges in C0(Td) in probability.

Let us assume that the conclusion does not hold. Then, there must exist some η > 0 and
two sequences of integers (kp)p∈N and (k′p)p∈N such that kp < k′p < kp+1 for each p and

P


‖

kp+1∑

k=kp+1

Yk ‖∞> η


 > η (4.51)

for all p.
Let (Ω′,PΩ′) denote the probability space Ω × ΩΨ with PΩ′ = PΩ ⊗ PΨ, where ΩΨ is a

probability space in which there is a sequence (Ψn)n∈N of i.i.d. random variables equidis-
tributed on Td. Let us write Zp =

∑kp+1

k=kp+1 Yk for all p, and let us consider the series of
functions

∑
Zp(·) and

∑
Zp(·−Ψp) as random series (in the probability space Ω′) of elements

in C0(Td). Since the Yk (k in N) are independent and symmetrical (by 1.), so are the Zp (p
in N). Since for all k, Yk and its translates have the same law (by 2.), Zp and Zp(· − Ψp)

have the same law for each p. Moreover, since the sequence (
∑

k≤l Yk)l∈N is almost surely
bounded in C0(Td) (by 3.), the series of functions

∑
p Zp is also almost surely bounded.

Moreover (Zp)p∈N is a sequence of independent variables and PΩ(‖ Zp ‖∞> η) > η for each
p, and thus

∑
p PΩ(‖ Zp ‖∞> η) = ∞. Hence Borel-Cantelli lemma applies and, almost surely

(in Ω), lim supp ‖ Zp ‖∞> η. As a consequence, almost surely (in Ω′), lim supp ‖ Zp ‖∞> η.
Lemma 4.2 yields that almost surely in Ω′, lim supp |Zp(T − Ψp)| > 0 for some (random) T
in Td.

Let us introduce another probability space Ω′′ = Ω′ × Ωε (PΩ′′ = PΩ ⊗ PΨ ⊗ Pε) and a
Rademacher sequence (εp)p∈N. We now consider the random series of functions

∑
p Zp(t−Ψp)

and
∑

p εpZp(t − Ψp) on the space Ω′′. Since the random functions Zp are symmetric, the
partial sums have the same law in Ω′′. Moreover, since lim supp |Zp(T − Ψp)| > 0 almost
surely (in Ω′′),

∞∑

p=1

|Zp(T −Ψp)|2 = ∞ (4.52)
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holds almost surely (in Ω′′). Thus the sequence (
∑N

1 εpZp(t − Ψp))N∈N is almost surely (in
Ω′′) not bounded for some (random) T , thanks to a classic consequence of Paley-Zygmund
inequalities (see [69] Theorem 1 p. 54).

To conclude, recall that (
∑N

p=1 Zp)N∈N is assumed to be almost surely bounded in C0(Td)

(in the probability space Ω and thus also in Ω′′). Finally, notice that Zp and εpZp(·−Ψp) have
the same law in Ω′′ and thus (εp

∑N
p=1 Zp(· −Ψp))N∈N must also be almost surely bounded,

which is a contradiction.

4.6.2 Proof of Proposition 4.3

The proof is a generalization to d ≥ 2 of Kahane’s [69] Proposition 5 p. 49. We begin with
a lemma that gives a Bernstein’s inequality for a multivariate trigonometric polynomial. In
the following result, || · || denotes the norm on linear forms induced by |.|∞ the maximum
norm over Rd, and ∇P (t) denotes the gradient of the trigonometric polynomial P at point t.

Lemma 4.3. Let K be some positive integer and P a trigonometric polynomial on Td with

degree less than K defined by P (t) =
∑

|n|∞≤K bne
i(n·t+φn) for all t in Td. Then

sup
t∈Td

||∇P (t)|| ≤ K ‖ P ‖∞ . (4.53)

Proof. Let us denote (θk)1≤k≤d the canonical basis of Rd. Let us introduce for t ∈ Td,
1 ≤ k ≤ d, the real trigonometric polynomial Qk(r) = P (t + rθk). According to Bernstein’s
inequality one has

‖Q′
k‖∞ ≤ max

|n|∞≤K
|n · θk|‖Qk‖∞,

which involves that ∣∣∣∣
∂P

∂tk
(t)

∣∣∣∣ = |Q′
k(0)| ≤ K‖P‖∞,

and proves (4.53).

We now turn to the proof of Proposition 4.3. Let ε ≥ 2π/q and t ∈ Td. The function
s 7→ |P (s)| is 2π/q-periodic on each component. Indeed, write E = {l + qj}j∈E ′ (E ′ ⊂ Zd)
and notice that

|P (s)| =

∣∣∣∣∣∣
∑

j∈E ′
bl+qje

i((l+qj)·s+φn)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
ei(l·s)

∑

j∈E ′
bl+qje

i(qj·s+φn)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

j∈E ′
bl+qje

i(qj·s+φn)

∣∣∣∣∣∣
(4.54)

for each s in Td. Let t′ in Td be such that |P | achieves its global maximum ‖ P ‖∞ at point
t′ that may be assumed to be in B∞(t, ε/2), thanks to the 2π/q-periodicity of s 7→ |P (s)|.
For all s in Td,

|P (s)− P (t′)| = P (t′)− P (s) =‖ P ‖∞ −P (s) ≤ sup
u

‖ ∇P (u) ‖ |t′ − s| ≤ K ‖ P ‖∞ |t′ − s|
(4.55)

thanks to Lemma 4.3, and thus
P (s) ≥‖ P ‖∞ /2 (4.56)
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for all s in B∞(t′, 1/(2K)) = B∞(t′, ε′). Since K ≥ q
2π , ε′ satisfies

ε′ ≤ π/q ≤ ε/2 (4.57)

and thus s 7→ |P (s)| achieves its global maximum ‖ P ‖∞ on a point t′ such that B∞(t′, ε′) ⊂
B∞(t, ε).

4.6.3 Proof of Lemma 4.4

Define B+ = B∩(N×Zd−1) and B− = B∩(−N×Zd−1). Notice that, with non-zero probability,
at least one of the sequences among (

∑
n∈B+∩Ak

ane
i(n.T+Φn))k∈N and (

∑
n∈B−∩Ak

ane
i(n·T+Φn))k∈N

diverges. Thus, we can define B′, a deterministic subset of Zd either equal to B+ or equal to
−(B−), such that, with non-zero probability, the sequence (Zk)k∈N defined by

Zk =
∑

n∈Ak∩B′
ane

i(n·T+Φn) (4.58)

diverges. Define Xk := Re(Zk) =
∑

n∈Ak∩B′ an cos(n · T + Φn) and Yk := Im(Zk) =∑
n∈Ak∩B′ an sin(n · T + Φn) for all k. With non-zero probability (Xk)k∈N or (Yk)k∈N di-

verges. Let us define the events

Ecos
div := {ω| the sequence (Xk)k∈N diverges} (4.59)

and
Esin

div := {ω| the sequence (Yk)k∈N diverges}. (4.60)

The event
Ediv := Ecos

div ∪ Esin
div (4.61)

happens with non-zero probability.
Since (Φn)n∈N×Zd−1 and (Φn+

π
2 )n∈N×Zd−1 have the same law (direct consequence of H2),

the events Ecos
div and Esin

div have the same probability. Thus, the probability of the event Ecos
div

is non-zero. We conclude by defining B∗ = B′ ∪ (−B′) and noticing that
∑

n∈Ak∩B∗ an cos(n ·
T +Φn) = 2Xk for each k.

4.6.4 Proof of Proposition 4.7

Since the law PX(0) of the limitX(0) does not depend on a method of summation (Proposition
4.1), let us pick one ordering in N×Zd−1, (nk)k∈N, and rewrite bk := ank

for each k ∈ N. For
simplicity, let us assume that bk 6= 0 for each k. We may write

X(0) =
3∑

k=1

bk cos(Φnk
) +

+∞∑

k=4

bk cos(Φnk
) = Y + Z.

By independence one has PX(0) = PY ∗ PZ . Since the convolution of a probability measure
with an absolutely continuous measure with uniformly continuous bounded density remains
an absolutely continuous measure with uniformly continuous bounded density, it is sufficient
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to prove that Y =

3∑

k=1

bk cos(Φnk
) admits a uniformly continuous bounded density.

Let us recall that the density function of b cos(Φ), where Φ is a uniform random variable over

R/2πZ and b a non-zero real number, is t 7→ 1

b
f(
t

b
), with f(t) = 1(−1,1)

1

π
√
1− t2

. Moreover,

one easily checks that f is in Lp(R) for every p in [1, 2) and hence so is the density function of
the random variable b cos(Φ). Let f1 (resp. f2, f3) denote the density function of b1 cos(Φn1)

(resp. b2 cos(Φn2), b3 cos(Φn3)) such that the density of Y is given by f1 ∗ f2 ∗ f3. Recall that
Young’s inequalities (see e.g. [86] p. 99) state that if p, q, r are in [1,∞], such that

1

p
+

1

q
= 1 +

1

r
(4.62)

and if f ∈ Lp(R) and g ∈ Lq(R) one has f ∗g ∈ Lr(R) with ‖ f ∗g ‖r≤‖ f ‖p‖ g ‖q. It follows
that the convolution f1 ∗ f2 belongs to Lp(R) for all p in [1,∞), since f1 and f2 are in Lp(R)
for every p in [1, 2). In particular it belongs to L3(R). Moreover, f3 belongs to L3/2(R) and
since 3 and 3/2 are conjugate exponents (1/3+2/3 = 1), (f1 ∗f2)∗f3 is uniformly continuous
and bounded (see e.g. [86] p. 70).



Chapter 5

On the Regularity of some Multiple

Random Fourier Series

We propose a generalization of classical one-dimensional conditions for the convergence of
random Fourier series over the d-torus Td. We provide an investigation of the regularity
of the random infinite sum and discuss sufficient and necessary conditions on the modulus
of Fourier coefficients. An emphasis is put onto anisotropic geometries that distinguish the
multi-dimensional case from the classical one-dimensional case.

5.1 Introduction

In this chapter, we pursue our discussion on Random Fourier series, with a focus on conditions
for regularity. Such conditions, especially for continuity and uniform convergence have been
one of the main focus of interest on this topic, with the first results obtained by Paley and
Zygmund in their seminal series of papers [108], [109] and [110]. Major contributions were
made by Salem and Zygmund in [119], Kahane in [69], Marcus in [93], along with Jain [61] and
Pisier [96]. Fernique introduced metric entropy methods to the field in [45] and [46] and found
the first necessary and sufficient conditions for Gaussian periodic stationary processes. These
results led to generalizations by Marcus and Pisier in [95] and [96] to compact groups (both
abelian and non-abelian). Marcus and Pisier used such necessary and sufficient conditions
to derive sufficient conditions based on the Fourier coefficients of random Fourier series ([96]
chapter 7 and [97] section 4 – see also [26] section 3) (1). In this chapter, we obtain similar
conditions through a direct method inspired by Kahane [69] chapter 7 that doesn’t involve
metric entropy. Conditions for Hölder regularity have also been investigated in Kahane’s book
[69], chapter 7. In this chapter, we focus on similar conditions on the Fourier coefficients
and extend existing results for usual random Fourier series (defined on the circle R/2πZ)
to multiple random Fourier series defined on the d-torus Td, using an anisotropic notion of
Hölder regularity.

(1)We would like to thank C. Cuny for pointing to the references [97] and [26].
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In order to articulate such an extension, we write our main hypotheses and recall some
basic results in Section 2. In Section 3, we introduce a fundamental lemma and state suf-
ficient conditions for continuity. In Section 4, we focus on the converse problem and state
necessary conditions for almost sure unboundedness. In Section 5, we focus on anisotropic
Hölder regularity and state sufficient conditions as well as necessary conditions in the isotropic
framework. In Section 6 we discuss extensions such as the Gaussian case.

5.2 Notations and Hypotheses

Recall that (Ω,F ,P) denotes a complete probability space, Td := Rd/2πZd the d-dimensional
torus and (en)n∈Zd the trigonometric Hilbert basis of L2(Td). In Chapter 4 we considered
random continuous functions X defined by their random Fourier coefficients by

X(ω, ·) L2(Td)
=

∑

n∈Zd

An(ω)e
iΦn(ω)en(·) (5.1)

where the sum in L2(Td) can also be taken in the sense of uniform convergence.
Let us recall the following hypotheses that we made on the random Fourier coefficients:

• H1: “(An)n∈Zd = (an)n∈Zd is a deterministic, non-negative, even (a−n = an for all n in
Zd) square summable family with a0 = 0.”

• H2: “(Φn)n∈Zd is a pure phase noise field, that is for all n in Zd, Φ−n = −Φn (modulo 2π)
almost surely, Φn has uniform distribution over R/2πZ and (Φn)n∈A are independent
for all A ⊂ Zd such that A and −A do not intersect.”

Recall also that (SAk
)k∈N denotes the sequence of random trigonometric functions defined

for t in Td and k in N by
SAk

(t) =
∑

n∈Ak

Ane
in·t+Φn . (5.2)

For any trigonometric polynomial

p : t 7→
∑

n∈A
ane

i(n·t+φn) (5.3)

we consider its degree defined as

d∞(p) := max{|n|∞; n ∈ A, an 6= 0}, (5.4)

with |n|∞ = max
1≤i≤d

|ni|.
In the remaining of this chapter, we shall seek explicit conditions on (an)n∈Zd for the

set equivalent conditions in Theorem 4.1 to be satisfied. We name this set of equivalent
conditions (⋆). We shall also seek conditions for stronger notions of regularity, such as Hölder
regularity. Recall that for α in (0, 1), a continuous function f : Td 7→ R is said to be α-Hölder
over Td if

sup
t 6=s∈Td

|f(t)− f(s)|
|t− s|α <∞, (5.5)



5.3. Conditions for continuity 119

where | · | is the Euclidean norm on Rd. For p ∈ [1,+∞], we may consider the p-norm defined
by |x|p = (

∑

1≤i≤d

|xi|p)1/p for x = (x1, . . . , xd) ∈ Rd and their corresponding closed balls

Bp(r) = {x ∈ Rd; |x|p ≤ r}, r > 0. Choosing Ak(p) = Bp(rk) for k ∈ N, with an increasing
positive sequence (rk)k, we obtain different conditions, relying on sums of the a2n on subsets
of Zd delimited by these sets, implying all Hölder regularity, in view of the equivalence of
norms on Rd. Following [11] (see also e.g. [7]), we also consider an anisotropic generalization
of the Hölder regularity property using quasi-norms instead of norms. More precisely, if
E = diag(µ1, . . . , µd) is a diagonal matrix with positive eigenvalues µ1, . . . , µd ∈ (0,+∞), we
consider τE : Rd → R+ a continuous even function such that

i) for all x 6= 0, τE (x) > 0;

ii) for all r > 0 and all x ∈ Rd, τE (r
Ex) = rτE (x) with rE = exp ((log r)E) = diag(rµ1 , . . . , rµd).

Note that τE remains faithful by i), the homogeneity property of norms is replaced by the
E-homogeneity property ii) and τE satisfies a quasi-triangular inequality (by Lemma 2.2 of
[13]): there exists κE ≥ 1 such that

∀x, y ∈ Rd, τE (x+ y) ≤ κE (τE (x) + τE (y)) . (5.6)

Then, for α > 0, a continuous function f : Td 7→ R is said to be (α, τE )-Hölder over Td if

sup
t 6=s∈Td

|f(t)− f(s)|
(τE (t− s))α

<∞. (5.7)

Hence we may consider closed balls Bτ
E
(r) = {x ∈ Rd; τE (x) ≤ r}, r > 0 and a corresponding

method of summation Ak(τE ) = Bτ
E
(rk), for k ∈ N, with an increasing positive sequence

(rk)k∈N. Let us quote that this framework generalizes the previous one since any norm is a
quasi-norm for E = Id the identity matrix. A simple example of a quasi-norm is given by
τE (x) =

∑

1≤i≤d

|xi|Hi with Hi = 1/µi for 1 ≤ i ≤ d and x = (x1, . . . , xd) ∈ Rd. Moreover,

when Hi ∈ (0, 1] for all 1 ≤ i ≤ d, this quasi-norm satisfies the triangular inequality, meaning
that κE = 1.

In the following, Cd (resp. C ′
d etc.) denotes a universal constant. However, its value may

vary across different contexts, but as long as ambiguity is avoided, we shall keep the same
notations purposely.

5.3 Conditions for continuity

We are interested in sufficient conditions on the modulus sequence (an)n∈Zd for a RPN process
to be well defined, that is, to satisfy the equivalent conditions of Billard’s theorem named
(⋆). Sufficient conditions for continuity have been thoroughly studied in the one-dimensional
case (see Marcus et al. [98], [93], [94], Kahane [69]) and methods introduced by Fernique
[45], led to the generalization of necessary and sufficient conditions to any compact group as
shown by Marcus and Pisier in [96].
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Our problem is to effectively derive whether or not a given random Fourier series satisfying
hypotheses H1 and H2 converges uniformly, and we thus seek conditions directly on the
coefficients (an)n∈Zd as in [96], [97] and [26], with elementary techniques, as found in [69].

5.3.1 Preliminary results

In the following we denote B∞(t, r) = {s ∈ Td; |t − s|∞ < r} the projection onto Td of the
Rd open ball of radius r and center t with respect to | · |∞ onto Td. Let us first recall a result
inspired by [69], Chapter 5.

Most of the results in this chapter rely on the following proposition, which is inspired by
Theorem 2 in [69], Chapter 6.

Lemma 5.1. Let K ≥ 1 and (εk)1≤k≤K be a finite family of independent real random variables

that are sub-normal, i.e. sub-Gaussian and such that

E[eλεk ] ≤ eλ
2/2 (5.8)

for each k. Let (pk)1≤k≤K be a finite family of real trigonometric polynomials with degree less

than N , where N ≥ 1.

Define P (ω, t) :=
∑

1≤k≤K εk(ω)pk(t) as a random trigonometric polynomial. Then

P


‖P‖∞ ≥ Cd ·

(
log(N) ·

K∑

k=1

‖pk‖2∞

)1/2

 ≤ (2π)d

N
(5.9)

holds for some universal constant Cd > 0.

Proof. Let us define r2 :=

K∑

k=1

‖pk‖2∞. Thanks to the independence of the (εk)1≤k≤K , for

t ∈ Td,

∀λ ∈ R, E[eλP (t)] = E[eλ
∑K

k=1 εkpk(t)] =
K∏

k=1

E[eλεkpk(t)]. (5.10)

Due to the subnormality of the (εk)1≤k≤K ,

E[eλP (t)] =

K∏

k=1

E[eλεkpk(t)] ≤
K∏

k=1

eλ
2|pk(t)|2/2 ≤ eλ

2r2/2, (5.11)

which holds for every t in Td.
Thanks to Proposition 4.3 (with q = 1), we know that (surely) there exists a random ball

B(T (ω), ε), with ε ≥ (2N)−1, such that |P (ω, t)| ≥ ‖P (ω, ·)‖∞/2 for every t in B∞(T (ω), ε).
Since vol(B∞(T (ω), ε)) = (2ε)d ≥ N−d,

E[eλ‖P‖∞/2] ≤ NdE[
∫

B∞(T,ε)
(eλP (t) + e−λP (t))dt] ≤ NdE[

∫

Td

(eλP (t) + e−λP (t))dt] (5.12)

holds for every λ in R. Thanks to Fubini-Tonelli, (5.11) yields for every λ ∈ R

E[eλ‖P‖∞/2] ≤ 2(2πN)deλ
2r2/2 (5.13)



5.3. Conditions for continuity 121

which can be rewritten for λ > 0 as

E
[
eλ/2(‖P‖∞−λr2− 2

λ
log(2(2πN)ds))

]
≤ 1/s (5.14)

for every s > 0. By Markov inequality, it follows that

P

(
‖P‖∞ ≥ λr2 +

2

λ
log
(
2(2πN)ds

))
≤ 1/s (5.15)

for any s > 0 and λ > 0. Let us fix s∗ = N/(2π)d and λ∗ =
(
2 log

(
2(2πN)ds∗

)
/r2
)1/2

. From
(5.15), it follows that

P
(
‖P‖∞ ≥ Cd(log(N)r2)1/2

)
≤ (2π)d/N (5.16)

holds for some universal constant Cd (depending only on the dimension d).

Let us now discuss a very particular and useful case of sub-normal random variable. Recall
that ε is a Rademacher random variable if

P(ε = 1) = P(ε = −1) = 1/2. (5.17)

A Rademacher random variable is subnormal since, thanks to monotone convergence,

E[eλε] =
∑

k∈N
E

[
λkεk

k!

]
=
∑

k∈N

λ2k

(2k)!
≤
∑

k∈N

λ2k

2kk!
= eλ

2/2 (5.18)

for all λ in R. In the following we shall make an intense use of Rademacher random variables
that are independent modulo symmetry.

Definition 5.1. (εn)n∈Zd is a symmetric Rademacher random field if

• εn is a Rademacher random variable for each n

• ε−n = εn almost surely for each n

• (εn)n∈A are independent if A ⊂ Zd is such that (A \ {0}) ∩ (−A) = ∅.

As we stated Proposition 5.1 for a sequence of real trigonometric polynomials, it will be
useful to consider sums on halves of Zd so we denote (Zd)+ the set

{(n1, . . . , nd); (n1 > 0) or (n1 = 0 and n2 > 0) . . . or (n1 = 0, n2 = 0 . . . , nd−1 = 0 and nd > 0)}
(5.19)

such that (Zd)+ ∪ −(Zd)+ ∪ {0} = Zd and (Zd)+ ∩ −(Zd)+ = ∅, and A+ the set A ∩ (Zd)+

for any symmetrical set A.

Proposition 5.1. Assume that hypotheses H1, H2 are satisfied. Assume that A ⊂ Zd is a

symmetrical subset such that A ⊂ B∞(N) for some N ≥ 1. Then,

P



∥∥∥∥∥
∑

n∈A
ane

i(n·t+Φn)

∥∥∥∥∥
∞

≥
√
2Cd

(
log(N)

∑

n∈A
a2n

)1/2

 ≤ (2π)d/N. (5.20)
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Proof. First, recall that a0 = 0 by Hypothesis H1. Define the random polynomial

PΦ(t) =
∑

n∈A
ane

i(n·t+Φn). (5.21)

Let (εn)n∈Zd be a symmetric Rademacher random field, such that (εn)n∈Zd is independent of
(Φn)n∈Zd and define the random trigonometric polynomial

P ε(t) =
∑

n∈A
εnane

i(n·t+Φn). (5.22)

Note that since A is finite, thanks to H1, H2, and the hypothesis that (εn)n∈Zd is independent
of (Φn)n∈Zd , P ε and PΦ have the same law. Moreover,

P ε(t) =
∑

n∈A+

εnPn(t) (5.23)

where Pn is the real random trigonometrical polynomials defined by

Pn(t) = ane
i(n·t+Φn) + a−ne

i(−n·t+Φ−n) = 2an cos(n · t+Φn) (5.24)

for n in A+. Notice that for each n, ‖Pn‖∞ = 2|an|. Since (εn)n∈A+ are independent and
subnormal, (Φn)n∈A+ is independent of (εn)n∈A+ , and N ≥ 1, Lemma 5.1 yields

P


‖P ε‖∞ ≥

√
2Cd

(
log(N)

∑

n∈A
a2n

)1/2

| (Φn)n∈A+


 ≤ (2π)d/N. (5.25)

Notice that neither the upper bound (2π)d/N nor the lower bound
√
2Cd(log(N)

∑
n∈A a

2
n)

1/2

depend on (Φn)n∈A+ . The conditionality can thus be removed and (5.25) yields

P


‖P ε‖∞ ≥

√
2Cd

(
log(N)

∑

n∈A
a2n

)1/2

 ≤ (2π)d/N (5.26)

which in turn yields the desired inequality

P


∥∥PΦ

∥∥
∞ ≥

√
2Cd

(
log(N)

∑

n∈A
a2n

)1/2

 ≤ (2π)d/N, (5.27)

since PΦ and P ε have the same law.

5.3.2 Sufficient conditions for almost sure continuity

Assume that Hypothesis H1 is satisfied and assume that (Nk)k∈N is an increasing sequence
of integers and that (Ak)k∈N is a method of summation such that, for each k, Ak ⊂ B∞(Nk).
Let us state the two hypothesis

• H3:
∑

k∈N


log(Nk+1)

∑

n∈Ak+1\Ak

a2n




1/2

<∞.
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• H4:
∑

k∈N

1

Nk
<∞.

Theorem 5.1. Assume that hypotheses H1, H2, H3 and H4 are satisfied. Then (⋆) holds.

Proof. For each k, define the random polynomial

PΦ
k (t) =

∑

n∈Ak+1\Ak

ane
i(n·t+Φn). (5.28)

Proposition 5.1 yields

P



∥∥PΦ

k

∥∥
∞ ≥

√
2Cd


log(Nk+1)

∑

n∈Ak+1\Ak

a2n




1/2

 ≤ (2π)d/Nk+1. (5.29)

Since
∑

k∈N
1/Nk < ∞ by Hypothesis H4, Borel-Cantelli Lemma applies, and thus almost

surely

‖PΦ
k ‖∞ ≤

√
2Cd


log(Nk+1)

∑

n∈Ak+1\Ak

a2n




1/2

(5.30)

holds for all k in N except maybe for a finite random number of them. Thanks to the

Hypothesis H3, it follows that the series of functions


∑

l≤k

PΦ
l




k∈N

converges normally,

almost surely. Hence, almost surely, (SAk
)k∈N converges uniformly, which in turn implies

condition (ii) in Theorem 4.1 for the method of convergence (Ak)k∈N. Hence, condition (⋆)

holds.

Remark 5.1. One possible choice of Nk (k in N) is to take diam∞(Ak), the diameter of Ak

with respect to the | · |∞ norm, as defined by

diam∞(Ak) := min{N ∈ N;Ak ⊂ B∞(N)}. (5.31)

Furthermore, notice that, thanks to equivalence of norms in Rd, the diameter diam∞(·) can

actually be replaced with the diameter with respect to any norm.

5.3.3 Examples

Conditions with norms and quasi-norms

Theorem 5.1 yields many practical and somewhat tractable conditions. We state conditions
that deal with norms and quasi-norms.

Let E = diag(µ1, . . . , µd) be a diagonal matrix with positive eigenvalues µ1, . . . , µd ∈
(0,+∞) and τE be a quasi-norm associated with E. Note that for E = I we may choose τE
as a p-norm on Rd for any p ∈ [1,+∞]. For k ∈ N we consider the symmetrical subset

Ak(τE ) = Bτ
E
(2k) = {x ∈ Rd; τE (x) ≤ 2k}. (5.32)
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Let µ = min
1≤i≤d

µi and µ = max
1≤i≤d

µi. We also note H = µ−1 = min
1≤i≤d

µ−1
i and H = µ−1 =

max
1≤i≤d

µ−1
i . By Proposition 3.5 of [12] we may find c1, c2 > 0 such that for all x ∈ Rd

c1min(|x|H∞, |x|H∞) ≤ τE (x) ≤ c2max(|x|H∞, |x|H∞). (5.33)

It follows that
B∞

(
c
−µ

2 2kµ
)
⊂ Ak(τE ) ⊂ B∞

(
c−µ
1 2kµ

)
. (5.34)

Assume that Hypothesis H1 is satisfied and, for all k in N, define sτ
E
,k ≥ 0 by

s2τ
E
,k := 2k

∑

22k<τ
E
(n)≤22k+1

a2n = 2k
∑

n∈A
2k+1(τE )rA2k(τE )

a2n. (5.35)

Corollary 5.1. Assume that hypotheses H1, H2 and

H5(τE ) :
∑

k∈N
sτ

E
,k <∞

are satisfied, with s2τ
E
,k defined by (5.35). Then condition (⋆) holds.

Proof. Notice that by (5.34) we get A2k(τE ) ⊂ B∞(Nk) with

c−µ
2 22

kµ ≤ Nk ≤ c
−µ

1 22
kµ.

It follows that H4 is satisfied and 2−k log(Nk+1) remains bounded so that H5(τE ) implies H3.
Then, the conclusion follows from Theorem 5.1.

Remark 5.2. Kahane (in chapter 7 of [69]) states similar conditions for the case d = 1,

namely ∑

k∈N
sk <∞ (5.36)

with s2k = 2k
∑

22k<n≤22k+1

a2n for k in N. In the case where d > 1, the topology of Rd allows for

a greater variety of conditions, not only defined by norms.

Conditions with integrals

We assume in this section that the quasi-norm τE satisfies the triangular inequality, meaning
κE = 1 in (5.6). In particular, this is the case when E = I with τE a norm on Rd. When E

is a diagonal matrix with eigenvalues µ1, . . . , µd ≥ 1 we may choose τE defined by τE (x) =
d∑

i=1

|xi|1/µi . In this case qE := tr(E) =
d∑

i=1

µi ≥ d ≥ 1.

Proposition 5.2. Let E and τE such that κE = 1 in (5.6) and qE = tr(E) ≥ 1. Let

f : R+ → R with r 7→ rqE−1f2(r) non-increasing. Let us consider H1 with an = f(τE (n)).

Assume that H2 and

H6(τE ) :
∑

k∈N


2k

∫ 22
k+1

22k
rqE−1f2(r)dr




1/2

<∞

are satisfied. Then condition (⋆) holds.
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Proof. We first need the following sum-integral comparison:

Lemma 5.2. Let E and τE such that κE = 1 and qE ≥ 1. Let g : R+ → R+ be a function

such that r 7→ rqE−1g(r) is non-increasing on R+. Then there exists a constant C > 0 such

that, for any two integers 1 ≤ N1 < N2,

∑

N1<τ
E
(n)≤N2

g(τE (n)) ≤ C

∫ N2−1

N1−1
rqE−1g(r)dr. (5.37)

Proof. Let N ≥ 1. We want to give an upper bound for

γN :=
∑

N<τ
E
(n)≤N+1

g(τE (n)). (5.38)

Notice that since r 7→ rqE−1g(r) is non-increasing, g is non-negative and qE ≥ 1, g must be
non-increasing. Hence,

γN ≤ #{n ∈ Zd ; N < τE (n) ≤ N + 1}g(N). (5.39)

Let us estimate #{n ∈ Zd ; N < τE (n) ≤ N + 1}. For each n in Zd, we consider the subset
of Rd defined by Cn = n+ (−1

2 ,
1
2 ]

d. Notice that for n1 and n2 in Zd, Cn1 ∩ Cn2 6= ∅ implies
that n1 = n2. Hence, for E subset of Zd, the volume of

⋃
n∈E Cn is also the cardinality of E .

It follows that,

#{n ∈ Zd ; N < τE (n) ≤ N + 1} = vol





x ∈ Rd ; x ∈

⋃

n;N<τ
E
(n)≤N+1

Cn






 .

Using the triangular inequality and (5.33), for all N > c2,
⋃

n;N<τ
E
(n)≤N+1

Cn ⊂ Bτ
E
(N + 1 + c2)rBτ

E
(N − c2).

Now, for r > 0, by E-homogeneity, we get

vol(Bτ
E
(r)) =

∫

Rd

1τ
E
(x)≤rdx =

∫

Rd

1τ
E
(r−Ex)≤1dx = vτ

E
rqE ,

with vτ
E
= vol(Bτ

E
(1)) > 0. It follows that

#{n ∈ Zd ; N < τE (n) ≤ N + 1} ≤ vτ
E
((N + 1 + c2)

q
E − (N − c2)

q
E ) .

Therefore we may find a constant C such that for all N ≥ 1

#{n ∈ Zd ; N < τE (n) ≤ N + 1} ≤ CN q
E
−1.

Then,

γN ≤ CN q
E
−1g(N) ≤ C

∫ N

N−1
g(r)rqE−1dr,

using the fact that r 7→ rqE−1g(r) is non-increasing. Finally, summing up forN in {N1, . . . , N2−
1} yields the announced result.
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Now let us prove Proposition 5.2. For any k ∈ N, we apply Lemma 5.2 with g = f2,
N1 = 22

k
and N2 = 22

k+1
, so that (5.37) becomes

2−ks2τ
E
,k ≤ C

∫ 22
k+1−1

22k−1
rqE−1f2(r)dr,

and consequently

∑

k≥1

sτ
E
,k ≤

∑

k≥1


2kC

∫ 22
k+1−1

22k−1
rqE−1f2(r)dr




1/2

≤ C1/2
∑

k≥1

(Ik + 2Ik−1)
1/2

with Ik = 2k
∫ 22

k+1

22
k

rqE−1f2(r)dr.

Using the inequality
√
Ik + 2Ik−1 ≤

√
Ik +

√
2Ik−1, we obtain

∑

k≥1

sτ
E
,k ≤ C1/2(1 +

√
2)
∑

k∈N
(Ik)

1/2

which is finite thanks to H6(τE ). Hence, H5(τE ) is satisfied and Corollary 5.1 applies.

One important class of examples is obtained by considering the function f(r) = r−α for
α > 0. Proposition 5.2 implies that the condition (⋆) is satisfied for a RPN process with
modulus (an)n∈Zd where a0 = 0 and an = τE (n)

−α for n 6= 0, with α > qE/2. Indeed, one
derives easily that for each k in N

∫ 22
k+1

22
k

rqE−1r−2αdr =
1

2α− qE

(
(22

k
)qE−2α − (22

k+1
)qE−2α

)
≤ 1

2α− qE
2(qE−2α)2k

and thus

2k



∫ 22

k+1

22k
rqE−1r−2αdr




1/2

≤ 1

(2α− qE )
1/2

2k−(2α−q
E
)2k−1

,

that is summable since 2α− qE > 0.

Remark 5.3. Notice that without the assumption concerning the quasi-triangular inequality

(5.6), one could not compare the sum with the integral.

5.4 Almost sure unboundedness

We may obtain a partial converse in the isotropic case for E = I, considering τE = | · |∞.
Actually, in this setting, we can extend the original Paley-Zygmund approach in the case
where d = 1 to the general case where d is any positive integer.

For all k in N, let us define σk ≥ 0 by

σ2k :=
∑

2k<|n|∞≤2k+1

a2n. (5.40)
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Theorem 5.2. Assume hypotheses H1, H2 and

H7 :
∑

k∈N
σk = ∞

are satisfied, with σ2k defined by (5.40). Then (⋆) does not hold, and (SAk
)k∈N is almost surely

unbounded for every method of summation (Ak)k∈N.

This theorem is stated and proven for d = 1 in [69], chapter 8. Our proof is very similar
to the one-dimensional case and extends the argument to any dimension.

Proof. First note that (⋆) does not hold implies that (SAk
)k∈N is unbounded for every method

of summation (Ak)k∈N almost surely, thanks to the zero-one law.
We prove the result by contradiction. Let us assume that (⋆) holds. Thus, almost surely,
uniform convergence occurs for any method of summation and the limit X is bounded. We
shall prove that this implies that

∑
k σk <∞.

Let us define χ(x) = max(1− |x|, 0) and θ(x) =
∏∞

k=0 χ
(

x
2k

)
for all x in R as in Lemma

3 p.105 of [69]. By Lemma 1 p.105 of [69], it follows that the trigonometric polynomial

ϕ(x) =
∑

n∈Z
ψ(n)einx,

is a kernel function on T meaning that ϕ ≥ 0 and 1
2π

∫
T ϕ(x)dx = 1 with both ψ(·) = χ

( ·
2k

)

and ψ(·) = θ
( ·
2k

)
for any k ∈ N. For such a function ψ, we define a function on Rd by

ψd(t) =

d∏

j=1

ψ(tj) for t = (t1, . . . , td) ∈ Rd,

so that the trigonometric polynomial

ϕd(t) =
∑

n∈Zd

ψd(n)e
in·t =

d∏

j=1

ψ(nj)e
injtj =

d∏

j=1

ϕ(tj), (5.41)

is a kernel function on Td meaning that ϕd ≥ 0 and 1
(2π)d

∫
Td ϕd(t)dt = 1. Recall that for all

continuous function f : Td → R the convolution product ϕd ∗ f satisfies for all t ∈ Td

ϕd ∗ f(t) :=
1

(2π)d

∫

Td

ϕd(u)f(t− u)du ≤ 1

(2π)d

∫

Td

ϕd(u) (sup f) du ≤ sup f. (5.42)

Now, let k ∈ N and define the following random trigonometric polynomials

Pk(t) =
∑

n∈Zd

anθd

( n
2k

)
ei(n·t+Φn) =

∑

|n|∞≤2k

anθd

( n
2k

)
ei(n·t+Φn) (5.43)

Qk(t) =
∑

|n|∞≤2k

anθd

( n

2k+1

)
ei(n·t+Φn) (5.44)
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and
Rk(t) =

∑

2k<|n|∞≤2k+1

anθd

( n

2k+1

)
ei(n·t+Φn) (5.45)

so
Rk +Qk = Pk+1. (5.46)

Let us remark that θd( n
2k
) = θd(

n
2k+1 )χd(

n
2k
) so that Pk = Qk ∗ ϕk

d an Pk = Pk+1 ∗ ϕk
d with

ϕk
d defined using ψd(·) = χd(·/2k) in (5.41). Thanks to (5.42), we get Pk(t) ≤ supQk for all

t, so that Mk ≤ supQk, where we define the random variable Mk := supPk. Then, we can
define a random variable Tk, independent of Rk by H2, such that

Qk(Tk) ≥Mk. (5.47)

Notice that
Mk+1 −Mk ≥ Pk+1(Tk)−Qk(Tk) = Rk(Tk). (5.48)

Moreover, thanks to (5.42) we also get Pk(t) ≤ supPk+1 so

Mk+1 ≥Mk (5.49)

and we conclude that
Mk+1 −Mk ≥ sup(Rk(Tk), 0). (5.50)

Now recall the Paley-Zygmund inequality for Y , a positive random variable satisfying
E(Y 2) < +∞: for all 0 < λ < 1

P(Y > λ2E(Y )) ≥ (1− λ2)2
E(Y )2

E(Y 2)
.

We consider this inequality for the random variable Rk(t)
2. By (4.44),

E(Rk(t)
2)2

E(Rk(t)4)
≥ 1

3
,

with
v2k := E(Rk(t)

2) =
∑

n∈B∞(2k+1)\B∞(2k)

a2nθd(
n

2k+1
)2. (5.51)

It follows that
P
(
|Rk(t)|2 > λ2v2k

)
≥ 1

3
(1− λ2)2. (5.52)

Thanks to the fact that Rk(t) is symmetrically distributed, this yields

P (sup(Rk(t), 0) > λvk) ≥
1

6
(1− λ2)2. (5.53)

As a consequence, for all t in Td,

E[sup(Rk(t), 0)] ≥
λ

6
(1− λ2)2vk. (5.54)
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Since Tk is independent of Rk, we can write that

E[sup(Rk(Tk), 0)t] = E[E[sup(Rk(Tk), 0)|Tk]] ≥
λ

6
(1− λ2)2vk. (5.55)

Moreover, thanks to the symmetry of Rk and the independence with Tk

E[sup(Rk(Tk), 0)
2] =

1

2
E[Rk(Tk)

2] =
1

2
E[E[Rk(Tk)

2|Tk]] =
1

2
v2k. (5.56)

Thus, renaming Yk = sup(Rk(Tk), 0), both

E[
k∑

j=1

Yj ] ≥
λ

6
(1− λ2)2

k∑

j=1

vj (5.57)

and

E[(
k∑

j=1

Yj)
2]1/2 ≤

k∑

j=1

E(Y 2
j )

1/2 ≤ 1√
2

k∑

j=1

vj (5.58)

hold. Thus, thanks to Paley-Zygmund inequality, for 0 < α < 1,

P




k∑

j=1

Yj > α
λ

6
(1− λ2)2

k∑

j=1

vj


 ≥ P




k∑

j=1

Yj > αE(
k∑

j=1

Yj)


 ≥ (1− α)2

λ2(1− λ2)4

18
.

(5.59)
Now, notice that adding (5.50) from 1 to k yields

k∑

j=0

Yj ≤Mk. (5.60)

Moreover, notice that Pk = X ∗ϕk
d (recall that ϕk

d is defined using ψd(·) = θd(·/2k) in (5.41))
so that by (5.42) Mk ≤ supX. It follows that

P


‖X‖∞ > α

λ

6
(1− λ2)2

k∑

j=1

vj


 > (1− α)2

λ2(1− λ2)4

18
> 0. (5.61)

Thus, since X is assumed to be almost surely bounded, the sequence (
∑k

j=1 vj)k∈N is bounded
and thus converges. Now, notice that

v2k =
∑

2k<|n|∞≤2k+1

θd

( n

2k+1

)2
a2n ≥

∑

2k<|n|∞≤3·2k−1

θd

( n

2k+1

)2
a2n

≥ inf
1
2
≤|t|∞≤ 3

4

θd(t)
∑

2k<|n|∞≤3·2k−1

a2n.

Notice that inf
1
2
≤|t|∞≤ 3

4

θd(t) ≥ inf
|t|∞≤ 3

4

θd(t) = θ

(
3

4

)d

. Moreover, θ
(
3
4

)
> 0 since clearly

∞∑

k=0

log

(
1− 3

4

1

2k

)
> −∞. Thus,

∑

k


 ∑

2k<|n|∞≤3·2k−1

a2n




1/2

<∞. (5.62)
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Moreover, replacing X by t 7→ X(3t) in (5.62) yields

∑

k


 ∑

2k<|3n|∞≤3·2k−1

a2n




1/2

<∞. (5.63)

Since
σ2k ≤

∑

2k<|n|∞≤3·2k−1

a2n +
∑

2k+2<|3n|∞≤3·2k+1

a2n, (5.64)

(5.62) and (5.63) imply that ∑

k

σk <∞ (5.65)

which concludes the proof.

Let us illustrate this result in the isotropic power spectrum case (an = |n|−α
2 for n 6=

0). Thanks to the equivalence of norms in finite-dimensional normed spaces, there exists a
constant Cd such that

an ≥ Cd|n|−α
∞ (5.66)

for all n 6= 0 in Zd. Thus

∑

2k<|n|∞≤2k+1

a2n ≥ C2
d

∑

2k<|n|∞≤2k+1

|n|−2α
∞ = C2

d

2k∑

p=2k+1

∑

|n|∞=p

p−2α

∑

2k<|n|∞≤2k+1

a2n ≥ C2
d

2k∑

p=2k+1

pd−1−2α ≥ C ′
d2

k(d−2α),

for some constant C ′
d > 0. Hence,

σk =


 ∑

2k<|n|∞≤2k+1

a2n




1/2

≥ (C ′
d)

1/22k(d−2α)/2. (5.67)

and
∑

k σk = ∞ as soon as α ≤ d/2.

Remark 5.4. Notice that thanks to the equivalence of norms in Rd, the same reasoning

applies to an = ν(n)−α for any norm ν on Rd, and thus (⋆) does not hold as soon as α ≤ d/2.

5.5 Hölder regularity

In this section, we focus on stronger assumptions on coefficients (an)n∈Zd implying that the
sample paths of a RPN process are not only continuous but uniformly (α, τE )- Hölder on Td for
some α > 0 and τE a quasi-norm associated with a diagonal matrix E = diag(µ1, . . . , µd) with
positive eigenvalues or simply a norm when E = I. Classical α-Hölder regularity can provide
an interesting measure of smoothness (resp. roughness) of a texture. In particular, α-Hölder
regularity is deeply connected to the fractal dimension of the sample paths graph. However,
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when considering stationary processes this property does not allow to reveal anisotropy (see
Theorem 1 of [33]). We may get around this drawback using a quasi-norm τE associated with
the diagonal matrix E = diag(µ1, . . . , µd). Actually, using equivalence between quasi-norm
given in Proposition 3.3 of [24] we may find c3 > 0 such that for all x ∈ Rd,

c−1
3 τE (x) ≤

d∑

j=1

|xj |1/µj ≤ c3τE (x). (5.68)

It follows that when a continuous function f is (α, τE )-Hölder on Td, one can find constants
C,C ′ > 0 such that

∀t, s ∈ Td, |f(t)− f(s)| ≤ CτE (t− s)α ≤ C ′




d∑

j=1

|tj − sj |1/µi




α

.

This means in particular that the function f is α/µj-Hölder along all the straight lines directed
by ej with (ej)1≤j≤d the canonical basis or Rd. Note also that this requires that 0 < α ≤ µj
for all 1 ≤ j ≤ d for non constant functions.

5.5.1 Sufficient conditions

Let E = diag(µ1, . . . , µd) be a diagonal matrix with positive eigenvalues µ1, . . . , µd ∈ (0,+∞)

and τE be a quasi-norm associated with E. Let us recall our notation µ = min
1≤j≤d

µj . Assume

that Hypothesis H1 is satisfied and, for all k in N, define στ
E
,k ≥ 0 by

σ2τ
E
,k :=

∑

2k<τ
E
(n)≤2k+1

a2n =
∑

n∈Ak+1(τE )rAk(τE )

a2n. (5.69)

Theorem 5.3. Assume that hypotheses H1, H2 and

H8(τE ) : ∃β ∈ (0, µ) and C > 0 ; ∀k ∈ N, στ
E
,k ≤ C2−βk

are satisfied, with σ2τ
E
,k defined by (5.69). Then, almost surely, (⋆) holds and, for any method

of summation, the limit function X satisfies that almost surely, there exists a constant C > 0

such that

∀t, s ∈ Td, |X(t)−X(s)| ≤ CτE (t− s)β log(1 + τE (t− s)−1)1/2.

In particular, almost surely, X is uniformly (α, τE )- Hölder on Td for all α < β

Proof. First of all, notice that Hypothesis H8(τE ) implies that

s2τ
E
,k = 2k

2k+1∑

j=2k

σ2τ
E
,j ≤ 2k

2k+1∑

j=2k

C22−2βj ≤ C2 2−β2k+1

1− 2−2β
(5.70)

for all k and thus
∑

k

sτ
E
,k < ∞, so H5(τE ) is satisfied. Then Corollary 5.1 applies and (⋆)

holds. We write X the associated RPN process.
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Let hq = 2−q, q being some positive integer (a parameter). We consider the random polyno-
mial

PΦ
0,q(t) =

∑

τ
E
(n)≤2q

ane
i(n·t+Φn) =

∑

n∈Aq(τE )

ane
i(n·t+Φn),

where Al(τE ) is the symmetrical subset defined by (5.32) for l ∈ N. The gradient of PΦ
0,q is

given by ∇PΦ
0,q = (∂1P

Φ
0,q, . . . , ∂dP

Φ
0,q) with, for 1 ≤ j ≤ d,

∂jP
Φ
0,q(t) =

∑

τ
E
(n)≤2q

injane
i(n·t+Φn) =

∑

n∈Aq(τE )

injane
i(n·t+Φn). (5.71)

For k ≥ 1 let us denote lk,q = q2k−1 and Nk,q = 2lk,q . We introduce the random polynomials

PΦ
k,q(t) =

∑

Nk,q<τ
E
(n)≤Nk+1,q

ane
i(n·t+Φn) =

∑

n∈Alk+1,q
(τ
E
)rAlk,q

(τ
E
)

ane
i(n·t+Φn). (5.72)

Note that by (5.34), for all k ≥ 1, Alk,q(τE ) ⊂ B∞
(
c−µ
1 Nµ

k,q

)
. Then, choosing q ≥ qd large

enough such that c−µ
1 Nµ

1,q ≥ 1, Proposition 5.1 yields

∀1 ≤ j ≤ d, P



∥∥∂jPΦ

0,q

∥∥
∞ ≥

√
2Cd


log

(
c−µ
1 Nµ

1,q

) ∑

τ
E
(n)≤N1,q

n2ja
2
n




1/2

 ≤ cµ1 (2π)

d/Nµ
1,q,

(5.73)
and

P



∥∥PΦ

k,q

∥∥
∞ ≥

√
2Cd


log

(
c−µ
1 Nµ

k+1,q

) ∑

Nk,q<τ
E
(n)≤Nk+1,q

a2n




1/2

 ≤ cµ1 (2π)

d/Nµ
k+1,q.

(5.74)
Let us define for q ≥ qd the event

Eq :=




ω ∈ Ω;

∥∥∂jPΦ
0,q(ω)

∥∥
∞ <

√
2Cd


log

(
c−µ
1 Nµ

1,q

) ∑

τ
E
(n)≤N1,q

n2ja
2
n




1/2

for all 1 ≤ j ≤ d

and
∥∥PΦ

k,q(ω)
∥∥
∞ <

√
2Cd


log

(
c−µ
1 Nµ

k+1,q

) ∑

Nk,q<τ
E
(n)≤Nk+1,q

a2n




1/2



. (5.75)

Thanks to (5.73) and (5.74), P(Eq) ≥ 1 − cµ1 (2π)
d


1/Nµ

1,q +
∑

k≥1

1/Nµ
k+1,q


. On the one

hand, for all k ∈ N, by definition of Nk,q we have

∑

Nk,q<τ
E
(n)≤Nk+1,q

a2n =
∑

2
lk,q<τ

E
(n)≤2

lk+1,q

a2n =

lk+1,q∑

m=lk,q

σ2τ
E
,m,
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in view of (5.69). Under H8(τE ), it follows that

∑

Nk,q<τ
E
(n)≤Nk+1,q

a2n ≤ C2

lk+1,q∑

m=lk,q

2−2βm ≤ C2

1− 2−2β
2−2βlk,q .

On the other hand, using equivalence between quasi-norm (5.68), we get |xj | ≤ c
µj

3 τE (x)
µj ,

for all 1 ≤ j ≤ d. Therefore, for all 1 ≤ j ≤ d,

∑

τ
E
(n)≤N1,q

n2ja
2
n =

∑

τ
E
(n)≤2l1,q

n2ja
2
n ≤ (2c23)

µj

l1,q∑

m=0

22mµjσ2τ
E
,m + c−2

1

∑

|n|∞≤c−1
1

a2n,

using (5.33) for the last sum corresponding to
∑

τ
E
(n)≤1 n

2
ja

2
n. Under H8(τE ) and since β < µ,

it follows that
l1,q∑

m=0

2mµjσ2τ
E
,m ≤ C2

1− 2−2(µj−β)
22l1,q(µj−β).

Hence we may find a constant C > 0 such that for all q ≥ qd and ω ∈ Eq, for all k ∈ N and
1 ≤ j ≤ d,

‖Pk,q(ω)‖∞ ≤ Cl
1/2
k,q 2

−βlk,q and ‖∂jP0,q(ω)‖∞ ≤ Cl
1/2
1,q 2

l1,q(µj−β).

Thus, on Eq, using the mean value Theorem, for all t, θ ∈ Td

∣∣X(t+ hEq θ)−X(t)
∣∣ ≤

∞∑

k=0

∣∣Pk,q(t+ hEq θ)− Pk,q(t)
∣∣

≤ |θ|∞
d∑

j=1

‖∂jP0,q‖∞ h
µj
q + 2

∞∑

k=1

‖Pk,q(ω)‖∞

≤ 2πC

(
l
1/2
1,q 2

−l1,qβ + 2
∞∑

k=1

l
1/2
k,q 2

−βlk,q

)
,

since hq = 2l1,q . Then, since lk,q = 2k−1l1,q and l
1/2
1,q 2

−l1,qβ = log(h−1
q )1/2hβq , it follows that

we may find a constant C > 0 such that on Eq

sup
t,θ∈Td

∣∣X(t+ hEq θ)−X(t)
∣∣ ≤ C log(h−1

q )1/2hβq .

Moreover,

∑
q≥qd

P(Ω \ Eq) ≤ cµ1 (2π)
d
(∑

q≥1 1/N
µ
1,q + (2π)d

∑
q≥1

∑
k≥2 1/N

µ
k,q

)

≤ cµ1 (2π)
d
(∑∞

q=1 2
−qµ + (2π)d

∑
k≥2

∑
q≥1 2

−qµ2k−1
)
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≤ cµ1 (2π)
d

(
1

2µ−1
+
∑

k≥2

1

2µ2k−1 − 1

)
< ∞thanks to Fubini and the definition of Nk,q.

Borel-Cantelli Lemma applies and thus we may find a random constant C ′ such that almost
surely for all h > 0 small enough

sup
t,θ∈Td

∣∣X(t+ hEθ)−X(t)
∣∣ ≤ C ′hβ log(1 + h−1)1/2.

Now, for s, t ∈ Td with s 6= t, let us remark that s = t+τE (t−s)Eθ with θ = τE (s−t)−1(s−t) in
the compact set τ−1

E
({1}). SinceX is continuous a.s, we may therefore find a random constant

C ′′ such that almost surely

sup
t,s∈Td

|X(s)−X(t)| ≤ C ′′τE (t− s)β log(1 + τE(t− s)−1)1/2.

It follows that almost surely X is (α, τE )-Hölder on Td for all α ∈ (0, β).

5.5.2 A necessary condition

We may obtain a partial converse in the isotropic case for E = I, considering τE = | · |∞.
Actually, in this setting, we extend the classical condition for the case d = 1 (see [69], Chapter
7, Theorem 3).

Proposition 5.3. Let f : Td 7→ R be a α-Hölder function. Then for all k in N
∑

2k<|n|∞≤2k+1

|f̂n|2 ≤ Cf2
−2αk (5.76)

holds for some constant Cf , where f̂n denotes the n-th Fourier coefficient given by

f̂n =
1

(2π)d

∫

Td

f(t)e−in·tdt.

Proof. For any q, define hq =
π

3
2−q. Assume f to be α-Hölder, and denote ej the j-th vector

of the canonical basis. There is some constant C such that

sup
t∈Td

|f(t+ hqej)− f(t)|2 ≤ Ch2αq (5.77)

holds for all 1 ≤ j ≤ d. Integrating the last inequality over Td and applying Parseval’s
identity yields

∑

n∈Zd

|f̂n|2 sin2(n · hqej/2) =
∫

Td

|f(t+ hqej)− f(t)|2dt ≤ (2π)dCh2αq (5.78)

for all j and all q. Denote

B(q,j) = B∞(2q+1) \B∞(2q) ∩ {n ∈ Zd ; 2q < |nj | ≤ 2q+1}. (5.79)

One derives ∑

n∈Zd

|f̂n|2 sin2(n · hqej/2) ≥
∑

n∈B(q,j)

|f̂n|2 sin2(hqnj/2) (5.80)
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and since sin2 (hqnj/2) ≥
3

4
for all n ∈ B(q,j),

3

4

∑

n∈B(q,j)

|f̂n|2 ≤ (2π)dCh2αq (5.81)

holds for each j in {1, . . . , d}. To conclude, notice that B∞(2q+1) \ B∞(2q) =
⋃d

i=1B
(q,i) so

that
∑

n∈B∞(2q+1)\B∞(2q)

|f̂n|2 ≤
∑

j

∑

n∈B(q,j)

|f̂n|2 ≤ d(2π)dCh2αq = d(2π)dC2−2αq (5.82)

holds for all q, which concludes the proof.

Let us study the example of the isotropic power spectrum, say an = |n|−α
2 for some α in

(0, 1). From Section 3, we know that if α > d/2, the condition (⋆) holds. Moreover, in this
case,

Cd2
k(d−2α)/2 ≤ σk ≤ C ′

d2
k(d−2α)/2. (5.83)

The upper bound is obtained by Lemma 5.2 with E = I and qE = tr(E) = d. The lower
bound follows from (5.67). Thus, the RPN associated with an = |n|−α

2 and α ∈ (d/2, d/2+1),
is almost surely

• β-Hölder for all β < α− d

2
(Theorem 5.3)

• not β-Hölder for β > α− d

2
(Proposition 5.3).

Hence α− d/2 ∈ (0, 1) appears as a critical Hölder exponent as defined in [17].

5.6 Extensions

We discuss extensions of the main results of this chapter, which are designed to apply to the
Gaussian case. Recall that the Fourier coefficients of a real center stationary Gaussian process
on Td are complex Gaussian random variables that are independent on every half-space of
Zd. Let us consider the hypothesis

H∗
1: “(An)n∈Zd is such that (An)n∈A are independent whenever A and −A do not intersect

; (An)n∈Zd is independent of Φ ; E[
∑
Zd A2

n] <∞ ; A0 = 0 almost surely”.
Let us write

SAk
(ω, t) =

∑

n∈Ak

An(ω)e
i(Φn(ω)+n·t) (5.84)

for all ω in Ω and t in Td. As discussed in Chapter 4 (Corollary 4.1) the chain of equivalences in
Theorem 1 holds with random variables (An)n∈Zd instead of deterministic sequence (an)n∈Zd

as long as Hypothesis H∗
1 is fulfilled. Let us name (⋆⋆) this chain of equivalences. The

following results can be straightforwardly deduced from Theorem 5.1, with a modification of
Hypothesis H3: (Ak)k∈N is a method of summation such that, for each k, Ak ⊂ B∞(Nk) for
some Nk in N. Let us state the two hypotheses
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• H∗
3:
∑

k

(
log(Nk+1)

∑
n∈Ak+1\Ak

A2
n

)1/2
<∞ almost surely

• H4:
∑

k
1
Nk

<∞
Corollary 5.2. Assume that hypotheses H∗

1, H2, H∗
3 and H4 are satisfied. Then (⋆⋆) holds.

Remark 5.5. H∗
3 is clearly implied by H∗∗

3 :
∑

k

E





log(Nk+1)

∑

n∈Ak+1\Ak

A2
n




1/2

 < ∞,

which is itself implied by H∗∗∗
3 :

∑

k


log(Nk+1)

∑

n∈Ak+1\Ak

E[A2
n]




1/2

< ∞ thanks to Jensen

inequality.

We now turn to extending Theorem 5.2. For all k in N, let us define the random variable
σ∗k ≥ 0 by

σ∗k
2 :=

∑

n∈B∞(2k+1)\B∞(2k)

A2
n. (5.85)

Corollary 5.3. Assume hypotheses H∗
1, H2 and

H∗
7 :
∑

k∈N
σ∗k = ∞ almost surely

are satisfied, with σ∗k defined by (5.85). Then (⋆) does not hold, and (SAk
)k∈N is almost surely

unbounded for every method of summation (Ak)k∈N.

Finally, let us extend Theorem 5.3. Let E = diag(µ1, . . . , µd) be a diagonal matrix with
positive eigenvalues µ1, . . . , µd ∈ (0,+∞), µ = min

1≤j≤d
µj , and τE be a quasi-norm associated

with E. Assume that Hypothesis H∗
1 is satisfied and, for all k in N, define the random variable

σ∗τ
E
,k ≥ 0 by

σ∗τ
E
,k
2 :=

∑

2k<τ
E
(n)≤2k+1

A2
n =

∑

n∈Ak+1(τE )rAk(τE )

A2
n. (5.86)

Corollary 5.4. Assume that hypotheses H∗
1, H2 and

H∗
8(τE ) : ∃β ∈ (0, µ) and C > 0 ; ∀k ∈ N, στ

E
,k
∗ ≤ C2−βk almost surely

are satisfied, with σ∗τ
E
,k
2 defined by (5.86). Then, almost surely, (⋆) holds and, for any method

of summation, the limit function X satisfies that almost surely, there exists a constant C > 0

such that

∀t, s ∈ Td, |X(t)−X(s)| ≤ CτE (t− s)β log(1 + τE (t− s)−1)1/2.

Remark 5.6. H∗
8(τE ) is clearly implied by H∗∗

8 (τE ):
∑

k∈N
2βkE





 ∑

2k<τ
E
(n)≤2k+1

A2
n




1/2

 <∞

which is itself implied by H∗∗∗
8 :

∑

k∈N
2βk


 ∑

2k<τ
E
(n)≤2k+1

E[A2
n]




1/2

< ∞ thanks to Jensen

inequality.
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Let us conclude by remarking that in the case where X is a real centered stationary
Gaussian process almost surely continuous on Td, its Fourier coefficients may be written as

X̂n =
1

2πd

∫

Td

X(t)e−in·tdt = Ane
iΦn ,

with (An)n∈Zd and (Φn)n∈Zd satisfying hypotheses H∗
1 and H2. In order to deal with (α, τE )-

Hölder regularity the classical assumption is that

∀t, s ∈ Td, E((X(t)−X(s))2)1/2 ≤ CτE (t− s)β log(1 + τE (t− s)−1)η,

for some β ∈ (0, µ) and η ∈ R. Actually, under these assumptions, by Proposition 5.3 of [10]
one may prove that, for all ε > 0, there exists a random constant C such that almost surely,

|X(t)−X(s)| ≤ CτE (t− s)β log(1 + τE (t− s)−1)η+1/2+ε.

The link between this two kinds of assumption is given by the fact that

E((X(t)−X(s))2) = 4
∑

n∈Zd

E(A2
n) sin(n · (t− s)/2)2.

We may conjecture that the power 1/2 on the logarithmic term is sharp (for η = 0) in view
of exact modulus of continuity obtained for operator scaling Gaussian random fields in [85].
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Chapter 6

Conclusion

Let us conclude by suggesting a few ideas for future work connected to this thesis.
An interesting extension of our work in Chapter 2 would be, for textures actually based on

localized sparse spots, to be able to find this original spot based on a single texture sample,
or a few samples. A case where this might be conveniently achieved is for symmetrical spots,
which already have a discrete Fourier transform that is entirely real. Thus, starting for the
texton of this spot, the right choice of signs for each coefficient would yield the original sparse
symmetrical spot. This choice of sign could rely on the fact that the Fourier transform of a
localized spot is smooth, and thus the connected components of identically signed neighbors
have fair chances to be quite large. Determining these connected components could in turn
rely on the Djikstra algorithm or graph cut techniques [56].

The idea of a texton is itself quite general, and has been introduced long before our work
[65]. There is however, no reason to believe that it is only relevant to vision. Thus the notion
of texton might be extended to stationnary noisy signals of any dimensions. For instance,
a sparse representation of sound noise might benefit from our approach in images. Another
and arguably more challenging extension would be to extract a somehow minimal set of
information that would allow for other texture synthesis algorithms than RPN or Gaussian
synthesis, to perform somewhat faithful synthesis.

Our discussion on the importance of phase in signals in Chapter 3 seems to be mostly
relevant for human vision experts. Although we only show that the importance of the phase
can be traced back to a higher level of abstraction – namely the projection of signals onto
sets of signals – the conditions for such projections to yield a visually compelling result (at
least recognizable) are quite unclear.

Textures don’t need to be periodical, and it would thus be interesting to extend our peri-
odical random phase fields to non-periodical fields. A convenient way to do this while keeping
the random phase approach would be to relax the constraint imposing the spectrum of the
field to be contained within a lattice while keeping a discrete spectrum approach. Continuity
results have recently been proven in this direction [27], and our results on regularity might
also be extented in this more general framework.

Defining an equivalent of the Random Phase field with a continuous spectrum is a some-
what puzzling task. Asymptotics results proven in Chapter 2 seem to hint that Gaussian fields
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might be the only qualifying fields, but this remains to be proven. However, quasi-periodic
functions might be a relevant approach to define a non-Gaussian non-periodical random phase
field.

Last but not least, our approach to regularity was mainly dominated by global Hölder
exponents, somehow backed by the stationarity of the fields introduced. However, a more
thorough study of the local Hölder exponents (and their probabilistic distribution) is still
lacking and would make an interesting extension of our work.
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Résumé

Le travail présenté dans cette thèse porte sur différents aspects de l’analyse et de la synthèse
de textures. Plus particulièrement, nous nous intéressons à des modèles de “micro-textures”,
c’est-à-dire de textures dépourvues de motifs, dont les phases de la transformée de Fourier sont
aléatoires.

La première partie de cette thèse étudie quelques propriétés d’un représentant particulier de
chaque classe de micro-texture, que nous appelons son texton. Un résultat prouve l’optimalité de
la concentration du texton autour de l’origine (zéro spatial). Nous tirons parti de ce phénomène de
concentration pour proposer des représentations parcimonieuses des micro-textures, approchées et
exactes sous certaines hypothèses. Nous discutons différentes généralisations du texton au cas des
textures en couleurs et nous efforçons d’étendre les approximations parcimonieuses définies dans
le cadre d’images à niveaux de gris.

Nous proposons ensuite d’interprêter l’optimalité de la concentration du texton comme un
résultat de projection. Nous présentons plusieurs simulations de projection sur différents espaces
d’images. Ces expériences numériques montrent que l’hypothèse, largement répandue en traite-
ment du signal, selon laquelle “la géométrie des images est codée dans leur phase”, mérite d’être
nuancée.

Dans la dernière partie de cette thèse, nous étudions certaines propriétés asymptotiques de
micro-textures du modèle de synthèse à phases aléatoires. Après nous être intéressés à la conver-
gence vers un champ Gaussien de ce modèle dans son extension sur le plan discret (non-périodique)
dans la première partie de cette thèse, nous nous intéressons à la convergence et aux propriétés
locales (continuité et régularité) de sommes de Fourier aléatoires infinies multi-dimensionelles.
Nous étendons au cas de la dimension quelconque un théorème de Billard et Kahane prouvant
l’équivalence, pour les sommes aléatoires considérées, entre convergence uniforme p.s., conver-
gence partout p.s. et continuité de la somme p.s. Nous étendons au cadre multi-dimensionel des
conditions suffisantes et des conditions nécessaires pour la continuité et la régularité Hölderienne
de ces sommes, dans un cadre d’analyse anisotropique.

Abstract

This dissertation deals with random-phase texture analysis and synthesis – i.e. textures without
patterns, and with random Fourier phase.

The first part studies properties of a special representant of each class of micro-textures, that
we name texton. We prove an optimality result with respect to the spatial concentration around
the origin. We take advantage of this concentration phenomenon to propose sparse representations
of micro-textures, approximate and exact under some hypothesis. We discuss generalizations of
the texton to color images and extend the sparse approximations developped for gray-scale images.

We interpret the optimality of concentration as a projection result, and discuss several other
projection experiments on different image spaces. These numerical experiments show that the
hypothesis, widely believed in signal processing, claming that “the geometry of images is encoded
in their phase” deserves further inquiry.

In the last part of this dissertation, we study some asymptotical properties of the random-phase
texture model. We proved the convergence to a Gaussian field while extending random-phase
textures towards the whole (non-periodic) discrete plane in the first part of the dissertation, and
we focus here on convergence and local properties (continuity and regularity) of multi-dimensional
infinite random Fourier sums. We extend to the multi-dimensional case a theorem of Billard
and Kahane showing the equivalence, for the random sums considered, between a.s. uniform
convergence, a.s. pointwise convergence everywhere, and a.s. continuity everywhere. We also
extend to the multi-dimensional case, sufficient conditions and necessary conditions for continuity
and Hölder regularity of these sums, with an anisotropic framework.
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