Regularity and localized representations of random-phase textures

Résumé : Le travail présenté dans cette thèse porte sur différents aspects de l’analyse et de la synthèse de textures. Plus particulièrement, nous nous intéressons à des modèles de “micro-textures”, c’est-à-dire de textures dépourvues de motifs, dont les phases de la transformée de Fourier sont aléatoires. La première partie de cette thèse étudie quelques propriétés d’un représentant particulier de chaque classe de micro-texture, que nous appelons son texton. Un résultat prouve l’optimalité de la concentration du texton autour de l’origine (zéro spatial). Nous tirons parti de ce phénomène de concentration pour proposer des représentations parcimonieuses des micro-textures, approchées et exactes sous certaines hypothèses. Nous discutons différentes généralisations du texton au cas des textures en couleurs et nous efforçons d’étendre les approximations parcimonieuses définies dans le cadre d’images à niveaux de gris. Nous proposons ensuite d’interpréter l’optimalité de la concentration du texton comme un résultat de projection. Nous présentons plusieurs simulations de projection sur différents espaces d’images. Ces expériences numériques montrent que l’hypothèse, largement répandue en traitement du signal, selon laquelle “la géométrie des images est codée dans leur phase”, mérite d’être nuancée. Dans la dernière partie de cette thèse, nous étudions certaines propriétés asymptotiques de micro-textures du modèle de synthèse à phases aléatoires. Après nous être intéressés à la convergence vers un champ Gaussien de ce modèle dans son extension sur le plan discret (non-périodique) dans la première partie de cette thèse, nous nous intéressons à la convergence et aux propriétés locales (continuité et régularité) de sommes de Fourier aléatoires infinies multi-dimensionelles. Nous étendons au cas de la dimension quelconque un théorème de Billard et Kahane prouvant l’équivalence, pour les sommes aléatoires considérées, entre convergence uniforme p.s., convergence partout p.s. et continuité de la somme p.s. Nous étendons au cadre multi-dimensionel des conditions suffisantes et des conditions nécessaires pour la continuité et la régularité Hölderienne de ces sommes, dans un cadre d’analyse anisotropique.
Mots-clés : Mathématiques
Type de document :
Thèse
General Mathematics [math.GM]. Université René Descartes - Paris V, 2014. English. <NNT : 2014PA05S024>
Liste complète des métadonnées

https://tel.archives-ouvertes.fr/tel-01160321
Contributeur : Abes Star <>
Soumis le : vendredi 5 juin 2015 - 10:17:07
Dernière modification le : mardi 11 octobre 2016 - 11:57:29
Document(s) archivé(s) le : mardi 15 septembre 2015 - 11:22:10

Fichier

va_Ronsin_Samuel.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-01160321, version 1

Collections

Citation

Samuel Ronsin. Regularity and localized representations of random-phase textures. General Mathematics [math.GM]. Université René Descartes - Paris V, 2014. English. <NNT : 2014PA05S024>. <tel-01160321>

Partager

Métriques

Consultations de
la notice

186

Téléchargements du document

205