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Introduction

This Mémoire d’habilitation à diriger des recherches summarizes the research activities
that I have pursued over the last nine years, from my postdoc (included), to the present
day.

After my PhD at Laboratoire Kastler–Brossel of ENS Paris, under the joint super-
vision of David Guéry-Odelin and Jean Dalibard, and entitled Evaporative cooling of a
magnetically guided atomic beam, I joined in 2006 Tilman Pfau’s group, at Stuttgart Uni-
versity, to work on dipolar quantum gases. More precisely, a Bose–Einstein condensate
of chromium had been obtained in the group about one year before. Chromium has, in
its ground state, a strong magnetic dipole moment of 6µB, where µB is the Bohr mag-
neton, and thus, in addition to the short-range, isotropic contact interaction usually at
work in BECs, the long-range, anisotropic dipole-dipole interaction influences significantly
the properties of chromium BECs. However these dipolar effects remained a small pertur-
bation as compared to the contact interactions. The group had also demonstrated that
several (relatively narrow) Feshbach resonances exist in the collisions of 52Cr atoms. This
led to the possibility to use controlled magnetic fields in order to enhance the relative
effects of the dipolar interactions, by tuning the contact interaction to zero close to a
Feshbach resonance, and thus realize a purely dipolar quantum gas. This is exactly what
the team achieved during my post-doc, during which we thus studied the properties of
purely dipolar quantum gases, in particular their geometry-dependent stability and their
collapse dynamics when they are unstable.

In October 2008, I joined, as a CNRS researcher, the newly-founded cold atom group
of David Guéry-Odelin, at Laboratoire Collisions, Agrégats, Réactivité, in Toulouse. The
first months where devoted to preparing the new lab space, and then to moving, from
LKB to Toulouse, David’s experimental setup, which was a modified version of the one
developed during my PhD thesis, but now used for the all-optical generation of BECs of
87Rb. We then rebuilt from scratch this setup in Toulouse, with some substantial changes.
In the course of this rather technical work, a highlight was the development, led by Renaud
Mathevet, then an assistant professor in the group, of a Zeeman slower using a transverse
magnetic field created by permanent magnets in a Halbach configuration. Once the BEC
apparatus was again operational, we chose to perform guided atom optics experiments:
by outcoupling a BEC in a horizontal, single-beam dipole trap acting as waveguide, one
gets a matterwave analogue of a pulsed laser, propagating in a “fiber” made of light. In
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particular, we studied in details the reflection of such a matterwave on an attractive, one-
dimensional optical lattice, the equivalent of the fiber Bragg gratings widely used in guided
photonics. After a few years in Toulouse, I decided to reorient my research activity and
move to Laboratoire Charles Fabry of Institut d’Optique.

I thus joined Antoine Browaeys’ team in Palaiseau, in January 2012, to take the re-
sponsibility of a setup still under construction, and funded by the ERC starting grant that
Antoine had just obtained. The long-term goal is to use the Rydberg blockade to engineer
interesting quantum states of a system of single atoms held in arrays of optical microtraps,
or tweezers, with arbitrary geometries. Since then, we have moved forward towards this
goal, by demonstrating single-atom loading in such arrays containing tens of tweezers, and
by studying in great details the interactions between small numbers (two and three) of
single Rydberg atoms.

This manuscript is organized as follows. Chapter 1 deals with the main results on
dipolar quantum gases; chapter 2 is devoted to the work performed in Toulouse; and
chapter 3 reports on the experiments on single Rydberg atoms done in Palaiseau. In
these chapters, I have tried to avoid repeating the details that one can readily find in the
published papers (the main ones being reproduced in the text for convenience). I chose to
(i) give a broad introduction to the field, suitable for non-specialists, (ii) provide sometimes
information about some technical tricks that were important for the experiments, but were
too technical for being discussed in published papers, and (iii) when applicable, try to
look, after a few years, at the possible impact of the results obtained. Chapter 3 on the
Rydberg experiments is obviously the most developed one, as it deals with my current
research interests. A final chapter, passage obligé of a HDR, summarizes administrative
data about my research career. I have decided to add an appendix about a part of my
work which, despite being small at the quantitative level, is important —and enjoyable—
for me, namely outreach activities.



Chapter 1

Dipolar quantum gases

. . . Bien sûr, ce n’est pas la Seine
Ce n’est pas le Bois de Vincennes
Mais c’est bien joli tout de même,
À Vaihingen, à Vaihingen. . . 1

1.1 Introduction

The realization of Bose–Einstein condensates (BECs) of dilute atomic vapors in 1995,
quickly followed by that of degenerate Fermi gases, has triggered a huge amount of theo-
retical and experimental studies of the properties of quantum gases over the last twenty
years [100]. Despite the fact that such gases are extremely dilute, with densities n rarely
exceeding n ∼ 1014 cm−3, most of their striking properties, such as superfluidity for in-
stance, are governed by binary interactions between the constituent atoms.

For the vast majority of atomic species, the actual interatomic potential between two
atoms can be replaced, at ultracold temperatures, by a contact pseudo-potential propor-
tional to the scattering length a characterizing the two-body scattering problem. For
instance, the mean-field description of the time-dependent behaviour of a BEC with a
macroscopic wavefunction ψ relies on the Gross-Pitaevskii equation

i~
∂ψ

∂t
= − ~2

2m4ψ + V (r)ψ + g|ψ|2ψ, (1.1)

where V (r) is the external trapping potential, and

g = 4π~2a

m
(1.2)

the interaction strength, proportional to the scattering length a. Here, and in all this chap-
ter, we chose to normalize the macroscopic wavefunction ψ to the number N of particles
in the condensate: ∫

|ψ|2 dr = N. (1.3)

1Slightly adapted from Barbara, Göttingen (1964). For the reader not familiar with the geography of
Stuttgart, let me mention that Vaihingen is the district of Stuttgart were the University campus is located.
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12 Chapter 1. Dipolar quantum gases

Figure 1.1: (a): Two interacting magnetic dipoles. (b) Side-by-side dipoles repel each other, while
head-to-tail ones attract each other (c).

More recently, ultracold atoms have been used to study strongly correlated systems,
that cannot be described in a mean-field approach: for instance bosons in optical lattices
realize the Bose-Hubbard hamiltonian giving rise to the Mott transition, or fermions with
interactions that can be tuned via Feshbach resonances allow the study of the BEC–BCS
cross over [16]. However, in all those cases, the underlying interaction is still a short-range,
isotropic contact interaction. The typical order of magnitude of the scattering length for
an atom like 87Rb is a ∼ 100a0, where a0 is the Bohr radius. For the typical densities
of quantum gases, the magnitude of the mean-field interaction gn is then on the order of
10 kHz.

In principle, for paramagnetic atoms, another type of interaction plays a role: the
magnetic dipole-dipole interaction (DDI) between the magnetic moments of the particles.
For two atoms with parallel magnetic moments µ separated by r, the magnetic DDI takes
the familiar form

Udd = µ0µ
2

4π
1− 3 cos2 θ

r3 , (1.4)

where θ is the angle between the direction of the dipoles and the interatomic axis (Fig. 1.1a).
The DDI is long-range as it decays as 1/r3, and anisotropic: two dipoles side by side repel
each other, while two dipoles in a head-to-tail configuration attract each other (Fig. 1.1b
and c). Due to these properties opposite to the ones of the contact interaction, quantum
gases in which dipolar interactions play an important or even dominant role acquire unique
features, and several pioneering articles in the early 2000’s studied the physics of dipolar
BECs, which are governed by the non-local generalization of the Gross-Piteavskii equation
(1.1):

i~
∂ψ

∂t
=
[
− ~2

2m4+ V (r) + g|ψ|2 +
∫
Udd(r − r′)|ψ(r′)|2 dr′

]
ψ. (1.5)

Early theoretical proposals showed from equation (1.5) that the properties of a dipolar
BEC are strikingly different from the ones of a contact-interacting condensate. As a
first example, the stability of the condensate was predicted to depend strongly on the
trapping geometry: for an oblate (i.e. pancake-shaped) BEC with the dipoles pointing
out of the plane, the DDI is essentially repulsive, and the condensate is stable, while for
a prolate (i.e. cigar-shaped) BEC with the dipoles aligned along the axis, the attractive
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character of the DDI makes the condensate unstable and prone to collapse [43, 114].
Another early prediction about the effects of dipolar interactions is that they qualitatively
change the spectrum of the elementary excitations of the system; for instance, a quasi-
two-dimensionnal dipolar BEC is predicted to exhibit, instead of the usual Bogoliubov
spectrum, a non-monotonous spectrum for the elementary excitations, with a local roton
minimum, analog to the one observed in superfluid Helium [113]. For dipolar bosons
loaded into optical lattices, a variety of exotic phases, such as supersolids or checkerboard
insultors, are predicted to occur [44, 63].

In order for the dipolar effects to play a role, however, a necessary condition is that
the DDI is non-negligible as compared to the contact interaction. A convenient way to
quantify the strength of the DDI is to define a length scale, the dipolar length, by

add = µ0µ
2m

12π~2 (1.6)

where the numerical prefactor is chosen in such a way that a homogeneous BEC with both
contact and dipolar interactions with add > a is unstable due to the attractive character
of the DDI. A trapped quantum gas with add ∼ a should show marked dipolar effects, and
for add � a the gas can be considered as purely dipolar. For alkali atoms, with µ = µB

where µB is the Bohr magneton, the typical value of add is very small, around a0, which
means that dipolar effects are negligible.

At the end of 2004, after several years of development of original cooling techniques,
a Bose–Einstein condensate of chromium atoms was obtained in Tilman Pfau’s group in
Stuttgart [122]. In its ground state, 52Cr has a spin S = 3 and a magnetic moment of
6µB. The dipolar effects are thus expected to be ∼ 36 times stronger than in the alkali.
The ratio

εdd ≡
add
a

(1.7)

reaches εdd ' 0.16, which means that sizable dipolar effects can be observed in a Cr BEC.
Indeed, soon after the realization of the first Cr BEC, the anisotropic character of the
DDI was observed in the expansion of a chromium condensate [45]: due to the DDI, the
condensate elongates along the orientation of the dipoles, and this magnetostrictive effect
persists even during the expansion in free space. This means that the time evolution of
the aspect ratio of the condensate depends on the orientation of the dipoles with respect
to the eigenaxes of an anisotropic trap (see Fig. 1.3a, in section 1.2 below). However, due
to the relatively small value of εdd, these dipolar effects remained a small perturbation of
the contact-interaction-driven expansion.

When I joined the group in july 2006, our first goal thus was to go beyond perturbative
effects by increasing εdd. To do that, we used one of the 14 Feshbach resonances previously
identified in the group by studying losses in a thermal cloud [130], and tuned the scattering
length a close to zero.



14 Chapter 1. Dipolar quantum gases

Figure 1.2: Scattering length for two chromium atoms as a function of the applied magnetic field.
Figure taken from [130]. Note the limited scale of the y-axis.

1.2 Realizing a purely dipolar quantum gas

Close to a Feshbach resonance, the scattering length depends on the applied field B as

a = abg

(
1− ∆

B −B0

)
, (1.8)

where abg is the background value of the scattering length, B0 denotes the position of the
resonance and ∆ its width. By tuning the field close to B = B0 + ∆, the scattering length
almost vanishes, and the gas becomes almost purely dipolar.

Figure 1.2 shows the variation of the scattering length for two Cr atoms in their ground
state, as a function of the applied magnetic field. The broadest resonance, or, to be more
precise, the least narrow, at a field of B0 ' 589 G, had a predicted width ∆ ' 1.7 G. The
requirements in terms of magnetic field stability to tune the scattering length to zero are
therefore demanding: to tune a to 1% of its background value requires to control the field
with an uncertainty δB better than ∆/100, i.e. δB ∼ 17 mG, at a field of almost 600 G!
The needed relative stability of the field is thus at the 10−5 level, which requires an active
stabilization of the magnetic field. Moreover, the large number of resonances at smaller
fields, together with the associated inelastic losses, makes it impractical to first produce a
BEC at low fields and then switch on the magnetic field to B0 + ∆, as this would reduce
the atom number and increase the temperature of the cloud.

We thus upgraded the —already quite complex— experimental setup to be able to
produce and study a Cr BEC in a high field. The technical details are described in depth
in Bernd Fröhlich’s Diplomarbeit [37] and in Tobias Koch’s PhD thesis [61]. In brief, the
main steps were the following.

• Installation of an active control of the magnetic field. To apply a homo-
geneous field B ∼ 600 G, we ran about 400 A in the bias coils of the cloverleaf
Ioffe-Pritchard trap (that was used in the BEC sequence for precooling, by RF-
induced evaporation, the Cr cloud before the transfer to the dipole trap). In order
to achieve the required stability, a low-noise, high-linearity current meter from Dan-
Fysik was used to measure the current running through the coils, and a homemade
PID controller was used for feedback on the current. The actuator was a pair of
water-cooled IGBTs in parallel, used in the linear part of their characteristics. The
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large power dissipated in the IGBTs lead to numerous failures during the debugging
phase, and for a while, IGBTs almost became consumables! We finally reached a
stability in current better than 10−5, after realizing the importance of “tiny” details
such as the CMRR of differential amplifiers used in the PID controller, and using
Agilent power supplies with less noise than the ones initially installed.

• Achievement of BEC of Cr above 600 G. The high magnetic field was turned
on, in a few milliseconds, just after the optical pumping step that follows the transfer
of the cold Cr cloud from the magnetic trap to the optical dipole trap. At this stage,
the density of the trapped sample is still low and the effect of inelastic losses is small.
Forced evaporation in the crossed dipole trap is then performed2. Initial attempts
failed due to the residual field curvature of the bias coils, which provided a very
weak radial trapping acting against gravity and preventing the evaporated atoms to
leave the trap completely. We thus added a power supply providing a small opposite
current through the pinch coils to compensate for the residual curvature.

• Implementation of high-field imaging of the condensate. For initial exper-
iments, we decided to image the BEC in high field in order to avoid crossing all
resonances with the BEC before imaging. However, due to geometrical constraints,
we could not use a σ+ polarization for imaging, which reduced the absorption cross-
section by a factor of two. In later experiments on the dipolar collapse (see sec-
tion 1.4), we decided to image in low field, as it turned out that with a sufficiently
fast switching off (on a timescale of ∼ 100 µs), losses were negligible.

Equipped with these tools, we managed to realize what we named a “quantum fer-
rofluid”, i.e. a quantum gas with strong dipolar interactions [69]. This paper is reproduced
at the end of the chapter (see page 26).

We first located the resonance, by measuring the scattering length a as a function of the
applied magnetic field B when approaching the resonance from above or from below (Fig. 1
of [69] on page 26). In order to extract a, we studied the expansion of the condensate, which
is driven by contact and dipolar interactions. In the Thomas–Fermi regime, the density of
a contact-interacting BEC varies during free expansion in a self-similar way, keeping the
shape of an inverted parabola. The time-dependent Gross–Pitaevskii equation reduces to
a set of three ordinary differential equations governing the scaling parameters that give
the Thomas–Fermi radii of the BEC [20]. It can be shown that this property still holds
in the presence of dipole-dipole interactions [93]. This means that from a measurement
of the atom number and of the Thomas–Fermi radii of the BEC after expansion, one can
infer in a rather simple way the scattering length a. By varying B around B0 = 589 G,
we could vary a over more than one order of magnitude, an in particular reduce it to
15% of the background value. In the vicinity of the resonance, inelastic three-body losses

2Having 400 A running in the bias coils for ∼ 10 seconds leads to significant thermal effects in the coils,
but we could circumvent them by taking them into account in our calibration of the fields.
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Figure 1.3: Anisotropic expansion of a Cr BEC. The aspect ratio of the cloud is plotted as a function
of the time of flight, for two orientations of the dipoles with respect to the trap axes. Solid symbols
are experimental data; the solid lines are the prediction of the scaling equations, without any adjustable
parameter. (a): Perturbative effects obtained in the pioneering experiment of [45], at low fields, for
εdd = 0.16. (b): In high field, but far from the resonance: the dipolar effects have a size similar to the
case (a). (c): Very close to the zero-crossing of the resonance, for εdd ' 0.75, the expansion dynamics
depends drastically on the orientation of the dipoles. The inversion of ellipticity during time of flight,
the usual “smoking gun” for BEC, can even be inhibited.

get enhanced, but the loss rates remain sufficiently small for the BEC to remain in a
quasi-equilibrium state.

We could thus study how the aspect ratio of the condensate evolves when increasing
the dipolar parameter all the way to εdd ∼ 1. The anisotropic expansion of the conden-
sate for two orientations of the dipoles with respect to the trap eigenaxes now shows very
pronounced effects close to resonance (see Fig. 1.3). In particular, for strong dipolar in-
teractions, the inversion of ellipticity of the BEC during time-of-flight, the usual “smoking
gun” for BEC, can be inhibited.

This way of enhancing the relative effects of dipolar interactions by reducing the contact
interaction close to a zero-crossing of the scattering length was subsequently used in other
groups to observe very weak dipolar effects in alkali condensates : in 39K at LENS [35]
and in 7Li at Rice [101]. However, there, the absolute strength of the dipolar interactions
is very weak, while in our case of a Cr condensate, dipolar effects can lead to dramatic
effects, as we now see.

1.3 Stability of a dipolar quantum gas

Due to the fact that the DDI has a partially attractive character, one expects that a ho-
mogeneous purely dipolar condensate is unstable, and collapses. Indeed, a homogeneous
condensate with attractive contact interactions, i.e. with a scattering length a < 0, is
unstable as the frequency of long-wavelength Bogoliubov excitations (phonons) is imagi-
nary3.

3The Bogoliubov speed of sound is given by c =
√
gn/m, where g = 4π~2a/m, and becomes imaginary

when a < 0.
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Figure 1.4: (a): Variational approach to the stability of a spherical, contact-interacting BEC. The
energy of the condensate, obtained by inserting into the Gross-Pitaevskii energy functional a Gaussian
trial wavefunction of size w, is plotted as a function of w for various values of the parameter N |a|/aho.
Beyond a certain value, the local minimum that existed at finite w (corresponding to a metastable
condensate) vanishes, indicating that the condensate collapses. (b): Intuitive picture of the geometry-
dependent stability of a dipolar BEC: in a prolate (i.e. cigar-shaped, λ � 1) trap with the dipoles
oriented along the weak axis of the trap, the attractive part of the DDI destabilzes the condensate, even
in the presence of a small, positive scattering length. On the contrary, in an oblate (i.e. pancake-shaped,
λ � 1) trap with the dipoles perpendicular to the plane, the dipoles essentially repel each other, and
the condensate is stable even for a small negative scattering length.

The presence of a trap can stabilize a BEC with attractive interactions, as long as
there are not too many particles: if the number N of atoms in the condensate remains
below kaho/|a|, where aho is the harmonic oscillator length corresponding of the trap and
k a constant of order unity, the kinetic energy due to confinement can be strong enough
to prevent collapse, and the condensate is in a metastable state.

A simple way to obtain this threshold is to use a variational approach to find a local
minimum of the energy functional that is equivalent to the Gross-Pitaevskii equation (1.1).
The energy per particle calculated for a trial Gaussian wavefunction of width waho has
the form [100]:

E

N~ω
= 3

4

( 1
w2 + w2

)
− 1√

2π
Na

aho

1
w3 , (1.9)

where ω is the frequency of the trap (assumed to be isotropic for simplicity). The first term
is the kinetic energy, the second one the potential energy in the harmonic trap, and the last
one the contribution of the contact interaction (proportional to the atomic density, whence
the w−3 scaling). Figure 1.4(a) shows E(w)/(N~ω) for different values of the parameter
N |a|/aho: when this increases beyond ∼ 0.67, the local minimum that existed at finite w
vanishes, which means that the condensate is unstable. These predictions were observed
in pioneering experiments with 7Li in Randy Hulet’s group [19], and the critical atom
number beyond which the BEC is unstable, on the order of 103, was in good agreement
with the above estimate.

For a BEC with both contact and dipolar interactions, it is intuitive that the stability
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Figure 1.5: Geometry-dependent stability of a dipolar BEC. Critical scattering length acrit, in units
of the Bohr radius a0, below which the condensate becomes unstable, as a function of the trap aspect
ratio λ. The open squares are the experimental data; the thick solid line is the result of a very
simple variational calculation (see text and [62]), and the thin solid line is obtained by a numerical
calculation [18].

of the condensate in the presence of confinement depends strongly on the trap geometry,
as can be seen on Fig. 1.4(b). Consider a BEC in a trap which is cylindrically symmetric
around the z axis, with the dipoles pointing along z. We denote by λ = ωz/ω⊥ the ratio of
the axial to radial frequencies. In a prolate (i.e. cigar-shaped) trap (λ� 1), the net effect
of the dipolar interactions is attractive, one thus expects the instability of the BEC to occur
even in the presence of a small, positive scattering length (smaller than add, as we shall
see). On the contrary, for an oblate (i.e. pancake-shaped) trap, the dipolar interaction
has a repulsive net effect, and the BEC is stable even with a weak (precisely, |a| < 2add)
attractive contact interaction. This geometry-dependent stability is a distinctive feature of
the dipolar BEC, and was studied theoretically in the pioneering work of [114], as well as
in a number of subsequent papers (see e.g. references 4–7 of [62], reproduced on page 30).

We therefore investigated experimentally this geometry-dependent stability of a dipolar
condensate. The basic idea was to load the BEC in a trap of a given geometry, then, using
the Feshbach resonance, to decrease the scattering length in about 10 ms to a final value,
and see if the BEC was still stable. In order to be able to vary the aspect ratio λ over a
wide range, we decided to superimpose, onto the usual crossed optical dipole trap, a large-
period, one-dimensional optical lattice obtained by crossing two beams with wavelength
λL = 1064 nm under a small angle θ = 4◦. This combined trap allowed us to vary λ over
two orders of mangitude, while keeping the average trapping frequency almost constant.

For a given λ, we measured the number N of atoms in the BEC as a function of the
final scattering length a of the ramp, and observed a sharp threshold below which the BEC
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disappeared: only a dilute cloud survived. The critical value of the scattering length was
extracted by fitting the data to the empirical law N ∝ (a− acrit)β. We then studied how
acrit depends on the aspect ratio λ. The results are shown as open squares on Fig. 1.5. As
expected from the discussion above, we observe that for prolate traps, acrit ∼ add. For an
oblate trap with λ ∼ 10, the critical scattering length is slightly negative. We thus could
realize the first purely dipolar quantum gas.

To compare our experimental data for the variation of acrit as a function of λ with
theory, we performed a variational calculation using an anisotropic Gaussian trial wave-
function in the Gross-Piteavskii energy functional with the non-local dipole-dipole term.
The result of this two-parameter variational calculation is shown as a thick solid line on
Fig. 1.5. The agreement between the data and this very crude model is quite satisfactory.
These results were published in [62], and are reproduced here on page 30. This paper mo-
tivated a certain number of theoretical investigations; in particular, numerical solutions of
the Gross-Pitaevskii equation, obtained in the group of John Bohn at JILA [18] were in
very good agreement with our experimental data (thin line on Fig. 1.5).

1.4 Collapse dynamics of a dipolar quantum gas

When studying the geometry-dependent stability of a dipolar condensate, a natural ques-
tion arises: what happens when one crosses the stability threshold? For the case of
contact-interacting condensates, the collapse dynamics has been studied in pioneering ex-
periments with 6Li and 85Rb at Rice and at JILA [110, 41, 30]. When the condensate
parameters are quenched abruptly into an unstable region, the BEC first collapses quickly
due to the attractive interactions. The very high densities reached in this phase lead to
fast three-body collisions, inducing rapid atom losses, as well as some heating. The small
number of remaining condensed atoms, called the remnant, then expand outwards due to
the quantum pressure which overwhelms the interactions. This collapse, followed by an
explosion of the BEC, has been dubbed a ‘Bose-Nova’, by analogy with the gravitational
collapse of a star giving rise to the explosion of supernovæ.

For the case of a dipolar BEC, at the time we were studying the stability of the BEC,
no detailed prediction of what one should expect concerning the collapse dynamics had
been published. Intuitively, it was clear that the anisotropy of the DDI should be reflected
in the collapse dynamics. We therefore decided to investigate the collapse dynamics of
an almost spherically symmetric dipolar BEC [71] by using faster (∼ 1 ms) ramps of
magnetic field to bring the scattering length significantly below the critical value acrit, and
waiting a variable holding time before relaesing the confinement. The observed clouds
had low optical densities, of about 10%, due to the fact that the number of remaining
atoms was small (on the order of a few 103), and we had to improve the signal-to-noise
ratio of the absorption images by (i) getting rid of unwanted residual interference fringes4;

4An almost trivial, but particularly efficient way to reduce such fringes, that are due to the interference
between the imaging beam and light scattered on dust particles lying on the optical elements of the system,
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Figure 1.6: Collapse dynamics of a Cr BEC. (a): experimental images; (b): numerical simulation
without any adjustable parameter. The dipoles are aligned along the horizontal axis of the figures.

(ii) averaging several images to decrease the effect of photon shot noise (iii) subtracting a
broad thermal background.

The top row of Fig. 1.6 shows the observed density distribution after a fixed time
of flight, when varying the holding time. The dipoles are oriented along the horizontal
axis of the image. One clearly observes an anisotropic collapse, where the cloud, initally
elongated along the magnetization direction, evolves at longer times to display a cloverleaf-
like pattern reminiscent of the d-wave symmetry of the DDI. At the same time, the number
of atoms in the condensate decreases abruptly during the collapse, by a factor ∼ 3.

In order to go beyond the mere observation of the collapse, the group of Masahito Ueda
in Tokyo collaborated with us to perform a complete numerical simulation of the dynamics,
taking as inputs only the experimentally measured parameters. They performed a 3D
simulation of the time-dependent, non-local Gross-Piteaevskii equation, where a loss term
proportional to L3|ψ|4ψ was added to account for three-body losses (L3 is the measured
three-body loss coefficient). Due to the wide variation in the condensate size during the
collapse dynamics, an algorithm with an adaptive grid size was needed. When we first
compared the simulation results with the experimental data, a systematic shift in the
timing, of about 500 µs, was observed. We then realized that this had to do with eddy
currents induced in the vacuum chamber by the magnetic field ramp. After we measured
the effects of eddy currents by Zeeman spectroscopy on the atom cloud, and included them
in the simulation, we finally obtained an excellent agreement between the data and the
simulation, without any adjustable parameter, as can be seen on Fig. 1.6. In addition, the
time-dependence of the atom number in the BEC during collapse was also well reproduced
by the numerics.

The simulation gave insight into phenomena that we could not access experimentally.
In particular, it revealed the mechanism of the formation of the d-wave pattern during
the collapse: due to the attractive interactions, the cloud initially collapses radially, and
becomes a very dense, needle-shaped cloud. Extremely fast three-body losses then occur,

turned out to simply reduce the diameter of the imaging beam impinging on all these elements to about
1 mm. For this, it was enough to use an iris, conjugated with the plane of the atoms.
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leaving an almost non-interacting cloud, strongly confined in the radial direction, which
thus expands radially due to the quantum pressure. At the same time, axially, the cloud
goes on shrinking. This difference in the time scales between the axial and radial dynamics
is what explains the formation of the cloverleaf-like density distribution. It also leads to the
formation of two vortex rings encircling the axial lobes of the cloud. However, observing
these vortex rings experimentally has remained elusive so far.

In a series of subsequent experiments, we then studied the collapse dynamics for various
trap aspect ratios, including in the presence of the 1D optical lattice [80], which allowed
us to confirm the coherent character of the remnant condensate. Here again, the collapse
dynamics, which remains qualitatively similar to the one above, agrees very well with the
simulations.

1.5 Dipolar quantum gases in triple-well potentials

During my stay in Stuttgart, we often discussed informally in the group the theory papers
predicting exotic phases for dipolar bosons loaded in optical lattices [44]. These phases
arise due to the existence of dipolar interactions between the atoms residing on different
sites of the lattice. In particular, the possibility to observe supersolids, i.e. phases dis-
playing at the same time off-diagonal and diagonal long-range order, appeared fascinating.
Another interesting phase, revealing directly the long-range character of the dipolar in-
teraction, is the checkerboard isolator, where an isolating phase is observed at half filling
on a square lattice, with a boson occupying one every second site. Unfortunately, even in
a short-period optical lattice, the dipolar interaction between two single chromium atoms
in nearest-neighbour sites is only of a few Hertz. This means that to observe these ex-
otic phases, the tunneling rates and the contact interaction must be on the same order
of magnitude, or even smaller, implying very low temperatures. Thus, systems of polar
molecules seemed to be required to observe these predicted phases. Moreover, theoretical
studies indicated that a large number of low-energy, metastable states occurred in such
systems, implying that reaching the ground state would prove challenging [79].

We thus started to consider whether a different approach could allow us to study
a minimalistic version of those exotic phases using Chromium atoms, and realized that
loading a Cr BEC with a mesoscopic number of atoms (N ∼ 102 to 103) in a triple-
well potential would constitute a toy-model for these phases5: the ratio of interactions
to tunelling is enhanced by a factor N , and thus starts to be non-negligible for realistic
parameters. These informal discussions finally gave birth to a theoretical proposal [72]
written in collaboration with Luis Santos from Hannover.

The corresponding setup is shown on Fig. 1.7(a): a dipolar BEC of N atoms, with
the dipoles polarized along z, is loaded in a trapping potential consisting of three wells
that are close enough, and separated by a low enough barrier, such that tunneling can

5For a BEC in a double-well potential, adding dipolar interactions only renormalizes the parameters of
the system, but does not lead to new effects.
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Figure 1.7: (a): Schematic view of the proposed triple-well setup. The three wells are separated by
a distance `. (b): The mean-field “phase diagram” of the dipolar BEC in the triple-well potential, as
a function of the onsite U0 and intersite U1 interactions. (c): Pictorial representation of the various
“phases” occurring in (b).

occur between adjacent sites, with a rate J . Due to both contact and dipolar interactions,
particles on the same site interact, with a strength U0. Moreover, due to the long-range
character of the DDI, particles in different sites also interact, with a strength U1 for
adjacent sites.

In second quantization, the Hamiltonian of the system reads

Ĥ = −J
(
â†1â2 + â†2â3 + h.c

)
+ U0

2

3∑
i=1

n̂i(n̂i − 1) + U1

(
n̂1n̂2 + n̂2n̂3 + n̂1n̂3

α

)
, (1.10)

which is a minimalistic version of the extended Bose-Hubbard hamiltonian. Here, α is a
dimensionless number depending on the geometry of the system, and ranging from 4 (for
elongated clouds with a size σx much larger than the spacing ` between traps) to 8 (when
the onsite wavefunctions have an extension along x much smaller than the spacing between
wells). One obtains (1.10) in the usual way, by using the single-mode approximation which
consists in expanding the field operator as ψ̂(r) =

∑
i φi(r)âi, where φi(r) is the “Wannier

function” localized on site i, and then inserting this expression in the second-quantized
hamiltonian expressed as a function of ψ̂(r) and ψ̂†(r). The interaction terms U0 and U1

then have simple expressions as a function of the onsite wavefunctions; for instance:

U1 =
∫

drdr′ |φ1(r)|2|φ2(r′)|2Udd(r − r′). (1.11)

A first insight can be gained into the physics of a system described by (1.10) using a
mean-field approach. It consists in assuming that the N atoms share the same macroscopic
wavefunction ψ =

√
N
(√
nφ1 +

√
1− 2nφ2 +

√
nφ3

)
. The “order parameter” n describing

the different “phases” is obtained by minimizing the total energy, as a function of the
two interaction parameters NU0/J and NU1/J . Figure 1.7(b) shows the resulting “phase
diagram”, with Fig. 1.7(c) giving a pictorial representation of the corresponding density
distributions. Phases (i) and (ii), obtained at small values of the intersite interactions U1,
correspond respectively to non-interacting particles and to a state with reduced density
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inhomogeneities due to onsite repulsive interactions. However, when NU1 � 1, one ob-
serves new phases such as (iii) and (iv), which directly reveal the long-range character of
the DDI. For instance, phase (iv) displays in a striking manner the long-range character of
the DDI, and can be thought of as minimalistic realization of a supersolid. The fact that
the relevant parameter to be compared to the tunneling rate J is NU1, and not U1, means
that even for weakly interacting dipoles such as Chromium atoms, such effects should be
observable when the number of particles is on the order of a few 102, in accordance with
the initial motivation for our work.

In our paper [72], we studied beyond-mean field effects, and found that for U0,1 > 0 the
qualitative picture obtained in the mean-field approach still holds. We investigated also
the possibility to have attractive onsite and intersite interactions, which, not surprisingly,
gives rise to new ground states, not captured by a mean-field approach, for instance to the
possibility to create “Schrödinger cats”, i.e. mesoscopic superpositions of states. However
in practice, losses make such states decohere extremely fast and they are unlikely to be
observed experimentally, unless one uses a very small number of particles. In the final
part of our study, we made numerical estimates to assess the possibility to implement
experimentally such triple well systems with typically 103 Cr atoms, using tightly-focused,
slightly overlapping Gaussian beams. The waists and spacings required to observe sizeable
effects of intersite interactions are on the order of ∼ 1 µm and ` ∼ 1.7 µm, respectively,
which is not unrealistic.

In this initial study, we restricted ourselves to the single-mode approximation: the
wavefunction φi on site i is assumed to be independent of the number of atoms on this site.
This approximation is valid for the case of very small atom numbers, but for experimentally
relevant ranges of parameters, it may break down, which casts some doubts about the
possibility to realize experimentally the “phases” predicted above. In [97], the authors
thus studied a more refined model, where the effects of the interactions on the onsite
wavefucntions were taken into account. The conclusion of this work is that the phases
predicted above can probably be observed, but that the range of parameters for which
they do exist is significantly reduced as compared to the case where the single-mode
approximation is performed. Based on these conclusions, the new setup being built in
Stuttgart to work with Dysprosium atoms (see below) was designed in order to be able to
study such a triple-well system.

Despite its simplicity, this model is quite rich, as many parameters, such as the trapping
geometry, the orientation of the dipoles, and so on, can be varied. Our proposal triggered
a significant theoretical activity, aiming at studying in more details the possibilities offered
by the setup, and about thirty theory papers about dipolar BECs in triple-well potentials
have been published in the last four years.
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1.6 Recent achievements in the field of dipolar gases

This final section summarizes briefly recent landmarks in the experimental study of dipolar
quantum gases since 2008. This is not meant to be an exhaustive review, and many
important experimental and theoretical papers will not be mentioned.

After I left the group, the Cr team in Stuttgart studied the stability [88] and the in-
TOF collapse dynamics [13] of a Cr BEC loaded in a 1D lattice where the effect of intersite
interactions could be observed experimentally. In a series of impressive experiments in low
field, the Villetaneuse group observed the anisotropic character of the DDI in the collective
oscillations of the cloud [15] and in sound propagation [14], and made first steps in the
study of quantum magnetism by loading a spinor Cr BEC in a 3D optical lattice [29].

Recently, the study of dipolar quantum gases using highly magnetic atoms has been
extended to two new species: the rare-earth elements Dysprosium (which has a magnetic
moment of 10µB in its ground state) and Erbium (with a dipole moment of 7µB). Both have
attractive features, in particular a rich electronic level structure allowing the implemen-
tation of new laser cooling schemes, and the existence of bosonic and fermionic isotopes.
Bose–Einstein condensates [76] and degenerate Fermi gases (DFG) [75] of Dysprosium have
been obtained in Ben Lev’s group, and similar results were reported in Erbium (7µB) in
Francesca Ferlaino’s group, with both a BEC [2] and a DFG [1]. These groups have already
reported exciting physics, with e.g. the observation of the d-wave collapse in Er [2], or
the achievement of Fermi degeneracy by direct evaporation of a polarized sample [1], this
being possible due to the long-range character of the DDI, which implies that, unlike for
the contact-interaction case, collisions between identical dipolar fermions do not freeze out
at zero temperature. As mentioned above, the Stuttgart Cr setup has been rebuilt in view
of cooling and trapping Dy, with the goal, among other ones, to explore triple-well physics.
Another Dy setup is currently being built at LKB/Collège de France, in the team of Jean
Dalibard and Sylvain Nascimbène, with the aim of studying topological superfluids.

Another promising platform to study dipolar quantum gases is to use polar molecules.
There, one expects much stronger dipolar effects than in the case of magnetic dipoles, as
the interaction strength between two electric dipoles (on the order of one Debye) exceeds
that between two atomic magnetic moments (on the order of the Bohr magneton) by a
factor ∼ 1/α2 where α ' 1/137 is the fine-structure constant. Moreover, the strength of
the dipole-dipole interaction can be varied by tuning the strength of the electric field which
orients the molecules in the lab frame. In recent years, samples of ultracold polar fermionic
molecules, with densities such that the system is close to quantum degeneracy, have been
obtained in Jun Ye’s and Debbie Jin’s groups at JILA. Starting from an ultracold mixture
of fermionic 40K and bosonic 87Rb atoms, they created weakly-bound Feshabch molecules,
and then transferred them to their ground state using two Raman lasers phase-locked
using a frequency comb. Clear effects of the long-range, anisotropic interaction between
the molecules could be observed, e.g. in the rate of inelastic collisions [59]. More recently,
loading the molecules in a 3D optical lattice allowed to implement a lattice spin model,



where the DDI yields spin-exchange interaction between the internal degrees of freedom
of molecules pinned at the lattice sites [134].

Finally, Rydberg atoms open exciting prospects for the study of quantum many-body
systems with dipolar interactions. A first approach is Rydberg dressing, which consists in
coupling off-resonantly the ground state of the ultracold atoms of interest to a Rydberg
state. The dressed atoms then interact via a soft-core, long-range potential, while keeping
a long lifetime [102]. Due to the prospects of achieving exotic states of matter, such as
supersolids, Rydberg dressing is the subject of active experimental efforts, but remains
experimentally challenging so far as one needs to minimize heating [5]. Another approach
to study long-range-interacting quantum many-body systems consists in promoting cold,
single atoms held in optical tweezers to Rydberg states: the interactions strengths can be
very large, on the order of tens of MHz for separations of a few microns, which allow to
study coherent dynamics despite the limited lifetime of the Rydberg states, on the order
of ∼ 100 µs. This subject will be addressed in detail in chapter 3 of this manuscript.

1.7 Published articles

I list below the articles I have co-authored about dipolar quantum gases. The main ones
are reproduced in the following pages.

• B. Fröhlich et al., Rev. Sci. Inst. 78, 043101 (2007);

• T. Lahaye et al., Nature 448, 672 (2007), reproduced on page 26;

• T. Koch et al., Nat. Phys. 4, 218 (2008), reproduced on page 30;

• T. Lahaye et al., Phys. Rev. Lett. 101, 080401 (2008), reproduced on page 35;

• J. Metz et al., New. J. Phys 11, 055032 (2009);

• T. Lahaye et al., Rep. Prog. Phys. 72, 126401 (2009). This is a review paper
on the physics of dipolar bosonic quantum gases (41 pages, 368 references), written
in collaboration with T. Pfau, L. Santos, C. Menotti and M. Lewenstein. It is not
reprinted in this manuscript;

• T. Lahaye et al., Phys. Rev. Lett. 104, 170404 (2010), reproduced on page 39.
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Strong dipolar effects in a quantum ferrofluid
Thierry Lahaye1, Tobias Koch1, Bernd Fröhlich1, Marco Fattori1, Jonas Metz1, Axel Griesmaier1, Stefano Giovanazzi1

& Tilman Pfau1

Symmetry-breaking interactions have a crucial role in many areas
of physics, ranging from classical ferrofluids to superfluid 3He and
d-wave superconductivity. For superfluid quantum gases, a variety
of new physical phenomena arising from the symmetry-breaking
interaction between electric or magnetic dipoles are expected1.
Novel quantum phases in optical lattices, such as chequerboard
or supersolid phases, are predicted for dipolar bosons2,3. Dipolar
interactions can also enrich considerably the physics of quantum
gases with internal degrees of freedom4–6. Arrays of dipolar part-
icles could be used for efficient quantum information processing7.
Here we report the realization of a chromium Bose–Einstein con-
densate with strong dipolar interactions. By using a Feshbach
resonance, we reduce the usual isotropic contact interaction, such
that the anisotropic magnetic dipole–dipole interaction between
52Cr atoms becomes comparable in strength. This induces a
change of the aspect ratio of the atom cloud; for strong dipolar
interactions, the inversion of ellipticity during expansion (the
usual ‘smoking gun’ evidence for a Bose–Einstein condensate)
can be suppressed. These effects are accounted for by taking into
account the dipolar interaction in the superfluid hydrodynamic
equations governing the dynamics of the gas, in the same way as
classical ferrofluids can be described by including dipolar terms in
the classical hydrodynamic equations. Our results are a first step
in the exploration of the unique properties of quantum ferrofluids.

A quantum ferrofluid is a superfluid quantum gas consisting of
polarized dipoles, either electric or magnetic. The first option (using
polarized electric dipoles) might be achieved for instance with polar
molecules in their vibrational ground state, aligned by an electric
field. Progress has been made recently in the slowing and trapping
of polar molecules (see ref. 8 and references therein), but the densities
and temperatures achieved to date are far away from the quantum-
degenerate regime. The use of Feshbach resonances to create polar
molecules from two ultracold atomic species9 is a promising, actively
explored alternative10; however it is a challenging task to bring
those heteronuclear molecules to their vibrational ground state11.
Alternatively, atomic electric dipoles induced by dc fields12 or by
light13 could be used. The second option, chosen here, relies on the
magnetic dipole–dipole interaction (MDDI) between atoms with a
large magnetic moment, such as chromium, for which a Bose–
Einstein condensate (BEC) was achieved recently14. The relative
strength of the MDDI to the contact interaction is conveniently
expressed by the dimensionless ratio

edd~
m0 m2m

12 p B2a
ð1Þ

where m is the atomic mass, a is the s-wave scattering length, m0 is the
permeability of a vacuum, " is h/2p, and m is the magnetic moment
(numerical factors in edd are such that a homogenous BEC with
edd . 1 is unstable against dipolar collapse). Chromium has a large
dipole moment, m 5 6mB, and a background scattering length in the

fully polarized case of a < 100 a0 (mB is the Bohr magneton, and a0 the
Bohr radius), yielding15 edd < 0.16. Although this value is typically 36
times larger than in standard alkali quantum gases, the MDDI is still a
small perturbation compared to the contact interaction. A perturb-
ative mechanical effect of the MDDI has been demonstrated by ana-
lysing the expansion of a chromium BEC from an anisotropic trap for
various orientations of the dipoles16.

The existence of Feshbach resonances17 allows us to increase edd

and go beyond the perturbative limit. Indeed, close to a resonance,
the scattering length varies with the applied magnetic field B as

a~abg 1{
D

B{B0

� �
ð2Þ

where abg is the background scattering length, B0 the resonance posi-
tion, and D the resonance width. For B approaching B0 1 D, the
scattering length tends to zero, thus enhancing edd. This gives the
possibility of reaching an MDDI-dominated quantum gas.

We report here the observation of strong dipolar effects in a chro-
mium BEC in the vicinity of the broadest Feshbach resonance at

15. Physikalisches Institut, Universität Stuttgart, Pfaffenwaldring 57, D-70550 Stuttgart, Germany.
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(field of view 260mm by 260mm) of the condensate after 5 ms of expansion,
for different fields B above resonance (B 2 B0 is 2, 2.2, 2.7 and 9 G for
a, b, c and d, respectively). Reducing a slows down the mean-field driven
expansion. The change in aspect ratio for small a is a direct signature of
strong MDDI. B, Variation of a across the resonance, inferred from the
mean-field energy released during expansion. The line is a fit to equation (2),
yielding D 5 1.4 6 0.1 G.
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B0 < 589 G. We measure the dispersive behaviour of the scattering
length, and observe that the change in a is accompanied by enhanced
inelastic losses. Close to the zero-crossing of a, we observe a large
modification of the aspect ratio of the cloud when edd increases,
which is direct evidence for strong dipolar effects. We finally show
that the usual inversion of ellipticity of the condensate during expan-
sion is inhibited for large enough MDDI.

We modified our experimental set-up, which has been described in
detail elsewhere14, in order to be able to produce Cr condensates in
high field, close to B0 (see Methods). Once the condensate is
obtained, the magnetic field is ramped close to its final value B in
10 ms, and held there for 2 ms to let it settle down. The trap is then
switched off, and the condensate expands freely for 5 ms before being
imaged by absorption of resonant light in high field. Figure 1A shows
a series of images taken when approaching the resonance from above,
and clearly displays a reduction of the cloud size, as well as a change in
its aspect ratio.

From the measured optical density profiles, we extract the BEC
atom number N, as well as the Thomas–Fermi radii Rz (along the
magnetization direction) and Ry (along the vertical axis). Without
MDDI, one could easily obtain the scattering length a from these
measurements, as the Thomas–Fermi radii after a time of flight
would scale as (Na)1/5. In our case, we take into account the MDDI
using the hydrodynamic formulation of the Gross–Pitaevskii equa-
tion, including both contact and dipole–dipole interactions18 (see
Methods for the assumptions underlying our analysis). Figure 1B
shows the measured variation of a(B) across the resonance, showing
a characteristic dispersive shape19. A fit according to equation (2)
yields D 5 1.4 6 0.1 G, in good agreement with the prediction
D 5 1.7 G of multi-channel calculations17. The position B0 < 589 G
of the resonance coincides with the one obtained by observing
inelastic losses in a thermal cloud16. We can tune a by more than
one order of magnitude, with a reduction by a factor of five above the
resonance.

Close to the resonance, we observe on both sides enhanced in-
elastic processes resulting in a decay of the condensate. We studied
the BEC atom number as a function of the time spent at the final
magnetic field B, and fitted the corresponding curves by an exponential
decay law (this functional form being chosen for simplicity). The 1/e
BEC lifetime obtained in this way is shown in Fig. 2 as a function of B
(the initial peak atomic density is 3 3 1014 cm23). Enhanced inelastic
losses close to a Feshbach resonance have been observed with other
species, for example, sodium20. Here the losses are small enough to

allow us to observe the effect of the enhanced relative strength of
the MDDI on the equilibrium shape of the condensate.

Figure 3 shows the aspect ratio Ry/Rz of the cloud as a function of
the value of edd obtained from the measured a, and constitutes the
main result of this Letter. The aspect ratio decreases when edd

increases: the cloud becomes more elongated along the direction of
magnetization z, as can be seen unambiguously in Fig. 1A. This is a
clear signature of the MDDI, as for pure contact interaction, the
aspect ratio is independent of the scattering length (provided the
Thomas–Fermi approximation is valid). The solid line in Fig. 3 shows
the aspect ratio after time of flight calculated using the hydrodynamic
theory including MDDI18, without any adjustable parameter. The
agreement between our data and the theoretical prediction is excel-
lent, given the dispersion of data points and the uncertainty in the
theoretical prediction arising from the measurements of trap fre-
quencies. The highest value of edd we could reach reliably is about
0.8, corresponding to a fivefold reduction of the scattering length. For
our trap geometry, the condensate is expected to become unstable
with respect to dipolar collapse21,22 for values of edd slightly above one
(the exact value depending on the trap anisotropy, but also on the
atomic density).

As an application of the tunability of the dipolar parameter,
we study the expansion of the condensate for two orthogonal
orientations of the dipoles with respect to the trap, as was done in
ref. 16, but now as a function of edd. In practice, for the large
fields required to approach the Feshbach resonance, we cannot
change the magnetic field orientation, which is always along z. We
therefore use two different trap configurations, with interchanged y
and z frequencies, and identical frequencies along x: trap 1 has
frequencies (vx,vy,vz)/2p< (660,370,540) Hz, while trap 2 has
(vx,vy,vz)/2p< (660,540,370) Hz. We then measure the aspect ratio
of the cloud (defined as A1 5 Rz/Ry for trap 1, and A2 5 Ry/Rz for trap
2) as a function of the time of flight, for different values of B (and
hence of edd). This protocol is equivalent to a mere rotation of the
magnetization direction with respect to the trap axes.

Figure 4 presents the results. In order to check that the two trap
configurations only differ by an exchange of the y and z frequencies,
we first perform the expansion experiment without switching on the
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large magnetic field along z, but with a small (11.5 G) field along x
(the line of sight of the imaging). The magnetization is therefore
perpendicular to the observation plane, and changing the trap con-
figuration does not affect the aspect ratios, as the difference between
the two situations is simply a rotation of the trap around the mag-
netization axis. Figure 4a shows the equality A1 5 A2, confirming the
equivalence of the two configurations. We then study the expansion
with the large magnetic field B along z. In this case, the MDDI induces
a change in the aspect ratios, and A1 ? A2. Far from resonance,
edd < 0.16 and we recover the perturbative dipolar effect already
observed in ref. 16 (see Fig. 4b). However, for values of B approaching
B0 1 D, edd increases and, correspondingly, the difference between A1

and A2 becomes very large (Fig. 4c and d, where edd is 0.5 6 0.1 and
0.75 6 0.1, respectively). The lines correspond to the prediction of
the hydrodynamic theory without adjustable parameters, and show
again a very good agreement with the data. The effect of the dipolar
interaction is far beyond the perturbative regime, and induces very
strong deviations from what one expects for contact interaction. In
particular, for edd < 0.75, the aspect ratio A2 always remains smaller
than unity during the time of flight: the strong anisotropic dipolar
interaction inhibits the inversion of ellipticity, the ‘smoking gun’
evidence for BECs with contact interaction.

In conclusion, the use of a Feshbach resonance to reduce the
s-wave scattering length of chromium allowed us to realize a BEC
with strong dipolar interaction, and to study the hydrodynamics of
this novel quantum ferrofluid. This work opens up many avenues
towards the study of dipolar quantum gases beyond the perturbative
regime. Structured density profiles are predicted for dipolar conden-
sates in anisotropic traps23, including biconcave density distributions
in pancake-shaped traps24. A clear direction for future work is thus to
use a one-dimensional optical lattice, creating a stack of pancake-
shaped traps. A condensate with dipoles perpendicular to the trap
plane is then stable with respect to dipolar collapse, which should
allow entry to the regime edd? 1. In particular, the investigation of
the unusual, roton-like excitation spectrum predicted in this system25

is a fascinating possibility. The creation of Cr2 molecules by ramping
over the Feshbach resonance is another appealing experiment. In a
two-dimensional trap, the repulsive interaction between the mole-
cules, due to their large magnetic moment, might stabilize them
against inelastic losses. Another possible extension of this work is
the study of degenerate fermions with strong dipolar interactions,
which may display new types of pairing mechanisms (ref. 1, and
references therein). Finally, the behaviour of strongly correlated
dipolar quantum gases in three-dimensional optical lattices is an
interesting open field, with many connections to fundamental ques-
tions in condensed-matter physics—such as the study of supersolid
phases, whose experimental observation in helium is still debated
(see, for example, ref. 26).

METHODS SUMMARY

We modified our experimental sequence14 to produce chromium condensates

in high field. For this, we switch on quickly (in less than 5 ms) a large field

(,600 G) during forced evaporation in the dipole trap. The low atomic density

at this stage of evaporation allows for small losses. The current in the coils used to

produce the field is actively stabilized; care is taken to ensure a high homogeneity

of the field. Evaporation is then resumed until an almost pure condensate of

3 3 104 atoms is obtained. The trap is then adjusted to obtain frequencies

(vx,vy,vz)/2p< (840,600,580) Hz (measured by exciting the centre of mass

motion of the cloud, with an accuracy of 5%).

In our data analysis to extract the scattering length a (Fig. 1), we assumed that

no external forces act on the atoms during the time of flight, that the condensate

stays in equilibrium during the magnetic field ramp, and finally that the hydro-

dynamic (Thomas–Fermi) approximation is valid even for small a. These

assumptions are largely fulfilled for all our parameters.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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Although the phenomenon of Bose–Einstein condensation1 is
a purely statistical effect that also appears in an ideal gas, the
physics of Bose–Einstein condensates (BECs) of dilute gases is
considerably enriched by the presence of interactions among
the atoms. In usual experiments with BECs, the only relevant
interaction is the isotropic and short-range contact interaction,
which is described by a single parameter, the scattering length
a. In contrast, the dipole–dipole interaction between particles
possessing an electric or magnetic dipole moment is of long-
range character and anisotropic, which gives rise to new
phenomena2,3. Most prominently, the stability of a dipolar BEC
depends not only on the value of the scattering length, a, but also
strongly on the geometry of the external trapping potential4–7.
Here, we report on the experimental investigation of the stability
of a dipolar BEC of 52Cr as a function of the scattering length and
the trap aspect ratio. We find good agreement with a universal
stability threshold arising from a simple theoretical model. Using
a pancake-shaped trap with the dipoles oriented along the short
axis of the trap, we are able to tune the scattering length to zero,
stabilizing a purely dipolar quantum gas.

In the case of a homogeneous Bose–Einstein condensate (BEC)
with pure contact interaction, the existence of a stable ground state
depends on the modulus and sign of the interaction. For repulsive
interaction (a > 0), the BEC is stable, whereas for attractive
interaction (a < 0), the BEC is unstable. This instability can be
prevented by an external trapping potential. The tendency of the gas
to shrink towards the centre of the trap is in that case counteracted
by the repulsive quantum pressure arising from the Heisenberg
uncertainty relation. Detailed analysis8 shows that in a harmonic
trap with mean frequency ω̄, a condensate is stable as long as the
number of atoms N stays below a critical value Ncrit given by

Ncrit =
kaho

|a|
, (1)

where aho =
√

h̄/(mω̄) is the harmonic oscillator length and k is a
constant of the order of 1/2. This scaling has been experimentally
checked in ref. 9 in a BEC of 85Rb. The dynamics of condensates
for N ≥ Ncrit has been the subject of several experiments with
condensates of 7Li (refs 10,11) and 85Rb (ref. 12). In refs 13,
14, the collapse of a Bose–Fermi mixture of 87Rb and 40K was
investigated. Some aspects of the dynamics such as the soliton train
formation in 7Li (ref. 15) and 85Rb (ref. 16) remain the subject of
ongoing research.

Being anisotropic and long range, the dipole–dipole interaction
(DDI) differs significantly from the contact interaction, which
changes the stability conditions in a system with DDI present.

Considering a purely dipolar condensate with homogeneous
density polarized by an external field, it is found that owing to the
anisotropy of the DDI, the BEC is unstable, independent of how
small the dipole moment is17. As in the pure contact case, a trap
helps to stabilize the system. In the dipolar case, however, it is not
only the quantum pressure that prevents the collapse but also the
anisotropy of the density distribution imprinted by the trap.

Consider a cylindrically symmetric harmonic trap

Vtrap(r,z) =
1

2
m

(
ω2

r r2
+ω2

z z2
)

with the dipoles oriented along z, and r being the distance from
the symmetry axis. As can be intuitively understood from Fig. 1a,
in a pancake-shaped trap (aspect ratio l = ωz/ωr > 1), the dipoles
predominantly repel each other and the BEC is stable. In contrast,
a cigar-shaped trap (l < 1, Fig. 1b) leads to mainly attractive forces
and hence to a dipolar collapse. Following this simple argument,
we expect that in the prolate case a positive scattering length a is
needed to stabilize the BEC, whereas in the oblate case, we can
even afford a slightly negative a. The dependence of the stability
of a dipolar BEC on the trap aspect ratio l and scattering length a
has been extensively studied theoretically4–7, and is experimentally
investigated here.

Our measurements are carried out with a BEC of 52Cr (ref. 18),
which is so far the only experimentally accessible quantum gas with
observable DDI19,20. To compare contact and dipolar interactions,
we introduce a length scale characterizing the magnetic DDI

add =
µ0µ

2m

12πh̄2 .

The numerical prefactor in add is chosen such that a homogeneous
condensate becomes unstable to local density perturbations for
a ≤ add (ref. 21). As chromium has a magnetic dipole moment of
µ = 6µB (µB is the Bohr magneton), add ' 15a0, where a0 is the
Bohr radius. Far from Feshbach resonances, a takes its background
value abg '100a0 (ref. 22) and the BEC is stable for any l. To explore
the unstable regime, we thus reduce the scattering length a, which
in the vicinity of a Feshbach resonance scales as

a = abg

(
1−

1B

B−B0

)
with the applied magnetic field B.

To carry out the measurements, we produce a BEC of
approximately 25,000 atoms at a magnetic field that is about 10 G
above the broadest Feshbach resonance where the scattering length
is approximately 85a0 and the BEC is stable. Once the BEC is
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Figure 1 Intuitive picture of the trap geometry dependence of the stability of a
dipolar BEC. a,b, In an oblate trap (a), the dipoles mainly repel each other, whereas
in a prolate trap (b), the interaction is predominantly attractive. c, The different
trapping geometries are realized by the crossed optical dipole trap (red) and a
further one-dimensional optical lattice (green). The magnetic field is pointing along
the symmetry axis z of our traps.

obtained20,23, we adiabatically shape the trapping potential to the
desired aspect ratio l. To be able to vary l over a wide range, we
generate the trapping potential by a crossed optical dipole trap
(ODT) and a superimposed one-dimensional optical lattice along
the z direction (see Fig. 1c and Methods section).

We observe two effects when approaching the zero-crossing of
the scattering length: the BEC shrinks in both directions owing
to the decreasing scattering length and the ellipticity of the cloud
changes as a manifestation of the enhanced dipolar effects20. Finally,
when we decrease the scattering length below some critical value
acrit, the BEC atom number (determined from a bimodal fit24 of the
time-of-flight absorption images) abruptly decreases (Fig. 2a,b).
The disappearance of the BEC around the instability point is shown
in Fig. 2c. Although slightly above acrit, we still see an almost
pure BEC, for a ' acrit the density shows a bimodal distribution
(an anisotropic, dense central peak surrounded by an isotropic
gaussian cloud). Just below acrit, the BEC collapses and the density
distribution becomes a unimodal, isotropic gaussian. Note that we
do not observe the formation of soliton trains as in refs 15,16. This
can be attributed to the fact that as our trap is much tighter than
in those references, the initial size of our BEC is smaller than any
single soliton observed in refs 15,16.

The critical scattering length acrit where the condensate vanishes
depends strongly on the trap aspect ratio l. For an isotropic trap
(Fig. 2a), the collapse occurs at a ' 15a0, whereas the pancake-
shaped trap (Fig. 2b) can even stabilize a purely dipolar BEC
(a ' 0). We repeated this experiment for six different traps (see
Table 1), thereby covering a range of two orders of magnitude in the
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Figure 2 Decrease of the BEC atom number N around the critical scattering
length acrit. a,b, The critical point depends strongly on the aspect ratio l of the trap.
The solid lines are fits to equation (2) used to determine the critical scattering length
acrit (see text). c, Typical images of the atomic cloud around the critical scattering
length for the trap with l = 10.

Table 1 Trap frequencies and aspect ratios of the traps used. The trap frequencies
were measured by either exciting the centre-of-mass motion or parametric
heating and are accurate to about 10%. Traps 1–3 are provided only by the
crossed optical dipole trap, whereas for traps 4–6 the horizontal dipole trap beam
and the optical lattice are used.

Trap ωr/ (2π ) (Hz) ωz/ (2π ) (Hz) ω̄/ (2π ) (Hz) l = ωz/ωr

1 1,300 140 620 0.11
2 890 250 580 0.28
3 480∗ 480 480 1.00
4 530 1,400 730 2.60
5 400 2,400 730 6.00
6 330 3,400 720 10.00
∗Trap 3 is not cylindrically symmetric (see the Methods section) and has the trap frequencies ω x = 2π×610 Hz and
ω y = 2π×370 Hz.

trap aspect ratio l. To exclude three-body loss processes causing the
abrupt decrease in the BEC atom number, we measured the lifetime
of the BEC for the different traps just above acrit and found the same
lifetime (∼10 ms) for the different scattering lengths.

By fitting to the observed BEC atom numbers (Fig. 2a,b) the
threshold function

N = max
[
0,N0(a−acrit)

β
]
, (2)
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Figure 3 Stability diagram of a dipolar BEC in the a–l plane. a, Experimental (green squares) and theoretical (green line) values of the critical scattering length acrit as a
function of the trap aspect ratio. The theory curve is obtained for 20,000 atoms and an average trap frequency ω̄ = 2π×700 Hz (the average values we find for our six
traps). The red curve (magnified in the inset) marks the stability threshold for a BEC with pure contact interactions using the same parameters. The asymptotic stability
boundary (Nadd/aho � 1) which for l → 0 (l → ∞) converges to add (−2add) is plotted in grey. The error bars in l and acrit result from the uncertainty (estimated one
standard deviation) in the trap frequency measurement and the calibration a (B ) of the scattering length. b–e, Behaviour of the energy landscape E (σ r , σz ). Lines of equal
energy are plotted for fixed l = 10 and four different values of the scattering length a (blue dots in a). For acrit < a < add (c) the collapsed prolate ground state emerges
(σ r → 0 at finite σz ) and the BEC becomes metastable.

where N0, acrit and β are fitting parameters, we find the critical
scattering length acrit. The simple functional form (2) was
empirically chosen as it accounts for the fast decreasing BEC atom
number at a ' acrit and for the slow decrease for a � acrit. The
exponent β describing the steepness of the collapse was found to
be β ' 0.2 for all traps. The values of acrit that are plotted in Fig. 3a
mark the experimentally obtained stability threshold of a 52Cr BEC
in the plane (l, a). We observe a clear shift towards smaller a
as l increases. For the most oblate trap (l = 10), we can reduce
the scattering length to zero and hence access the purely dipolar
regime experimentally.

To get a more quantitative insight into the collapse threshold
acrit(l), we numerically determine the critical scattering length
(green curve in Fig. 3a). For this, we use a variational method to
minimize the Gross–Pitaevskii energy functional1

E[Φ] =

∫ [
h̄2

2m
|∇Φ|

2
+Vtrap|Φ|

2
+

2πh̄2a

m
|Φ|

4

+
1

2
|Φ|

2

∫
Udd(r−r′)|Φ(r′)|2dr′

]
dr, (3)

where

Udd(r) =
µ0µ

2

4π

1−3cos2 θ

|r|3

is the interaction energy of two aligned magnetic dipoles µ, with r
being the relative position of the dipoles and θ the angle between r
and the direction z of polarization.

Similar to the work presented in refs 4–6 and 25, we use
a cylindrically symmetric gaussian ansatz to evaluate the energy
functional (3) with the radial and axial widths σr and σz as
variational parameters (see the Methods section). To obtain
acrit, we lower the scattering length until the energy landscape
E(σr ,σz) does not contain any minimum for finite σr and σz

any more (Fig. 3b–e). Starting with large values a > add, we find
that E(σr ,σz) supports a global minimum for finite σr and σz

independently of l and thus the BEC is stable (Fig. 3b). Going
below a ∼ add, the absolute ground state is a collapsed infinitely thin
cigar-shaped BEC (σr → 0) and the possible existence of a further
local minimum (corresponding to a metastable state) is determined
by the trap aspect ratio l (see Fig. 3c, where add > a > acrit and
Fig. 3d, where a = acrit). Finally, below a ∼−2add (Fig. 3e), the local
minimum vanishes for any l and the BEC is always unstable6,7.

In spite of the simplicity of our model, we find good agreement
between experiment and theory (Fig. 3a). We checked that the
different atom numbers and mean trap frequencies that we find
for the six traps modify the green curve by much less than the
error bars.

The behaviour of the critical scattering length acrit as a function
of the aspect ratio l can be understood considering the limit
N add/aho � 1, which is satisfied by our average experimental value
of N add/aho ' 23. Owing to their linear N-scaling, the kinetic
energy and the potential energy (equations (5) and (6) in the
Methods section) can be neglected and the total energy E(σr ,σz)
is dominated by the interaction term

[Econtact +EDDI] ∝ N 2

[
a

add

− f (κ)

]
.

The function f (ref. 25) of the cloud aspect ratio κ = σr/σz arises
from the DDI and is discussed in the Methods section.

In this regime, where the stability is solely governed by the
competition between the contact and DDI, the critical scattering
length (grey curve in Fig. 3a) is implicitly given by

acrit(l) = addf (κ(l)) . (4)

The asymptotic behaviour of the theory curve now becomes
apparent: an extremely prolate (oblate) trap forces the cloud shape
to also be extremely prolate (oblate) and f takes its extremal
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value 1 (−2). Hence, we find the asymptotic values acrit = add for
l → 0 and acrit = −2add for l → ∞. Another particular point is
acrit = 0, marking the aspect ratio lc needed to stabilize a purely
dipolar BEC. More precisely, as f (1) = 0, we search for the trap in
which the ground state of a purely dipolar BEC is isotropic. As the
DDI tends to elongate the BEC along the z direction and shrink it
radially26, it is clear that the desired trap is oblate. Using our model
we obtain the criterion l > lc ≈ 5.2 for a purely dipolar BEC to be
stable, a result that agrees well with the values found in refs 2,4–7.

The grey curve in Fig. 3a that we obtain by numerically solving
equation (4) shows a universal behaviour in the sense that in the
large-N limit acrit(l) does not depend anymore on the absolute
values of the trap frequencies and N . This fact clearly distinguishes
the dipolar collapse from the pure contact case (red curve in
Fig. 3a), where the l-dependence, which is already weak for finite
N (ref. 27), completely vanishes in the limit of large N as the
stability criterion reads acrit(l) = 0 (see equation (1) and red curve
in Fig. 3a). Furthermore, the instability threshold obtained here
applies for any dipolar system in a harmonic potential, such as, for
example, heteronuclear molecules, where the only difference is the
specific value of add.

In summary, we experimentally mapped the stability diagram
of a dipolar BEC. The dependence on scattering length and
trap aspect ratio agrees well with a simple model based on the
minimization of the energy of a gaussian ansatz. By using a
pancake-shaped trap, we were able to enter the regime of purely
dipolar quantum gases. Although the lifetime of the purely dipolar
BEC is relatively short (∼10 ms), this work opens up the route to
new and exciting physics2. A clear subject for future studies is the
dynamics of the dipolar collapse, which might show anisotropic
features. Another remarkable property predicted to appear in a
dipolar BEC contained in a pancake-shaped trap is the existence
of a roton minimum in its Bogoliubov spectrum21. Furthermore,
close to the collapse threshold, the existence of structured ground
states is predicted28,29, a precursor for the supersolid phase30 that is
expected to appear in dipolar BECs in three-dimensional optical
lattices. Finally, a field that has gained increasing interest in the
recent past is the study of unusual vortex lattice patterns in rotating
dipolar BECs31,32.

METHODS

EXPERIMENTAL SET-UP AND PROCEDURE
To be able to vary l over a wide range, the trapping potential is generated
by a crossed ODT20,23 and a further optical lattice (Fig. 1c). The two lattice
beams (wavelength llatt = 1,064 nm, waist wlatt = 110 µm, maximum power per
beam Platt = 5 W) propagate in the x–z plane under a small angle of ϑ/2 = 4◦

with respect to the x axis. This configuration creates a standing wave along
the z axis with a spacing d = llatt/[2sin(ϑ/2)] = 7.6 µm. Owing to the large
spacing of the lattice and the small size of the BEC (Thomas–Fermi diameter
2RTF

z ' 6 µm), we load at most two sites when ramping up the optical lattice.
The resulting change in the atom number (at most dividing by 2) changes
the theoretical value of acrit by less than a0, which is below the size of our
experimental error bars. Tunnelling processes are completely negligible on the
timescale of our experiments.

By varying the powers in the beams, we are able to provide nearly
cylindrically symmetric traps, with aspect ratios l between ∼1/10 and ∼10,
while keeping the average trap frequency ω̄ = (ω2

r ωz )
1/3 approximately

constant. More extreme aspect ratios are not used as for extreme oblate
(prolate) traps the radial (axial) confinement becomes too weak to hold the
atoms against gravity and remaining magnetic field gradients. The properties
of the six traps that were used in the experiment are listed in Table 1. The
cylindrical symmetry of the oblate traps in the x–y direction is given by the fact
that ωx and ωy are mainly determined by the horizontal ODT beam, whereas
ωz is given by the lattice and the vertical beam is not used. For prolate traps,
ωx and ωy are again mainly given by the horizontal ODT beam, whereas the
vertical beam determines ωz and the lattice is not used. For all traps, except

trap 3, we find 0.94 < ωx/ωy < 1.04. For trap 3, the critical scattering length
acrit has been calculated using a gaussian ansatz with the three widths σx,y,z as
variational parameters. The obtained value deviates by less than a0 from the
value found with the cylindrically symmetric ansatz.

After the BEC is obtained by forced evaporation in the ODT, the trapping
potential is shaped in 25 ms to the desired aspect ratio l. We then ramp the
magnetic field within 10 ms to adjust the value of the scattering length. To tune
a accurately, we use the broadest of the resonances in 52Cr (ref. 22), which is
located at B0 ' 589 G and has a width of 1B ' 1.5 G (ref. 20). The current
providing the magnetic field is actively stabilized with a remaining noise of
less than 1×10−5 r.m.s., which results in a resolution of 1a ∼ a0 around the
zero crossing of the scattering length. After a further holding time of 2 ms,
we finally switch off the trap and take an absorption image along the x axis,
after a time-of-flight of 5 ms. The BEC atom number N and radii Ry,z are
obtained by fitting the density profile using a bimodal distribution23. The
calibration between scattering length and magnetic field is done by solving the
hydrodynamic equations for the scattering length a with known N and Ry,z

(refs 20,26).

CALCULATION OF THE CRITICAL SCATTERING LENGTH
To obtain an estimate of acrit, we calculate the energy E(σr ,σz ) (3) of the
cylindrically symmetric gaussian wave function4–6,25

Φ(r,z) =

(
N

π3/2σ2
r σz a3

ho

)1/2

exp

(
−

1

2a2
ho

(
r2

σ2
r

+
z2

σ2
z

))
with σr and σz as variational parameters. Using this ansatz, where
aho =

√
h̄/(mω̄), the contributions to the total energy are5,6 the zero-point

fluctuations
Ekin

h̄ω̄
=

N

4

(
2

σ2
r

+
1

σ2
z

)
, (5)

the potential energy
Epot

h̄ω̄
=

N

4l2/3

(
2σ2

r +l2σ2
z

)
(6)

and the mean-field interaction energy

Econtact +EDDI

h̄ω̄
=

N2add
√

2πaho

1

σ2
r σz

(
a

add
− f (κ)

)
, (7)

with

f (κ) =
1+2κ2

1−κ2
−

3κ2artanh
√

1−κ2

(1−κ2)3/2
.

The function f (κ) is a monotonically decreasing function of the condensate
aspect ratio κ = σr /σz with the asymptotic values f (0) = 1 and f (∞) = −2,
arising from the non-local term in equation (3) (ref. 25). It vanishes for κ = 1,
implying that for an isotropic density distribution the magnetic DDI does
not contribute to the total energy. As the interaction term (7) scales as N2, it
overrules the other terms in the limit N add/aho � 1.
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We investigate the collapse dynamics of a dipolar condensate of 52Cr atoms when the s-wave scattering
length characterizing the contact interaction is reduced below a critical value. A complex dynamics,
involving an anisotropic, d-wave symmetric explosion of the condensate, is observed. The atom number
decreases abruptly during the collapse. We find good agreement between our experimental results and
those of a numerical simulation of the three-dimensional Gross-Pitaevskii equation, including contact and
dipolar interactions as well as three-body losses. The simulation indicates that the collapse induces the
formation of two vortex rings with opposite circulations.

DOI: 10.1103/PhysRevLett.101.080401 PACS numbers: 03.75.Kk, 03.75.Lm

The underlying symmetries of physical systems often
determine the nature and dynamics of macroscopic quan-
tum states. For example, the difference between isotropic
and d-wave pairing of electrons, in conventional and
high-Tc superconductors, respectively, leads to fundamen-
tally different properties [1]. Degenerate quantum gases
are usually dominated by isotropic (s-wave) contact inter-
actions. Dipolar quantum gases [i.e., in which the dipole-
dipole interaction (DDI) between permanent dipole mo-
ments play a significant or even dominant role] are gov-
erned by the d-wave symmetry of the long-range DDI,
which gives rise to novel properties.

Examples of fascinating predictions for polarized dipo-
lar quantum gases range from a roton-maxon spectrum [2]
for the elementary excitations of a quasi-two-dimensional
dipolar Bose-Einstein condensate (BEC), to the existence
of novel quantum phases (such as a ‘‘checkerboard’’ insu-
lator, or a supersolid) for dipolar quantum gases in optical
lattices [3]. The DDI also modifies the hydrodynamic
equations describing the dynamics of a BEC, which has
been probed experimentally by studying the expansion of
the cloud when released from the trap [4]. Unusual, struc-
tured shapes for the BEC have been predicted [5,6]. In the
unpolarized case, the DDI dramatically enriches the phys-
ics of spinor BECs [7]. Ultracold dipolar fermions also
have fascinating properties [8].

A striking example of the new properties of dipolar
BECs is given by their stability, which, contrary to the
case of contact interaction, depends strongly on the trap
geometry. Consider a pancake-shaped trap with the dipole
moments of the particles oriented perpendicular to the
plane of the trap. The DDI is then essentially repulsive,
and the BEC is stable, independently of the atom number.
In contrast, a cigar-shaped trap cannot stabilize a purely
dipolar BEC. We experimentally studied [9] this geometry-
dependent stability of a dipolar quantum gas by using a
52Cr BEC, and mapped out the stability diagram of the

condensate as a function of the scattering length a (char-
acterizing the contact interaction) and the trap aspect ratio.
In the case of a pure contact interaction, crossing the
stability border into the unstable regime a < 0 leads to a
collapse of the BEC [10–12]. This gives rise to an interest-
ing dynamics involving a fast implosion of the condensate
followed by the formation of energetic ‘‘bursts’’ of atoms
[13], or the formation of soliton trains [14,15].

In this Letter, we investigate experimentally the collapse
dynamics of a dipolar 52Cr BEC when the scattering length
a is decreased (by means of a Feshbach resonance) below
the critical value acrit for stability [9]. We observe a rich
dynamics on a time scale shorter than the trap period, with
the formation of an expanding structure featuring a d-wave
symmetry. We study the atom number in the condensate as
a function of time, and find an abrupt decrease due to
inelastic losses. Finally, we compare our experimental
results with a three-dimensional numerical simulation of
the Gross-Pitaevskii equation (GPE) including both con-
tact and dipolar interactions, as well as three-body losses.
Such a generalized GPE with three-body losses has been
demonstrated to explain the main features of ‘‘Bose-nova’’
experiments with 85Rb [16]. Here we generalize this model
to include the DDI. As shown later, this generalized model
accounts very well for the observed d-wave collapse.

The experimental setup to produce a 52Cr BEC above
the Feshbach resonance located at a magnetic field B0 ’
589 G has been described elsewhere [9]. Close to the
resonance, the scattering length a varies with the applied
magnetic field B as

 a�B� � abg

�
1�

�

B� B0

�
;

where � ’ 1:5 G is the resonance width and abg ’ 100a0

the background scattering length (a0 is the Bohr radius).
We calibrate the variation a�B� of the scattering length by
measuring, after expansion, the BEC size and atom number
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[9]. The reduction of a close to B0 �� is accompanied by
inelastic losses. By measuring the 1=e lifetime and the
density of the BEC close to resonance, we estimate the
three-body loss coefficient to be constant for the range of
scattering lengths (5 < a=a0 < 30) studied here, with a
value L3 � 2� 10�40 m6=s.

To study the collapse dynamics, we first create a BEC
of typically 20 000 atoms in a trap with frequencies
��x;�y;�z�’ �660;400;530�Hz at a magnetic field �10 G
above the Feshbach resonance, where the scattering length
is a ’ 0:9abg. We then decrease a by ramping down B line-
arly over 8 ms to a value ai � 30a0 which still lies well
above the critical value for collapse, measured to be at
acrit ’ �15� 3�a0 [shaded area on Fig. 1(a)] for our pa-
rameters [9]. This ramp is slow enough to be adiabatic
( _a=a	 �x;y;z), so that the BEC is not excited during it.
After 1 ms waiting time, a is finally ramped down rapidly
to af � 5a0, which is below the collapse threshold. For
this, we ramp linearly in 1 ms the current I�t� in the coils
providing the magnetic field B��I. However, due to eddy
currents in the metallic vacuum chamber, the actual value
of B�t� and hence that of a�t� change in time as depicted in
blue on Fig. 1(a). To obtain this curve, we used Zeeman
spectroscopy to measure the step response of B�t� to a jump
in the current I�t� (corresponding to a�15 G change in B),
and found that the resulting B�t� is well described if � _B�
B � �I�t� holds, with � ’ 0:5 ms. From this equation and
the measured I�t� we determine the actual a�t�.

After the ramp, we let the system evolve for an adjust-
able time thold and then the trap is switched off. Note that
the origin of thold corresponds to the end of the ramp in I�t�.
Because of eddy currents, thold � 0 about 0.2 ms before the

time at which the scattering length crosses acrit. However,
as we shall see below, even for thold < 0:2 ms a collapse
(happening not in trap, but during the time of flight) is
observed, since during expansion the scattering length
continues to evolve towards af . The large magnetic field
along z is rapidly turned off (in less than 300 �s) after 4 ms
of expansion, and the condensate expands for another 4 ms
in an 11 G field pointing in the x direction, before being
imaged by absorption of a resonant laser beam propagating
along x. Changing the direction of the field allows us to use
the maximum absorption cross section for the imaging (if
the latter was done in high field, the absorption cross sec-
tion would be smaller, thus reducing the signal to noise
ratio of the images). We checked that this fast switching
has no influence on the condensate dynamics. We observe
that the atomic cloud has a clear bimodal structure, with a
broad isotropic thermal cloud, well fitted by a Gaussian,
and a much narrower, highly anisotropic central feature,
interpreted as the remnant BEC [see Figs. 1(b) and 1(c)].

The upper row of Fig. 1(d) shows the time evolution of
the condensate when varying thold. The images were ob-
tained by averaging typically five absorption images taken
under the same conditions; the thermal background was
subtracted, and the color scale was adjusted separately for
each thold for a better contrast. From an initial shape
elongated along the magnetization direction z, the conden-
sate rapidly develops a complicated structure with an ex-
panding, torus-shaped part close to the z � 0 plane.
Interestingly, the angular symmetry of the condensate at
some specific times (e.g., at thold � 0:5 ms) is reminiscent
of the d-wave angular symmetry 1� 3cos2� of the DDI.
For larger values of thold, we observe that the condensate
‘‘refocuses’’ due to the presence of the trap [17].

FIG. 1 (color). Collapse dynamics of
the dipolar condensate. (a) Timing of
the experiment. The red curve represents
the time variation of the scattering length
a�t� one would have in the absence of
eddy currents, while the blue curve is
obtained by taking them into account
(see text). (b) Sample absorption image
of the collapsed condensate for thold �
0:4 ms, after 8 ms of time of flight,
showing a ‘‘cloverleaf’’ pattern on top
of a broad thermal cloud. This image was
obtained by averaging 60 pictures taken
under the same conditions. (c) Same
image as (b) with the thermal cloud
subtracted. In (b) and (c) the field of
view is 270 �m by 270 �m. The green
arrow indicates the direction of the mag-
netic field. (d) Series of images of the
condensate for different values of thold

(upper row) and results of the numerical
simulation without adjustable parameters
(lower row); the field of view is 130 �m
by 130 �m.
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The lower row of Fig. 1(d) shows the column densityR
j �r�j2dx [where  �r� is the order parameter of the

condensate after time of flight] obtained from a numerical
simulation of the three-dimensional GPE

 i@
@ 
@t
�

�
�@2

2m
�� Vtrap �

Z
U�r� r0; t�j �r0; t�j2dr0

�
i@L3

2
j j4

�
 ;

where

 U�r; t� �
4�@2a�t�

m
��r� �

�0�2

4�
1� 3cos2�

r3

stands for the contact and dipolar interactions, � being the
angle between r and the direction of polarization. Herem is
the atomic mass, �0 the permeability of vacuum, and � �
6�B the magnetic moment of a Cr atom (�B is the Bohr
magneton). The nonunitary term proportional to L3 de-
scribes three-body losses. The scattering length a�t� is
changed according to the blue curve in Fig. 1(a) and the
trap potential Vtrap is switched off at the beginning of the
8 ms time of flight. For the simulation, space is discretized
into a 128� 128� 128 mesh with a step size of 70 nm.
For the kinetic part, the Crank-Nicolson scheme is used for
the time evolution to avoid numerical instability. For the
interaction part, the convolution integral is calculated using
a fast Fourier transform. After the trap is switched off, the
mesh is extended to 512� 512� 512 to describe the
expansion of the cloud. When the density becomes low
enough so that the nonlinear terms of the GPE can be
neglected, the free expansion propagator is used to give
the final time-of-flight images. The agreement between the
experimental data and the simulation, performed without
any adjustable parameter, is excellent.

The cloverleaf patterns seen in Figs. 1(b)–1(d) are caused
by the anisotropic collapse and the subsequent dynamics of
the system. Figure 2 shows the in-trap evolution of the
condensate as a function of thold. The mechanism of the
condensate ‘‘explosion’’ is as follows [18]: When the
atomic density grows due to the attractive interaction,
three-body losses predominantly occur in the high-density
region. The centripetal force then weakens, and the atoms
that gathered in this narrow central region are ejected due
to the ‘‘quantum pressure’’ arising from the uncertainty
principle. The kinetic energy is supplied by the loss of the
negative interaction energy. For the contact interaction, the

collapse and subsequent atomic explosion is isotropic [18].
In the present case, the collapse occurs mainly in the x-y
direction due to anisotropy of the DDI (in the absence of
inelastic losses, the condensate would indeed become an
infinitely thin cigar-shaped cloud along z, see Fig. 3 of
Ref. [9], and the in-trap image at thold � 0:5 ms in Fig. 2 of
this Letter), and therefore the condensate explodes essen-
tially radially, producing the anisotropic shape of the
cloud. The numerical simulation reveals that, for thold <
0:5 ms, the collapse observed in Fig. 1(d) occurs not during
the holding time but during the time of flight. We stress that
in the absence of three-body losses, the explosion follow-
ing the collapse would not be observed.

From the images, the atom number NBEC in the conden-
sate is obtained by integrating the optical density. Blue
circles in Fig. 3 show NBEC as a function of thold. The BEC
atom number is initially NBEC�0� ’ 16 000 and decreases
toward its asymptotic value �6000. Over the same time
scale, the atom number Nthermal in the thermal cloud (inset
of Fig. 3) stays constant. The size of the thermal cloud after
expansion is also constant over this period. This suggests
that the thermal cloud does not play any significant role in
the collapse dynamics. For thold < 0:5 ms, the collapse
actually occurs during the time of flight, which explains
the gradual decay of NBEC�thold�, and why the atom losses
are not as large as those when the collapse occurs in trap (in
the latter case, 70% of the atoms are lost). The missing
atoms have very likely escaped from the trap as energetic
molecules and atoms produced in three-body collisions.
This is confirmed by the fact that the simulation gives a
NBEC(thold) curve (solid line in Fig. 3) which matches well
the experimental data. Experimental uncertainties in the
parameters used in the simulation (trap frequencies, values
of L3 and �) probably explain the small discrepancy be-
tween the experiment and the numerical results.

The numerical simulation gives access not only to the
density j �r�j2, but also to the phase S�r� of the order
parameter  (i.e., to the velocity field v � @rS=m) and
reveals the generation of vortex rings [19,20] of charge�1.
Figure 4(a) shows an in-trap isodensity surface of a con-
densate at thold � 0:8 ms and the location of the vortex
rings (shown as red curves). Comparing Figs. 2 and 4(a) (at
thold � 0:8 ms), we find that the topological defects en-
circle the two ‘‘leaves’’ of the ‘‘clover.’’ Figure 4(b) shows
the velocity field v�r� in the x � 0 plane. The atoms
ejected in the x-y plane flow outward, while the atoms

FIG. 2 (color). In-trap column density obtained in the simulation, for different thold. The field of view is 5 �m by 5 �m. Because of
the DDI, the condensate collapses radially, acquiring the shape of a very thin cigar elongated along z. At thold ’ 0:5 ms, the collapse
occurs, and immediately after, the cloud starts to expand radially.
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near the z axis still flow inward, giving rise to the circula-
tion. Thus, the vortex-ring formation is specific to the
d-wave collapse induced by the DDI. Although the vortex
rings are not observed directly in the experiment, the
excellent agreement between the experiment and simula-
tion in Figs. 1 and 3 strongly suggests the creation of vortex
rings during the collapse of the condensate.

In conclusion, we have investigated the collapse dynam-
ics of a dipolar BEC. Contrary to the case of an isotropic
contact interaction, the DDI induces the formation of a
structured cloud featuring a d-wave symmetry. The col-
lapse dynamics is quantitatively reproduced by numerical
simulations of the GPE without any adjustable parameter.
An interesting subject for future studies is the dependence
of the collapse dynamics on the trap geometry: one may
wonder if the condensate would collapse in the same way
if initially trapped in a very anisotropic (e.g., pancake-
shaped) trap. A natural extension of this work would in-

volve detecting, e.g., by interferometric methods [21,22],
the vortex rings predicted by the simulation. Finally,
whether one can nucleate stable vortex rings by initiating
the collapse, and then changing a back to a value corre-
sponding to a stable BEC, is a question which certainly
deserves further investigations.
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FIG. 4 (color). Vortex rings predicted by the numerical simu-
lation. (a) Isodensity surface of an in-trap condensate at thold �
0:8 ms. The topological defects are shown by the red rings.
(b) Velocity field of the atomic flow in the x � 0 plane at thold �
0:8 ms. The field of view is 2:5 �m by 2:5 �m; the color scale
represents the velocity (red is faster).
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FIG. 3 (color online). Atom losses during collapse. Blue
circles: atom number NBEC in the condensate as a function of
thold. The solid curve is the result of the simulation for L3 �
2� 10�40 m6=s, without any adjustable parameter. Inset: the
atom number Nthermal in the thermal cloud (red squares) remains
essentially constant during the collapse.
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Mesoscopic dipolar Bose gases in triple-well potentials offer a minimal system for the analysis of the

nonlocal character of the dipolar interaction. We show that this nonlocal character may be clearly revealed

by a variety of possible ground-state phases. In addition, an appropriate control of short-range and dipolar

interactions may lead to novel scenarios for the dynamics of polar bosons in lattices, including the

dynamical creation of mesoscopic quantum superpositions, which may be employed in the design of

Heisenberg-limited atom interferometers.

DOI: 10.1103/PhysRevLett.104.170404 PACS numbers: 03.75.Kk, 03.75.Lm

Interparticle interactions are crucial in quantum gases
[1]. They can usually be described by a short-range iso-
tropic potential proportional to the scattering length a.
Recently, dipolar quantum gases, in which the long-range
and anisotropic dipole-dipole interaction (DDI) between
magnetic or electric dipole moments plays a significant or
even dominant role, have attracted a lot of interest as they
show fascinating novel properties [2,3]. To date, dipolar
effects have been observed experimentally only with
atomic magnetic dipoles, being particularly relevant in
Bose-Einstein condensates (BECs) of 52Cr where exciting
new physics has been observed [4–7]. Dipolar effects have
also been reported in spinor BECs [8], and in 39K and 7Li
BECs with a ¼ 0 [9,10]. Recent experiments with polar
molecules [11,12] open fascinating perspectives towards
the realization of highly dipolar gases.

Although a very clear and direct demonstration of the
anisotropy of the DDI was given by the d-wave collapse of
a Cr BEC [6,7], an equivalently obvious ‘‘visual’’ proof of
the nonlocal character of the DDI is still missing. Such a
nonambiguous qualitative evidence of the nonlocal char-
acter of the dipolar interaction could be provided in prin-
ciple by the observation of novel quantum phases (super-
solid, checkerboard) in optical lattices [13]. However, the
unambiguous detection of such phases is far from trivial, as
is the preparation of the ground state of the system due to a
large number of metastable states [14].

In this Letter, we investigate a minimal system, namely,
a mesoscopic sample of dipolar bosons in a triple-well
potential, which minimizes these restrictions, while still
presenting clear visual nonlocal features (see ‘‘phase’’ B
below). Nondipolar BECs in double-well potentials have
allowed for the observation of Josephson oscillations and
nonlinear self-trapping [15], showing clearly that ‘‘slic-
ing’’ a BEC dramatically enhances the effects of interac-
tions. The two-well Josephson physics is affected
quantitatively (although not qualitatively) by the DDI
[16,17] (the DDI may induce, however, significant intersite

effects in coupled 1D and 2D bilayer systems [18–20]). On
the contrary, as we show below, the DDI does introduce
qualitatively novel physics in the Josephson-like dynamics
in three-well systems. We discuss how the DDI leads to
various possible ground states, which may visually reveal
the nonlocality of the DDI. In addition, we show how this
nonlocality leads to a peculiar quantum dynamics charac-
terized by striking new phenomena, including the dynami-
cal formation of mesoscopic quantum superpositions
(MQS). MQSs produced in cavity QED or with trapped
ions [21] require complex manipulations, whereas in the
present system they arise naturally, similar to the MQSs
obtained in BECs with attractive interactions in double
wells [22,23] or lattices [24]. We then comment on the
design of four-site Heisenberg-limited atom interferome-
ters using the dynamical creation of MQS, and finally
discuss possible experimental scenarios.
We consider N dipolar bosons in a three-well potential

VtrapðrÞ [Fig. 1(a)]. The wells are aligned along the y axis,

separated by a distance ‘ and an energy barrier V0. The
bosons are polarized by a sufficiently large external field,
with a dipole moment d along a given direction. The lattice
potential is strong enough compared to other energies (in
particular, the interaction energies) such that the on-site
wave functions �i¼1;2;3ðrÞ are fixed, being independent of

the number of atoms per site. For a large enough V0 we
may assume �iðrÞ ¼ �ðr� riÞ, where ri is the center of
site i. In addition we may assume � to be a Gaussian with

FIG. 1 (color online). (a) Schematic view of the three-well
system. (b) MQS interferometer with four wells (see text).
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widths�x;y;z. We limit to the case where�y is small enough

with respect to ‘ so that the sites are well defined.

Reexpressing the bosonic field operator as ĉ ðrÞ ¼P
3
i¼1 �iðrÞâi, we may write the Hamiltonian as

Ĥ ¼ �J½ây2 ðâ1 þ â3Þ þ H:c:� þU0

2

X3

i¼1

n̂iðn̂i � 1Þ

þU1

�

n̂1n̂2 þ n̂2n̂3 þ 1

�
n̂1n̂3

�

; (1)

where J¼�R
dr�1ðrÞ½�@

2r2=2mþVtrapðrÞ��2ðrÞ is the
hopping rate, U0¼g

Rj�1j4drþ
Rj�1ðrÞj2j�1ðr0Þj2�

Uddðr�r0Þdrdr0 characterizes the on-site interactions,
U1 ¼

R j�1ðrÞj2j�2ðr0Þj2Uddðr� r0Þdrdr0 is the coupling

constant for nearest-neighbor DDI, and n̂j ¼ âyj âj. In the

previous expressions g ¼ 4�@2a=m is the coupling con-
stant for the short-range interactions, with a the s-wave
scattering length. The DDI is given by UddðrÞ ¼ d2ð1�
3cos2�Þ=r3, where � is the angle between r and d, d2 �
�0�

2=ð4�Þ for magnetic dipoles (� is the magnetic dipole
moment) or d2 � �d2=4��0 for electric dipoles ( �d is the
electric dipole moment). The parameter � in Eq. (1) de-
pends on the geometry of VtrapðrÞ (� ¼ 8 if the wave

functions are well localized in all directions compared to
‘, and decreases towards � ¼ 4 when �x=‘ ! 1 [25]). In
the following we focus on the localized case, i.e., � ¼ 8,
but all results remain valid for 4 � � � 8. Finally, note
that U0 results from short-range interactions and DDI, and
that the ratio between U0 and U1 may be easily manipu-
lated by means of Feshbach resonances, by modifying the
dipole orientation d and by changing ‘ [25].

Since
P

in̂i ¼ N is conserved by (1), we may rewrite Ĥ
[up to a global energy U0NðN � 1Þ=2] as an effective
Hamiltonian without on-site interactions:

Ĥ ¼ �J½ây2 ðâ1 þ â3Þ þ H:c:� þ ðU1 �U0Þn̂2½n̂1 þ n̂3�
þ

�
U1

8
�U0

�

n̂1n̂3: (2)

The gross structure of the ground-state diagram is under-
stood from the J ¼ 0 case, where the Fock states jn1; n3i
are eigenstates of Ĥ, with energy Eðn1; n3Þ (since N is
conserved, the Fock states are defined by n1;3). The mini-

mization of E provides four classical ‘‘phases.’’ ForU0 > 0
and U1 � 8U0=15, and U0 < 0 and U1 <�8jU0j,
phase (A) occurs, with n1 ¼ n3 ¼ b �n=2c with �n �
16NðU0 �U1Þ=ð24U0 � 31U1Þ (where b�c denotes the in-
teger part). Phase (B) appears for U0 > 0 and 8U0=15 �
U1 � 8U0, being characterized by n1 ¼ n3 ¼ N=2. For
U0 > 0 and U1 > 8U0, and U0 < 0 and U1 >�jU0j,
phase (C) occurs, with n2 ¼ N (actually states with ni ¼
N are degenerated, but the degeneracy is broken by tunnel-
ing which favors n2 ¼ N). Finally, phase (D) occurs for
U0 < 0 and 8U0 <U1 <U0, being characterized by a
broken symmetry, with two degenerated states with n1 ¼
b �nc, n3 ¼ 0 and vice versa.

Figure 2(a) shows hn̂i=N, with n̂ ¼ n̂1 þ n̂3 for N ¼ 18.
We can see that phases ðAÞ–ðDÞ describe well the gross
structure of the ground-state diagram [a similar graph
shows, as expected, that the (D) phase shows large fluctu-

ations ��̂ in �̂ ¼ n̂1 � n̂3]. However, tunneling is relevant
at low jU0j and jU1j and at the phase boundaries. In
general, the system is in a quantum superposition of differ-

ent Fock states jc i ¼ P
N
n1¼0

PN�n1
n3¼0 Cðn1; n3Þjn1; n3i.

Figure 2(b) depicts ��̂ in the regionU0;1 > 0. As expected
at small jU0;1j=J tunneling dominates and the product state

ðay1=
ffiffiffi
2

p þ ay2=2þ ay3=
ffiffiffi
2

p ÞNjvaci is retrieved (jvaci is the
vacuum state). This state transforms into phase (A), which
for growing U0 becomes the Fock state jN=3; N=3i.
Phase (C) remains the Fock state j0; 0i (n2 ¼ N), and the
border ðBÞ–ðCÞ is characterized by a first-order ‘‘phase
transition’’ [26], at which n2 abruptly jumps from 0 to N.
Figure 2(c) represents schematically phases (A)–(D).
Phase (B) is characterized by vanishing hn̂2i and �n2,

and hn̂1i ¼ hn̂3i. It strikingly reveals the nonlocal character
of the DDI, similarly to the biconcave BECs predicted in
[27], but with a much higher ‘‘contrast.’’ Note, however,
that the actual ground state may significantly depart from

jN=2; N=2i, since j��̂j is significant at the ðBÞ–ðCÞ transi-
tion [Fig. 2(b)]. At U1 ¼ 8U0, the ground state is a coher-

ent state ðay1 þ ay3 ÞNjvaci; i.e., coherence between the two

extremal sites is preserved in spite of the absence of
particles in site 2. This coherence is understood from (2),
since for U1 ¼ 8U0 there is no effective interaction be-
tween sites 1 and 3. Since hn̂2i � 1 due to the effective
repulsive nearest-neighbor interactions (U1 �U0 > 0),
sites 1 and 3 form an effective noninteracting two-well
system coherently coupled by a second-order process
through site 2 [with effective hopping Jeff ¼ J2=7ðN �
1ÞU0]. Hence the coherent region extends inside (B) for
jU1 � 8U0j & Jeff . Thus for larger NU0 the coherent re-
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FIG. 2 (color online). (a) hn̂i=N as a function of U0;1 for N ¼
18. (b) ��̂=N in logarithmic scale for U0;1. The dashed lines

show the boundaries between the classical phases ðAÞ–ðDÞ that
are shown schematically in (c).
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gion shrinks [reducing to the very vicinity of U1 ¼ 8U0 as
seen in Fig. 2(b)].

Such a 1–3 coherence has important consequences for
the quantum dynamics, best illustrated by considering
initially all particles at site 3. Interestingly, hn̂1;3i show

perfect Josephson-like oscillations (with frequency
2Jeff=@), although for any time hn̂2i ¼ �n̂2 � 1. How-
ever, Jeff decreases with NU0, and hence the observation
of this effect demands a mesoscopic sample, since other-
wise the dynamics may become prohibitively slow. Off the
U1 ¼ 8U0 boundary, inside phase (B), the residual 1–3
interaction leads to a damping of the Josephson oscilla-
tions (connected to number squeezing). Eventually for
jU1 � 8U0j � Jeff self-trapping in 3 occurs.

Phase (D) is characterized by a large ��̂ and hn̂2i � 0,
and two degenerated states: n3 ¼ 0 (i) and n1 ¼ 0 (ii).
Strictly speaking, the exact ground state is provided by a
MQS of these two states, but the gap between the ground
state and the first excited one is vanishingly small (�J)
even at the U1 ¼ U0 < 0 boundary and for N as small as
18. Experimentally, the signature of phase (D) would thus

consist in measuring large shot-to-shot fluctuations in �̂,
while never observing simultaneously atoms in both sites 1
and 3. At U1 ¼ U0 < 0, states (i) and (ii) become coherent

superpositions of the form ðay1 þ ay2 ÞNjvaci and ðay2 þ
ay3 ÞNjvaci, respectively. These superpositions may be

understood from Eq. (2), which for U1 ¼ U0 < 0 becomes

Ĥ ¼ �J½ây2 ðâ1 þ â3Þ þ H:c:� þ 7jU0j
8

n̂1n̂3; (3)

which describes a noninteracting two-well system if n1 ¼
0 or n3 ¼ 0, leading to the coherent states (i) and (ii).

Hamiltonian (3) leads to an intriguing quantum dynam-
ics characterized by the creation of MQSs. From an initial
Fock state j0; 0i (n2 ¼ N), if a particle tunnels into site 1
(state j1; 0i), a subsequent tunneling from 2 to 3 (state
j1; 1i) is produced with a bosonic-enhanced hopping rate

J
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
. However, the state j1; 1i has an interaction

energy 7jU0j=8. Hence, if J � 7jU0j=8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
, then the

tunneling from 2 to 3 remains precluded. On the contrary,
the hopping into 1 presents no energy penalty. As a result,
if the first particle tunnels into 1, then a coherent 1–2
superposition is established. Of course, if the first particle
tunnels into 3, then a 2–3 superposition occurs. Since the
initial process is coherently produced in both directions, a
MQS j�ðtÞij0i þ j0ij�ðtÞi is formed, where j�ðtÞi ¼
PN

n¼0 CnðtÞjni, with the normalization condition

2
PN

n¼1 jCnðtÞj2 þ 4jC0ðtÞj2 ¼ 1 [25]. Figure 3(a) shows

that hn̂1;3iðtÞ perform a coherent oscillation, which, how-

ever, damps for longer times. This damping is again a
remarkable consequence of the nonlocal character of the
DDI. Virtual hoppings of a single particle from site 2 into
site 3 (1) induce a second-order correction of the energy of
the states jn; 0i (j0; ni):�En ¼ 8J2ðN � nÞ=7jU0jn, which
distorts the Josephson Hamiltonian, and leads to a signifi-

cant damping after a time scale of the order of 		
7jU0j=8J2N (in agreement with our numerics) [25]. At
longer times, chaotic dynamics may even occur [28].
The three-well system hence acts as a MQS splitter

under the mentioned conditions. We stress, however, that
a MQS (although asymmetric) is still created [25], even for
unequal hoppings Jij for nearest neighbors, as long as

J12;23 � 7jU0j=8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p
. We note also that if U1 � U0,

a MQS is created if jU1 �U0j & J, but nearest-neighbor
interactions enhance the damping in each MQS branch. If
jU1 �U0j � J, bosons at site 2 remain self-trapped.
The MQS splitter opens fascinating possibilities beyond

the three-well system, most relevantly in the context of
Heisenberg-limited atom interferometry. We illustrate this
possibility by considering a simple interferometer based on
a four-well system [Fig. 1(b)]. Initially the bosons are at
site 2 (which acts as the input port). Sites 1 and 3 play the
role of the interferometer arms, whereas site 4 acts as the
output port, where the interferometric signal is read out.
We consider hoppings J21 ¼ J23 ¼ J, but J34 ¼ Jei� ¼
J?14. We are interested in the � sensitivity of the popula-
tion at site 4. This arrangement is chosen for its theo-
retical simplicity (more general arrangements work along
similar lines), although it may be implemented also in
practice by means of Raman tunneling [29]. Under the
MQS conditions [in this case U1 ¼ U0 < 0 and

J
ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

p � ð2 ffiffiffi
2

p � 1ÞjU0j=2
ffiffiffi
2

p
], the system evolves

into an entangled MQS formed by Fock states such that
ninj ¼ 0 for next-nearest neighbors. It is straightforward

to show that the probability to find N particles at site 4
depends explicitly on the phase � as P4ðNÞ 	 cos2ðN�Þ
[P4ðn � NÞ are only indirectly � dependent due to nor-
malization]. Hence, P4ðNÞ has a modulation of period
�� ¼ �=N [Fig. 3(b)], contrary to the period �� ¼ �
expected for independent single particles, allowing for a
Heisenberg-limited interferometric measurement of the
phase�. This superresolution is an unambiguous signature
of the coherent character of the MQS thus created [30,31].
hn̂4i presents a similar modulation (but with poorer con-
trast). Calculations with a six-site arrangement provide
similar results [25].
In the final part of this Letter we discuss experimental

feasibility. Triple-well potentials as in Fig. 1 may be con-

(b)(a)

0 5 10 15 20
0

5

10

15

20

0 0.5 1 1.5 2
0

0.2

0.4

0.6

FIG. 3 (color online). (a) hn̂1;3ðtÞi (dashed line) and hn̂2ðtÞi
(solid line), for U0 ¼ U1 ¼ �100J and N ¼ 18. (b) Proba-
bility P4ðNÞ as a function of � for the interferometric four-site
arrangement (see text) with N ¼ 14, U0 ¼ U1 ¼ �100, and
Jt ¼ 2:7.
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trollably implemented with optical potentials. By super-
imposing, onto a single-beam optical trap which provides
the xz confinement, a tightly focused beam (with a waist
	1 �m, see, e.g., [32]), one may create a tight ‘‘dimple’’
acting as one well. To realize a triple well (or even more
complex configurations), several possibilities exist. Using
an acousto-optic modulator (AOM) with several rf frequen-
cies [33,34], several diffracted beams are created, whose
intensity and position can be controlled independently.
Another option using an AOM consists in toggling the
dimple between several positions at high rate, to create
almost arbitrary time-averaged potentials [35]. Such an
implementation has several advantages: arbitrary, time-
dependent energy offsets can be applied to the different
sites; the intersite separation ‘ can be changed in real time,
easing the preparation of a given atom number in each well
(e.g., by performing evaporative cooling with different
energy offsets in each site), and the detection of the popu-
lation in each well (before imaging, V0 may be increased to
freeze out the dynamics and then ‘ increased, thus relaxing
constraints on the imaging resolution).

We now evaluate J,U0, andU1 for realistic experimental
values. Although in our calculations we have just consid-
ered N up to 36, similar ground states are expected for
larger N [but, as mentioned above, the observation of the
quantum features at the ðBÞ–ðCÞ and ðDÞ–ðCÞ boundaries
demands small samples]. In particular, consider a triple-
well potential formed by three Gaussian beams of waist
1 �m separated by ‘ ¼ 1:7 �m. For a barrier height
V0=h ’ 2500 Hz, we obtain J=h	 10 Hz, and the typical
value ofNU1=J is then	10 forN ¼ 2000 52Cr atoms. The
value ofU0 can be tuned, for a fixed geometry, by means of
Feshbach resonances [4], so that one can explore, e.g., the
first-order ðBÞ–ðCÞ ‘‘transition’’ with 52Cr by varying
U1=U0. However, the MQS creation demands small
samples, being hence more realistic with polar molecules.
For example, for KRb molecules placed at a distance ‘ ¼
1 �m and maximally polarized (d ¼ 0:5 D) parallel to the
joining line between the sites, U1=h ’ �70 Hz. Under
these conditions the MQS condition implies, for N ¼ 36
molecules, J=h of a few hertz. Single-atom sensitivity has
been achieved with fluorescence imaging [36], so that the
relatively small values of N considered here should be
detectable.

In summary, we have studied a simple system of dipolar
bosons in a triple well, showing that the nonlocality of the
DDI leads to qualitatively novel physics that may be ex-
plored with a high degree of control over all parameters via
the trap geometry, dipole orientation, and Feshbach reso-
nances. We have shown that the ground-state phases
present abrupt crossovers induced by the nonlocal nature
of the DDI, which may be explored with 52Cr BECs. In
addition, the dynamics presents intriguing new scenarios,
especially for the case of polar molecules, including the
dynamical creation of MQSs, which may be employed for
Heisenberg-limited interferometry.

We thank M.K. Oberthaler, H. P. Büchler, D. Guéry-
Odelin, and E. Demler for useful discussions. We acknowl-
edge support by the DFG (QUEST and SFB/TRR 21), the
ESF (EUROQUASAR), and the EU (Marie-Curie Grant
No. MEIF-CT-2006-038959 to T. L.).
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Chapter 2

Guided atom optics

Parfois au fond de moi se raniment
L’eau verte du canal du Midi
Et la brique rouge des Minimes.1

2.1 Introduction

I was hired at CNRS as a permanent researcher in October 2008, and joined the Cold Atom
group recently founded at Laboratoire Collsions, Agrégats, Réactivité in Toulouse by David
Guéry-Odelin, who had been appointed Professor at Université Paul Sabatier a few months
earlier. At the time, David’s experimental setup was still located at Laboratoire Kastler-
Brossel of the ENS, in Paris. The machine, based for a significant part on equipment built
during my PhD thesis, was producing all-optical BECs of 87Rb and was used by a post-
doc, Gianluca Gattobigio, and a PhD student, Antoine Couvert, to perform atom-optics
experiments [27].

The group in Toulouse also included Renaud Mathevet, amaître de conférence who had
been working previously in the team of the now retired John Weiner, on nanolithography
using laser-cooled Cesium atoms. Our early work with Renaud consisted in preparing
the lab space that had just been renovated to accommodate the experimental activity of
the group. In parallel, the former nanolithography experiments were dismantled to make
room for an extension of the lab space of the atom interferometry team, and, on my side,
I finished some work, started in Stuttgart, related to dipolar gases.

In February 2009, we moved the BEC machine from ENS to Toulouse, and decided to
reconstruct it without changes, so as to be operational as soon as possible. In retrospect,
this probably was a mistake, as it turned out that several pieces of equipment, from the
vacuum chamber to most of the lasers, finally had to be replaced in the end, while the
design retained its initial shortcomings, such as a rather limited optical access and a
moderate stability of the crossed optical dipole trap.

Two PhD students, Charlotte Fabre and Francois Vermersch, joined the team in
1Claude Nougaro, Toulouse (1967).
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44 Chapter 2. Guided atom optics

Figure 2.1: A quick summary of the early work of the cold atom group at LCAR in Toulouse. (a): The
lab just after the renovation was finished (January 2009). (b): The lab at the time when we obtained
the first BEC in Toulouse (spring 2010). (c): The first atom optics paper from the group (end of 2011).

September 2009, and Gianluca Gattobigio prolonged his post-doc from Paris to Toulouse.
We obtained a first BEC in April 2010, but the system was unreliable as the 1070 nm,
300 W IPG fiber laser at the heart of the machine was slowly dying (its spatial mode
kept degrading week after week). After repair of the laser, stable operation of the ma-
chine, giving BECs of up to 105 atoms every 5 seconds, was achieved at the end of 2010
(figure 2.1).

As a follow-up of the studies performed at ENS, it was decided to continue guided
atom optics experiments, and we realized a Bragg reflector for guided matter waves [34].
In parallel, in early 2010 a new experimental setup was designed, in view of replacing
the aging one moved from ENS. A PhD student, Pierrick Cheiney, joined the group in
September 2010 to work on this project. During the development of the setup, Renaud
Mathevet proposed to use permanent magnets for the construction of the Zeeman slower.
This turned out to be a fruitful idea, that gave rise to the publication [22].

This chapter is organized as follows. I first describe in section 2.2 our Zeeman slower
based on permanent magnets in a Halbach configuration. In section 2.3 I briefly summarize
the experimental demonstration of a Bragg reflector for guided matter waves. For details,
the reader is referred to the successive PhD theses defended in the group [33, 127, 21].

2.2 A Zeeman slower based on permanent magnets in a Hal-
bach configuration

More than thirty years after its first demonstration [99], the Zeeman slower remains one of
the most widely used intense sources of slow atoms in experiments using cold or ultracold
atoms. Compared to alternative solutions, it is indeed a very robust system, which can
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deliver very high fluxes. Furthermore, for atomic species with high melting points, it is
the only practical option, as obtaining a significant vapor pressure requires the operation
of a high-temperature oven.

The usual approach to the construction of Zeeman slowers relies on a tapered solenoid,
that generates the parabolic magnetic field profile used to compensate, via the Zeeman ef-
fect, for the changing Doppler shift of the atoms as they decelerate. However this solution
often results in cumbersome setups: the construction of a the tapered solenoid creating
fields of some hundreds of Gauss takes time and care, and, once built, its power consump-
tion can reach hundreds of watts, which requires relatively expensive power supplies, and,
frequently, water cooling. Now, it often turns out that the benefit of using current-carrying
wires to generate the B-field, that is the possibility to switch it on and off at will, is not
used in actual experiments. Therefore, using strong, rare-earth permanent magnets for
creating the magnetic field profile appears as an appealing alternative2.

However, by using permanent magnets placed around a long cylinder, it is much more
convenient to create a field transverse to the axis than a longitudinal one. This in itself
is not a problem for the operation of a Zeeman slower; the only difference as compared
to traditional, longitudinal-field slowers is that, in this case, one cannot use a purely σ+

or σ− polarization for the slowing light. In [94], the construction of a Zeeman slower for
Strontium atoms using a transverse field created by permanent magnets was described
(without any test of atom slowing, though). Moreover, the transverse uniformity of the
magnetic field was quite bad, as, in a given cross-section of the slower, only two dipoles in
a head-to-tail configuration, on each side, were used.

We thus proposed to use a different arrangement for the magnets, inspired by the
so-called Halbach dipole cylinder [50]. This configuration, shown in Fig 2.2(a), consists
of a continuous, radial distribution of magnetization within a cylindrical shell of internal
and external radii Ri and Re, where the angle of the magnetization vector is twice the
azimuthal angle. One can show that such a configuration produces a magnetic transverse
field, which vanishes for r > Re, and which is uniform inside the cylinder. For r < Ri, the
field takes the value

B = Br ln
(
Re
Ri

)
, (2.1)

where Br is the remnant magnetic field of the magnetic material, which is typically above
1 T for NdFeB magnets. This Halbach dipole cylinder actually is only one of the many
Halbach configurations that can be used to produce two-dimensional multipolar fields. A
similar, one-dimensional configuration, called a Halabch array, in which the orientation
of the magnetization vector rotates along a slab, allows the realization of a ‘single-sided’
magnetic plate3. Figure 2.2(b) gives an intuitive explanation of how this non-trivial be-

2The typical magnetization of NdFeB magnets with grade N-35 is above 800 kA/m. This means, for
instance, that a 5-mm thick slab magnetized out of its plane is equivalent to a loop of wire of the same
area, but carrying more than 4000 A!

3The reader might have quite a few Halbach arrays on the front of his/her fridge, especially if he/she has
kids. Indeed, the ubiquitous ‘fridge magnets’ or magnetic bumper stickers have the magnetic configuration
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Figure 2.2: (a): The distribution of magnetization for a Halbach dipole cylinder. (b): An intuitive
way to understand how a Halbach array generates a ‘one-sided flux’: on one side, the field produced
by the magnetization pointing out of the plane and the one produced by the magnetization pointing
in the plane add up, while on the other side they cancel out. In the limit of a continuously rotating
magnetization, one gets a perfect one-sided magnetic flux. (c): Discrete approximation of a Halbach
cylinder using 2, 4, 6 and 8 poles: one approximates more and more closely an ideal Halbach cylinder,
with a uniform field inside the cylinder, and a vanishing field outside.

havior can be obtained, and allows to understand how the Halbach dipole cylinder works:
it is essentially a Halbach array rolled up with the appropriate radius such that the inside
field is uniform.

We therefore designed a transverse Zeeman slower, of total length 1.2 m, by approxi-
mating the Halbach configuration using only eight dipoles with the appropriate orientation
[see Figure 2.2(c)]. Elongated bar magnets of size 6×6×148 mm, with the magnetization
oriented along the small side, were arranged in Halbach configuration along the gener-
atrices of a cone: the field is then very uniform, and its strength, controlled locally by
the radius of the cone, varies according to the required parabolic profile to a very good
approximation.

Based on this design, we build an increasing-field Zeeman slower, with a field varying
from 200 G to 590 G, for a total cost of about 1 ke only. The magnet assembly is
enclosed in a soft-iron box, which serves both to hold mechanically the magnets and to

of a Halbach array. This can be checked easily: (i) these magnets ‘stick’ on a ferromagnetic material only
on one side and (ii) if one tries to stick together two such magnets on their magnetic side, this occurs only
at discrete positions, separated by about 3 mm: this is the period of the Halbach array.
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avoid the leakage of stray magnetic fields outside the slower. An extra advantage of this
approach is that the slower, made in two parts, can be fitted around the vacuum chamber
after the bake-out, allowing for high-temperature baking. We tested the slower not only
by demonstrating the slowing down of an atomic beam, but also by loading a magneto-
optical trap, with loading rates exceeding 1010 at/s when about 100 mW of cycling light
and 10 mW of repumper are used4. The results are detailed in [22]. Our design has
recently been adapted for Sodium atoms, in an experiment under construction in the team
of Aurélien Perrin at LPL in Villetaneuse, and is, at the time of writing, being tested [95].

2.3 A Bragg reflector for guided matter waves

A few years after the realization of Bose–Einstein condensation in alkali gases in 1995, sev-
eral pioneering experiments demonstrated the outcoupling of matterwaves from a trapped
BEC, realizing what was to become known as atom lasers [81, 3, 49, 17]. The obtained
atom lasers were pulsed ones, with initially short bursts of atoms, and in later experiments
much longer pulses, with durations of up to ∼ 100 ms, that were called quasi-continuous
atom lasers. In those beautiful illustrations of the wave nature of atoms, the outcoupled
matterwave was (i) propagating in free space, and (ii) falling under the influence of grav-
ity. Both aspects are drawbacks in view of atom-optic experiments, as (i) gives rise to a
decrease in brightness, while (ii) rapidly makes the de Broglie wavelength of the atoms
very small.

Therefore, in a second generation of experiments, the idea emerged to use an horizontal
dipole trap beam as a waveguide for matterwaves, to keep the wave transversely confined,
and prevent at the same time the acceleration of the atoms due to gravity. In the pioneering
work of [47], atoms were outcoupled from a magnetic trap using a RF knife to transfer
them to a magnetically-insensitive state, and then guided horizontally. This configuration,
where light guides a wave of matter, realizes the complete opposite of the (much more
usual) guiding of light waves by matter along an optical fiber.

David Guéry-Odelin’s group at ENS had been pursuing for several years the study
of evaporative cooling of a magnetically guided atomic beam in view of achieving the
operation of a truly CW atom laser. Despite the achievement of the collisional regime for
the beam [73] and the demonstration of a gain of ten in phase-space density by RF-induced
evaporation [74], it appeared that the achievement of a CW atom laser by evaporation of
a beam would be extremely challenging technically. At about the time when I left ENS for
Stuttgart, it was thus decided to reorient the activities of the group towards the study of
guided, quasi-continuous atom lasers. An all-optical BEC of 87Rb was first obtained in a
crossed optical dipole trap, and outcoupling was achieved by controlled spilling of the BEC
in the horizontal dipole trap beam. The group demonstrated that a careful control of the
outcoupling process allowed to obtain guided atom lasers with very few excited transverse

4The repumper frequency is swept at ∼ 10 kHz over a range of ∼ 2 GHz (otherwise, to get the same
flux out of the slower, higher repumping powers, on the order of 50 mW, are needed).
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Figure 2.3: (a): Bragg reflection on a sinusoidal grating. (b) Transmission coefficient through a
800-site lattice, as a function of the incident velocity v and of the lattice depth U0. The white arrows
show the Bragg condition v = nvr/2 obtained in the limit of a shallow lattice. (c) Atomic density along
the guide after a propagation time tprop: experimental result (top panel) and simulation without any
adjustable parameter (bottom panel). The position of the Bragg reflector is shown by the white dashed
line.

modes [28], i.e. a quasi-single-mode guided atom laser. The next logical step was then to
implement some atom-optical equivalents of mirrors, beamsplitters. . . .

In Toulouse, it was thus decided to pursue the exploration of guided atom optics,
by trying to realize one of the simplest non-trivial atom-optical element, namely a dis-
tributed Bragg reflector. Bragg mirrors and beamsplitters realized with optical standing
waves have been the workhorse of atom interferometry for three decades since their first
demonstration in the 1980s [78]. Here, we studied how a matterwave packet interacts with
an attractive periodic potential, of depth U0, and spacing d, obtained by superimposing a
one-dimensional optical lattice along the axis of the guiding beam.

The presence of the lattice introduces a typical velocity scale, the recoil velocity vr =
h/(md), and an energy scale Er = mv2

r /2. In usual atom-optics experiments with relatively
fast atoms, the periodic potential experienced by the atoms is very shallow as compared
to their kinetic energy, and reflection is obtained for the usual Bragg condition

2d sin θ = nλ, (2.2)

where n is an integer, d is the lattice spacing, and λ = h/(mv) is the de Broglie wavelength
of the particle, which impinges on the lattice at an angle θ (see Figure 2.3a). Here, we
consider a distributed Bragg reflector with the periodic modulation along the propagation
axis (θ = π/2), so the Bragg condition (2.2) reads simply v = nvr/2.

In our case, we deal with an ultraslow ‘beam’, and we thus need to revisit Bragg
reflection for lattice potentials that can be deep with respect to the kinetic energy of the
incident particles. Figure 2.3b shows the calculated transmission coefficient for a 800-site
lattice, as a function of its depth U0 (in units of Er) and of the velocity v (in units of
vr) of the incident particle. For vanishing U0, one recovers full reflection when the Bragg
condition v = nvr is fulfilled (white arrows). However, for a finite depth of the lattice,
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the transmission coefficient needs to be calculated by solving the Shrödinger equation in
a sinusoidal potential. The Bloch theorem applies, and depending whether the incident
energy lies within an allowed band or within a gap, the particle is transmitted or not. For
an infinite lattice, one thus expects the transmission coefficient to be either 0 or 1, and, in
the parameter plane (v, U0), the boundaries between the two situations can be obtained
by solving the Mathieu equation (dashed lines in Figure 2.3b). For a lattice with a finite
number of sites, boundary effects change the picture only marginally at low velocities.

We experimentally implemented a Bragg reflector by intersecting two beams at an
angle of about 80◦, thus making a longitudinal, one-dimensional lattice along the guide,
with a lattice spacing of 650 nm and a Gaussian envelope with a 145 µm rms half-width.
We produced an all-optical BEC 350 µm upstream, released it in the guide, and then gave
it a kick with a pulsed magnetic gradient, thus imparting it an initial mean velocity of
10 to 15 mm/s. The wavepacket had a velocity dispersion of about 1.3 mm/s set by the
repulsive interactions during the initial release of the BEC. The top panel of Figure 2.3c
shows the atomic density along the guide, for increasing propagation times. On observes
that, when interacting with the lattice, the leading edge of the wavepacket (corresponding
to high velocity components) is transmitted, while the trailing edge is reflected. The Bragg
reflector thus acts as a dichroic mirror for matter waves, with a sharp cutoff in velocity
space. The bottom panel is the result of a simulation of the time-dependent Schödinger
equation without any adjustable parameter, and shows good agreement with the data. We
also studied systematically the transmission of the reflector as a function of the depth of
the optical lattice, and found good agreement with simulations.

2.4 Prospects

At the end of my time in Toulouse, we worked on a generalization of the Bragg reflector,
using a time-dependent lattice: when its amplitude is modulated at a high frequency,
new velocity classes can be reflected. We used this to demonstrate the principle of a
notch velocity filter allowing to select very narrow velocity classes in a guided expanding
cloud [24]. In another follow-up experiment, the team demonstrated the trapping of a
launched BEC in the lattice, with the periodic emission, via tunelling, of wavepackets
with a narrow velocity distribution [23].

In the future, it would be interesting to extend these studies along two directions:

• In the experiments described above, the effects of interparticle interactions are neg-
ligible. A first subject of study would thus concern the propagation of matter wave
streams in the presence of significant interparticle interactions. In this case of non-
linear guided atom optics, new interesting effects appear [84].

• The other natural extension of those studies would consist in going beyond proof-of-
principle experiments, towards useful applications. An appealing experiment would
consist in realizing a matterwave interferometer using optically guided atoms, for



instance in a Mach–Zehnder geometry as proposed in [64]. For such studies, the
integrated matter wave circuits recently demonstrated in [108] appear as an ideal
platform.

For both goals, the current setup is not well adapted: a more stable experiment, with
much more optical access, is needed. Therefore the group is currently working on a new
setup, specially designed to overcome the above-mentioned shortcomings [12].

2.5 Published articles

Here, I list the articles I have co-authored about my work in LCAR; the main ones are
reproduced in the following pages.

• C.M. Fabre et al., Phys. Rev. Lett. 107, 230401 (2011), reproduced on page 51.

• P. Cheiney et al., Rev. Sci. Inst. 82 063115 (2011) reproduced on page 56.

• P. Cheiney et al., Phys. Rev. A. 87, 013623 (2013).
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We report on the experimental study of a Bragg reflector for guided, propagating Bose-Einstein

condensates. A one-dimensional attractive optical lattice of finite length created by red-detuned laser

beams selectively reflects some velocity components of the incident matter wave packet. We find

quantitative agreement between the experimental data and one-dimensional numerical simulations and

show that the Gaussian envelope of the optical lattice has a major influence on the properties of the

reflector. In particular, it gives rise to multiple reflections of the wave packet between two symmetric

locations where Bragg reflection occurs. Our results are a further step towards integrated atom-optics

setups for quasi-cw matter waves.

DOI: 10.1103/PhysRevLett.107.230401 PACS numbers: 03.75.Kk, 03.75.Lm

The interaction of light with structures having a periodic
refractive index profile is ubiquitous in photonics.
Applications range from simple antireflection coatings to
the fabrication of dielectric mirrors with ultrahigh reflec-
tivities, used for instance in high-finesse cavities, and to
semiconductor laser technology with the example of ver-
tical cavity surface-emitting lasers (VCSELs), and distrib-
uted feedback or distributed Bragg reflector lasers. In the
field of guided optics, fiber Bragg gratings are essential
components for the telecommunication industry, as well as
for the realization of outcoupling mirrors in high-power
fiber lasers. Photonic crystal devices also have a huge
range of applications [1].

In matter wave optics and interferometry, interactions of
free-space propagating beams or trapped clouds with peri-
odic structures or potentials have been extensively inves-
tigated and are commonly used as mirrors and beam
splitters [2–4]. In this Letter, we demonstrate, following
the proposals of Refs. [5–9], a Bragg reflector for manipu-
lating a guided Bose-Einstein condensate (BEC) propagat-
ing in an optical waveguide, i.e., the exact atom-optics
counterpart of a photonic fiber Bragg grating. We study
the dynamics and the transmission of a probe wave packet
as a function of the depth of the optical lattice. As we will
develop later on, this quasi-1D configuration clearly
exemplifies two textbook features of quantum mechanics:
quantum reflection [10–12] and band theory [13,14]. This
Letter is organized as follows. We first present a simple
model to gain some physical insight into the Bragg reflec-
tion of a matter wave packet by a finite-length lattice
having a Gaussian envelope. Then we describe our experi-
mental implementation and show quantitative agreement
between the data and our model. Finally, we discuss nu-
merical simulations that give access to unresolved details
in the experiment.

We consider a BEC with given mean velocity �v and
dispersion �v propagating in a horizontal waveguide

defining the x axis. At some distance, two intersecting laser
beams interfere and create an attractive quasiperiodic po-
tential of finite length, with lattice spacing d (see Fig. 1).
The potential experienced by the atoms is modeled by

UðxÞ ¼ �U0 exp

�
� 2x2

~w2

�
sin2

�
�x

d

�
; (1)

whose depth U0 > 0 is proportional to the power of the
laser beams. The period d naturally introduces typical
scales in velocity vR ¼ h=ðmdÞ and energy ER ¼ mv2

R=2.
We are interested in a wave packet with finite size and

velocity dispersion impinging on a finite-length lattice. Let
us consider first the textbook case of an incident plane
wave and a square-envelope lattice (see, e.g., [15] for an
analytical treatment of the problem). Figure 2(a) shows the
transmission coefficient for a lattice of N ¼ 800 sites,
calculated by solving numerically the corresponding sta-
tionary Schrödinger equation. For a given velocity v, one
observes that the transmission coefficient essentially

FIG. 1 (color online). Schematic view of the experimental
setup (not to scale).
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switches between 0 and 1 as a function of the depth of the
lattice U0. It can be interpreted as follows. At the entrance,
the incoming state of energy Ei ¼ mv2=2 is projected onto
the eigenstates of the lattice. The associated eigenenergies
distribute into energy bands [13] whose position can be
expressed in terms of the characteristic functions of the
Mathieu equation [16,17] as depicted by the white dashed
lines in Fig. 2(a). Reflection occurs if Ei lies in the gap
between two allowed energy bands. Because of the finite
length of the lattice the energy bands are not strictly
continuous and resolve into N separate states for vanishing
incident velocity [17]. Undersampling of the image gives
rise to the ‘‘foamy’’ aspect of the low-velocity side of
transmission bands. Obviously, the reflection by an attrac-
tive potential is a purely quantum effect, with no classical
counterpart.

A second interesting feature appears in the limit of a
vanishing potential depth U0. One still observes reflection
but it occurs only for incident velocities of the form v ¼
nvR=2 where n is an integer [see the white arrows in
Fig. 2(a)]. This corresponds to Bragg’s condition
2d sin� ¼ n� [14], where � ¼ �=2 for retroreflection,
and � ¼ h=ðmvÞ is the incident de Broglie wavelength of
the atoms: the reflection amplitude at each lattice site is
small, but constructive interference between all the re-
flected waves results in a macroscopic reflected wave
building up. For the range of parameters of Fig. 2(a),
quantum reflection by a single lattice well occurs only
for velocities that are very small as compared to vR [17]
and thus cannot explain the observed features.

Figure 2(b) shows the result of the same calculation, but
now for the experimentally relevant case of a lattice having

a smooth Gaussian envelope. One clearly observes a
drastic change in the dependence of the transmission co-
efficient: for a fixed velocity v, the transmission is essen-

tially equal to one only below a critical value Uð1Þ
0 of the

lattice depth, and then goes essentially to zero for increas-
ing U0 (except for very narrow resonances). That critical
value corresponds to the smallest one at which total reflec-
tion would occur for the square-envelope lattice. Almost no
resurgence of the transmission is observed if U0 is further
increased, which gives a ‘‘sawtooth’’ appearance to the
boundary between reflection and transmission.
This can be understood as follows. We are in the slowly

varying envelope limit as ~w � d. The amplitude of the
lattice does not change appreciably over a few sites, and
thus one can consider that, locally, the matter wave inter-

acts with a constant-amplitude lattice. WhenU0 ¼ Uð1Þ
0 the

reflection condition is met at the center of the lattice, i.e.,
at x ¼ 0. Then, for higher values of U0, there are
some locations �xrefl, on both sides of the center, for

which Uð�xreflÞ ¼ Uð1Þ
0 . In this case, reflection occurs at

x ¼ �xrefl. If there were not a second, identical mirror at
x ¼ xrefl, the transmission of the lattice would strictly

vanish for U0 >Uð1Þ
0 . However, as in optics, the two local

Bragg mirrors actually constitute a Fabry-Perot resonator,
analog to a VCSEL cavity for example, and transmission
exhibits sharp resonances which gives the same foamy
aspect as in Fig. 2(a).
We now come to the experimental realization. Our tech-

nique to produce all-optical BECs has been described in
detail elsewhere [18]; in what follows we thus simply recall
the major steps. We produce an almost pure 87Rb conden-
sate containing typically 5� 104 atoms by forced evapo-
ration over 4 s in a crossed optical dipole trap. It is made of
two intersecting beams with a wavelength of 1070 nm. A
horizontal one, with a waist of 50 �m, to be used later as a
guide for the BEC, defines the x̂ direction. The second, the
‘‘dimple’’ beam, of waist 150 �m, propagates along the
diagonal in the (x; z) plane, ẑ being the vertical (Fig. 1).
Spin distillation using a magnetic field gradient during
evaporation [18] results in the BEC being prepared in the
state jF ¼ 1; mF ¼ 0i. We then decrease adiabatically the
power in the dimple beam by a factor�20 over 80 ms, thus
barely keeping a longitudinal confinement for the BEC,
before switching it off abruptly to outcouple a wave packet
in the horizontal guide. In this way, we produce a wave
packet with a minimal intrinsic longitudinal velocity dis-
persion [19,20]. To set the wave packet in motion, we then
switch on a coil, coaxial with the guide, that produces an
inhomogeneous magnetic field. Through the quadratic
Zeeman effect the wave packet is accelerated in 15 ms to
a final mean velocity �v ¼ 11 mm=s. The residual accel-
eration of the packet due to stray fields and beam curvature
is negligible (we measure an upper bound of 10 mm=s2).
Centered 350 �m downstream from the dimple location

x0, the optical lattice is produced at the intersection of two

FIG. 2 (color online). Intensity transmission coefficient of the
lattice for an incident plane wave of velocity v, as a function of
the lattice depth U0. (a) Square-envelope lattice with 800 sites.
The white dashed lines are obtained from the Mathieu character-
istic functions; white arrows show the velocities for which the
Bragg condition is fulfilled (see text). (b) Lattice with a Gaussian
envelope (1=e2 radius ~w ’ 230d). The vertical shaded stripe
corresponds to the relevant velocity components in the wave
packet used for the measurements shown in Figs. 3 and 4. The
insets on top of (a) and (b) illustrate the shape of the lattice
envelope, but the number of sites is reduced to N ¼ 20 for
clarity.
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beams with a wavelength �L ¼ 840 nm (red-detuned with
respect to the 87Rb D1 and D2 lines) and a waist w ¼
110 �m, linearly polarized along ẑ, crossing at an angle
� ’ 81�. The lattice detuning is large enough so that
spontaneous emission does not play any role in our experi-
mental time scales. The resulting lattice spacing is d ¼
�L=½2 sinð�=2Þ� ’ 650 nm, and the envelope 1=e2 radius is
~w ¼ w= cosð�=2Þ ’ 145 �m. In a set of preliminary ex-
periments we calibrate the potential depth U0 using
Kapitza-Dirac (KD) diffraction [21,22]. A BEC is created
at the position of the lattice and exposed to the lattice
potential for a short time �KD, typically a few tens of
microseconds. The diffraction pattern of the BEC after
time of flight as a function of �KD is then compared to
numerical simulations of the process. A typical 35 mW per
beam results in U0 up to 15ER.

After being launched as described above, the wave
packet propagates in the horizontal guide for an adjustable
time tprop. Then all the lasers are switched off abruptly and

the cloud is imaged by absorption after a 10 ms time of
flight. This gives access to the spatial density distribution
nðx; tÞ ¼ jc ðx; tÞj2 of the wave packet with a resolution of
about 10 �m limited by the numerical aperture of our
collection lens.

In a first set of experiments, the propagation time tprop ¼
100 ms is sufficiently long so that the interaction with the
lattice is completed. We measured in a separate experiment
the mean velocity �v ’ 11 mm=s ’ 1:6vR and a rms veloc-
ity spread �v ’ 1:3 mm=s ’ 0:2vR corresponding to the
shaded region of Fig. 2(b). For each lattice depth U0, an
average image is generated from eight individual runs and
then integrated along the transverse direction ŷ. Figure 3(a)
is a stack of 55 such profiles. For sake of comparison,
Fig. 3(b) is the result of a numerical simulation of the

wave packet dynamics using the one-dimensional
Schrödinger equation solved by the split-Fourier method;
the initial condition is a Gaussian wave packet with the
experimentally measured momentum and position disper-
sions [19]. There is no adjustable parameter and the overall
agreement with experimental data means that our simple
1D model captures most of the physics involved.
Let us concentrate first on the transmitted part of the

wave packet (x > 0). If there were no lattice, the propaga-
tion time tprop is long enough so that the initial size of the

wave packet is negligible with respect to its size after
propagation. The spatial distribution of the wave packet
would then be a direct mapping of its initial velocity
distribution fðvÞ: nðx; tpropÞ / f½ðx� x0Þ=tprop�.
One can then understand intuitively the main features of

Fig. 3 for the scattering of a wave packet, from the trans-
mission coefficients shown in Fig. 2(b) for a plane wave. In
the background of the shaded area of Fig. 2(b) representing
the wave packet one can see the transmitted and reflected
components. In the presence of the lattice, the reflected
part propagates backwards and is located, for the propaga-
tion time chosen here, at a symmetrical position. This
explains why the transmitted and reflected wave packets
appear like a complementary mirrored image of each other.
The sawtoothlike boundary, reminiscent of the transmis-
sion diagram, is a fingerprint of the band structure inside
the lattice. However, the effect of the lattice potential is not
limited to the one of the sinusoidal component, responsible
for the Bragg reflection described above. The spatially
averaged attractive potential also accelerates the wave
packet. The white dotted line in Fig. 3(b) shows the final
position of a classical particle starting with velocity �v from
position x0 and propagating for a time tprop, taking into

account its acceleration by the spatially averaged lattice
potential. The fair agreement with the data indicates that
the slight curvature in the position of the wave packet as a
function of U0 simply arises from this classical effect.
Beyond studying the asymptotic scattering states, it is

also possible to visualize the dynamics of the interaction by
varying tprop. Figure 4(a) displays such a time sequence

that fairly compares to the numerical simulation depicted
in the same conditions in Fig. 4(b). One clearly observes
the spreading of the incident wave packet over the whole
lattice for 30 & tprop & 45ms and its subsequent splitting

into a reflected and a transmitted one. Unfortunately, the
details of the inner dynamics are washed out by the free
expansion of the wave packet during the time-of-flight
sequence and the finite resolution of the imaging system.
Numerical simulations, properly checked against

the previous experimental results, are useful here. In
Fig. 4(c) we have deliberately suppressed the time-of-flight
period and enhanced the optical resolution and the contrast
with respect to Fig. 4(b): one then clearly observes mul-
tiple reflections of some components of the wave packet at
symmetric positions �xrefl, with decreasing amplitude at

FIG. 3 (color online). (a) Measured density distribution of the
wave packet (of initial mean velocity �v ¼ 11 mm=s) after a
propagation time tprop ¼ 100 ms, for different lattice depths U0.

Each horizontal line is the average of typically eight absorption
images integrated along the ŷ direction. The vertical white
dashed line shows the position of the center of the lattice.
(b) Results of the simulation without any adjustable parameters.
The finite resolution of the imaging system (� 10 �m) is
included. The dotted line is the expected position of the center
of the wave packet according to classical dynamics (see text).
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each bounce. This ‘‘cavity-ring-down’’ behavior explains
the formation of structures in the transmitted and reflected
wave packets as observed in Fig. 4(a) and especially visible
as a parallel lower stripe in the transmitted wave packet for
50 & tprop & 75 ms. However, experimentally, observing

several bounces is not possible here due to the small
number of atoms involved.

In the same way, in images such as Fig. 3 the reflected
wave packet appears to be relatively smooth. It is actually
not the case, as can be seen in simulations with full
resolution (Fig. 5). The lattice acts as a matter wave
interference filter with very narrow features due to the
high number of lattice sites (foamy zones of Fig. 2).

Until now we have used a simple one-dimensional de-
scription of the system. However, the system is actually far
from being one dimensional, since the transverse quantum
of energy @!? ’ h� 90 Hz is much smaller than the
typical longitudinal energy scales, typically by 2 orders
of magnitude. Our simple one-dimensional model agrees
well with the experimental results as shown above because
couplings between longitudinal and transverse degrees of
freedom are weak (they are due only to experimental

imperfections such as misalignments of the lattice beams
with respect to the guide, for instance); some transverse
excitations can nevertheless be observed on our data [see,
e.g., the long wavelength dipole oscillations in Fig. 4(a),
especially for tprop * 30 ms]. Stronger couplings would be

expected to significantly alter the scattering properties of
the structure [23,24].
In conclusion, we have studied in detail the scattering of

a guided matter wave by a finite-length optical lattice in the
slowly varying envelope limit. The experiments can be
interpreted in the framework of a local band structure,
and the whole lattice can be seen as a cavity based on
Bragg mirrors.
Major improvements are expected with the use of high

numerical aperture optics [25,26]. Drastically reducing the
length ~w of the lattice and thus generating a structure
consisting of only a few sites, possibly with a shaped
envelope, one could tailor almost arbitrarily the matter
wave filter response. The latter can also be altered using
a moving optical lattice [27,28]. The transmission band of
the filter could then be adjusted at will. Such setups would
prove useful in measuring, for instance, the coherence
length [29] of guided atom lasers [30–32]. In a different
direction, it would be appealing to study the effect of
interatomic interactions [33] on the propagation of the
wave packet, with the possible appearance of soliton trains
[34] or atom-blockade effects [35]. This regime could be
reached by using much higher transverse frequencies for
the guide, in order to enhance the effects of nonlinearities.
We thank I. Carusotto for useful discussions, and
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We describe a simple Zeeman slower design using permanent magnets. Contrary to common wire-
wound setups, no electric power and water cooling are required. In addition, the whole system can be
assembled and disassembled at will. The magnetic field is however transverse to the atomic motion
and an extra repumper laser is necessary. A Halbach configuration of the magnets produces a high
quality magnetic field and no further adjustment is needed. After optimization of the laser parameters,
the apparatus produces an intense beam of slow and cold 87Rb atoms. With typical fluxes of (1–5)
×1010 atoms/s at 30 m s−1, our apparatus efficiently loads a large magneto-optical trap with more
than 1010 atoms in 1 s, which is an ideal starting point for degenerate quantum gas experiments.
© 2011 American Institute of Physics. [doi:10.1063/1.3600897]

I. INTRODUCTION

Nowadays, many atomic physics experiments study or
use quantum degenerate gases for which a large initial sam-
ple of cold atoms is required. A wide variety of experimen-
tal techniques has been developed for slowing and cooling
atoms. Many of them rely on the radiation pressure from
quasi-resonant light. In particular, since their first realization,1

Zeeman slowers have become very popular for loading
magneto-optical traps (MOT). These cold atom reservoirs are
then an ideal starting point to implement other techniques for
further cooling.

Recently, several Zeeman slowers using permanent mag-
nets have been built2 following the proposal of Ref. 3 (see
also Ref. 4 for a somewhat different approach formerly used).
Here, we present an alternative design based on a Halbach
configuration5 of the magnets and demonstrate fully satisfac-
tory operation. Before going into details, let us emphasize
some advantages of the setup:� simple machining and construction, compact, and

light,6� no electric power consumption nor water cooling,� high fields with excellent transverse homogeneity,� very smooth longitudinal profile and low stray mag-
netic fields,� easy to assemble and disassemble without vacuum
breaking, e.g., for high-temperature baking out.

This paper is organized as follows. In Sec. II, we first give
the basics of the theoretical framework and then compare our
permanent magnets approach with the usual wire-wound tech-
nique. Then we collect in Sec. III some information on mag-
nets, shields, field calculations, and measurements useful to
characterize our setup described in Sec. IV. We subsequently

a)Electronic mail: renaud.mathevet@irsamc.ups-tlse.fr.

detail in Sec. V the whole experimental apparatus before we
finally present the Zeeman slower performances in Sec. VI.

II. ZEEMAN SLOWERS DESIGNS

A. Notations and field specifications

In a Zeeman slower, atoms are decelerated by scattering
photons from a near resonant counter propagating laser. Let
Oz denote the mean atom and light propagation axis, � and
μ the linewidth and magnetic moment of the atomic transi-
tion, k the light wave vector, m the atomic mass, and v(z)
the velocity at z of an atom entering the field at z = 0. To
keep atoms on resonance, changes in the Doppler shift kv(z)
are compensated for by opposite changes of the Zeeman ef-
fect μB(z) in an inhomogeneous magnetic field B(z).7 We
use an increasing field configuration8 for better performance
with 87Rb.

As the scattering rate cannot exceed �/2, the maximum
achievable acceleration is

amax = �

2

¯k

m
. (1)

To keep a safety margin, the ideal magnetic field profile Bid(z)
is calculated for only a fraction η = 0.75 of amax. Energy con-
servation reads v(z)2 = v(0)2 − 2ηamaxz so that

Bid(z) = Bbias + �B(1 −
√

1 − z/L), (2)

where the length of the apparatus is L = v(0)2/2ηamax and
μ�B/¯ = kv(0) assuming v(L) � v(0). Here, v(0) defines
the capture velocity as, in principle, all velocity classes be-
low v(0) are slowed down to v(L). A bias field Bbias is added
for technical reasons discussed later on (Sec. IV C 1). To
match the resonance condition, lasers must be detuned from
the atomic transition by

δ0 ≈ μ(Bbias + �B)/h. (3)

0034-6748/2011/82(6)/063115/7/$30.00 © 2011 American Institute of Physics82, 063115-1
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FIG. 1. (Color online) Zeeman slower configurations. (a) Conventional wire-wound tapered solenoid; magnetic field is longitudinal, σ− light is used. J denotes
the current density vector. (b) Use of long tilted permanent magnets; magnetic field is transverse. Light polarisation is decomposed in its σ± components and a
repumper is needed. M denotes the magnetization of the material.

Finally, slowing must be efficient over the whole atomic
beam diameter. A conservative estimate of the acceptable
field variations in a cross section is δB = h�/|μ| which
amounts to ∼4 G given the rubidium linewidth � ≈ 2π

× 6 MHz. Here, such high transverse homogeneity, intrinsic
to solenoids, is achieved using permanent magnets in a partic-
ular geometry inspired by Halbach cylinders. This represents
a major improvement with respect to the original proposal3

which the reader is also referred to for a more detailed theo-
retical analysis.

B. Different implementations

1. Wire-wound vs permanent magnets slowers

In most Zeeman slowers, the magnetic field is generated
with current flowing in wires wound around the atomic beam.
The ideal profile of Eq. (1) is commonly obtained varying
the number of layers (Fig. 1(a)) or more recently the winding
pitch.9 The field is then essentially that of a solenoid: longi-
tudinal and very homogeneous in a transverse plane. There
are usually some drawbacks to this technique. Winding of
up to several tens of layers has to be done with care to get
a smooth longitudinal profile. It represents hundreds of me-
ters and typically 10 kg of copper wire so the construction
can be somewhat tedious. It is moreover done once for all and
cannot be removed later on. As a result, only moderate bak-
ing out is possible which may limit vacuum quality. Finally,
electric power consumption commonly amounts to hundreds
of watts so water cooling can be necessary.

Of course, the use of permanent magnets circumvents
these weak points. In the original proposal,3 two rows of
centimeter-sized magnets are positioned on both sides of the
atomic beam. Contrary to wire-wound systems the field is
thus transverse.10 Fortunately, slowing in such a configuration
is also possible.11 Although this initial design is very sim-
ple, the field varies quickly off axis, typically several tens of
Gauss over the beam diameter, which may reduce the slower
efficiency.

2. Halbach configuration

A way to get a well controlled magnetic field in a trans-
verse cross section is to distribute the magnetic material all

around the atomic beam to make a so-called Halbach cylinder.
In the context of atom physics, fields with a linear or quadratic
dependence have been used to realize refractive atom-optical
components.12, 13 Here a highly uniform field is required. Fol-
lowing Ref. 5 let us consider a magnetized rim such that the
magnetization M at an angle θ from the y-axis makes an an-
gle 2θ with respect to the same axis (Fig. 2(a)). Then, the
magnetic field reads

BHal(r) =
⎧⎨
⎩

0, for r > Rext,

BR ln

(
Rext

Rint

)
ŷ, for r < Rint,

where BR is the remanent field of the magnetic material, com-
monly in the 10–15 kG range for modern rare-earth magnets.
Numerical investigations (see Sec. III) indicate that a 8-pole
Halbach-like configuration as depicted in Fig. 2(b) is able to
produce fields on the order of 600 G with homogeneity bet-
ter than 1 G on a 16 mm cross section. Higher field strength
and/or beam diameters are easy to achieve if necessary.

More detailed studies demonstrate that deviations on a
typical 600 G magnetic field stay below the ±1 G limit for
±0.2 mm mispositioning of the magnets, which is a common
requirement on machining. Likewise, the same variations are
observed for ±2.5% dispersion in the strength of the magnets.
This value is consistent with a rough statistical analysis we
made on a sample of 25 magnets.

FIG. 2. (a) Notations for Halbach cylinder. (b) Transverse cross section
showing a 8-pole Halbach configuration.
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III. FIELD CALCULATIONS

A. Magnets modeling

1. Magnetic material

Our setup uses long 2a × 2b × 2c = 6 × 6 × 148 mm3

NdFeB magnets (HKCM, part number: Q148x06x06Zn-
30SH). They are made from 30 SH grade which has a higher
maximum operation temperature than other grades. Its rema-
nent field BR = 10.8 kG is also lower. The device is thus
more compact and outer field extension is reduced. Such rare-
earth material is very hard from a magnetic point of view so
very little demagnetization occurs when placed in the field of
other magnets, at least in our case where fields do not exceed
the kilogauss range. This makes field calculations particularly
simple and reliable. Even if an exact formula for the field of
a cuboid magnet can be found,14 in many cases, it can be re-
placed with an ease to handle dipole approximation.

2. Dipole approximation

In the proposed geometry described below, the magnets
have a square cross section (2b = 2a) and the long mag-
nets can be decomposed in a set of cubic magnets with side
2a. Then, one easily checks numerically that when the dis-
tance to the magnet is larger than twice the side, the field
of the associated dipole is an accurate approximation of that
of the actual magnet to better than 2%.15 It is not a very re-
strictive condition as in our case, 2a = 6 mm and magnets
cannot be located nearer than 11 mm from the beam axis.

A full vector expression of the field of a dipole can be
found in any textbook. It is well adapted for computer im-
plementation. Even if the full magnetic system is then repre-
sented by more than 1500 dipoles, calculations are still very
fast: the simulations presented in Sec. IV take less than 1 s on
a conventional personal computer.14

B. Magnets layout

In principle, the field magnitude can be adjusted vary-
ing the amount, the density and/or the position of the mag-
netic material. The availability of very elongated magnets
(c/a ≈ 25) directed us toward a simple layout. Only the dis-
tance to the axis d(z) is varied. At first approximation, the
magnets can be considered as infinite. The magnetic field
strength then decreases as the inverse of the distance squared.
So, to produce the field B(z) a good ansatz for d(z) is

d(z) = d(L)

√
B(L)

B(z)
. (4)

As a matter of fact, this guess turns out to be both very
efficient and close to a linear function. Numerical calculations
show (Fig. 3) that a linear approximation of Eq. (4) can be op-
timized to give a field within ±3 G from the ideal one over the
most part of the slower. Such deviations are completely irrel-
evant concerning the longitudinal motion. Magnets are then
positioned on the generatrices of a cone and the mechanics is
straightforward (Sec. IV A).

FIG. 3. (Color online) Ideal (red/dotted) and calculated profiles, without
(black/dashed) and with (blue/solid) end caps.

Naturally, the agreement is not so good at both ends
where the ideal profile has sharp edges, while the actual field
spreads out and vanishes on distances comparable to the di-
ameter on which magnets are distributed. The actual �B is
reduced which lowers the capture velocity and thus the beam
flux. We made additional sections of eight extra cubic mag-
nets in a Halbach configuration designed to provide localized
improvement on the field profile at both ends (“end caps”). As
seen in Fig. 3, matching to the ideal profile is enhanced, espe-
cially at the high field side where the ideal profile exhibits a
marked increase.

The length of the Zeeman slower is L = 1184 mm cor-
responding to eight sections of 148 mm-long magnets. The
capture velocity is then v(0) = (2ηamaxL)1/2 ≈ 450 m s−1

and �B = 388 G. A bias field Bbias = 200 G is added to
avoid low-field level crossings around 120 G. These field
parameters together with the magnet size and properties
determine the distance and angle from axis of the magnets.
In our case, the best choice was a slope of −15.9 mm/m
corresponding to d(0) = 49.5 mm and d(L) = 30.7 mm.
Entrance and output end caps are both made of 10 mm-side
cubic magnets of N35 grade (BR = 11.7 kG). They are lo-
cated on circles whose diameters are 94.0 mm and 66.0 mm,
respectively.

IV. MECHANICS AND FIELD MEASUREMENTS

A. Mechanical design

The Zeeman slower consists in nine mounts supporting
eight U-shaped aluminum profiles (Fig. 4). The U-shaped pro-
files go through the mounts by means of square holes evenly
spaced on a circle whose diameter decreases from mount to
mount according to Eq. (2) and Eq. (4) possibly linearized.
Magnets are then inserted one after each other in the U-shaped
profiles and clamped by a small plastic wedge. End caps are
filled with the suitable block magnets and screwed together
with their spacer in the first and last mount (see Fig. 4(a)).
The whole setup is then rigid and all parts tightly positioned.
Indeed, as said before, calculations are very reliable and
Zeeman slower operation is known to be robust so there is no
need for adjustment. Mounts are made of two parts screwed
together. The Zeeman slower can then be assembled around
the CF16 pipe without vacuum breaking, e.g., after baking
out the UHV setup.14
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(b) (c)

FIG. 4. (Color online) (a) Picture of the Zeeman slower: [M] mounts, [EC]
output end cap screwed in last mount, [U] U-shaped profiles, [S] half part of
the shield, [sp] 5 mm spacer between end cap and shield side. (b) Individual
mount; [T] threading to screw the two parts of the mount together, [P] central
square milling in which CF16 pipe goes through. (c) Detail of a square hole
to show U-shaped profiles insertion, magnets [m], and plastic wedge [W].
Dimensions in mm.

B. Shielding

Stray magnetic fields might strongly affect atomic
physics experiments. Actually, the 8-pole configuration pro-
duces very little field outside (see Fig. 6(a)), except of course,
at both ends. However, to lower stray fields even further, we
have made a rectangular single-layer shield from a 1 mm-
thick soft iron sheet wrapped around the mounts. Besides, me-
chanical properties and protection are also improved. As seen
in Fig. 5(a), the inner field is almost unaffected. On the con-
trary, the outer magnetic field falls down much quicker all the
more since the plateau around 0.5 G in Fig. 5(b) is probably
an artifact associated with the probe. In practice, no distur-
bance is detected on the MOT and even on optical molasses
125 mm downstream.14

C. Magnetic field and lasers characterization

1. Magnetic field

Magnetic field measurements are done with a home-
made 3D probe using 3 Honeywell SS495 Hall effect

FIG. 5. (Color online) Calculated (red/gray) and measured (black) magnetic
field profiles. (a) Scan along the beam axis. (b) Close up of the output region.
In the calculation the shield is not taken into account. Dotted and dashed lines
indicate the Zeeman slower and the shield physical ends. Log scale before
break.

FIG. 6. (a) Measured magnetic field without shield across the beam axis at
z ∼ 460 mm along the u-direction of Fig. 2. (b) Close up of the central re-
gion. Dashed lines indicate the atom beam extension and a 1 G magnetic field
span. Line to guide the eye. Log scale before break. The shield was removed
to allow the probe to go through. With the shield, the inner field is almost
unaffected and the outer field is below the probe sensitivity.

sensors.14 Figure 5 displays a longitudinal scan of the mag-
netic field on the axis of the Zeeman slower with end caps and
shield. It can be first noticed that the longitudinal profile is in-
trinsically very smooth as the magnets make a uniform mag-
netized medium throughout the Zeeman slower. After calibra-
tion of the magnetic material actual remanent field, deviations
from the calculated profile are less than a few Gauss. Besides,
one usually observes only localized mismatches attributed to
the dispersion in the strength of the magnets. The shield in-
put and output sides flatten the inner field at both ends. Of
course the effect decreases when they get further apart but the
Zeeman slower should not be lengthened too much. A 5 mm
spacer (tag [sp] in Fig. 4) is a good trade-off. Then, the actual
magnetic field measured parameters are Bbias = 200 G and
�B = 350 G only slightly smaller than the calculated value.

Figure 6 depicts a transverse cut of the magnetic field. It
is realized along the u-direction of Fig. 2 near the middle of
the Zeeman slower (z ∼ 460 mm). The shield was removed
to allow the probe to go through. It exhibits the two expected
features: (i) little outer field and (ii) highly homogeneous in-
ner field. In the vicinity of the axis, the measured profile is
however less flat than expected. This is mainly due to the fi-
nite size of the probe. Anyway, magnetic field deviations stay
within a Gauss or so in the region of interest. With the shield,
the outer field is below probe sensitivity.

2. Lasers

The Zeeman slower operates between the 52S1/2 and
52 P3/2 states of 87Rb around λ = 780 nm (D2 line). For
an increasing-field Zeeman slower, a closed σ− transition
is required,8 F = 2, m F = −2 ↔ F ′ = 3, m F ′ = −3 in our
case. However, the magnetic field is here perpendicular to the
propagation axis. Thus, any incoming polarization state pos-
sesses a priori π and σ± components: it is not possible to cre-
ate a pure σ− polarization state (see Fig. 1 and Ref. 16). In ad-
dition to laser power losses, the π and σ+ components excite
the m F ′ = −2 and −1 states from which spontaneous emis-
sion populates F = 1 ground state levels. Repumping light is
thus necessary between the F = 1 and F ′ = 2 manifolds. The
detrimental effect of the unwanted polarization components is
minimized when the incoming polarization is perpendicular to
the magnetic field since there is no π contribution in that case.
We measured a 20◦ (FWHM) acceptance for the polarization
alignment.
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FIG. 7. Sketch of the overall experimental setup. [RO] recirculating oven,
[BS] beam shutter, [CF] cold finger, [ZS] Zeeman slower, [MOT] MOT
chamber, [ZB] Zeeman cycling and repumping beams, [PB] θ = 56◦ probe
beam, and [Sh] magnetic shield. 45◦ and 90◦ probe beams are sent through
the horizontal windows depicted on the MOT chamber. Dimensions in mm,
not rigorously to scale.

Permanent magnets enable easily to reach magnetic fields
on the order of Bbias + �B ≈ 500 − 600 G. As a conse-
quence, detuning of the cycling light below the transition
frequency amounts to δ0 ≈ −800 MHz (Eq. (3)). Such high
detunings are realized sending a master laser through two
double pass 200 MHz AOMs before locking on a resonance
line using saturation spectroscopy. The repumper is simply
locked on the red-detuned side of the broad Doppler absorp-
tion profile.

The two master lasers are Sanyo DL7140-201S diodes
having a small linewidth (∼5 MHz). We use them without ex-
ternal cavity feedback. Beams are recombined on a cube and
pass through a polarizer. Then they are sent with the same
polarization into a 1 W Tapered Amplifier (Sacher TEC-400-
0780-1000). A total power of more than 250 mW is available
on the atoms after fiber coupling. The beam is expanded to
about 23 mm (full width at 1/e2) and focused in the vicinity
of the oven output aperture for better transverse collimation
of the atomic beam.

V. EXPERIMENTAL APPARATUS

A. Vacuum system

Figure 7 shows a sketch of the experimental setup. At one
end, the MOT chamber is a spherical octagon from Kimball
physics (MCF600-SO200800). It has two horizontal CF100
windows and eight CF40 ports. It is pumped by a 20 L/s
ion pump. One CF40 port is connected to the 1200 mm-long
CF16 pipe around which the Zeeman slower is set. At the
other end, one finds a first six-way cross, used to connect a
40 L/s ion pump, a thermoelectrically cooled cold finger and
two windows for beam diagnosis. It is preceded by a second
six-way cross that holds another cold finger, a angle valve
for initial evacuation of the chamber and a stepper-motor-
actuated beam shutter. Finally, the in-line port holds the re-
circulating oven.14

B. Probe beams

Probe beams on the F = 2 ↔ F ′ = 3 transition can
be sent in the chamber through the different windows and
absorption is measured in this way at 45◦, 56◦, or 90◦ from
the atomic beam. Absorption signals are used to calibrate
fluorescence collected through a CF40 port by a large aper-
ture condenser lens and focused on a 1 cm2 PIN photodiode

(Centronics OSD 100-6). Photocurrent is measured with a
homemade transimpedance amplifier (typically 10 M
) and a
low-noise amplifier (Stanford Research Systems SR560) used
with a moderate gain (G = 5) and a 3 kHz low-pass filter.
Frequency scans are recorded on a digital oscilloscope and av-
eraged for 8–16 runs. During the measurements, a repumper
beam on the F = 1 → F ′ = 2 transition may be turned on.

VI. ZEEMAN SLOWER PERFORMANCES

A. Atom flux

Figure 8 displays typical fluorescence and absorption sig-
nals. The oven base temperature was set to T1 = 190 ◦C so
that fluorescence of the thermal unslowed beam is clearly vis-
ible. When Zeeman light is on, a sharp peak at low velocity
appears both in the fluorescence and absorption spectra. De-
tuning of the cycling light in that experiment is such that the
final velocity is about 25 m s−1.

These signals are recorded scanning the frequency of a
probe beam making an angle θ with the atomic beam. A given
detuning � of the probe from resonance corresponds to the
excitation of the velocity class v = λ�/ cos θ . The absorp-
tion signal A(�) is then converted into A(v) as in Fig. 8 from
which typical output velocity v , velocity spread δv , and maxi-
mum absorption Amax can be estimated. The atom flux � then
reads

� = c sin θ cos θ D
Amaxvδv

λ�σ0
, (5)

where c is a numerical parameter near unity;14 �, σ0, and D
denote the transition decay rate, the resonant cross section,
and atomic beam diameter.

On a separate experiment, we spatially scan a small probe
beam across the atomic beam. The atom density exhibits a
trapezoid shape. The measured length of the parallel sides
are 20 and 30 mm so we take D = 25 mm. It corresponds
well to the free expansion of the collimated beam from the
CF16 output of the Zeeman slower. Then, the typical es-
timated flux for a maximum absorption Amax = 0.6% is �

= 4 × 1010 atoms/s.
The flux increase with oven temperature is plotted in the

inset of Fig. 8. Typical experiments are carried at T1 = 130 ◦C
for which we get an intense slow beam of 2 × 1010 atoms/s.

FIG. 8. (Color online) Red/gray: thermal beam fluorescence signal. Black:
absorption and fluorescence signals of the slowed beam; axis break on fluo-
rescence signal. Inset: temperature dependence of the atom flux; line to guide
the eye.
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FIG. 9. (a) Final velocity as a function of Zeeman cycling light detuning
(I = 4.7 mW cm−2). Line: linear fit, the slope is 0.95 m s−1/MHz. (b) Atom
flux as a function of final velocity.

Finally, we measured little influence of the entrance end
cap on the atom flux and a moderate increase, 10 ± 5%, with
the output one.

B. Velocity distribution

Naturally, the Zeeman cycling light detuning strongly af-
fects the atom beam velocity distribution (Fig. 9). A linear
dependence of the final velocity in the detuning is observed.
The actual slope is on the order of that expected from a simple
model dv/dδ = 2π/k = 0.78 m s−1/MHz but slightly higher
and intensity-dependent.17

Besides, the atom flux is roughly constant for final ve-
locities above 40 m s−1. Below this value, the flux measured
in the chamber 125 mm downstream decreases. Indeed, the
beam gets more divergent and atoms are lost in collisions with
the walls of the vacuum chamber.

C. Needed laser powers

Figure 10 demonstrates that comparable amounts of cy-
cling and repumper light are necessary. With a total power of
100 mW we get a non-critical operation of the Zeeman slower
at its best flux and a final velocity of 30 m s−1, well suited
for efficient MOT loading. The equivalent intensity is about
24 mW cm−2. However, as we shall see now, a lot of power
can be saved with a more elaborate strategy.

D. Repumper

In the results reported until now, repumping and cycling
light have the same polarization: linear and perpendicular to

FIG. 10. (Color online) (a) Atom flux as a function of cycling and repumper
beams powers. (b) Cross section along the white dotted line corresponding to
a total available power of 100 mW. Power ratio is measured with a scanning
Fabry-Perot interferometer.

FIG. 11. (Color online) (a) Atom flux as a function of repumper frequency.
� f is the beat note frequency of the repumper with an auxiliary laser locked
on the F = 2 → F ′ = 3 resonance line; red/gray circles/black squares: re-
pumper polarization perpendicular/parallel to the magnetic field. (b) Atom
flux as a function of repumper power (log scale) when its frequency is fixed
(black) or swept (red/gray) across the full spectrum of left panel.

the magnetic field, a state commonly referred to as linear σ

recalling that it is a superposition of σ± states.16 If no com-
mon amplification in a tapered amplifier is used, polariza-
tions are likely to be orthogonal. The repumper polarization
is then parallel to the magnetic field i.e., a π state. When
the repumper frequency is varied as in Fig. 11(a) very dif-
ferent spectra for the two configurations are observed. Effi-
cient repumping occurs with more or less well defined peaks
spread over about 2 GHz and roughly centered around the
F = 1 → F ′ = 2 transition. This means that several depump-
ing/repumping pathways are involved, probably occurring at
localized places along the Zeeman slower.

It is not easy to get a simple picture of what is happening:
a complete ab initio simulation of the internal dynamics is not
simple due to the large number of Zeeman sublevels (24 in to-
tal for all the ground and excited states), the multiple level
crossings occurring in the 50–200 G range, and high light
intensities. However, one can overcome this intricate inter-
nal dynamics by sweeping quickly (typically around 8 kHz)
the repumper frequency over all the observed peaks. With a
low-pass filter, the central frequency remains locked on the
side of the Doppler profile. Doing so, we get a slightly higher
flux for significantly less repumper power, typically 10 mW
(Fig. 11(b)).

E. MOT loading

A final demonstration of the Zeeman slower efficiency is
given by monitoring the loading of a MOT. It is made from
3 retroreflected beams 28 mm in diameter (FW at 1/e2). We
use 10–20 mW and 1–3 mW of cycling and repumper light
per beam. When the Zeeman slower is on with a final veloc-
ity of 30 m s−1, a quasi-exponential loading is observed with
characteristic time τ ∼ 320 ms for magnetic field gradients
on the order of 15–20 G cm−1. After 1 s or so, the cloud
growth is complete. From absorption spectroscopy, we de-
duce a density n = 1.4 × 1010 atoms cm−3. The typical cloud
size is 12 mm so we estimate the atom number to be on the
order of N = 2 × 1010. These figures are consistent with the
above measurements of an atom flux of several 1010 atoms/s
and nearly unity capture efficiency. As expected, thanks to the
high magnetic field in the slower, the Zeeman beams are far
detuned and do not disturb the MOT.
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VII. CONCLUSION

We have presented a simple and fast to build, robust
Zeeman slower based on permanent magnets in a Halbach
configuration. Detailed characterization shows it is an
efficient and reliable source for loading a MOT with more
than 1010 atoms in 1 s. Without power nor cooling water con-
sumption, the apparatus produces homogeneous and smooth
high fields over the whole beam diameter and low stray
fields. It also simplifies high-temperature bakeout. We thus
believe it to be a very attractive alternative to wire-wound
systems.
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Chapter 3

Arrays of single Rydberg atoms

J’entrai pas au cri
d’«À nous deux Paris »
en Île-de-France. . . 1

3.1 Introduction

Over the last thirty years, tremendous progress has been done in the manipulation of single
quantum objects, such as single photons or single ions, allowing the actual realization in
the lab of what was considered as Gedankenexperimente by the founding fathers of quan-
tum mechanics. These remarkable achievements were honored by the award of the Nobel
Prize in Physics in 2012 to Serge Haroche and David Wineland [51, 132]. The degree
of control achieved nowadays, using a variety of different experimental platforms such as
trapped ions, ultracold atoms, single photons, superconducting circuits, NV centers, quan-
tum dots. . . , together with the motivation of applications such as quantum information
processing [89], quantum metrology [42], and quantum simulation [39], has given birth
to a whole new field that can be called quantum engineering. Among all the explored
platforms, the ones using Rydberg atoms appear to be extremely promising.

Rydberg states of atoms correspond to highly excited atomic states, with a principal
quantum number n � 1. This gives Rydberg atoms exaggerated properties. They have
a size scaling as n2 and thus a very large electric dipole moment: the matrix element of
the dipole moment operator between two adjacent states is on the order of n2ea0 where
a0 is the Bohr radius, and e the elementary charge. Moreover, they have long lifetimes
(scaling as n3 for low angular momentum states). Rydberg atoms, due to their similarities
with hydrogen, have played a very important role in the early days of quantum mechanics
and atomic physics. The advent of tunable lasers at the end of the seventies triggered
a regain of interest in the physics of Rydberg atoms, which were an ideal testbed for
studying coherent interactions between atoms and the electromagnetic field [32]. This
second ‘golden age’ of Rydberg physics culminated in the cavity QED experiments by the

1Georges Brassens, Les ricochets (1976).
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Haroche group [52], among others.
Due to their very strong electric dipoles, two Rydberg atoms separated by a distance R

interact very strongly with each other via the dipolar interaction, either at first order (one
then deals with a resonant dipole-dipole interaction U = C3/R

3, where C3 scales as n4)
or at second-order (in this case, one deals with the van der Waals interaction U = C6/R

6

where C6 scales as n11). Figure 3.1a, taken from Ref. [111], shows that interactions between
two Rydberg atoms with n ∼ 100 and separated by a few microns are about twelve orders
of magnitude higher than between ground-state atoms, reaching several MHz.

These exaggerated properties of Rydberg states are at the origin of the third ‘golden
age’ of Rydberg physics, which started some fifteen years ago. Pioneering proposals [58, 77]
were put forward in the early 2000s’, following early experimental studies of interactions
in cold Rydberg gases [4, 85], and suggested to use cold Rydberg atoms for quantum
information processing. The basic mechanism at work is the Rydberg blockade (figure 3.1b).
Consider that for a single atom, one couples, using a resonant laser, the ground state |g〉
to the Rydberg state |r〉 with a Rabi frequency Ω. Now suppose that two atoms are close
to each other, such that, due to interactions, the collective state |rr〉 undergoes a shift
U � ~Ω. Then, when one shines the same resonant laser on the pair of atoms, the system
can be resonantly excited from |gg〉 to |rg〉 or |gr〉, but a second excitation to |rr〉 is off-
resonant and thus strongly suppressed: this is the essence of the Rydberg blockade. One
readily shows that in this case, the system undergoes a collective Rabi oscillation, with an
enhanced Rabi frequency Ω

√
2, between |gg〉 and the entangled state

(
|rg〉+ eiφ |gr〉

)
/
√

2
(the phase φ has a well-defined value, that depends on the relative positions of the atoms
and on the wavevectors of the lasers used for Rydberg excitation). This can be extended
to N atoms: if all atoms are close enough such that the interaction between any two atoms
exceeds the single-atom Rabi coupling Ω (i.e. the sample size is smaller than the so-called
blockade radius), then the system oscillates at a frequency Ω

√
N between the collective

ground state and a W-state where a single Rydberg excitation is delocalized over the N
atoms.

Following these proposals, Rydberg blockade effects were experimentally observed in
cold atomic ensembles, first in MOTs [124, 120] and then in BECs [55] and optical lat-
tices [115] (for a more complete list of references, see e.g. Refs. [26, 68]). However, in
such ensembles one deals in general with (i) a sample larger than the blockade radius, and
(ii) with fluctuating atom numbers, which makes the observation of collective Rabi oscil-
lations difficult. This was solved in 2009 by our group and by the group of Mark Saffman:
using two individual atoms trapped by optical tweezers separated by a controlled distance,
Rydberg blockade and collective enhancement were observed [38, 125]. These works were
soon extended by using the blockade to create entanglement of two atoms in the ground
state [131] and to realize a C–NOT gate [56].

Based on these successful demonstrations, it appeared very promising to try and extend
those studies to a larger number of individual atoms held in arrays of optical microtraps,
thus creating an appealing platform not only for quantum information processing [111],
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Figure 3.1: (a): Interactions between Rydberg atoms with n ∼ 100 reach several MHz for distances
as large as several micrometers. Figure taken from [111]. (b): Principle of the Rydberg blockade.

but more generally for quantum engineering. In particular, arrays of single atoms inter-
acting via strong Rydberg dipolar interactions have strong assets to implement quantum
simulation with neutral atoms, using a bottom-up approach similar to the one of trapped
ions, complementary to the top-down approach using quantum gases loaded in optical
lattices [16].

The Rydberg blockade experiment of Refs. [38, 131] were performed on the pioneering
single-atom trapping setup built in the Quantum Optics group of LCF at the end of the
1990s’, around a custom-made high numerical aperture objective (NA = 0.7) made of
nine lenses [118]. The setup had not been designed in view of experiments with Rydberg
atoms, and lacked, among other things, of any control of electric fields. In the meantime,
the group had demonstrated that single-atom trapping, with similar performance, could
be achieved using much simpler aspheric lenses [121] instead of a complicated objective.

Antoine Browaeys thus initiated in 2009 the construction of a whole new setup, ded-
icated to the creation of arrays of single atoms held in microtraps, and interacting when
excited to Rydberg states. The project benefited from funding by the ERC, and started at
the end of 2010 with a team composed of a PhD student, Lucas Béguin, and a post-doc,
Aline Vernier. My arrival in the group in January 2012 coincided with the first signals
of single atoms in the new setup2, that I’ll describe briefly in the next section. For an
in-depth description, the reader is referred to the PhD theses of Lucas Béguin [8] and
Sylvain Ravets [103].

3.2 Overview of the Chadoq experiment

Our setup combines essentially three techniques: the trapping of single 87Rb atoms in
optical tweezers, the creation of arrays of tweezers using a spatial light modulator, and
the excitation of the atoms to Rydberg states.

2In the group, the experiment is known as Chadoq, for Contrôle Holographique d’Atomes pour la Dé-
monstration d’Opérations Quantiques.
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Figure 3.2: (a): Schematic view of the experimental setup. (b): The fluorescence signal of a single
atom, showing a characteristic telegraph-like behavior. (c): A gallery of fluorescence signals correspond-
ing to individual atoms trapped in arrays of optical tweezers created with the SLM.

Single-atom trapping

Figure 3.2(a) shows a schematic view of our experimental setup. The heart of the ma-
chine consists of two commercial aspheric lenses (N.A. = 0.5, focal length 10 mm, working
distance 7 mm) that are facing each other inside the vacuum chamber, and with which
we focus a laser beam at 850 nm down to a 1/e2 radius of about 1 µm. This creates an
optical dipole trap, with a typical depth of about 1 mK for a power of about 3 mW. The
transverse and longitudinal frequencies are about 80 kHz and 15 kHz respectively.

We load this conservative microtrap from a low-density optical molasses created around
it. From time to time, an atom undergoing diffusion in the molasses enters the microtrap
and is cooled down by the molasses beams while being captured in the tweezers, so that
it remains trapped there. Now, if a second atom enters the trap, a light-assisted collision
occurs and results in the loss of both atoms; due to the small volume of the trap, this occurs
on a timescale of a few tens of microseconds, much faster than the rate of entry of atoms
into the tweezers at low molasses density. Therefore, observed with a time resolution of
several milliseconds, the trap occupation alternates randomly between zero and one: one
obtains a single-atom source, albeit a non-deterministic one, the probability for the trap
to contain a single atom being 50%. The rate at which the toggling occurs can be varied
easily by varying the density of the optical molasses cloud (e.g. by adding a very weak
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magnetic field gradient, turning the molasses into a low-density MOT).
We observe this loading dynamics by collecting, using the same aspheric lens, the

fluorescence emitted at 780 nm by the atom, separating it from the trapping light with a
dichroic mirror, and imaging it on a sensitive detector. Figure 3.2(b) shows a typical signal,
obtained by collecting the emitted photons for 20 ms on a fiberized avalanche photodiode.
One observes two well-defined fluorescence levels, a low one and a high one, corresponding
respectively to the absence and to the presence of one atom in the microtrap. By defining
a threshold, one thus unambiguously triggers an experimental sequence as soon as the trap
is loaded.

Creating arrays of microtraps

In order to create arrays of optical tweezers, we use a spatial light modulator (SLM)
to imprint an arbitrary phase on the trapping beam prior to focusing [92]. Despite the
fact that the SLM only permits to manipulate the phase of the laser beam, and not its
amplitude, the use of the Gershberg-Saxton (GS) algorithm [40] allows one to obtain
a good approximation of any desired target intensity pattern in the focal plane of the
lens. This allows us to create arbitrary, two-dimensional arrays of microtraps as shown
in figure 3.2(c). The versatility of the SLM is also used for improving the quality of our
arrays of traps [92]:

• Despite the care with which the optical setup was designed and built, we still have
small residual optical aberrations, which degrade the quality of large arrays. By
measuring them using a Shack-Hartman sensor, and adding to the SLM phase pattern
the opposite of the measured wavefront distortion, we drastically improve the quality
of the microtraps (in particular their depth).

• In large arrays, despite the fact that the target intensity corresponds to an array with
all traps of the same intensity, the ones obtained in practice show a relatively large
dispersion in the observed trap intensities (of up to a factor of two). This would prove
detrimental for loading single atoms with 50% probability in the traps. We solve
this problem by implementing an active improvement of the uniformity of the arrays
of traps. For a given array, we first calculate an initial phase pattern for the SLM
using the GS algorithm. We then measure, at the output of the vacuum chamber,
the intensity of each tweezers on a CCD camera conjugated with the atoms’ plane.
Some traps are too dim, while others are too intense. We use this information to
calculate a new target intensity, where the intensity of the traps that were previously
too intense is reduced, and vice-versa. We use this new target intensity as an input
for the GS algorithm, while keeping, as the initial guess for the phase, the previously
calculated grating. Iterating this procedure for about 20 times allows us to obtain
for instance arrays of 100 traps with an rms deviation of the intensities below 1.5%.

We thus have a very satisfactory way, using the SLM, to generate high quality, arbitrary
2D arrays of microtraps. However, the SLM refreshing rate being of only a few tens



68 Chapter 3. Arrays of single Rydberg atoms

of Hz at most, these arrays are, for all practical purposes, static on the timescales of the
experiment. For many experiments however, it is desirable to have the possibility to single
out temporarily at least one atom among all the ones confined in the array. For this
purpose, we have included in our setup an extra addressing beam [66]. The principle is
straightforward: we superimpose onto the trapping beam an extra beam at 850 nm (with a
frequency shift of a few hundreds of MHz with respect to the trap beam), whose intensity
and position can be controlled fast using two crossed AOMs, and which is focused to a
1/e2 radius of about 1.3 µm at the position of the atoms. This beam introduces an extra
light shift on the selected atom when it is in the ground state, which can be used for many
applications:

• We can selectively excite to Rydberg states either only the selected atom, either all of
them but this one. In [66] we demonstrated this addressing, without any measurable
cross-talk between atoms separated by 3 µm.

• We can manipulate collective quantum states. For instance, using the Rydberg
blockade we first prepare two atoms in the ‘super-radiant’ state∣∣∣ψ+

〉
= |gr〉+ |rg〉√

2
. (3.1)

We then illuminate the second atom with the addressing beam for a carefully chosen
time so as it acquires a phase-shift of π when in |g〉 (the 850 nm beam induces a
negligible light shift on the Rydberg state |r〉), and we thus obtain, again as shown
in [66], the ‘sub-radiant’ state

∣∣ψ−〉 = |gr〉 − |rg〉√
2

. (3.2)

• Finally, we plan to use this addressing beam as a movable tweezers [11], that should
allow us to drag atoms along in the array, for instance to sort out a disordered array.

Manipulating Rydberg atoms

For exciting the atoms to Rydberg states (figure 3.3(a)), we use a standard two-photon
transition, with a first photon at 795 nm, detuned by ∆ = 2π × 740 MHz above the∣∣∣5S1/2, F = 2

〉
↔

∣∣∣5P1/2, F = 2
〉

line, and a second photon in the blue, at 474 nm, to

excite Rydberg states
∣∣∣nD3/2,mj = 3/2

〉
(with 50 6 n 6 100). Both lasers are stabilized

using an ultrastable ULE cavity, resulting in a global linewidth that we estimate to be
about 30 kHz. The Rabi frequencies ΩR and ΩB on those two transitions are typically of
a few tens of MHz, resulting in an effective Rabi coupling Ω = ΩRΩB/(2∆) of typically
1 MHz (beyond Rabi frequencies of 5 MHz, we start to suffer strongly from spontaneous
emission from the intermediate 5P1/2 state).

We detect the successful Rydberg excitation of an atom in a rather crude, but actually
quite effective, way: an atom excited to a Rydberg state with n > 50 has a radiative decay
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Figure 3.3: (a): The two-photon Rydberg excitation scheme and an example of a single-atom Rabi
oscillation between the ground state and the Rydberg state

∣∣82D3/2,mj = 3/2
〉
. (b): Finite-element

method simulation of the set of electrodes placed around the aspheric lenses. In the given configuration,
we apply an electric field along the z-direction. (c): Rydberg blockade with two atoms separated by
4 µm and excited to |r〉 =

∣∣62D3/2,mj = 3/2
〉
. The top panel shows a Rabi oscillation for a single

atom, to calibrate the Rabi frequency Ω. The middle panel shows the probability Pgr + Prg to excite
only one atom to the Rydberg state, clearly showing the collective enhancement of the Rabi frequency
by a factor

√
2. Finally, the bottom panel showing the probability Prr to excite both atoms to |r〉

illustrates strikingly the blockade. Figure adapted from [9].

time to the ground state in excess of 100 µs, and is not trapped (actually it is slightly
repelled) by the optical tweezers. Due to its finite thermal velocity (about 70 nm/µs for
our typical T ' 50 µK), it thus has ample time to escape the trapping region before
decaying back to the ground state. This means that at the end of a sequence, when we
switch on again the tweezers and the MOT beams to induce fluorescence, a Rydberg atom
manifests itself as a missing atom in the trap. We repeat an excitation sequence for about
100 times and then reconstruct the various probabilities for each atom of the array to be
either in |g〉 or in |r〉. An example of a Rabi oscillation between the ground state and the
Rydberg state

∣∣∣82D3/2,mj = 3/2
〉
is shown in Figure 3.3(a).

For a sequence without a Rydberg excitation pulse, a ground-state atom as a non-zero,
but small, probability ε ' 3% to be lost (essentially due to collisions with the background
gas), and thus to be mistakenly inferred to be in a Rydberg state. This distorts the
measured populations, but this can be corrected for if needed, following the procedure
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described in [119]. The converse detection error (i.e. recapturing an atom that actually
was excited transiently to a Rydberg state) can be estimated to be well below 1%, and
thus negligible at our level of accuracy.

Rydberg atoms are extremely sensitive to electric fields (their static polarizability scales
as n7 with the principal quantum number n). We have thus designed our setup to mini-
mize stray fields, and to allow for compensating them: (i) the aspheric lenses are coated
with transparent, conductive 200 nm-thick layer of indium-tin oxide (ITO); (ii) eight in-
dependent electrodes placed around the lenses allow for applying controlled fields pointing
in any direction [figure 3.3(b)]. Using Stark spectroscopy on a single atom, we measured a
residual field of about 150 mV/cm without compensation, that could be corrected to bet-
ter than 5 mV/cm by applying appropriate voltages on the electrodes. We also used the
electrodes to tune electrically the interactions between the atoms at a Förster resonance
(see section 3.3 below).

A final, very useful tool to manipulate Rydberg atoms is microwave radiation, which
couples together various Rydberg states. In [6] for instance, we used a microwave antenna
placed outside the vacuum chamber, above the top viewport, to induce transitions at
about 9.1 GHz between the states 62D3/2 and 63P1/2. More recently, we extended this
to the 20.1 GHz transition 62D3/2 ↔ 64P1/2. This degree of freedom allows to tune the
strength of the interactions (see 3.3). Moreover, due to the giant dipole matrix elements
between Rydberg states, a very moderate microwave power is enough to drive fast Rabi
oscillations, in the range of several MHz, between the chosen levels.

As a first test of our experimental setup, we performed two-atom blockade experiments,
and observed the collective Rabi oscllations and the suppression of double excitations of an
unprecedented quality, as can be seen on figure 3.3(c). However, in order to perform a more
sensitive assessment of the quality of our apparatus, we embarked on detailed quantitative
measurements of the different types of interactions existing between two atoms in Rydberg
states.

3.3 Interactions between two single Rydberg atoms

At the large interatomic distances R > 3 µm and the principal quantum numbers n < 100
that are relevant for our experiments, the size ∼ n2a0 of the electronic wavefunction of
Rydberg states is negligible as compared to R. Thus the interaction between atoms is
essentially given by the dipole-dipole Hamiltonian

Vddi = 1
4πε0

d1 · d2 − 3(d1 · n)(d2 · n)
R3 , (3.3)

where n is the unit vector joining the positions of the two atoms, and di is the electric dipole
moment operator of atom i. One can easily check that higher-order terms in the multipole
expansion, such as dipole-quadrupole interactions, quadrupole-quadrupole interactions,
and so on are completely negligible for our experimental parameters.
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The perturbative effects of this interaction Hamiltonian on a pair of atoms depends
on which Rydberg states the atoms are prepared in, and on the distance R between them.
Let us assume first that both atoms are prepared in the same state, e.g. a D state; we
shall denote this pair state as |dd〉 for short. As atomic eigenstates have a definite parity,
the average value of the dipole moment (an odd-parity operator) in the state |d〉 vanishes.
This means that (3.3) has no effect to first order of perturbation theory. Therefore, the
dipolar interaction manifests itself only at second-order, giving rise to an energy shift of
the level |dd〉 given by the usual expression

∆E =
∑
φ,φ′

|〈φφ′|Vddi|dd〉|2

2Ed − Eφ − Eφ′
, (3.4)

where |φ〉 , |φ′〉 denote single-atom states that are dipole-coupled to |d〉. This shift, being
second-order in (3.3), scales as C6/R

6, and is nothing else but the van der Waals inter-
action. It is straightforward to evaluate how the C6 coefficient scales with the principal
quantum number n: the dipole matrix elements for an atom scale as n2, whence a n8

scaling of the numerators in (3.4); the energy denominators, on the other hand, scale as
n−3, and thus C6 ∼ n11, an extraordinarily fast scaling.

This perturbative treatment fails when the interatomic distance R becomes too small,
such that the couplings ∼ C3/R

3 between different pair states start to be on the same
order as the energy difference between them. In this case, one generally needs to diago-
nalize numerically the full Hamiltonian. However, in some cases, a single pair state has an
energy very close to the energy of the original |dd〉 state, and the situation becomes very
simple as one deals with essentially two coupled levels. This phenomenon has been called
in the Rydberg community a Förster resonance, due to its analogy with the phenomenon
of fluorescence resonance energy transfer in photochemistry, that was understood quanti-
tatively in 1948 by Theodor Förster [36, 25]. The two coupled pair states have in general
different polarizabilities, and therefore, by applying a small electric field, one can tune
them into exact resonance. The dipole-dipole interaction then leads to new eigenstates,
that are symmetric and antisymmetric combinations of the initial pair states, and that are
split by an interaction energy scaling as 1/R3.

Finally, another way to observe a resonant dipole-dipole interaction between two Ryd-
berg atoms is to prepare them initially in two different, dipole-coupled states, for example
a P and a D state. Then, the two pair states |dp〉 and |pd〉 are automatically always
resonant, and the resonant dipole-dipole interaction scaling as C3/R

3 is observed.
In a series of experiments aiming at benchmarking our experimental setup, we have

measured quantitatively these different variants of the dipolar interaction between a pair of
individual atoms located at controlled positions. As compared to studies using ensembles of
atoms where interaction effects tend to be averaged over all the pairwise atomic separations
(see [26] and references therein), we could (i) measure directly the scaling with distance
and the angular dependence of the interaction, and (ii) observe its coherent character
in time-resolved experiments. We have successively studied van der Waals interactions,
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Förster resonances, and resonant dipole-dipole interaction between two different Rydberg
states:

• In [9], we measured the van der Waals interaction between two atoms prepared
in the state

∣∣∣nD3/2,mj = 3/2
〉

(and with the internuclear axis aligned along the
quantization axis) as a function of their distance R, for principal quantum num-
bers n = 53, 62, 82. For that, we worked in a partial blockade regime, where the
single-atom Rabi frequency Ω is comparable to the interaction U . The dynamics
of the populations of the four two-atom states |gg〉 , |rg〉 , |gr〉 , |rr〉 then depends on
both Ω (which is measured in a calibration experiment with only one atom) and on
U . Fitting the observed dynamics with U as the only adjustable parameter allows
one to extract an accurate value of the interaction. In [7], we studied the angular
dependence of the van der Waals interaction, which is isotropic for S states but
anisotropic for D states.

• In [105], we studied the
∣∣∣59D3/2, 59D3/2

〉
↔
∣∣∣61P1/2, 57F5/2

〉
Förster resonance of

87Rb, using our ability to apply arbitrary electric fields using our electrodes to tune
the pair states into resonance. We first performed a spectroscopic study to determine
the exact value of the electric field giving rise to the avoided crossing between the
two pair states, and checked that the splitting at resonance indeed scales as 1/R3

with distance. In a second step, we studied the interaction in the time domain,
by preparing first the system in |dd〉, and then switching abruptly (with a risetime
of about 10 ns) the electric field to resonance, for an adjustable time T . A final
optical readout pulse then allowed us to measure the probability for the pair of
atoms to be in |dd〉, showing coherent oscillations between the two coupled pair
states, at a frequency ∝ C3/R

3. In a subsequent experiment, we measured the
angular dependence of the dipolar interaction at resonance, clearly observing the
characteristic variation 1 − 3 cos2 θ of the interaction with the angle θ between the
internuclear axis and the quantization axis [104]. As compared to earlier studies
of Förster resonances in disordered ensembles comprising a large number of atoms
[112, 86, 128, 106, 107, 90, 91], our pristine system consisting of only two atoms at
controlled positions makes it possible to study directly the spatial dependence of the
interaction and to observe its coherent character.

• Finally, in [6] we studied the resonant dipole-dipole interaction between two atoms
prepared in different Rydberg states, namely |↑〉 ≡

∣∣∣62D3/2,mj = 3/2
〉
and |↓〉 ≡∣∣∣63P1/2,mj = 1/2

〉
. The dipole-dipole interaction then couples the states |↑↓〉 and

|↓↑〉, with a strength scaling as C3/R
3. Here again, in contrast to experiments in

disordered atomic ensembles [4, 85, 126, 48, 10], we could measure the R-dependence
of the interaction. In this case, we extended our measurements all the way up to
R = 50 µm, a very large distance on the atomic scale. When considering the two
coupled Rydberg states as the two eigenstates of a pseudo-spin 1/2, the dipole-
dipole Hamiltonian can be recast in the form of an XY spin Hamiltonian (i.e. a
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Figure 3.4: Log-log plot of the measured interactions energies E between two single Rydberg atoms
separated by a distance R, in the van der Waals regime (green points, data taken from [9]), at a Förster
resonance (red points, data taken from [105]), and for the resonant dipole-dipole interaction between
two distinct Rydberg states (blue points, data taken from [6]). The solid lines are the theoretical values,
without any adjustable parameters.

spin-exchange Hamiltonian), so this study can be considered as the demonstration
of an elementary building block for the quantum simulation of spin Hamiltonians.

Figure 3.4 summarizes, on the same log-log plot, the distance dependence of the inter-
action energies we have measured for two Rydberg atoms with n ' 60, in the various cases
of the van der Waals interactions (green), resonant dipolar interaction at a Förster reso-
nance (red), and the resonant dipolar interaction between two different states (blue). The
solid lines correspond to ab-initio calculations of the interactions, without any adjustable
parameters. The excellent agreement between data and calculations shows that the level
of control achieved with our setup is encouraging in view of experiments involving more
atoms.

3.4 Prospects: towards many atoms

The next step is to extend our studies to many atoms, ideally several tens of particles.
Over the last year, we have already made significant progress along those lines.

Understanding technical imperfections

We have first studied systems of three atoms, observing both van der Waals blockade [7]
and resonant dipole-dipole interaction [6]. In the latter case, we studied the propagation
of a single spin excitation in a three atom-chain initially prepared in |↑↓↓〉, and obtained
clear experimental evidence for long-range hopping of the excitation (see figure 3.5).



74 Chapter 3. Arrays of single Rydberg atoms

Figure 3.5: Long-range hopping of a spin excitation along a three-atom chain [6]. (a) Theoretical
calculations for the ideal case where the system is initially in |↑↓↓〉. (b) Experimental data (points) and
solution of a model without any adjustable parameters, taking into account the independently measured
experimental imperfections (solid line).

One of the main interest of those two studies was to understand quantitatively some
of the technical limitations of our experimental approach. A first issue is the finite tem-
perature of the atoms in the tweezers (around 50 µK), which leads to (i) shot-to-shot
fluctuations in the distances between the particles, and therefore in their interactions, and
(ii) to a residual motion of the atoms during the interaction time (which occurs in free
flight). Both effects contribute to dephasing in the dynamics, and might be detrimental
when the number of atoms scales up. Raman sideband cooling of neutral atoms held in
optical tweezers similar to ours was demonstrated recently in [60, 123], which means that
this limitation can be circumvented in principle. A second issue is related to the state
detection, which shows small errors as described above, due to the probability ε 6= 0 to
lose a ground-state atom during the sequence and thus to infer incorrectly that it was in
a Rydberg state. Here again however, this can be corrected following the ideas of [119],
which are routinely implemented in ion-trap based quantum simulations (see e.g. [57]).

Loading the microtrap arrays

One major limitation of our approach so far is that the loading of microtraps by single
atoms is non-deterministic. The average time for an array of N traps to be fully loaded,
starting from an empty array, increases exponentially with N , roughly as 2N as N →∞.
In practice, we could perform experiments with up to 9 atoms [65], but then the duty
cycle of the experiment becomes very long, with a single shot every minute on average,
which requires acquisition times of several hours to record the dynamics of the system with
sufficient statistics. Except for some experiments in which one could content oneself with
a sparse (50%) loading of the arrays, we will thus need to investigate quasi-deterministic
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loading schemes in the near future. Several approaches have been suggested or even
demonstrated at the level of a proof of principle:

• In [46], a blue-detuned ‘collision beam’ was used to ensure that in a tweezers loaded
with several 85Rb atoms, light-assisted collisions gave rise to the loss of only one
atom out of the two involved in the collision. This allowed the authors to achieve
single-atom loading probabilities in excess of 80% in a microtrap. It remains to be
checked whether this approach works for 87Rb, and for large arrays of tweezers.

• Another possibility is to use the Rydberg blockade itself, by loading initially each
tweezers with a few atoms, exciting only one of them to a Rydberg state using the
Rydberg blockade, and removing the remaining ground-state atoms with a push-
out beam. Preliminary results by the Wisconsin group, reported in [31], achieved
only a modest increase in the single-atom loading probability of the tweezers, which
reached about 60%, too low for the method to be of a practical interest so far. The
idea however probably deserves to be investigated further.

• Finally, a different approach to the loading of an array of N traps would consist
in starting with a larger array containing 2N traps, loading it sparsely to have
∼ N single atoms, and then sorting the atoms, using a movable optical tweezers, to
fully load the N traps of the array of interest. This is certainly quite challenging
technically, but this type of approach has already been demonstrated in similar
setups [82, 117].

Future experiments

With the current status of the setup, several appealing directions for future experiments
become realistic.

A first one deals with basic demonstrations of building blocks for quantum information
processing. Having already demonstrated Rydberg blockade with up to about ten atoms, a
natural follow-up experiment will be to demonstrate the generation of entangled W states
where the qubit is encoded in two hyperfine levels of the ground state of the atom, as was
done for two atoms in [131]. In particular, what kind of fidelities can be achieved, and
what limits it when we scale up the number of qubits, remains an open question. Such a
study can then be generalized to the generation of other classes of entangled states, such as
for instance GHZ states, still using the Rydberg blockade but with slightly more involved
protocols that amount to implementing collective C-NOT gates [83, 87].

Another line of research deals with quantum simulation [129], in particular of spin
Hamiltonians. A system of atoms interacting via van der Waals interactions when in the
Rydberg state can be described by an Ising-type Hamiltonian

HIsing =
∑
i<j

C6
|ri − rj |6

σ(i)
z σ(j)

z (3.5)
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Figure 3.6: The various AMO platforms for quantum simulation of spin Hamiltonians: ultracold
atoms in optical lattices, ultracold dipolar gases in lattices, trapped ions, and Rydberg atoms in arrays
of tweezers. Here I have sorted them according to two important parameters for a quantum simulator
(numbers of simulated spins and range of the couplings), but many other parameters could be listed
(dimensionality, ease with which the geometry of the lattice can be changed, absolute strengths of the
couplings. . . ). Depending on the specific problem to be solved by quantum simulation, some platforms
will presumably be more adapted than others, but the Rydberg one certainly has interesting assets: in
particular, it is two-dimensional, the couplings are very large and extend beyond nearest-neighbors, the
geometry of the system can be changed very easily. . .

where the pseudo-spin-1/2 states corresponds to the atom being in |g〉 or |r〉, and where
single-particle terms (that can be absorbed in a ‘longitudinal field’ Hamiltonian) have been
removed for simplicity. The term ∼

∑
i Ωσ(i)

x describing the laser coupling is equivalent to
a transverse magnetic field. This quantum Ising model in a transverse field is one of the
most basic models displaying quantum phase transitions [109]. In [116], adiabatic sweeps
of the laser detuning and Rabi frequency were used to map out the phase diagram of this
model in 2D.

In contrast, the resonant dipole-dipole interaction between two different Rydberg states
|r1〉 and |r2〉 can be recast in terms of a spin-exchange, or XY Hamiltonian:

HXY =
∑
i<j

C3
|ri − rj |3

(
σ

(i)
+ σ

(j)
− + h.c.

)
. (3.6)

Here, the spin states correspond to the two Rydberg states |r1,2〉. It is possible to map the
spin excitations of this model onto hard-core bosons, the exchange of excitation between
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two atoms corresponding to (long-range) hopping of the corresponding bosons. Our three-
atom spin chain experiment [6] corresponds to the smallest non-trivial instance of this
model. In future work, in collaboration with Thomas Pohl’s group in Dresden, we plan
to find pairs of states for which the resonant dipole-dipole interaction and the (always
present) van der Waals interaction are comparable in strength. In this case, one realizes
a XXZ Heisenberg Hamiltonian, with some couplings slowly decaying as 1/R3, which is
expected to display new, exotic properties [53, 96].

I thus believe that our system will be an interesting platform for the simulation of spin
Hamiltonians, complementary to the other approaches using the tools of atomic physics,
namely ultracold atoms or molecules in optical lattices and trapped ions (see e.g. [54] and
references therein), as illustrated on Figure 3.6.

In the long run, one can envision to use the rich internal structure of Rydberg states to
implement more complex Hamiltonians. For instance one could use two types of excitations
to implement the equivalent of a Hubbard model with two species of hard-core bosons.
The dipole-dipole interaction then naturally introduces a spin-orbit coupling for the motion
of these excitations, which opens interesting perspectives for the quantum simulation of
topological matter displaying e.g. edge states, that we could image directly [98].
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• D. Barredo et al., Phys. Rev. Lett. 112, 183002 (2014), reproduced on page 92.

• H. Labuhn et al., Phys. Rev. A. 90, 023415 (2014), reproduced on page 97.

• S. Ravets et al., Nature Phys. 10, 914 (2014), reproduced on page 101.

• D. Barredo et al., Phys. Rev. Lett. 114, 113002 (2015), reproduced on page 105.
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L. Béguin,1 A. Vernier,1 R. Chicireanu,2 T. Lahaye,1 and A. Browaeys1

1Laboratoire Charles Fabry, Institut d’Optique, CNRS, Univ Paris Sud, 2 avenue Augustin Fresnel, 91127 Palaiseau cedex, France
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We report the direct measurement of the van der Waals interaction between two isolated, single

Rydberg atoms separated by a controlled distance of a few micrometers. Working in a regime where the

single-atom Rabi frequency for excitation to the Rydberg state is comparable to the interaction, we

observe partial Rydberg blockade, whereby the time-dependent populations of the various two-atom states

exhibit coherent oscillations with several frequencies. Quantitative comparison of the data with a simple

model based on the optical Bloch equations allows us to extract the van der Waals energy, and observe

its characteristic C6=R
6 dependence. The measured C6 coefficients agree well with ab initio calculations,

and we observe their dramatic increase with the principal quantum number n of the Rydberg state.

DOI: 10.1103/PhysRevLett.110.263201 PACS numbers: 34.20.Cf, 03.67.Bg, 32.80.Ee

The van der Waals–London interaction UvdW ¼ C6=R
6

between two neutral, polarizable particles separated by a
distance R is ubiquitous in nature. It underlies many
effects, from the condensation of nonpolar gases to the
adhesion of gecko toes [1]. At a macroscopic scale, mea-
suring thermodynamic quantities of a system gives indirect
access to the van der Waals interaction between the
constituent atoms or molecules [2]. Alternatively, one
can directly measure the net force between macroscopic
bodies resulting from the microscopic van der Waals
forces. However, in this case, summing over the underlying
C6=R

6 interactions between individual particles results in
a potential scaling as 1=L�, where L is the separation
between the bodies, and �< 6 is a geometry-dependent
exponent (e.g., � ¼ 1 for two spheres with a diameter
D � L) [1,2].

At the level of individual particles, spectroscopy of
the vibrational levels close to the dissociation limit of a
diatomic molecule, analyzed semiclassically, allows one
to infer the long-range interaction between atoms [3].
Progress in atomic physics has made it possible to measure
van der Waals interactions between ground-state atoms
and a surface (scaling as 1=L3, or even 1=L4 if retardation
plays a role) with a variety of techniques [4]. However,
directly measuring the van der Waals interaction between
two ground-state atoms would be extremely challenging,
due to their very small interaction. In contrast, Rydberg
atoms (atoms with large principal quantum number n)
exhibit very strong interactions that scale rapidly with n.
Using this property, the interaction between Rydberg
atoms and a surface has been measured at relatively large
distances [5,6]. Here, we report on the measurement of
the C6=R

6 interaction between two isolated Rydberg atoms
prepared in a well defined quantum state.

The principle of our experiment is the following. We
irradiate the pair of atoms with lasers that couple the
ground state jgi and the targeted Rydberg state jri with

Rabi frequency �. Depending on the relative strength of
UvdW and @�, two limiting cases can be identified. If
UvdW � @�, the atoms behave independently and the
doubly excited state jrri can be fully populated. On the
contrary, when @� � UvdW, the excitation of jrri is off
resonant and thus suppressed [see Fig. 1(a)], yielding
Rydberg blockade [7–9]. This leads to the appearance of
‘‘blockade spheres’’ inside of which only one Rydberg
excitation can be created. The blockade sphere picture
gives an intuitive understanding of nontrivial many-body
effects in driven systems. Rydberg blockade has been
observed in recent years in extended cold atom ensembles
[10–14] as well as between two atoms [15,16].
In the transition region @��UvdW, i.e., in the partial

blockade regime, the blockade sphere picture is too sim-
plistic: the populations of the various many-atom states
undergo coherent collective oscillations with several fre-
quencies which depend on UvdW. In our two-atom experi-
ment, this allows us to extract the interaction strength.
By measuring UvdW for various R, we observe its charac-
teristic 1=R6 dependence. The measured C6 coefficients,
which scale extremely fast with n, agree well with ab initio
calculations. Our results prove that detailed control over
the interactions between Rydberg atoms is possible; this is
a prerequisite for applications to high-fidelity quantum
information processing [17] and quantum simulation using
long-range interatomic interactions [18].
We use two single 87Rb atoms at a temperature of

50 �K, loaded in 1 mK-deep microscopic optical traps
from a magneto-optical trap [see Fig. 1(b)] [19]. Our new
setup is designed to overcome the limitations of the appa-
ratus used in our early studies of Rydberg blockade [16]
and entanglement [20]. We use an aspheric lens under
vacuum [21] with numerical aperture 0.5 (focal length
10 mm, working distance 7 mm) to focus two 850 nm
trapping beams down to 1:1 �m (1=e2 radius). The dis-
tance R between the traps is varied by changing the
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incidence angle of the beams on the lens. We calibrate R by
measuring the displacement of an image of the trap when
changing the incidence of the trapping beams. The result-
ing uncertainty is below 5% [22].

The aspheric lens used to focus the trapping beams
also collects the atom fluorescence from each trap on
separate photon counters. The two-photon excitation
from jgi ¼ j5S1=2; F ¼ 2; mF ¼ 2i to the Rydberg state

jri ¼ jnD3=2; mj ¼ 3=2i [see the inset of Fig. 1(b)],

described in Ref. [23], yields coherent oscillations with
single-atom Rabi frequencies �=ð2�Þ in the range from
500 kHz to 5 MHz [see Fig. 2(a)]. The excitation pulse has
a duration � (during which the traps are off), and the laser
frequencies are adjusted so that the (light-shift corrected)
one-atom detuning is � ’ 0. After excitation, we infer the
state of each atom by detecting its presence or absence in
its respective trap (atoms in jri are slightly antitrapped by
the optical potential, which results in their loss). We thus
reconstruct the populations Pij of the two-atom states jiji

(i, j taking the values g, r), by repeating each sequence
about 100 times [23].
Our setup was designed to minimize residual electric

fields detrimental to Rydberg state manipulations: (i) the
aspheric lens surface facing the atoms is coated with a
conductive 200 nm-thick indium-tin-oxide layer; (ii) eight
independent electrodes allow us to apply electric fields
along any direction [24]. Using Stark spectroscopy on
the j62D3=2; mj ¼ 3=2i state, we determine that with all

electrodes grounded, a residual field of �150 mV=cm
(pointing essentially along x) was present. After applying
appropriate correction voltages, the residual field is below
�5 mV=cm. This cancellation is critical to the success of
the experiment: small (transverse) stray fields mix jri with
other Rydberg states not coupled to light, or exhibiting
Förster zeros [25], thus degrading the blockade.
Figures 2(b)–2(e) shows the probabilities Prg þ Pgr to

excite only one atom, and Prr to excite both, versus the
area �� of the excitation pulse, for various R and �, in
the case n ¼ 62. In Fig. 2(b), the atoms are far apart
(R ’ 15 �m) and thus almost independent. Indeed, the
probability Prr of exciting both atoms is nearly equal to
the product P1;rP2;r [see Fig. 2(a)], where Pi;r is the

probability for atom i to be in jri, obtained in a control
experiment with only trap i. In this case Prg þ Pgr is

expected to oscillate at frequency 2� between 0 and 1=2,
close to what we observe. On the contrary, in Fig. 2(e), the
atoms are close (R ’ 4:0 �m) and � ’ 2�� 1:9 MHz is
small enough for almost perfect blockade to occur: at
all times, Prr is negligible (Prr < 0:06, with an average
of 0.036), and thus differs substantially from the product
of the single-atom excitation probabilities expected for
independent atoms. At the same time, Prg þ Pgr oscillates

at ð1:49� 0:07Þ�, close to the expected collective

frequency
ffiffiffi
2

p
� [16].

In between those regimes [see Figs. 2(c) and 2(d)],
blockade is only partial: Prg þ Pgr and Prr show a more

complex behavior, revealing nontrivial two-atom states.
We model this dynamics by solving the optical Bloch
equations (OBEs) [26,27]. Each atom i (i ¼ 1, 2) is con-
sidered as a two-level atom with ground state jgii and
nD3=2 Rydberg state jrii, coupled by a near-resonant

laser with Rabi frequency � (in practice, for our data,
the atoms experience, within 5%, the same�). In the basis
fjggi; jgri; jrgi; jrrig, and using the rotating wave approxi-
mation, the Hamiltonian is

H¼

0 @�=2 @�=2 0

@�=2 �@� 0 @�=2

@�=2 0 �@� @�=2

0 @�=2 @�=2 UvdW�2@�

0
BBBBB@

1
CCCCCA: (1)

We omit diagonal terms corresponding to interaction
between ground-state atoms (for R ¼ 1 �m the van der
Waals interaction is in the 10�8 Hz range, and the

FIG. 1 (color online). (a) Principle of the Rydberg blockade.
The single-atom Rabi frequency is �. (b) Experimental setup.
Two single atoms are trapped in microscopic optical traps
separated by R. Eight electrodes (four of which, facing the
ones displayed here, are not shown) provide electric field con-
trol. Inset: two-photon excitation scheme (the intermediate-state
detuning is � ’ 2�� 740 MHz).
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magnetic dipole-dipole interaction in the mHz range) or
between a ground-state and a Rydberg atom (in the 1 Hz
range at R ¼ 1 �m), as they are negligible with respect to
the relevant energy scales of the problem. Experimentally,
we observe (especially for large �) a small damping of
the oscillations, essentially due to off-resonant spontane-
ous emission via the 5P1=2 intermediate state. To take this

into account, we solve the OBEs for the two-atom density
matrix _� ¼ �i½H;��=@þL. We write the dissipative
term as L ¼ L1 � �2 þ �1 �L2, where

Li ¼ �
�rr ��gr=2

��rg=2 ��rr

 !
i

(2)

is the dissipator for atom i (neglecting dephasing),
expressed in the basis fjgii; jriig, and �i the reduced
density matrix of atom i. This phenomenological way to
include dissipation is sufficient for the present data; a more
exact way would include several levels (including the
5P1=2 state) for each atom, as was done in Refs. [23,27].

We neglect cooperative effects such as super radiance
(this is legitimate as R is much larger than the wavelength
� ’ 795 nm of the 5S-5P transition which dominates the
dissipation via spontaneous emission) [26].

The parameters � and � appearing in the model
are obtained by fitting single-atom Rabi oscillation data

[see the triangles in Fig. 2(a)]. The only remaining parame-
ters in the model are UvdW and �. We treat UvdW as an
adjustable parameter to fit the solution of the OBEs to
PrgðtÞ þ PgrðtÞ and PrrðtÞ. Examples of such fits are pre-

sented as solid lines in Figs. 2(b)–2(e) (shaded areas show
the confidence interval in UvdW). We also treat � as a free
parameter, to account for slow drifts of the lasers [28].
With this method, we obtain only jUvdWj, as for � ’ 0 the
sign of the interaction does not affect the dynamics. We
have checked that deliberately setting � ¼ 0 and � ¼ 0 in
the fit (thus reducing our analysis to solving an effectively
three-level Schrödinger equation), yields values of jUvdWj
departing by at most 20% from those above. We checked
that the interaction energy yielded by the fits does not
depend on the chosen � by doubling or halving it. We
emphasize that the convergence of the fit is optimal when
UvdW � @�. Combined with our range of accessible �,
this means we can determine values of jUvdWj=h in the
range from 0.1 to 10 MHz.
Figure 3 shows jUvdWj extracted from such fits versus R,

for the Rydberg states jri ¼ jnD3=2; mj ¼ 3=2i with

n ¼ 53, n ¼ 62, and n ¼ 82. The data are consistent
with a power law of exponent�6. Here, the determination
of the exponent is much more direct than for interacting
ultracold [11] or thermal [29] ensembles, in which the

FIG. 2 (color online). From independent to blockaded atoms, via partial blockade, for n ¼ 62. (a) Single-atom Rabi oscillation
P1;rð��Þ between jgi and jri (green triangles), and product of such excitation probabilities for single atoms in traps 1,2 with the other

trap off (red squares). (b)–(e): Probability Prg þ Pgr to excite one atom to the Rydberg state (blue diamonds), and double Rydberg

excitation probability Prr (black circles), versus excitation pulse area ��. From (b) to (e), R decreases, yielding increasing blockade.
Solid lines are fits of the data by the solution of the OBEs (see text). Shaded areas correspond to one standard deviation in determining
jUvdWj (statistical error bars on �, at the 1% level, are not shown).
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random distribution of atoms smears out the interaction R
dependence. Our results illustrate the dramatic dependence
of UvdW with n: for instance, changing n from 53 to 62 at
given R yields a fiftyfold increase in UvdW. Fitting the data
by jUvdWj ¼ jC6jExpt:=R6 with jC6jExpt: as an adjustable

parameter, we obtain the values of Table I.
To compare our measurements to the theoretical expres-

sions of jUvdWj (solid lines in Fig. 3), we diagonalize the
interaction Hamiltonian, considering only the leading, elec-
tric dipole interaction term. From the quantum defects
reported in Ref. [30], we compute radial wave functions
using the Numerov algorithm [31]. We restrict the
Hamiltonian to a two-atom basis jn1l1j1mj1; n2l2j2mj2i
comprising only states close in energy (up to �h�5GHz)
from the jnD3=2; mj ¼ 3=2; nD3=2; mj ¼ 3=2i state, and

satisfying jn� n1;2j 	 4. This corresponds to (sparse) ma-

trices up to ’ 103 � 103 [32].
At the large distances relevant here, the dipole-dipole

interaction simply shifts the two-atom levels by a quantity
C6=R

6 that can be obtained from second-order perturbation
theory. At shorter distances, mixing between adjacent
levels occurs [25], altering the 1=R6 character of the inter-
action (this can be seen for n ¼ 53 when R< 4 �m).
We obtain the jC6jTh: coefficients of Table I by fitting the
numerically obtained interactions at distances 15<R<
20 �m. Our results are in good agreement with second-
order perturbation theory calculations [33]. We get an
estimate of the uncertainty in jC6jTh: by adding random,
uniformly distributed relative errors of �0:5% to radial
matrix elements appearing in the Hamiltonian. The relative
uncertainty is larger (�10%) for n ¼ 53, due to cancella-
tions of terms with opposite signs. Taking into account

error bars, the agreement between our measurement and
the calculated C6 is very good. It appears from Fig. 3 that
for the largest values of UvdW, our experimental determi-
nation systematically lies below the theory. An explanation
might be that mechanical effects induced by interactions
lead to a modification of the dynamics, as recently sug-
gested [34]. Our present analysis neglects these effects and
may lead to an underestimation of the actual interaction.
Including these effects is left to future work.
In summary, we have directly measured the van der

Waals interaction between two isolated Rydberg atoms.
The level of control demonstrated here opens exciting
perspectives in multiatom systems, for observing
geometry-dependent effects due to the anisotropy of the
dipolar interaction [35], or the nonadditivity of van der
Waals interactions [36]. It is also a prerequisite for
generating high-fidelity, many-atom entanglement using
Rydberg blockade, as well as for quantum simulation of
long-range interacting spin systems.
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manuscript, and J. Vigué for useful discussions. L. B. is
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support by the EU (ERC Stg Grant ARENA, AQUTE
Integrating Project, and Initial Training Network
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67 (2002), and references therein.
[5] A. Anderson, S. Haroche, E. A. Hinds, W. Jhe, and D.

Meschede, Phys. Rev. A 37, 3594 (1988).
[6] V. Sandoghdar, C. I. Sukenik, E. A. Hinds, and S. Haroche,

Phys. Rev. Lett. 68, 3432 (1992).
[7] D. Jaksch, J. I. Cirac, P. Zoller, R. Côté, and M.D. Lukin,
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H. P. Büchler, and T. Pfau, J. Phys. B 45, 113001
(2012).

[25] T.G. Walker and M. Saffman, Phys. Rev. A 77, 032723
(2008).

[26] C. Ates, T. Pohl, T. Pattard, and J.M. Rost, Phys. Rev. A
76, 013413 (2007).

[27] X. L. Zhang, A. T. Gill, L. Isenhower, T. G. Walker, and
M. Saffman, Phys. Rev. A 85, 042310 (2012).

[28] For our data, the best-fit value of �=ð2�Þ lies in the range
�300 kHz, compatible with observed frequency drifts of
the excitation lasers over the acquisition of a full data set
(a few hours).

[29] T. Baluktsian, B. Huber, R. Löw and T. Pfau, Phys. Rev.
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Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Geometries
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We demonstrate single-atom trapping in two-dimensional arrays of microtraps with arbitrary geometries.
We generate the arrays using a spatial light modulator, with which we imprint an appropriate phase pattern
on an optical dipole-trap beam prior to focusing. We trap single 87Rb atoms in the sites of arrays containing
up to approximately 100 microtraps separated by distances as small as 3 μm, with complex structures such
as triangular, honeycomb, or kagome lattices. Using a closed-loop optimization of the uniformity of the
trap depths ensures that all trapping sites are equivalent. This versatile system opens appealing applications
in quantum-information processing and quantum simulation, e.g., for simulating frustrated quantum
magnetism using Rydberg atoms.

DOI: 10.1103/PhysRevX.4.021034 Subject Areas: Atomic and Molecular Physics, Optics

I. INTRODUCTION

The optical trapping of cold atoms [1] allows for a
variety of applications, from the study of quantum gases [2]
to the manipulation of single atoms [3]. Impressive achieve-
ments in the engineering of quantum systems have been
obtained using relatively simple configurations of light
fields, such as single-beam traps [4], crossed optical dipole
traps [5], arrays of microtraps obtained by microlens arrays
[6,7] or holographic plates [8], optical lattices [9,10], or
speckle fields [11].
In the last few years, an interest in more advanced

tailoring of optical potentials has arisen. Several technical
approaches can be considered. A first solution consists
of “painting” arbitrary patterns of light using a time-
dependent light deflector [12,13], over time scales that
are fast compared to the typical oscillation frequency in the
trap. Ultracold atoms then experience an optical potential
corresponding to the time-averaged light intensity. Another
approach relies on the generation of reconfigurable light
patterns using spatial light modulators (SLMs), either in
amplitude or in phase [14–17].
Single atoms held in arrays of microtraps with a spacing

of a few μm are a promising platform for quantum-
information processing and quantum simulation with
Rydberg atoms [18–22]. The realization of an array of
approximately 50 microtraps for single atoms using an
elegant combination of fixed diffractive optical elements
and polarization optics was recently demonstrated
in Ref. [23].

Here, we report on the trapping of single atoms in
reconfigurable 2D arrays of microtraps, separated by dis-
tances down to 3 μm, with almost arbitrary geometries. We
create not only mesoscopic arrays of a few traps but also
regular 2D lattices with up to approximately 100 sites, with
geometries ranging from simple square or triangular lattices
to more advanced ones, such as kagome or honeycomb
structures. Using a closed-loop optimization of the uniform-
ity of the trapdepths allowsus toobtainveryuniform lattices.
As compared to previous approaches using SLMs, this novel
feature opens appealing prospects for quantum simulation
with neutral atoms [24] and eliminates a source of compli-
cation in the theoretical modeling of these systems. For that,
we use a phase-modulating SLM, which has the advantage
of being versatile and easily reconfigurable. Another major
asset of the system lies in the fact that, in combination with
wave-front analysis, the SLM can also be used to correct
a posteriori for aberrations that are inevitably present in the
optical setup, thus improving considerably the optical
quality of the traps.
This article is organized as follows. After giving an

overview of the principles behind our setup, we give a
detailed account of the obtained results.We present a gallery
of examples of microtrap arrays in which we trap single
atoms, and we study the single-atom loading statistics of a
3 × 3 square array. In a second part, we give details about
the implementation of the optical setup and the calculation
of the phase holograms. We then explain how we optimize
the obtained traps using a Shack-Hartmann (SH) wave-front
sensor and present a closed-loop improvement of the
uniformity of the trap intensities.

II. MAIN RESULTS

In this section, after briefly describing our experimental
setup, we demonstrate the trapping of single atoms in
microtrap arrays with various geometries.

Published by the American Physical Society under the terms of
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A. Overview of the experimental setup

Figure 1 shows a sketch of the setup we use to trap single
87Rb atoms [25]. It is based on a red-detuned dipole trap
at awavelength λ ¼ 850 nm,with a 1=e2 radiusw0 ≃ 1 μm.
For a power of 3 mW, the trap has a typical depth
U0 ¼ kB × 1 mK, with radial (respectively, longitudinal)
trapping frequencies around 100 kHz (respectively, 20 kHz).
To load atoms into themicrotrap, we produce a cloud of cold
atoms at approximately 50 μK in a magneto-optical trap
(MOT). The dipole-trap beam is focused in the cloud with a
custom-made high-numerical-aperture (NA) aspheric lens
with focal length fasph ¼ 10 mm [26]. We detect single
atoms by measuring their fluorescence signal at 780 nm
(collected by the same aspheric lens) using a cooled, 16-bit
electron-multiplying CCD (EMCCD) camera [27]. We
separate the fluorescence signal from the trapping beam
with a dichroic mirror (DM). A second aspheric lens, facing
the first one in a symmetrical configuration, is used to
recollimate the trapping beam.An8-bit CCDcamera, placed
after thevacuumchamber, is conjugatedwith the plane of the
single atoms for diagnostic purposes.
We generate arrays of microtraps with arbitrary geom-

etries using a phase-modulating SLM [28], which imprints
a calculated phase pattern φðx; yÞ onto the trapping beam
of initial Gaussian amplitude A0ðx; yÞ. The intensity dis-
tribution in the focal plane of the aspheric lens is then given
by the squared modulus of the 2D Fourier transform of

A0 exp ðiφÞ. The phase pattern φ needed to obtain the
desired intensity distribution is determined by the iterative
algorithm described in Sec. III B.

B. Gallery of microtrap arrays

Figure 2 presents a selection of 2D trap arrays that we
have created with the setup described above. For each array,
we show the phase pattern φðx; yÞ used to create it, an
image of the array obtained with the diagnostics CCD
camera behind the chamber, and the average of approx-
imately 1000 images of the atomic fluorescence of single
atoms in the traps (imaged with the EMCCD camera). The
figure illustrates strikingly the versatility of the setup.
We can create small clusters containing approximately
10 traps, useful for the study of mesoscopic systems
[Figs. 2(a)–2(h)]. It is also possible to create larger, regular
lattices of up to approximately 100 traps with varying
degrees of complexity, from simple square [Fig. 2(i)] or
triangular [Fig. 2(j)] lattices to honeycomb [Fig. 2(k)] or
kagome [Fig. 2(l)] structures, which opens, for instance, the
possibility to simulate frustrated quantum magnetism with
Rydberg-interacting atoms. The typical nearest-neighbor
distance a in those arrays is 4 to 5 μm.We have also created
arrays with spacings as small as a≃ 3 μm without observ-
ing a significant degradation in the quality of the arrays.
Other configurations, e.g., aperiodic structures, can be
generated easily.
The total power needed to create an array of N micro-

traps with a depth U0=kB ≃ 1 mK necessary for single-
atom trapping is about 3N mW on the atoms. Because of
the finite diffraction efficiency of the SLM and losses on
various optical components, we find that this needed power
requires us to have slightly below 5N mW at the output
of the fiber guiding the 850-nm light to the experiment,
which remains a very reasonable requirement even for
N ¼ 100 traps.

C. Single-atom trapping in the arrays

We now demonstrate directly single-atom trapping in a
3 × 3 square array [see Fig. 3(a)]. Figure 3(b) shows a
series of snapshots obtained with the EMCCD camera (the
exposure time being 50 ms), showing fluorescence images
of single atoms. As each of the N ¼ 9 traps has a
probability p ∼ 1=2 of containing one atom, we observe
that most images correspond to a sparsely loaded array,
with an average number of atoms present close to
Np ¼ 9=2 and fluctuations corresponding to atoms ran-
domly entering and leaving each trap. To confirm that these
images do correspond to single-atom trapping, we plot the
photon counts per 50 ms in the pixels corresponding to
the positions of each of the nine traps as a function of time
[see Fig. 3(c)]. One observes the characteristic random
telegraphlike signal, with only two fluorescence levels,
which is the hallmark of single atoms loaded into the
microtraps by the collisional blockade mechanism [3,25].

FIG. 1. Generation of an array of microtraps for single-atom
trapping. The SLM imprints the calculated phase pattern φðx; yÞ
on the 850-nm dipole-trap beam. A high-numerical-aperture
aspheric lens under vacuum focuses it at the center of a MOT.
The intensity distribution in the focal plane is ∝ jFTðA0eiφÞj2,
where A0 is the initial Gaussian amplitude profile of the 850-nm
beam and FT stands for Fourier transform. The atomic fluores-
cence at 780 nm is reflected off a DM and detected using an
EMCCD camera. A second aspheric lens (identical to the first
one) recollimates the 850-nm beam. This transmitted beam is
used for trap diagnostics (either with a diagnostics CCD camera
or a SH wave-front sensor).
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By analyzing each of the nine traces, we find that the
occupation probability pi of each trap i is close to 1=2. (We
find probabilities pi ranging from 0.43 to 0.57, with an
average p̄ ¼ 0.53.)
Figure 3(d) is a histogram of the number of atoms

trapped in the 3 × 3 array, obtained by analyzing approx-
imately 2500 images [23]. For an array of N independent
traps, if each trap has the same probability p to be filled, the
probability Pn to have n atoms in the array is given by the
binomial distribution

Pn ¼
N!

n!ðN − nÞ!p
nð1 − pÞN−n: (1)

The dots in Fig. 3(d) correspond to Eq. (1) with N ¼ 9 and
p ¼ p̄ and show good agreement with the data. Therefore,
the assumption that all traps are loaded with the same
probability is a good approximation for estimating the
probability of a given configuration to occur.

III. DETAILED IMPLEMENTATION

In the preceding section, we focused on giving a detailed
presentation of the results obtained. However, obtaining
arrays of traps with as high a quality as what is demon-
strated in Figs. 2 and 3 requires some care in the
implementation of the setup. In this section, we detail
the implementation of both the hardware and the software
parts of the system.

FIG. 2. A gallery of microtrap arrays with different geometries. For each panel, we show the calculated phase pattern φ used to create
the array (left), an image of the resulting trap arrays taken with the diagnostics CCD (middle), and the average of approximately 1000
fluorescence images of single atoms loaded into the traps (right).
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A. Optical layout

Our SLM has an active area of 12 × 18 mm2, with a
resolution of 600 × 800 pixels. It is illuminated by a
collimated Gaussian beam with a 6.7-mm 1=e2 radius
coming from a polarization-maintaining, single-mode fiber
connected to a collimator with a focal length f ¼ 75 mm.
As diffraction-limited operation of the aspheric lens is
obtained for an infinite-to-focus conjugation, with a pupil
diameter D ¼ 10 mm, we use an afocal telescope with a
transverse magnification my ¼ −0.8 to adapt the SLM
active area to the aspheric lens aperture, while maintaining
the collimation of the beam.
The implementation of the full system (vacuum chamber,

dichroic mirror for fluorescence detection, components for
generating the microtrap array) results in a relatively long

distance (l≃ 500 mm) between the SLM and the aspheric
lens. This leads to the following problem [see Fig. 4(a)]:
When generating off-axis traps, the beam diffracted by the
SLM impinges on the lens off center, giving rise to clipping
and field aberrations. These effects decrease the quality of
arrays with a large number of microtraps. We circumvent
this problem using pupil conjugation: We take advantage
of the extra degree of freedom given by the position of
the telescope to conjugate the plane of the SLM with the
aspheric lens, as shown in Fig. 4(b).
The optimization of the system is done with an optical

design software. The simulation includes all the compo-
nents from the optical fiber to the focal plane of the aspheric
lens in the vacuum chamber. The lenses of the telescope
and the lens of the collimator are near-infrared achromatic
doublets used at low numerical aperture and small fields.
The performance of the system over a field of 30 × 30 μm2

in the microtrap plane is satisfactory: The Strehl ratio, i.e.,
the ratio of the actual peak intensity over the theoretical
peak intensity for a diffraction-limited system [29], is
predicted to be S ≥ 0.88 by the calculation.
For the phase-pattern calculation described below, we

replace the telescope and the aspheric lens by a single
equivalent lens with an effective focal length feff ¼
fasph=jmyj ¼ 12 mm and an effective pupil in the SLM
plane with diameter Deff ¼ 12 mm.

B. Gerchberg-Saxton algorithm

We use the Gerchberg-Saxton (GS) algorithm [30] to
calculate the phase pattern φðx; yÞ required to obtain an
intensity distribution in the lens focal plane close to a desired
target intensity It. For the sake of completeness, we briefly
recall below the essential steps of the algorithm (see Fig. 5).

FIG. 3. Single-atom trapping in a 3 × 3 array. (a) Image of the
traps, separated by 4 μm, obtained with the diagnostics CCD
camera. (b) Sample fluorescence images of single atoms trapped
in the array. The exposure time is 50ms. (c) Photon counts per 50ms
at the pixels corresponding to each of the nine trap positions,
as a function of time. The random, telegraphlike signal with only
two fluorescence levels is the signature of single-atom trapping.
(d) Histogram of the occurrences of images with n atoms trapped
(with 0 ≤ n ≤ 9) over a set of approximately 2500 images. The red
dotscorrespond to thebinomialdistribution [Eq. (1)]withp ¼ 0.53.

FIG. 4. Pupil conjugation. (a) Without a telescope, for a given
field y ≠ 0, the dipole-trap beam is clipped and not centered on
the aspheric lens. (b) The implemented telescope adapts the size
of the beam to the aspheric lens pupil; by conjugating the SLM
aperture to the entrance pupil of the aspheric lens, the beam is
well centered, whatever the field.
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We initialize the algorithm using a random phase pattern
φ0 in which each pixel value is given by a uniformly
distributed random variate in the range ð0; 0.2Þ × 2π. The
target image It is a superposition of Gaussian peaks with
1=e2 radii w ¼ 1 μm centered on the desired location of the
microtraps. The amplitude of each Gaussian can be defined
separately, which allows for correcting nonuniformities in
the depths of the microtraps over the array (see Sec. III E).
The incident field on the SLM is modeled as having a

uniform phase and an amplitude A0ðx; yÞ. At each iteration
of the algorithm, we propagate the electric field in the SLM
plane A0eiφn through the effective lens using a fast Fourier
transform (FFT) to calculate the field Af

neiφ
f
n in the focal

plane. If the difference between the calculated intensity
jAf

nj2 and the desired target image It is small enough, the
phase pattern φn is used to drive the SLM; otherwise,
the amplitude of the field in the focal plane is replaced by
the target amplitude

ffiffiffiffi

It
p

. This new field
ffiffiffiffi

It
p

eiφ
f
n is then

propagated back to the SLM plane by an inverse FFT,

giving the field Anþ1eiφnþ1 in the SLM plane. The calculated
phase φnþ1 is kept as the new phase pattern in the SLM
plane, while the amplitude is replaced by the incident one
A0, and another iteration is performed for the field A0eiφnþ1 .
For the patterns shown in Fig. 2, the algorithm converges
(i.e., the calculated phase patterns do not evolve any more)
toward an approximate solution, typically after a few tens
of iterations [31]. The intensity distribution in the lens focal
plane is then a good approximation of It. However, we can
approach the target even closer, as described in Sec. III E.

C. Phase patterns displayed on the SLM

The phase pattern φtot used to drive the SLM includes
several contributions beyond the calculated phase pattern φ
and reads

φtot ¼ φþ φblaze þ φFresnel þ φfactory þ φSH; (2)

where the sum is calculated modulo 2π. In this equation,
(i) φblaze is a blazed grating pattern, allowing us to block

the zeroth-order reflection from the SLM arising from its
nonperfect diffraction efficiency;
(ii) φFresnel is a quadratic phase pattern acting as a Fresnel

lens, which allows us to fine-tune the focusing of the
microtraps;
(iii) φfactory is the correction phase pattern provided by

the SLM manufacturer to correct for the optical flatness
defects of the SLM chip; and
(iv) φSH corrects for aberrations introduced by the setup

and is obtained using a Shack-Hartmann wave-front sensor
as described in Sec. III D below.
Figure 6 gives an example of the composition of the

final phase pattern obtained by summing (modulo 2π) the
various terms described above.

D. Improving the traps by analyzing the wave front
and correcting for aberrations using the SLM

Without the last term of Eq. (2), we observe that the
quality of the obtained microtrap arrays decreases when
the number of traps increases. Indeed, the assumption
of a perfect effective lens used in the calculation of the
hologram is not valid. The imperfections of the optics
(vacuum windows, aspheric lens, etc.) and the residual
misalignments distort the wave front, thus reducing the
depth of the microtraps.

FIG. 5. The Gerchberg-Saxton algorithm. The field in the lens
focal plane is calculated by the FFT of the complex field in
the SLM plane. If the obtained intensity jAf

nj2 does not match the
target intensity It, another iteration must be performed: The
amplitude of the field in the focal plane is forced to the target
amplitude

ffiffiffiffi

It
p

, and this new field is propagated back to the pupil
plane by the inverse FFT, resulting in a new amplitude and a new
phase φnþ1. This new phase is kept as the next SLM phase
pattern, while the amplitude is forced to the incident one A0,
giving a new input field A0eiφnþ1 for the next iteration.

FIG. 6. Composition of the phase pattern φtot displayed on the SLM for generating the trap array of Fig. 2(c). The sum is calculated
modulo 2π.
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1. Wave-front measurement

In order to correct for the above-mentioned imperfections,
we measure the wave front with a Shack-Hartmann sensor
and use the resultingφSH to drive the SLM [32].We perform
this measurement at the exit of the vacuum chamber, where
the trapping beam has been recollimated by the second
aspheric lens (see Fig. 1). The wave-front sensor [33]
analyzes the wave front corresponding to a single trap
centered in the field where the phase pattern displayed on
the SLM is φblaze þ φfactory. The measured rms deviation
from a flat wave front is δrms ¼ 0.15λ (tilt and focus terms
being removed). After applying the correction phase φSH to
the SLM, wemeasure δrms ¼ 0.014λ. Figure 7 illustrates the
impact of the phase corrections on the trap pattern (as
measured by the diagnostics CCD camera) for a 4 × 4 array:
A comparison between Figs. 7(a) and 7(b) suggests that the
correction increases the trap depth by a factor close to 2.
This wave-front measurement includes the aberrations

induced by the recollimating aspheric lens and the second
vacuum window (see Fig. 1). An independent wave-front
measurement on the trapping beam before the chamber
yields δrms ¼ 0.05λ without correction, showing that the
optics of the vacuum chamber account for most of the
wave-front aberrations. Applying directly the measured
φSH on the SLM thus “overcorrects” aberrations, and one
might fear that at the location of the atoms, the effect of the
correction is actually detrimental. It is therefore desirable
to check directly the actual effect of the correction on the

atoms. For this purpose, we directly measure the trap depth
and frequency with single atoms.

2. Impact on the trap depth

We measure the trap depth using light-shift spectroscopy
with a single atom [34,35]. For that, we shine a σþ-
polarized probe that is quasiresonant with the transition
j5S1=2; F ¼ 2; mF ¼ 2i → j5P3=2; F ¼ 3; mF ¼ 3i on the
atom and we record the number of fluorescence photons
scattered by the atom as a function of probe detuning. The
shift of the resonance with respect to its free-space value
gives directly the trap depth U0 [36]. Figure 8(a), obtained
on the central trap of a 3 × 1 array with a 4-μm separation,
shows that including the Shack-Hartmann correction
actually increases the trap depth by about 50%.

3. Impact on the trap frequency

Another important parameter of the trap is the trapping
frequency. In order to determine the transverse trapping
frequency seen by the atoms, we excite the breathing mode,
as in Refs. [25,37]. For that purpose, the microtrap is
switched off for a few microseconds, during which the atom
leaves the center of the trap. When the trap is switched on
again for a time ΔThold, the atom oscillates in the trap, with
a radial frequency ωr [38]. If the trap is then switched off
again for a short time, the probability to recapture the atom
afterward depends on its kinetic energy at the time of the
last switch-off, and thus oscillates at 2ωr.

FIG. 7. Effect of the Shack-Hartmann correction pattern φSH. A
CCD image of 4 × 4microtraps is shown (a) only with the factory
correction and (b) with both the factory and the Shack-Hartmann
patterns applied. (c) Intensity profiles along the dashed lines on
(a) and (b), with (blue curve) and without (orange curve) the
correction φSH. The arrays are created with the same calculated
phase φ. The laser power and the exposure time of the CCD
camera are the same for both cases.

FIG. 8. (a) Trap depth U0=kB as a function of the trap power,
with (blue diamonds) and without (orange disks) Shack-
Hartmann correction. With the latter, the trap depth increases
by about 50%. (b) Recapture probabilities for an atom oscillating
in the trap as a function of the hold time ΔThold. The trap
frequency increases by about 30% when the Shack-Hartmann
correction pattern is added to the SLM.
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Figure 8(b) shows the results of such a measurement,
for a power of 2.8 mW per trap, again in the 3 × 1 array.
The measured trap frequencies are ωr ¼ 2π × 68.0 kHz
before correction and ωr ¼ 2π × 86.5 kHz with the Shack-
Hartmann correction applied to the SLM. The increase in
trapping frequency comes essentially from the increased
depth of the corrected traps.
Using the single atom as a diagnostics tool, we could, in

principle, test whether one can improve even further the
trap quality by applying to the SLM a phase αφSH (where
0 ≤ α ≤ 1 is an adjustable parameter), in the hope of
correcting only the aberrations “seen” by the atom, i.e.,
not the aberrations induced by the second lens and the
second viewport. A test for α ¼ 1=2 (which would yield the
best correction if both lenses and windows introduce equal
aberrations) gives results slightly worse than for α ¼ 1, and
in the following, we thus keep this choice.

E. Closed-loop optimization of the uniformity
of the trap depths in the array

An important figure of merit to assess the quality of the
arrays is the uniformity of the trap depths. Figure 9(a)

shows the distribution of the trap intensities, inferred from
an analysis of an image of the array obtained with the
diagnostics CCD camera, for a 10 × 10 square lattice with a
spacing a ¼ 4 μm. In this case, the phase applied to the
SLM is obtained by running the GS algorithm with a target
image It for which all traps have the same intensity. One
observes a dispersion in the trap depths of �19% rms
(the minimal and maximal values being Imin ¼ 61 and
Imax ¼ 148, where the average intensity of all traps is
normalized to Ī ¼ 100). This variation in trap depths is
detrimental for loading optimally the trap array with single
atoms. Indeed, if the trap depth is too low, one still traps
single atoms, but with a probability of occupancy signifi-
cantly lower than 1=2. Conversely, if the trap is too deep,
one enters a regime in which the probability to have more
than one atom is not negligible [36].
A way to compensate for this imperfection is to use the

image of the trap array obtained with the diagnostics CCD
to calculate a new target image where the new trap intensity
I0i of trap i is scaled according to the measured one Ii as

I0i ¼
Ī

1 −Gð1 − Ii=ĪÞ
; (3)

where Ī is the average intensity of all traps and G an
adjustable “gain.” In other words, traps that are too weak
get enhanced in the new target image, while the brightest
ones get dimmed. We then run again the GS algorithm with
this new target image as an input and with the previously
obtained phase pattern φ as the initial guess for the phase
(see Fig. 10). We observe that the distribution of the trap
intensities decreases quite drastically after a few iterations.
Choosing G≃ 0.7 gives the best performance. (Lower
values decrease the convergence speed, while higher values
yield overshoots in the correction.) Figure 9(b) shows the

FIG. 9. Improving the uniformity of trap depths in a 10 × 10
square array. (a) Histogram of the maximal intensity levels of the
microtraps Ii, measured with the diagnostics CCD camera (see
the inset), for the trap array obtained after a single use of the GS
algorithm and a target image where all traps have the same
intensity. The standard deviation is 19%. (b) Same as (a) but after
the closed-loop optimization of the uniformity of the trap
intensities. The standard deviation is now 1.4%.

FIG. 10. Closed-loop algorithm used for improving the uni-
formity of trap depths. From the various trap intensities measured
with the CCD camera (red profile), we calculate a new target
intensity It following Eq. (3): The brightest traps are dimmed,
while the dimmest ones are enhanced. We then use this adapted
target as the input for a new iteration of the GS algorithm, with
the previously calculated phase as the initial condition.
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resulting histogram of trap intensities for the 10 × 10
square lattice, after 20 iterations. The array is now very
uniform, with trap intensities varying between 96% and
103% of Ī (peak to peak). This improvement corresponds to
a 15-fold reduction in the dispersion of the trap depths.
The single-atom trapping demonstrated in the arrays of

Figs. 2 and 3 could be achieved only after this closed-loop
optimization is implemented and illustrates strikingly the
efficiency of the method. We believe that such an opti-
mization, which takes full advantage of the reconfigurable
character of the SLM, could prove useful in order to create
very uniform lattices with arbitrary structures for quantum
simulation with ultracold atoms.

IV. CONCLUSION AND OUTLOOK

The simple setup described above is a versatile tool
for creating arrays of microtraps with almost arbitrary
geometries. We have demonstrated single-atom loading in
such arrays, which opens exciting possibilities to engineer
interesting few-atom entangled states using, e.g., a Rydberg
blockade [39], especially in combination with dynamical
addressability using moving optical tweezers [40].
For arrays with a large number of traps, a current

limitation of the system is the nondeterministic character
of the single-atom loading of the microtraps: As each trap
has a probability 1=2 of being filled with an atom, anN-trap
array has, at any given time, only an exponentially small
probability 1=2N to be fully loaded. Implementing quasi-
deterministic loading schemes will thus be needed to take
full advantage of the setup, which implies increasing the
loading probability p per trap beyond 1=2. A first approach
toward this goal consists in using the Rydberg blockade:
Loading probabilities of p ∼ 60% have been recently
demonstrated in a single microtrap [41]. Alternatively,
using a blue-detuned “collision beam,” relatively high
loading probabilities, already in excess of 90%, have been
achieved [42]. This scheme opens the possibility to fully
load an array of 20 traps with a probability of more than
10%. Testing both approaches on our setup will be the
subject of future work.
In combination with the recently demonstrated Raman-

sideband cooling of single atoms trapped in optical
tweezers [43,44], a similar system with smaller distances
between microtraps—which could be achieved using high-
numerical-aperture objectives such as the ones used in
quantum-gas microscopes [45]—could then become an
interesting alternative approach to study the many-body
physics of ultracold atoms in engineered optical potentials,
without using traditional optical lattices [46].
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Demonstration of a Strong Rydberg Blockade in Three-Atom Systems
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We study the Rydberg blockade in a system of three atoms arranged in different two-dimensional
geometries (linear and triangular configurations). In the strong blockade regime, we observe high-contrast,
coherent collective oscillations of the single excitation probability and an almost perfect van der Waals
blockade. Our data are consistent with a total population in doubly and triply excited states below 2%. In
the partial blockade regime, we directly observe the anisotropy of the van der Waals interactions between
jnDi Rydberg states in the triangular configuration. A simple model that only uses independently measured
two-body van der Waals interactions fully reproduces the dynamics of the system without any adjustable
parameter. These results are extremely promising for scalable quantum information processing and
quantum simulation with neutral atoms.

DOI: 10.1103/PhysRevLett.112.183002 PACS numbers: 32.80.Ee, 03.67.Bg, 34.20.Cf

Engineering quantum many-body systems with a high
degree of control and tunable interactions is an active field
of research as it is a prerequisite for quantum information
processing [1] and quantum simulation [2]. Recently,
significant achievements have been obtained towards this
goal, e.g., using trapped ions for simulating quantum
magnetism [3–5]. Another platform considered for such
tasks consists of systems of neutral Rydberg atoms inter-
acting via the strong and controllable long-range dipole-
dipole interaction, which is responsible for the Rydberg
blockade [6–9]. Through this mechanism, multiple exci-
tations with a resonant narrow-band laser are inhibited
within a blockade sphere by Rydberg-Rydberg interac-
tions. The dipole blockade provides a way to realize fast
quantum gates and to entangle particles, as demonstrated
for two atoms [10,11]. This mechanism can in principle be
extended to an ensemble of N atoms, with fascinating
applications in quantum state engineering [12].
Although the picture of a blockade sphere has been

remarkably successful at describing many recent experi-
ments [13–22], some theoretical works question this simple
approach. Even for the case of N ¼ 3, some situations
have been identified where nearly resonant dipole-dipole
interactions [23], the nonadditivity of the van der Waals
potentials [24], or the anisotropy of the interactions [25]
lead to the breakdown or reduction of the blockade.
In this Letter, we show that, for experimentally relevant

parameters, the Rydberg blockade is robust in ensembles of
three atoms. In particular, we consider two different
arrangements, namely, a line and an equilateral triangle.
We observe an almost perfect van der Waals blockade and
the coherent collective behavior of Rydberg excitations in
both configurations. To go beyond this observation and
understand the dynamics of the system in detail, we

measure the angular dependence of the effective interaction
energy Veff between two single-atoms excited to jri≡
jnD3=2; mj ¼ 3=2i Rydberg states. Using the measured
two-body interaction strength we demonstrate that it is
possible to fully reproduce the three-atom excitation
dynamics in both the full and partial blockade regimes,
with a model based on a master equation with no adjustable
parameters. With the degree of experimental control dem-
onstrated here, many theoretical proposals envisioning
quantum simulation using Rydberg atoms become realistic.
We consider three atoms, with ground jgii and Rydberg

jrii states coupled with Rabi frequencies Ωi, and interact-
ing via pairwise interactions Vij. The system is thus
described by the Hamiltonian [26]

Ĥ ¼
X3

i¼1

ℏΩi

2
ðσ̂ðiÞrg þ σ̂ðiÞgr Þ þ

X

i<j

Vijσ̂
ðiÞ
rr σ̂

ðjÞ
rr ; (1)

where σ̂ðiÞrg ¼ jriihgij, σ̂ðiÞgr ¼ jgiihrij, and σ̂ðiÞrr ¼ jriihrij. All
parameters of the Hamiltonian can be tuned by a proper
choice of the experimental settings. In particular, choosing
jri ¼ jnD3=2i gives an extra degree of freedom to tune Vij

due to the anisotropy of the interaction. In what follows all
Rabi couplings Ωi ≡Ω are equal within 5%.
A strong blockade is obtained if the interaction strengths

Vij between atom pairs are much greater than the atom-
light coupling ℏΩ [Fig. 1(a)]. In this regime, the states
carrying double and triple Rydberg excitations are off-
resonant with the light field and the system can be described
as a two-level model involving the collective states jgggi
and jΦ1ri¼ðjggriþjgrgiþjrggiÞ= ffiffiffi

3
p

, coupled by an effec-
tive Rabi frequency

ffiffiffi
3

p
Ω. Here, jijki≡ ji1ijj2ijk3i stands
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for products of the single-atom ground jgi, and Rydberg jri
states for atoms 1, 2, and 3.
Our apparatus, shown schematically in Fig. 1(b), was

previously described in detail [27]. Three single 87Rb atoms
are loaded from amagneto-optical trap into three 1 mK-deep
microscopic optical traps [28], formed by focusing down a
850nmGaussian beam to awaist of1 μm(1=e2 radius) using
a high numerical aperture lens under vacuum [29]. Arbitrary
patterns of traps are obtained by imprinting a calculated
phase pattern on the beam with a spatial light modulator
(SLM) [30]. CCD images of the two trap configurations
used in this work are displayed in Fig. 1(c). In the first
arrangement (top), the three traps are collinear (parallel to the
quantization axis ẑ) and separated by R ¼ 4 μm. In the
second configuration (bottom), the traps form an equilateral
triangle with 8 μm sides.
The same aspheric lens is used to collect the atom

fluorescence from each trap. We trigger the experimental
sequence as soon as one atom is detected in each of the
three traps. The atoms are then optically pumped into
jgi ¼ j5S1=2; F ¼ 2; mF ¼ 2i. The quantization axis ẑ is
set by a 3G external magnetic field. For Rydberg excitation
from jgi to jnD3=2; mj ¼ 3=2i, we use a two-photon
process [31]: a π-polarized laser beam at 795 nm, detuned
from the j5P1=2; F ¼ 2; mF ¼ 2i intermediate state by
2π × 740 MHz, and a σþ-polarized 474 nm laser beam.
Both excitation lasers are frequency locked using an
ultrastable cavity providing laser linewidths ∼10 kHz.
During the Rydberg excitation, the dipole traps are
switched off to avoid light shifts. After excitation for a
duration τ, we switch on again the dipole traps and we look
for the fluorescence of the three atoms. Excitation of an
atom to the Rydberg state is inferred from its loss from the
corresponding trap (and thus the absence of fluorescence),

as Rydberg states are not trapped. The eight different
populations Pijk of the three-atom states jijki are then
reconstructed by repeating each sequence ∼150 times [31].
We first consider a one-dimensional array of three

individual atoms aligned along the quantization axis [see
Fig. 1(c) top] and separated by 4 μm. To obtain the single-
atom Rabi frequenciesΩi we measure the probability Pri to
excite atom i to the Rydberg state, with the other two traps
switched off, as a function of the excitation pulse area. We
observe well-contrasted Rabi oscillations [Fig. 2(a)]. A fit
of the data (solid line) gives the same Rabi frequencies
Ωi ≃ 2π × 0.8 MHz for the three atoms (within 5%), as
well as small damping rates γi ≃ 0.3 μs−1 (see below). In
Fig. 2(b) a single atom is loaded in each of the three traps.
In this configuration we expect full blockade, as the single-
atom Rabi frequencies are much smaller than van der Waals
interactions: even for the R ¼ 8 μm distance between the
outermost atoms, extrapolation of the measurement of
Ref. [27] gives V13 ≃ h × 32 MHz. The three atoms are
excited to the collective state jΦ1ri [Fig. 1(a)], and the single
excitation probability P1r ≡ Prgg þ Pgrg þ Pggr shows
oscillations with a frequency of ð1.72� 0.02ÞΩ, compatible
with the expected

ffiffiffi
3

p
Ω. Clear blockade ofmultiple Rydberg

(a) (b) (c)

FIG. 1 (color online). (a) Relevant energy levels of a three-atom
system with van der Waals interactions Vij. In the blockade
regime, the ground state jgggi is resonantly coupled to the
symmetric collective state ðjggriþjgrgiþjrggiÞ= ffiffiffi

3
p

. (b) Scheme
of the experimental setup. Arbitrary geometries of two-
dimensional arrays of dipole traps are obtained by imprinting
a phase map φ with the SLM. (c) Trap geometry. Three single-
atoms are trapped in microscopic optical tweezers separated by
R ¼ 4 μm in a linear (top) and by R ¼ 8 μm in a triangular
arrangement (bottom). The quantization axis ẑ is set by a 3G
external magnetic field.

P1r

P2r

P3r

atom

P1r

P2r

P3r

(a)

(b)

(c)

FIG. 2 (color online). (a) Representative single-atom Rabi
flopping to the j82D3=2i state for the central atom in the linear
arrangement. Single-atom Rabi frequencies Ω≃ 2π × 0.8 MHz,
and damping rates γ ≃ 0.3 μs−1 for all three atoms are obtained
from fits (solid lines) to the solution of the OBEs for a single two-
level atom. (b) Probability of single (blue circles), double (red
triangles), and triple (green squares) Rydberg excitation as a
function of the excitation pulse area in the linear arrangement.
The collective enhancement of the Rabi frequency by

ffiffiffi
3

p
clearly

appears in the data. Solid lines are the result of the model
described in the text without any adjustable parameter. (c) Same
as (b) but for the triangular geometry.
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excitations is observed in the data, as the populations
P2r ¼ Prrg þ Prgr þ Pgrr (P3r ¼ Prrr) of doubly (triply)
excited states are almost totally suppressed in the system,
with P2r (P3r) never exceeding 9% (1%).
We now show that the actual blockade is even better than

suggested by these values. Indeed, each atom has a small
probability ε to be lost during the sequence, independently
of its internal state [32]. An independent measurement of the
loss probability gives ε ¼ ð5� 1Þ%. Since in our detection
scheme an atom loss is interpreted as an excitation to the
Rydberg state, the observed double excitation P2r differs
from the actual one ~P2r and, to first order in ε, it reads [32]

P2r ¼ ð1 − εÞ ~P2r þ 2ε ~P1r: (2)

If the blockade were perfect, one would have ~P2r ¼ 0, and
the measured P2r would thus oscillate between 0 and 2ε, in
phase with P1r. From the data on Fig. 2(b) we can extract an
upper bound of ∼2% on ~P2r [32].
To gain more insight into the quality of the blockade for

our experimental parameters, we simulate the dynamics of
the system with Hamiltonian (1). A sum of independent
single atom dissipators,

L½ρ� ¼
X

i

γi
2
ð2σ̂ðiÞgr ρσ̂ðiÞrg − σ̂ðiÞrr ρ − ρσ̂ðiÞrr Þ; (3)

is used to account for a small experimental damping γi of
the oscillations (mainly due to off-resonant spontaneous
emission through the intermediate state j5P1=2i; all the γi
are equal within 10%). The results of the simulation, with
no adjustable parameter, are represented by solid lines in
Fig. 2(b), where the loss-error correction (2) is included.
The very good agreement with the data further supports the
quality of the blockade. Our results are compatible with the
prediction of the model of double excitation probability
~Pðtheo.Þ
2r ∼ 10−3 for the same experimental parameters.

Although proving experimentally that the double excitation
is that low would require a more detailed study of
systematic effects, this figure is very encouraging for
high-fidelity generation of three-atom jWi states.
In the results discussed so far, we only considered a one-

dimensional configuration. For scalability to a large num-
ber of atoms, however, two-dimensional arrays of traps are
preferable. In this case, some atom pairs necessarily have
an internuclear axis not aligned along the quantization axis
and the anisotropy of the interaction comes into play, which
might eventually prevent a perfect blockade [23–25]. To
investigate this effect we study the blockade in an equi-
lateral triangle configuration. Here, the anisotropic char-
acter of the D-state orbital plays a role and the interaction
energies between atom pairs V12 ≃ V23 are weaker than
V13, although the atoms are equally separated. Despite this,
Fig. 2(c) shows that the strength of the blockade is not
reduced in the triangular geometry. Double and triple
excitation probabilities are inhibited and the single

excitation probability oscillates at ∼
ffiffiffi
3

p
Ω. This result opens

encouraging prospects for achieving strong blockade over
two-dimensional arrays of atoms.
In order to observe directly the anisotropy of the inter-

action [33]wemeasured the interaction energybetween atom
pairs separated by R ¼ 12 μm as a function of the angle θ
between the internuclear axis and the quantization axis ẑ. The
procedure to extract the effective interaction energy Veff is
similar to the one introduced in Ref. [27]. Working in the
partial blockade regime (ℏΩ ∼ Veff ), wemodel the excitation
dynamics through the solution of the optical Bloch equations
(OBE) involving two-level atoms. Strictly speaking, to
model two atoms in the jnD3=2i state and θ ≠ 0, one would
need to consider all 49 Zeeman sublevels with their different
van der Waals couplings [34]. So as to keep the model
tractable, even for large number of atoms, we model the
system in the simplest nontrivial way, retaining only one
single doubly excited state jrriwith an effective energy shift
VeffðθÞ. All input parameters are obtained from single-atom
Rabi oscillation experiments. The measured dynamics of the
two-atomsystemare then fittedwith the solutionof theOBEs
withVeff as the only fitting parameter. Amore detailed study
of the angular dependence of the van der Waals interaction,
taking into account the full Zeeman structure of the atompair,
is beyond the scope of this Letter and will be the subject of
future work.
The result of this approach is shown in Fig. 3 for the

j82D3=2i state. The anisotropy of the effective interaction is
evident. The energy shift shows a maximum around θ ¼ 0

FIG. 3 (color online). Angular dependence of the effective
interaction energy Veff for two atoms in j82D3=2i at R ¼ 12 μm,
with θ the angle between the internuclear axis and the quantiza-
tion axis ẑ. Red squares indicate the measured energy shifts V13,
V23, and V12 used for the simulation of three-atom dynamics in
the partial blockade regime (see Fig. 4). In the inset, the angular
dependence of the interaction for the spherically symmetric
j82S1=2i state is shown for comparison. Error bars represent
one standard deviation confidence intervals in the fits.
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and decreases for larger angles. A relative change of
interaction strength by a factor ∼3 is measured when θ
varies from θ ¼ 0 to θ ¼ 60°. In contrast, for a spherically
symmetric S-Rydberg state, the interaction energy is iso-
tropic (see inset of Fig. 3) [35] . For theD state, we observe
an unexpected, slight asymmetry in the angular dependence
of Veff , probably due to small systematic effects [36] .
The angular dependence of Veff manifests itself in the

interaction dynamics of the three atoms in the triangular
configuration. By increasing the sides of the triangle to
R ¼ 12 μm, the effective interaction energies become
ðV12; V23; V13Þ≃ h × ð0.9; 1.1; 2.6Þ MHz (see red squares
in Fig. 3), and the blockade is only partial for our chosen
Rabi frequency Ω. In Fig. 4 we show the populations of
doubly (Prrg, Prgr, Pgrr) and triply (Prrr) excited states
for two different Rabi frequencies. In the first data set
[Fig. 4(a)], Ω ¼ 2π × 0.8 MHz and the anisotropy in the
binary interaction (V12 ≠ V13) is directly observed in the
dynamics: the probability Prgr to detect double excitation
of atoms 1 and 3 is almost totally suppressed, while it is
appreciable for Prrg and Pgrr. Those two curves show
almost the same dynamics, as expected. Triple excitations
are totally blocked in this regime. For comparison, we show
also the dynamics when a slightly higher Rabi frequency
Ω ¼ 2π × 1.6 MHz is used [Fig. 4(b)]. This corresponds to
a partial blockade regime where V13 > ℏΩ > V12. In this
case, even triple excitations are not completely blockaded.
Prrg and Pgrr also exhibit similar behavior, while Prgr
shows different dynamics. The populations of states carry-
ing only single excitations also show the anisotropy [32].
Many-body effects have largely been recognized to play

a key role in the modeling of systems in physics and

chemistry [37]. In the case of Rydberg atoms they have
been invoked to explain anomalous broadenings of Förster
resonances [38,39]. To understand the evolution of the
population of the states during excitation and to investigate
to what extent few-atom many-body physics can be
described from pairwise interactions we perform again a
simulation using the OBEs for the three-atom system. In the
model, with no adjustable parameters, the measured inter-
action energies at θ ¼ 0 and θ ¼ 60° (red squares in Fig. 3)
are introduced. As shown by the solid lines in Fig. 4, the
simulation (where atom loss correction is included) fully
reproduces the experimental data. The fact that the simu-
lation can accurately describe the evolution of the triply
excited state Prrr suggests that, for our choice of param-
eters, the pairwise addition of van der Waals level shifts
V123 ¼ V12 þ V13 þ V23 is valid to a very good approxi-
mation. However, this additivity of the potential may not
hold in the case of resonant dipole-dipole interactions.
There, quantum interference between different many-body
interaction channels can influence the dynamics [23]. All
these processes can be studied for Rydberg atoms close to
Förster resonance and will be the subject of future work.
Another interesting line of research will consist in studying
the recently predicted Borromean trimers bound by the
dipole-dipole interaction [40].
In summary, we have investigated the dynamics of a

system of three Rydberg atoms in both full and partial
blockade regimes. We observe a strong van der Waals
blockade of the excitations and coherent Rabi oscillations
for two different spatial configurations. For the same
experimental parameters in the equilateral triangle arrange-
ment, the anisotropy of the interaction potential between
jnDi states does not prevent the observation of a strong van
derWaals blockade, which is a prerequisite for the scalability
of quantum information processing proposals using two-
dimensional arrays of dipole traps. The strong blockade
achieved and the small damping of the oscillations pave the
way for the generation ofmany-atom entanglement with high
fidelity through the Rydberg blockade [12]. In the partial
blockade regime, the angular dependence of the interaction
energy shift between two atoms has been measured for the
j82D3=2i and j82S1=2i Rydberg states. Furthermore, we have
shown that with the measured effective energy shifts it is
possible to reproduce the three-atom dynamics with high
accuracy. This result demonstrates that one can confidently
scale those studies for two-dimensional arrays of more than a
few atoms, enabling the quantum simulation of large-size,
long-range interacting spin systems.
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FIG. 4 (color online). Probabilities of detection of double
Rydberg excitation Prrg, Prgr, Pgrr, and triple excitation Prrr
versus excitation pulse area Ωτ for driving Rabi frequencies
Ω ¼ 2π × 0.8 MHz (a), and Ω ¼ 2π × 1.6 MHz (b) in the
triangular configuration. The distance between the traps is
R ¼ 12 μm. The ratio between effective pairwise interaction
energies is V13=V12 ∼ 3 for θ ¼ 60°. Solid lines are the solution
of the OBEs without any adjustable parameter.
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We report on the selective addressing of an individual atom in a pair of single-atom microtraps separated by
3 μm. Using a tunable light shift, we render the selected atom off-resonant with a global Rydberg excitation laser
which is resonant with the other atom, making it possible to selectively block this atom from being excited to the
Rydberg state. Furthermore we demonstrate the controlled manipulation of a two-atom entangled state by using
the addressing beam to induce a phase shift onto one component of the wave function of the system, transferring
it to a dark state for the Rydberg excitation light. Our results are an important step towards implementing quantum
information processing and quantum simulation with large arrays of Rydberg atoms.

DOI: 10.1103/PhysRevA.90.023415 PACS number(s): 37.10.Gh, 32.80.Ee, 03.67.Bg

Cold neutral atoms are a promising platform for quantum
computation and quantum simulation [1]. Their weak interac-
tions in the ground state lead to long coherence times. Using
highly excited Rydberg states allows one to switch on and
off the strong interactions that are necessary for engineering
many-body quantum states [2]. For many of those experiments
it is desirable to confine single atoms at well-defined positions
separated by a few micrometers, which can be achieved, e.g.,
using arrays of optical tweezers [3]. Another requirement is
the selective manipulation of individual atoms in the ensemble.
This can be done by applying static field gradients, or a
laser beam focused to one single trap site, which induces a
frequency shift at the targeted site. Such techniques have been
demonstrated with trapped ions [4–6] and neutral atoms in
optical lattices [7–13].

In previous work [14,15], we have demonstrated quantum-
state engineering with single atoms held in two and three
optical microtraps, by using the Rydberg blockade mechanism
with global excitation of the atoms. Extending these studies to
a larger number of atoms and to wider classes of quantum
states requires extra tools. A step towards this goal was
our recent demonstration of single-atom trapping in large
arrays of optical microtraps with arbitrary geometries [3].
Combined with global excitation, this already opens the
possibility to generate interesting multiatom entangled states,
such as the W state |W 〉 = (|rgg · · · g〉 + |grg · · · g〉 + · · · +
|ggg · · · r〉)/√N , where |g〉 (|r〉) corresponds to the ground
(Rydberg) state. However, single-site addressing is needed to
engineer other classes of quantum states. For instance, the
realization of the collective controlled-NOT (CNOT) gate of
Ref. [16] that can be used to create the Greenberger-Horne-
Zeilinger state |GHZ〉 = (|gg · · · g〉 + |rr · · · r〉)/√2, requires
the singling out of one control atom whose state determines
the state of the remaining, target, atoms.

Here we demonstrate the selective addressing of one single
87Rb atom among two atoms held in microtraps separated
by 3 μm, by shining a tightly focused, red-detuned 850-nm
laser beam on it. This addressing beam induces a frequency
shift on the ground state of the atom, while leaving its
Rydberg states nearly unaffected. This differential light shift
thus makes the addressed atom off-resonant with the Rydberg
excitation laser, which is resonant for the other atom. This

article is organized as follows. We first briefly describe the
implementation of the addressing beam, and characterize its
size and depth in situ using a single atom. We then perform
a global Rydberg excitation in the presence of the addressing
beam, and observe nearly perfect suppression of excitations
for the addressed atom. Finally, we use the addressing beam to
perform a controlled local operation on one atom, coherently
transferring the symmetric entangled state (|rg〉 + |gr〉)/√2
to the antisymmetric, dark state (|rg〉 − |gr〉)/√2.

Our experimental setup, schematically shown in Fig. 1(a),
has been described previously [3,14,15]. We use a spatial
light modulator (SLM) to create two microtraps, separated
by a distance of 3 μm in the focal plane of a high-numerical-
aperture (NA) aspherical lens. The traps, each with a 1/e2

radius of about 1 μm and a depth of U0 ≈ h×20 MHz, are
focused in an 87Rb magneto-optical trap (MOT). Due to fast
light-assisted collisions, we trap only either zero or one atom
per trap [17], and trigger the experiment on the presence of one
atom in each trap. The temperature of the atoms in the traps
is approximately 50 μK. We coherently couple the ground
state |g〉 = |5S1/2,F = 2,mf = 2〉 to the Rydberg state |r〉 =
|nD3/2,mj = 3/2〉 (with n in the range 50–100) via a two-
photon transition, with the wavelengths of the excitation lasers
being 795 and 474 nm. During the excitation, of duration τ , the
traps are switched off to avoid extra broadening arising from
the shot-to-shot fluctuations of the light shift due to the random
positions of the atoms in the traps. The detuning from the
intermediate state |5P1/2,F = 2,mf = 2〉 is 2π×740 MHz.
After the excitation pulse, we measure the states of both atoms.
Repeating the experiment about 100 times, we reconstruct the
populations Pij of the two-atom states |ij 〉, where i and j can
take the values g and r .

The 1/e2 radii of the lasers used for Rydberg excitation
are 100 μm for the 795-nm beam, and 18 μm for the 474-nm
beam. This configuration prevents the direct addressing of
a single trap. To achieve single-site addressability, we thus
induce an extra light shift on the ground state of the atom at
the targeted site, to selectively control the Rydberg excitation.
As a fast (i.e., on microsecond time scales) reconfiguration
cannot be achieved with the SLM, we superimpose a second,
independently controlled 850-nm laser beam onto the trapping
beam. Orthogonal polarizations and a frequency difference of
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FIG. 1. (Color online) (a) Sketch of the experimental setup. The
two microtraps are created by a red-detuned 850-nm laser beam
on which an appropriate phase is imprinted using a spatial light
modulator (SLM), and focused by a high-NA aspheric lens in a
MOT. The addressing beam is superimposed onto the trap beam by
a polarizing beam-splitter cube (PBS), and focused down on the
targeted atom by the same aspheric lens. The two perpendicular
AOMs can be used for precise dynamical x-y positioning of the
addressing beam. A telescope is used to conjugate the AOM plane
with the aspheric lens, to avoid clipping when the addressing beam
is deflected. (b) The light shift �E of the ground state of the targeted
single atom is directly proportional to the intensity I of the addressing
beam at the position x of the atom. (c) Measured light shift �E as
a function of the distance �x between the addressing beam and
the targeted trap, yielding a 1/e2 radius of the addressing beam of
w0 � 1.3 μm.

about 200 MHz prevent interference between the trapping and
addressing beams. The addressing beam has a 1/e2 radius of
w0 � 1.3 μm in the focus, slightly larger than the trap size.
This choice results from a trade-off between two opposite
requirements, namely, minimizing alignment sensitivity and
inhomogeneous light shifts (which favors a large w0) and
minimizing cross-talk (which implies choosing a small w0).
For a perfectly Gaussian beam with w0 � 1.3 μm, one expects
theoretically that if one atom is addressed by a light shift of
10 MHz, the second atom 3 μm away experiences a light
shift of only 0.2 kHz, which is negligible as compared to
the other relevant frequencies in the experiment. An electro-
optic modulator enables fast (about 10 ns) switching of the
addressing beam. In addition, two acousto-optic modulators
(AOMs) can be used for dynamical x-y positioning of the
addressing beam with respect to the targeted trap.

In a first experiment, we measure the intensity profile of the
addressing beam in situ by performing Rydberg spectroscopy
on a single atom. For different positions �x of the addressing
beam with respect to the targeted atom, we scan the frequency
of the Rydberg excitation lasers. As mainly the ground state
experiences a light shift �E proportional to the addressing
beam intensity, the resonance frequency for Rydberg excitation
is shifted by �E [see Fig. 1(b)]. Figure 1(c) shows the
measured light shift as a function of �x. A Gaussian fit
gives a 1/e2 radius w0 = 1.3 ± 0.1μm. The residual light
shift experienced by the nearby atom 3 μm away is below
the resolution of our experiment.

We observe that for large light shifts, the probability of
losing an atom during the sequence increases. We attribute this
effect to the following: due to the finite temperature, the atom
never sits exactly at the intensity maximum of the addressing
beam. The fast switching on and off of the addressing beam
thus imparts kinetic energy to the atom. This increase in kinetic
energy becomes more and more important as the intensity of
the addressing beam gets larger. For large enough intensities in
the addressing beam, this effect thus increases the probability
for the atom to leave the trapping region during the experiment.
However, for light shifts below 40 MHz, this loss probability
remains below 1%, and is thus negligible.

We now perform a Rydberg blockade experiment with two
single atoms in order to demonstrate single-site addressability
(Fig. 2). In Ref. [18], site-resolving excitation beams were used
to demonstrate blockade with two atoms separated by 10 μm.
Here, we use a global excitation scheme in combination with
the addressing beam, and obtain similar results, albeit with a
distance between the atoms of only 3 μm. For both atoms, the
ground state |g〉 is coupled to the Rydberg state |r〉 = |59D3/2〉
with a Rabi frequency � � 2π×1 MHz [Fig. 2(a)]. If the
atoms were independent, they would both undergo Rabi
oscillations between |g〉 and |r〉 with the Rabi frequency �.
The strong dipole-dipole interaction Udd between the Rydberg
states forbids a double excitation of the atoms if Udd � ��.
This condition is largely fulfilled for the parameters chosen
here: the interaction energy of two atoms in |59D3/2〉, separated
by 3 μm, is approximately h×300 MHz. We thus excite only
the superposition state |s〉 = (|rg〉 + eik·r |gr〉)/√2, whose
coupling to the two-atom ground state |gg〉 is

√
2� [18,19]

(here, k is the vector sum of the wave vectors of the excitation
lasers, and r is the position of atom 2 with respect to atom 1).
This results in Prg and Pgr oscillating between 0 and 1/2 with a
frequency

√
2�, as can be seen in Fig. 2(b). Another signature

of the blockade is the suppression of double excitation Prr � 0
[see bottom panel in Fig 2(b)].

If we shine the addressing beam on atom 2, we observe a
strong suppression of the excitation probability for the states
|gr〉 and |rr〉 [see Fig. 2(c)], as atom 2 is never excited to
the Rydberg state |r〉. At the same time, atom 1 shows Rabi
oscillations between |g〉 and |r〉 with the single-atom Rabi
frequency �. The small residual excitation probability of atom
2 that we observe is fully accounted for by the errors in our
state detection [15], meaning that cross-talk between the two
traps is negligible.

Finally, we show that we can also use the addressing beam
to directly manipulate a two-atom quantum state. Without
any addressing, the excitation to the state |rr〉 is completely
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FIG. 2. (Color online) (a) Two atoms, separated by 3 μm, are
illuminated by light that resonantly couples the ground state |g〉 to
|r〉 = |59D3/2〉 with the single-atom Rabi frequency �. The time
evolution of the populations of the two-atom states |gg〉, |gr〉, |rg〉,
and |rr〉 are shown, (b) without any addressing and (c) with atom 2
addressed with a light shift of �E � h×10 MHz. Solid lines are fits
by damped sine curves. The vertical solid lines mark the pulse areas
�τ corresponding to a π pulse for the nonaddressed case (blue) and
the addressed case (red). The black dashed lines show the expected
measured populations for a perfect blockade of atom 2, taking into
account state-detection errors.

suppressed in the Rydberg blockade regime (Udd � ��). By
applying an excitation pulse of duration π/(

√
2�) we thus pre-

pare the atoms in the state |ψ(0)〉 = (|gr〉 + eik·r |rg〉)/√2. We
then illuminate atom 2 with the addressing beam [Fig. 3(a)].
Its energy is shifted by �E when in the ground state, while its
Rydberg state remains unaffected [see Fig. 2(a)]. After a time
T the state of the system has therefore evolved to

|ψ(T )〉 = 1√
2

(|gr〉 + e−i�E T/�eik·r |rg〉). (1)

The antisymmetric dark state |ψ(Tπ )〉= (|gr〉− eik·r |rg〉)/√
2 (with Tπ = π�/�E) is not coupled to the ground state
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FIG. 3. (Color online) (a) Pulse sequence for the phase manipu-
lation: while the dipole trap is switched off, the atoms are excited to
the state |s〉 = (|gr〉 + eik·r |rg〉)/√2. The addressing beam induces
a light shift �E on the ground state of atom 2, thus changing the
relative phase evolution between |gr〉 and |rg〉. This is followed by
a global deexcitation pulse. (b) Population of the two-atom ground
state |gg〉 after the deexcitation pulse, as a function of the addressing
pulse length T , for a laser power in the addressing beam P =
1.5 mW (blue diamonds) and P = 3.5 mW (red circles). Solid lines
are fits by damped sine curves of frequency f . Inset: oscillation
frequency f as a function of the power P of the addressing beam,
showing the expected linear dependence. For this experiment we use
the Rydberg state |82D3/2〉.

|gg〉. The probability of deexciting the atoms to |gg〉 is
thus expected to oscillate between 0 and 1 with a frequency
f = �E/h.

Figure 3(b) shows the probability Pgg of deexciting the
atoms back to |gg〉 versus the duration T of the addressing
pulse. We observe the expected oscillation of the final ground-
state population Pgg . Due to the finite Rydberg excitation
efficiency (about 90% for our parameters), we measure a
contrast of the oscillations that is lower than 1. In addition,
the finite temperature of the atoms in the experiment leads to
a small motion of the atoms during the sequence, implying
that (i) the phase k · r imprinted by the excitation pulse is not
exactly canceled out by the deexcitation pulse [20]; and (ii) the
light shift �E experienced by atom 2 fluctuates from shot to
shot. Averaged over many runs, both effects lead to a decreased
contrast and a finite damping of the observed oscillations. To
take these effects into account, we fitted the data with a damped
sine curve of the form Pgg(T ) = A + B exp(−γ t) cos(2πf T ),
with the oscillation frequency f and the damping rate γ as
adjustable parameters. Repeating the experiment for different
powers of the addressing beam, we obtain the expected linear
dependence of f with the applied light shift on the atom [see
inset of Fig. 3(b)]. This demonstrates our ability to perform
some controlled local operations on qubits in a quantum
register.

023415-3

99



HENNING LABUHN et al. PHYSICAL REVIEW A 90, 023415 (2014)

In conclusion, we have shown that we can selectively
prevent one single atom in a pair of single-atom traps
from being resonant with Rydberg excitation lasers, with no
measurable cross-talk with a neighboring atom as close as
3 μm. We also demonstrated the use of the addressing beam to
perform a local operation in a system of two atoms. Our scheme
is easily scalable to a larger number of traps. These techniques
will prove useful for a variety of applications in quantum
simulation and quantum information processing with Rydberg
atoms. For instance, they open the possibility of selectively
addressing a single qubit in a larger ensemble, e.g., as a control

atom for realizing collective quantum gates [16], or to excite
a single atom to a different Rydberg state, allowing the study
of the transfer of excitations along a Rydberg chain [21].
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[20] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko,
P. Grangier, and A. Browaeys, Phys. Rev. Lett. 104, 010502
(2010).
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Coherent dipole–dipole coupling between two
single Rydberg atoms at an electrically-tuned
Förster resonance
Sylvain Ravets, Henning Labuhn, Daniel Barredo, Lucas Béguin, Thierry Lahaye
and Antoine Browaeys*

Resonant energy transfers, the non-radiative redistribution of
an electronic excitation between two particles coupled by the
dipole–dipole interaction, lie at the heart of a variety of phe-
nomena1, notably photosynthesis. In 1948, Förster established
the theory of fluorescence resonant energy transfer (FRET)
between broadband, nearly-resonant donors and acceptors2.
The 1/R6 scaling of the energy transfer rate, where R is the
distance between particles, enabled widespread use of FRET
as a ‘spectroscopic ruler’ for determining nanometric distances
in biomolecules3. The underlying mechanism is a coherent
dipolar coupling between particles, as recognized in the early
days of quantum mechanics4, but this coherence has not been
directly observed so far. Here we study, spectroscopically and
in the time domain, the coherent, dipolar-induced exchange of
excitations between two Rydberg atoms separated by up to
15µm, and brought into resonance by applying an electric field.
Coherent oscillation of the system between two degenerate
pair states then occurs at a frequency scaling as 1/R3, the
hallmark of resonant dipole–dipole interactions5. Our results
not only demonstrate, at the fundamental level of two atoms,
the basic mechanism underlying FRET, but also open exciting
prospects for active tuning of strong, coherent interactions in
quantum many-body systems.

The possibility to tune at will coherent interactions inmany-body
systems by changing external parameters is one of the key tools
enabling quantum simulation. For instance, in ultracold quantum
gases, such tuning can be achieved by magnetically-induced
Feshbach resonances6,7. Rydberg atoms are another promising
platform for the quantum simulation of complex many-body
problems, owing to the strong interactions associated with their
large principal quantum numbers8. They have proved to be an
efficient tool for characterizing non-radiative exchange of energy
in resonant collisional processes9, studying collective effects10
and engineering quantum states of matter11. The observation of
Rydberg blockade between individual atoms12,13, where the strong
interaction between Rydberg states inhibits multiple excitations
within a blockade sphere, opens the way towards the development
of Rydberg quantum simulators14. An appealing tool for those
applications is the possibility to tune the strength of the interactions
by external electric fields using Förster resonances15–23. So far, owing
to inhomogeneities in the atomic ensembles used in experiments,
only indirect evidence for the coherent character of the interaction
has been obtained24,25.

Here, we study a system of two single atoms at a Förster
resonance. We first perform a spectroscopic measurement of the
energies of the two-atom states as a function of the applied electric
field, and observe directly the avoided crossing between pair states
induced by the dipole–dipole interaction. The splitting at resonance
is observed to scale as 1/R3 as a function of the distance R between
the atoms. In a second experiment, we prepare the system in a
given pair state away from resonance, and switch to resonance for
a controlled time, revealing the coherent oscillation between the
two degenerate pair states induced by the dipolar interaction. These
results open the way to real-time tuning of interactions for quantum
simulation with Rydberg atoms11,14.

Two atoms located at positions R1 and R2 interact through the
dipole–dipole interaction

V̂dip=
1

4πε0

(
µ̂1 · µ̂2−3(µ̂1 ·n)(µ̂2 ·n)

R3

)

where µ̂i is the electric dipole moment of atom i (i = 1, 2),
R=R2−R1 and n= R/R. When the two atoms are prepared in
the same state, V̂dip usually has no effect to first order, as the
average value of the dipolemoment vanishes in an atomic eigenstate.
Second-order perturbation theory gives rise to an energy shift of
the atom pair, which results in the van der Waals interaction26

UvdW∝R−6. However, resonance effects between two Rydberg atoms
can occur when two pair states are degenerate5, and in this case the
dipolar interaction manifests itself at first order. Such a resonance,
called a ‘Förster resonance’ in analogy with the FRETmechanism at
work in photochemistry, can be achieved using small electric fields
to Stark-tune the energy of the pair states.

In this work, we use the states |p〉 = |61P1/2, mJ = 1/2〉,
|d〉=|59D3/2,mJ =3/2〉 and |f 〉 = |57F5/2,mJ = 5/2〉 of 87Rb. The
pair states |dd〉, |pf 〉 and |fp〉 are almost degenerate (Fig. 1a): their
Förster defect∆0= (Epf −Edd)/h, in the absence of an electric field,
is only 8.5MHz (h is Planck’s constant). Using the differential Stark
effect between |dd〉 and |pf 〉, they can be brought to exact resonance
by applying an electric field Fres'32mV cm−1 (Fig. 1b). The small
electric fields at play ensure that we work in a regime of induced
dipoles (even for the highly polarizable f state), as opposed to the
rigid dipoles obtained for larger electric fields. At resonance, the
eigenstates of the interacting system are |±〉= (|dd〉 ± |p̃f 〉)/

√
2,

where |p̃f 〉 = (|pf 〉 + |fp〉)/
√
2. If the system is initially prepared

in |dd〉, it thus oscillates between the two degenerate electronic
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configurations with a frequency given by the dipolar coupling
2
√
2C3/R3 (where C3

√
2/R3
= 〈dd|V̂dip|p̃f 〉). In particular, after

half a period of interaction, the system has evolved to the entangled
state |p̃f 〉.

Our experimental set-up has been described previously26,27. We
trap two single laser-cooled atoms in optical tweezers separated by
a controlled distance R of a few micrometres (Fig. 1c). A set of eight

independent electrodes allows us to apply a controlled electric field
F aligned with the internuclear axis28. A 3G magnetic field, also
aligned along z , is used to split the Zeeman sublevels. We optically
pump the atoms in the ground state |g 〉 = |5S1/2, F = 2,mF = 2〉
(with an efficiency >90%), which we couple, with an effective Rabi
frequencyΩ , to the Rydberg state |d〉 using a two-photon transition
(using two lasers of wavelengths 795 nm and 474 nm, withπ andσ+
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polarizations, respectively). The readout of the states of the atoms is
performed by shining resonant light at 780 nm on the atoms, giving
a fluorescence signal only if the atom is in |g 〉 (an atom in a Rydberg
state, be it |p〉, |d〉, or |f 〉, is lost from the trap during the sequence).
Repeating the same sequence ∼100 times allows us to reconstruct
the four populations Pgg , Pgr , Prg and Prr (where r stands for any of
the Rydberg states p, d and f , which we cannot discriminate directly
with our loss-based detection scheme), with a typical uncertainty
in the measurement of Pij on the order of ±0.05 (see representative
error bars in Figs 2b and 3b).

We first fix R = 8.1 µm and perform a spectroscopic
measurement to find the electric field Fres corresponding to
the Förster resonance. Our laser system couples |gg 〉 to |dd〉 (but
not to |pf 〉 or |fp〉), via the states |dg 〉 and |gd〉. Thus |gg 〉 is partially
coupled to the states |+〉 and |−〉 at resonance. For increasing
values of F , we scan the laser detuning δ (defined with respect to
the transition |gg 〉 to |dd〉, see Fig. 1d) and measure the probability
Prr for both atoms to be in a Rydberg state (Fig. 2a). For F=0, we
observe a single line centred at δ/(2π)≈−5MHz, corresponding
to the attractive van der Waals interaction between the two atoms
out of resonance. For F ≈20mV cm−1, a repulsive branch appears
in the spectrum, a signature of the interaction between |dd〉 and
|p̃f 〉. Increasing the field even further allows scanning across
the avoided crossing until only one peak is visible again. We
reach the Förster resonance (smallest splitting between the two
peaks) at Fres=32±4mV cm−1, where we observe two symmetric
peaks corresponding to |±〉. The spectra also show further small
structures in addition to the two main peaks. However, to extract
the interaction energy in a simple way, we fit the spectra by two
Gaussians with a splitting1E between the two peaks (Fig. 2b).

We then measure the evolution of the spectra at resonance when
varying the distance R. When R increases, the splitting between the
peaks decreases. Figure 2c is a double-logarithmic plot of1E versus
R. The data show a power-law behaviour of exponent −3.2±0.2,
consistent with the expected C3/R3 law. We measure
C3=2.1±0.1GHz µm3, where the error is statistical. Systematic
effects are an overall ∼5% uncertainty in our calibration of R, a
small bias in the determination of 1E due to the choice of double
Gaussian functions to fit the data and possible residual light-shifts
in the two-photon spectroscopy. (To estimate the bias introduced
by our choice of fit function, we fitted simulated spectra, obtained
by solving the optical Bloch equations, by double Gaussians. The
extracted splitting underestimates by '10% the actual splitting
1E.) Theoretical calculations29 give C3,th'2.54GHz µm3.

We now study the coherence properties of the system at
resonance using a sequence (Fig. 3a) reminiscent of pump–probe
spectroscopy.We prepare the system in the state |dd〉 using aπ-pulse
of 200 ns, which transfers each atom from |g 〉 to |d〉. To start in
a pure |dd〉 state, we perform the excitation in the van der Waals
regime above resonance (F≈64mV cm−1), where the Förster defect
is 1(F)≥h× 100MHz and where interactions are weak. We then
turn on the resonant interaction for a variable durationT , by rapidly
switching (risetime below 10 ns) the field to Fres. During this time,
the two-atom system oscillates between |dd〉 and the entangled state
|p̃f 〉, with a frequency fosc =1E/h= 2

√
2C3/(hR3) given by the

dipolar coupling. We then apply a deexcitation π-pulse identical to
the first one to read out the state of the system. The deexcitation
pulse couples the |dd〉 component of the system back to |gg 〉. At the
end of the sequencewemeasure the probabilityPgg to be back in |gg 〉,
thus indirectly measuring the population left in |dd〉 after the pulse
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of electric field. We observe highly contrasted oscillations between
|dd〉 and |p̃f 〉, with a frequency depending on R (Fig. 3b).

The oscillations between two states are a direct proof of
the coherent nature of the coupling underlying Förster energy
transfer, and also allow a more accurate determination of the
interaction energy than the spectroscopic method described above.
We fit the oscillation by a damped sine wave to extract the
oscillation frequency fosc. Figure 3c shows a double-logarithmic
plot of the values of fosc as a function of R. The data shows a
power-law behaviour of exponent −3.0± 0.1, again in excellent
agreement with the expected R−3 behaviour. The measured
C3=2.39±0.03GHz µm3 is also close to the theoretical value.

The observed damping of the oscillations comes mainly from
dephasing, arising from two effects. First, shot-to-shot fluctuations
in the distance R (on the order of δR' 170 nm), due to the finite
temperature of the atoms in the tweezers, give rise to dephasing,
as the oscillation frequency fosc∝1/R3 is slightly different for each
realization. This effect dominates at short distances: for instance,
for R'9µm, the corresponding spread δfosc/fosc=3δR/R in relative
frequencies reaches ∼6%, which is enough to reduce the contrast
of the oscillations by more than a factor of two after only four
oscillation periods. Second, the voltages applied to the electrodes
also fluctuate from shot to shot by a few mV, inducing fluctuations
in F and thus in the detuning 1(F) from resonance (by a fraction
of a MHz for our parameters). This has negligible impact for small
R, but appreciably contributes to the damping for large R, where the
dipolar interaction is weaker. In principle, both sources of damping
can be strongly decreased by technical improvements in the set-up,
using colder atoms as demonstrated recently30,31 and more stable
voltage sources.

Our results open exciting prospects for real-time tuning of
interactions in systems of Rydberg atoms, in particular to switch
on and off Ryberg blockade on nanosecond timescales. As an
illustration, in the above experiment, when switching F from
64mVcm−1 (away from resonance) to 32mV cm−1 (right on
resonance), the blockade shift between two atoms separated by
R=10 µm varies from U =UvdW ∼ h× 0.2MHz (van der Waals
regime) up to U = 1E/2 ∼ h × 4MHz (C3/R3 regime). If the
pair of atoms initially in |gg 〉 were driven with a Rabi frequency
Ω/(2π)∼ 1MHz, one would observe a strong blockade in the
second case, whereas blockade would be almost totally suppressed
in the first situation. This means that, simply by changing the value
of the electric field by a few mVcm−1, we obtain a twenty-fold
enhancement of the interaction, and the blockade radius is increased
by a factor∼2 in real time, a feature hard to achieve by other means.

A natural extension of this work will consist in measuring the
angular dependence of resonant interactions29, in view of tailoring
even further the interactions between two particles. Extending
our results beyond two particles, to few-body32 and many-body
systems15,16,23, will enable the study of transport of excitations and
generation of entanglement in fully controlled many-body systems.
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We study coherent excitation hopping in a spin chain realized using highly excited individually
addressable Rydberg atoms. The dynamics are fully described in terms of an XY spin Hamiltonian with a
long range resonant dipole-dipole coupling that scales as the inverse third power of the lattice spacing,
C3=R3. The experimental data demonstrate the importance of next neighbor interactions which are manifest
as revivals in the excitation dynamics. The results suggest that arrays of Rydberg atoms are ideally suited
to large scale, high-fidelity quantum simulation of spin dynamics.
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Spin Hamiltonians, introduced in the early days of
quantum mechanics to explain ferromagnetism, are widely
used to study quantum magnetism [1]. Assemblies of
interacting, localized spins are a paradigm of quantum
many-body systems, where the interplay between inter-
actions and geometry-induced frustration creates a wealth
of intriguing quantum phases.Many other phenomena, such
as coherent energy transfer, photochemistry, or photosyn-
thesis [2], can also be described using spin Hamiltonians.
However, despite this fundamental significance, exact
analytical solutions are known only for the simplest cases,
and numerical simulations of strongly correlated spin
systems are notoriously difficult.
For those reasons, quantum simulation of spin

Hamiltonians by controllable systems raises great interest.
Recently, various approaches were followed to simulate
spin systems using tools of atomic physics [3], such as cold
atoms [4–6] or polar molecules [7] in optical lattices,
interacting via weak exchange or dipole-dipole inter-
actions, or trapped ions with engineered effective inter-
actions [8–10]. As compared to their condensed-matter
counterparts, the spin couplings can be long range, which
gives rise to new properties [11–14].
Rydberg atoms are a promising alternative platform for

quantum simulation [15,16]. In particular, they allow
implementing various spin-1=2 Hamiltonians on two-
dimensional lattices with strong couplings, in the MHz
range [17,18]. Rydberg systems interacting through van
der Waals interactions can be described by Ising-type

Hamiltonians H ¼ P
ijVijσ

z
iσ

z
j where σz is the z-Pauli

matrix acting in the (pseudo-) spin Hilbert space, and
Vij ∼ jri − rjj−6, where ri denotes the position of atom i
[17–21]. On the other hand, spin-exchange, or XY, spin
Hamiltonians of the form H ¼ P

ijVijðσþi σ−j þ σ−i σ
þ
j Þ,

where σ� ¼ σx � iσy are spin-flip operators and
Vij ∼ jri − rjj−3, can be realized by using two different
Rydberg states, interacting directly via the resonant dipole-
dipole interaction. However, in this case, only incoherent
transfer of excitations has been observed so far, due to
the random atomic positions in the ensembles used in
experiments [22–27].
In this Letter, we study the coherent dynamics of a

spin excitation in a chain of three Rydberg atoms. The
dipole-dipole interaction between atoms is given by the
XY Hamiltonian [28]

H ¼ 1

2

X

i≠j

C3

R3
ij
ðσþi σ−j þ σ−i σ

þ
j Þ; ð1Þ

where Rij ¼ jri − rjj is the distance between atoms i and j.
We calibrate the spin-spin coupling between two Rydberg
atoms by investigating the temporal evolution of two
Rydberg atoms prepared in the state j↑↓i, as a function
of distance R between the atoms, up to R≃ 50 μm. We
then use three Rydberg atoms prepared in j↑↓↓i and study
the propagation of the excitation through this minimalistic
spin chain, observing the effect of long-range hopping of
the excitation. The agreement between experimental data
and the XY model without adjustable parameters validates
our setup as a future quantum simulator for systems of
many spins in arbitrary two-dimensional arrays.
The experimental setup, shown in Fig. 1(a), is detailed in

Ref. [30]. Briefly, we focus a red-detuned trapping beam
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with an aspheric lens into a magneto-optical trap of 87Rb, to
a waist ≃1 μm. Multiple traps at arbitrary distances are
created by imprinting an appropriate phase on the trapping
beam with a spatial light modulator [31]. Because of fast
light-assisted collisions in the small trapping volume, at
most one atom is present in each trap. The temperature of
the trapped atoms is approximately 50 μK. A 6 G magnetic
field defines the quantization axis [32].
We encode the two spin states in the Rydberg states

j↑i ¼ j62D3=2; mj ¼ 3=2i and j↓i ¼ j63P1=2; mj ¼ 1=2i
[see Fig. 1(b)]. We trigger an experiment when an atom is
detected in each trap. To prepare the atoms in a desired
spin state, we first optically pump them in jgi ¼ j5S1=2;
F ¼ 2; mF ¼ 2i. We then switch off the traps to avoid
inhomogeneous light shifts, and excite the atoms to
j↑i ¼ j62D3=2; mJ ¼ 3=2i via a two-photon transition
(wavelengths 795 and 474 nm, with polarizations π and
σþ, respectively), detuned from the intermediate state
j5P1=2; F ¼ 2; mF ¼ 2i by Δ≃ 2π × 740 MHz. From
the j↑i state the atom can be transferred to j↓i ¼
j63P1=2; mj ¼ 1=2i using resonant microwaves at
≃9.131 GHz, emitted by an antenna outside the vacuum
chamber.
To read out the state of an atom at the end of a sequence,

we switch on the excitation lasers, coupling only j↑i back
to the ground state. We then turn on the dipole traps to
recapture ground-state atoms, while atoms in Rydberg
states remain untrapped, and detect atoms in jgi by
fluorescence. Therefore if we detect an atom in its trap
at the end of a sequence, we assume it was in j↑i, while a
loss corresponds to the j↓i state. We reconstruct all the 2N

probabilities Pi1…ik…iN of having ik atom in trap k, with
ik ¼ 0 or 1, for our N-trap system (with N ¼ 1; 2, or 3) by
repeating the experiment typically 100 times. For instance
for N ¼ 3, P100 is the probability to recapture an atom
in trap 1, while recapturing none in traps 2 and 3. The
statistical error on the determination of the probabilities
is below 5%. Figure 1(c) illustrates the coherent spin mani-
pulation for a single atom, by showing Rabi oscillations
between j↑i and j↓i: the probability P1 to recapture the
atom oscillates with a frequency ΩMW ≃ 2π × 4.6 MHz.
In 4 μs, we induce more than 35 spin flips without
observing noticeable damping.
We first use two atoms, aligned along the quantization

axis, to directly measure the coupling between two spins
as a function of their distance. The sequence is shown in
Fig. 2(a). We illuminate atom 1 with an addressing beam
[33] which induces a 20 MHz light shift, making it off
resonant to the global Rydberg excitation. Atom 2 is
excited to j↑i, and then transferred to j↓i using micro-
waves. Subsequently, atom 1 is optically excited to the j↑i
state with the addressing beam switched off (atom 2 in j↓i
is not affected by the Rydberg excitation pulse). We let
the system evolve for an adjustable time τ and read out the

(a) (b)

(c) 0

E

0 1 2 3
0

1

Trap
beam

Aspheric
lenses

Microwave
antenna

FIG. 1 (color online). (a) Individual 87Rb atoms in microtraps
aligned along the quantization axis, defined by a B ¼ 6 G
magnetic field. (b) Excitation lasers couple the ground state
jgi¼ j5S1=2;F¼ 2;mF ¼ 2i and the Rydberg state j↑i¼ j62D3=2;
mJ ¼ 3=2i with an effective Rabi frequency Ωopt. Microwaves
couple j↑i to j↓i ¼ j63P1=2; mJ ¼ 1=2i, with Rabi frequency
ΩMW. (c) Microwave-driven Rabi oscillation of a single atom
between j↑i and j↓i, yielding ΩMW ¼ 2π × 4.6 MHz.

FIG. 2 (color online). (a) Sequence to observe spin exchange
between two atoms. (b) Excitation hopping between states j↑↓i
(blue disks) and j↓↑i (red disks) of two atoms separated by
R ¼ 30 μm. Solid lines are sinusoidal fits, with frequency 2E=h.
(c) Interaction energy E (circles) versus R. Error bars are smaller
than the symbols size. The line shows the theoretical prediction
C3=R3 with Cth

3 ¼ 7965 MHz μm3. The shaded area corresponds
to our systematic 5% uncertainty in the calibration of R.
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final state by deexciting j↑i back to jgi. In the absence
of experimental imperfections (see [28], Sec. S.3), P10

(respectively, P01) would give the population of j↑↓i
(respectively, j↓↑i).
The evolution of P10ðτÞ and P01ðτÞ for two atoms

prepared in j↑↓i separated by 30 μm is shown in
Fig. 2(b). The spin excitation oscillates back and forth
between the two atoms, with a frequency 2E=h≈
0.52 MHz. The finite contrast is essentially due to sponta-
neous emission via the intermediate j5P1=2i state during
preparation and readout, which limits the oscillation
amplitude to about 60%, and, to a lesser extent, to the
onset of dipolar interactions during the second excitation
pulse [28]. We then repeat the same experiment for several
values of the distance R between the atoms, and observe
spin-exchange oscillations for distances as large as 50 μm.
Figure 2(c) shows the measured interaction energies as a
function of R, together with the expected C3=R3 behavior
(solid line) for the theoretical value Cth

3 ¼ 7965 MHz μm3

of the C3 coefficient, calculated from the dipole matrix
elements h↑jd̂�1j↓i [30,34]. A power-law fit to the data
(not shown) gives an exponent −2.93� 0.20. Fixing the
exponent to −3 gives Cexp

3 ¼ 7950� 130 MHz μm3. The
agreement between data and theory is excellent.
We now extend the system to a three-spin chain, with a

distance R ¼ 20 μm between the atoms. The sequence is
similar to that in Fig. 2(a) for two atoms, except that we
now use microwave transfer for atoms 2 and 3 to prepare
jg↓↓i. Here, the van der Waals interaction between the two
atoms in j↑i is only ∼10 kHz for R ¼ 20 μm, and thus no
blockade effect arises during excitation. We then excite
atom 1 to prepare j↑↓↓i.

We first analyze theoretically the evolution of the
system. Assuming that the initial state is jψð0Þi ¼
j↑↓↓i, the dynamics induced by the XY Hamiltonian
(1), which conserves the total magnetization

P
iσ

z
i , occurs

within the subspace spanned by fj↑↓↓i; j↓↑↓i; j↓↓↑ig.
Figures 3(a) and 3(b) show the calculated dynamics of
the spin excitation, which moves back and forth between
the extreme sites. Figure 3(a) corresponds to the case
where only nearest-neighbor interactions are retained
in (1). Periodic, fully contrasted oscillations at a frequencyffiffiffi
2

p
C3=R3 are expected for the population of the extreme

sites, while the population of j↓↑↓i oscillates twice as
fast between 0 and 1=2. In contrast, in Fig. 3(b), the full
Hamiltonian (1) is simulated, including the interaction
between extreme sites. One observes a clear signature of
this long-range coupling, as the dynamics now becomes
aperiodic for the populations of j↑↓↓i and j↓↓↑i. The
interplay of the couplings C3=R3 and C3=ð8R3Þ between
nearest- and next-nearest neighbors makes the eigenvalues
of (1) incommensurate. The back-and-forth exchange of
excitation is thus modulated by a slowly varying envelope
due to the beating of these frequencies.
Figure 3(c) shows the experimental results for P100, P010,

and P001 (symbols). We observe qualitative agreement with
Fig. 3(b), in particular the “collapse and revival” in the
dynamics showing the effects of the long-range coupling.
However, one notices differences with the ideal case: (i) the
preparation is imperfect, as one starts with a significant
population in j↓↑↓i, (ii) this, together with imperfect
readout [28], reduces the overall amplitude of the oscil-
lations, and (iii) the oscillations show some damping,
which becomes significant for τ ≥ 4 μs.

FIG. 3 (color online). Spin excitation transfer along a chain of three Rydberg atoms with nearest-neighbor separation of 20 μm.
(a) Theoretical dynamics for a system initially prepared in j↑↓↓i, and evolving under a Hamiltonian similar to (1), but with only nearest-
neighbor interactions. (b) The same as (a), but for the full Hamiltonian (1), including long-range interactions. (c) Experimental data
(points) and prediction of the model taking into account experimental imperfections (see text), with no adjustable parameters. For perfect
preparation and readout, the probabilities P↑↓↓ (respectively, P↓↑↓, P↓↓↑) and P100 (respectively, P010, P001) would coincide.
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Imperfect preparation and readout stem from the fact
that, in addition to the spontaneous emission via the
intermediate state during the optical pulses, the Rabi
frequency for optical excitation (≃5.3 MHz) of atom 1
from jgi to j↑i is not much higher than the interaction
(≃0.92 MHz for R ¼ 20 μm). Thus, during the excitation
of atom 1, the spin excitation already has a significant
probability to hop to atom 2. The damping essentially arises
from the finite temperature of the atoms, which leads to
changes in the interatomic distances, and thus in the
couplings.
To go beyond this qualitative understanding of the

limitations of our “quantum simulator,” we add all known
experimental imperfections to the XY model [28]. The
result, shown by solid lines on Fig. 3(c) accurately
reproduces the data with no free parameters. To obtain
these curves, we simulate the full sequence, i.e., all three
optical (de-) excitation pulses with or without the address-
ing beam, the microwave pulse, and evolution time, by
solving the optical Bloch equations describing the dynam-
ics of the internal states of the atoms, restricted to three
states: jgi, j↑i, and j↓i. Dissipation comes from both off-
resonant excitation of the intermediate j5P1=2i state during
the optical excitation pulse, and from the finite lifetimes
of the Rydberg states (101 and 135 μs for j↑i and j↓i,
respectively [35]). The former effect is treated as an
effective damping of the jgi ↔ j↑i transition, present only
during the optical pulses, and with a damping rate chosen to
match the damping of single-atom Rabi oscillations per-
formed to calibrate the excitation Rabi frequency Ωopt [17].
We then account for the thermal motion of the atoms.

A first consequence of the finite temperature (T ≃ 50 μK)
is that at the beginning of the sequence, the atoms have
random positions (the transverse rms extension of the
thermal motion in each microtrap, of radial frequency
90 kHz, is about 120 nm) and random velocities
(70 nm=μs rms).During the sequence, the traps are switched
off and the atoms are thus in free flight with their initial
velocity. When solving the optical Bloch equations, we thus
first draw the initial positions r0i and velocities v0i of each
atom i according to a thermal distribution, and use time-
dependent dipolar couplings C3=jðr0i þ v0i tÞ − ðr0j þ v0j tÞj3
in Eq. (1) [36]. We then average the results over 100
realizations. This yields a dephasing of the oscillations,
resulting in a significant contrast reduction at long times.
A second effect of the temperature is that an atom has a

small probability εðtÞ to leave the trap region during the
experiment. In this case, we mistakenly infer that it
was in a Rydberg state at the end of the sequence. This
leads to a small distortion of the measured populations Pijk

(i; j; k ¼ 0; 1) [37], that we compute from the actual ones
as described in [17]. We measure εðtÞ (which increases with
the duration t of the sequence, from ∼1% at t ¼ 0 up to
∼20% for t ¼ 7 μs) in a calibration experiment, and then

use it to calculate the expected populations from the
simulated ones [28].
Figure 4 shows how those two consequences of the finite

temperature contribute to the observed damping in the
dynamics of P001: both have sizable effects, but the
dephasing due to fluctuations in the coupling dominates
at long times. Reducing the atomic temperature using, e.g.,
Raman cooling [38,39] would render those effects negli-
gible for our time scales, and allow the realization of a
nearly ideal quantum simulator of spin dynamics.
In summary, we have measured the dynamics of a spin

excitation in a minimal spin chain of three Rydberg atoms.
The evolution of the system is accurately described by
an XY Hamiltonian without any adjustable parameters. The
obtained results are encouraging in view of scaling up
the system to a larger number of spins. In particular, the
residual motion of the atoms and the level of detection
errors would already allow us to observe unambiguously
the back-and-forth propagation of an excitation over a
chain of ∼20 atoms [28]. However, so far, experiments
with more than ∼5 atoms are hampered by the stochastic
loading of the traps by single atoms [31]. In future work,
we will thus explore various quasideterministic loading
schemes that have been demonstrated at the level of a
single [40,41] or a few [42,43] traps. Once this is achieved,
our system will allow us to study the equivalent of an
assembly of hard-core bosons on a 2D lattice with long-
range, anisotropic hopping. We will also study dipolar
interactions involving more than only two Rydberg states
at an electrically tuned Förster resonance [44]. Our
system will be ideal to study exotic phases and frustration
in quantum magnetism, excitation hopping in complex
networks [45,46], or quantum walks with long-range
hopping [47].
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FIG. 4 (color online). Influence of the temperature on P001ðτÞ:
simulated dynamics at zero temperature (black dashed line), and
adding either only atom loss (green dotted line), or only atomic
motion (blue solid line).
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Jan. 2013–now: Co-supervision of the PhD thesis of Sylvain Ravets, Development of
tools for quantum engineering using individual atoms: optical nanofibers and controlled
Rydberg interactions, defended on 16 December 2014. S. Ravets is now pursuing a six-
month post-doctoral stay in our group.
Jan. 2012–Dec. 2013: Co-supervision of the PhD thesis of Lucas Béguin, Measurement
of the van der Waals interaction between two Rydberg atoms, defended on 13 December
2013. Lucas Béguin is now a postdoctoral researcher in Philip Treutlein’s group (Basel,
Switzerland).
Sept. 2010–Dec. 2011: Co-supervision of the PhD thesis of Pierrick Cheiney, Diffusion
d’ondes de matière sur des potentiels complexes. Pierrick Cheiney is now a postdoctoral
researcher in Leticia Tarruell’s group (ICFO, Spain).
Sept. 2009–Dec. 2011: Co-supervision of the PhD thesis of Charlotte Fabre, Miroirs
de Bragg pour ondes de matière et apport de la supersymétrie aux potentiels exponentiels.
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Charlotte Fabre is now a professeur agrégée in classes préparatoires.

Co-supervision of post-docs

May 2013–now: co-supervision of the post-doc of Daniel Barredo.
Jan. 2012–may 2013: co-supervision of the post-doc of Aline Vernier, who is now
Ingénieur de Recherche at LOA, ENSTA, Palaiseau.

Supervision of undergraduate students

June 2014: Supervision of the L3 internship of Kevin Roux (IOGS).
June 2013: Supervision of the L3 internship of Vincent Lienhard (ENS Cachan).
July 2012: Supervision of the L3 internship of Pierre-Yves Perrin (IOGS).
July 2010: Supervision of the L3 internship of Clement Lao-Thiane (IOGS).
Jan.–March 2010: Co-supervision of the M2 internship of Pierrick Cheiney (M2 Mé-
canique quantique, ENS Ulm).
July 2009: Supervision of the L3 internship of Sebastien Garcia (ENS Ulm).
May–June 2009: Co-supervision of the M1 internship of Sven Badoux (Université Paul
Sabatier).
April–June 2009: Co-supervision of the M2 internship of Charlotte Fabre (M2 Sciences
de la matière, Université Paul Sabatier).
Oct 2007–July 2008: Supervision of the master thesis of Alaksei Charnukha (Univer-
sität Stuttgart).
July 2007–July 2008: Supervision of the diplomarbeit of Maximilian Meister (Univer-
sität Stuttgart).
July 2006–July 2007: Supervision of the diplomarbeit of Bernd Fröhlich (Universität
Stuttgart).
Jan.–march 2006: Co-supervision of the M2 internship of Antoine Couvert (M2 Mé-
canique quantique, ENS Ulm).

Tasks of general interest

• 2015—: Membre nommé of the Conseil de laboratoire of LCF.

• Referee for Physical Review Letters, Physical Review A, EuroPhysics Letters, Optics
Express, Journal of Physics B, New Journal of Physics.

• Referee for the IFRAF (Institut Francilien de Recherche sur les Atomes Froids), for
the French Agency of Research (ANR), for the Austrian Science Fund.

• Organizer of the weekly colloquium of LCAR (september 2010–september 2011).

• Co-organizer of a parallel session Condensed-matter with cold atoms at the Congrès
Généeral de la Societe Française de Physique (Bordeaux, France, 4–8 july 2011).
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• Co-organizer, with A. Browaeys, C. S. Adams, and J. V. Porto, of a Les Houches
summer school entitled “Current trends in atomic physics”, in July 2016.

• Webmaster of the website of the cold atom group LCAR (2008–2011).

• Outreach: editions 2009 to 2013 of Fête de la Science at LCAR and then LCF, 50th

anniversary of the laser in Toulouse, supervision of CPGE students for their TIPE. . .

4.2 Publications and conferences

4.2.1 Publication list

Refereed publications

1. D. Barredo, H. Labuhn, S. Ravets, T. Lahaye, A. Browaeys, and C. S. Adams,
Coherent Excitation Transfer in a “Spin Chain” of Three Rydberg Atoms
Phys. Rev. Lett. 114, 113002 (2015).

2. S. Ravets, H. Labuhn, D. Barredo, L. Béguin, T. Lahaye, and A. Browaeys,
Coherent dipole–dipole coupling between two single Rydberg atoms at an electrically-
tuned Förster resonance
Nature Phys. 10, 914 (2014).

3. H. Labuhn, S. Ravets, D. Barredo, L. Béguin, F. Nogrette, T. Lahaye, and A.
Browaeys,
Single-atom addressing in microtraps for quantum-state engineering using Rydberg
atoms
Phys. Rev. A 90, 023415 (2014).

4. F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye,
and A. Browaeys,
Single-Atom Trapping in Holographic 2D Arrays of Microtraps with Arbitrary Ge-
ometries
Phys. Rev. X 4, 021034 (2014).

5. D. Barredo, S. Ravets, H. Labuhn, L. Béguin, A. Vernier, F. Nogrette, T. Lahaye,
and A. Browaeys,
Demonstration of a Strong Rydberg Blockade in Three-Atom Systems with Anisotropic
Interactions
Phys. Rev. Lett. 112, 183002 (2014).

6. L. Béguin, A. Vernier, R. Chicireanu, T. Lahaye and A. Browaeys,
Direct measurement of the van der Waals interaction between two Rydberg atoms
Phys. Rev. Lett 110, 263201 (2013).
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7. P. Cheiney, C. M. Fabre, F. Vermersch, G. L. Gattobigio, R. Mathevet, T. Lahaye
and D. Guéry-Odelin
Matter wave scattering on an amplitude-modulated optical lattice
Phys. Rev. A. 87, 013623 (2013).

8. T. Lahaye
Measuring the eccentricity of the Earth’s orbit with a nail and a piece of plywood
Eur. J. Phys. 33 1167 (2012).

9. T. Lahaye, P. Labastie and R. Mathevet
Fizeau’s “aether-drag” experiment in the undergraduate laboratory
Am. J. Phys. 80 497 (2012).

10. C.M. Fabre, P. Cheiney, G.L. Gattobigio, F. Vermersch, S. Faure, R. Mathevet, T.
Lahaye and D. Guéry-Odelin
Realization of a distributed Bragg reflector for propagating guided matter waves
Phys. Rev. Lett. 107, 230401 (2011).

11. P. Cheiney, O. Carraz, D. Bartoszek-Bober, S. Faure, F. Vermersch, C.M. Fabre,
G.L. Gattobigio, T. Lahaye, D. Guéry-Odelin, and R. Mathevet
Zeeman slowers made simple with permanent magnets in a Halbach configuration
Rev. Sci. Inst. 82 063115 (2011).

12. T. Lahaye, T. Pfau, and L. Santos
Mesoscopic ensembles of polar bosons in triple-well potentials
Phys. Rev. Lett. 104, 170404 (2010) ; Erratum, Phys. Rev. Lett. 105, 239904
(2010).

13. T. Lahaye, C. Menotti, L. Santos, M. Lewenstein and T. Pfau
The physics of dipolar bosonic quantum gases
Rep. Prog. Phys. 72, 126401 (2009).

14. J. Metz, T. Lahaye, B. Fröhlich, A. Griesmaier, T. Pfau, H. Saito, Y. Kawaguchi
and M. Ueda
Coherent collapses of dipolar Bose-Einstein condensates for different trap geometries
New J. Phys. 11, 055032 (2009).

15. T. Lahaye, J. Metz, B. Fröhlich, T. Koch, M. Meister, A. Griesmaier, T. Pfau, H.
Saito, Y. Kawaguchi and M. Ueda
d-wave collapse and explosion of a dipolar Bose-Einstein condensate
Phys. Rev. Lett. 101, 080401 (2008).

16. T. Koch, T. Lahaye, J. Metz, B. Fröhlich, A. Griesmaier and T. Pfau
Stabilization of a purely dipolar quantum gas against collapse
Nature Phys. 4, 218 (2008).
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17. G. Reinaudi, T. Lahaye, Z. Wang, and D. Guéry-Odelin
Strong saturation absorption imaging of dense clouds of ultracold atoms
Opt. Lett. 32, 3143 (2007).

18. T. Lahaye, T. Koch, B. Fröhlich, M. Fattori, J. Metz, A. Griesmaier, S. Giovanazzi
and T. Pfau
Strong dipolar effects in a quantum ferrofluid
Nature 448, 672 (2007).

19. B. Fröhlich, T. Lahaye, B. Kaltenhäuser, H. Kübler, S. Müller, T. Koch, M. Fattori
and T. Pfau
Two-frequency acousto-optic modulator driver to improve the beam-pointing stability
during intensity ramps
Rev. Sci. Instrum. 78, 043101 (2007).

20. T. Lahaye
Refroidissement par évaporation d’un jet atomique guidé magnétiquement
Ann. Phys. Fr. 31-1, 1 (2006).

21. G. Reinaudi, Z. Wang, A. Couvert, T. Lahaye and D. Guéry-Odelin
A moving magnetic mirror to slow down a bunch of atoms
Eur. Phys. J. D 40, 405 (2006).

22. T. Lahaye, G. Reinaudi, Z. Wang, A. Couvert, and D. Guéry-Odelin
Transport of atom packets in a train of Ioffe-Pritchard traps
Phys. Rev. A 74, 033622 (2006).

23. T. Lahaye and D. Guéry-Odelin
Kinetics of the evaporative cooling of an atomic beam
Phys. Rev. A. 73, 063622 (2006).

24. G. Reinaudi, T. Lahaye, A. Couvert, Z. Wang and D. Guéry-Odelin
Evaporation of an atomic beam on a material surface
Phys. Rev. A 73, 035402 (2006).

25. T. Lahaye, Z. Wang, G. Reinaudi, S. P. Rath, J. Dalibard and D. Guéry-Odelin
Evaporative cooling of a Rubidium atomic beam
Phys. Rev. A 72, 033411 (2005).

26. T. Lahaye and D. Guéry-Odelin
Discrete-step evaporation of an atomic beam
Eur. Phys. J. D 33, 67 (2005).

27. T. Lahaye, J. M. Vogels, K. Guenter, Z. Wang, J. Dalibard, and D. Guéry-Odelin
Realization of a magnetically guided atomic beam in the collisional regime
Phys. Rev. Lett. 93, 093003 (2004).
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28. D. Guéry-Odelin and T. Lahaye
Dynamics of a trapped ultracold two-dimensional atomic gas
Comptes Rendus Physique 5, 55 (2004).

29. J. M. Vogels, T. Lahaye, C. Roos, J. Dalibard, and D. Guéry-Odelin
How to reach the collisional regime on a magnetically guided atomic beam?
J. Phys. IV France 116, 259 (2004).

30. C. F. Roos, P. Cren, T. Lahaye, J. Dalibard, and D. Guéry-Odelin
Injection of a cold atomic beam into a magnetic guide
Laser Physics 13, 607 (2003).

31. T. Lahaye, P. Cren, C. Roos, and D. Guéry-Odelin
Propagation of guided cold atoms
Commun. Nonlinear Sci. 8, 315 (2003).

32. D. Egorov, T. Lahaye, W. Schöllkopf, B. Friedrich, and J. M. Doyle
Buffer-gas cooling of atomic and molecular beams
Phys. Rev. A 66, 043401 (2002).

33. R. Delhuille, C. Champenois, M. Büchner, L. Jozefowski, T. Lahaye, R. Mathevet,
A. Miffre, C. Rizzo, C. Robillard, G. Trénec, and J. Vigué
Some theoretical and experimental aspects of three-gratings Mach-Zehnder atom in-
terferometers
C. R. Acad. Sci. Paris 2 IV, 587 (2001).

Books

1. D. Guéry-Odelin and T. Lahaye
Classical mechanics illustrated by modern physics, 42 problems with solutions
English translation of 2., Imperial College Press (december 2010).

2. D. Guéry-Odelin and T. Lahaye
La mécanique classique illustrée par la physique contemporaine, 42 exercices and
problèmes corrigés
Foreword by Jean Dalibard. Éditions Ellipses (september 2008).

Book chapters

1. A. Browaeys and T. Lahaye
Interacting Cold Rydberg Atoms: a Toy Many-Body System,
In Niels Bohr 1913–2013, Séminaire Poincaré XVII, 125 (2013).

2. D. Guéry-Odelin and T. Lahaye
Basics on Bose-Einstein condensation
In K. L. Chuan et al., "Ultracold gases and quantum information", Proceedings of
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Les Houches in Singapore 2009 summer school, 70 pages, Oxford University Press
(2011).

3. T. Lahaye, J. Metz, T. Koch, B. Fröhlich, A. Griesmaier and T. Pfau
A purely dipolar quantum gas
In ATOMIC PHYSICS 21, proceedings of ICAP 2008, arXiv:0808.3876.

4. C. Menotti, M. Lewenstein, T. Lahaye and T. Pfau,
Dipolar interaction in ultra-cold atomic gases
Chapter of the volume “Dynamics and Thermodynamics of systems with long range
interactions: theory and experiments”, A. Campa, A. Giansanti, G. Morigi, F. Sylos
Labini Eds., AIP Conference proceedings 970 (2008).

4.2.2 Conferences

1. IARPA’s workshop on Multi-Qubit Coherent Operations, New-York City, NY, USA,
3–6 February 2015: invited talk Quantum engineering in arrays of single Rydberg
atoms.

2. Workshop Second International Workshop on Ultracold Rydberg Physics Recife, Brazil,
5–8 October 2014: invited talk Small systems of interacting Rydberg atoms.

3. Workshop Long-range interactions in quantum systems, Palaiseau, France, 23–26
September 2014: invited talk Resonant dipole-dipole interactions in systems of single
Rydberg atoms.

4. Workshop of the ITN Coherence, Granada, Spain, 10–12 September 2014: invited
talk Small systems of interacting Rydberg atoms.

5. Workshop Networks of Rydberg atoms, Oxford, UK, 9–10 January 2014: invited talk
Rydberg blockade experiments in small arrays of single atoms.

6. Invited talk in the company ImagineOptic, Orsay, France, 5 December 2013: Arrays
of microtraps for single-atom trapping.

7. Workshop Façonner la lumière, ENS Ulm, Paris, France, 7 November 2013: invited
talk Arrays of microtraps for quantum information processing using the Rydberg
blockade.

8. QuPa workshop, Institut Henri Poincaré, Paris, France, 19 September 2013: invited
talk Rydberg atoms for quantum information processing.

9. ICQT 2013, Moscow, Russia, 20–24 July 2013: poster Direct measurement of the
van der Waals interaction between two Rydberg atoms.

10. DAMOP 2013, Quebec City, Canada, 3–7 June 2013: invited talk (‘Hot Topics
session’) Direct measurement of the van der Waals interaction between two Rydberg
atoms.
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11. Invited talk at the seminar of the students of the Solid-state physics Master 2 pro-
gram, LPS, Orsay, 28 November 2012: Entangling Neutral Atoms using the Rydberg
Blockade.

12. First workshop of the GDR Information Quantique, Fondements et Applications,
23–25 March 2011, Nice, France: poster Mesoscopic ensembles of polar bosons in
triple-well potentials.

13. Conference Atom Lasers, 4–9 April 2010, Les Houches, France: invited talk Towards
CW atom lasers by evaporation of guided beams: a review.

14. Workshop Dipolar quantum gases, 30 September–2 October 2009, Stuttgart, Ger-
many: invited talk Mesoscopic dipolar BECs in triple well potentials.

15. Conference Bose-Einstein Condensation 2009, 5–11 September 2009, San Feliu de
Guixols, Spain: poster All-optical guided atom lasers.

16. Workshop Control of quantum correlations in tailored matter: Common perspectives
of mesoscopic systems and quantum gases, 3–6 December 2008, Reisensburg, Ger-
many: invited talk Experiments with dipolar BECs.

17. Workshop Dipolar gases, 25 june 2008, Villetaneuse, France: invited talk Recent
experiments with a dipolar BEC.

18. Conference Theory of Quantum Gases and Quantum Coherence, 3–7 June 2008,
Grenoble, France: invited talk Experiments with dipolar BECs.

19. Conference Nonlinear phenomena in quantum degenerate gases, 1–5 April 2008,
Toledo, Spain: invited talk Nonlinear dynamics of a dipolar BEC.

20. Joint International Conference IFRAF–CO.CO.MAT Control of quantum correla-
tions in tailored matter: Common perspectives of mesoscopic systems and quantum
gases, 3–7 October 2007, Reisensburg, Germany. Invited talk Strong dipolar inter-
actions in a BEC.

21. Summer school Novel Quantum Phases and Non-equilibrium Phenomena in Cold
Atom Gases, 27 August–7 September 2007, International Centre for Theoretical
Physics, Trieste, Italy: invited talk Experiments with dipolar quantum gases.

22. Annual DPG meeting, 19–23 March 2007, Düsseldorf, Germany. Talk Strong dipolar
effects in a Chromium BEC close to a Feshbach resonance.

23. ConferenceQuo vadis BEC?, 27–29 October 2006, Berlin, Germany. Poster Chromium
BEC: a dipolar quantum gas.

24. 38th EGAS Conference (European Group on Atomic Systems) 7–10 June 2006, Ischia,
Italy. Contributed talk Evaporative cooling of a magnetically guided atomic beam.
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25. First IFRAF Workshop (Institut Francilien de Recherche sur les Atomes Froids),
IHP, Paris, France, 4 May 2006: invited talk Evaporative cooling of a magnetically
guided atomic beam: the prospects of using a conveyor belt for atoms.

26. VIIth Workshop on Quantum Optics and Foundations of Quantum Mechanics, Bil-
bao, Spain, 14 December 2005: invited talk Evaporative cooling of a magnetically
guided atomic beam: towards a cw coherent source for atom optics.

27. Group seminar in Prof. Tilman Pfau’s group, Stuttgart, Germany, 26 October 2005:
Evaporative cooling of a magnetically guided atomic beam.

28. Group seminar in Prof. Markus Oberthaler’s group, Heidelberg, Germany, 24 Octo-
ber 2005: Evaporative cooling of a magnetically guided atomic beam.

29. Group seminar in Prof. Rudi Grimm’s group, Innsbruck, Austria, 22 September
2005: Evaporative cooling of a magnetically guided atomic beam: towards a cw atom
laser.

30. Mesoscopic Phenomena in Ultracold Matter: From Single Atoms to Coherent Ensem-
bles, 11–15 October 2004, Dresden, Germany. Poster Realization of a magnetically
guided beam in the collisional regime.

31. Young Atom Opticians Conference, 3–8 June 2003, Amsterdam, the Netherlands.
Poster Magnetically guided beams: a first step towards a cw atom laser.

32. Atomic Physics Gordon Conference, 17–22 June 2001, Williamstown, MA, USA.
Poster Buffer-gas cooling of a rubidium atomic beam.



Appendix A

Outreach

Il s’enfermait tout’ la journée
Au fond d’son atelier
Pour fair’ des expériences1

A.1 Introduction

In this chapter, I give a brief description of the outreach activities I have been involved with
since I was hired at CNRS, which consisted essentially in the realization of demonstration
experiments, either for the general public or for undergraduate students. I personally find
this “popularization” of physics extremely enriching, and even though I devote only a very
small part of my time to such work, I decided, essentially for my own personal records,
to include a short description of it in this Mémoire d’habilitation. The work described
here was performed at LCAR, most notably because there I benefited from extremely
enriching interactions with two passionate popularizers of physics: Béatrice Chatel and
Renaud Mathevet. Without them, most of what is described below would not have been
done.

This chapter is organized as follows. I first describe two realizations directed towards
the general public: a “laser fountain”, made for the celebration of the 50th anniversary of
the laser that B. Chatel organized during the 2010 science festival La Novela in Toulouse,
and a small video of the operation of a Rb magneto-optical trap, that was posted on
Youtube. The rest of the chapter is devoted to the realization of experiments triggered
by undergraduate students working on their TIPE2. I first describe the construction and
operation of a Paul trap for small anthracene particles, then I report on a replication of
the famous “æther-drag” experiment performed by Fizeau in 1851, and finally I show that
one can measure the eccentricity of the Earth orbit with very modest equipment. The last
two experiments gave rise to a publication in the American Journal of Physics [70] and

1Boris Vian, La Java des bombes atomiques (1955).
2Travaux d’Initiative Personnelle Encadrés: a small research project by students of Classes préparatoires,

on a theme chosen by themselves, and that can include the realization of experiments.
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Figure A.1: (a): General view of the laser fountain. (b): Close-up on the total internal reflection of
the maser beams inside the water jets.

in the European Journal of Physics [67], respectively, and the corresponding articles are
reproduced at the end of this chapter.

A.2 A “laser fountain” for the 50th anniversary of the laser

The year 2010 marked the fiftieth anniversary of invention of the laser by Maiman in 1960,
and many outreach activities were organized worldwide to celebrate this landmark and
increase the awareness of the general public about the importance of laser technology in
our everyday life. In Toulouse, it was thus decided to include, in the yearly science festival
La Novela, an ambitious exhibition about lasers. The project was lead by Béatrice Chatel
from LCAR, and consisted in creating an temporary museum about the principles and
applications of lasers, from basic research to industry, including not only static exhibitions
(with holograms, laser-welded and laser-cut aircraft parts, artwork using lasers. . . ) but
also active workshops with live experiments performed and commented by researchers.
Among those workshops, one was devoted to fiber-optics communication, and it naturally
included a brief discussion of total internal reflection.

Based on earlier work done at the LPL in Villetaneuse, I decided to build a “laser
fountain” that demonstrates total internal reflection in a very appealing way, by guiding
a laser beam inside a jet of water, to serve as an introduction to the workshop. The
resulting fountain is shown in Fig. A.1(a). An upper tank made of plexiglass, with a
height of about 60 cm, contains some 20 L of water. Close to the bottom of the tank, 3
holes with a diameter of 8 mm are drilled in the side panel, and give birth to three parallel,
parabolic water jets, which are collected in a lower tank on the floor, about 1 m below.
Through the back panel of the upper tank, a laser beam is injected in each of the water
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Figure A.2: A screen capture of the MOT video on Youtube.

jets3, and undergoes several total internal reflections at the water/air interface, as can be
seen in Fig. A.1(b).

The upper tank gets empty in a few minutes. In order for the fountain to run contin-
uously, a pump was switched on automatically when the water level was below a preset
value, and pumped back the water to the upper tank until it was almost full. At this
point, the pump turned off again. The turbulence created in the tank by the pump died
out in a few tens of seconds. This, in combination with the great care taken in machining
the orifices to make them very smooth, allowed for water jets without any roughness, and
made it possible to observe many total internal reflections. The fountain encountered big
success among the public, from toddlers to adults. . .

This fountain was reused several times at LCAR for the Fête de la Science. I later
built a smaller version, working on similar principles, for the entrance hall of the institute.

A.3 Yet another MOT video on Youtube

During the process of testing the permanent-magnet Zeeman slower described in sec-
tion 2.2, we used a 87Rb magneto-optical trap that was loaded by the slowed beam. I took
a movie of the corresponding MOT dynamics, showing a few typical phenomena that one
can observe visually with a MOT: loading it, turning the MOT into an optical molasses
when switching off the magnetic field gradient, moving the zero of magnetic field using
shim coils, observing the MOT decay due to background-gas collisions. We decided to
share the video on Youtube4 with a short text describing the various phases of the movie
(see Fig. A.2). Four years later, the video has been viewed some 3,700 times. This video
also proved to be very useful in talks for the general public, as a means to show how a
cloud of cold atoms actually looks like in the lab, making the subject less abstract.

3I used three relatively cheap, 20 mW diode-pumped solid-state lasers from SDL, one red, one green,
and one blue.

4https://www.youtube.com/watch?v=eAIDL_2xN8M.

https://www.youtube.com/watch?v=eAIDL_2xN8M
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Figure A.3: (a): A view of a few anthracene particles confined in the Paul trap. Due to the grav-
itational sag in the trap, the particles are displaced downwards from the quadrupole center, and thus
experience a micromotion along the vertical direction, which makes them appear as vertical filaments.
(b): Two trapped anthracene particles seen under stroboscopic illumination at 50 Hz (using a UV LED),
and that thus seem to be stationary.

A.4 A Paul trap for small particles

In 2010, I was contacted by students who looked for help in setting up a Paul trap for
their TIPE. Paul traps are extensively used for the manipulation of charged particles, not
only to realize ion traps, but also in quadrupole mass spectrometry. The basic mechanism
consists in driving a set of electrodes creating a quadrupolar electric field by AC voltages.
The configuration would be unstable if DC fields were used, but with a high enough driving
frequency the motion can become stable, as the micromotion due to the fast driving acts
as a potential energy term for the slow motion.

Several realizations of Paul traps used to demonstrate the capture and storing of small
“dust” particles have been reported. In my case, I followed closely the work described
in [133]. The particles to be trapped are small anthracene crystals, charged by friction
with the plastic syringe that is used for injecting them into the trap. Damping by the
viscous friction of air allows to damp the motion of the particles, and to load them into
the (otherwise conservative) trap.

The quadrupole field was created using a ring electrode (in practice, a CF–16 copper
gasket) and two connected endcaps (in a first version, these were machined brass spheres,
but in a second version a simple pair of teaspoons worked just as well). They were held in
place using wooden spacers. For simplicity, the trap was driven at 50 Hz from the mains,
with voltages up to 10 to 15 kV. For that, a variable autotransformer fed a high-voltage
transformer5. The assembly was fitted into a plexiglass enclosure, not only for obvious
safety reasons, but also in order to shield the trapped particles from unwanted air currents.
A side hole close to the ring electrode allowed for the injection of anthracene particles.

The anthracene powder, contained in a plastic syringe, was rapidly fed into the trap.
The triboelectric effect ensured charging of the particles, and the viscous damping by air
allowed to trap the dust particles having the appropriate charge to mass ratio. Figure

5Of the type used for ignition of a central-heating boiler; it was generously provided by Jacques Vigué
who had saved it for another project.
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A.3(a) shows the trapping of about five anthracene particles, which appear as vertical
filaments. This is due to the due to the gravitational sag experienced by the particles
in the trap: the particles are displaced downwards from the center of the quadrupole
field, and thus experience a micromotion along the vertical axis. Figure A.3(b) shows two
particles illuminated by a UV6 LED fed by short current pulses with a repetition rate of
50 Hz, allowing the stroboscopic observation of the particles, which appear motionless in
this case. Using the measured value of the gravitational sag and knowing the parameters
of the trap, a semi-quantitative measurement of the charge-to-mass ratio of the anthracene
particles could be performed by the students.

A.5 Fizeau’s “æther-drag” experiment made simple

This work was also triggered by students who contacted Pierre Labastie, asking for help
in setting up a replication of Fizeau’s 1851 “æther-drag” experiment for their TIPE. A
quick description of this famous experiment often occurs in textbooks on special relativity,
as it is a nice way to illustrate the relativistic addition of velocities. Of course, Fizeau’s
motivation in 1851 was different: his work was a test of an hypothesis made in 1818 by
Fresnel to “explain” the negative result of experiments performed by Arago with the goal
to observe the dependence of the speed of light on the motion of the observer.

Fresnel’s “partial æther-drag” formula gives, in the lab frame, the velocity V of light
propagating in a transparent medium with refractive index n, which is itself moving with
a velocity v in the lab frame:

V = c

n
+
(

1− 1
n2

)
v. (A.1)

In contrast, a naive application of the usual (Galilean) addition of velocities (“total drag”)
would give V = c/n+ v. In the limit of a medium becoming extremely dilute, such as in
a gas whose pressure vanishes, the latter formula would give V = c + v, while Fresnel’s
equation predicts V = c, a much more reasonable result as in this case one expects no effect
of such a dilute gas on the propagation of light. The experiment by Fizeau confirmed the
validity of Fresnel’s formula, and played a role in later developments of the electrodynamics
of moving media, that finally culminated with the birth of special relativity.

Fizeau’s extremely clever idea is to use an interferometer (which is actually a Sagnac-
type interferometer), inside which a U-shaped tube with flowing water is inserted (see
Figs. 1 and 2 of the article [70] reproduced below on page 128). The two paths of the
interferometer are the same, but in one of them the light co-propagates with the water flow,
while, in the other, light and water are counter-propagating. This clever trick allows one
to reject common-mode phase-shifts due to turbulent flow in the tubes7. The position of
the interference fringes that are observed at the output of the interferometer then depend
linearly on the velocity of the water flow, and on the length of the interferometer. For

6When irradiated by UV light, anthracene particles fluoresce in the blue.
7In many textbooks, this crucial point is overlooked, and the interferometric arrangements that are

shown would not allow for the observation of the effect.
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reasonable water velocities of a few meters per second, a fringe displacement of about one
fringe requires an interaction length of a few meters.

The difficulty of the experiment thus lies in the realization of a water circulation system
compatible with the observation of interference fringes. Together with Renaud Mathevet,
we built an inexpensive but robust setup, based on standard plumbing hardware. We used
initially a green solid-state laser as a light source, but, for the fun of it, we also used white
light as in the original experiments. We found good agreement with theory, discarding the
Galilean addition of velocities. We finally decided to publish a detailed description of our
setup in the American Journal of Physics.

A.6 Measuring the eccentricity of the Earth orbit with a
nail

In this last section, I briefly describe an experiment which somehow departs from my
field of optics or particle trapping, and rather deals with astronomy. It also originated
from discussions with students about possible subjects for a TIPE, but finally I did it to
entertain myself, essentially at home (as the reader will see, little equipment is needed).
In the end I also published a paper about it, this time in the European Journal of Physics,
and so, for completeness, I include a brief description of this work here.

It is well-known that the Sun’s maximal altitude in the sky (reached at noon) displays
strong seasonal variations, due to the obliquity of the Earth’s rotation axis. However, it is
less known that the exact time at which this maximum occurs also varies during the year,
by a few minutes. The difference between the true local noon and the official noon given
by clocks is called the equation of time. This difference is due to the combination of two
effects :

• the obliquity on the ecliptic makes the projection of the Sun on the celestial equator
move non-uniformly;

• the eccentricity of the Earth orbit gives rise, via Kepler’s second law, to a non-
uniform apparent motion of the Sun on the celestial equator.

Huyghens was the first to give correct expressions for the equation of time in the sev-
enteenth century, although the irregularity of the apparent motion of the Sun had been
known since Antiquity.

What I reported on in [67] was a very basic way to measure the equation of time, using
an elementary homemade sundial consisting of a nail protruding from a plywood base.
The length of the shadow of the nail when placed in the sunlight allows one to compute
the elevation of the Sun. One then just needs to plot the altitude of the Sun over time
during the the course of a day, and extract from this data the maximal altitude and the
time at which this maximum is reached. Repeating this every few days over a full year
gives a good determination of the variation of the equation of time during the year, which



in turns allows for determining the eccentricity of the Earth orbit. I obtained a value of
(1.7± 0.1) %, to be compared to the published value 1.6711 %. Besides being a lot of fun,
performing this work was also a good reminder about the fact that one does not always
need fancy equipment to measure something with a reasonable accuracy.

A.7 Published articles

Here, I list the two peer-reviewed educational articles I have co-authored:

• T. Lahaye, P. Labastie, and R. Mathevet, Am. J. Phys 80, 497 (2012), reproduced
on page 128. I should point out here a few typos introduced in the copy-editing
process, and that we unfortunately did not spot when proofreading the paper. On
page 498, in the denominator of the first fraction of Eq. (1), a factor c is missing. On
page 499, in the second column, the numerical values of the velocities disappeared
in two instances. They should read 4 and 6 m/s, respectively.

• T. Lahaye, Eur. J. Phys 33, 1167 (2012) reproduced on page 137.
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We describe a simple realization of Fizeau’s “aether-drag” experiment. Using an inexpensive setup,

we measure the phase shift induced by moving water in a laser interferometer and find good agreement

with the relativistic prediction or, in the terms of 19th century physics, with Fresnel’s partial-drag

theory. This appealing experiment, particularly suited for an undergraduate laboratory project,

not only allows a quantitative measurement of a relativistic effect on a macroscopic system but also

constitutes a practical application of important concepts of optics, data acquisition and processing, and

fluid mechanics. VC 2012 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.3690117]

I. INTRODUCTION

In introductory courses and textbooks dealing with special
relativity, Fizeau’s “aether-drag” experiment often appears
simply as an application of the law of composition of veloc-
ities, sometimes in the form of an exercise.1 However, Albert
Einstein himself declared that Fizeau’s measurement of the
speed of light in moving water was, together with stellar aber-
ration, one of the experimental results that had influenced him
most in the development of relativity.2 In spite of this high
praise, introductory expositions of Fizeau’s experiment,
including a discussion of its historical development and the
details of the experimental setup, are often lacking. Moreover,
many textbooks actually show incorrect experimental arrange-
ments that would not allow for the observation of the effect in
practice. Here, we show that one can actually perform
Fizeau’s experiment with rather modest equipment, and that
such a project illustrates in an appealing way not only relativ-
istic kinematics but also interesting aspects of wave optics,
data acquisition and processing, and even fluid mechanics.

This article is organized as follows. We first review briefly
the historical background of Fizeau’s experiment, a “test” of
special relativity carried out more than half a century before
relativity was born! For completeness, we recall in Sec. III the
derivation of the expected fringe shift in both the relativistic
and non-relativistic frameworks, following the usual textbook
treatment of the problem. We then turn to the main point of
the paper, namely, how to reproduce the experiment in an
undergraduate laboratory. Section IV is devoted to the
description of our apparatus, starting with an emphasis on the
experimental trade-offs one needs to address in the design
phase. Finally, we discuss in Sec. V the results obtained, first
with water as a moving medium and then with air, in order to
discriminate between relativistic and non-relativistic predic-
tions. The use of a white-light source instead of a laser is pre-
sented in Appendix A, with a discussion of the possible
advantages and drawbacks. Appendix B establishes a useful
fluid mechanics formula using dimensional analysis.

II. HISTORICAL BACKGROUND

Since Fizeau’s aether-drag experiment is a landmark among
the various experimental and theoretical developments leading

to special relativity, it is worthwhile to recall briefly the his-
tory of these developments. An extensive historical study of
the subject is beyond the scope of this paper. Here, we merely
recall the main steps that led to Fizeau’s aether drag experi-
ment, as well as the major subsequent developments.3

We begin our reminder in the 17th century, at a time when
the nature of light was a matter of harsh debate, as evidenced
by the famous controversy between Christiaan Huygens and
Isaac Newton. The speed of light in a vacuum c was known
to be finite since the work of Ole Römer in 1676.4 However,
the measurement of the speed of light in a material medium
of refractive index n was considered a crucial test because
Huygens’ wave theory implies that the speed of light in the
medium is c/n, while Newton’s corpuscular theory predicts it
to be nc. Newton’s views prevailed until the beginning of the
19th century, when interference experiments by Thomas
Young and polarization experiments by Étienne Malus firmly
established the wave theory.

An important event was the measurement by François
Arago of the deviation of light from a distant star by a prism
in 1810.5 The idea of Arago is that if the speed of the light
coming from distant stars is increased or decreased by the
Earth’s velocity, Newton’s theory predicts that the deviation
by a prism should be different from what would be observed
if the source was terrestrial. He, therefore, tried to detect this
difference and found a null result. This experiment seems to
be the first in a long series that showed the impossibility of
detecting the relative motion of light with respect to the
Earth.6

Arago soon became friends with Augustin Fresnel, who
had a mathematically sound theory of light waves, and asked
him if the wave theory could explain the null result he had
found. Fresnel’s answer came a few years later.7 His demon-
stration is based on the hypothesis of an absolute aether as a
support of light waves, associated with a partial drag by
transparent media. That is, if the medium of index n moves
with speed v, the aether inside the medium moves only at
speed ð1� n�2Þ v. The value of Fresnel’s drag coefficient
1� n�2 precisely gives a null result for the Arago experi-
ment. However, his demonstration, using some supposed
elastic properties of the aether, is not so convincing by
modern standards.6
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The first Earth-based direct measurement of the speed of
light was realized by Hippolyte Fizeau in 1849, by means of
a rotating cogwheel. This kind of time-of-flight technique
was soon improved by Léon Foucault who, using a rotating
mirror, succeeded in showing that the speed of light is lower
in water than in air.8,9 Nevertheless, such absolute measure-
ments were far from accurate enough to measure the small
change of the speed of light in moving media.

This is where Fizeau’s aether-drag experiment enters the
scene. As we shall see, this experiment is based on a much
more sensitive differential measurement using the interfero-
metric arrangement shown in Fig. 1. The experiment was
performed in 1851 and almost immediately reported to the
French academy of science, and then translated into Eng-
lish.10 Fizeau measured an effect in agreement with Fresnel’s
theory to within a few percent, which unambiguously ruled
out concurrent theories postulating total aether drag.

Many experiments of increasing precision were then
undertaken to try to demonstrate the influence of Earth’s
motion on light propagation, but all gave null results. It soon
became apparent that Fresnel’s partial drag did not allow the
measurement of any absolute motion of Earth to first order in
v/c. In what would now be called a review paper,11 Éleuthère
Mascart concludes in 1874 (our translation): “the general
conclusion of this memoir would be […] that the translation
motion of the Earth is of no appreciable consequence on op-
tical phenomena produced with terrestrial sources or solar
light, that those phenomena do not allow to appreciate the
absolute motion of a body and that only relative motions can
be attained.”

In 1881 Albert Michelson designed a new interferometer,
which, according to existing theories, could detect Earth’s
displacement respective to aether because the expected effect
was proportional to ðv=cÞ2. His first measurement was at
most half of the expected fringe shift. He then improved the
apparatus with Edward Morley. The two physicists gradually
became convinced of a null result. In 1886 they decided to
redo Fizeau’s experiment—the only experiment with a posi-
tive result, and one that had yet to be reproduced. With a
careful design of the hydraulics and an improved design for
the interferometer,12 they confirmed Fizeau’s result, and
Fresnel’s aether drag, with much higher precision. However,
in their celebrated experiment of 1887,13 the measured shift
was at most 0.01 fringe instead of an expected 0.4. The two
experiments were thus incompatible according to existing
theories, Fizeau’s needing a partial drag and Michelson-
Morley’s needing a total drag of aether.

History then accelerated. In the late 1880 s, George Fitz-
gerald proposed the concept of length contraction. In 1895,
Hendrick Lorentz published his theory of electromagnetic

media, in which he derived Fresnel’s formula from first prin-
ciples. At the beginning of the 20th century, it became evi-
dent that time dilation was also necessary to account for all
electromagnetic phenomena. After Albert Einstein published
the theory of special relativity in 1905, Max Laue, in 1907,
derived Fresnel’s drag coefficient from the relativistic addi-
tion of velocities.14 All experiments, being either of first
(Fizeau) or second (Michelson-Morley) order in v/c, were
then explained by a single theory with no need for an aether
with such special properties.

In the relativistic framework, one can also account for the
effects of dispersion, already predicted by Lorentz in 1895.
Although the supplementary term makes only a few percent
correction, Pieter Zeeman, in his 1914–1927 experiments,
succeeded in measuring it.15,16 More recently, this experi-
ment was performed in liquids, solids, and gases using ring
lasers17 and confirmed the value of the dispersion term to
within 15%.18 Fizeau’s experiment has also been success-
fully transposed to neutron matter waves.19

Thus, as may not be commonly understood, Fizeau’s
aether-drag experiment was a crucial turning point between
old and modern conceptions of light and space-time. We
believe this makes its replication particularly valuable from
a pedagogical point of view.

III. THEORETICAL BACKGROUND

In this section, we recall the derivation of the phase differ-
ence Du induced by the motion, with velocity v, of the me-
dium of refractive index n in the interferometric arrangement
shown in Fig. 2, which is essentially the one used by Michel-
son and Morley in 1886.12 Let us consider first the case
where water and monochromatic light of vacuum wave-
length k propagate in the same direction [shown as light gray
(green online) in Fig. 2]. In the reference frame where water
is at rest, the phase velocity of light is c/n. In the laboratory
frame, using the relativistic composition of velocities, the
phase velocity of light is

vþ ¼
c=nþ v

1þ ðv=nÞ=c2
¼ c=nþ v

1þ v=ðncÞ : (1)

The phase accumulated by light over the propagation dis-
tance of 2‘ is thus

Fig. 1. (Color online) Sketch of the interferometer used by Fizeau (adapted

from Michelson, Studies in Optics. Copyright VC 1995 by Dover). For the sake

of clarity, the two counter-propagating beams are drawn in different gray levels

(colors). S: source; O: observer; M: mirror; Wi: windows; Li: lenses; BS: beam

splitter; DS: double slit.

Fig. 2. (Color online) Sketch of the experimental setup (see text for details).

Mi: mirror; Wi: windows; BS: beam splitter. The two counter-propagating

beams are drawn in different gray levels (colors) for clarity.
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uþ ¼
2pc

k
2‘

vþ
: (2)

Where light and water propagate in opposite directions
[shown as dark gray in Fig. 2], the corresponding phase u�
is obtained by replacing v by �v in Eq. (1). The phase differ-
ence between the two arms of the interferometer thus reads

Du ¼ u� � uþ (3)

¼ 2p
2‘c

k
1� v=ðncÞ

c=n� v
� 1þ v=ðncÞ

c=nþ v

� �
: (4)

Expanding the above result to first order in v/c, we find

Durel: ¼ 2p
v

c

4‘

k
n2 � 1
� �

: (5)

It is not difficult to perform the same calculation using the
non-relativistic addition of velocities, i.e., by replacing v6

by c=n 6 v. One then finds

Dunon�rel: ¼ 2p
v

c

4‘

k
n2; (6)

which has the same functional form except for a coefficient
n2 in place of n2 � 1. In Fresnel’s language, this would cor-
respond to a complete aether-drag. The ratio of the predic-
tions [Eqs. (6) and (5)] is about 2.3 for water (n ’ 1:33) and
approximately 1700 for air (n ’ 1:0003), whence the interest
in performing the experiment with air in addition to water
(see Sec. V E).

As previously mentioned, the above derivation was first
carried out by Laue in 190714 and is the one found in most
textbooks. It has been pointed out16 that such an approach is
not strictly valid because the relativistic composition of veloc-
ities applies to point-like particles, and not to the phase veloc-
ity of waves. However, a more rigorous derivation, based on
the Lorentz transformation of the four-vector kl ¼ ðx=c; k)
associated with light, gives the same result provided the light
and the medium propagate along the same axis.16

Up until now, we have neglected dispersion, i.e., the varia-
tion of the refractive index of the moving medium with the
frequency of light x. But the frequency of light in a moving
frame is shifted by the Doppler effect. These shifts are oppo-
site for the counterpropagating beams in the interferometer.
They are then subjected to slightly different refraction indi-
ces due to dispersion. Taking this into account, the factor
n2 � 1 in Eq. (5) must to be replaced by20

n2 � 1þ nx
dn

dx
: (7)

Using the wavelength-dependent refractive index of water
found in tables,21 a simple calculation shows that for water
at k ¼ 532 nm, the fringe shift is actually 3.8% greater than
what Eq. (5) predicts.

IV. EXPERIMENTAL SETUP: FIZEAU’S

EXPERIMENT MADE EASY

A. Requirements

Fizeau’s experiment was a real tour de force made possi-
ble by the very clever design of the experiment (see Fig. 1).

The improvement by Michelson and Morley essentially
transforms the original wavefront-division setup into a much
brighter amplitude-division setup. In both arrangements,
which we would now call Sagnac interferometers,22 the two
interfering beams follow almost exactly the same path (see
Fig. 2). This not only doubles the interaction length with the
moving medium, but more importantly, rejects common-
mode phase fluctuations due, for example, to turbulence.
This arrangement also ensures that the optical path length
difference between the two interfering arms is zero when the
interferometer is perfectly aligned.

Equation (5) shows that the expected fringe shift is
enhanced by using a short wavelength k and a large product
‘v. Let us estimate the requirements of the water velocity.
We first set ‘ � 2 m to make the size of the apparatus reason-
able. Next, we choose k ¼ 532 nm to correspond to inexpen-
sive diode-pumped solid-state lasers. We then see that
achieving a phase shift on the order of 1 rad using water
(n ’ 1:33) requires velocities on the order of 4 m/s. The
experimental setup thus requires that we can detect a phase
shift of a fraction of a fringe and to produce a water flow of
several meters per second.

The key to the success of the experiment is the care taken
when setting up the plumbing. We thus describe in detail the
various components of our experimental setup and refer the
reader to the pictures shown in Fig. 3.

B. Hydraulics

For simplicity and to keep costs low, we built our system
from standard piping materials available in any hardware
store, and such that a regular tap can be used for the water
source. Ideally, a large diameter d of the pipes is desirable
because it simplifies the alignment of the interferometer
beams and improves the velocity profile flatness over the
beam section. However, the volumetric flow rate Q ¼ pd2v=4
increases rapidly with d (for fixed v). The typical maximal
flow rates available at the water outlets of a laboratory are on
the order of 10–20 l/min. To achieve a velocity of v � m=s
thus requires d. 10 mm. Although using smaller-diameter
pipes will lead to a higher flow velocity, it becomes impracti-
cal for the alignment of the laser beams and leads to increased
head loss. The flow rate is, therefore, limited by the pressure
available from the water distribution system. Unfortunately,
the use of a pump to increase the inlet pressure is of little help
because in the turbulent regime, which is relevant here, the
flow rate increases only as the square root of the pressure (see
Fig. 4 and Appendix B). In our experiment, we use 8-mm
inner diameter copper tubing, allowing us to reach v � m=s.

The water pressure DP is varied using the tap valve and
measured with a pressure gauge connected to the inlet port
(see Fig. 2). We get a continuous measurement of the flow
rate Q using a paddlewheel flowmeter23 that delivers a
square electric signal, whose frequency depends linearly on
the flow rate. Flowmeter calibration, reported in the inset of
Fig. 4, was realized by measuring the volumetric flow rate Q
of water through the system with a graduated bucket and a
stopwatch. We estimate the accuracy of our crude flow rate
calibration to be on the order of 5%. With moderate effort, a
calibration at the percent level or better could certainly be
achieved. Note that the velocity vmeas ¼ 4Q=ðpd2Þ measured
in this way is the mean velocity averaged over the radial ve-
locity profile inside the pipes, and not the velocity v
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appearing in Eq. (5) that occurs at the position of the beam.
We will discuss this point in more detail below.

C. Mechanics

The two 2-m long copper pipes are relatively flexible and
soft. Their straightness and parallelism are ensured by fasten-
ing them on a slotted, 30� 60 mm2 cross-section aluminum
profile by means of cable ties [see Fig. 3(b)]. The T-shaped
connections at their ends [see Figs. 3(d) and 3(e)] are made

with low melting point tin solder and a heat gun. On the four
ends where the windows need to be installed, male 3/8 in.
British Standard Pipe (BSP) adapters are soldered.

The windows themselves are 3.3-mm thick, 25-mm diame-
ter uncoated borosilicate glass substrates.24 They are attached
to the pipes via the system shown in Figs. 3(c) and 3(d). The
window is pressed against a brass female 3=4 in: BSP cap at
the center of which a 6-mm diameter hole is drilled. The inner
threads were slightly altered with a lathe to fit the window
outer diameter. The cap and window are then tightened with a
fiber gasket onto a male–male BSP 3=4 in: to 3=8 in: adapter
which is itself connected to the male BSP adapter soldered to
the pipe via a female–female 3=8 in: BSP adapter.

The end with hoses connected to the water inlet and outlet
in the laboratory sink is extended over the side of the table
[see Fig. 3(e)]. Two L-shaped aluminum profiles mounted on
the table support a small piece of optical breadboard on
which we mount the two mirrors M3 and M4. In a prelimi-
nary set of experiments, we tried a configuration in which
the water pipes were supported independently from the opti-
cal table (and thus from the interferometer) in order to avoid
possible detrimental vibrations. However, this turned out to
be cumbersome, and the much simpler solution of clamping
the pipes tightly to the optical table, by means of four regu-
larly spaced post-holders, does not yield any degradation of
the measurements.

D. Optics and alignment

As a light source, we use an inexpensive diode-pumped,
solid-state laser delivering a quasi-collimated beam with sev-
eral milliwatts of light at k ¼ 532 nm.25 The metallic mirrors
(M0�4) and the dielectric beamsplitter are all mounted on
kinematic optical mounts. We found it convenient to draw
the light path directly on the optical table [see Fig. 3(b)]

Fig. 4. (Color online) Flow rate Q through the apparatus as a function of the

head loss DP. The solid line is a fit by the function Q ¼ a
ffiffiffiffiffiffiffi
DP
p

with a as an

adjustable parameter; the best fit gives a ’ 0:18 L=ðsbar1=2Þ. Inset: calibra-

tion curve of the flowmeter allowing one to infer the water speed vmeas

from the frequency f of the signal it delivers. The solid line is the result of a

linear fit.

Fig. 3. (Color online) (a) General view of the experimental setup. WLS: white-light source; FM: flipping mirror. (b) Close-up of one end of the interferometer.

(c) The various parts for connecting a window, from left to right: drilled brass BSP blank, BK7 25-mm diameter window, gasket, BSP reducer, BSP adapter.

(d) Close-up of the interferometer end shown in (b), with one window disconnected. (e) The other end of the interferometer, showing the water connections

and the optical breadboard (OB) supporting mirrors M3 and M4. AP: aluminum profiles.
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before mounting the mirrors and the beamsplitter, as this
considerably simplifies the alignment of the interferometer.

To align the interferometer, we begin with four small dia-
phragms (diameter �2 mm) positioned just in front of the
centers of the windows W1�4. The tubing system is then
removed, and one walks the beam using M1, BS, and M2 so
that beams W1W4 and W2W3 pass through the diaphragms.
Using M3 and/or M4, one then aligns the returning beam
onto the incoming one. After a few iterations, one obtains a
quasi-perfect superposition of the beams and observes an
almost flat intensity profile in the interference field. When
tilting slightly one of the mirrors (e.g., M3), nice straight par-
allel fringes appear.

Now the pipes can be repositioned and clamped onto the
table. Water is set to flow, and one makes sure that no air
bubbles are trapped inside the pipes, especially close to the
windows where the diameter is larger. If so, they can be
removed by loosening the cap while the water is flowing.

Instead of the expected fringe pattern, one usually
observes caustics and diffuse reflections on the inner sides
of the pipes. Indeed, due to the soldering, the parallelism of
the windows cannot be ensured. When a beam strikes
the window at a small angle from the normal, its path is
slightly deviated. This deviation is only partially compen-
sated at the inner glass/water interface, so the interferometer
must be realigned. After a few iterations, the fringes return
(see Fig. 5).

V. EXPERIMENTAL RESULTS

A. Data acquisition

For quantitative measurements of the fringe shift, we use
an inexpensive webcam,26 whose objective lens and IR filter
have been removed in order to directly expose the CMOS de-
tector chip to the fringe pattern. Using the micrometer
screws of mirror M2, for instance, the fringes are set parallel
to one of the axes of the camera chip. From the webcam
software, the gamma correction is adjusted to get a linear

response of the detector.27 The integration time and light in-
tensity are adjusted to use the full dynamic range of the web-
cam, taking care not to saturate any pixels.

An important point for later data processing is that, prior
to acquiring a series of images, one needs to locate the posi-
tion of the central fringe on the camera. For this, it is conven-
ient to wobble mirror M2, for example. The fringe spacing
varies, and the fringes move symmetrically away from the
central one which is dark and does not move. Once the posi-
tion x0 of the central fringe has been located, the webcam is
roughly centered on it to limit systematic errors due to
changes in the fringe spacing. The fringe spacing is then
adjusted to get about ten fringes on the detector chip. Too
few fringes will not allow for an accurate measurement of
the fringe position offset and period. On the other hand, if
the fringes are too narrow, the resolution of the camera will
limit accuracy.

B. Data processing

We process the images in the following way. We sum up
the values of all pixels in a column, and thus obtain a one-
dimensional intensity distribution I(x), where x (in pixels)
denotes the position along an axis perpendicular to the
fringes (see Fig. 5). We then fit the data using

IðxÞ ¼ I0 þ I1 sin
2pðx� x0Þ

K
þ Du

� �
; (8)

where I0; I1;K, and Du are adjustable parameters, and x0 is
the (fixed) position of the central fringe, determined as
explained above.

C. Experimental results with water

Acquisition and processing are repeated for various water
velocities. Figure 6 shows the experimentally measured
phase difference Du as a function of the measured water ve-
locity vmeas. The origin of phases has been chosen to vanish
at zero velocity. As can be seen in the figure, we take five
measurements for each velocity to improve the statistics and
to get an estimate of the variance. Negative velocities were

Fig. 5. (Color online) Sample images of the fringe pattern obtained from the

camera for (a) v¼ –5.7 m/s, (b) v¼ 0.8 m/s, and (c) v¼ 5.7 m/s. The white

dashed line shows the position x0 of the central fringe for v¼ 0. (d) Process-

ing of the image shown in (c)—the dots are the vertically integrated inten-

sities and the (red) solid curve is the best fit to Eq. (8).

Fig. 6. (Color online) Experimental results using water as the moving me-

dium. Circles: data; thin solid line: linear fit, giving a slope of 0:274 6 0:003

rad s/m; thick solid line: relativistic prediction from Eq. (5); dashed line:

non-relativistic prediction from Eq. (6).
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obtained simply by exchanging the inlet and outlet ports of
the tubing system. No data could be recorded for velocities
below 1 m/s. Indeed, when the velocity is low, turbulence in
the pipes is not fully developed, which leads to low spatial
and temporal frequency fluctuations and very unstable pic-
tures. We also could not take data for zero velocity because
in this case the inlet or outlet valve must be closed; such a
situation produces undue stress on the tubing system so that
light can no longer properly exit the system. For this reason,
the alignment procedure must be performed with water flow-
ing in the pipes.

We observe a clear linear dependence of Du on vmeas. A
linear fit (thin solid line) gives a slope of 0:274 6 0:003
rad s/m. The non-relativistic prediction of Eq. (6) (dashed
line) has slope 0.563 rad s/m, which does not match the
experimental results at all. The relativistic prediction given
by Eq. (5) (thick solid line) has slope 0.248 rad s/m and is in
much better agreement with the experimental data. However,
there appears to be a slight systematic error in the data com-
pared with the prediction. As stated earlier, this comes from
the fact that we measure the mean velocity vmeas averaged
over the velocity profile inside the pipes, whereas the veloc-
ity v appearing in Eq. (5) is the velocity at the position of the
beam, i.e., on the axis of the pipes.

To understand how vmeas is related to v, let v(r) denote the
radial dependence of the velocity in the pipes of radius R and
let vmax ¼ vð0Þ. Because the beam is well centered on the
pipe by construction, we can safely assume that v ¼ vmax.
We must therefore multiply the theoretical prediction by the
correction factor

vmax

vmeas

¼ pR2vmaxÐ R
0

2prvðrÞdr
: (9)

A theoretical model for the radial dependence v(r) is thus
required. In the laminar regime (Poiseuille flow), v(r) would
have the parabolic shape shown as the dashed curve in
Fig. 7, which, using Eq. (9), gives a correction factor equal
to 2. However, for v& 1 m/s, one can check that the Reyn-
olds number Re ¼ vd=�& 104, making the flow turbulent.
Here, � � 10�6m2=s denotes the kinematic viscosity of
water. Under these conditions, there is no simple rigorous
analytic expression for the velocity profile. However, for the
range of Reynolds numbers used here, experimentally meas-
ured flow profiles are well reproduced12 by the empirical law
vðrÞ ¼ vmaxð1� r2=R2Þ1=6

, corresponding to the much flatter
velocity profile shown as the solid curve in Fig. 7. In the tur-
bulent regime, Eq. (9) then gives a correction factor of 1.16.
The relativistic prediction (5) multiplied by this correction
factor, and including the 3.8% correction due to dispersion,
yields a slope of 0.299 rad s/m (not shown in Fig. 6). The
agreement between the experimental and theoretical values
is thus at the level of 8%.

D. Discussion

Based on our data, we conclude that the non-relativistic
prediction is clearly ruled out by our measurements. Never-
theless, the rather good agreement with the relativistic pre-
diction must not be over interpreted. Indeed, it is difficult to
put an accurate error bar on the result, as several systematic
effects should be studied carefully for such a purpose.
First, the systematic errors are dominated by our flowrate
measurement. A more careful calibration should thus be per-

formed in order to improve the accuracy. Second, the factor
of 1.16 due to the shape of the velocity profile should be
measured specifically for our system. A final source of
uncertainty is the determination of the actual length ‘ appear-
ing in Eq. (5). In practice, the flow makes a right-angle turn
at each end of the pipes, so the velocity will presumably be
affected up and downstream on length scales on the order of
the pipe diameter d. This implies a correction of order d=‘
(on the percent level), but again, an accurate estimation is
difficult.

In the end, due to a slight distortion of the tubing when the
velocity (and thus the pressure) is varied, the fringe spacing
changes by a small amount. As mentioned, an important fea-
ture of the Sagnac-like interferometric arrangement used
here is that it operates at low interference order p. This is
crucial in order to be sure that when the water is flowing
inside the pipes, the observed shift of the fringes does arise
from the aether drag effect and not from a slight change in
the fringe spacing. As an example, let us assume that using a
different interferometric setup, one observes an interference
pattern with ten fringes, corresponding to interference orders,
say p1 ¼ 104 to p2 ¼ p1 þ 10. If, as is likely, the fringe spac-
ing changes by a quantity as small as 10�4 in relative value
when the water velocity varies, one would observe that our
ten fringes would shift, almost as a whole, by as much as one
full fringe! For the data presented in the paper, we have
measured that the fringe period K does not vary by more
than 5% over the full range of velocities, yielding negligible
errors due to the low interference orders used here.

E. Experimental results with air

In his original paper,10 Fizeau states that he performed the
experiment with air as a moving medium and that “the
motion of the air does not produce any sensible displacement
of the fringes,” in agreement with the partial drag prediction
(5). On the contrary, the non-relativistic prediction (6) pre-
dicts a measurable shift.

It is thus interesting to repeat the experiment using air
instead of water. We do so by using a standard compressed
air outlet, as available in most laboratories. One actually
needs very moderate pressures in order to achieve relatively

Fig. 7. (Color online) Dashed curve: Poiseuille’s velocity profile for laminar

flow given by vðrÞ ¼ vmaxð1� r2=R2Þ. Solid curve: velocity profile for tur-

bulent flow, modeled here by the empirical form vðrÞ ¼ vmaxð1� r2=R2Þ1=6
.

502 Am. J. Phys., Vol. 80, No. 6, June 2012 Lahaye, Labastie, and Mathevet 502

133



high velocities for the air flow in the 8-mm diameter pipes:
only 0.2 bar typically yields vmeas ’ 35m=s. Measuring the
air velocity is not as straightforward as with water; we found
it convenient to use a hot-wire anemometer28 placed in a
D¼ 18 mm inner-diameter pipe at the outlet of the d¼ 8 mm
pipes. The velocity vmeas in the interaction region of the in-
terferometer is then deduced from the measured velocity
vanem at the anemometer position via volumetric flow conser-
vation vmeas ¼ vanemðD=dÞ2. This assumes incompressible
flow, which is valid since the air velocity is much smaller
here than the speed of sound.29

Figure 8 shows the measured phase shifts (circles) along
with the predictions of Eqs. (5) and (6). We cannot clearly
identify the reason(s) behind the seemingly oscillatory
behavior of the measured fringe shift with velocity. In any
case, the non-relativistic prediction is clearly ruled out by
the measurements, which are clearly compatible with the rel-
ativistic calculation.

VI. CONCLUSION AND OUTLOOK

Using rather modest equipment, we have shown that
Fizeau’s “aether-drag” experiment can be reproduced in the
undergraduate laboratory at a quantitative level. It not only
makes a nice practical introduction to the sometimes abstract
concepts of special relativity but also constitutes an interest-
ing application of several branches of experimental physics.

Immediate improvements of the setup described in this
paper would consist of (i) calibrating the flowrate more care-
fully and (ii) increasing the stiffness of the tubing system. A
natural extension of this work, suitable for a long-term stu-
dent project, would consist of trying to study the systematic
effects in detail—for example, the determination of the
effective length ‘. One way to measure this effect would be
to start from the full pipe length and then repeat the experi-
ment for shorter and shorter pipe lengths. The effect can then
be evaluated by measuring the dependence of the slope
Du=v on the pipe length.

A more ambitious extension, suitable for advanced under-
graduates, would illustrate more modern optical techniques.
For instance, one may use a ring cavity of moderately high
finesse (say F � 100 –1000) and measure the variation of

the resonance frequencies of the two counterpropagating
modes when the velocity of the medium is varied. A gain in
sensitivity by a factor F is then expected. Such techniques,
with ultra-high finesse cavities, are currently used to mea-
sure, for example, non-reciprocity effects in the propagation
of light with amazing sensitivities.30
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APPENDIX A: USING A WHITE-LIGHT SOURCE

INSTEAD OF A LASER

We have also performed this experiment using a white-
light source instead of a laser. The source is a 1-mm diameter
iris illuminated by a 55-W halogen lamp (the type used for
car headlights) and a condenser lens. The resulting diverging
beam is collimated by a 100-mm focal length lens and super-
imposed onto the path of the laser beam using two mirrors.
The second mirror, located between M0 and M1, is a flipping
mirror so that one can switch easily between the laser and
the white light sources [see Fig. 3(a)]. Once the interferome-
ter has been aligned with the laser, white-light fringes are
readily observed. Naturally, if the iris is opened the luminos-
ity is increased at the expense of spatial coherence, and the
contrast in the picture is lost. The fringes are then localized
in the vicinity of mirror M3. A color image as in Fig. 9(a) is
then recovered using a converging lens that conjugates M3

and the detector plane.
The advantages of using a white source is that (i) the position

of the dark central fringe can be found without ambiguity as the
contrast of the colored fringes vanishes rapidly away from the
zero path-length difference and (ii) compared to using a laser,
unwanted interference fringes (due to scattering on dust particles
for example) as well as speckle, are suppressed. There are,

Fig. 8. (Color online) Experimental results using air as the moving medium.

Circles: data; solid line: relativistic prediction from Eq. (5); dashed line:

non-relativistic prediction from Eq. (6).

Fig. 9. (Color online) (a) A sample white-light fringe pattern. (b) Composite

image of 22 fringe patterns obtained for different water velocities v. One

clearly observes the linear shift of the central fringe position as a function of v.
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however, a certain number of drawbacks. Besides the reduced
luminosity, making quantitative comparisons with theory is
obviously much more difficult than in the monochromatic case.
Indeed, one would need to measure the light spectrum, as well
as the wavelength-dependent reflectivity (including phaseshifts)
introduced by the beamsplitter in order to model quantitatively
the fringe pattern. For instance, we have observed that using a
metallic beamsplitter instead of the dielectric one significantly
alters the colors and the contrast of the fringe pattern obtained in
white light.

We made a composite of 22 images taken for various
water velocities v. The result, shown in Fig. 9(b), clearly
shows that the fringe positions shift linearly with velocity.
However, a quantitative analysis of such an image is not
easy, and the motivation behind this figure is mainly for
aesthetics.

APPENDIX B: TURBULENT HEAD LOSS IN A

CIRCULAR PIPE: DIMENSIONAL ANALYSIS

APPROACH

In the standard introductory physics curriculum, the com-
putation of the head loss in a circular pipe is done using
Poiseuille’s equation, valid for laminar flow. It is much less
common to present the case of turbulent flow to undergradu-
ate students. Reference to the Moody diagram, giving the
so-called friction factor as a function of Reynolds number
and pipe roughness, can be found in engineering-oriented
textbooks, but may appear as quite involved to beginning
physics students. In this appendix, we show how dimensional
analysis can be used to infer a plausible expression for the
turbulent head loss, at least for its dependence on flow rate
and pipe diameter, two parameters that are crucial for the
design of our experimental setup.

We consider the head loss DP for the flow of a fluid of
density q and kinematic viscosity � in a circular pipe of di-
ameter d and length l, flowing with a volumetric flow rate Q.
Let us make two assumptions. First, for an infinitely long
pipe, only the pressure gradient DP=l is physically relevant.
And second, the limit of very large Reynolds number corre-
sponds formally to the limit � ! 0. In this case, the viscosity
� should not appear explicitly in the expression for the head
loss. Under these conditions, we expect the functional form
for the head loss to be

DP

l
¼ AqaQbDc; (B1)

where A is a dimensionless constant and ða; b; cÞ the expo-
nents to be determined. Equating the dimensions on both
sides of this equation yields three equations for the expo-
nents, which can be solved to give

DP

l
¼ A

qQ2

D5
: (B2)

This expression agrees well with empirical formulae used in
an engineering context if one chooses A � 3� 10�2, and
this is typically what one would find using the friction factor
obtained in a Moody diagram31,32 for our Reynolds numbers.
For example, the value of the coefficient a obtained when fit-
ting the flow rate data of Fig. 4 yields A ’ 2:5� 10�2, in
good agreement with the previous estimate.
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Abstract
I describe how to obtain a rather good experimental determination of the
eccentricity of the Earth’s orbit, as well as the obliquity of the Earth’s rotation
axis, by measuring, over the course of a year, the elevation of the Sun as a
function of time during a day. With a very simple ‘instrument’ consisting of an
elementary sundial, first-year students can carry out an appealing measurement
programme, learn important concepts in experimental physics, see concrete
applications of kinematics and changes of reference frames, and benefit from
a hands-on introduction to astronomy.

(Some figures may appear in colour only in the online journal)

1. Introduction

One of the cornerstones of introductory courses in classical mechanics is the derivation
of Kepler’s laws. In particular, the derivation of Kepler’s first law, stating that the trajectory
of a planet is an ellipse with the Sun located at one of the foci, is an important application of
Newton’s laws to a multidimensional problem. However, very few students are aware of the
fact that the eccentricities of the planets of the solar system are actually quite small, with
trajectories very close to a circle, which makes Kepler’s achievement (based on Tycho Brahe’s
measurements) even more remarkable.

Here, I describe a simple measurement programme, suitable for first-year university
students, consisting in measuring the elevation of the Sun as a function of time during a
day, and in repeating this typically once a week over a full year. By measuring the maximal
elevation hmax of the Sun, and the time tmax at which this maximum occurs (i.e. the true local
noon), students can readily check that these quantities vary a lot over the year. The change in

1 Present address: Laboratoire Charles Fabry, CNRS UMR 8501, Institut d’Optique, F-91127 Palaiseau cedex,
France.
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Figure 1. Schematic view of the elementary sundial.

hmax is essentially related to the obliquity ε of the Earth over the ecliptic, and thus allows for
quite an accurate determination of ε (as well as that of the latitude of observation). The change
of tmax over a year gives an experimental determination of the equation of time E(t), i.e. the
difference between the mean local noon and the true local noon, and allows for a determination
of the eccentricity e of the Earth’s orbit [1]. This is a rewarding result for students to realize
that with such simple measurements, they can obtain good experimental values for the above
quantities, and that with careful observations one can perform ‘science without instruments’
as did the astronomers of various antique civilizations [2, 3].

I have organized this paper as follows. I first describe how to measure in a simple way
the elevation of the Sun versus time over a day, with an accuracy of about 1◦. Then I give the
results I obtained for hmax(t) and E(t) by repeating the measurement about once a week for
one year, starting in August 2010. I show how one can extract the obliquity ε of the Earth’s
axis and the eccentricity e of its orbit by fitting the experimental data with simple, analytic
expressions. Finally, possible extensions of the work are proposed. Appendix A contains a
brief reminder on basic notions of spherical astronomy, and should be read first by readers
not familiar with these notions. In the remaining appendices, the derivation of the analytic
expressions used for fitting the data is given, so that the paper is self-contained.

2. Measurements

We are interested in studying the motion of the Earth around the Sun. Using the relativity of
motion, we can thus simply measure the apparent motion of the Sun on the celestial sphere,
i.e. the time dependence of two angles that define the position of the Sun in the sky.

As we shall see, for our purpose, it is sufficient to measure the elevation of the Sun (also
called altitude, or height) above the horizon, i.e. the angle h shown in figure 1. This can be
done very simply by measuring the length s of the shadow of a vertical gnomon (i.e. a rod with
a sharp point) of length �. Then the elevation of the Sun is given by h = arctan(�/s).

Contrary to the case where one would measure also the azimuthal position of the Sun,
here, the orientation of the horizontal base does not need to be fixed. One of the advantages of
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Figure 2. Measured elevation of the Sun over the course of a day, for two different dates. The solid
lines are fits by a polynomial (see the text). The dashed lines display the values of hmax and tmax.

using such a simple setup is therefore that one can change the position of the sundial over the
course of the day, e.g. in order to operate indoor.

2.1. Construction and use of an elementary sundial

In practice, I used as a gnomon a steel nail protruding from a plywood base of size 20×20 cm2.
In order to have the nail as orthogonal to the base as possible, a hole with a diameter slightly
less than that of the nail was first drilled into the plate using a drill press. The nail I used had a
length � = 69 mm above the plate. To measure h, one simply installs this elementary sundial
on a horizontal surface in the sunlight, and measures with a ruler the length of the shadow.
Two effects limit the accuracy of the measurement: first, due to the finite angular diameter of
the Sun, the shadow is slightly blurred; second, the horizontality of the base when installed
on the floor of a room, or on a table, is not perfect2. In practice, an accuracy of typically one
degree is easily obtained. (This can be estimated quantitatively by repeating the measurement
several times with the sundial in different positions, in a short interval over which h barely
varies, and observing the dispersion of the results.)

Concerning the determination of the time t at which h(t) is measured, an accuracy of
1 min is sufficient for our purpose, and thus a simple wristwatch can be used. However, it is
wise to check that the watch indicates the correct time before starting a series of measurements.
Nowadays, this can be done very easily using the websites of national time agencies3 that give
access to the legal time with an accuracy of 1 s or better.

2.2. Measuring the altitude of the Sun over a day

Figure 2 shows two measurements of h(t), where t is the legal time, performed in Toulouse,
France (latitude ϕ = 43.60◦ N, longitude λ = 1.45◦ E) at two different dates. It is very
clear from the data that the maximal height hmax of the Sun depends on the date; this is in
general well known as it is related to the cycle of seasons.

2 This could be improved easily, e.g. by using bubble levels to adjust the horizontality of the base.
3 See for instance, www.time.gov in the US or www.syrte.fr in France.
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Figure 3. Measured maximal elevation of the Sun (points with error bars). We observe a sinusoidal
variation around π/2 − ϕ, with an amplitude of 2ε. The solid line is a fit to the simple model
discussed in the text.

However, what appears also clearly in figure 2 is that the time tmax at which this maximum
occurs also depends on the date; this however is not widely known by students, nor even
by some physicists, probably because the effect is relatively small (a few minutes) though
perfectly measurable even with our crude setup.

In order to proceed, we need to extract from h(t) the two quantities hmax and tmax. The
theoretical expression of h(t) is derived in appendix B; however, we can at this stage keep
an empiric approach and just fit the data with a simple function. As h(t) is symmetric about
t = tmax (provided one neglects the motion of the Sun with respect to the fixed stars over a few
hours, which is reasonable given the accuracy of our measurements), I chose to fit the data
with the following polynomial:

h(t) = hmax +
3∑

i=1

h2i(t − tmax)
2i, (1)

where the five adjustable parameters are hmax, tmax and the coefficients h2,4,6. I chose to go up to
sixth order in order to get a nicer fit at small elevations (in the mornings and evenings), but if
the data are taken only for a few hours around tmax (±3 to 4 h around tmax are enough to
determine the quantities of interest), one can use only a fourth-order polynomial without
affecting the results. Such fits are shown as solid lines in figure 2. The accuracy in the
determination of hmax and tmax obviously depends on the number of measurement points; for
the data presented in figure 2, they are respectively of about 0.2◦ and 1 min, as data points
were collected for several hours before and after tmax, at a rate of four points per hour typically.
When the weather is partly cloudy, one sometimes has to stop taking data for a while, and the
accuracy in the determination of hmax and tmax is thus not as good.

2.3. Annual variation of hmax: determination of ϕ and ε

By repeating the above measurements typically once per week for a year, the annual variations
of hmax and tmax can be obtained. Figure 3 shows the maximal elevation hmax of the Sun as a
function of time. One observes a quasi-sinusoidal variation with a period of one year.
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(a) (b)

Figure 4. (a) Measured equation of time E (points with error bars). The solid line is a fit to the
simple model of the equation of time given in the appendix. (b) Combining the effects of the Earth’s
obliquity (E1(t), dotted line) and of the eccentricity of the Earth’s orbit (E2(t), dashed line) gives
the full expression of the equation of time E(t) (solid line).

The qualitative explanation for this phenomenon is simple, and is usually part of geography
courses in elementary education, but I repeat it here for completeness. Due to the obliquity ε

of the Earth’s rotation axis, the angle between the Earth’s axis and the line joining the centre of
the Earth to the Sun varies between π/2−ε (at the summer solstice, when the Earth’s axis leans
towards the Sun) and π/2 + ε (at the winter solstice). Correspondingly, the angular distance
between the Sun and the celestial pole varies with a period of one year and an amplitude of ε.
This induces a similar variation of hmax, around a mean value which depends on the observer’s
latitude. For a quantitative treatment, the reader is referred to appendix C.

2.4. Annual variation of tmax: determination of e

We now turn to a more subtle measurement concerning the variation of tmax, which defines
the true local noon. It is convenient to convert the measured values into a quantity called the
equation of time, that we shall denote by E, defined as the difference between the mean local
noon and the true local noon (our measured tmax). The former is obtained from the legal noon,
given by clocks (corrected if necessary by 1 h in summer due to daylight saving time) by adding
(subtracting) 4 min for each degree of longitude west (east) from the reference meridian of
the corresponding time zone. For instance, in Toulouse (longitude λ = 1.45◦ E), one needs to
subtract tmax from 13.00 h in winter time and 14.00 h in summer time, and then subtract another
5.8 min to correct for the longitude, to obtain the equation of time E. For instance, on 17 October
(see figure 2), we have tmax = 13.66 h, thus giving E = 60(14 − 13.66) − 5.8 = 14.6 min.

Figure 4 gives the results obtained by measuring E(t) over a year. One observes a non-
trivial behaviour, the equation of time varying between a maximum of about 16 min in autumn
and a minimum of about −15 min in winter, and vanishing at four different dates.

Physically, the origin of the equation of time lies in the fact that the duration of the true
solar day, i.e. the time elapsed between two successive transits of the Sun across the observer’s
meridian, is not constant over a year. The solar day would have a constant duration if, along
the year, the Sun moved on the celestial sphere (i) at constant angular velocity and (ii) along
the celestial equator (this defines the so-called mean Sun; the time between two transits of the
mean Sun defines the mean solar day of 86 400 s). However, these two assumptions are both
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wrong: since the Sun moves along the ecliptic, which is inclined with respect to the equator
due to the obliquity ε of the Earth’s axis, the motion of its projection on the equator is irregular.
(It coincides with the mean Sun at the time of the equinox, then lags behind the mean Sun for a
quarter of the year, catches up at the solstice and then is ahead of the mean Sun for another three
months.) This contribution E1 to the equation of time thus has a six month period. Moreover,
via Kepler’s second law of areal velocity (see appendix D) the angular velocity of the apparent
motion of the Sun is not constant over the year due to the fact that the Earth’s orbit is not
circular: for instance, when the Earth–Sun distance is smaller (in January), the Sun moves faster
along the ecliptic. This contribution E2 to E(t) has obviously a one-year period. Combining
these two contributions explains the temporal variation of the equation of time (see figure 4(b);
appendix D gives the derivation of the analytical expressions of E1 and E2).

3. Exploiting the data

3.1. Obliquity of the Earth

It is easy to show (see appendix C) that to a very good approximation, one has

hmax = π

2
− ϕ + ε sin

(
2π

T
(t − t0)

)
, (2)

where ϕ is the latitude of the place of observation, ε is the obliquity of the Earth’s axis, T
is the duration of the year and t0 is the date of the vernal equinox. When fitting the data by
equation (2) with the four previous quantities as adjustable parameters, we obtain⎧⎪⎪⎨

⎪⎪⎩

ϕ = 43.8 ± 0.2◦,
ε = 23.5 ± 0.1◦,
T = 374 ± 6 d,

t0 = 78 ± 1 d, i.e. 19 March,

(3)

which is close to the accepted values (respectively, 43.60◦, 23.44◦, 365.25 d and 20 March.)
Note that by repeating the measurements over the course of several years, a much more
accurate determination of the duration T of the year could be achieved.

3.2. Eccentricity of the Earth’s orbit

We show in appendix D that a good approximation of the equation of time is given by

E(t) = d

2π

[
1 − cos ε

2
sin

(
4π

T
(t − t0)

)
− 2e sin

(
2π

T
(t − t1)

)]
(4)

where d is the duration of a day (i.e. 1440 min), e is the eccentricity of the Earth’s orbit and t1
is the date of perihelion passage.

Fitting the data shown in figure 4 by equation (4) with e and t1 as adjustable parameters
(and using the values determined above for ε, T and t0), we obtain{

e = 0.017 ± 0.001,

t1 = 1 ± 5 d, i.e. 1 January,
(5)

again in relatively good agreement with the values e = 0.0167 and t1 = 3 d found in the
literature.

4. Conclusion and outlook

I have shown that with very modest equipment, one can measure with reasonable accuracy
some of the orbital elements of the Earth, and in particular its eccentricity, despite its relatively
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small value. The above measurements can be the basis of further activities for students. Among
them, one can list the following ones, given here under the form of exercises:

• Use equation (B.4) of appendix B to calculate the length of daytime as a function of the
latitude along the year and compare it to the one obtained from the ephemerides given in
calendars.

• Show that the duration of a solar day is (1 + dE/dt) × 86 400 s. What are its minimal and
maximal values?

• Using a sundial with a fixed base, check experimentally that the azimuthal position of the
Sun when it reaches its highest elevation is always the same (i.e. South) throughout the
year4.

• Still with a fixed-base sundial, plot experimentally the curve traced out over the year by the
end of the shadow at the mean local noon. This eight-shaped curve is called an analema
and is sometimes encountered on sundials in order to allow for a computation of the legal
time from the measured solar time.
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for discussions, and Lucas Béguin, Antoine Browaeys and Renaud Mathevet for useful
suggestions that helped me improve the manuscript.

Appendix A. A quick reminder on spherical astronomy

This section consists in a minimalist reminder about basic terms and notions of spherical
astronomy needed for the understanding of the paper. The reader is referred to the first sections
of [2] for a similar but more exhaustive reminder. A very detailed and accessible introduction
to spherical astronomy can be found online in the celestial mechanics lecture notes of [4], or
in standard textbooks about spherical astronomy [5].

To an Earth-bound observer O (that we assume, for definiteness, located in the northern
hemisphere), celestial bodies appear to move on a sphere centred on himself, the celestial
sphere (figure A1(a)). The local vertical points towards the zenith Z; the great circle
perpendicular to the vertical is the horizon. Over a day, ‘fixed’ stars appear to rotate around
the north celestial pole P (close to the star Polaris). The great circle going through Z and P
crosses the horizon in two points defining the South S and the North N; the two other cardinal
points on the horizon (East E and West W ) are deduced from S and N by a 90◦ rotation around
the vertical axis.

The position of celestial bodies can be specified in spherical coordinates by two angles,
once a reference system has been chosen. Two reference systems are particularly useful: the
horizon system, in which measurements are made in practice, and which is dependent on the
observer’s location on Earth, and the equatorial system, which is defined by the directions of
‘fixed’ stars.

• In the horizon system (figure A1(b)), the local vertical, pointing towards the zenith, is
chosen as the z-axis. The position of a point on the celestial sphere is specified using the

4 Note that with a fixed-base sundial, the determination of the equation of time can be much more accurate than with
the method used in this paper. Indeed, in that case one needs to determine the time tmax at which the solar azimuth ψ�
vanishes (i.e. when the Sun is South and crosses the observer’s meridian), which can be done with a high precision as
it varies linearly in time: the determination of such a zero-crossing is much more accurate than that of the position of
a maximum.
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(a) (b)

(c) (d)

Figure A1. Geometry of the celestial sphere. (a) Important points, axes and circles on the celestial
sphere. (b) Definition of the coordinates in the horizon system. (c) Definition of the coordinates
in the equatorial system. (d) Definition of the coordinates of the Sun � in the equatorial system
during its motion along the ecliptic.

altitude (or elevation) h (angle between the radius vector of the point and the horizon), and
the azimuth ψ , counted along the horizon, starting from the South and counted positive
towards the West (note that other conventions exist for the choice of the azimuth origin).

• In the equatorial system (figure A1(c)), OP is chosen as the polar axis. The intersection
of the plane perpendicular to OP with the celestial sphere defines the celestial equator.
The position of a point on the celestial sphere is given by the declination δ (angle from the
celestial equator to the body) and the hour angle H (counted along the celestial equator,
from the south to the equatorial projection of the body).

The equatorial system is obtained by rotating the horizon system around OE by an angle
π/2 −ϕ, where ϕ is the (geographical) latitude of the point of observation; for instance, at the
North pole (ϕ = π/2) the equatorial and horizon systems coincide.

Finally, the ecliptic is the great circle along which the apparent annual motion of the Sun
(traditionally denoted by the astronomical symbol �) takes place on the celestial sphere. It is
inclined on the celestial equator by the obliquity ε of the Earth’s axis.

The angular position of the Sun along the ecliptic is given by the ecliptic longitude λ�,
whose origin is taken at the vernal point V (the point where the ecliptic crosses the celestial
equator, and where the Sun is located at the time of the spring equinox in the Northern

144



Measuring the eccentricity of the Earth’s orbit with a nail and a piece of plywood 1175

hemisphere). The angular distance on the celestial equator between V and the projection of
the Sun on the equator is the Sun’s right ascension α�.

Appendix B. Expression of h(t) over a day

From the definitions given above, in the equatorial coordinate system (x′, y′, z′), the coordinates
of the Sun read

S′ =
⎛
⎝ x′ = cos δ cos H

y′ = − cos δ sin H
z′ = sin δ

⎞
⎠ , (B.1)

with δ being the declination and H the hour angle of the Sun. In the horizon system (x, y, z),
they read

S =
⎛
⎝ x = cos h cos ψ

y = − cos h sin ψ

z = sin h

⎞
⎠ , (B.2)

where h is the altitude of the Sun and ψ is its azimuth. Since the equatorial system is deduced
from the horizon system by a rotation of angle π/2 − ϕ around the (Oy) = (Oy′) axis, the
(x, y, z) coordinates are obtained by multiplying the (x′, y′, z′) ones by the following rotation
matrix:

R =
⎛
⎝sin ϕ 0 − cos ϕ

0 1 0
cos ϕ 0 sin ϕ

⎞
⎠ . (B.3)

From the last component of the relation S = RS′ we obtain

sin h = cos ϕ cos δ cos H + sin ϕ sin δ (B.4)

which gives the elevation of the Sun as a function of time (i.e. the hour angle H) for the given
location and declination of the Sun.

Appendix C. A simple model for hmax(t)

From equation (B.4) above, we find immediately that the elevation of the Sun becomes maximal
when cos H = 1 and reaches the value hmax fulfilling

sin hmax = cos ϕ cos δ + sin ϕ sin δ = cos(ϕ − δ), (C.1)

whence

hmax = π

2
− ϕ + δ. (C.2)

We now need to express the time dependence of the declination of the Sun. Using figure A1,
one can show (see equation (D.5) below) that sin δ� = sin ε sin λ�, which can be simplified
to δ� � ε sin λ� to a very good approximation (even though ε � 23◦, the maximal error due
to this approximation is smaller than 0.3◦, i.e. negligible as compared with our experimental
uncertainties). Making further simplification that the solar ecliptic longitude λ� increases
linearly in time (i.e. assuming here that the eccentricity of the Earth’s orbit is e = 0), we
have λ� = 2π(t − t0)/T , with t0 being the date of the spring equinox. Combining this simple
sinusoidal approximation for δ�(t) and equation (C.2) finally yields equation (2) of the main
text.
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Appendix D. A simple model for the equation of time

Following e.g. [1], a good approximation of the theoretical expression of the equation of time
can be obtained in the following way. If the eccentricity of the Earth’s orbit were e = 0, and
if the obliquity of the Earth were ε = 0, one would have E = 0. We can thus expect that
by calculating separately the small contributions E1 and E2 of both the obliquity and of the
eccentricity, and adding them, a good approximation of E is obtained: one basically expands
E to the lowest orders in e and ε.

We first calculate the contribution E1 to E arising from the nonzero value of the obliquity.
Here, we can neglect the ellipticity of the Earth’s orbit, and assume that the motion of the Sun
around the Earth takes place on a circle, and thus, using Kepler’s second law, at a constant
angular velocity. The longitude λ� of the Sun along the ecliptic (see figure A1(d)) thus
increases linearly in time as

λ� = 2π

T
(t − t0), (D.1)

where T is the length of a year and t0 is the date of the vernal (i.e. spring) equinox. However
the mean Sun is a fictitious body that moves at constant angular velocity along the celestial
equator, not the ecliptic. The difference between λ� and α�, once converted to time via the
correspondence 1◦ ↔ 4 min, thus gives the obliquity contribution to the equation of time:

E1 = (4 min/◦) × (λ� − α�) (D.2)

(for readability, from now on I shall drop the subscript �). We thus have to express α

as a function of λ, and then use (D.1) to obtain E1(t). To find the relation between α

and λ, we introduce the equatorial frame with the origin at the centre of the celestial
sphere, the z-axis pointing towards the celestial pole, and the x-axis towards the vernal
point V , and another, ecliptic frame obtained from the former by a rotation of the angle
ε around Ox (see figure A1(d)). The coordinates of the Sun in the equatorial frame are
(cos δ cos α, cos δ sin α, sin δ), and in the ecliptic frame (cos λ, sin λ, 0). Since the rotation
matrix from the equatorial to the ecliptic frame reads⎛

⎝1 0 0
0 cos ε sin ε

0 − sin ε cos ε

⎞
⎠ , (D.3)

one can relate (α, δ) to λ, and we obtain

tan α = tan λ cos ε, (D.4)

sin δ = sin ε sin λ. (D.5)

Therefore, using (D.4)

λ − α = λ − arctan(cos ε tan λ). (D.6)

From this expression it may not be obvious to see the time dependence (in particular the
periodicity) of E1. We can obtain a better understanding (and a convenient expression) by
noting that cos ε is actually close to 1 (for ε = 23.44◦, we have cos ε � 0.9174). If one Taylor
expands f (x, A) = x−arctan(A tan x) around A = 1, one obtains f (x, A) � (1−A) sin(2x)/2,
and thus, putting everything together, we obtain our final expression for E1:

E1(t) � d

2π

1 − cos ε

2
sin

(
4π

T
(t − t0)

)
. (D.7)

where d is the duration of a day. The dotted line in figure 4(b) shows E1(t).
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Figure D1. Circular (grey) and elliptical (black) orbits around the Sun S with the same semi-major
axis a. The ellipticity of the ellipse is e = 0.3 for clarity.

We now turn to the calculation of E2, the contribution of the eccentricity of the Earth’s
orbit: since its orbit is elliptic, the Earth does not move at constant angular velocity along its
orbit, and the difference in the angular position between the Earth and a fictitious body moving
at a constant speed with the same period gives the contribution E2 to the equation of time.
Figure D1 shows the trajectory of the Earth E (black ellipse with the Sun S at one focus) and
of the fictitious Earth E ′ having a circular orbit centred on S, with the same orbital period as E.
From Kepler’s third law T 2/a3 = 4π2/(GMSun), the radius r of the circular orbit is thus equal
to the semi-major axis a of the elliptical orbit of E. Using the perihelia P, P′ as the origins of
angles, the polar angles defining the positions of P and P′ are θ and θ ′, respectively. We are
interested in finding the difference in angular positions ϑ ≡ θ ′ − θ , as a function of θ , and
then as a function of time. We will perform the calculation by keeping only first-order terms
in the eccentricity e.

The equation of the elliptical orbit of E reads [6]

rE = a(1 − e2)

1 + e cos θ
. (D.8)

Moreover, Kepler’s second law about the areal velocity implies that

1

2
a2θ̇ ′ = πa2

T
(D.9)

for the circular orbit and

1

2
r2

Eθ̇ ′ = Sellipse

T
= πa2

√
1 − e2

T
(D.10)

for the elliptical orbit, where we have used Sellipse = πab with b = a
√

1 − e2 being the
semi-minor axis.

Thus we obtain

θ̇ ′

θ̇
= r2

E

a2

1√
1 − e2

= (1 − e2)3/2

(1 + e cos θ )2
� 1 − 2e cos θ, (D.11)

where the last approximation is valid to first order in e. Now, we have

dϑ

dθ
= dθ ′

dθ
− 1 = θ̇ ′

θ̇
− 1 � −2e cos θ (D.12)

and therefore

ϑ = −2e sin θ. (D.13)
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Since we are keeping only the first-order terms in e, we can replace θ by θ ′ = 2π(t − t1)/T in
the above equation, where t1 is the time of perihelion passage. We finally obtain the following
expression for E2:

E2(t) � −de

π
sin

(
2π

T
(t − t1)

)
. (D.14)

The dashed line in figure 4(b) shows E2(t). Combining (D.7) and (D.14), we find expression
(4) given in the text (solid line in figure 4(b)).
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