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INTRODUCTION

Context of this work

O
VER the last years, embedded devices have gained widespread use in numerous

markets that include the automotive, medical, and consumer electronics. This
trend, according to market place observers, is not temporary and the embedded

systems market is expected to grow thanks to their continually decreasing prices.
Typical embedded devices are built around a microprocessor or an FPGA that is dedi-

cated to one or few tasks. And vendors tend to pick the cheapest hardware components
that efficiently carry out the required computations without wasting too much energy.
Such criteria are not satisfied by general purpose processors which are costly, greedy for
resources, and tailored for multitasking and for dealing with large amounts of memory.

Rather, these criteria are fulfilled by Digital Signal Processors (DSPs), microcontrollers,
fixed-point processors, and more recently FPGAs. To be cost effective, these architectures
rarely provide any hardware support for floating-point computations. Yet, they are often
used for computational intensive tasks such as signal and image processing. These tasks
implement algorithmic basic blocks such as convolutions, fast Fourier transforms, digital
filters, and linear algebra computations.

For the software developer, implementing these algorithms on embedded devices re-
quires to adjust to the environmental constraints and to use the fixed-point arithmetic if
necessary. Indeed, using floating-point computations or relying on operating systems fa-
cilities is not always affordable. To add to this is that programming embedded devices is of-
ten less interactive than desktop programming. When combined, these factors make fixed-
point programming tedious and error prone. For instance, in [KWCM98], Willems reports
that more than 50% of the design time of digital systems is spent on manually mapping

1
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a floating-point prototype into a fixed-point program. Besides, fixed-point programmers
cannot claim, like assembly language programmers, that their code has a better quality
than the compilers’. Indeed, toy examples put aside, it is difficult to manually write correct
fixed-point code.

The second perceived problem with fixed-point programming, besides its difficulty, is
its low numerical quality. Indeed, compared to floating-point numbers, fixed-point num-
bers have a low dynamic range. This property led to the persistent belief that fixed-point
numbers are inherently unsafe and should not be relied upon for critical applications.

In summary, to bring fixed-point programming to non-expert developers and make it
a reasonable alternative to floating-point, the goals to be achieved are as follows:

1. simplifying fixed-point programming, and

2. asserting strong properties on the numerical quality of fixed-point programs.

To achieve these goals, the ANR project DEFIS1 (Design of FIxed-point embedded Sys-
tems) was set up by researchers working on signal processing and computer arithmetic.
This thesis took place in the context of this project which was intended to be a catalyst for
new techniques and tools for fixed-point programming and aimed to unify the efforts of
two separate research communities. DEFIS also involved industrial partners whose appli-
cations could not be implemented in fixed-point arithmetic without new breakthroughs,
techniques, or tools.

Members of DEFIS tackled the above goals from different angles. While Ménard et al.
(CAIRN team, IRISA at Rennes and Lannion) worked on converting floating-point pro-
grams to fixed-point ones [MCCS02], Didier et al. (PEQUAN team, Univ. Pierre et Marie
Curie) concentrated on a specific area of applications, namely digital filters [LHD12]. Al-
though these approaches are different, work also progressed on unifying them in a unique
flow [MRS+12], exemplified by the DEFIS tool whose work-flow is shown in Figure 1.9 of
Chapter 1.

Our approach: synthesis of certified fixed-point code

In this thesis, we tackled goals 1 and 2 as follows: First, to deal with the difficulty of fixed-
point programming, we suggested to rely on code synthesis tools. For instance, Part I de-
scribes an arithmetic model and a tool, CGPE, that implements it. With such a tool, the
non-expert programmer concentrates on algorithmic level issues and leaves the burden of
fixed-point code generation to the tool. However, unlike the approach pioneered by Sung
et al. [SK95] and Ménard et al. [MCCS02], ours do not proceed by floating-point to fixed-
point conversion. Rather, our tools take a mathematical description of the problem as well

1ANR project DEFIS (INS 2011, ANR-11-INSE-0008). See http://defis.lip6.fr/.

http://defis.lip6.fr/
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as the range of the input variables and generate fixed-point code. This choice makes our
tools less general, since the number of input problems supported is limited and, in order
for the tool to generate code for a new kind of problems, support for it must be added.
However, this design choice was made so that analytic methods could be used to deter-
mine the ranges of the variables and to bound the rounding errors.

Then, as for the claim that fixed-point computations are inherently inaccurate, some
examples are presented that refute it such as the IIR filter implementation in Section 3.4.3
of Chapter 3. Indeed, depending on the input problem, fixed-point programs may yield
more accurate results than floating-point ones. Yet, to further increase the user’s confi-
dence in the numerical quality of the codes generated by our tools, we suggested to gener-
ate accuracy certificates. The user runs a formal verification tool2 on these scripts which
reassures him that the rounding errors are indeed below the threshold returned by the tool.

Since no open source fixed-point generation tools were available, a part of the work
that led to this thesis was allocated for software development and led to the following real-
izations:

• Substantial enhancement to the CGPE software tool. It was extended from a tool that
supported only polynomial evaluation in unsigned arithmetic [MR11] to a modular
library that handles many types of expressions and has multiple front and back-ends.
These successive enhancement were the result of collaborative development with
Guillaume REVY and Christophe MOUILLERON. CGPE is described in Chapter 3 and
is now an open source project.

• A new tool, FPLA3 (Fixed-Point Linear Algebra) to investigate the trade-offs of gen-
erating fixed-point code for higher level problems such as matrix multiplication, tri-
angular matrix inversion, and Cholesky decomposition. FPLA deals with these algo-
rithmic problems while entirely relying on CGPE for low level code synthesis. This
tool was used to implement the approaches of Chapters 4 and 5, and is described in
Chapter 6.

Organization of this work

Overall organization

The organization of this thesis is illustrated by the graph of Figure 1 below. It starts with
an introductory chapter to fixed-point arithmetic and to the state of the art techniques to
automate fixed-point programming. Then, the rest of the document is made of two parts
of 2 and 3 chapters, respectively. The two parts correspond to the two levels tackled in this
thesis: the arithmetic and algorithmic levels.

2The formal verification tool we rely on in this work is GAPPA.
3 The licence of this tool is yet to be decided but is available upon request.
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Chapter 4
Matrix multiplication

Chapter 5
Matrix inversion

Chapter 6
The FPLA tool

PartII

Chapter 2
The arithmetic model

Chapter 3
The CGPE library

PartI

Chapter 1
Introduction to fixed-

point arithmetic

uses the definitions uses the definitions

implements

implemented using

depends on

Figure 1: Organization of this document and relations between the chapters.

Part I deals with the arithmetic model and its implementation in the CGPE software
tool. Chapter 2 explains how to implement and bound the rounding errors of the basic
fixed-point operators. Chapter 3 exposes the design of the CGPE tool and shows some
code samples generated for certain problems.

Part II deals with the more algorithmic problems of synthesizing code for matrix multi-
plication and inversion. Chapter 4 is a study of code size versus accuracy trade-offs when
generating code for matrix multiplication. Chapter 5 presents a flow for matrix inversion
and exposes the basic blocks needed which include Cholesky decomposition and triangu-
lar matrix inversion. Finally, Chapter 6 summarizes the design of the FPLA software tool
and shows how to use it to synthesize code for basic linear algebra blocks.

Figure 1 justifies this organization. It shows that Part II is built on the abstraction layer
provided by CGPE and the arithmetic model it implements.



ORGANIZATION OF THIS WORK 5

Detailed description of the chapters

Chapter 1 - State of the art on fixed-point arithmetic. This chapter introduces the fixed-
point number representation and presents the notation used throughout this work to
denote fixed-point formats. Then, it clarifies the difference between the fixed-point
and floating-point representations which stems from the implicit nature of the scal-
ing factor. For this purpose, this chapter briefly describes the integer and floating-
point arithmetics.

In addition, this chapter deals with the state of the art approaches to automate fixed-
point programming. It starts by citing some well known methodologies and shows
that they have in common the two steps of range and precision analyses. Finally,
the rest of the chapter is a survey of methods for range and precision analyses. Each
method is presented and tested on examples.

This chapter also mentions the general framework suggested along with our DEFIS
partners and presented at DASIP 2012 [MRS+12].

[MRS+12] Daniel Ménard, Romuald Rocher, Olivier Sentieys, Nico-
las Simon, Laurent-Stéphane Didier, Thibault Hilaire, Benoît Lopez,
Eric Goubault, Sylvie Putot, Franck Vedrine, Amine Najahi, Guil-
laume Revy, Laurent Fangain, Christian Samoyeau, Fabrice Lemon-
nier, and Christophe Clienti. Design of Fixed-Point Embedded Sys-
tems (defis) French ANR Project. In Proceedings of the Conference
on Design and Architectures for Signal and Image Processing, DASIP
2012, Karlsruhe, Germany, 23-25 October 2012, pages 365–366, Karl-
sruhe, Allemagne, 2012.

Part I – A framework for the synthesis of certified fixed-point programs

This part deals with the low level details of an arithmetic model and its implementation.
Its goal is to describe an arithmetic model and to build a tool that generates certified fixed-
point code that adheres to it.

Chapter 2 - Implementation and error bounds of the basic fixed-point arithmetic operators.
This chapter explains how the range of values and the error bounds of every fixed-
point variable are computed at synthesis time. It uses an approach where the
propagation rule of every fixed-point operator must be decided.

Then, each fixed-point operator such as addition, multiplication, shifts, square root,
and division is studied. For each, we show how to determine the fixed-point format
of its output, and a mean to implement it using integer operations.
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The basic arithmetic model of this chapter was first described in an article pre-
sented at PECCS 2014 [MNR14a]. The square root and division operators were
later formalized for the purpose of matrix inversion and were presented at DASIP
2014 [MNR14b].

[MNR14a] Matthieu Martel, Amine Najahi, and Guillaume Revy.
Code Size and Accuracy-Aware Synthesis of Fixed-Point Programs
for Matrix Multiplication. In Proc. of the 4th International Confer-
ence on Pervasive and Embedded Computing and Communication
Systems (PECCS 2014), pages 204–214. SciTePress, January 2014.

[MNR14b] Matthieu Martel, Amine Najahi, and Guillaume Revy. To-
ward the synthesis of fixed-point code for matrix inversion based
on cholesky decomposition. In Proceedings of the 6th Conference
on Design and Architectures for Signal and Image Processing (DASIP
2014), pages 73–80, Madrid, Spain, October 2014.

Chapter 3 - The CGPE software tool. This chapter presents our implementation of the
arithmetic model of Chapter 2. After a review of the CGPE software tool, it describes
a major enhancement based on instruction selection. This enhancement was the
subject of an abstract submitted to SCAN 2012 [MNR12], and an article published
and presented at SYNASC 2014 [MNR14c]. Finally, all the necessary steps to generate
certified code for an infinite impulse response (IIR) filter using CGPE are shown.

[MNR12] Christophe Mouilleron, Amine Najahi, and Guillaume
Revy. Approach based on instruction selection for fast and certified
code generation. In Proceedings of the 15th GAMM-IMACS Inter-
national Symposium on Scientific Computing, Computer Arithmetic
and Validated Numerics (SCAN 2012), Novosibirsk, Russia, Septem-
ber 2012.

[MNR14c] Christophe Mouilleron, Amine Najahi, and Guillaume
Revy. Automated Synthesis of Target-Dependent Programs for Poly-
nomial Evaluation in Fixed-Point Arithmetic. In Proceedings of
the 16th International Symposium on Symbolic and Numeric Algo-
rithms for Scientific Computing (SYNASC 2014), Timisoara, Roma-
nia, September 2014.
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Part II – Study of the trade-offs in the synthesis of fixed-point programs
for linear algebra basic blocks

This part is organized in three chapters and tackles problems of higher level than those
of Part I. Particularly, it is dedicated to code synthesis for linear algebra basic blocks that
include matrix multiplication and matrix inversion.

Chapter 4 - Fixed-point code synthesis for matrix multiplication. This chapter first con-
siders straightforward approaches to synthesize code for matrix multiplication. It
shows that these approaches may yield either code with loose accuracy bounds or
large size. It then presents a new method to find trade-offs between code size and
accuracy. This approach tries to generate less code by merging together vectors that
are close according to a certain distance. This technique is implemented in the FPLA
tool and experimental data is given that shows how it can reduce the code size by
50% while maintaining good numerical properties.

The results of this chapter were published and presented at PECCS 2014 [MNR14a].

[MNR14a] Matthieu Martel, Amine Najahi, and Guillaume Revy.
Code Size and Accuracy-Aware Synthesis of Fixed-Point Programs
for Matrix Multiplication. In Proc. of the 4th International Confer-
ence on Pervasive and Embedded Computing and Communication
Systems (PECCS 2014), pages 204–214. SciTePress, January 2014.

Chapter 5 - Fixed-point synthesis for matrix decomposition and inversion. This chap-
ter investigates code synthesis for matrix inversion. It proposes a flow that is based
on code synthesis for Cholesky decomposition followed by code synthesis for tri-
angular matrix inversion. These two building blocks involve code synthesis for
division, and since the output format of division must be fixed by the user, various
strategies are investigated on how to set the right output format.

Experimental data is provided for the different strategies and the error bounds are
compared to experimental ones obtained by comparing to floating-point implemen-
tations.

The results of this chapter were also obtained using the FPLA tool, and were pub-
lished and presented at DASIP 2014 [MNR14b].

[MNR14b] Matthieu Martel, Amine Najahi, and Guillaume Revy. To-
ward the synthesis of fixed-point code for matrix inversion based
on cholesky decomposition. In Proceedings of the 6th Conference
on Design and Architectures for Signal and Image Processing (DASIP
2014), pages 73–80, Madrid, Spain, October 2014.
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Chapter 6 - FPLA: a software tool for fixed-point code synthesis. This chapter presents
an overview of the FPLA software tool. This tool relies on CGPE for low level code
synthesis and generates fixed-point code for matrix multiplication, Cholesky de-
composition, and triangular matrix inversion. Then, examples are presented to
show the quality of the code generated. Finally, some further improvements to the
whole tool-chain are suggested as future works.
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STATE OF THE ART ON FIXED-POINT

ARITHMETIC

In this chapter, we introduce the fixed-point arithmetic in two steps. First,
we expose the fixed-point numbers representation and compare it with the
representation of floating-point numbers. Next, we summarize the state of
the art techniques for range and precision analyses, the two essential steps
in the process of automated fixed-point programming.

1.1 Introduction

F
IXED-POINT numerical programming dates back to the early days of computing. In-

deed, in his 1945 seminal report describing the EDVAC [vN93], John von Neumann
investigated the use of fixed-point arithmetic in an entire section entitled “The bi-

nary point”. However, with the emergence of the software industry, more and more pro-
grammers lacked the arithmetic and numerical analysis expertise required to write fixed-
point programs. Also, the difficulties of fixed-point programming were made worse by
the absence of standards and code generation tools. These limits of fixed-point arith-
metic, in conjunction to Moore’s law which promised an enduring boost in the hardware’s
performance led to the widespread adoption of the standardized floating-point arith-
metic [75408]. Indeed, programming with floating-point numbers is handy since all the

9
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arithmetical details are transparent to the programmer and are provided for by the en-
vironment and hardware. However, with targets such as ASICs, FPGAs, and embedded
systems dedicated to digital signal processing, floating-point hardware remains slow and
costly, and fixed-point arithmetic is still an efficient and low footprint alternative.

This chapter is an introduction to the fixed-point arithmetic. It is organized as follows:
Section 1.2 explains the representation of fixed-point numbers and introduces the nota-
tion used throughout this work to describe fixed-point formats. This section is concluded
by a comparison between fixed-point and floating-point numbers. Section 1.3 describes
the two categories of automated fixed-point programming which are fixed-point code gen-
eration and floating-point to fixed-point conversion. The second part of the section is a
survey of range and precision analyses: the two main steps of automated fixed-point pro-
gramming.

1.2 The fixed-point arithmetic

Contrarily to the floating-point arithmetic, virtually all processors have built-in support
for integer arithmetic. Since fixed-point operations essentially rely on integer instructions,
computing with fixed-point numbers is highly efficient. Indeed, some fixed-point oper-
ations such as addition and subtraction are identical to their integer counterparts. For
this reason, we shall briefly describe the integer arithmetic as implemented in most digital
computers.

1.2.1 Background on integer arithmetic

Modern processors embed an execution unit called ALU (Arithmetic Logic Unit) that per-
forms elementary integer operations including+,−, and× [HP06]. Some architectures also
provide hardware support for ÷,%, and p, that is integer division, remainder, and square
root operations. The high efficiency and error free nature of integer arithmetic makes it
ideal for symbolic computations and for manipulating enumerable values.

Yet, a classical programming pitfall is to confuse computer integers with mathematical
integers. Indeed, to speed up computations and reduce the memory footprint, computer
arithmetic uses limited precision. Standard C [Int10] for instance, stipulates that the int

data-type must provide at least all the integers in the interval [−(215−1),215−1]. This allows
a complying compiler to implement the int data-type using no more than 16 bits.1 The
same is true for Standard C’s long data-type for which a complying implementation may
use a 32-bit integer representation [Int10].

The limited precision implies that the range of computer integers is bounded, and that
overflow occurs when the result of any operation happens to be outside the representable

1The interval provided by the standard is symmetric and encloses 216 −1 values. This choice was made
to allow both sign-and-magnitude and two’s complement implementations to use 2-bytes per integer [HJ95].
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range. In this case, the behavior of the program is highly dependant on the hardware and
programming language. For instance, languages like C and Java ignore the issue of integer
overflow, while Ada and Fortran expect the hardware to notify the program [HP06].

In practice, most ALUs implement integer operations using modular arithmetic. In this
arithmetic, operations are performed modulo N and emulate the integers as long as the
computed values are less than N . While the result of an intermediate computation T may
grow larger than N using integer arithmetic, its modular counterpart computes the value
(T mod N ) whose magnitude is always inferior to N .

On binary machines, choosing N to be a power of 2 speeds up elementary operations
and reduces the hardware cost. For instance, many low-end micro-controllers use N = 28.
On desktops and some embedded system, N = 216 and N = 232 are widely deployed while
N = 264 can be found mainly on high-end workstations.

Integer and modular arithmetics are useful and efficient for symbolic computations
and cryptography, but are not suitable for numerical computations involving fractional
numbers. For such applications, the fixed-point and floating-point numbers are better
approximations of real numbers.

1.2.2 Computer representation of fixed-point numbers

The fixed-point arithmetic allows the programmer to compute with rational numbers,
while using the integer representation and operators. Indeed, a fixed-point number x is
defined by the coupling of two integers X and f as follows:

1. X the integer representation of x, and

2. f the implicit scaling factor of x.

The value of the fixed-point number x is given by the rational

x = X

β f
, (1.1)

where β is the representation radix. Since the binary radix is widely used on modern pro-
cessors, we implicitly consider β = 2 in the subsequent, and use the words bit and digit
interchangeably. Figure 1.1 below shows a fixed-point number whose integer representa-
tion fits in 8 bits and having a scaling factor of 5.

Assuming X to be a k-bit unsigned integer, the value of the fixed-point number x is
given by:

x =

k−1∑
`=0

X` ·2`

2 f
=

k−1− f∑
`=− f

X`+ f ·2`. (1.2)

For instance, Figure 1.1 has (k, f ) = (8,5) and x =
2∑

`=−5
X`+5 ·2`.
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X7 X6 X5 X4 X3 X2 X1 X0

i = 3 f = 5

k = 8

Figure 1.1: An 8-bit fixed-point variable with a scaling factor of 5.

Signed fixed-point numbers

Analogously to integer arithmetic, signed fixed-point numbers are obtained by using a
signed integer representation. Indeed, if X were a two’s complement encoded integer, the
value of the corresponding fixed-point number would be

x =
−Xk−1 ·2k−1 +

k−2∑
`=0

X` ·2`

2 f
=−Xk−1 ·2k−1− f +

k−2− f∑
`=− f

X`+ f ·2`. (1.3)

In that case, the most significant bit, i.e. Xk−1, is called the sign bit. The number is positive
if its sign bit is equal to 0 and strictly negative otherwise.

Example 1.1. Let x be a fixed-point number with the 8-bit integer representation

X = (1010 1100)2

and a scaling factor f of 5.

¦ If x is an unsigned fixed-point number, then

X = (172)10 and x = (101.01100)2 = (5.375)10.

¦ If x is a signed fixed-point number, then

X = (-84)10 and x =−4+(001.01100)2 = (-2.625)10.

Range of values of a fixed-point variable

Our definition of fixed-point numbers imposes no constraints on the integer representa-
tion X . However, for reasons ranging from the efficiency of computations to the better
bounding of rounding errors, it is convenient to assume that the integer X belongs to a



1.2. THE FIXED-POINT ARITHMETIC 13

bounded interval. Indeed, by allocating 8 bits to the fixed-point variable of Figure 1.1, we
implicitly assumed that X were such that

X ∈Z∩ [0,255] . (1.4)

In such configuration, the fixed-point variable x, with a scaling factor of 5, is bounded as
follows:

x ∈I = [
0,23 −2−5] , (1.5)

where I is a discrete interval whose elements are equidistantly separated by a step of 2−5.
In the signal processing terminology, this distance between two consecutive fixed-point
numbers is called the quantization step [CC99]. In practical situations, one may have a
more thorough information on the range of values of X . For instance, assume the values
taken by x to be the result of measurements retrieved from a sensor and as such, are known
to be in a narrower interval,

x ∈I ′ = [
2−5,22 +2−5] . (1.6)

This constraint on x would translate to the following sharper enclosure on its integer rep-
resentation:

X ∈ [1,129]. (1.7)

Although I in (1.5) is a safe over-approximation of I ′ since I ′ ⊂I , the enclosure (1.6) is
less conservative than (1.5) and allows to compute sharper bounds on rounding errors.

This example stresses the importance of implementation details in fixed-point arith-
metic. Indeed, despite being tedious and error prone, fixed-point programming is used for
its efficiency and small footprint. To be efficient, a fixed-point framework needs to take
into consideration implementation details such as the size of the integer representation
and the sharp enclosures on the range of input variables.

The fixed-point code synthesis tools CGPE and FPLA described in Chapters 3 and 6,
respectively, operate on fixed-point variables that have a fixed word-length and potentially
an interval that narrows the range of their values.

The Q notation for fixed-point formats

The Q notation and its variants are widely used to describe fixed-point formats (See
[Rev09],[Yat13], and [KiKS96]). This notation results from the following observation: ap-
plying the scaling factor of a fixed-point number to its integer representation splits it into
two parts, the integer part and the fraction part.

In Figure 1.1, this splitting is signaled by a dot widely known as the radix-point. The
integer part is composed of the digits of positive weight, that is, digits whose exponent in
Equation (1.3) is positive. In Figure 1.1, this part contains the 3 bits to the left of the radix-
point and its width is denoted by i . The fraction part contains the rest of the bits, whose
weight is negative and whose contribution to the fixed-point number is fractional. The
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X7 X6 X5 X4 X3 X2 X1 X0

i = 10

f =−2k = 8

Figure 1.2: A fixed-point variable in the fixed-point format Q10,−2.

number of bits of the fraction part is the same as the scaling factor and is denoted by f in
the same figure.

In the Q notation, a fixed-point number is said to be in the Qa,b format if the width of its
integer and fraction parts are a and b, respectively. For instance, the fixed-point number
of Figure 1.1 is in the Q3,5 format.

The range of a Q format. The notions of fixed-point formats and discrete intervals are
related. Indeed, a fixed-point format Qa,b accommodates values in:

Range(Qa,b) =
{

Iu = [
0,2a −2−b

]
, if unsigned arithmetic is used

Is =
[−2a−1,2a−1 −2−b

]
, if signed arithmetic is used

(1.8)

where Iu and Is are both discrete intervals of step 2−b . The analogous correspondence
that deduces formats from ranges is exposed in Section 1.3.4.

Negative integer or fraction parts. The Q notation may seem inconsistent when the scal-
ing factor is negative or is larger than the word-length. For instance, the format Q10,−2,
shown in Figure 1.2 above implies that the number’s representation still fits in 8 bits and
has an integer part of 10 bits and a fraction part of −2 bits. The fixed-point numbers in the
format Q10,−2 are integers that belong to the interval [0,1020] and which are equidistantly
separated by a step of 4, i.e.,

J = 4Z∩ [0,1020]. (1.9)

In this case, the inconsistency is having to consider a fraction part whose size is negative.
A similar inconsistency occurs when the scaling factor is larger than the word-length.

This is the case with the fixed-point format Q−2,10 shown in Figure 1.3 below. The fixed-
point numbers in Q−2,10 fit in 8 bits, belong to the interval [0,2−2 −2−10], and are separated
by a step of 2−10. Again, one must cope with the notation that implies an integer part
having a negative size.

Alternative notations. To deal with these inconsistencies, some authors suggested alter-
native notations for fixed-point formats. For instance, Lopez et al. [LHD14] use the nota-
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X7 X6 X5 X4 X3 X2 X1 X0

i =−2

f = 10

k = 8

Figure 1.3: A fixed-point variable in the fixed-point format Q−2,10.

tion FPF(m, l ), where m and l are the weights of the most and least significant bits2 of the
fixed-point format, respectively. In this notation, the format of the fixed-point number of
Figure 1.2 is FPF(10,2) and that of Figure 1.3 is FPF(−2,−10).

The nature of the scaling factor

The implicit nature of the scaling factor of fixed-point numbers often confuses program-
mers who are used to work with floating-point codes. Indeed, there is a striking resem-
blance between associating an integer representation to a scaling factor to obtain a fixed-
point number and associating a significand to an exponent to get a floating-point number.
However, unlike the exponent that is encoded in a floating-point number representation,
the fixed-point scaling factor is not encoded in the program’s data. Its value is known only
to the programmer who is writing the software.

1 0 0 1 1 0 1 0

Figure 1.4: A fixed-point number in different fixed-point formats.

A consequence of this implicit nature is that every arithmetical detail, including align-
ments and overflow prevention must be statically handled and provided for by the pro-
grammer. Only when there is a need to retrieve a result, interpret it, or display it to a user,
is the fixed-point programmer obliged to apply the scaling factor. To further clarify this
interpretation process, consider the example of the integer representation shown in Fig-
ure 1.4, and suppose it is produced by a fixed-point program. Regardless of the format,
the screen would display the value (154)10. However, the programmer must interpret this
value in light of the fixed-point format. For instance, Table 1.1 below gives 4 different inter-
pretations that correspond to 4 different fixed-point formats. Viewing fixed-point numbers
as simply a different mean to interpret data is the approach emphasized by Yates [Yat13].

On ordering fixed-point formats. Occasionally, one has to compare two fixed-point for-
mats, or to promote a variable from a fixed-point format to another. In such cases, we will

2These are commonly called MSB and LSB, respectively.
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Scaling factor

symbol

in Figure 1.4

Q

format
Value of X Value of x

Q−2,10 (10011010)2 = (154)10 (0.0010011010)2 = (0.150390625)10

Q2,6 (10011010)2 = (154)10 (10.011010)2 = (2.40625)10

Q5,3 (10011010)2 = (154)10 (10011.010)2 = (19.25)10

Q9,−1 (10011010)2 = (154)10 (100110100)2 = (308)10

Table 1.1: Different interpretations of the same integer representation.

say that the format Qa1,b1 is larger than Qa2,b2 if a1 > a2 or if a1 = a2 and b1 > b2. For in-
stance, the formats of Table 1.1 are presented in an increasing order, from the smallest to
the largest format.

The set of fixed-point variables

When implementing a problem such as univariate polynomial evaluation in fixed-point
arithmetic, the coefficients are fixed-point numbers, but the input is a fixed-point variable.
Such variable is an element of the set of fixed-point variables we denote Fix.

A variable x ∈ Fix has a fixed-point format Qax ,bx and an interval IX that bounds its
integer representation. IX is such that IX ⊆ [−2k−1,2k−1 −1

]
if the variable is signed, and

IX ⊆ [
0,2k −1

]
if the variable is unsigned, where k = ax +bx is the word-length.

In the subsequent, we will use the notation n ∈ x to say that a fixed-point number n
belongs to the fixed-point variable x, if n is in the fixed-point format Qax ,bx and the integer
representation N of n belongs to IX .

Example 1.2. Consider the 32-bit signed fixed-point variables (x, y) ∈ Fix2 shown in Ta-
ble 1.2.

Format Interval of the Int. Repr. Range in decimal

x Q4,28 IX = [−231,231 −1
]

[−8,7.9999999962747097015380859375]

y Q8,24 IY = [−231 +220,222
]

[−127.9375,0.25]

Table 1.2: Two fixed-point variables (x, y) ∈ Fix2 and their range in decimal.
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IY narrows the range of values taken by y , i.e.,

Range(y) = [−127.9375,0.25] Range(Q8,24) = [−128,127.999999940395355224609375] .

Writing fixed-point code for a problem like polynomial evaluation where the input vari-
able is y implies that, at run-time, this code is guaranteed to behave correctly only when
fed with integers that belong to IY .

1.2.3 Comparison between fixed-point and floating-point numbers

The floating-point arithmetic

Similarly to fixed-point, floating-point arithmetic dates back to the early 1940’s when it was
used in the world’s first operating computer, the Z3 [Ove01]. In this arithmetic, numbers
are represented in standardized formats inspired by the classical scientific notation. With
a careful specification of the arithmetic operations and rounding modes, floating-point
numbers are an approximation of real numbers that offers some degree of portability to
numerical software. Indeed, the IEEE-754 standard [75408], initially published in 1985 and
revised in 2008, is followed by most hardware manufacturers and software implementa-
tions. Apart from specifying different representation formats and their respective encod-
ings, this standard describes the numerical behavior of the basic operations as well as the
rounding modes to be implemented.

As illustrated by Figure 1.5, a standard floating-point number x is represented by 3 val-
ues: a sign s, an exponent e, and a significand m. Its value is given by:

x = (−1)s ·m ·βe . (1.10)

The standard specifies different constraints on s,e, and m for β ∈ {2,10}:

¦ The sign s ∈ {0,1} is a binary value. The number is positive if its sign is zero, and
negative otherwise.

¦ The exponent e ∈ [emi n ,emax] where emi n and emax are specified for each standard-
ized format.3

¦ The significand m = m0.m1m2 · · ·mp−1 with mi ∈ {0, . . . ,β−1} and 0 ≤ i < p.

Table 1.3 shows the IEEE-754 specifications for three widely deployed binary formats.
The exact results of arithmetic operations such as addition and multiplication on

floating-point numbers are not necessarily floating-point numbers. To deal with this,

3To be more specific, the standard specifies that, rather than the exponent itself, a biased version of it is
stored.
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• • . . . • • • • . . . • • •

sign exponent significand

Figure 1.5: IEEE-754 floating-point number encoding.

Standard name Common name
Bits distribution

(sign, exponent, mantissa)

Range of e

[emi n ,emax]

Binary32 Single precision (1,8,23) [−126,127]

Binary64 Double precision (1,11,52) [−1022,1023]

Binary128 Quadruple precision (1,15,112) [−16382,16383]

Table 1.3: Standard specifications for 3 IEEE-754 binary formats.

the standard specifies four rounding modes. These rounding modes, round toward
zero, round toward plus and minus infinity, and round to nearest even uniquely spec-
ify the floating-point number to be returned when the result of an operation is not a
floating-point number. Rounding to nearest is the default in most configurations while
rounding towards both infinities is useful to implement interval and stochastic arith-
metics [Moo66],[JC08]. Also, to enforce reproducibility and encourage formal verification
of IEEE-754 programs, the standard requires that the operations +,−,×,÷, and p be cor-
rectly rounded [Gol91],[75408]. Finally, the recent development of the floating-point stan-
dard tends towards specifying elementary functions such as trigonometric and exponen-
tial functions.

The difference between fixed-point and floating-point numbers

The name “fixed-point” is due to the fact that the scaling factor of a fixed-point variable
does not change at run-time. This contrasts with floating-point variables where the expo-
nent grows and shrinks dynamically so as to keep a normalized mantissa.4 A consequence
of the dynamic nature of the exponent is that floating-point numbers are not equidistantly
separated. Indeed, the gap between a binary floating-point number x and the next binary
floating-point number larger than x is given by ul p(x) = ε·2E where ε is a constant that de-
pends on the word-length of the mantissa and E is the exponent of x [MBDD+10, § 2]. By
comparison, fixed-point numbers of the same format Qa,b are equidistantly separated by a
step of 2−b . This layout difference is shown in Figure 1.6 where the total of floating-point
and fixed-point numbers is the same.

4Subnormal floating-point numbers are the exception to this rule since their mantissa is not normalized.
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0

Figure 1.6: Typical distributions of floating-point (top) and fixed-point numbers (bottom).

Another consequence of the run-time evolving nature of the exponent is the possibility
for floating-point variables to represent numbers having a large difference in magnitude.
This capability is measured by the dynamic range which is the logarithm of the ratio of the
largest absolute value representable and the minimum absolute value representable. For
the binary32 format, a rough approximation5 of the dynamic range gives

log2

(
2emax

2emi n

)
= log2

(
2253)= 253. (1.11)

For N -bit signed fixed-point numbers in the Qa,b format, this ratio is given by

log2

(
2a−1

2−b

)
= log2

(
2a+b−1

)
= log2

(
2N−1)= N −1, (1.12)

which shows that the dynamic range of fixed-point numbers is linearly proportional to
the word-length. In this example, the large dynamic range, 253 compared to 31, shows
that 32-bit floating-point variables are more appropriate for holding values of different or-
ders of magnitude than fixed-point variables. However, fixed-point variables provide more
precision for values of the same or with a slightly varying order of magnitude. Figure 1.7
compares the dynamic range of fixed-point variables with the dynamic range of commonly
used floating-point formats. The figure shows how the dynamic range of fixed-point vari-
ables evolves linearly with the word-length while the dynamic range of floating-point for-
mats grows exponentially. It also suggests that the dynamic range of fixed-point variables
may even be equal or larger to that of floating-point variables for small word-lengths, i.e.,
less than 10.

1.3 Automated implementation of fixed-point algorithms

Without proper tools, fixed-point programming is tedious and error prone. Willems et
al. [KWCM98] report that in digital systems, more than 50% of the design time is spent
on manually mapping the floating-point prototype into a fixed-point program. To over-
come these issues, many researchers tackled the problem of automated implementation

5Subnormal numbers were ignored in this approximation.
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Figure 1.7: Comparison of the dynamic range of fixed-point numbers with common
floating-point formats.

of fixed-point programs. For instance, the work of Sung et al. [KiKS96] is an early example
of research where a methodology and a tool that generates fixed-point code are described.
In recent years, the volume of research in this field increased and one can distinguish two
broad categories of solutions:

1. solutions based on fixed-point code generation for certain blocks such as polynomial
and dot-product evaluations, and

2. solutions based on floating-point to fixed-point design conversion.

1.3.1 Fixed-point code generation

In this category of solutions, a code synthesis tool is developed to tackle a particular math-
ematical problem such as polynomial evaluation, dot-products, or linear algebra primi-
tives. The tool takes as input some information on the input variables, typically the ranges
and/or the fixed-point formats, and eventually the expected output formats and error
bounds. Then, the tool proceeds to generate fixed-point code. When fed with appropri-
ate input, the generated code evaluates the particular problem.



1.3. AUTOMATED IMPLEMENTATION OF FIXED-POINT ALGORITHMS 21

Example 1.3. Consider a synthesis tool that generates fixed-point C code for sum-
mation. When given as input two 32-bit fixed-point variables v1 and v2 in the for-
mats Q1,31 and Q2,30, the tool may generate the code shown in Listing 1.1. The syn-
thesized code is essentially a function that takes two fixed-point numbers in the for-
mats Q1,31 and Q2,30, and returns a fixed-point number in the Q3,29 format. Before
adding the two arguments, the code converts them to the Q3,29 format to avoid overflow.

B Listing 1.1: Synthesized C code for the sum of v1 and v2.

1 i n t 3 2 _ t sum( i n t 3 2 _ t v1, i n t 3 2 _ t v2){

2 i n t 3 2 _ t tmp1 = v1 >> 2; //tmp1 is in the format Q3.29

3 i n t 3 2 _ t tmp2 = v2 >> 1; //tmp2 is in the format Q3.29

4 r e t u r n tmp1 + tmp2; //the result is in the format Q3.29

5 }

Multiple research works have been published that describe tools dedicated to fixed-
point code synthesis for particular problems. For instance, the works of Revy et al. [Rev09],
[MR11] and Lee et al. [LV09], [LCLV08] treat the particular case of polynomial evaluation.
Jeannerod et al. [JJL12] extend Revy’s work to elementary functions. For FIR and IIR filters,
Hilaire et al. [LHD12], [LHD14] describe the inner working of a fixed-point generation tool.
Finally, the SPIRAL research group6 set itself the objective of automating code generation
for various signal processing primitives. The team provides on-line generators for such
blocks as FFTs [VP04], DCTs, and Viterbi decoders.

1.3.2 Floating-point to fixed-point code conversion

This second type of methodologies is based on source code transformation. The tool takes
as input the source code of a floating-point program. This code may be annotated by the
programmer to point out extra information on some variables that cannot be inferred from
simply parsing the code. The tool proceeds either by simulating the code or by interpo-
lation [KWCM98] to determine the fixed-point formats that should be assigned to every
variable in the computation.

At the end of this procedure, a new code is output that contains no references to
floating-point data-types. Figure 1.8 shows the variant of this methodology suggested by
Sung et al. [KiKS96]. The tools that automate this process, often called float-to-fix tools, use
compilation techniques that include parsing, annotating intermediate representations,
and code generation.

6Information on project SPIRAL is available at http://spiral.net/.

http://spiral.net/
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Figure 1.8: The float-to-fix methodology suggested by Sung in [KiKS96].

The early works of Sung et al. [KiKS96] and [SK95] suggest a float-to-fix framework
based on statistical information deduced from floating-point simulations. In [KWCM98],
Willems et al. suggest to enhance Sung’s method by allowing the user to annotate the
source code. These annotations compensate for the fact that source-to-source transfor-
mation has no information on the mathematical problem the code is supposed to solve.
Although floating-point simulation gives an enclosure of the range of variables, the devel-
oper may be aware of corner cases that rarely appear during simulations. Finally, Ménard
et al. [MCCS02] suggest a float-to-fix tool that parses a program into a Control Data Flow
Graph and proceeds by annotating this intermediate representation with range and preci-
sion information.

1.3.3 Summary and comparison of the two methodologies

The code generation solution does not provide backward compatibility with any floating-
point codes. It is not fully automated in the sense that the programmer must find an ade-
quate tool for the problem at hand. However, since it has a more thorough knowledge of
the mathematical problem, it usually relies on analytic methods instead of lengthy simu-
lations. As such, it can provide strict error bounds and have a faster synthesis time. On the
other hand, float-to-fix conversion has the advantage of being automatically applicable to
a wide variety of problems. It also fits better in the classical design flow where the prototyp-
ing phase is carried out on a desktop machine using numerical computing environments
such as Matlab®. These environments are able to quickly provide a floating-point imple-
mentation and by using float-to-fix tools, the design flow is completely automated. Finally,
some researchers suggest to use the best of the two worlds. For instance, the code syn-
thesis methodology for numerical linear algebra blocks suggested by Frantz et al. [NNF07]
simulates a floating-point version but still uses some knowledge on the input problem.

Figure 1.9 shows the fixed-point synthesis flow suggested by the DEFIS (DEsign of
FIxed-point embedded Systems) project and presented in [MRS+12]. DEFIS’ architecture
is flexible since it decides depending on user annotations whether to use fixed-point gen-
eration or float-to-fix C code conversion. As shown in Figure 1.9, both cases have major
steps in common. These steps include IWL and FWL determination, that is, range and pre-
cision analyses. Indeed, the essential step in generating fixed-point code is determining
the fixed-point formats. To do so, one must determine the integer and fraction parts of
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each variable. The integer part is determined using range analysis while the fraction part
is determined using precision analysis.

The rest of this chapter describes the state of the art methods for these two major steps.
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1.3.4 Range analysis

Range analysis is the process of determining an enclosure of the values that every numeric
variable in the program can hold. This phase is crucial in a fixed-point design since it
allows to determine the width of the integer part of fixed-point variables.

Indeed, if as the result of range analysis, the enclosure of a signed variable v is deter-
mined to be [a,b], then the width i of its integer part is given by:

i = ⌈
log2 (max(|a| , |b|))

⌉+α (1.13)

where

α=
{

1, if mod
(

log2(b),1
) 6= 0,

2, if mod
(

log2(b),1
)= 0.

(1.14)

These formulas derived by Lee et al. [LGC+06] take into account all the corner cases inher-
ent to two’s complement arithmetic.

With fixed word-length numbers, determining the width of the integer part imposes
the width of the fraction part. In such contexts, the sharpness of the enclosure computed
by the range analysis phase has a great impact on the numerical accuracy of the design.
While a large integer part is desirable to avoid overflow, imposing a smaller fraction part
negatively impacts the accuracy.

In the following, we present a representative set of techniques for range analysis and
compare their behavior on the evaluation of a degree-3 polynomial function:

P (x) = a0 +a1x +a2x2 +a3x3 = a0 +
(
x · (a1 +x · (a2 +x ·a3)

))
(1.15)

where the input variable x belongs to the enclosure [−1.75,1.9] and where the value of the
coefficients a0, a1, a2, and a3 is given by Table 1.4.

x a0 a1 a2 a3

Value [−1.75,1.9] 1.133003325617080 −1.949537446612336 −1.25869956 1

Format Q2,30 Q2,30 Q2,30 Q2,30 Q2,30

Table 1.4: The range of the input and of the coefficients of the polynomial function (1.15)
and their fixed-point formats.

The C program shown in Listing 1.2 corresponds to the Horner scheme evaluation of
this function using binary64 floating-point numbers. This code is written in a three ad-
dress coding style so that, as shown in Table 1.5, each intermediate variable v0 through v5

corresponds to a sub-expression of the polynomial function of Equation (1.15).



26 CHAPTER 1. STATE OF THE ART ON FIXED-POINT ARITHMETIC

B Listing 1.2: C code for the Horner scheme evaluation of the expression (1.15)

double horner(double* a, double x){
double v0 = x * a[3];
double v1 = v0 + a[2];
double v2 = x * v1;
double v3 = v2 + a[1];
double v4 = x * v3;
double v5 = v4 + a[0];
return v5;

}

Variable Corresponding polynomial

v0 a3x

v1 a2 +a3x

v2 a2x +a3x2

v3 a1 +a2x +a3x2

v4 a1x +a2x2 +a3x3

v5 a0 +a1x +a2x2 +a3x3

Table 1.5: The mapping between the intermediate variables of Listing 1.2 and the sub-
expressions of the polynomial function of Equation (1.15).

Range analysis by fixed-point format propagation

Occasional fixed-point programmers who do not dispose of range analysis tools usually
rely on format propagation. The method does not involve advanced numerical computa-
tions and is based on simple rules of thumb. It is described in detail by Yates [Yat13] and is
used by Lopez et al. [LHD12] to implement linear filters. The idea is to start from the format
of the input variables and to use propagation rules to determine the format of intermedi-
ate and output variables. Consider for instance the following propagation rules adapted to
a design with 32-bit fixed-point variables:

Qa,b +Qc,d → Qmax(a,c)+1,32− (max(a,c)+1)

Qa,b −Qc,d → Qmax(a,c)+1,32− (max(a,c)+1)

Qa,b ×Qc,d → Qa + c −1,32− (a + c −1)

(1.16)



1.3. AUTOMATED IMPLEMENTATION OF FIXED-POINT ALGORITHMS 27

The first and second rules state that the width of the integer part of the sum or difference
of two fixed-point variables corresponds to the largest integer part of the operands aug-
mented by 1, to avoid overflow. The third rule states that the width of the integer part of a
product is the sum of the width of the integer part of the operands and that one bit should
be removed from the resulting integer part. The removed bit is a redundant sign bit that
results from the multiplication of two signed values. 7

Example 1.4. Applied to the polynomial evaluation of Listing 1.2, the method yields the
fixed-point formats shown by the tree structure of Figure 1.10.
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Figure 1.10: Fixed-point formats for the variables of Listing 1.2 obtained by applying the
propagation rules (1.16).

The fixed-point formats obtained using this method are often conservative for the fol-
lowing reasons:

1. The fixed-point formats carry less information on the range of variables than in-
tervals.

2. The propagation rules are not sensitive to data correlations.

3. The propagation rules are conservative.

7Section 2.3 further describes this detail.
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Range analysis using interval arithmetic

Interval arithmetic is a method for bounding the values of computations that was formal-
ized by Moore [Moo66, MKC09a] around the 1960’s. An interval is defined8 by a lower
bound a and an upper bound b, and is generally denoted [a,b]: an element x is said to
belong to [a,b] if a ≤ x ≤ b. By properly defining operations on the endpoints, one can ef-
ficiently compute enclosures for the sum, product, and other operations on intervals. For
instance, the rules for the basic operations are given by:

x ∈ [a,b] → (−x) ∈ −[a,b] = [−b,−a]

x ∈ [a,b]∧ y ∈ [c,d ] → (x + y) ∈ [a,b]+ [c,d ] = [a + c,b +d ]

x ∈ [a,b]∧ y ∈ [c,d ] → (x − y) ∈ [a,b]− [c,d ] = [a −d ,b − c]

x ∈ [a,b]∧ y ∈ [c,d ] → (x × y) ∈ [a,b]× [c,d ] = [mi n(ac,bc, ad ,bd),max(ac,bc, ad ,bd)]

and are illustrated graphically on Figure 1.11.

y x

−y−x x − y x + y

x × yx −x

0

0

Figure 1.11: Illustration of the interval arithmetic rules.

Apart from being efficient, interval arithmetic is a non-intrusive range analysis method.
By using object-oriented techniques such as polymorphism and operator overloading,
transforming a program into an equivalent one that uses interval arithmetic requires mi-
nor modifications to the original source code.

However, the main drawback of this method is the data dependency problem [Han75].
Being entirely a numerical method, interval arithmetic is not sensitive to correlations be-
tween variables. This problem is exemplified by the computation of x−x. In interval arith-
metic, if x ∈ J = [a,b] then (x − x) ∈ J −J = [a −b,b − a] as shown in Figure 1.11. On
designs involving multiple correlations, the data dependency problem leads to conserva-
tive bounds.

In theory, intervals can be defined on ordered sets such as the integers, rationals, and
real numbers. But, practical implementations mostly use integer or floating-point num-
bers to store and compute with endpoints. In such case, care must be taken to use the
appropriate rounding modes. For instance, directed rounding shall be used on the bounds
to preserve the inclusion property.

8There is an alternative formalization that represents an interval using its center and radius. The major
difference between the two representations resides in the efficiency of certain interval operations.
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The Boost interval library [BMP06] uses C++ templates to provide generic intervals. For
intervals with floating-point endpoints, the MPFI library [CLN+] (see also [RR05]) relies
on the MPFR multiple precision floating-point package [FHL+07]. This library is used for
range analysis in the fixed-point synthesis tool CGPE [Rev09], [MR11].

Example 1.5 below applies interval arithmetic to the polynomial evaluation of List-
ing 1.2.

Example 1.5. Apart from the obtained intervals, Table 1.6 also shows the fixed-point
formats deduced from them using Equation (1.13).

Variable Range obtained using interval arithmetic Format

x [−1.75000000000000,1.90000000000000] Q2,30

v0 [−1.75000000000000,1.90000000000000] Q2,30

v1 [−3.00869956000001,0.64130044000001] Q3,29

v2 [−5.71652916400001,5.81272423000001] Q4,28

v3 [−4.71652916400001,6.81272423000001] Q4,28

v4 [−14.56552656016345,14.45586656857160] Q5,27

v5 [−13.43252323454637,15.58886989418868] Q5,27

Table 1.6: Ranges and fixed-point formats of the intermediate variables of (1.2) com-
puted using interval arithmetic.

These formats are less conservative than those obtained by format propagation. Indeed,
for v5, interval arithmetic yields a format with an integer part of 5 bits instead of 8 bits
for format propagation. Yet, as illustrated by Figure 1.12, the enclosure computed using
interval arithmetic for v5 over-approximates the final range of the computation. This is
due to the data dependency problem.
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Figure 1.12: Computed enclosure on v5 using interval arithmetic (in blue) and curve of the
polynomial function (1.15) (in red).

Range analysis via affine arithmetic

Affine and generalized interval arithmetics [Han75],[CG+09] resulted from an effort to
solve the problems due to the data-dependency issue inherent to interval arithmetic. It is
used by Fang et al. [FRC03] to determine the range of variables in digital signal processing
applications (FIR and IDCT). They report a slight improvement over interval arithmetic. In
[LGC+06], Lee et al. use it for polynomial evaluation and RGB to YCbCr transformation.

To solve the data dependency problem, an affine variable x is represented as a combi-
nation of numeric values xi and symbolic values εi as follows:

x = x0 +x1 ·ε1 +x2 ·ε2 +·· ·+xn ·εn (1.17)

where the variables εi , for 1 ≤ i ≤ n are in the interval [−1,1]. A variable y ∈ I = [a,b]
is converted to the affine form y = y0 + y1 · ε1 by computing y0 = a+b

2 and y1 = b−a
2 . In this

case, y0 and y1 are the center and radius of the interval I , respectively, and ε1 is a symbolic
value that takes its values in [−1,1]. The opposite operation that converts an affine variable
into an interval is called a reduction, and consists in replacing the εi , for 1 ≤ i ≤ n, by [−1,1]
and applying basic interval arithmetic operations. The main feature of affine variables is
that summing or subtracting them leads to affine forms where cancellations occur between
symbolic variables.
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Example 1.6. Consider the computation of a bound on x − y where x and y are such
that y = x +1 and x ∈ [−4,5]. In interval arithmetic, we have that y ∈ [−3,6] and (x − y) ∈
[−10,8]. In affine arithmetic, the affine representation of x is x = 0.5+4.5 ·εx and that of
y is y = x +1 = 1.5+4.5 ·εx . Then, we have (x − y) = (0.5−1.5)+εx · (4.5−4.5) =−1+0 ·εx .
Reducing this affine form yields the point interval [−1,−1].

Example 1.6 shows how affine arithmetic solves the data dependency problem when
working with summations. However, since the product of two affine forms is not an affine
form, multiplication causes some correlations to be lost. This is obvious in Example 1.7
below which applies affine arithmetic to the polynomial evaluation of Listing 1.2. The ex-
ample was implemented using the libaffa library developed by Gray and based on the work
of Stolfi et al. [dFS04].

Example 1.7. The enclosures obtained by running affine arithmetic on the polynomial
evaluation of Listing 1.2 are shown in Table 1.7. As illustrated in Figure 1.13, the improve-
ment over interval arithmetic obtained for this example is not significant. No reduction
in the format of any of the fixed-point variables v0 through v5 was obtained. This is due
to the loss of correlations induced by multiplications in polynomial evaluation.

Variable Range using affine arithmetic Format

x [−1.75000000000000,1.90000000000000] Q2,30

v0 [−1.75000000000000,1.90000000000000] Q2,30

v1 [−3.00869956000000,0.64130043999999] Q3,29

v2 [−5.44277916400000,5.26522423000000] Q4,28

v3 [−7.39231661061233,3.31568678338766] Q4,28

v4 [−14.04540156016343,13.73965432312158] Q5,27

v5 [−12.91239823454636,14.87265764873866] Q5,27

Table 1.7: Ranges and fixed-point formats of the intermediate variables of Listing 1.2
computed using affine arithmetic.
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Figure 1.13: Computed enclosure on v5 using affine arithmetic (in green) and curve of the
polynomial function of Equation (1.15) (in red).

Range analysis of polynomial functions by differentiation

This analytic range analysis method is based on differentiation. It was suggested by Vil-
lasenor et al. [LV09] who used it to implement univariate polynomial evaluation. It relies
on the following observation: when evaluating a polynomial, each intermediate variable
in the design holds the value of a sub-expression of the final polynomial. These sub-
expressions are themselves polynomials whose local minima and maxima can be deter-
mined by computing the roots of their derivatives. Indeed, Algorithm 1.1 shows how to
compute the maximum and minimum of a polynomial function on a given interval.

This algorithm uses the classical process of locating the roots of the derivative poly-
nomial to isolate the extrema. Indeed, these extrema either correspond to the endpoints
of the input interval or to the roots of the derivative polynomial. For polynomials, this
method yields the tightest possible certified range for the intermediate variables.

In Example 1.8 below, the differentiation method is applied to the polynomial evalua-
tion of Listing 1.2.

Example 1.8. The differentiation technique yields the enclosures and fixed-point for-
mats shown in Table 1.8. For each of the variables v3, v4 and v5, the fixed-point format
has an integer part that is one bit tighter than that obtained using interval and affine
arithmetics.
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Algorithm 1.1 Compute the extrema of a polynomial on an interval.

Require: a polynomial function P , an interval [a,b].
Ensure: [c,d ] such that P (x) ∈ [c,d ] for x ∈ [a,b].

1: P ′ ← the derivative of P
2: R ← Root s(P ′)
3: R ← i nser t (a,R)
4: R ← i nser t (b,R)
5: S =∅
6: for r ∈R do
7: if r ∈ [a,b] then
8: i nser t (P (r ),S )
9: end if

10: end for
11: c ← mi n(S )
12: d ← max(S )

Variable Polynomial Range Format

x x [−1.75000000000000,1.90000000000000] Q2,30

v0 a3x [−1.75000000000000,1.90000000000000] Q2,30

v1 a2 +a3x [−3.00869956000001,0.64130044000001] Q3,29

v2 a2x +a3x2 [−0.39608114558605,5.26522423000001] Q4,28

v3 a1 +a2x +a3x2 [−2.34561859219839,3.31568678338767] Q3,29

v4 a1x +a2x2 +a3x3 [−5.80245187092842,0.53541226965402] Q4,28

v5 a0 +a1x +a2x2 +a3x3 [−4.66944854531134,1.66841559527110] Q4,28

Table 1.8: The ranges obtained for the intermediate variables of Listing 1.2 using the
differentiation method.

A comparison of the range of v5 obtained by differentiation with those obtained by
interval and affine arithmetics is shown in Figure 1.14. This figure also shows how the
differentiation method returns the tightest possible enclosure.



34 CHAPTER 1. STATE OF THE ART ON FIXED-POINT ARITHMETIC

-13.4325

 0

 15.5889

-1.75  0  1.9

-12.9124

-4.66945

 1.66842

 14.8727

Affine arithmetic enclosure

Differentiation based enclosure

Figure 1.14: Comparison of the enclosure on v5 obtained by differentiation (in orange)
with the enclosures obtained by interval and affine arithmetic (in green and blue respec-
tively) for the polynomial function (1.15).

Range analysis for linear filters using the `1-norm

Linear time invariant systems such as Finite Impulse Response (FIR) and Infinite Impulse
Response (IIR) filters are widely used as basic blocks in digital signal processing [PV08].
These filters take an impulse as input and produce another impulse as output for each
time step, and are described by the following state equations:

x(k +1) = A ·x(k)+β ·u[k], x(0) = 0,

y[k] = c · x(k)+d ·u[k]
(1.18)

where u[k] and y[k] are the input and output, and x(k) ∈ Rn is the state of the system at
step k. The response of such system is determined by

h(k) =
{

d k = 0,

c · Ak−1β k > 0,
(1.19)

and the largest possible value of the output impulse y is bounded as follows∥∥y
∥∥∞ ≤ ‖H‖`1 · ‖u‖∞ (1.20)

where ||H ||`1 is the `∞-gain of the system [BB92].
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Boyd et al. [BB92] suggest an algorithm to compute a certified bound for

‖H‖`1 =
∞∑

k=0
|h(k)|.

However, this algorithm is tedious to implement and the bound is often approximated in
practice by the finite sum

∑N
k=0 |h(k)| where N is a large integer.

Example 1.9. Consider the following transfer function of a 4-taps filter with a cutoff fre-
quency of 0.3 ·π:

H(z) = b0 +b1z−1 +b2z−2 +b3z−3

1+a1z−1 +a2z−2 +a3z−3
, (1.21)

where the bi and a j coefficients are given in Table 1.9.

Int. Repr. Format Decimal value

b0 1701940795 Q−3,35 0.04953299634507857263088226318359375

b1 1276455597 Q−1,33 0.148598989122547209262847900390625

b2 1276455597 Q−1,33 0.148598989122547209262847900390625

b3 1701940795 Q−3,35 0.04953299634507857263088226318359375

a1 −1247599398 Q2,30 −1.16191748343408107757568359375

a2 1494525688 Q1,31 0.6959427557885646820068359375

a3 −1183360567 Q−1,33 −0.137761301244609057903289794921875

Table 1.9: The coefficients of the Butterworth filter of Equation (1.21).

This filter uses fixed-point coefficients and is an approximation of a 3rd order But-
terworth filter. Its direct form realization shown in Figure 1.15 is one of many possible
means to implement this filter using delay blocks, adders, and multipliers.
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u[k] b0 y[k]

z−1 z−1

b1 −a1

z−1 z−1

b2 −a2

z−1 z−1

b3 −a3

Figure 1.15: Block diagram of a direct form implementation of the Butterworth filter of
Equation (1.21).

Converting this filter to the state equations in the form (1.18) yields the parameters
shown in Table 1.10.

A β c d
a1 a2 a3

1 0 0

0 1 0

 (
1 0 0

)T (
a1 −b1a0 a2 −b2a0 a3 −b3a0

)
b0

Table 1.10: State space parameters of the linear filter (1.21).

By using the formula of Equation (1.19) and the coefficients of Table 1.10, the approx-
imation

‖H‖`1 ≈
1024∑
k=0

|h(k)|

yields the gain 1.2595080665573077. In this case, if the magnitude of the input pulse
u[k] is guaranteed to be in the enclosure U = [−15.5,15.5], then the output y[k] is also
guaranteed to be in the interval

Y = ‖H‖`1 ·U = [−19.52237503163826936,19.52237503163826936].

Using Equation (1.13), it is straightforward to deduce that the appropriate 32-bit format
for y[k] is Q6,26.
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Simulation based range analysis

Simulation based methods [SK95], [NNF07] are used in commercial tools such as Matlab’s
Fixed-Point Designer®, Synopsys CoCentric Fixed-point Designer® or Mentor Graphics
Catapult C®. These methods gather range information by extensively running a slightly
modified floating-point design. The modifications change the type of floating-point vari-
ables to a class that stores its value each time a method is called on it. Examples of such
class are fSig described by Sung [SK95] and ti_float [NNF07]. These classes take advan-
tage of object-oriented techniques, particularly operators overloading of operations such
as +,−,×, and ÷, to be minimally intrusive towards the original code. Once the data-types
modified, the design is run with several input signals to obtain a collection of values for
each traced variable. From these values, statistical information such as the minimum,
maximum, mean, and standard deviation are computed and are used to estimate the range
of the variable. For this last step, Didier et al. [CDV12] investigate the theoretical aspects of
inferring the range from statistical information.

Simulation based methods are non-intrusive and yield tight ranges contrarily to inter-
val arithmetic. However, among its drawback is the lengthy simulations needed to obtain
representative statistical information and the absence of guaranties on the produced en-
closures.

Example 1.10. With a simulation of the program of Listing 1.2 based on 1000 runs, the
minimum and maximum values for each intermediate variable are shown in Table 1.11.

Variable Range Format

v0 [−1.749204292241113,1.899043597536648] Q2,30

v1 [−3.007903852241113,0.640344037536648] Q3,29

v2 [−0.396079979860254,5.261438328988734] Q4,28

v3 [−2.345617426472590,3.311900882376398] Q3,29

v4 [−5.793191238929927,0.535412061984584] Q4,28

v5 [−4.660187913312846,1.668415387601664] Q4,28

Table 1.11: The minimum and maximum of the intermediate variables of Listing 1.2 ob-
tained by a 1000-runs simulation.

Figure 1.16 shows how the final enclosure v5 gets closer to that obtained by differentia-
tion when the number of simulation runs increases. The enclosures obtained by simu-
lation for polynomial evaluation are quite sharp even with relatively few runs. Indeed,
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since univariate polynomial evaluation consumes only one variable as input, it lends it-
self easily to range analysis by simulation. And it is even affordable to exhaustively test
all of the input values.
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Figure 1.16: Evolution of the enclosure on v5 with the number of simulation runs.

1.3.5 Precision analysis

Precision analysis is the second main step in automated fixed-point programming. Indeed,
a fixed-point format is determined by the size of its integer and fraction parts. The goal of
range analysis is to determine the size of the integer part and the goal of precision analysis
is to determine the size of the fraction part.

Precision analysis with fixed-size word-length

If the target of the fixed-point design is a classical CPU or a fixed word-length DSP, then
the word-length is imposed by the width of the data-path. In such case, setting the integer
part of a fixed-point variable automatically determines the width of the fraction part. For
instance, if v were a 32-bit fixed-point variable with an integer part of width 5, then the
format will automatically be Q5,27. Although a meticulous precision analysis may prove
that 20 bits of fraction part are sufficient, i.e., that the format Q5,20 is adequate, its mapping
to software still imposes to use 32-bit integers and therefore, considering the format Q5,27

certainly does not minimize the fraction part but comes at no extra cost. Furthermore, the
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experiments we shall present in Chapter 3 as well as in Part II assume a fixed size word-
length and were conducted using 32 bit fixed-point numbers.

Precision analysis with custom word-length

When the target is an FPGA or an ASIC, the implementer has complete freedom over the
word-length of every fixed-point variable in the design. In such case, minimizing the width
of fraction parts saves resources. Indeed, one can anticipate narrower data-paths as well
as compact operators (adders, multipliers, and dividers) which induce savings in the chip
area, its power consumption, and therefore its cost. For this reason, precision analysis al-
gorithms take a cost function and an accuracy criterion as input in addition to the detailed
design. Their goal is to minimize the cost function while ensuring that the accuracy crite-
rion is satisfied. This can be summarized by the following optimization problem:

¦ Optimization problem: find the vector f representing the combination of the widths
of the fraction parts such that

min C (f) under the constraint P (f) ≥B (1.22)

where C is the cost function to minimize, P the accuracy of the design, and B is the
accuracy bound, that is, the minimal accuracy allowed.

Depending on the design goals, the cost function C corresponds to energy consumption,
the chip’s area, or a combination of both.

The following of this section gives a brief survey of algorithms to solve this problem and
starts by defining the sets fmi n and funi that are used in many of these algorithms. These
notations are borrowed from the work of Nguyen [Ngu11] which is an in-depth treatment
of word-length optimization and precision analysis.

Definition 1.3.1. The distance between two vectors f1 and f2 representing the combination

of the widths of the fraction parts is given by d
(
f1, f2

)= n−1∑
i=0

∣∣f1
i − f2

i

∣∣.
Definition 1.3.2. The minimum word-length set (MWS) is the vector fmi n =(

f mi n
0 , f mi n

1 , f mi n
2 , . . . f mi n

n−1

)
where f mi n

k is obtained by minimizing only the fraction width

of the k th variable while allowing arbitrarily large word-lengths for the n−1 other variables.
As such fmi n rarely satisfies (1.22) but will often be used as a starting point.

Definition 1.3.3. The minimum uniform word-length set is the vector funi =(
f uni , f uni , f uni , . . . f uni

)
where f uni is the smallest value such that P

(
funi

) ≥ B is satis-
fied.
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Modified exhaustive search algorithms

Kum et al. [SK95] in one of the earliest float-to-fix conversion works suggest to solve the op-
timization problem in (1.22) using exhaustive search starting from the MWS. At iteration d
of their algorithm, all vectors at distance d from MWS are tested. If a solution is found,
the algorithm stops, otherwise iteration d +1 is executed and vectors at distance d +1 are
considered. This algorithm has two drawbacks:

1. Depending on the cost function, it is not guaranteed to return the optimal solution.
Indeed, if the found solution is at distance d from MWS, a solution that further min-
imizes C may exist at distance d + 1. This is precisely the difference between this
algorithm and classical exhaustive search.

2. The search is costly as soon as n and the distance d between MWS and the first ac-
ceptable solution are large. For instance, the number of times the procedure P must
be tested is given by

(n+d−1
d−1

)
. For the polynomial example of Listing 1.2 where n = 6,

if an acceptable solution is at distance ds = 10 from MWS, then
(15

9

)= 5005 interme-
diate evaluations are needed.

Branch and bound algorithms. Branch and bound algorithms resemble exhaustive
search, except that large classes of the search space are ignored depending on some cri-
teria. Indeed, Burleson et al. [CB94] suggest to conduct a branch and bound algorithm
between f mi n and f uni . The enhancement over exhaustive search consists in the follow-
ing heuristic: as soon as a vector f s does not satisfy the accuracy constraint, all the f k that
satisfy f k

i ≤ f s
i for 0 ≤ i < n are discarded.

Greedy algorithms

These algorithms perform faster than the exhaustive search by making local decisions to
find a solution of the optimization problem.

Min+1 and max-1 algorithms. The min+1 algorithm [HEKC01] starts from MWS. At each
step and as long as P (f) <B, it temporarily increments each component of f. The compo-
nent that most augments the accuracy is permanently incremented, while the others are
restored. The first solution f`that verifies P (f`) ≥B is returned.

The max−1 algorithm used by Constantinides [CCL01] to minimize the word-length in
LTI systems is another greedy algorithm that starts from k ·funi for a well-chosen k. At each
step, the components of f are decremented temporarily and the cost C is computed. Only
the component that induces the largest decrease in C is permanently decremented.
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Multiple variants of these algorithms have been suggested (See [Ngu11] for more de-
tails). They are faster than exhaustive search, however, they provide no guaranties on the
optimality of the returned solution.

Example 1.11. Consider the cost function C (f) = f0 + f1 as well as the configuration
shown in Figure 1.17. We have fmin = (1,2) and funi = (3,3). The paths followed by the
greedy algorithms to find a solution are shown by the dotted arrows and both of them
miss the unique optimal solution since they do not use a backtracking or local search
mechanism. For instance, in Figure 1.17a, once the step is taken from fmi n to the posi-
tion of coordinates (2,2), there is no possibility to return back to a position of coordinates
(n1,n2) with n1 < 2 or n2 < 2. The same applies to the max −1 algorithm shown in Fig-
ure 1.17b.
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(a) Path followed by the min+1 algo-
rithm.
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(b) Path followed by the max−1 algo-
rithm.

Figure 1.17: Word-length optimization in Z2 using the min+1 and max−1 algorithms.

Both algorithms end up finding a solution f` such that C (f`) = 6 while fopti m satisfies
C (fopti m) = 5.

The GRASP algorithm. The GRASP (Greedy Randomized Adaptive Search Procedure) al-
gorithm introduced by Ménard et al. [HNMS11] relies on a heuristic to correct the behav-
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ior of greedy algorithms by adding a search step. The novelty of this algorithm is the Tabu
search [Glo90] step conducted in the neighbourhood of each intermediate greedy solu-
tion to search for eventual better solutions. As shown in Figure 1.18, this algorithm follows
closely the min+1 algorithm of Figure 1.17 except that the Tabu search conducted around
each intermediate node ends up finding the optimal solution.
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Figure 1.18: Word-length optimization in Z2 using the GRASP algorithm.

Stochastic algorithms

This category includes the Simulated Annealing algorithm (SA) and its variants such as
Adaptive Simulated Annealing (ASA). These algorithms work by exploring the neighbor-
hood of an intermediate solution to improve it while still allowing a probability to jump
back to a worse solution. They are used for the precision analysis of polynomial evaluation
by Cheung et al. [LGC+06] and for PID implementations by Chen et al. [CWIC99].

Finally, genetic algorithms are another variant of stochastic algorithms that have been
suggested for precision analysis by Tang et al. [NTM92].

1.4 Conclusion

In this chapter, we introduced the fixed-point arithmetic. Compared to floating-point,
fixed-point programming requires more expertise from the programmer who must keep
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track of fixed-point formats and handle arithmetical details such as alignments and over-
flow prevention. To increase the quality of fixed-point codes and make fixed-point pro-
gramming accessible to non-experts, automated techniques and tools are needed. These
tools are built around two stages: range analysis and precision analysis, and a representa-
tive set of techniques for both stages was described in the second section of this chapter.
In the next chapter, one of these techniques, namely interval arithmetic is discussed with
great detail. The chapter shows how to use it to assert some properties on the generated
code, such as its numerical quality.





Part I

A framework for the synthesis of certified
fixed-point programs
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IMPLEMENTATION AND ERROR BOUNDS OF

THE BASIC FIXED-POINT ARITHMETIC

OPERATORS

In the previous chapter, we introduced the representation of fixed-point
numbers and the state of the art methods for automating fixed-point pro-
gramming. In this chapter, we present an interval arithmetic based frame-
work whose goal is twofold: to determine the fixed-point formats through
range analysis and to bound the rounding errors of fixed-point computa-
tions. Within this framework, we present the basic fixed-point arithmetic
operators such as addition, multiplication, square root, and division. For
each operator, we explain how to implement it using integer operations
and how to bound its rounding errors using interval arithmetic.

2.1 Introduction

U
NLIKE the floating-point arithmetic, there is no standard that governs most fixed-

point implementations. Rather, it is customary for research articles on fixed-point
arithmetic to start by a presentation of an arithmetic model. Here, we mean by

arithmetic model the precise semantics of operations such as addition and multiplication,

47
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and sometimes the mean to estimate the accuracy of these operators. Examples of arith-
metic models include Fang et al.’s work [FRC03] which is based on affine arithmetic and
Didier et al.’s [LHD12] which uses a probabilistic estimation of the propagation of noise.

Our arithmetic model is based on interval arithmetic which was described in Sec-
tion 1.3.4. While introduced only as a range analysis technique in Chapter 1, we shall also
use interval arithmetic to estimate the precision of our fixed-point implementations. In-
deed, in this chapter, we show how to automate interval propagation for range analysis
inside a fixed-point generation tool and how to use intervals to deduce strict bounds on
the rounding errors that occur when evaluating arithmetic expressions.

To do so, for each operator ¦ such that ¦ ∈O = {+,−,×,¿,À,p,/
}
, we first show how it

propagates the ranges and rounding errors, then we describe its implementation by means
of integer operations. To this end, we keep track of two intervals for every variable v in the
design:

• Val(v) is an enclosure of the value of v , and

• Err(v) is an enclosure of the rounding errors entailed by the computation of v .

For each operator ¦, we shall explicit the basic rules to compute Val(v) and Err(v) from
Val(v1),Val(v2),Err(v1) and Err(v2), where v1 is the first operand of ¦ and v2 the second
operand if ¦ is binary. To simplify our formulas, we also use the Math(v) interval which is
related to Val(v) and Err(v) by the following equation:

Math(v) = Val(v)+Err(v). (2.1)

Conceptually, Math(v) is an enclosure one would obtain for v had all the computations
been carried using infinite precision, i.e., without any rounding errors. Figure 2.1 illustrates
our purpose: it shows the operator ¦ as a node in a potentially large tree structure.

¦ Val(v) = g¦(Val(v1),Val(v2),Err(v1),Err(v2))
Err(v) = h¦(Val(v1),Val(v2),Err(v1),Err(v2))

.Val(v1)
Err(v1)

. Val(v2)
Err(v2)

Figure 2.1: Node representation of the operator ¦ and the relationships between
Val(v),Err(v) and Val(v1),Val(v2),Err(v1),Err(v2).
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The figure suggests that, once the functions g¦ and h¦ explicitly stated for all ¦ ∈ O ,
determining Val(v) and Err(v) for every node in the tree representation of an arithmetic
expression requires nothing more than propagating them by the means of a bottom up
traversal. In the following sections, we give explicit formulas for g¦ and h¦ for the set of
basic operators O .

2.2 Addition and subtraction

Summation is ubiquitous in numerical programs. Linear functions, dot-products, aver-
age, and norm computations all involve computing additions. Subtraction is less common
but when implemented in two’s complement arithmetic, addition and subtraction use the
same hardware, and subtracting a number reduces to adding its two’s complement.

2.2.1 Ranges and error bounds for the addition/subtraction operator

In fixed-point arithmetic, two addends must be aligned in the same format Qis , fs , that is,
they must share the same integer and fraction part sizes. If this is not the case, then align-
ment operations should be applied to the addends before the addition node. These align-
ments are performed by means of the shift operators presented in Section 2.4. Authors
that include Rutenbar et al. [FRC03] as well as some libraries such as Mentor Graphics’®
ac_fixed [Bol08, §3] consider the alignment phase as part of fixed-point addition. Our
choice not to follow this convention is motivated by keeping all the operations explicit and
by making fixed-point addition coincide with integer addition.1 Therefore, in our defini-
tion of addition and subtraction, alignments are not part of the operation.

It follows from this definition that addition and subtraction are error free and that we
have for ¦ ∈ {+,−}:

Val(v) = Val(v1)¦Val(v2). (2.2)

As for the error bound, we have:

Err(v) = Math(v)−Val(v)

= (
Math(v1)¦Math(v2)

)− (
Val(v1)¦Val(v2)

)
= (

Math(v1)−Val(v1)
)¦ (

Math(v2)−Val(v2)
)

= Err(v1)¦Err(v2),

(2.3)

that is the rounding error of a summation or subtraction node is nothing more than the
sum or difference of the rounding errors on the operands. This is a consequence of the
error free nature of these operations.

1Among others, this convention simplifies the instruction selection process detailed in Section 3.3.
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2.2.2 Output format of the addition/subtraction operator

Since the operands of fixed-point summation/subtraction v1 and v2 are aligned, we con-
sider without loss of generality that they are both in the Qi1, f1 format. Depending on the
enclosure Val(v), v requires the following format:

1. Qi1, f1 , if Val(v) ⊆Range(Qi1, f1 ),

2. Qi1 +1, f1 −1, if Val(v) 6⊆Range(Qi1, f1 ), that is, if overflow occurs.

• • • • • • • •
i1 f1

i2 f2

• • • • • • • •+/−

• • • • • • • •=

is fs

Figure 2.2: Addition or subtraction of two 8-bit aligned fixed-point variables.

When the output format is Qi1, f1

Case 1 occurs when the sum fits in Range(Qi1, f1 ) and is illustrated by Figure 2.2. A po-
tential sub-case is when the addition or subtraction leads to cancellations as illustrated by
Figure 2.3, where the three most significant bits of the result have the same value.

• • • • • • • •
i1 f1

i1 f1

• • • • • • • •+/−

• • • • • • • •=

i1 f1

• • • • • • 0 0

ik fk

Normalization
step

Figure 2.3: Sum or difference of two fixed-point variables involving cancellations and fol-
lowed by a normalization step.
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Clearly, the two most significant bits are redundant sign bits that can be removed by
scaling the result to a smaller format than Range(Qi1, f1 ), that is, a format with an integer
part of size ik such that ik < i1. This alignment re-normalizes the result as shown in the
bottom of Figure 2.3 and is handled by means of left shifting which is discussed in Sec-
tion 2.4. Again, this normalization is not part of the operation of addition or subtraction
itself.

When the output format is Qi1 +1, f1 −1

Case 2 happens when Range(Qi1, f1 ) ⊂ Val(v) ⊂Range(Qi1 +1, f1 −1). In this case, summing or
subtracting the two variables causes overflow since the result is potentially too large to fit in
a Qi1, f1 variable. The solution is to align the two operands before performing the addition or
subtraction. That is, the addition or subtraction is transformed into an operation between
two variables in the Qi1 +1, f1 −1 format by means of right shifting. This process is shown in
Figure 2.4. Once again, aligning the two addends is not part of the addition/subtraction
operation.

• • • • • • • •
i1 f1

• • • • • • • •
i1 +1 f1 −1

i1 f1

• • • • • • • •+/−

i1 +1 f1 −1

• • • • • • • •

• • • • • • • •=

i1 +1 f1 −1

Figure 2.4: Sum or difference of two fixed-point variables involving alignments to avoid
overflow.

2.2.3 Implementation of the addition/subtraction operator

As a result of our definition of fixed-point addition/subtraction as operations between two
aligned operands, and of our caution to avoid the occurrence of overflow, computing these
operations reduces to integer addition or subtraction of the integer representations. In-
deed, we have that:

v1 ¦ v2 = V1 ·2 f1 ¦V2 ·2 f2

= V1 ·2 f1 ¦V2 ·2 f1 since f1 = f2

= (V1 ¦V2) ·2 f1 .

Listing 2.1 shows two C functions that emulate fixed-point addition and subtraction, re-
spectively, for 32-bit signed fixed-point variables.
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B Listing 2.1: C code for 32-bit fixed-point addition and subtraction.

int32_t add (int32_t v1, int32_t v2){

return v1 + v2;

}

int32_t sub (int32_t v1, int32_t v2){

return v1 - v2;

}

2.3 Multiplication

Unlike addition and subtraction, there are no constraints on the formats of multiplicands.
Also, as a rule of thumb [Yat13], the product of v1 and v2 results in a fixed-point variable in
the format Qir , fr with

ir = i1 + i2 and fr = f1 + f2, (2.4)

as shown in Figure 2.5.

• • • • • • • •
i1 f1

i2 f2

• • • • • • • •×

• • • • • • • • • • • • • • • •
ir fr

Figure 2.5: Output format of fixed-point multiplication.

This bit distribution is due to:

1. The largest possible multiplicands being −2i1−1 and −2i2−1, the product could be as
large as 2i1+i2−2.

2. The smallest multiplicands being 2− f1 and 2− f2 , the smallest product is 2−( f1+ f2).

The redundant sign bit

The MSB of Figure 2.5 is a redundant bit and can be discarded. Nevertheless an exception
occurs in signed arithmetic when the operands are both equal to the smallest negative
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value, that is, v1 = −2i1−1 and v2 = −2i2−1. In that case, only the most significant bit rep-
resents the sign of the result and it cannot be discarded. Also, in most practical cases, one
cannot afford to double the word-length after every multiplication. Therefore, the multi-
plication we consider in the subsequent is truncated, i.e., only the upper half of the result
is considered.

Special case of multiplication by powers of 2

Multiplication by a power of 2 is an interesting special case since it can be transformed into
a virtual shift. A virtual shift just consists in changing the fixed-point format of the operand
and does not imply any physical operation during run-time. Hence, once transformed
into a virtual shift, multiplication by a power of 2 is cost-free, and does not impact the
evaluation latency of the program. This optimization is implemented in the fixed-point
synthesis tool CGPE, and is analogous to the constant folding facilities offered by modern
compilers. As for the output format, the multiplication of v1 by 2p results in a fixed-point
variable in the format Qir , fr with

ir = i1 +p and fr = f1 −p.

More in-depth treatment of virtual shifts is given in Section 2.4 which is dedicated to the
description of the shifts operators.

2.3.1 Range and error bounds for the multiplication operator

For the output range of a multiplication we have the following:

Val(v) = Val(v1) ·Val(v2)−Err×, (2.5)

where Err× accounts for the rounding error of truncating the product to fit the output for-
mat. As for the error term, we have:

Err(v) = Math(v)−Val(v)

= (
Math(v1) ·Math(v2)

)−Val(v)

=
((

Val(v1)+Err(v1)
) · (Val(v2)+Err(v2)

))−Val(v)

= Val(v1) ·Val(v2)−Val(v)+Val(v1) ·Err(v2)+Val(v2) ·Err(v1)+Err(v1) ·Err(v2)

= Err×+Val(v1) ·Err(v2)+Val(v2) ·Err(v1)+Err(v1) ·Err(v2). (2.6)

Notice how Err(v) depends not only on the errors of the operands, i.e., Err(v1) and Err(v2),
but also on their range of values Val(v1) and Val(v2). This explains our assertion of Sec-
tion 1.2.2 that maintaining sharp enclosures on the values yields tight error bounds.
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• • • • • • • •
i1 f1

i2 f2

• • • • • • • •×

• • • • • • • • • • • • • • • •
ir fr

Result of mul Discarded bits

Figure 2.6: Fixed-point multiplication without word-length doubling.

2.3.2 Implementation of the multiplication operator

The implementation of fixed-point multiplication is highly dependent on the targeted
hardware. When it comes to 32-bits arithmetic, targets such as STMicroelectronics inte-
ger processor ST231 [ST208] are shipped with many variants of multiplication. Among
these variants, mul64h for instance returns the upper half of the product of two 32-bits
variables. This instruction is the one used by Revy [Rev09] for fixed-point multiplication
when synthesizing code for polynomial evaluation.

Emulation of the instruction by doubling the word-length

In absence of a specific hardware target, the result of this instruction can be emulated using
C code. Indeed, one of the possible 32-bit implementations is given by Listing 2.2. Its
behavior is shown graphically by Figure 2.6 on 8-bit operands.

B Listing 2.2: C code for signed 32-bit fixed-point multiplication.

int32_t mul (int32_t v1, int32_t v2){

int64_t prod = ((int64_t) v1) * ((int64_t) v2);

return (int32_t) (prod >> 32);

}

The code of Listing 2.2 works by first computing a full product, that is, by doubling
the word-length before truncating the lower half by the means of a right shift. With such
a multiplier, the error term Err× of Equation (2.6) accounts for the discarded bits and is
given by:

Err× =
[

0,2− fr −2−( f1+ f2)
]

. (2.7)
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Emulation of the instruction without doubling the word-length

Listing 2.2 supposes that the hardware and programming environment are capable of com-
puting the entire product, i.e., with word-length doubling. If no such feature is available
or if it is too costly, Warren [Jr.02] describes an algorithm to obtain the same result with
small multipliers. An implementation of this algorithm is shown in Listing 2.3 and allows
to compute the upper part of a 32×32 multiplication using only multipliers that take 16-bit
operands and yield 32-bit values.

B Listing 2.3: C code computing the upper half of 32-bit multiplication using only 16×16 → 32 multipliers.

1 inline int32_t mul(int32_t a, int32_t b)

2 {

3 int16_t aLow = a & 0xFFFF; int16_t aHigh = a >> 16;

4 int16_t bLow = b & 0xFFFF; int16_t bHigh = b >> 16;

5 int32_t zLowLow = mul_16x16(aLow,bLow);

6 int32_t zLowHigh = mul_16x16(aLow,bHigh);

7 int32_t zHighLow = mul_16x16(aHigh,bLow);

8 int32_t zHighHigh = mul_16x16(aHigh,bHigh);

9 int32_t t = zHighLow + ( zLowLow >> 16 );

10 int32_t wLow = t & 0xFFFF;

11 int32_t wHigh = t >> 16;

12 int32_t w1 = zLowHigh + wLow;

13 return zHighHigh + wHigh + ( w1 >> 16 );

14 }

The different steps of Listing 2.3 are graphically depicted in Figure 2.7.

2.4 Physical and virtual shifts

Shifts are used in fixed-point programs for one of the following reasons:

1. to align the operands of addition or subtraction,

2. to normalize the result of an operation where cancellation occurred as shown in Fig-
ure 2.3, and

3. to replace a multiplication or a division by a power of 2 as discussed in Section 2.3.2

These 3 purposes imply 3 different kinds of shifts, namely right shifts, left shifts, and virtual
shifts. Following Yates [Yat13], we classify these shifts into physical3 and virtual shifts. Right
and left shifts are considered physical shifts since they do require the run-time execution

2The remark is true when working with any radix. That is, to say that multiplying by a power of that radix
comes down to a shift.

3Yates uses the term literal shift instead of physical shift.
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aHi g h aLow Line 3 of Listing 2.3

bHi g h bLow Line 4 of Listing 2.3×
zLowLow Line 5 of Listing 2.3

zHi g hLow Line 6 of Listing 2.3

zLow Hi g h Line 7 of Listing 2.3

zHi g hHi g h Line 8 of Listing 2.3

this sum yields tLine 9 of Listing 2.3

w Hi g h wLow t Lines 10 and 11 of Listing 2.3this sum yields w1Line 12 of Listing 2.3

zLow Hi g h

zHi g hHi g h+
w Hi g h

w1

+ zHi g hHi g h

Line 13 of Listing 2.3

Figure 2.7: Detailed description of the steps involved in Warren’s algorithm.

of a shifting instruction that may be coupled or not to a change of format. Virtual shifts
on the other hand do not require any run-time operation, indeed they merely consist in a
static change of the fixed-point format.

2.4.1 Range and error bounds for the shift operator

The 3 kinds of shifts have different range and error bounds, and are therefore treated sep-
arately in the following.

Right shift

Shifting the value v1 by s positions to the right results in a fixed-point value in the format
Qir , fr with

ir = i1 + s and fr = f1, (2.8)

as shown in Figure 2.8 for s = 2.
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• • • • • • • •
i1 f1

ir = i1 + s fr = f1

• • • • • • • • • •

Figure 2.8: Error free right shift.

However, the shift shown in this figure is an error free variant where the word-length is
also extended by s bits. In practice and similarly to the case of multiplication, one cannot
always afford to extend the word-length. In such case, the leftmost excess bits allocated to
the integer part by the right shift are reclaimed from the fraction part. A side effect of this
strategy of keeping a fixed word-length is that right shift induces a rounding error as shown
in Figure 2.9. Indeed, the rightmost two bits in this figure are “lost” as a side effect of the
right shift.

• • • • • • • •
i1 f1

ir = i1 + s fr = f1 − s

• • • • • • • • • •

Figure 2.9: Right shift with fixed word-length.

This variant of right shifts produces the output format Qir , fr where

ir = i1 + s and fr = f1 − s. (2.9)

Its value range is given by:
Val(v) = Val(v1)−ErrÀ, (2.10)

where ErrÀ accounts for the rounding error of truncating the result and is bounded by the
enclosure

ErrÀ =
[

0,2− fr −2− f1
]
=

[
0,2− f1+s −2− f1

]
. (2.11)

As for the bound on rounding error, it is given by:

Err(v) = Math(v)−Val(v) = Math(v1)− (
Val(v1)−ErrÀ

)= Err(v1)+ErrÀ. (2.12)
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Left shift

Left shift is useful to get rid of redundant sign bits and its aim is to bring a variable into a
smaller fixed-point format.

• • • • • • • •
i1 f1

ir = i1 − s fr = f1 + s

• • • • • • 0 0• •

Figure 2.10: Left shift of 2 positions in presence of redundant sign bits.

As illustrated by Figure 2.10, left shift by s positions produces a variable with the same
value but in the Qir , fr format where

ir = i1 − s and fr = f1 + s. (2.13)

Since, in absence of overflow, left shift is error free and does not alter the value of a variable,
we have:

Val(v) = Val(v1). (2.14)

and as a consequence, we have for the error bound:

Err(v) = Math(v)−Val(v) = Math(v1)−Val(v1) = Err(v1). (2.15)

Finally, to avoid altering the value of the variable, the new rightmost bits introduced by the
left shift must be equal to 0. This is the case for the two LSB bits in Figure 2.10.

Virtual shifts

Virtual shift is merely a change in the format of a fixed-point variable. It is not only cost
free but also error free. Right virtual shift Àv replaces multiplication by powers of 2 while
left virtual shift replaces division by powers of 2. Indeed, we have for ¦ ∈ {Àv ,¿v }:

Val(v) = Val(v1) ·2(−1)δ·s (2.16)

where δ is such that:

δ=
{

0, if ¦ =¿v ,

1, if ¦ =Àv .
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For the error bound, we have:

Err(v) = Math(v)−Val(v)

= Math(v1) ·2(−1)δ·s −Val(v1) ·2(−1)δ·s

= Err(v1) ·2(−1)δ·s . (2.17)

Example 2.1. Consider the signed 8-bit fixed-point value v in the fixed-point format Q4,4

such that V = (1010 1101)2. The decimal value of v is v = −83 · 2−4 = −5.1875 and its
graphical depiction is shown at the top of Figure 2.11.

1 0 1 0 1 1 0 1 (v)
i1 f1

× 4

(v ′)
ir = i1 +2 fr = f1 −2

1 0 1 0 1 1 0 1

Figure 2.11: Virtual right shift by 2 positions replaces multiplication by 4.

Multiplying v by 4 yields v ′ such that V ′ =V and such that the fixed-point format of v ′ is
Q6,2. Hence, v ′ has the value v ′ = V ′ ·2−2 = −20.75 as shown in Figure 2.11. This indeed
corresponds to the value of v multiplied by 4.

2.4.2 Implementation of the shift operators

In code generation tools, if arithmetic expressions are represented as trees, then each in-
termediate node corresponds to a fixed-point variable. In such case, virtual shift do not
involve any code generation and is just a matter of manipulating the fixed-point format of
the intermediate variable.

On the other hand, left and right shifts involve generating code and care must be taken
in making the generated code coincide with the semantics we exposed in Section 2.4.1. For
instance, concerning left shift, standard C [Int10, § 6.5.7] states the following:

The result of E1 ¿ E2 is E1 left-shifted E2 bit positions;

vacated bits are filled with zeros.
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This is exactly the desired behaviour. Hence a 32-bit acceptable implementation of left
shift is given by Listing 2.4.

B Listing 2.4: C code for 32-bit fixed-point left shifting.

int32_t left_shift (int32_t v1, int s){

return v1 << s;

}

However, for right shift, the C standard states the following:

The result of E1 À E2 is E1 right-shifted E2 bit positions.

If E1 has an unsigned type or if E1 has a signed type and a

non-negative value, the value of the result is the integral

part of the quotient of E1/2E2. If E1 has a signed type and a

negative value, the resulting value is implementation-defined.

Clearly, the C standard avoids taking a two’s complement approach and does not impose
that “vacated bits” be sign extended. Therefore, C specifications are only satisfactory when
working with unsigned fixed-point variables. The behaviour of right shift in presence of
signed fixed-point variables is implementation defined. Indeed, about this issue, the man-
ual of the widespread GCC compiler suite [Fou05, § 4.5] states the following:

Bit-wise operators act on the representation of the value

including both the sign and value bits, where the sign bit

is considered immediately above the highest-value value bit.

Signed À acts on negative numbers by sign extension.

Contrarily to the standard, GCC follows a two’s complement strategy and its users can there-
fore implement right shift for signed variables by the straightforward code shown in List-
ing 2.5.

B Listing 2.5: C code for 32-bit fixed-point right shifting.

int32_t right_shift (int32_t v1, int s){

return v1 >> s;

}
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2.5 Square root

Compared to the previous operators, square root received less attention from researchers
working on fixed-point arithmetic. Yet, it is useful in many numerical basic blocks such
as euclidean norms and Cholesky decomposition of symmetric positive-definite matrices.
Indeed, it is essentially for the purpose of implementing code synthesis for Cholesky de-
composition that we first formalized fixed-point square root in [MNR14b].

2.5.1 Output range and error bounds for square root

Square root is a unary operator which assumes that v1 ≥ 0. If this condition is satisfied,
then the following equation that relates the ranges of input and output is satisfied:

Val(v) =
√

Val(v1)−Errp. (2.18)

In this equation, Errp is the error induced by the computation of the square root itself and
depends on the square root algorithm used. A description of the algorithms to implement
fixed-point square root in terms of integer operations is given in Section 2.5.2.

As for the error bound, we have the following enclosure:

Err(v) = Math(v)−Val(v)

=
√

Math(v1)−
(√

Val(v1)−Errp
)

=
√

Val(v1)+Err(v1)−
√

Val(v1)+Errp (2.19)

=
√

Val(v1) ·
(√

1+ Err(v1)

Val(v1)
−1

)
+Errp (2.20)

where the last factorization of Equation (2.20) is justified by the interval dependency prob-
lem mentioned in Section 1.3.4.

However, this formula does not yield tight error bounds as soon as Val(v1) smallest
elements are of the same order of magnitude than Err(v1). To overcome this issue, one
may use the sub-additivity property of the square root function which holds as long as x
and x + y are both positive:

p
x −√|y | ≤√

x + y ≤p
x +√|y |. (2.21)

Using this property in our case yields the following:√
Val(v1)−

√
|Err(v1)| ≤

√
Val(v1)+Err(v1) ≤

√
Val(v1)+

√
|Err(v1)|, (2.22)

which induces the following bound on Err(v) when applied to (2.19):

Errp−
√
|Err(v1)| ≤ Err(v) ≤ Errp+

√
|Err(v1)|. (2.23)

In a practical implementation, since both (2.23) and (2.20) are strict bounds, one can
compute their intersection. This is how the CGPE tool computes Err(v) for the square root
operator.
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2.5.2 Implementation of fixed-point square root

The algorithms we suggest in this section allow to compute the square root of fixed-point
values and to deduce Errp.

Naive fixed-point square root

Given a fixed-point variable v1 and according to the definition of fixed-point numbers
given in Chapter 1, there exist two integers V1 and f1 such that v1 = V1 · 2− f1 . Therefore,
a first approach is to consider the following rewriting:

p
v1 =

{p
V1 ·2− f1/2, if f1 is even,

p
V1/2 ·2−( f1−1)/2, if f1 is odd.

(2.24)

An implementation of this approach would compute
p

v1 using one of the following de-
pending on the parity of f1:

b
√

V1c ·2− f1/2 or b
√

V1/2c ·2−( f1−1)/2 (2.25)

where bp·c is the integer square root operation. This operation may be implemented in
hardware or in software using multiple techniques such as digit-recurrence, and Newton-
Raphson or Goldschmidt iteration [EIM+00],[EL04]. We deduce that the variable that holdsp

v1 has ≈ f1/2 fraction bits, and that

Errp =
[

0,2− f1
2

]
or Errp =

[
0,2− f1−1

2

]
, (2.26)

depending on the parity of f1. Compared to the error bounds of the previous operations,
an error bound of ≈ 2− f1/2 for the square root is not acceptable in practice.

Example 2.2. Consider the computation by the above algorithm of the square root of
the 16-bit unsigned fixed-point value v1 where V1 = 30270 = (01110110 00111110)2 and
f1 = 10. The value of v1 is given by v1 =V1 ·2− f1 = 30270

1024 = (29.560546875)10. The input
v1 as well as its square root are illustrated by Figure 2.12.

i1 f1

0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0
p·

0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1=

i1/2+8 f1/2

Figure 2.12: Square root of a 16-bit fixed-point value by the naive approach.
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By following the approach detailed above, we have bpV1c = 173 and

p
v1 = 173 ·2−5 = 173

32
= (5.40625)10 = (101.01101)2.

However, the exact computation should yield (5.4369611801998365· · ·)10. In this
case 2−6 < Errp < 2−5 which indeed belongs to the enclosure (2.26).

Accurate fixed-point square root

To overcome the accuracy issue of naive fixed-point square root, we use the following
rewriting of v1:

v1 = 2η ·V1 ·2−( f1+η) (2.27)

with the integer η being a parameter of the algorithm chosen at synthesis-time such as
f1 +η is even. Using this scaling factor, it follows that

p
v1 =

√
2η ·V1 ·2

−( f1+η)
2 . (2.28)

The cases η = 0 and η = −1 correspond to the even and odd cases of naive square root,
respectively. An algorithm that exploits (2.28) shifts the integer representation V1 of v1 by η
bits to the left and computes its integer square root. The result of this algorithm is a fixed-
point variable with ( f1+η)/2 bits of fraction part. Hence using this approach, we conclude
that

ir = di1/2e , fr = f1 +η
2

, and
p

v1 =
⌊√

2η ·V1

⌋
·2

−( f1+η)
2 , (2.29)

where
⌊p

2η ·V1
⌋

is computed using an integer square root operation. With such an algo-
rithm, one controls the error Errp induced by computing the square root and given by:

Errp =
[

0,2− ( f1+η)
2

]
. (2.30)

Notice that it would not make sense to choose η< 0, since this would result in an increase
of the error bound Errp.

Listing 2.6 gives a C implementation for a 32-bit square root that follows this approach.
It is based on a digit-recurrence iteration and is suitable only when 0 ≤ η< 32. This is by far
the most frequent case we treated in practice. This square root implementation is a slightly
modified variant of a widely used integer square root algorithm [Jr.02]. The modifications
consist in the shift of the input so as to multiply it by 2η.
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B Listing 2.6: C code for 32 → 32-bit fixed-point square root.

1 uint32_t isqrt32hu(uint32_t V1, uint16_t eta)

2 {

3 uint64_t V1_extended = ((uint64_t)V1) << eta;

4 uint64_t V = 0;

5 int64_t one = 0x4000000000000000; // 2^(62)

6

7 while (one != 0){

8 if (V1_extended >= V + one){

9 V1_extended = V1_extended - (V + one);

10 V = V + (one << 1);

11 }

12 V >>= 1;

13 one >>= 2;

14 }

15 return (uint32_t)V;
16 }

Example 2.3. Consider now the computation by this new algorithm of the square root
of the 16-bit unsigned fixed-point value v1 from Example 2.2 where V1 = 30270 =
(01110110 00111110)2 and f1 = 10. And let us consider η= 16.

This second algorithm computes the integer square root of V1 · 216 which yields

44539 = (10101101 11111011)2 and then sets the new scaling factor to fr = f1 +16

2
= 13.

i1 f1

0 1 1 1 0 1 1 0 0 0 1 1 1 1 1 0
p·

1 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1=

i1/2 ( f1 +16)/2

Figure 2.13: Square root of a 16-bit fixed-point value by the accurate approach.

We therefore have
p

v1 = 44539 ·2−13 = (5.4368896484375)10 = (101.0110111111011)2.

In this case 2−14 < Errp < 2−13 which indeed belongs to the enclosure (2.30). This
tight enclosure demonstrates that this algorithm is more accurate than naive fixed-point
square root.
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A slightly more accurate square root

When no adequate instruction is available on the target machine, integer square root must
be implemented as a software routine such as in Listing 2.6. If one is to afford such a costly
implementation, it may be interesting to rather compute the nearest integer square root
function

⌊p·⌉ which has almost the same efficiency penalty. This function returns the
nearest integer to the square root of its argument.

Now, by computing
⌊p

2η ·V1
⌉

, it is possible to gain 1 bit of precision on Errp which
would be given by the formula:

Errp =
[
−2− ( f1+η)

2 −1,2− ( f1+η)
2 −1

]
. (2.31)

Modifying Listing 2.6 to compute
⌊p·⌉ instead of

⌊p·⌋ is just a matter of adding the snippet
of Listing 2.7 between Lines 14 and 15.

B Listing 2.7: Snippet to add between Lines 14 and 15 of Listing 2.6 to compute
⌊p·⌉ instead of

⌊p·⌋.

if (V1_extended > V)

V++;

Indeed, the shift-and-subtract algorithm of Listing 2.6 runs in 32 steps and yields V such
that V1−V2 =V1_extended. The snippet of Listing 2.7 takes advantage from the observation
that if (V1_extended > V) then we have: which proves that (V+1) is the closest integer to
the square root of V1.

2.6 Division

The division operator is even less studied in fixed-point arithmetic than square root and
many programmers are advised to avoid it since it is costly and inefficient. Yet, for certain
algorithms, one cannot get around division. Examples include computing the inverse of a
matrix or solving linear systems. Indeed, it is with the aim of generating fixed-point code
for matrix inversion that we first formalized division in [MNR14b], gave its error bounds
and a mean to implement it.

In this section, we expose two approaches to division: an approach that doubles the
word-length and an approach with custom word-length output. We show that the latter
involves finding a trade-off between sharp error bounds and the risk of run-time overflows.
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• • • • • • • •
i1 f1

i2 f2

• • • • • • • •/

• • • • • • • • 0 0 0 0 0 0 0 0

i1 f ′1

i2 f2

• • • • • • • •÷

• • • • • • • • • • • • • • • •
ir = i1 + f2 fr = i2 + f1

×2n

Figure 2.14: Output format of fixed-point division with word-length doubling.

2.6.1 Division with word-length doubling and its implementation

As pointed out by Yates [Yat13], the quotient v1/v2 when defined requires a fixed-point vari-
able in the format Qir , fr with

ir = i1 + f2 and fr = f1 + i2 (2.32)

since:

1. The largest possible dividend is −2i1−1 while the smallest divisor is 2− f2 . Thus the
quotient could be as large as −2i1+ f2−1.

2. The smallest dividend is 2− f1 while the largest divisor is −2i2−1. To be accurate, the
fractional part must be at least of size f1 + i2.

Implementation of word-length doubling division

If one considers that both operands of division have the same word-length k, that is

k = i1 + f1 = i2 + f2,

then, the theoretical division presented above doubles the word-length since:

ir + fr = (i1 + f2)+ ( f1 + i2) = (i1 + f1)+ (i2 + f2) = 2 ·k.

Figure 2.14 shows how to implement such a division for k = 8. In this figure, the symbols /
and ÷ stand for fixed-point and integer division, respectively.

Listing 2.8 suggests a 32×32 → 64 implementation for this fixed-point division.
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B Listing 2.8: A C implementation of 32×32 → 62 division.

1 int64_t div32_32_64(int32_t V1, int32_t V2)

2 {

3 int64_t t1 = ((int64_t)V1) << 32;

4 int64_t V = (t1 / V2);

5 return V;

6 }

2.6.2 Division without word-length doubling

Following a reasoning analogous to that for multiplication and shifting, it is costly to dou-
ble the word-length with each division. In this section, we investigate other approaches to
division where the output has the same word-length as the operands. We present two dif-
ferent algorithms and analyze their differences by exhibiting their error bounds. To present
the two methods, let us recall that v1 and v2, the two fixed-point operands of division, can
be written as v1 =V1 ·2− f1 and v2 =V2 ·2− f2 where V1,V2, f1 and f2 are integers.

First approach to non word-length doubling fixed-point division

This first variant of fixed-point division exploits the following rewriting:

v1

v2
= V1 ·2− f1

V2 ·2− f2
= V1

V2
·2−( f1− f2). (2.33)

An algorithm inspired by Equation (2.33) would compute the quotient of the two inte-
gers V1 and V2, and then considers f1− f2 as the implicit scaling factor of the result. Further-
more, the C standard requires integer division to be computed by discarding the fractional
part of the exact division result, even for non-positive results, that is, by rounding the exact
result toward zero [Int10, § 6.5.5]:

When integers are divided, the result of the / operator

is the algebraic quotient with any fractional part discarded

(This is often called "truncation toward zero").

Therefore, if one is to denote by trunc(·) this behavior, the naive C compliant implemen-
tation of the division operator computes:

v1

v2
= trunc

(
V1

V2

)
·2−( f1− f2). (2.34)

and the following property holds:

−1 < V1

V2
− trunc

(
V1

V2

)
< 1. (2.35)
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Then, it is straightforward to deduce Err/ from the property (2.35):

Err/ =
[
−2−( f1− f2),2−( f1− f2)

]
. (2.36)

Example 2.4. Compared to the division with word-length doubling shown in Figure 2.14,
this variant yields only the upper part of the full result as shown in Figure 2.15, on a 8-bit
example.

• • • • • • • •
i1 f1

i2 f2

• • • • • • • •/

• • • • • • • •• • • • • • • •
ir

Discarded bits

Figure 2.15: Example of one output format obtained using this first division approach.

In Figure 2.15, the dividend and the divisor are in the Q4,4 and Q2,6 formats, respectively.
Computing a word-length doubling division leads to a quotient in the Q10,6 format. How-
ever, this first approach returns only the upper half of the result which has the format
Q10,−2. For Err/, we have according to the formula of Equation (2.36):

Err/ =
[
−2−( f1− f2),2−( f1− f2)

]
= [−2−(4−6),2−(4−6)]= [−22,22] .

As expected, this error has the same weight as the LSB of the Q10,−2 result.

An advantage of this approach is that no shifting of the numerator is needed and fixed-
point division corresponds to integer division.

B Listing 2.9: A C implementation for 32×32 → 32 division according to the first approach.

int32_t div32_32_32h(int32_t V1, int32_t V2)

{

return V1/V2;

}
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A general approach to non word-length doubling fixed-point division

If the accuracy bound of the first approach is not satisfactory, one can achieve lower
bounds but has to cope with the risk that overflow may occur at run-time. Example 2.5
illustrates the accuracy versus risk of overflow trade-off on the division of 8-bit variables.

Example 2.5. Suppose the end user to be dissatisfied with the error enclosure

Err/ =
[
−2−( f1− f2),2−( f1− f2)

]
= [−22,22] ,

obtained using the previous approach. He may conceive of a fixed-point division that
returns 8 contiguous bits starting from the LSB or from any other position of the result.
Such scenario is illustrated in Figure 2.16 where the 3 LSB and 5 MSB bits are discarded
and the block of 8 bits in between is returned as the result of division.

• • • • • • • •
i1 f1

i2 f2

• • • • • • • •/

• • •• • • • • • • •• • • • •
ir fr

New sign bit

Discarded bits

Figure 2.16: Example of the output format obtained using the general approach.

In this particular case, the user asked for a result in the Q5,3 format, and since the
full result is a Q10,6 variable, 5 bits of the integer part and 3 bits of the fraction part were
dropped.

Now, it is clear that choosing to drop the 5 MSB bits is a winning bet only if these bits
are redundant sign bits and therefore, carry no information at run-time. Indeed, in Fig-
ure 2.16, if the value of any of the 5 discarded MSB bits happens to differ from that of the
new sign bit, then overflow has occurred, and the returned result is wrong. To implement
this general approach, suppose the user asks for the output format Qir , fr , one can rewrite
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the fixed-point division as follows:

v1

v2
= V1 ·2− f1

V2 ·2− f2
= V1 ·2 fr − f1+ f2

V2
·2− fr . (2.37)

And, an algorithm that exploits this rewriting computes

v1

v2
= trunc

(
V1 ·2η

V2

)
·2− fr

where η= fr − f1 + f2. Then we deduce that the error Err/ is as follows:

Err/ =
[
−2− fr ,2− fr

]
.

Listing 2.10 gives an implementation of this 32× 32 → 32-bit division based on standard
C integer division. If this option is not available or is too costly, this operation, just like
square root, may be implemented in hardware or in software using digit-recurrence, and
Newton-Raphson or Goldschmidt iteration.

B Listing 2.10: C code of 32×32 → 32-bit fixed-point division operation with the general approach.

1 int32_t div32_32_32m(int32_t V1, int32_t V2, uint16_t eta)

2 {

3 int64_t t1 = ((int64_t)V1) << eta;

4 int64_t V = t1 / V2;

5 return (int32_t) V;

6 }

Figure 2.17 shows how this approach computes the result of the division of Example 2.5
where n = 8 and the output format asked for is Q5,3. In this case, the dividend must be left
extended by η= fr − f1 + f2 = 3−4+6 = 5 positions before the division is performed.

Final remarks on implementing the division operator

At first glance, it may seem as if division introduces a weakness in our methodology. In-
deed, since the user must decide on the output fixed-point format of division, the synthesis
flow is no longer fully automated. However, asking for an output format of division must
rather be understood as a feature the synthesis tool provides to its user. Indeed, we could
have fixed rigidly the output format of division, but this may reveal to be either too risky
or too detrimental to accuracy. Allowing the user to set the level of accuracy versus risk of
overflow trade-off is a more flexible approach.

Finally, notice that we could have gone through this discussion when we treated multi-
plication in Section 2.3. However, we chose to always keep the upper half of the full-length
product. We did so based on the following reasoning:
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• • • • • • • •
i1 f1

i2 f2

• • • • • • • •/

f ′1
• • • • • • • • 0 0 0 0 0

i1

i2 f2

• • • • • • • •÷

• • • • • • • •• • • • •
ir fr

×2η

Discarded bits

Figure 2.17: Division using a constant word-length and returning the Q5,3 result for the
input of Example 2.5.

¦ Many processors such as the ST231 provide an instruction that returns the upper half
of a multiplication,

¦ If one is to consider the two operands of multiplication as normally distributed n-bit
random variables, then their product is normally distributed and is likely to require
2n −2 bits.

This reasoning does not hold for division since the ratio of two normally distributed ran-
dom variables is not normally distributed.

2.6.3 Output range and error bounds for division

The variants of division presented above fix the output format of division. In doing so, they
make assumptions on the run-time values taken by the divisor v2. Suppose for now that
these assumptions are such that v2 ∈ àVal(v2) where àVal(v2) ⊂ Val(v2) and 0 ∉ àVal(v2). For
now, we will use àVal(v2) in our formulas to compute Err(v) and show later how to compute
its value.

Since, 0 ∉ àVal(v2), the following interval divisions are not degenerate and we have the
following for Err(v):

Err(v) = Math(v1)

Math(v2)
− Val(v1)àVal(v2)

+Err/, (2.38)

where Err/ is the error entailed by the division itself and which depends on the approach
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used for implementing it. By further developing Equation (2.38), we have:

Err(v) = Val(v1)+Err(v1)àVal(v2)+Err(v2)
− Val(v1)àVal(v2)

+Err/

=
àVal(v2) ·Val(v1)+ àVal(v2) ·Err(v1)−Val(v1) · àVal(v2)−Val(v1) ·Err(v2)àVal(v2) ·

( àVal(v2)+Err(v2)
) +Err/

=
àVal(v2) ·Err(v1)−Val(v1) ·Err(v2)àVal(v2) ·

( àVal(v2)+Err(v2)
) +Err/. (2.39)

2.6.4 How to compute the value of àVal(v2)?

Since the output format of division is fixed to the format Qir , fr , its value is supposed to be
in the range [−2ir −1,2ir −1 −2 fr ]. Therefore, we have that

Val(v) =Range(Qir , fr ) = [−2ir −1,2ir −1 −2 fr ]. (2.40)

Since Val(v),Val(v1), and àVal(v2) are related by the formula:

Val(v) = Val(v1)àVal(v2)
−Err/, (2.41)

it is possible to deduce àVal(v2) by computing:

àVal(v2) = Val(v1)�Val(v)+Err/

, (2.42)

where �Val(v) corresponds to Val(v) \ {0}, that is

�Val(v) = [−2ir −1,−2− fr ]∪ [2− fr ,2ir −1 −2 fr ]. (2.43)

Furthermore, to make sure that àVal(v2) ⊆ Val(v2), the CGPE tool computes àVal(v2) as fol-
lows: àVal(v2) = Val(v1)�Val(v)+Err/

∩Val(v2).

2.7 Conclusion

In this chapter, we introduced a technique based on interval arithmetic to compute
bounds on the range and rounding errors of every variable in a fixed-point design. This
technique propagates the intervals Val(v) and Err(v) through the tree-like representation
of an arithmetic expression. For this framework to be useful, propagation rules must be



2.7. CONCLUSION 73

derived for each arithmetic operator used in the design. Therefore, we made explicit these
rules for each operator ¦ ∈ {+,−,×,¿,À,p,/

}
and suggested a standard C implementation

for each. Once implemented in a fixed-point synthesis tool, this framework provides range
analysis and allows to generate certified code, i.e., code whose rounding errors are guaran-
teed to belong to a predetermined interval. Indeed, the next chapter discusses the CGPE
tool, which is a particular implementation of this framework.
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THE CGPE SOFTWARE TOOL

The previous chapter introduced the arithmetic model we shall rely on for
the rest of this work. In the first part of this chapter, its implementation in
the CGPE software tool is described. This tool is dedicated to fixed-point
synthesis for basic arithmetic expressions such as sums, dot-products, and
polynomial evaluations. The second part of the chapter describes how the
tool was enhanced by adding an instruction selection step. Finally, the last
section walks through the steps involved in generating certified code for an
infinite impulse response filter.

3.1 Introduction

A
S stated in the introduction to this work, the main obstacle towards the widespread

use of fixed-point arithmetic is the absence of code generation tools. Indeed, many
researchers such as Irturk [IMK09] and Fang [FRC03] provide feedback and results

obtained using their own tool-chains, but the source code is seldom available. To remedy
to this situation, we committed ourselves to enhancing the CGPE software tool, which gen-
erates fixed-point code for a variety of arithmetic expressions. Before our enhancements,
CGPE handled only unsigned code generation for polynomial evaluation, and counted on
the user to provide correctly aligned coefficients. It was since extended to support more
expressions, to handle signed arithmetic, and to use alignment shifts when necessary.

75
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Besides being an open source project, the originality of the current CGPE tool is that it
is built to strictly enforce an arithmetic model. Indeed, it keeps track of expressions using
a tree-like intermediate representation and uses the rules of Chapter 2 to propagate the
enclosures Val(v) and Err(v). The interval Val(v) allows to deduce the fixed-point format
of each intermediate node while Err(v) gives a bound on the rounding errors of the fixed-
point implementation.

This chapter presents this tool and is organized into three sections as follows: Sec-
tion 3.2 describes the tool, its input and output, and its architecture. Section 3.3 presents a
recent enhancement to the tool: a module based on instruction selection to optimize the
synthesized code. Finally, Section 3.4 describes the process of automated code synthesis
for the Infinite Impulse Response (IIR) filter introduced in Example 1.9 of Chapter 1.

3.2 The CGPE software tool

3.2.1 Background and early objectives of CGPE

CGPE1 is an acronym for Code Generation for Polynomial Evaluation. It is a C++ tool that
was developed in 2009 by Guillaume REVY who described its internals in his thesis [Rev09].
Revy’s goal was to enhance the FLIP (Floating-point Library for Integer Processors) li-
brary [BBDdD+04] which provided IEEE-754 floating-point support to integer processors
such as the ST00 family of VLIW processors. To adhere to the IEEE standard, FLIP had to
provide correct rounding for the floating-point operators including addition, subtraction,
multiplication, division, and square root as well as support for elementary functions. In
the 0.3 version of FLIP (described in [Rai06]), support for division and square root relied
on a unique iteration of Goldschmidt’s algorithm to refine an approximation obtained by
evaluating a small degree2 polynomial.

REVY noticed that the ST231 was well suited for polynomial evaluation and that one
can reduce the latency of division and square root by exploiting the instruction-level par-
allelism offered by custom evaluation schemes instead of Horner’s rule. For instance, con-
sider the following example which arises when implementing floating-point square root.

Example 3.1. To emulate floating-point square root, one must evaluate the following
bivariate polynomial where the coefficients ai , for 0 ≤ i ≤ 9, as well as the variables s and
t are represented in fixed-point:

P (s, t ) = 2−25 + s · (a0 +a1t +a2t 2 +a3t 3 +a4t 4 +a5t 5 +a6t 6 +a7t 7 +a8t 8). (3.1)

The Horner form of this polynomial is given by Equation (3.2), and its implementation
requires 36 clock cycles on the ST231 where addition and multiplication cost 1 and 3

1See http://cgpe.gforge.inria.fr and [MR11], [Rev09].
2The degree is 5 for division and 3 for square root. (See [Rai06] for a description of the algorithms)

http://cgpe.gforge.inria.fr
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cycles, respectively.

P (s, t ) = 2−25 + s ·
(

a0 + t

(
a1 + t

(
a2 + t

(
a3 + t

(
a4 + t

(
a5 + t (a6 + t (a7 + t a8))

))))))
. (3.2)

However, Revy was able to improve this latency by evaluating the same polynomial
using the scheme of Equation (3.3).

P (s, t ) =
[(

2−25 + (s · (a0 + t ·a1))
)+ ((

s · t 2
) · ((a2 + t ·a3)+ t 2 ·a4

))]+[((
t · t 2

) · (s · t 2
)) · ((a6 + t ·a7)+ (

t 2 · (a8 + t ·a9)
))]

.
(3.3)

This scheme reduced the evaluation latency to only 13 cycles.

This example stresses the importance of a tool that finds evaluation schemes which
reduce the latency of evaluation while still satisfying some accuracy constraints. Indeed,
the evaluation scheme (3.3) was found automatically by CGPE and was later proved to be
optimal in terms of latency on the ST231 [Rev09].

3.2.2 The architecture of CGPE

The input of CGPE

In its early versions, CGPE’s input consisted in a description of the input polynomial that
included its degree, its coefficients, the range of the variables, and whether its a univari-
ate or a bivariate polynomial. In its recent versions, support was added for sums, dot-
products, and fully parenthesized expressions. Regardless of the problem to solve, the
details are described in an external XML file, that contains an interval of values and a fixed-
point format for each coefficient or variable, as well as a maximum error bound allowed for
the generated code. Each input may also be accompanied by an associated error bound.

Listing 3.1 shows the input XML file of a degree-5 polynomial approximant of the func-
tion 1/(1+ x) over [0,1]. Since the polynomial is univariate,3 the listing contains the hex-
adecimal value and the format of each of the 6 coefficients, as well as the range and format
of the variable. Line 9 of the listing contains the maximum magnitude tolerated for round-
ing errors. Its value is

3213b −26 = 3213 ·2−26 < 2−14.

Besides the description of the problem to synthesize code for, CGPE takes as input a set
of criteria and architectural constraints. These include the latency of each basic operator

3The XML attributes x and y uniquely identify each coefficient. For instance, x = "4" and y = "1" corre-
spond to the coefficient of the monomial x4 y . The polynomial is univariate if all the coefficients and variables
have the attribute y = "0".
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B Listing 3.1: A CGPE input XML file for a degree-5 polynomial evaluation.

1 <polynomial>

2 <coefficient x="0" y="0" inf="0x7ffec8d0" sup="0x7ffec8d0" sign="0"

integer_part="2" fraction_part="30"/>

3 <coefficient x="1" y="0" inf="0x7f9bef55" sup="0x7f9bef55" sign="1"

integer_part="2" fraction_part="30"/>

4 <coefficient x="2" y="0" inf="0x7ab5c54b" sup="0x7ab5c54b" sign="0"

integer_part="2" fraction_part="30"/>

5 <coefficient x="3" y="0" inf="0x647d671d" sup="0x647d671d" sign="1"

integer_part="2" fraction_part="30"/>

6 <coefficient x="4" y="0" inf="0x379913e9" sup="0x379913e9" sign="0"

integer_part="2" fraction_part="30"/>

7 <coefficient x="5" y="0" inf="0x0e358cb5" sup="0x0e358cb5" sign="1"

integer_part="2" fraction_part="30"/>

8 <variable x="1" y="0" inf="0x00000000" sup="0xffe00000" sign="0"

integer_part="0" fraction_part="32"/>

9 <error value="3213b-26" strict="true" type="absolute"/>

10 </polynomial>

and a bound on the overall latency. And, since it was initially intended for use with VLIW
processors, additional parameters are provided to set the available level of parallelism, that
is, the number of issues on the target and the number of multipliers.

The output of CGPE

At the end of the synthesis process, CGPE produces a set of C codes evaluating the input
problem on the given target. For each synthesized code, the tool ensures that the generated
code satisfies the latency criterion and that the magnitude of the rounding error is inferior
to the maximum error bound provided. To make the latter condition checkable, a GAPPA4

certificate file is generated for each code. The GAPPA tool uses a combination of interval
arithmetic and rewriting rules to prove that the evaluation error entailed in the C code is
indeed below the given threshold. Listing 3.2 shows one of the automatically produced C

codes for the evaluation of the degree-5 polynomial approximant of the function 1/(1+ x)
over [0,1] whose XML input file was given by Listing 3.1. The rounding errors of the code of
Listing 3.2 belong to the following interval:

Err(r11) = [−2−28.3536,2−28.4164] ,

4See http://gappa.gforge.inria.fr and [Mel06].

http://gappa.gforge.inria.fr
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B Listing 3.2: Example of code automatically generated using CGPE.

1 // a0 = +0x7ffec8d0p -30 a1 = -0x7f9bef55p -30

2 // a2 = +0x7ab5c54bp -30 a3 = -0x647d671dp -30

3 // a4 = +0x379913e9p -30 a5 = -0x0e358cb5p -30

4 u i n t 3 2 _ t func_d5( u i n t 3 2 _ t x /* Q0.32 */) { // Formats

5 u i n t 3 2 _ t r0 = mul(x, 0x7f9bef55); // Q2.30

6 u i n t 3 2 _ t r1 = 0x7ffec8d0 - r0; // Q2.30

7 u i n t 3 2 _ t r2 = mul(x, x); // Q0.32

8 u i n t 3 2 _ t r3 = mul(x, 0x647d671d); // Q2.30

9 u i n t 3 2 _ t r4 = 0x7ab5c54b - r3; // Q2.30

10 u i n t 3 2 _ t r5 = mul(r2, r4); // Q2.30

11 u i n t 3 2 _ t r6 = r1 + r5; // Q2.30

12 u i n t 3 2 _ t r7 = mul(r2, r2); // Q0.32

13 u i n t 3 2 _ t r8 = mul(x, 0x0e358cb5); // Q2.30

14 u i n t 3 2 _ t r9 = 0x379913e9 - r8; // Q2.30

15 u i n t 3 2 _ t r10 = mul(r7, r9); // Q2.30

16 u i n t 3 2 _ t r11 = r6 + r10; // Q2.30

17 r e t u r n r11;

18 }

which is inferior in magnitude to the error bound requested by the user. This property
can indeed be checked by running GAPPA on the certificate generated by CGPE and shown
in Listing 3.3. Lines 12 to 23 of this certificate are just a transposition of the C code of
Listing 3.2 to the syntax of GAPPA. In this syntax, the r0 to r11 variables are the results
of finite word-length computations, and their error free counterparts are the Mr0 to Mr11

variables. The clauses between lines 32 and 46 are to be checked by the GAPPA tool. Among
these, the clause of Line 45 is the most crucial since it checks that

|r11−Mr11|−CertifiedBound<= 0,

that is, that the magnitude of the rounding errors on the final result is less than the required
error bound.

B Listing 3.3: GAPPA certificate produced by CGPE for the code of Listing 3.2.

1 a0 = fixed <-26,dn >(0 x07ffec8dp -26);

2 a1 = fixed <-30,dn >(0 x7f9bef55p -30);

3 a2 = fixed <-30,dn >(0 x7ab5c54bp -30);

4 a3 = fixed <-30,dn >(0 x647d671dp -30);

5 a4 = fixed <-30,dn >(0 x379913e9p -30);

6 a5 = fixed <-30,dn >(0 x0e358cb5p -30);
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7 T = fixed <-32,dn >(var0);

8

9 CertifiedBound = 3213b-26 - 1b-300;

10

11 ## Evaluation scheme

12 r0 fixed <-30,dn >= T * a1; Mr0 = MT * a1; ##Q2.30

13 r1 fixed <-30,dn >= a0 - r0; Mr1 = a0 - Mr0; ##Q2.30

14 r2 fixed <-32,dn >= T * T; Mr2 = MT * MT; ##Q0.32

15 r3 fixed <-30,dn >= T * a3; Mr3 = MT * a3; ##Q2.30

16 r4 fixed <-30,dn >= a2 - r3; Mr4 = a2 - Mr3; ##Q2.30

17 r5 fixed <-30,dn >= r2 * r4; Mr5 = Mr2 * Mr4; ##Q2.30

18 r6 fixed <-30,dn >= r1 + r5; Mr6 = Mr1 + Mr5; ##Q2.30

19 r7 fixed <-32,dn >= r2 * r2; Mr7 = Mr2 * Mr2; ##Q0.32

20 r8 fixed <-30,dn >= T * a5; Mr8 = MT * a5; ##Q2.30

21 r9 fixed <-30,dn >= a4 - r8; Mr9 = a4 - Mr8; ##Q2.30

22 r10 fixed <-30,dn >= r7 * r9; Mr10 = Mr7 * Mr9; ##Q2.30

23 r11 fixed <-30,dn >= r6 + r10; Mr11 = Mr6 + Mr10; ##Q2.30

24

25 ## Results

26 {

27 (

28 var0 in [0 x00000000p -32,0 xffe00000p -32]

29 /\ T - MT in [0,0]

30 ## Constraints

31 ->

32 r0 in [0 ,267485051b-27]

33 /\ r0 - Mr0 in [ -4294967295b-62,0]

34 /\ r1 in [940447b -27 ,134212749b-26]

35 /\ r1 - Mr1 in [0 ,4294967295b-62]

36 /\ r2 in [0 ,4190209b-22]

37 /\ r2 - Mr2 in [ -4294967295b-64,0]

38 /\ r3 in [0 ,1685116785b-30]

39 /\ r3 - Mr3 in [ -4294967295b-62,0]

40 /\ r4 in [186808045b -29 ,2058732875b-30]

41 /\ r4 - Mr4 in [0 ,4294967295b-62]

42 /\ r5 in [0 ,2056722885b-30]

43 ...

44 /\ r11 in [940447b -27 ,5135085355b-30]

45 /\ |r11 - Mr11| - CertifiedBound <= 0

46 /\ CertifiedBound in ?

47 )

48 }
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The work-flow of CGPE

CGPE has a compiler-like architecture with three stages as illustrated by Figure 3.1.
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macro="static inline ..."
nodes="add dag  1 ..."

output="32"
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polynomial.xml

architecture.xml
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Filter n

Accuracy certificates

Filter 1

DAG computation

C files

Figure 3.1: Data-flow path and the three stages of CGPE.

First, CGPE starts by a computation step that plays the role of a compiler’s front-end.
This step computes a set of DAGs (Directed Acyclic Graphs), each DAG being the interme-
diate representation of a given scheme.

Example 3.2. Given the problem of summing 4 variables v0, v1, v2 and v3, a possible
output of CGPE’s front-end is the collection of 3 DAGs shown in Figure 3.2. These DAGs
represent 3 different evaluation schemes that correspond to the following fully paren-
thesized expressions:
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1.
(
v0 +

(
v1 + (v2 + v3)

))
,

2.
(
(v0 + v1)+ (v2 + v3)

)
,

3.
((

(v0 + v1)+ v2
)+ v3

)
.

+

v0 +

v1 +

v2 v3

(a) DAG of
(
v0+

(
v1+(v2+v3)

))
.

+

+

v0 v1

+

v2 v3

(b) DAG of
(
(v0+v1)+(v2+v3)

)
.

+

+

+

v0 v1

v2

v3

(c) DAG of
((

(v0+v1)+v2
)+v3

)
.

Figure 3.2: A sample of CGPE’s front-end output for the sum of 4 variables.

Indeed, “scheme” is the terminology used to denote the fully parenthesized expressions for
which a corresponding DAG is produced by the front-end.5

The time and memory critical task in this case is the generation of fast schemes in the
front-end. For instance,

∏n−2
i=1 (2i + 1) different ways can be used to carry out the sum of

n variables. This number sequence6 grows exponentially: while there exists 945 different
schemes to implement a size-6 sum or dot-product, this number exceeds 34·106 for size-10
sums.

Example 3.3. Figure 3.3 shows the DAG representing the evaluation code of Listing 3.2.
It corresponds to the fully parenthesized expression:

P (x) = (((a0 − (x ·a1))+ ((x · x) · (a2 − (x ·a3))))+ (((x · x) · (x ·x)) · (a4 − (x ·a5)))) .

The figure explains the choice of using Directed Acyclic Graphs instead of trees. Indeed,
in polynomial expressions, expressions may be factored and therefore be common to
two sub-expressions. Using DAGs ensures that a unique code will be generated for these
sub-expressions. For instance, in Figure 3.3, the intermediate variable r2 = x2 is used by
both r5 and r7.

5Revy [Rev09] and Mouilleron [Mou11] use the word “parenthesization” instead of “scheme”.
6See http://oeis.org/A001147.

http://oeis.org/A001147
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Figure 3.3: DAG representing the evaluation code in Listing 3.2.

In CGPE, the combinatorial explosion of evaluation schemes is tackled using different
strategies and heuristics described in depth by Revy [Rev09, §6] and Mouilleron [Mou11,
§8.1.2]. One such heuristic is to assume unbounded parallelism, to consider only the la-
tency of each basic operator (adder, multiplier, ...), and to keep only the schemes that re-
duce the evaluation latency.

Second, CGPE goes to a filtering step that can be seen as a compiler’s middle-end. At
this step, each DAG undergoes a series of filters, each filter being dedicated to a criterion
and deciding whether to keep the scheme or to prune it. DAGs that pass all the filters reach
CGPE’s back-end, which takes care of producing the code and the associated accuracy cer-
tificate.

3.3 Target-dependent synthesis with CGPE

Enhancing CGPE with instruction selection was motivated by the large number of patterns
(a×b)+c appearing in polynomial evaluation as well as shift operations induced by the use
of fixed-point arithmetic. Indeed many modern architectures are shipped with advanced
instructions, allowing to fuse at least two classical operations in a single one. The fused

multiply-add (FMA), computing (a × b) + c in one instruction and with only one final
rounding is an example of such advanced instructions. Moreover, its support by floating-
point processors is now required by the IEEE 754-2008 standard [75408]. As for integer
arithmetic, an example of advanced instruction is the mulacc, available on certain archi-
tectures including the ARM processors [ARM09], and that computes (a ×b)+ c in a single
instruction. Also, CGPE’s initial target, the ST231 [ST208], is shipped with a shift-and-

add instruction that performs a left shift of 1 up to 4 positions followed by an addition, that
is, the pattern (a ¿ b)+ c with b ∈ {1, · · · ,4}.

To add support for advanced instructions in CGPE’s code synthesis process, two strate-
gies are conceivable:
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1. adding support for these operations in the DAG computation algorithms in the front-
end, or

2. adding an instruction selection module to the middle-end, that takes into account
these instructions.

The current computation algorithms of the front-end are designed to build DAGs us-
ing only addition/subtraction, multiplication, and more recently square root and division.
These algorithms are already complex, problem dependant, and lack scalability.

Indeed, handling new binary operations or operations with higher arity is tedious and
imposes changes to all the DAG computation algorithms. For this reason, and since CGPE’s
middle-end had already a modular design, we preferred to implement target dependant
code optimization in a middle-end instruction selection filter.

Instruction selection is a well-known process in compilation theory [ASU86, §8.9].
Given a set of instructions and an intermediate representation of an expression, possibly
a DAG, an instruction selection algorithm, also called a tiling algorithm, produces a collec-
tion of instructions necessary to evaluate this expression. To optimize the generated code
with respect to some criterion, a cost may be associated to each considered instruction,
allowing thus to define a cost function used to evaluate the cost of a DAG. And a good se-
lection is one that minimizes this cost function. In the case of DAGs, this problem was
proven to be NP-complete [KG08], even for simple machines, but algorithms that perform
well in practice have been designed to tackle this problem. Indeed, the technique pre-
sented in this section is inspired by the NOLTIS algorithm [KG08] and more generally by
bottom-up rewrite systems that deal with instruction selection on DAGs.

3.3.1 Architecture description

For the sake of modularity, we chose a structure where the core of CGPE is not aware of the
instructions available for use. Indeed, these instructions are described in an external XML
architecture file. An entry in this file corresponds to a hardware instruction or to a basic
block of instructions if one is to target FPGAs or to test the utility of exotic instructions.
Listing 3.4 gives an example of the entry for 32×32→32-bit unsigned addition.

Precisely, for each instruction, this file contains the following information: its name,
its type, that is, signed or unsigned, the size of its inputs and output, and its latency in
cycles. If the entry matches an instruction available in hardware, this is its latency on the
target. Otherwise, if the entry represents a basic block, its latency is usually determined
using unbounded parallelism, that is, without any resource constraint.

In addition to these parameters, the description contains a C macro to emulate the
instruction if it is not available on the target, and a piece of GAPPA script.

The latter is useful for the generation of accuracy certificates and uses the semantics of
GAPPA.
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B Listing 3.4: The entry of 32-bit unsigned addition in the architecture file.

1 <instruction

2 name="add" type="unsigned" inputs="32 32" output="32"

3 nodes="add dag 1 dag 2" latency="1"

4 macro="static uint32_t __name__(uint32_t a, uint32_t b){

5 return (a + b);

6 }"

7 gappa="_r_ fixed<_Fr_,dn>= _1_ + _2_;

8 _Mr_ = _M1_ + _M2_;"

9 />

In Listing 3.4, Line 7 returns the value _r_ computed in fixed-point arithmetic in the
program. In this example, it corresponds to the computed value _1_ + _2_ (addition be-
tween the first and second operands of the instruction) rounded downward (dn) with _Fr_

fractional bits. Line 8 returns the mathematical value _Mr_ = _M1_ + _M2_, computed as
if all the previous computations had been done exactly. Once these two values are com-
puted, GAPPA deduces an enclosure of the rounding errors by simply subtracting _Mr_

from _r_. Finally the attribute nodes gives the description of the pattern matched by the
instruction in terms of atomic operations. The entry of Listing 3.4 is solely composed of
an addition, whose children are both any DAGs, and corresponding to the first and second
parameters of the instruction, respectively. The node description can be used to match any
DAG of height at most 4 (a self imposed limit to ease instruction selection). It is determined
by traversing this DAG in left-to-right breadth first order. For instance, the nodes attribute
of the ST231 shift-and-add instruction is shown in Listing 3.5.

B Listing 3.5: Nodes description of ST231’s shift-and-add instruction.

nodes="add shift dag 2 dag 1 value [-4,-1]"

Here “value [-4, -1]” corresponds to the right child of the shift operator, and indi-
cates that it is a numerical value in [−4,−1]. Since we follow the convention that a negative
value implies a left shift, this nodes attribute describes a left shift of 1 to 4 positions fol-
lowed by an addition.

The node description of Listing 3.4’s addition and Listing 3.5’s shift-and-add are both
illustrated graphically in Figure 3.4.
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Figure 3.4: Node representation of the addition and the shift-and-add operators.

3.3.2 Instruction selection as a CGPE filter

Instruction selection is implemented as a middle-end filter and produces a tiling of the
DAG that minimizes a cost function. By varying this cost function, the synthesized code
can be optimized for different criteria.

The tiling algorithm used is an adaptation of the NOLTIS algorithm (Near-Optimal Lin-
ear Time Instruction Selection) introduced by Koes and Goldstein [KG08]. This algorithm
is particularly well-suited for DAGs and proceeds in three major steps:

1. Step 1 traverses the DAG and assigns to each node the instruction that minimizes the
cost function.

2. Step 2 handles the case of nodes that are covered by more than a tile: either it leaves
the tiles as they are, or cuts the sub-DAG rooted at this shared node and marks it as
resolved for the rest of the algorithm.

3. Step 3 consists in another round of instruction selection. It differs from Step 1 in the
following: it does not try to tile sub-DAGs marked as resolved by step 2.

First, let us remark that the second step of NOLTIS may lead to an increase in the number of
operators in the synthesized codes. Second, as shown for instance in [Mou11, § 7.1.1], min-
imizing the evaluation latency on unbounded parallelism relies on minimizing the maxi-
mum of this latency on all operands. Thus no improvement can be expected by running
Step 2. Finally this step might be used only for marking shared nodes, that is, nodes com-
puting powers of x. Assuming that an operation fusing several multiplications is at least
as accurate as the combination of the single multiplication instructions, for accuracy pur-
poses, this step seems to be useless. For all these reasons, the main expected benefits come
from the first step of NOLTIS, even if the second part is necessary to correctly synthesize
codes on architectures providing instructions like (a×b)×c. Hence we present an adapta-
tion of NOLTIS based on its first step only. This is mainly what is done to tile trees, which
is easier than tiling DAGs since there is no shared node handling.

Formally, let G be a node of the DAG and T be the set of tiles that match this node and
that can be used to evaluate it. For a given tile t ∈T , children

(
t
)

denotes the set of nodes of



3.3. TARGET-DEPENDENT SYNTHESIS WITH CGPE 87

the DAG that are children of t . The sequel of this section presents the three cost functions
we have implemented.

Minimize the number of instructions. The original NOLTIS algorithm uses a cost func-
tion that minimizes the latency on a sequential machine. This can be easily adapted to op-
timize the number of instructions in the output code. Hence the minimal operator count
C (G ) is:

C (G ) = min
t∈T

(
Ct (G )

)
with Ct (G ) = 1+ ∑

n ∈children
(

t
)C (n).

Reduce latency on unbounded parallelism. Our second adaptation of NOLTIS aims at
optimizing the evaluation latency on unbounded parallelism. Reducing the evaluation
latency of G relies on the reduction of the maximum latency of its children. Hence the
minimal evaluation latency L (G ) is as follows:

L (G ) = min
t∈T

(
Lt (G )

)
with Lt (G ) = latency(t ) + max

n ∈children
(

t
)L (n).

Increase accuracy. Our third adaptation aims at reducing the evaluation error. Hence to
decide which tile t leads to the tightest evaluation error, we generate the GAPPA script for
the sub-DAG rooted at G , and for each tile t ∈ T , we compute the evaluation error Et (G )
and keep the best one.

3.3.3 Experimental results

In order to show the impact of enhancing CGPE with instruction selection, this section
presents data obtained from 3 experiments. Each experiment shows the impact of one of
the cost functions presented in the previous section.

Impact on the number of operations

In this first experiment, we consider a set of polynomials of degrees 5 up to 12 that approxi-
mate the functions cos(x) and sin(x) over [−1,1], and log2(1+x) over [−0.5,0.5]. These poly-
nomials were computed using the fpminimax function [BC07] of the software tool Sollya.7

For each polynomial, 50 programs were synthesized, with each being optimized for the use
of a particular instruction among the following:

7See http://sollya.gforge.inria.fr and [Lau08].

http://sollya.gforge.inria.fr
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Figure 3.5: Average number of instructions in the synthesized codes, for the evaluation of
polynomials of degree 5 up to 12 for various elementary functions.

• an add-add that computes (a + b) + c,

• a mulacc that computes (a * b) + c,

• a shift-and-add left that computes (a ¿ b) + c with b ∈ [1,4],

• a shift-and-add right that computes (a À b) + c with b ∈ [1,4].

For each function and each advanced instruction above, Figure 3.5 shows the average
number of operations in the output code. It also shows the number of operations when no
advanced instructions are used as well as when all of them are available for use.

From these results, we can observe that thanks to our technique, we reduce the number
of instructions in the generated codes of 13.9% up to 22.3% depending on the function
when all the advanced instructions are considered, and of 8.3% up to 11.7% otherwise. For
example, the evaluation of the sin(x) function illustrates the interest of the shift-and-

add operator available on the ST200 family cores, since, in this case, it is the most valuable
operator and leads to a gain of 10.8%.

Also, remark that our implementation of instruction selection allows us to test for
unimplemented instructions and to eventually give feedback on the ones that would be
valuable to have in hardware. For instance, Figure 3.5 shows that an operator similar to
the ST231’s shift-and-add, but with a right shift instead of a left shift, would be of great
use for evaluating polynomials in signed fixed-point arithmetic. Indeed, in the examples
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of cos(x) and log2(1+ x) of Figure 3.5, this is the most relevant instruction since it leads to
a reduction of the operation count of 8.4% and 11.4%, respectively.

Impact on the accuracy for some functions

This second experiment illustrates the impact of the accuracy based selection on various
functions. For this purpose, we consider a set of mathematical functions, and we approxi-
mate each function f (x) by a degree-d polynomial over an interval I using the fpminimax
function. For this experiment we fix the fixed-point format of odd and even coefficients to
Q1,31 and Q3,29, respectively. Then for each polynomial, we generate two fixed-point codes:
one is optimized for accuracy, and the other not. This generation process took no more
than a few seconds. In order to observe the impact of the accuracy based selection, we
also define a basic block called fx_fma behaving in fixed-point arithmetic like the floating-
point FMA, and computing:

(a ×b)+ (c À n) with n ∈ {1, · · · ,31}

with only one final truncation. Table 3.1 summarizes the results, where the accuracy of the
generated code is shown as log2(|ε|) with ε being the certified error bound computed using
GAPPA.

f (x) I d Accuracy

not optimized optimized

exp(x)−1 [−0.25,0.25] 7 −26.98 −27.34

exp(x) [0,1] 7 −13.94 −14.90

sin(x) [−0.5,0.5] 9 −18.95 −19.91

cos(x) [−0.5,0.25] 5 −27.01 −27.26

tan(x) [0.25,0.5] 9 −18.81 −19.64

log2(1+x)/x [2−23,1] 7 −13.94 −14.89p
1+x [2−23,1] 7 −13.94 −14.90

Table 3.1: Impact of the accuracy based selection step on the certified accuracy of the gen-
erated code for various functions.

We can observe that our technique allows to automatically improve the certified accu-
racy of the generated code by approximately 1 bit for most functions. For example, with-
out optimization, CGPE produces a code with a certified error bound of ≈ 2−18.95 for the
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degree-9 polynomial approximating sin(x). This bound is reduced to 2−19.91 when the ac-
curacy based selection is used, that is, this technique divides the error bound by approxi-
mately 2.

Our multi-criteria instruction selection is a synthesis-time process, and it consists in
using a specific instruction only when it improves the cost function, here the accuracy.
And supporting a new instruction like the fx_fma requires nothing more than adding its
description to the architecture XML file. This is much faster and less error prone than
designing a new DAG computation algorithm.

Impact on the evaluation latency for cos(x)

In this third experiment, we show the impact of latency based selection. Note that the
function itself does not influence the latency of the generated code, but only the degree of
its approximant polynomial. Hence, let us consider a degree-7 polynomial approximating
the function cos(x) over [0,2] without any constraint on the fixed-point format of its co-
efficients. Here we assume 1-cycle addition, subtraction, and shift-and-add operator (as
specified in the ST231), and 3-cycle multiplication and mulacc operation. We have syn-

Without tiling With tiling Speed-up

Horner’s rule 41 34 ≈ 17.1%

Estrin’s rule 16 14 ≈ 12.5%

Best scheme generated by CGPE 15 13 ≈ 13.3%

Table 3.2: Latency in # cycles on unbounded parallelism, for various schemes, with and
without tiling.

thesized codes to evaluate cos(x) using Horner’s and Estrin’s rules, two classical evaluation
schemes, as well as code generated automatically by CGPE. Table 3.2 gives the latency on
unbounded parallelism of these codes, before and after tiling. We observe that the code af-
ter tiling has a lower latency than before tiling, and that the speed-up may be up to ≈ 17%
for Horner’s rule.

Obviously, we can remark that it is of great interest to provide hardware support for
instructions fusing several operations, and having a lower latency than the sum of the la-
tencies of all fused operations.

3.4 Case study: code synthesis for an IIR filter

The original CGPE tool was limited to polynomial evaluation in unsigned arithmetic. After
extensive enhancements, it is now a library that can handle different types of input expres-
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sions in signed and unsigned arithmetics. Indeed, in this section, we show how to use it to
obtain a certified fixed-point implementation for an IIR filter. The low-pass filter we shall
implement was first introduced in Example 1.9 of Chapter 1 and has a cutoff frequency
of 0.3 ·π. It is a fixed-point approximation of a 3rd order Butterworth filter whose transfer
function H is given by:

H(z) = b0 +b1z−1 +b2z−2 +b3z−3

1+a1z−1 +a2z−2 +a3z−3
, (3.4)

where the coefficients bi and a j are described in Table 3.3.

Int. Repr. Format Decimal value

b0 1701940795 Q−3,35 0.04953299634507857263088226318359375

b1 1276455597 Q−1,33 0.148598989122547209262847900390625

b2 1276455597 Q−1,33 0.148598989122547209262847900390625

b3 1701940795 Q−3,35 0.04953299634507857263088226318359375

a1 −1247599398 Q2,30 −1.16191748343408107757568359375

a2 1494525688 Q1,31 0.6959427557885646820068359375

a3 −1183360567 Q−1,33 −0.137761301244609057903289794921875

Table 3.3: The coefficients and fixed-point formats of the Butterworth filter 3.4.

A block diagram of this filter is shown in Figure 3.6 and we shall realize it using Equa-
tion (3.5) that relates its output y[k] at time step k to its input u[k] and its state.

y[k] =
3∑

i=0
bi ·u[k − i ]−

3∑
i=1

ai · y[k − i ], (3.5)

u[k] H y[k]

Figure 3.6: Transfer function of the Butterworth filter 3.4.

Next, we shall consider that the input u[k] belongs to the enclosure [−15.5,15.5]
and assign it to a Q5,27 variable. Finally, we showed in Example 1.9 of Chap-
ter 1 that a range analysis based on the `1-norm of the filter yields the enclosure
[−19.52237503163826936,19.52237503163826936] as a bound for the output of the fil-
ter. Therefore, we assign the Q6,26 format to the variable y[k].
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Table 3.4 summarizes the fixed-point and decimal enclosures on the values of u[k] and
y[k].

Enclosure of the Int. Repr. Format Enclosure in decimal

u[k] [−2080374784,2080374784] Q5,27 U = [−15.5,15.5]

y[k] [−1310124411,1310124411] Q6,26

Y = [−v, v] where

v = 19.52237503230571746826171875

Table 3.4: The enclosures and formats of the input and output of the filter 3.4.

3.4.1 Code generation for the IIR filter

Listing 3.6 shows the XML input file for this filter. In Line 1 of this listing, the type of ex-
pression is set to dot-product. Indeed, computing y[k] requires a dot-product between the
vector of coefficients and the vector of variables shown in Equation (3.6).

y[k] =
[

b0 b1 b2 b3−a1−a2−a3

]
·
[

u[k]u[k−1]u[k−2]u[k−3] y[k−1] y[k−2] y[k−3]
]T

(3.6)

The number of different evaluation schemes for a size-7 dot-product is 10395 and one
can afford to test all of them. Indeed, CGPE generates code for all of the schemes in less
than 3 minutes on an Intel Core i7-870 desktop machine running at 2.93 GHz. Among these
10395 schemes, only 3 have the lowest evaluation error. And among these 3 schemes, the C
code of Listing 3.7 is the fastest on unbounded parallelism since it requires only 13 cycles.

By checking the GAPPA script generated by CGPE, one makes sure that the error bounds
are indeed correct. In this case, the scheme used is the one shown in Figure 3.7 and we have
that:

Err(r17) = [
e,e

]= [−380104605495 ·2−61,0
]≈ [−2−22.5324,0

]
. (3.7)

To differentiate it from the other schemes, we will call this evaluation scheme S1. Notice
that since intermediate computations are always truncated and never rounded, the enclo-
sure on the error is not centered around 0. Hence, it is possible to reduce the magnitude of
the error bound by adding the corrective term

−e
2 to r17. By doing so, the enclosure on the

error is brought to ≈ [− e
2 ,

−e
2

]
. We will denote by S′

1 this slightly corrected scheme.

Remark on the sign of the error bound computed by CGPE

To maintain backward compatibility, CGPE uses the following relationship between
Math(v), Val(v), and Err(v):

Math(v) = Val(v)−Err(v).
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B Listing 3.6: The XML input file for the filter 3.4.

1 <dotproduct inf="0xb1e91685" sup="0x4e16e97b" integer_width="6"

fraction_width="26" width="32">

2 <coefficient name="b0" value="0x65718e3b" integer_width="-3"

fraction_width="35" width="32"/>

3 <coefficient name="b1" value="0x4c152aad" integer_width="-1"

fraction_width="33" width="32"/>

4 <coefficient name="b2" value="0x4c152aad" integer_width="-1"

fraction_width="33" width="32"/>

5 <coefficient name="b3" value="0x65718e3b" integer_width="-3"

fraction_width="35" width="32"/>

6 <coefficient name="na1" value="0x4a5cdb26" integer_width="2"

fraction_width="30" width="32"/>

7 <coefficient name="na2" value="0xa6eb5908" integer_width="1"

fraction_width="31" width="32"/>

8 <coefficient name="na3" value="0x4688a637" integer_width="-1"

fraction_width="33" width="32"/>

9

10 <variable name="u0" inf="0x84000000" sup="0x7c000000" integer_width="5"

fraction_width="27" width="32"/>

11 <variable name="u1" inf="0x84000000" sup="0x7c000000" integer_width="5"

fraction_width="27" width="32"/>

12 <variable name="u2" inf="0x84000000" sup="0x7c000000" integer_width="5"

fraction_width="27" width="32"/>

13 <variable name="u3" inf="0x84000000" sup="0x7c000000" integer_width="5"

fraction_width="27" width="32"/>

14 <variable name="y1" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6"

fraction_width="26" width="32"/>

15 <variable name="y2" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6"

fraction_width="26" width="32"/>

16 <variable name="y3" inf="0xb1e91685" sup="0x4e16e97b" integer_width="6"

fraction_width="26" width="32"/>

17 </dotproduct>

This is different from the error model we presented in Chapter 2 where we used the for-
mula:

Math(v) = Val(v)+Err(v).

Math(v) and Val(v) are the same in the two models and the error bound produced by CGPE
must only be negated to fit in the framework of Chapter 2. Furthermore, this difference is
barely noticeable since one is usually more interested in the magnitude of the error.
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B Listing 3.7: The C code generated by CGPE for the filter 3.4.

1 i n t 3 2 _ t filter( i n t 3 2 _ t u0 /*Q5.27*/ ,

2 i n t 3 2 _ t u1 /*Q5.27*/ ,

3 i n t 3 2 _ t u2 /*Q5.27*/ ,

4 i n t 3 2 _ t u3 /*Q5.27*/ ,

5 i n t 3 2 _ t y1 /*Q6.26*/ ,

6 i n t 3 2 _ t y2 /*Q6.26*/ ,

7 i n t 3 2 _ t y3 /*Q6.26*/ )

8 { // Formats Err

9 i n t 3 2 _ t r0 = mul(0x4a5cdb26 , y1); //Q8.24 [-2^{-24},0]

10 i n t 3 2 _ t r1 = mul(0xa6eb5908 , y2); //Q7.25 [-2^{-25},0]

11 i n t 3 2 _ t r2 = mul(0x4688a637 , y3); //Q5.27 [-2^{-27},0]

12 i n t 3 2 _ t r3 = mul(0x65718e3b , u0); //Q2.30 [-2^{-30},0]

13 i n t 3 2 _ t r4 = mul(0x65718e3b , u3); //Q2.30 [-2^{-30},0]

14 i n t 3 2 _ t r5 = r3 + r4; //Q2.30 [-2^{-29},0]

15 i n t 3 2 _ t r6 = r5 >> 2; //Q4.28 [ -2^{ -27.6781} ,0]

16 i n t 3 2 _ t r7 = mul(0x4c152aad , u1); //Q4.28 [-2^{-28},0]

17 i n t 3 2 _ t r8 = mul(0x4c152aad , u2); //Q4.28 [-2^{-28},0]

18 i n t 3 2 _ t r9 = r7 + r8; //Q4.28 [-2^{-27},0]

19 i n t 3 2 _ t r10 = r6 + r9; //Q4.28 [ -2^{ -26.2996} ,0]

20 i n t 3 2 _ t r11 = r10 >> 1; //Q5.27 [ -2^{ -25.9125} ,0]

21 i n t 3 2 _ t r12 = r2 + r11; //Q5.27 [ -2^{ -25.3561} ,0]

22 i n t 3 2 _ t r13 = r12 >> 2; //Q7.25 [ -2^{ -24.3853} ,0]

23 i n t 3 2 _ t r14 = r1 + r13; //Q7.25 [ -2^{ -23.6601} ,0]

24 i n t 3 2 _ t r15 = r14 >> 1; //Q8.24 [ -2^{ -23.1798} ,0]

25 i n t 3 2 _ t r16 = r0 + r15; //Q8.24 [ -2^{ -22.5324} ,0]

26 i n t 3 2 _ t r17 = r16 << 2; //Q6.26 [ -2^{ -22.5324} ,0]

27 r e t u r n r17;

28 }

3.4.2 Comparison between our implementation and the ideal IIR filter

Rounding errors occur at each time step of our filter implementation. Therefore, its output
differs from the perfect filter of Equation (3.4). Indeed, our implementation is described by
the block diagram of Figure 3.8 and by the following equation that relates its output y ′[k]
to its input u[k] at time step k:

y ′[k] =
3∑

i=0
bi ·u[k − i ]−

3∑
i=1

ai · y ′[k − i ]+ε[k], (3.8)

where ε[k] ∈ Err(r17).
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Figure 3.7: DAG of the scheme S1 of Listing 3.7 without the shifting nodes.

u[k] H ′ y ′[k]

ε[k]

Figure 3.8: Block diagram of our implementation of the Butterworth filter 3.4.

However, as shown by Didier et al. [LHD14], the output y ′[k] at step k of our implemen-
tation is related to the output of the ideal filter y[k] by the following equation:

εy [k] = y ′[k]− y[k]

= ε[k]−
3∑

i=1
ai · (y ′[k − i ]− y[k − i ])

= ε[k]−
3∑

i=1
ai · (εy [k − i ]) (3.9)

And the key observation is that Equation (3.9) is the realization of a filter whose transfer
function H ′′ is given by:

H ′′(z) = 1

1+a1z−1 +a2z−2 +a3z−3
. (3.10)

At time step k, the input of filter (3.10) is ε[k] and its output is εy [k].
Now the relationship between the ideal filter, our implementation, and the filter of

Equation (3.10) is better described by the block diagram of Figure 3.9.
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u[k]
H

y[k]

y ′[k]

ε[k]
H ′′ εy [k]

H ′

Figure 3.9: The relationship between the implemented filter and the ideal filter 3.4.

And estimating the absolute error of our implementation comes down to bounding the
values of εy [k]. As shown in Section 1.3.4 of Chapter 1, this is achievable by computing the
`1-norm of the filter H ′′ and by deducing a bound on its output by the formula:∥∥εy

∥∥∞ ≤ ∥∥H ′′∥∥
`1
· ‖ε‖∞ . (3.11)

By approximating the `1-norm of H ′′ using the expression

∥∥H ′′∥∥
`1

≈
1024∑

0
|h′′(k)|,

we obtain the value 54.2927105220054074 as the gain of this filter. Using Equation (3.11),
we deduce that ∥∥εy

∥∥∞ ≤−8.949832764746 ·10−6 ≤ 2−16.76. (3.12)

This bound also implies that

y ′[k] ∈ (
Y + [−2−16.76,2−16.76]

)⊂ [−20,20] ⊂Range(Q6,26),

which reassures us that the initial choice of the format Q6,26 for y is correct and convinces
us that y ′ won’t overflow this format.

3.4.3 Experimental errors of the IIR filter implementation

CGPE’s back-end is modular and has many code generators that read annotated DAGs and
write code. This allows the tool to generate code that evaluates the same input problem
using the floating-point binary32 and binary64 formats.

Hence, as a first experiment to assert the low pass properties of our filter, we generated
a noisy signal composed by summing a low and a high frequency sinusoids and filtered
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Figure 3.10: A noisy signal filtered in fixed-point and floating-point arithmetics using fil-
ter 3.4.

it both in fixed-point and using the binary64 floating-point arithmetic. As shown in Fig-
ure 3.10, both in fixed-point and floating-point, the output signal is cleaned from its high
frequency components.

Figure 3.10 also shows that the output of the fixed-point implementation follows closely
the floating-point one. The next experiment shows to what extent this observation holds.

Comparing the experimental errors of the filter

To have a reference implementation, we implemented the filter using the multi-precision
library MPFR [FHL+07]. We used 512-bit numbers which guarantees that the implementa-
tion computes a highly accurate result for this filter.

Figure 3.11 shows the experimental errors, that is, the difference between the output
of our synthesized implementations and the output of the MPFR variant. These errors
were obtained by running these implementations on the sinusoidal signal of the previous
experiment. Figure 3.11 shows that our fixed-point implementation is slightly more accu-
rate than a binary32 implementation. It also assures us of the correctness of the accuracy
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Figure 3.11: Experimental error of the fixed-point and floating-point implementations of
filter 3.4 based on the MPFR reference implementation.

bound. Indeed, the experimental errors of the scheme S1 are inferior in magnitude to the
error bound given by the inequality of Equation (3.12).

Comparing different fixed-point evaluation schemes

In this last experiment, we compare the bounds and the experimental errors of 3 differ-
ent schemes to evaluate the filter in fixed-point. Here, S1 is the scheme obtained by CGPE
and whose latency on unbounded parallelism is of 13 cycles assuming 1-cycle addition
and 3-cycles multiplication, and S′

1 is the corrected variant of S1 scheme. Hence, it is more
accurate but needs 14 cycles due to the extra addition. Finally, S2 is a scheme that exe-
cutes in only 11 cycles but has a larger error bound. Figure 3.12 shows that the precision
hierarchy between the schemes obtained by theoretical means is indeed validated by the
experiments. For example, the scheme S′

1 which is a mere correction of scheme S1 is al-
ways more accurate after a significant number of filter iterations. The figure also shows
that the difference in accuracy between the accurate scheme, i.e., S′

1 and the fast scheme
S2 are significant for such a small example. Indeed, as shown by Table 3.5 which sum-
marizes the bounds and the maximum experimental errors of our implementations, S′

1 is
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Figure 3.12: Bounds and experimental errors of 3 different fixed-point implementations of
filter 3.4 based on the MPFR reference implementation.

two bits more accurate than S2. This stresses the importance of relying on tools to find
accuracy versus latency trade-offs when choosing an evaluation scheme. Finally, Table 3.5
also shows that, experimentally, all the fixed-point schemes are more accurate than the
binary32 floating-point implementation.

S1 S′
1 S2 binary32

Error bound 2−16.76 2−17.65 2−15.43 −
Maximum experimental error 2−21.56 2−22.80 2−20.43 2−18.05

Average experimental error 2−22.32 2−25.07 2−21.01 2−21.07

Table 3.5: The bounds and experimental errors of our filter implementations.
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3.4.4 Summary on code synthesis for IIR filters

Using CGPE, code synthesis for IIR filters is entirely automated. Indeed, the tool comes
with helper scripts that take the description of a filter (cutoff frequency, order, ...) and
generate the corresponding XML input file. Yet, further improvement can still be achieved
as follows: as pointed out in Section 1.2.1 of Chapter 1, ALUs provide modular arithmetic
instead of integer arithmetic. While this low level detail may seem inconvenient, one can
use it to his advantage in some situations. Indeed, in our filter implementation, some of the
summands require up to 8 integer part bits. However, the result of their sum was proved by
range analysis to require no more than 6 bits. This implies that the MSBs of the operands
are canceled by the sum and suggests that one may allocate only 6 integer bits for these
variables and simply ignore overflows.

This optimization reduces the rounding errors since the discarded integer bits get al-
located for the fraction part. It also removes some useless alignment shifts, thus saving
few evaluation cycles. In the context of filters design, this property was first used by Jack-
son [Jac70]. A rigorous proof of its soundness is given by Didier et al. [LHD14] who use it in
their fixed-point generation framework.

3.5 Conclusion

This chapter presents the CGPE software tool. This tool implements the arithmetic model
of Chapter 2. It has a compiler-like architecture and internally represents arithmetic ex-
pressions using DAGs. Its first stage consists of generators that are dependent on the input
problem. Its middle-end applies the arithmetic model to the DAGs generated by the first
stage and decides of the DAGs to keep according to accuracy or latency criteria set by the
user. The DAGs that survive this pruning process reach the back-end which traverses the
DAG to generate codes and accuracy certificates. CGPE has back-ends that generate fixed-
point and floating-point C code. Recently, thanks to the FloPoCo library [dDP11], support
was added for VHDL code generation as well.

Contrarily to many fixed-point generation tools, CGPE is open-source and is also avail-
able in library form which allows it to be used as a low level fixed-point generation frame-
work. Indeed, the algorithms presented in the next part concentrate on solving higher
level problems while relying on CGPE to generate code for basic expressions such as dot-
products.
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FIXED-POINT CODE SYNTHESIS FOR MATRIX

MULTIPLICATION

This chapter, like the following two chapters, builds on the arithmetic
model introduced in Part I. It describes how to synthesize fixed-point code
for matrix multiplication. To do so, its starts by a summary of straightfor-
ward approaches where it is shown that they either yield compact but in-
accurate code, or very large and accurate codes. To tackle this problem, the
rest of the chapter describes the means to achieve trade-offs between code
size and accuracy when synthesizing fixed-point code for matrix multipli-
cation.

4.1 Introduction

I
N the previous chapter, we showed that our arithmetic model and the CGPE tool that

implements it allow us to generate certified code for expressions such as dot-products,
sums, and linear filters. Naturally, the next step is to ask if this framework would scale,

i.e., that is would be able to synthesize accurate code for larger problems. For instance, a
problem that is just one level higher than dot-products is that of synthesizing code for ma-
trix multiplication.1 In practice, matrix multiplication is useful for applying linear transfor-

1We implicitly consider that code synthesis for matrix-vector products is a sub-case of matrix multipli-
cation.

103
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mations to input data derived from signal or image processing. It is also useful for solving
linear systems by iterative methods [GVL96] and for matrix inversion. For instance, the
Cholesky decomposition based matrix inversion presented in Chapter 5 involves multiply-
ing the inverse of triangular matrices.

In floating-point, matrix multiplication that uses the direct definition below is straight-
forward to implement.

(AB)i , j =
n∑

k=1
ai ,k bk, j . (4.1)

Listing 4.1 shows how to do it in just three nested loops. In practice, matrix multiplication
for scientific computations is provided through the GEMM routine in highly optimized
BLAS libraries [ABB+99]. And these libraries go beyond Equation (4.1) and use asymptoti-
cally fast algorithms such as Strassen’s [Hig02].

B Listing 4.1: A C implementation of floating-point matrix multiplication.

1 int main(void)
2 {

3 int i,j,k;

4 float A[N][N]={...}, B[N][N]={...}, C[N][N]={0,...,0};

5 for (i = 0; i < N ; i++)

6 for (j = 0; j < N ; j++)

7 for (k = 0; k < N ; k++)//computes the dot-product of row i and column j

8 C[i][j]+=A[i][k]*B[k][j];

9 }

In fixed-point arithmetic, however, works that treat matrix multiplications are scarce.
Abdul Gaffar et al. [LGC+06] use a certified approach to generate fixed-point codes for
small 2×2 matrices as well as size-8 DCT. However, the DCT matrix is structured and con-
stant. On the other hand, Frantz et al. [NNF07] do not treat matrix multiplication explicitly
but describe a tool that implements many linear algebra primitives such as SVD, LU, and
QR decompositions. Their work is based on Sung’s technique [KiKS96] to convert floating-
point designs into fixed-point and presents the following drawbacks:

1. Simulation time is exponentially proportional to the number of input variables. It is
therefore impractical for large input matrices.

2. It provides no strict guaranties on rounding errors.

Indeed, in our work [MNR14a], we were able to generate code for size-64 matrices, which
are considered large in fixed-point arithmetic, and necessitate trade-offs between code size
and accuracy. For such problem that involves 8192 input variables, simulation methods do
not scale and only an analytic approach like ours is practical.
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According to Equation (4.1), matrix multiplication can be decomposed into multiple
dot-product computations. And since CGPE supports code generation for dot-products,
a simple synthesis algorithm for matrix multiplication may consist in invoking CGPE as
many times as required to generate code for each dot-product. This kind of straightforward
algorithms is investigated in Section 4.2 of this chapter. In this section, it is shown that
straightforward algorithms may result in codes whose size is large (too many dot-product
codes generated) or whose error bound is not sufficiently tight to satisfy the numerical
quality demanded by the programmer. Then, Section 4.3 suggests a strategy to find trade-
offs between straightforward algorithms. This strategy is implemented and experimental
data is presented to show its effectiveness on a set of benchmarks in Section 4.4.

4.2 Straightforward approaches for the synthesis of matrix
multiplication programs

In this section, we give a statement of the problem of code synthesis for matrix multiplica-
tion and discuss two straightforward approaches to solve it. The second approach uses the
notion of merging two fixed-point variables. We therefore start this section by introducing
this notion. Towards the end of the section, we give some code size and accuracy estimates
for both approaches. In the next section, we will add accuracy and code size constraints to
the problem and try to solve it by finding a trade-off between the approaches shown in this
section.

4.2.1 Merging two fixed-point variables

Let (x, y) ∈ Fix2 be two fixed-point variables. To compute their union, one must determine
z ∈ Fix such that Qaz ,bz and IZ are, respectively, the smallest format and enclosure that
accommodate the values of x and y without overflow. To compute z, we use Algorithm 4.2
described below. Notice that this merging entails a rounding error when the two variables
are in a different fixed-point format. Indeed, this error is the result of the run-time shift
one must insert to align the variable that has the smaller fixed-point format.

Example 4.1. Consider the three 32-bit signed fixed-point variables (x, y, t ) ∈ Fix3 shown
in Table 4.1. The last two rows show the mergings x ∪ y and x ∪ t .
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Algorithm 4.2 Computing z ∈ Fix such that z = x ∪ y and (x, y) ∈ Fix2.
Input:

Two variables (x, y) ∈ Fix2 such that

IX =
[

ix , ix

]
and IY =

[
i y , i y

]
Output:

z ∈ Fix such that z = x ∪ y , and
Err(z), a bound on the error induced by this merge

Algorithm:

1: if Qax ,bx ≥ Qay ,by then
2: Qaz ,bz ← Qax ,bx

3: IZ ←
[

min

(
ix ,

i y

ax−ay

)
,max

(
ix ,

i y

ax−ay

)]
4: Err(z) ← [

0,2−bx −2−by
]

5: else
6: Qaz ,bz ← Qay ,by

7: IZ ←
[

min
( ix

ay−ax
, i y

)
,max

(
ix

ay−ax
, i y

)]
8: Err(z) ← [

0,2−by −2−bx
]

9: end if

Format Interval of the Int. Repr. Decimal enclosure Error

x Q3,29 IX = [−231,228
]

[−4,0.5] [0,0]

y Q3,29 IY = [−226,230
]

[−0.125,2] [0,0]

t Q4,28 IT = [−227,230
]

[−0.5,4] [0,0]

z ′ = x ∪ y Q3,29 IZ ′ = [−231,230
]

[−4,2] [0,0]

z ′′ = x ∪ t Q4,28 IZ ′′ = [−230,230
]

[−4,4]
[
0,2−29

]
Table 4.1: The union of fixed-point variables, their resulting range in decimal, and their
error.

Since x and y have the same fixed-point format Q3,29, z ′ = x ∪ y is also in the same fixed-
point format. As for IZ ′ , we have IZ ′ = [

min
(−231,−226

)
,max

(
228,230

)] = [−231,230
]
.

This merging comes at no cost in accuracy since both variables are in the same fixed-
point format.

However, x and t are not in the same fixed-point format. In this case, the format
of their union z ′′ is the largest among both formats, i.e., Q4,28. As for IZ ′′ , one must be
careful not to consider only IT , indeed, although x has a smaller fixed-point format, the
upper bound on its enclosure, when normalized, is larger than that of t . In Algorithm 4.2,
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the computations that lead to the correct enclosure IZ ′′ are carried out either in Line 3
or Line 7.

4.2.2 Problem statement

Let A and B be two matrices of fixed-point variables of size m ×n and n ×p, respectively:

A ∈ Fixm×n and B ∈ Fixn×p ,

and let us denote by Ai ,: and A:, j the i th row and j th column of A, respectively, and Ai , j the
element of the i th row and j th column of A.

The objective is to generate fixed-point code to multiply A and B . And, since A and
B are matrices of fixed-point variables, the generated code should be able to multiply at
run-time any matrices A′ and B ′, where A′ and B ′ are two matrices that belong to A and
B , that is, where the fixed-point numbers A′

i ,k and B ′
k, j belong to the fixed-point variables

Ai ,k and Bk, j , respectively.
This consists in writing a program for computing C = A·B , where C ∈ Fixm×p . Therefore,

∀i , j ∈ {1, · · · ,m}× {1, · · · , p}, we have:

Ci , j = Ai ,: ·B:, j =
n∑

k=1
Ai ,k ·Bk, j , (4.2)

4.2.3 Accurate approach

Suppose we have access to a routine DPSynthesis(U ,V ) that synthesizes code for the dot-
product of two vectors of fixed-point variables U and V .2 Following Equation (4.2), a first
straightforward approach to generate code for matrix multiplication consists in synthe-
sizing a program for each dot-product Ai ,: ·B:, j . Algorithm 4.3 below implements this ap-
proach.

Algorithm 4.3 Accurate algorithm.
Input:

Two matrices A ∈ Fixm×n and B ∈ Fixn×p

Output:

Code to compute the product A ·B

Algorithm:

1: for 1 ≤ i ≤ m do
2: for 1 ≤ j ≤ p do
3: DPSynthesis(Ai ,:,B:, j )
4: end for
5: end for

2This routine is provided by CGPE.
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Algorithm 4.3 issues m×p queries to the DPSynthesis routine. At runtime, only one call
to each generated code will be issued, for a total of m ×p calls.

4.2.4 Compact approach

To significantly reduce the number of dot-product codes generated (we call them DPCodes
in the following), some of them could be factored to evaluate more than one dot-product
at run-time. Algorithm 4.4 whose input and output are the same as Algorithm 4.3, pushes
this idea to the limits by merging element by element the matrices A and B into a unique
row U and column V , respectively.

Algorithm 4.4 Compact algorithm.
Input:

Two matrices A ∈ Fixm×n and B ∈ Fixn×p

Output:

Code to compute the product A ·B

Algorithm:

1: U ← A1,: ∪ A2,: ∪·· ·∪ Am,:, with U ∈ Fix1×n

2: V ← B:,1 ∪B:,2 ∪·· ·∪B:,p , with V ∈ Fixn×1

3: DPSynthesis(U ,V )

This approach issues a unique call to the DPSynthesis routine. However, at run-time,
m ×p calls to this synthesized code are still needed to evaluate the matrix product.

Example 4.2. Let us now illustrate the differences between these two algorithms by con-
sidering the problem of generating code for the product of the following two fixed-point
matrices:

A =
[−1000,1000] [−3000,3000]

[−1,1] [−1,1]


and

B =
[−2000,2000] [−2,2]

[−4000,4000] [−10,10]

 ,

where A1,1 and B1,1 are in the format Q11,21, A1,2 in Q12,20, A2,1, A2,2, B2,1 in Q2,30, B1,2 in
Q3,29, and B2,2 in Q5,27. Algorithm 4.3 produces 4 distinct codes, denoted by DPCode1,1,
DPCode1,2, DPCode2,1, and DPCode2,2.
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On the other hand, Algorithm 4.4 first computes U and V as follows:

U = A1,: ∪ A2,: = ([−1000,1000][−3000,3000])

and

V = B:,1 ∪B:,2 =
[−2000,2000]

[−4000,4000]

 .

Then, DPCodeU ,V is generated that evaluates the dot-product of U and V . Tables 4.2
and 4.3 summarize the properties of the codes produced, respectively, by Algorithms 4.3
and 4.4 on this example.

Dot-product A1,: ·B:,1 A1,: ·B:,2 A2,: ·B:,1 A2,: ·B:,2

Evaluated using DPCode1,1 DPCode1,2 DPCode2,1 DPCode2,2

Output format Q26,6 Q18,14 Q15,17 Q7,25

Certified error ≈ 2−5 ≈ 2−14 ≈ 2−16 ≈ 2−24

Maximum error ≈ 2−5

Average error ≈ 2−7

Table 4.2: Numerical properties of the 4 codes generated by Algorithm 4.3 for A ·B .

Dot-product A1,: ·B:,1 A1,: ·B:,2 A2,: ·B:,1 A2,: ·B:,2

Evaluated using DPCodeU ,V

Output format Q26,6

Certified error ≈ 2−5

Maximum error ≈ 2−5

Average error ≈ 2−5

Table 4.3: Numerical properties of the code generated by Algorithm 4.4 for the A ·B .

On the first hand, Table 4.2 shows that Algorithm 4.3 produces codes optimized for
the range of their entries: it is clearly superior in terms of accuracy since a dedicated
code evaluates each run-time dot-product.

On the other hand, Table 4.3 shows that, as expected, Algorithm 4.4 produces far less
code: it is is optimal in terms of code size since a unique dot-product code is generated,
but remains a worst-case in terms of accuracy.
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4.2.5 Code size and accuracy estimates

The dot-product is the basic block of classical matrix multiplication. In a size-n dot-
product, regardless of the evaluation scheme used, n multiplications and n −1 additions
are performed. Also, depending on the formats of their operands, additions frequently
require alignment shifts. Thus the number of shifts is bounded by 2n. Hence 4n − 1 is
a worst case bound on the number of elementary operations (additions, multiplications,
and shifts) needed to evaluate a size-n dot-product. Globally, (4n −1) · t is a bound on the
total size of a matrix multiplication code, where t ∈ {1, · · · ,m×p} is the number of generated
dot-product codes. On the previous example, this bound evaluates to 28 for Algorithm 4.3
vs. 7 for Algorithm 4.4, since n = 2, and t = 4 and 1, respectively.

As for accuracy estimates, given a matrix multiplication program composed of several
DPCodes, the maximum of all error bounds can be considered as a measure of the nu-
merical quality. However, examples can be found where this metric does not reflect the
numerical accuracy of all the codes. Consider for instance Example 4.2 where both algo-
rithms generate codes that have the same maximum error bound (≈ 2−5), yet 3 of the 4
DPCodes generated by Algorithm 4.3 are by far more accurate than this bound. For this
reason, one may also rely on the average error and consider it as a more faithful criterion
to estimate the accuracy.

Fixed-point arithmetic is primarily used in embedded systems where the execution en-
vironment is usually constrained. Hence even tools that produce codes with guaranteed
error bounds would be useless if the generated code size is excessively large. In the follow-
ing section, we go further than Algorithms 4.3 and 4.4, and explore the possible means to
achieve trade-offs between the two conflicting goals.

4.3 Dynamic closest pair algorithm for code size vs.
accuracy trade-offs

In this section, we discuss how to achieve code size versus accuracy trade-offs, and the
related combinatorics. We finally detail our new approach based on rows and columns
merging and implemented in the Dynamic Closest Pair algorithm.

4.3.1 How to achieve trade-offs?

On the first hand, when developing a numerical application for embedded systems, the
amount of program memory available imposes an upper bound on the code size. On the
other hand, the nature of the application and its environment help in deciding on the re-
quired degree of accuracy.
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Case 1 Case 2 Case 3 Case 4 Case 5

Accuracy Size Accuracy Size Accuracy Size Accuracy Size Accuracy Size

Accurate algorithm 7 − − − − − 3 3 3 7

Compact algorithm − − − 7 3 3 7 3 7 3

Action Fail Fail Use Algorithm 4.4 Use Algorithm 4.3 Find trade-offs

Table 4.4: Summary of the possible cases when synthesizing matrix multiplication codes.

Once these parameters set, the programmer tries Algorithms 4.3 and 4.4 and checks the
cases illustrated in Table 4.4.

Case 1 occurs when the accurate algorithm (Algorithm 4.3) is not accurate enough.
Since Algorithm 4.3 produces the most accurate codes, a possible solution is to adapt the
fixed-point computation word-lengths to reach the required accuracy, as in [LV09]. On the
other hand, Case 2 occurs when the compact algorithm (Algorithm 4.4) does not satisfy the
code size constraint. Again, since this algorithm produces the most compact code, other
solutions must be considered such as adding more hardware resources. Finally, the only
uncertainty that remains is described by Case 5 of Table 4.4. It happens when Algorithm 4.3
satisfies the accuracy constraint but has a large code size while Algorithm 4.4 satisfies the
code size bound but is not accurate enough. This case appeals for code size versus accu-
racy trade-offs.

Recall that m × p dot-product calls are required at runtime. To evaluate them using
less than m ×p DPCodes, it is necessary to factor some DPCodes so that they would eval-
uate more than one run-time dot-product. This amounts to merging certain rows and/or
columns of the input matrices together. Obviously, it is useless to go as far as compressing
the left and right matrices into one row and column, respectively, since this corresponds
to Algorithm 4.4. Our idea is illustrated by Figure 4.1 on a 4×4 matrix multiplication. In
this example, the first matrix is compressed into a 2×4 matrix while the second matrix is
compressed into a 4×2 matrix, as shown by the differently colored and shaped blocks. In
this case, the number of required codes is reduced from 16 to 4. For example, DPCode1 has
been particularly optimized for the computation of A1,: ·B:,1 and A1,: ·B:,2, and will be used
exclusively for these at run-time.
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


×




=





DPCode1

DPCode2

DPCode3

DPCode4

Figure 4.1: One merging strategy on a 4×4 matrix multiplication.

4.3.2 Combinatorial aspect of the merging strategy

Consider the two sets of vectors:

SA = {A1,:, · · · , Am,:} and SB = {B:,1, · · · ,B:,p },

associated to the input matrices:

A ∈ Fixm×n and B ∈ Fixn×p .

In our case, the problem of finding an interesting code size versus accuracy trade-off
reduces to finding partitions of the sets SA and SB into kA ≤ m and kB ≤ p subsets, re-
spectively, such that both of the following conditions hold:

1. the code size bound σ is satisfied, that is:

(4n −1) ·kA ·kB <σ, (4.3)

2. and the error bound ε is guaranteed, that is:

εmatrix < ε, (4.4)

where εmatrix is either the minimal, the maximal, or the average computation error
depending on the certification level required by the user.
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Remark that, given the partitions of SA and SB , the first condition is easy to check. How-
ever in order to guarantee the error condition, we must synthesize the DPCodes and de-
duce their error bounds using CGPE.

A benefit of formulating the refactoring strategy in terms of partitioning is the ability
to give an upper bound on the number of possible dot-product mergings. Indeed, given a
non-empty set S of k vectors, the number of different ways to partition S into k ′ ≤ k non-
empty subsets of vectors is given by the Stirling number3 of the second kind

{k
k ′

}
, defined

as follows: {
k

k ′

}
= 1

k ′!

k ′∑
j=0

(−1)k ′− j k ′!
j !(k ′− j )!

j k .

However, k ′ is a priori unknown and can be ∈ {1, · · · ,k}. The total number of possible parti-
tions of a set of k vectors is therefore given by the following sum, commonly referred to as
the Bell number:4

B(k) =
k∑

k ′=1

{
k

k ′

}
.

Finally, in our case, the total number of partitionings is defined as follows:

P (m, p) = B(m) ·B(p)−2, (4.5)

where m ×p is the size of the resulting matrix. Notice that we exclude two partitions:

1. The partition of SA and SB into, respectively, m and p subsets which correspond to
putting one and only one vector in each subset. This is the partitioning that leads to
Algorithm 4.3.

2. The partition of SA and SB into one subset each. This partitioning leads to Algo-
rithm 4.4.

Some values of the number P of Equation (4.5) are given in Table 4.5. Since this num-
ber is large, even for small matrix sizes, heuristics will be necessary to tackle this problem.
In the following, we introduce a method based on finding closest pairs of vectors according
to a certain metric. This allows to find partitions that achieve the required trade-off.

(m, p) (5,5) (6,6) (10,10) (16,16) (25,25) (64,64)

Number of algorithms P 2704 41209 ≈ 234 ≈ 266 ≈ 2124 ≈ 2433

Table 4.5: Some values of P for the multiplication of square matrices.

3See http://oeis.org/A008277.
4See http://oeis.org/A000110.

http://oeis.org/A008277
http://oeis.org/A000110
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4.3.3 Dynamic Closest Pair Algorithm

A component-wise merging of two vectors U and V of fixed-point variables yields a vector
whose ranges are larger than those of U and V . This eventually leads to a degradation
of the accuracy if the resulting vector is used to generate some DPCodes. In the extreme,
this is illustrated by Algorithm 4.4 in Section 4.2.4. Therefore the underlying idea of our
approach is that of putting together, in the same subset, row or column vectors that are
close according to a given distance or criterion. Hence we ensure a reduction in code size
while maintaining tight fixed-point formats, and thus guaranteeing a tight error bound.

Many metrics can be used to compute the distance between two vectors. Below, we
cite two mathematically rigorous distances that are suitable for fixed-point arithmetic: the
Hausdorff distance and the fixed-point distance. However, as our method does not use the
mathematical properties of distances, any criterion that may discriminate between pairs
of vectors of fixed-point variables may be used. For instance, although not a distance, the
width criterion introduced below was used in our experiments.

Hausdorff distance. The range of a fixed-point variable corresponds to a rational discrete
interval. It follows that the Hausdorff distance [MKC09b], widely used as a metric in inter-
val arithmetic, can be applied to fixed-point variables. Given two fixed-point variables x

and y and their ranges Range(x) =
[

rx ,rx

]
and Range(y) =

[
ry ,ry

]
, this distance dH (x, y)

is defined as follows:

dH : Fix×Fix →R+

dH
(
x, y

)= max
{∣∣∣rx − ry

∣∣∣ ,
∣∣rx − ry

∣∣},

Roughly, this distance computes the maximum increase suffered by Range(x) and
Range(y) when computing the union x ∪ y , as illustrated on Figure 4.2.

Range(x)

Increase sustained by Range(x)

Range(x ∪ y)

Range(y)

Increase sustained by Range(y) dH (x, y)

Figure 4.2: Illustration of the Hausdorff distance between two input variables (x, y) ∈ Fix2.

This distance illustrates our heuristic: by trying to merge only vectors of variables that
minimize the Hausdorff distance, we make sure that this merging minimally impacts their
range.
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Fixed-point distance. Contrarily to the Hausdorff distance which reasons on the ranges
defined by the fixed-point variables, the fixed-point distance uses only their fixed-point
formats. As such, it is slightly faster to compute. Given two fixed-point variables x and y ,
this distance dF (x, y) is defined as follows:

dF : Fix×Fix →N

dF
(
x, y

)= ∣∣ax −ay
∣∣,

where Qax ,bx and Qay ,by are the fixed-point formats of x and y , respectively. Analogously to
Hausdorff distance, this distance computes the increase in the integer part suffered by x
and y when computing their union x ∪ y .

Width criterion. Let x, y, and z be three fixed-point variables such that z = x ∪ y where z
is computed according to Algorithm 4.2. Our third metric consists in considering the width

of Range(z) =
[

rz ,rz

]
as illustrated on Figure 4.3. Formally, it is defined as follows:

dW : Fix×Fix →R+

dW
(
x, y

)= (
rz − rz

)
.

Range(x)
Range(y)

dW (x, y)

Figure 4.3: Illustration of the width criterion between two input variables (x, y) ∈ Fix.

Notice that although the metrics are introduced as functions of two fixed-point in-
tervals, we generalized them to vectors of fixed-point variables by considering either the
component-wise max or average value.

Given one of the above metrics and a set S of vectors, it is straightforward to imple-
ment a findClosestPair routine that returns the closest pair of vectors in S . There are
several ways to implement such a routine. A O (n2) naive approach such as the one shown
in Algorithm 4.5 would compare all the possible pairs of vectors. But, depending on the dis-
tance used, optimized implementations may rely on the well established fast closest pair of
points algorithms [SH75], [CLRS09, §33].
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Algorithm 4.5 findClosestPair algorithm.
Input:

A set of vectors S = {v1, . . . , vn} of cardinal n
A metric d

Output:

The closest pair of vectors (vi , v j ) s.t. vi , v j ∈S 2 and i 6= j
The value of d(vi , v j )

Algorithm:

1: closest_pai r ← (v1, v2)
2: dmi n ← d(v1, v2)
3: for 1 ≤ i ≤ n do
4: for i < j ≤ n do
5: dtemp ← d(vi , v j )
6: if dtemp < dmi n then
7: closest_pai r ← (vi , v j )
8: dmi n ← dtemp

9: end if
10: end for
11: end for

Nevertheless, our contribution lies mainly in the design of Algorithm 4.6 which is based
on a dynamic search of a code that satisfies both an accuracy bound C1 and a code size
bound C2.

Here, following Case 5 of Table 4.4, we assume that Algorithm 4.3 satisfies the accu-
racy bound C1, otherwise, no smaller code satisfying C1 could be found. Therefore, Algo-
rithm 4.6 starts with two sets of m and p vectors, respectively, corresponding to the rows
of A and the columns of B . As long as the bound C1 is satisfied, each step of the while loop
merges together the closest pair of rows or columns, and thus decrements the total num-
ber of vectors by 1. At the end of Algorithm 4.6, if the size of the generated code satisfies the
code size bound C2, a trade-off solution has been found. Otherwise, Algorithm 4.6 failed
to find a code that satisfies both bounds C1 and C2. This algorithm was implemented in
the FPLA tool presented in Chapter 6. Section 4.4 studies its efficiency on a variety of fixed-
point benchmarks.

4.4 Numerical experiments

In this section, we illustrate the efficiency of our heuristics, and the behaviour of Algo-
rithm 4.6 as well as the impact of the distance and the matrix size through a set of numeri-
cal results.
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Algorithm 4.6 Dynamic Closest Pair algorithm.
Input:

Two matrices A ∈ Fixm×n and B ∈ Fixn×p

An accuracy bound C1 (ex. average error bound is < ε)
A code size bound C2

A metric d

Output:

Code to compute A ·B s.t. C1 and C2 are satisfied,
or no code otherwise

Algorithm:

1: SA ← {A1,:, . . . , Am,:}
2: SB ← {B:,1, . . . ,B:,p }
3: while C1 is satisfied do
4: (uA , v A),dA ← f i ndC l osestPai r (SA ,d)
5: (uB , vB ),dB ← f i ndC l osestPai r (SB ,d)
6: if dA ≤ dB then
7: r emove(uA , v A ,SA)
8: i nser t (uA ∪ v A ,SA)
9: else

10: r emove(uB , vB ,SB )
11: i nser t (uB ∪ vB ,SB )
12: end if
13: for (Ai ,B j ) ∈SA ×SB do
14: DPSynthesis(Ai ,B j )
15: end for
16: end while
17: /* Revert the last merging step. */
18: /* Check the bound C2. */

4.4.1 Experimental environment

Experiments have been carried out with 32 bit fixed-point variables and using 3 structured
and 1 unstructured benchmark. For structured benchmarks, the large coefficients distri-
bution throughout the matrices follows different patterns. This is achieved through weight
matrices, as shown in Table 4.6 where Wi , j corresponds to the element of row i and col-
umn j of the considered weight matrix.

Notice, that the dynamic range defined as max(Wi , j )/mi n(Wi , j ) is the same for all
benchmarks, and is equal to 2bn/2c. The reason we did not directly use these matrices
in our experiments is that the first three patterns correspond to structured matrices in
the usual sense and that better algorithms to multiply structured matrices exist [Mou11].
To obtain random matrices where the large coefficients are still distributed according to
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Name Wi,j Heat map

Center 2max(i , j ,n−1−i ,n−1− j )−bn/2c

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Edges 2min(i , j ,n−1−i ,n−1− j )

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Rows / Columns 2bi /2c 2b j /2c

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Random 2rand(0,bn/2c−1)

2 4 6 8 10 12 14 16

2

4

6

8

10

12

14

16

Table 4.6: Weight matrices considered for the benchmarks.

the pattern described by the weight matrices, we computed the Hadamard product of Ta-
ble 4.6 matrices with normally distributed matrices generated using Matlab®’s randn func-
tion. Figure 4.4 shows a sample matrix obtained by proceeding this way. Finally, notice
that the matrices obtained this way have floating-point coefficients. In order to get fixed-
point matrices, we first converted them to interval matrices by considering the radius 1
intervals centered at each coefficient. Next, the floating-point intervals are converted into
fixed-point variables by considering the smallest fixed-point format that holds all the in-
terval’s values.

4.4.2 Efficiency of the distance based heuristic

As a first experiment, let us consider 2 of the benchmarks: Center and Random square
matrices of size 6. For each, we build two matrices A and B , and observe the efficiency
of our closest pair heuristic based approach by comparing the result of Algorithm 4.6 to
all the possible codes. To do so, we compute all the possible row and column mergings:
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Figure 4.4: The heat map of a size-16 pondered matrix from the Edges benchmark.

Equation (4.5) assures that there are 41209 such mergings for size-6 matrices. For each of
these, we synthesized the codes for computing A ·B , and determined the maximum and
average errors. This exhaustive experiment took approximately 2h15min per benchmark
on an Intel Core i7-870 desktop machine running at 2.93 GHz. Figures 4.5 and 4.6 show the
maximum and average errors of the produced codes according to the number of DPCodes
involved. Next, we ran our tool with Hausdorff’s distance and with the accuracy bound C1

set to a large value so as to see the behavior of Algorithm 4.6 on all the intermediate steps.
This took less than 10 seconds for each benchmark and corresponds to the dark blue dots
in Figures 4.5 and 4.6. Notice on both sides the accurate algorithm which produces 36
DPCodes and the compact algorithm which produces only one DPCode.

For the structured Center benchmark, Algorithm 4.6 behaves as expected. For both
maximum and average error, it is able to drastically reduce the number of DPCodes without
impacting the accuracy. Indeed, as shown in Figure 4.5b, for a maximum error of ≈ 3 ·10−3

which is close to the most accurate algorithm, our algorithm is able to reduce the number
of DPCodes from 36 to 9. For average error in Figure 4.6, Algorithm 4.6 even finds a merging
that produces 9 DPCodes and has almost the same accuracy as Algorithm 4.3 which is the
most accurate.

For the Random benchmark, the behavior of Algorithm 4.6 is less predictable. Indeed,
in this benchmark, the elements of high dynamic range are spread over the matrix and do
not follow a particular pattern. In this case, it is less obvious for Algorithm 4.6 to find the
best codes in terms of accuracy. Indeed, Algorithm 4.6 follows a greedy approach in making
the local decision to merge two vectors. And, once it goes in a wrong branch of the result
space, this may lead to a code having an average or maximum error slightly larger than the
best case. This can be observed on Figure 4.6b: the first 6 steps produce code with very
tight average error, but step 7 results in a code with an average error of ≈ 10−3 while the
best code has an error of ≈ 5·10−4. As a consequence, the following of the algorithm gives a
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Figure 4.5: Maximum error according to the number of DPCodes.

code with an error of ≈ 3 ·10−3 instead of ≈ 10−3 for the best case. The same phenomenon
happens at step 1 Figure 4.5a.
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(b) Center matrices.

Figure 4.6: Average error versus the number of DPCodes.

Despite this, these experiments show the interest of our approach. Indeed we may ob-
serve that, at each step, the heuristic merges together 2 rows of A or 2 columns of B to
produce a code having in most cases an average error close to the best case. This is partic-
ularly the case on Figures 4.5b and 4.6b for Center benchmarks. Moreover, Algorithm 4.6
converges toward code having good numerical quality much faster than the exhaustive ap-
proach.
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4.4.3 Impact of the metric on the trade-off strategy

In this second experiment, we consider 25×25 matrices. For each benchmark introduced
above, 50 different matrix products are generated, and the results exhibited are computed
as the average on these 50 products. To compare the different distances, we consider the
average accuracy bound: for each metric, we varied this bound and used Algorithm 4.6 to
obtain the most compact codes that satisfy it. Here we ignored the code size bound C2 by
setting it to a large enough value. Also, in order to show the efficiency of the closest pair
strategy, we compare the codes generated using Algorithm 4.6 with those of an algorithm
where the merging of rows and columns is carried out randomly. Figure 4.7 shows the
results of running FPLA.

First notice that, as expected, large accuracy bounds yield the most compact codes. For
instance, for all the benchmarks, no matter the distance used, if the target average accuracy

(a) Center matrices.
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(b) Edges matrices.
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(c) Rows/Columns matrices.
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(d) Random matrices.
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Figure 4.7: Number of dot-product codes generated by each algorithm for increasing av-
erage error bounds.
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is > 2−9.5, one DPCode suffices to evaluate the matrix multiplication. This indeed amounts
to using Algorithm 4.4. Also as expected and except for few values, when used with one of
the distances above, our algorithm produces less DPCodes than with the random function
as a distance. Using the average width criterion, our algorithm is by far better than the
random algorithm and yields on the Center and Rows/Columns benchmarks a significant
reduction in code size, as shown on Figures 4.7a and 4.7c. For example, for the Center
benchmark, when the average error bound is set to 2−16, our algorithm satisfies it with
only 58 DPCodes, while the random algorithm needs 234 DPCodes. This yields a code
size reduction of up to 75%. Notice also that globally, the Center benchmark is the most
accurate. This is due to the fact that few Rows/Columns have a high dynamic range. On
Figures 4.7b and 4.7d, in the Edges as well as Random benchmarks, all of the rows and
columns have a high dynamic range which explains in part why these benchmarks are less
accurate than the Center benchmark. These experiments also suggest that average based
distances yield tighter code than maximum based ones.

4.4.4 Impact of the matrix size

In this third experiment, we study the influence of the matrix sizes on the methodology
presented above. To do so, we consider square matrices of the Center benchmark with
sizes 8, 16, 32, and 64, where each element has been scaled so as these matrices have the
same dynamic range. We run Algorithm 4.6 using the average width criterion as a metric
with different average error bounds from 2−21 to 2−14. Here the bound C2 has also been
ignored. For each of these benchmarks, we determine the number of DPCodes used for
each average error, as shown in Table 4.7 (where “−” means “no result has been found”).

Maximum error

Matrix size 2−21 2−20 2−19 2−18 2−17 2−16 2−15 2−14

8 24 6 1 1 1 1 1 1

16 − 117 40 16 3 1 1 1

32 − − 552 147 14 2 1 1

64 − − − 2303 931 225 48 1

Table 4.7: Number of DPCodes for various matrix sizes and error bounds.

This shows clearly that our method is extensible to large matrices, since it allows to
reduce the size of the problem to be implemented, while maintaining a good numeri-
cal quality. For example, the 64× 64 accurate matrix multiplication would require 4096
DPCodes. Using our heuristic, we produce a code with 2303 DPCodes having an aver-
age error bounded by 2−18, that is, a reduction of about 45%. Remark that no code with
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average error bound of 2−19 is found, which means that even the accurate algorithm (Algo-
rithm 4.3) has an error no tighter than 2−19: we can conclude that our heuristic converges
towards code having an error close to the best case, but with half less DPCodes. Finally, if
the user’s accuracy expectations are low, i.e., if an error bound of 2−14 is acceptable, then
only one DPCode is sufficient to implement matrix multiplication for all the sizes.

4.5 Conclusion

This chapter tackled the problem of generating fixed-point code for matrix multiplication.
It started by exposing two straightforward algorithms to solve this problem. When con-
straints on accuracy and code size are added to the problem, these two approaches rep-
resent both ends of the spectrum. Indeed, one needs to find implementations of matrix
multiplication that present a good trade-off between the most accurate and the most com-
pact algorithms. In the second part of the chapter, we presented a new strategy based on
the merging of row or column vectors of the input matrices. This strategy, implemented in
the dynamic closest pair algorithm, allows to reduce the size of the generated code while
guaranteeing that the error bound is satisfied. Finally, the efficiency of this approach has
been illustrated on a set of benchmarks.
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5
FIXED-POINT SYNTHESIS FOR MATRIX

DECOMPOSITION AND INVERSION

The previous chapter presented the higher level problem of matrix multi-
plication. This chapter tackles code generation for matrix inversion. While
the current state of our tools do not support the complete flow for matrix
inversion, most of the basic blocks are provided for. Contrarily to matrix
multiplication, matrix inversion involves division and square root oper-
ations. Since the output format of division must be set by a user defined
method, this chapter investigates different approaches to do so and gives
experimental data for each method.

5.1 Introduction

M
ATRIX inversion is known to be numerically unstable. As a consequence, numer-

ical analysts advise against using it for a large set of problems. Yet, as stated by
Higham [Hig02, § 14], cases exist where the inverse conveys useful information.

For instance, in wireless communications, matrix inversion is used in equalization algo-
rithms [ZQZ05] as well as detection estimation algorithms in space-time coding [CDH03].

In the context of DEFIS, our industrial partners look forward to having an implemen-
tation of matrix inversion for a Space Time Adaptive Processing algorithm (STAP) that is

125
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embedded in radar applications. Such applications require inverting a positive-definite
covariance matrix [Gue03].

This chapter does not discuss these applications and leaves it to the designer to decide
whether computing the inverse is indeed justified. Rather, its goal is to introduce a flow
for fixed-point code synthesis for matrix inversion and to conduct experiments to show its
behavior and numerical quality.

Only few research articles on fixed-point matrix inversion are available. One such work
is the Gusto tool suggested by Irturk et al. and presented in a series of articles [IBMK10],
[IMK09], and [IBMK08]. Its authors do provide benchmarks for the accuracy of their ma-
trix inversion algorithms. These algorithms are essentially based on QR decomposition.
However, the methodology and arithmetic model for generating the fixed-point imple-
mentation are not explicit in the articles and the treated matrices do not exceed size 8.
Besides, the evaluation of the rounding error is based on a a posteriori simulation process.
Therefore, no certified error bounds are provided. Another work that heavily relies on sim-
ulations is Frantz et al. [NNF07]. The authors use the simulation approach introduced by
Sung et al. [SK95] to study the mapping of many linear algebra routines to Texas Instru-
ments’ C64x+ fixed-point DSP. These routines include Cholesky, LU, QR, SVD, and Gauss-
Jordan decompositions. They treat matrices of sizes up to 30, but uniquely with simulation
based methods and without providing certified error bounds. Indeed, in working with a
rigorous error model, our work is analogous to [LGC+06] and [FRC03], where affine arith-
metic is used to assert properties on the error bounds. However, both approaches target
discrete transformation algorithms.

This chapter is organized as follows: Section 5.2 recalls the matrix inversion methods.
Then, Section 5.3 details the work-flow we propose to map matrix inversion into the fixed-
point arithmetic. Finally, experimental results are exhibited in Section 5.4.

5.2 A methodology for matrix inversion

A survey of floating-point matrix inversion and linear systems solving shows that there are
many algorithms in use: Cramer’s rule, LU and QR decompositions, . . . [GVL96]. A com-
mon pattern to the efficient algorithms is the decomposition of the input matrix into a
product of easy to invert matrices (triangular or orthogonal matrices). LU decomposition,
for instance, proceeds by Gaussian elimination to decompose an input matrix A into two
triangular matrices L and U such that A = LU . Inverting triangular matrices being straight-
forward, solving the associated linear system is equally simple and so is obtaining the in-
verse A−1 by the formula A−1 =U−1L−1. Almost the same chain of reasoning is applicable
to QR decomposition. The common pattern of these algorithm is captured by the three
steps of Figure 5.1, that is:
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1. the decomposition of the input matrix A into easy to invert matrices (diagonal, tri-
angular, or orthogonal matrices),

2. the computation of the inverse of the matrices obtained in step 1 , and

3. the combination of the inverses computed in step 2 to obtain A−1.

A

M1

Mi

M j

Mn

M−1
1

M−1
i

M−1
j

M−1
n

A−1

Decomposition Inversion of easy
to invert matrices

Re-composition

Figure 5.1: A typical flow for a decomposition based matrix inversion.

5.2.1 Matrix inversion using Cholesky decomposition

Motivated mainly by the application of our industrial partner, and the prevalence of sym-
metric positive-definite matrices in signal processing, we chose to tackle matrix inver-
sion through Cholesky decomposition. Given a symmetric positive-definite matrix A, the
method follows the three steps of Figure 5.1, that is:

1. matrix decomposition: computing a lower triangular matrix L such as A = LLT ,

2. triangular matrix inversion: computing L−1, and

3. inverse re-composition through multiplication: A−1 = L−T L−1.

In floating-point arithmetic, the computationally intensive step of this flow is the de-
composition part [GVL96]. This is the case as well for the LU and QR based methods. The
decomposition step is also the missing link in fixed-point arithmetic. Indeed, we presented
in Chapter 4 a methodology for fixed-point code synthesis for matrix multiplication that we
first described in [MNR14a], but, to our knowledge, no published works suggest a rigorous
methodology of code synthesis for matrix decomposition or triangular matrix inversion.
In the following, we start by recalling the formulas to compute these two steps.
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5.2.2 The triangular matrix inversion step

Using the so called backward and forward substitution techniques, inverting a triangular
matrix is a straightforward process in floating-point arithmetic. Indeed, for a lower trian-
gular matrix M , its inverse N is given by the following equation:

ni , j =



0 if i < j

1

mi ,i
if i = j

−ci , j

mi ,i
if i > j where ci , j =

i−1∑
k= j

mi ,k ·nk, j .

(5.1)

While in floating-point arithmetic, implementing these equations requires only three
nested loops, it is more challenging in fixed-point arithmetic. Indeed, the coefficient ni , j

depends on other coefficients of the inverse N , namely all the nk, j with k ∈ { j , . . . , i − 1}.
This implies that the synthesis tool, when generating code that computes ni , j must know
the ranges and formats of all the nk, j with k ∈ { j , . . . , i −1}. It is clear that such a tool must
follow a determined order in synthesizing code and that it must keep track of the formats
and ranges of the computed coefficients so as to reuse them. Besides, similarly to the work
in [MNR14a] presented in Chapter 4, this process may involve multiple trade-offs between
code size and accuracy.

5.2.3 The Cholesky decomposition step

Finally, the remaining step in our flow is Cholesky decomposition. If A is a symmetric
positive-definite matrix, its Cholesky decomposition is defined. Since this method exploits
the structure of the matrix, it is more efficient than Gaussian elimination and is also known
for its numerical stability [Hig02, § 10].

The aim of Cholesky’s method is to find a lower triangular matrix L such that:

A = L ·LT . (5.2)

And by equating the coefficients in (5.2) and using the symmetry of A, the following for-
mula for the general term of L is deduced:

`i , j =



0 if i < j

p
ci ,i if i = j where ci , j = ai , j −

j−1∑
k=0

`i ,k ·` j ,k

ci , j

` j , j
if i 6= j

(5.3)
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Again, before generating code for `i , j , one must generate code for its dependencies. These
include all the `i ,k and ` j ,k with k ∈ {0, . . . , j −1} as well as ` j , j if the coefficient is not di-
agonal. Also, synthesizing code that computes `i , j from ci , j involves the square root and
division operators. Therefore, as explained in Section 2.6.2 of Chapter 2, the intervention
of the user is needed to provide the fixed-point format of the output of division. By doing
so, the user sets the appropriate trade-off between the sharpness of the accuracy bounds
and the risk of run-time overflows.

We conclude this section with the following two remarks on this flow:

Using Cholesky based matrix inversion for general matrices. Remark that restraining to
symmetric positive-definite matrices is not an overkill. Indeed, Cholesky decomposition
can be used to invert any non-symmetric positive-definite matrix A by decomposing the
following matrix: M = A AT which is guaranteed to be symmetric to obtain M = LLT . From
this decomposition, A−1 can be recovered using the formula:

A−1 = AT L−T L−1. (5.4)

Pre-processing and range reduction of the input matrices. In fixed-point arithmetic,
we can frequently reduce the ranges of the inputs to a range included in [−1,1]. Indeed, for
Cholesky decomposition, if a matrix A does not satisfy this condition, instead of decom-
posing A, we can decompose

B = 2−k · A with k ∈Z, (5.5)

to obtain B = RRT , where B is a matrix with coefficients in [−1,1]. It follows that A =
2k ·RRT = LLT where

L = 2k/2 ·R.

Notice that k must be chosen even. For triangular matrix inversion, we can still compute
A−1 as follows:

A−1 = 2−k ·B−1, where B is as in Equation (5.5).

In fixed-point arithmetic, these scalings are just a matter of manipulating the fixed-point
format of the coefficients. These scaling justify our choice of Section 5.4 to target bench-
marks with input coefficients that belong [−1,1].

5.3 Code synthesis for triangular matrix inversion and
Cholesky decomposition

The basic blocks introduced in the previous section were implemented in the FPLA tool
which is presented in Chapter 6. This tool was developed with the aim of generating fixed-
point code for the most frequently used linear algebra routines. It handles the aspects
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peculiar to each class of input problems and relies on the CGPE library for the low-level
code synthesis details. For triangular matrix inversion and Cholesky decomposition, FPLA
internally keeps track of two matrices of fixed-point variables:

1. the input matrix, and

2. the resulting matrix.

The input matrix is not modified throughout the run. However, the resulting matrix is up-
dated with the range, format, and error bound of each code returned by the CGPE. There-
fore, FPLA must correctly handle the ordering of calls to CGPE in such a way that each
coefficient’s code is generated only after all the information on which it depends has been
collected.

5.3.1 Order of code synthesis in FPLA

In triangular matrix inversion and according to Equation (5.1), the diagonal elements do
not depend on any generated code. Therefore they may be computed in any order. The
non-diagonal coefficients depend only on the coefficients that precede them on the same
column. Therefore, FPLA can follow a row major, column major, or even a diagonal major
approach. The latter consists in generating the elements on the diagonal, followed by those
on the first sub-diagonal, and so on. The last code generated in this fashion would be that
of the bottom left coefficient `n−1,0. This is illustrated by Figure 5.2.

Figure 5.2: Dependencies of the coefficient `5,3 (in blue) in the triangular matrix inversion
of a 6×6 matrix.

For Cholesky decomposition, a diagonal element `i ,i depends on the generated coeffi-
cients that precede it on row i . A non-diagonal element `i , j depends on the first j elements
of row i as well as the first j +1 elements of row j . FPLA may satisfy these dependencies by
following either a row major or column major synthesis strategy but not a diagonal major
strategy. These dependencies are illustrated by Figure 5.3.
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Figure 5.3: Dependencies of the coefficient `5,3 (in blue) in the Cholesky’s decomposition
(right) of a 6×6 matrix.

Once all the coefficient codes of the resulting matrix are generated, FPLA generates
the global C file where each code assigns its result to the correct matrix index. Listing 5.1
shows this global code for a size-3 triangular matrix inversion. The coefficients of the upper
triangular part are explicitly set to zero. Then compute_i_i computes the coefficient ni ,i as
ni ,i = 1/d while compute_i_j computes the coefficient ni , j as

ni , j = (a0 ·b0 +·· ·+ai− j ·bi− j )/d

where a0 =A[i][j], b0 =N[j][j], ai− j =A[i][i-1], bi− j =N[i-1][j], and d =A[i][i]. The
six compute_x_y functions of this example are each generated by CGPE in a specific C file.
Listing 5.2 shows the code of compute_2_0 of Listing 5.1.

B Listing 5.1: FPLA output code for a 3×3 triangular matrix inversion.

1 // A: input matrix -- N: inverse matrix of A

2 N[0][0] = compute_0_0( A[0][0] );

3 N[0][1] = 0;

4 N[0][2] = 0;

5

6 N[1][0] = -compute_1_0( A[1][0] , N[0][0] , A[1][1] );

7 N[1][1] = compute_1_1( A[1][1] );

8 N[1][2] = 0;

9

10 N[2][0] = -compute_2_0( A[2][0] , A[2][1] ,

11 N[0][0] , N[1][0] , A[2][2] );

12 N[2][1] = -compute_2_1( A[2][1] , N[1][1] , A[2][2] );

13 N[2][2] = compute_2_2( A[2][2] );
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B Listing 5.2: C code of the compute_2_0 function.

1 i n t 3 2 _ t compute_2_0( i n t 3 2 _ t a0 /* Q1.31 in [-1,1]*/,

2 i n t 3 2 _ t a1 /* Q2.30 in [-2,2]*/,

3 i n t 3 2 _ t b0 /* Q1.31 in [-1,1]*/,

4 i n t 3 2 _ t b1 /* Q2.30 in [-2,2]*/,

5 i n t 3 2 _ t d /* Q1.31 in [0.88 ,0.99] */){

6 i n t 3 2 _ t r0 = mul(a0, b0); // Q2.30 in [-1,1]

7 i n t 3 2 _ t r1 = r0 >> 2; // Q4.28 in [-1,1]

8 i n t 3 2 _ t r2 = mul(a1, b1); // Q4.28 in [-4,4]

9 i n t 3 2 _ t r3 = r1 + r2; // Q4.28 in [-5,5]

10 i n t 3 2 _ t r4 = div32hs(r3, d, 31); // Q4.28 in [-8,8]

11 r e t u r n r4;

12 }

At run-time, the function compute_2_0 is used to compute the value of the coefficient
N[2][0] as follows:

5.3.2 How to use correctly fixed-point division?

Division, introduced in Chapter 2, is the trickiest among the fixed-point arithmetic oper-
ators. If we seek sharp error bounds, we must be careful when deciding of the fixed-point
output format of each division. The integer part of this format can be set using multiple
ways:

1. set to a constant, or

2. using a function that takes as input the formats of the dividend and divisor.

For instance, if we want division results to have an integer part two bits larger than the
integer part of its left operand denoted i1, we will use the function f (i1, i2) = i1 +2 to com-
pute i .

At first sight, the first solution seems to be either too restrictive or too unsafe. Indeed
with long chains of computations, the format of the intermediate operands tend to grow
and choosing a small enough output integer part is a good idea to bring the results of di-
visions to a manageable range. Conversely choosing a small output integer part increases
the chances that overflow occurs at run-time. In Section 5.4, we illustrate the interest of us-
ing the first solution on some cases, and we show experimental evidence of the problems
caused by the different methods of deciding this output format.
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5.4 Experimental results

In this section, we first explain how we generate our benchmarks. Then we investigate
the impact of the output format of division and study the speed of the generation and the
sharpness of the error bounds of our generated codes. Finally we show the impact of the
matrix condition number on the accuracy of the generated code.

5.4.1 Generation of fixed-point test matrices

The input matrices for which FPLA generates code are made of fixed-point variables. After
the synthesis process, in order to test the resulting code on a set of benchmarks, we need
to generate matrices of fixed-point numbers that belong to these fixed-point variables.
For Cholesky decomposition, the matrices of fixed-point numbers should be symmetric
positive-definite. To obtain such matrices, we followed the 5 stages process below:

1. Generate a lower triangular random matrix M whose fixed-point coefficients belong
to the input fixed-point variables. Determine A by filling the upper side of the matrix
with M T . Formally, this is equivalent to computing A = M + (M T −diag(M)). At this
point, A is a symmetric matrix that belongs to the input variable matrix.

2. Compute the smallest eigenvalue of A, denoted by λmin.

3. If λmin > 0, then the matrix A is positive-definite, and we are done.

4. Otherwise, compute A′ = A− (λmin +δ)I , for a small δ.

5. A′ is guaranteed to be symmetric and positive-definite. This step, checks if all the
coefficients of A′ belong to their respective fixed-point variables. If it is the case, we
are done, otherwise, either try to divide A′ by a factor and retest Step 5, or restart
from Step 1.

Generating triangular matrices is straightforward. For each coefficient, one must gen-
erate randomly a fixed-point number that belongs to the input fixed-point variable.

5.4.2 Impact of the output format of division on accuracy

As mentioned in Section 5.3.2, the output format of division must be explicitly set and
has a great impact on the properties of the generated code. In this experiment, we use 4
different functions to set the integer part size of the result of a division. In each case, the
output fraction part is determined so as each result fits on 32 bits. The functions used are
the following:

1. f1(i1, i2) = t ,

2. f2(i1, i2) = min(i1, i2)+ t ,

3. f3(i1, i2) = max(i1, i2)+ t ,

4. f4(i1, i2) = b(i1 + i2)/2c+ t ,
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where t ∈ Z is a user defined parameter, and i1 and i2 are the integer parts of the divi-
dend and divisor, respectively. The function f1 consists in fixing all the division results
to the same fixed-point format. The experiment consists in computing the Cholesky de-
composition and the triangular inversion of matrices of size 5 and 10, respectively. Using
FPLA, we synthesize codes for each problem and each function in

{
f1, f2, f3, f4

}
, for t rang-

ing from −2 to 8. Then for each synthesized code, 10000 example instances are generated
and solved both in fixed and floating-point arithmetics. Each example input is a matrix
having 32-bits coefficients in the range between −1 and 1. Then the error considered is
obtained by comparing the results to floating-point computations and by considering the
maximum errors among the 10000 samples. The results, for both basic blocks, are shown
in Figures 5.4 and 5.5 for sizes 5 and 10, respectively, where the absence of the curve in
some figures means that all of the examples overflew.
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(b) Triangular matrix inversion.

Figure 5.4: Results obtained on the Cholesky decomposition and triangular matrix inver-
sion of matrices of size 5×5 with different functions to set the format of division.

Obviously, one can observe that the function used to determine the output format of
division has a great impact on the accuracy of the generated code. For example, if we con-
sider the case t = 0 on 5×5 Cholesky decomposition on Figure 5.4a, using f1 leads to an
error of ≈ 2−28, while using f3 gives an error ≈ 2−15, that is, twice larger than f1. More
particularly, we can observe that a good function choice is one that minimizes the output
integer part but not too much. Indeed, as long as t ≥−1, using the function f1 always leads
to better maximum error than using the function f3. In addition, surprisingly, as long as
t ≥ −1, the function that gives the best results is f1(i1, i2) = t , namely the function that
fixes explicitly all the division results of a resulting code to the same fixed-point format
independently of the input formats.

Indeed the problem of using a function that depends on the input formats comes from
the fact that it quickly leads to a growth of the integer part of each computed coefficient,
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(a) Cholesky decomposition.
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(b) Triangular matrix inversion.

Figure 5.5: Results obtained on the Cholesky decomposition and triangular matrix inver-
sion of matrices of size 10×10 with different functions to set the format of division.

since it relies on the previously computed coefficient themselves. Hence the interest of f1

is that it avoids this fast growth, and leads to result coefficients having a fixed and relatively
small integer part, thus to tighter errors than the other functions. This remark is true for the
four experiments of Figures 5.4 and 5.5 when t ≥ 0 where f1 is the only function that leads
to successful results. This phenomenon becomes obvious as the matrix size increases.

However, one should not be too optimistic and set the value t of f1 to a very low value
when implementing triangular matrix inversion, and cases occur where f1 leads to unsuc-
cessful results. Indeed, the value of the diagonal coefficient of the inverse matrix is 1/ai ,i

and since ai ,i may be arbitrarily small, one way to fix the right t is to choose it such that no
division overflows occur when computing the division of the diagonal elements.

These experiments may also be seen as simulations to find the right t . Indeed, suppose
we need to generate fixed-point code for the inversion of size-10 triangular matrices. FPLA
comes with helper scripts that generate tests matrices and produce the figures similar to
Figures 5.4 and 5.5. A strategy then consists in using these figures to restrain the search for
the adequate output format. In the cases of interest, g (i1, i2) = 3 and h(i1, i2) = b(i1+ i2)/2c,
except for size-10 Cholesky decomposition, seem to be the most promising functions to
set the output of division, in terms of accuracy.

5.4.3 Sharpness of the error bounds and generation time

The originality of our approach is the automatic generation of certified error bounds along
with the synthesized code. This enables the generated code to be used in critical and pre-
cision sensitive applications. However, it is equally important that these bounds be sharp,
at least for a large class of matrices. To investigate their sharpness, we compare in this
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second experiment the error bounds for the case of triangular matrix inversion with the
experimental errors obtained from inverting 10000 sample matrices. This experiment is
carried out using the function f4 introduced in the previous experiment with t = 1. For
each matrix size from 4 to 40, C code and error bounds are obtained by running FPLA. Fig-
ure 5.6 shows the evolution of the generation time when the size of the matrices grows. On
an Intel Core i7-870 desktop machine running at 2.93 GHz, it does not exceed 14 seconds
for 40×40 matrices. This is clearly an improvement of several orders of magnitude over a
hand written fixed-point code.
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Figure 5.6: Generation time for the inversion of triangular matrices of size 4 to 40.

Besides being quickly generated, Figure 5.7 shows that these codes have low accuracy
bounds, at least when the matrix size is less than 30. The bounds vary from 2−26 to 22 while
the experimental errors vary from 2−28 to 2−6. The difference between the error bounds
and experimental errors is less than 2 bits for size-4 matrices and is inferior to 5 bits for
size-15 matrices, and it grows as the size of the input matrices grows. Nevertheless, the
two curves have the same overall shape, and the gap between them grows smoothly. And,
although the bounds obtained for matrices of size larger than 35 are too large to be useful in
practice, the experimental errors are still tight enough and do not exceed 2−6. These issues
may be tackled by considering other means to handle division that are more suited to large
matrices. Indeed, our experiments tend to show that the output format of division impacts
heavily the accuracy of the result and that there is no way to determine a format that is
adapted to all matrix sizes. We also argue that a bound of 2−12 on the inversion of size-20
matrices is satisfying for a broad range of applications, and this is a large improvement over



5.4. EXPERIMENTAL RESULTS 137

2−30

2−25

2−20

2−15

2−10

2−5

20

25

5 10 15 20 25 30 35 40

E
rr
or

Matrix size

Certified error bound
Maximum experimental error

Figure 5.7: Comparison of the error bounds and experimental errors for the inversion of
triangular matrices of size 4 to 40.

hand-written fixed-point codes or codes whose numerical quality is asserted uniquely by
simulations and a posteriori processes.

5.4.4 Impact of the matrix condition number on accuracy

The sample matrices considered in the previous experiments were randomly drawn in
the input intervals. In this third experiment, we consider the Cholesky decomposition
of some standard matrices namely, KMS, Lehmer, Prolate, Hilbert, and Cauchy matrices.
These symmetric positive-definite matrices have multiple properties and are often pro-
vided by numerical computing environments. Indeed, we generated them using MATLAB’s
gallery(’name’, size) command. Among these, Hilbert and Cauchy matrices and to a
lower extent Prolate are ill-conditioned as shown in Figure 5.8.

Nonetheless, with a fixed-point code generated for matrices in the input format Q1,31,
we were able to check that the fixed-point results, whenever computable, are accurate as
shown in Figure 5.9. For sizes larger than 8 and 9, respectively, overflows occur when com-
puting the decompositions of Cauchy and Hilbert matrices. But this fact does not inval-
idate our approach. Indeed, these matrices are very ill-conditioned and are difficult to
decompose accurately even in floating-point arithmetic. On the other hand, KMS and
Lehmer matrices have a linearly growing condition number and are therefore very well
suited to our approach. As shown by the two bottom curves of Figure 5.9, the code gener-
ated by FPLA decomposes these matrices with a precision of up to 24 bits.
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Figure 5.8: Evolution of the conditioning of the matrices of Figure 5.9.

In practice, nothing is noticeable on synthesis time, since the input matrices are made
of fixed-point variables and that the same fixed-point code is generated for the 5 different
classes of matrices. However, at run-time, ill-conditioned matrices tend to overflow more
often and for smaller matrix sizes than well-conditioned matrices.

5.5 Conclusion

In this chapter, we presented an automated approach to help in writing codes in fixed-
point arithmetic for the particular case of matrix inversion based on Cholesky decompo-
sition. This was made possible by enhancing our tool-chain with the division and square
root operators described in Chapter 2. We finally showed that accurate fixed-point codes
accompanied by bounds on the rounding errors can be automatically generated in a few
seconds to invert and to decompose matrices of sizes up to 40. The greatest difficulty of
this process is related to fixing the output format of divisions. We tested various strategies
to solve this issue, but it seems to be very dependent on the properties of the matrices to
invert.

Finally, further research directions on matrix inversion may consist in investigating,
similarly to the work done in [MNR14a] and presented in Chapter 4, the different trade-
offs involved in the code synthesis process and especially the one between code size and
accuracy. Indeed, this is shown in Figure 5.10 where the size of the computed dot-product
is shown for each coefficient. In this Figure, the variables that can be merged share the
same pattern, and one can evaluate each sub-diagonal using a unique code. This would
reduce the code size, however, it will degrade the accuracy, since this code is no longer
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Figure 5.9: Maximum errors measured when computing the Cholesky decomposition of
various kinds of matrices for sizes varying from 4 to 14.
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Figure 5.10: The variables that can be merged to reduce the code size of the triangular
inversion of a 6×6 matrix.

optimized for the range of its inputs but takes as input the merging of many elements.
Indeed, every sub-diagonal requires a dot-product computation of fixed size and one run-
time DPCode could be used to evaluate it.
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6
FPLA: A SOFTWARE TOOL FOR FIXED-POINT

CODE SYNTHESIS

This chapter presents the FPLA software tool. This tool generates fixed-
point code for matrix multiplication, Cholesky decomposition, and trian-
gular matrix inversion, and relies on CGPE for low level code synthesis. Its
design makes it easy to add support for new basic blocks such as discrete
transformations and convolutions. The chapter also summarizes the soft-
ware development effort undertook during this thesis and suggests possible
enhancements to the tool-chain.

6.1 Introduction

T
HE software development work done during this thesis reflects its organization. Ini-

tially, it was oriented towards making CGPE a versatile tool that generates fixed-
point code for many types of expressions. Therefore, it was very entrenched in

arithmetical details.
Then, we noticed that the learning curve to use CGPE was made steep by the low level

details of the arithmetic model. Indeed, it was tedious to use CGPE directly to generate
code for matrix multiplication. We therefore started working on FPLA (Fixed-Point Linear
Algebra). This tool was a tentative to provide a user friendly interface to CGPE for the syn-
thesis of matrix multiplication codes. For instance, the first version of FPLA took floating-

141
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Figure 6.1: The current flow of FPLA.

point enclosures as input, transformed them to fixed-point, and generated an input script
and XML file for each dot-product that needed to be synthesized. CGPE had to be run on
each of these scripts to generate the entire matrix multiplication code. However, it was
quickly clear to us that many trade-offs and algorithmic level optimizations were needed
to generate efficient code for this kind of linear algebra problems. Not to mention ma-
trix inversion, where as shown in Chapter 5, information needs to be passed in both ways
between the two tools.

To adapt to this, CGPE was enhanced with a library version which allowed it to be used
programmatically and to be directly interfaced with FPLA. From then on, FPLA evolved
into a toolbox for code synthesis for linear algebra basic blocks. Indeed, the experiments
of Chapters 4 and 5, and of our publications [MNR14a] and [MNR14b] were obtained using
FPLA. In its current version, it generates code for the following problems:

1. dot-products,1

2. two dimensional discrete convolutions,

3. matrix multiplication: apart from the straightforward strategies, many strategies that
look for trade-offs for matrix multiplication are implemented. The closest pair algo-
rithm 4.6 is only one of 6 possible strategies. Also, many distances can be used along
with these strategies.

1To this date, this is the only vector operation supported.
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4. triangular matrix inversion: this basic block is implemented without support for
trade-off strategies. However, since it involves divisions, it takes as input a function
to set the output format of division,

5. Cholesky decomposition: like 4, it takes as input a function to set the output format
of division.

6.2 Architecture of FPLA

The architecture of FPLA is shown in Figure 6.1 and is designed to be extensible. Indeed, to
add a new solver, it suffices to inform the dispatcher, and to inherit from an abstract solver
class. Solvers initialize an interface to the CGPE library and may allocate internal matrices
to store intermediate variables, formats, and errors.

6.3 Example of code synthesis for Cholesky decomposition

In this section, we show the results of code synthesized by FPLA for Cholesky decompo-
sition. As input, let us consider the matrix A ∈ Fix3×3 whose elements are described in
Table 6.1.

We use the function f (i1, i2) = 2 to set the output format of divisions. FPLA generates
the code for this example and produces the certified error bounds of Figure 6.2a. Next,
50 different matrices are generated according to the method presented in Section 5.4.1

Coefficient Fixed-point format Range of the integer representation

A1,1 Q1,31 [−1087801124,−516832474]

A1,2 Q1,31 [−1761415931,−1653153893]

A1,3 Q1,31 [−7579046,1706840935]

A2,1 Q1,31 [−1761415931,−1653153893]

A2,2 Q1,31 [−860080423,−391158969]

A2,3 Q1,31 [−323659740,897800577]

A3,1 Q1,31 [−7579046,1706840935]

A3,2 Q1,31 [−323659740,897800577]

A3,3 Q1,31 [−1315844890,1276745965]

Table 6.1: Fixed-point variables composing the matrix A.



144 CHAPTER 6. FPLA: A SOFTWARE TOOL FOR FIXED-POINT CODE SYNTHESIS

0 1 2

0

1

2

2−30

2−28

2−26

2−24

2−22

2−20

2−18

2−16

2−14

E
rr

or
bo

un
ds

(a) Error bounds obtained for the Cholesky de-
composition of A.
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Figure 6.2: Error bounds (left) and experimental errors (right) for the Cholesky decompo-
sition of the size-3 matrix A.

of Chapter 5. The experimental errors of the fixed-point implementation are computed by
considering the binary64 implementation as a reference and by taking the maximum errors
on the 50 different example matrices. The results are shown in Figure 6.2b. Notice how the
errors get larger for the rightmost coefficients. This could be explained by referring to the
formula of Equation (5.3) for Cholesky decomposition. In this formula, the coefficients
of column j require a size- j dot-product. Therefore, the rightmost coefficients require
larger dot-products. And the arguments of these dot-products are themselves the results of
previously generated dot-products which involve errors. This explains the pattern followed
by both the experimental errors and the bounds. To further illustrate it, Figure 6.3 shows
the experimental errors obtained for the Cholesky decomposition of matrices of size 20.

6.4 Example of code synthesis for triangular matrix
inversion

We show in this section the quality of code synthesized for triangular matrix inversion by
FPLA. Let the input matrix A ∈ Fix3×3 be such that its coefficients are described in Table 6.2.

We consider now the function f (i1, i2) = 4 to set the output format of divisions. FPLA
produces for this example the certified error bounds shown in Figure 6.4a. Next, the exper-
imental errors are obtained by considering the binary64 implementation as a reference.
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Figure 6.3: The maximum experimental errors obtained by comparing the synthesized
fixed-point code for Cholesky decomposition with a binary64 implementation on 50 dif-
ferent matrices of size 20.

Again, these experimental errors, shown in Figure 6.4b, are the maximum errors on the
inversion of 50 different sample matrices.

As a first observation, unlike for Cholesky decomposition, the least accurate coeffi-
cients seem to be concentrated on the lower left corner of the triangular matrix inverse.
Again, this could be explained by examining the formula for triangular matrix inversion
in Equation (5.1). The coefficients of the kth sub-diagonal in this formula require a size-k
dot-product. Therefore, the most accurate results are obtained for the diagonal elements
and the least are those for the lower left corner element. This observation is even more
noticeable for large matrices. Indeed, Figures 6.5a and 6.5b show, respectively, the bounds
and experimental errors obtained from inverting a triangular matrix of size 20×20.
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Coefficient Fixed-point format Range of the integer representation

A1,1 Q2,30 [1073737728,1073741824]

A1,2 Q0,0 [0,0]

A1,3 Q0,0 [0,0]

A2,1 Q1,31 [−1478062229,1081282683]

A2,2 Q2,30 [1073737728,1073741824]

A2,3 Q0,0 [0,0]

A3,1 Q1,31 [−645717818,−117989189]

A3,2 Q1,31 [−1440039578,1463813698]

A2,2 Q2,30 [1073737728,1073741824]

Table 6.2: Fixed-point variables composing the lower triangular matrix A.
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Figure 6.4: Error bounds (left) and experimental errors (right) for the inversion of the size-3
triangular matrix A.
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(a) Error bounds obtained for the inversion of a
size-20 triangular matrix.
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Figure 6.5: Error bounds (left) and experimental errors (right) for the inversion of a size-20
triangular matrix.

6.5 Future development of the tool-chain

6.5.1 CGPE

The current version of CGPE is strongly tied to the arithmetic model presented in Chap-
ter 2. One enhancement would be to separate the functioning of the tool from the arith-
metical details. CGPE could then be tested with different arithmetic models that would be
specific to each target. This would allow us to generate certified code for targets providing
saturation upon overflow, guard bits, or wider accumulators without modifying the tool.

A second area to explore is high level synthesis: indeed, thanks to the FloPoCo li-
brary [dDP11], CGPE can generate VHDL. However, we did not study the quality of the syn-
thesized architectures. For instance, we should investigate the difference between generat-
ing pipelined and combinatorial architectures. Also, FPGAs allow one to work with custom
word-lengths. Although most experiments presented in this work assumed a fixed word-
length of 32 bits, CGPE supports word-length optimization as presented in Section 1.3.5
of Chapter 1. Therefore, the savings in resources obtained from customizing word-lengths
inside CGPE should be further studied.

6.5.2 FPLA

FPLA can essentially be enhanced by adding support for new basic blocks. For instance,
for vector operations, FPLA may be enhanced with norms computations. For matrix in-
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version, other work-flows such as those based on QR and LU decomposition may also be
implemented. Also, transformations such as the discrete cosine transform (DCT) and con-
volutions are ubiquitous in signal processing and may be added to FPLA.

Finally, the trade-off strategy shown in Chapter 4 for matrix multiplication should be
extended to matrix inversion.

6.5.3 FxPLib

FxPLib is an ongoing project started in collaboration with the PEQUAN team (Univ.
Pierre et Marie Curie) to provide a library for fixed-point code simulation. It grew
out of the frustrations induced by working with proprietary libraries such as Mentor
Graphics®ac_fixed. These libraries are tailored for non-expert users and tend to hide
some implementation details from the user.

FxPLib is intended to serve the following two purposes:

1. simulate the fixed-point codes generated by our tools,

2. enforce the use of a standardized notation for describing fixed-point computations,
where all intermediate steps are made explicit.

In FxPLib, code is written in a three address style where each variable has a fixed-point
format, and all the operations are explicit. For instance, computing the product of two
variables starts by computing the full word-length doubling multiplication and then, either
truncates the result or rounds it before assigning it to a variable with a smaller format.
Listing 6.1 shows the FxPLib code generated by CGPE for the S1 scheme of the filter of
Equation (3.4) of Chapter 3.
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B Listing 6.1: FxPLib code for the filter of Equation (3.4) .

1 FxPVar filter_fxp(FxPVar& u0, FxPVar& u1, FxPVar& u2, FxPVar& u3, FxPVar& y1,

FxPVar& y2, FxPVar& y3){

2 FxPVar b0(-3, -35, true); b0.set_integer(0x65718e3b);

3 // ----------

4 FxPVar b1(-1, -33, true); b1.set_integer(0x4c152aad);

5 // ----------

6 FxPVar b2(-1, -33, true); b2.set_integer(0x4c152aad);

7 // ----------

8 FxPVar b3(-3, -35, true); b3.set_integer(0x65718e3b);

9 // ----------

10 FxPVar a1(2, -29, true); a1.set_integer(0x252e6d93);

11 // ----------

12 FxPVar a2(1, -28, true); a2.set_integer(-0x0b2294df);

13 // ----------

14 FxPVar a3(-1, -33, true); a3.set_integer(0x4688a637);

15

16 // ----------

17 FxPVar r0(8, -24, true);

18 FxPVar r0_full(8, -55, true); r0_full = a1 * y1;

19 r0 = r0_full.shift_to_format(8, -24, fixed_rndd);

20 // ----------

21 FxPVar r1(7, -25, true);

22 FxPVar r1_full(7, -54, true); r1_full = a2 * y2;

23 r1 = r1_full.shift_to_format(7, -25, fixed_rndd);

24 // ----------

25 FxPVar r2(5, -27, true);

26 FxPVar r2_full(5, -59, true); r2_full = a3 * y3;

27 r2 = r2_full.shift_to_format(5, -27, fixed_rndd);

28 // ----------

29 FxPVar r3(2, -30, true);

30 FxPVar r3_full(2, -62, true); r3_full = b0 * u0;

31 r3 = r3_full.shift_to_format(2, -30, fixed_rndd);

32 // ----------

33 FxPVar r4(2, -30, true);

34 FxPVar r4_full(2, -62, true); r4_full = b3 * u3;

35 r4 = r4_full.shift_to_format(2, -30, fixed_rndd);

36 // ----------

37 FxPVar r5(2, -30, true);

38 r5 = r3 + r4;

39 // ----------

40 FxPVar r6(4, -28, true);

41 r6 = r5.shift_to_format(4, -28);



150 CHAPTER 6. FPLA: A SOFTWARE TOOL FOR FIXED-POINT CODE SYNTHESIS

42 // ----------

43 FxPVar r7(4, -28, true);

44 FxPVar r7_full(4, -60, true); r7_full = b1 * u1;

45 r7 = r7_full.shift_to_format(4, -28, fixed_rndd);

46 // ----------

47 FxPVar r8(4, -28, true);

48 FxPVar r8_full(4, -60, true); r8_full = b2 * u2;

49 r8 = r8_full.shift_to_format(4, -28, fixed_rndd);

50 // ----------

51 FxPVar r9(4, -28, true);

52 r9 = r7 + r8;

53 // ----------

54 FxPVar r10(4, -28, true);

55 r10 = r6 + r9;

56 // ----------

57 FxPVar r11(5, -27, true);

58 r11 = r10.shift_to_format(5, -27);

59 // ----------

60 FxPVar r12(5, -27, true);

61 r12 = r2 + r11;

62 // ----------

63 FxPVar r13(7, -25, true);

64 r13 = r12.shift_to_format(7, -25);

65 // ----------

66 FxPVar r14(7, -25, true);

67 r14 = r1 + r13;

68 // ----------

69 FxPVar r15(8, -24, true);

70 r15 = r14.shift_to_format(8, -24);

71 // ----------

72 FxPVar r16(8, -24, true);

73 r16 = r0 + r15;

74 // ----------

75 FxPVar r17(6, -24, true);

76 r17 = r16.shift_to_format(6, -24);

77 return r17;

78 }
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Lines 2 to 14 of this listing initialize the fixed-point coefficients of the filter and the rest
of the listing is the computation of the evaluation scheme. For example, between Lines 17
and 19, a product is computed as follows:

1. the variable that will hold the output of multiplication is declared in Line 17,

2. an intermediate variable whose size is the sum of that of its operands is declared in
Line 18,

3. the full product is computed and assigned to this variable in Line 18,

4. in Line 19, an explicit conversion is performed whereby only the upper half of the
result is kept and truncation is performed.

6.6 Conclusion

For fixed-point programming to appeal to non expert programmers, code generation tools
should be provided. Our contributions to reach this goal include the development of the
CGPE and FPLA tools. This development resulted from an effort to provide a tool-chain
built from the ground up on an arithmetic model. With these tools, we were able to gener-
ate in few seconds, code for large problems such as the triangular matrix inversion of size
40×40. Also, as a proof of concept, our tool-chain showed that one can generate code for
large problems and still have error bounds that reassure the programmer. Finally, for each
of the tools, we described some further improvements. These improvements push towards
more research results on certified fixed-point code generation for high level problems but
are not intended to provide industrial strength to our tools. To do so, more integration and
better interactivity are needed.





U
CONCLUSION

T
HE work presented in this thesis addressed the automated synthesis of certified

fixed-point programs and treated the particular cases of code generation for some
linear algebra basic blocks. For this purpose, it tackled two recurrent issues en-

countered by embedded systems developers. These issues are the difficulty of fixed-point
programming and the perceived low numerical quality of fixed-point computations. This
work also led to the development of two software tools: CGPE and FPLA.

Tackling the difficulty of fixed-point programming

Writing fixed-point programs is tedious, time consuming, and requires arithmetic profi-
ciency. To make it accessible to non-experts, this work suggests to build fixed-point syn-
thesis tools instead of manually developing fixed-point programs. Moreover, to make it
easy to perform range and error analyses, such tools must have a clear arithmetic model.

We presented an example of arithmetic model in Chapter 2 of Part I and provided a tool,
CGPE, that implements it. While this error model is not suitable for all targets, the detailed
steps of Chapter 2 should enable one to develop a model that is more suitable to his target.

Finally, our arithmetic model gives bounds on the rounding errors of fixed-point square
root and division as well as the means to implement them. These operators are useful for
linear algebra basic blocks and are often overlooked in research publications.

The CGPE library. CGPE implements the arithmetic model of Chapter 2 and was pre-
sented in Chapter 3. It was greatly enhanced during this thesis and support was added for
signed arithmetic, shifts handling, new expressions such as dot-products, and instruction
selection. Moreover, the current tool has an extensible architecture and comes with a li-
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brary version. Thanks to CGPE, we showed in the case study of Chapter 3 that obtaining
a fixed-point implementation of an Infinite Impulse Response filter is fast and automated.
Our results also show that, besides having a low evaluation latency, the generated code is
more accurate than a floating-point implementation using the same word-length. Finally,
CGPE is now an open source research project, and can be seen as a proof of concept for a
tool that strictly adheres to an arithmetic model.

Tackling the low numerical quality of fixed-point computations

The second issue with fixed-point numbers is their perceived lack of accuracy. This thesis
tackles it by suggesting that the arithmetic model comes with strict bounds on the round-
ing errors of each operator. In Chapter 2, we showed how to derive such bounds. And by
doing so, the tool that implements the model can propagate these bounds and provide the
user with guarantied enclosures on rounding errors. For instance, Section 3.4 showed, step
by step, how we obtained certified bounds on the rounding errors of our implementation
of an IIR filter.

These error bounds serve two purposes: give feedback to the user to reassure him on
the quality of the generated code and allow this code to be used in critical applications. In-
deed, up until now, the accuracy of fixed-point implementations has been asserted a pos-
teriori by using simulations and by comparing their result to that of floating-point imple-
mentations. Contrarily to our approach, such techniques do not provide guaranties and
do not scale when the problem at hand has many input variables.

Tackling code synthesis for large linear algebra problems

Part II of this thesis relied on the arithmetic model and the tool presented in Part I to in-
vestigate code generation for higher level problems. Such problems include linear algebra
basic blocks such as matrix multiplication and inversion. We showed in Chapter 4 that
code synthesis for matrix multiplication can rely on straightforward approaches. But these
approaches are on the edges of the accuracy versus code size spectrum. Therefore, we
suggested, implemented, and provided experimental data for a novel approach that finds
trade-offs between these algorithms.

Finally, we tackled matrix inversion in Chapter 5. We showed that the order of synthesis
must be arranged to respect the dependencies between the coefficients. Matrix inversion
also provided a test case for our square root and division operators. We showed through our
experiments that the user must be careful in setting the output format of division. Indeed,
small output formats lead to tight accuracy bounds but involve a high risk of run-time
overflows.

The FPLA tool. FPLA is a toolbox built on top of CGPE to generate fixed-point code for
linear algebra primitives. It is described in Chapter 6. This tool contains our implementa-
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tions of the techniques presented in Chapters 4 and 5. In these Chapters, we discussed the
numerical quality and accuracy bounds of codes generated using this tool. Finally, FPLA
is meant to be extensible and we look forward to enhance it with support for other linear
algebra basic blocks.

Future works

Using compilers and programming in high level languages is commonplace today. Yet, in
the early 1960’s, many software companies were skeptical about adopting these innova-
tions. And, the shift towards high level languages was only finalized after compilers proved
their effectiveness.

It seems that fixed-point code generation tools are in the same situation as early com-
pilers. While many research works were published describing a variety of results and tech-
niques for automated range and precision analyses, the absence of any open source or any
widely used tools prevented reproducibility. However, the work of recent projects such as
SPIRAL [VP04] and DEFIS [MRS+12] is encouraging. Indeed, these projects provide the
missing link between academic research and industrial applications of fixed-point pro-
gramming. In light of this and of the contributions of this thesis, we give three future re-
search directions on fixed-point arithmetic:

Towards code synthesis for higher level problems. As of today, fixed-point programmers
working on large applications have no choice but to implement part of them in floating-
point arithmetic. For instance, an application like Space Time Adaptive Processing (STAP)
for radars involves computing matrix inversion. Due to the large number of steps of matrix
inversion, it is tedious to implement it without appropriate tools. The same applies to
other frequently used basic blocks such as the Fast Fourier Transform, two dimensional
convolutions, and advanced filters like Kalman’s. This thesis tackled matrix multiplication
and showed how to find accuracy versus size trade-off implementations. It also presented
experimental data on matrix inversion. Future work would extend the trade-off strategy to
matrix inversion as well as to the aforementioned basic blocks.

Towards high level synthesis. High level synthesis consists in generating hardware archi-
tectures instead of software implementations. Targeting FPGAs has two justifications: this
type of hardware is becoming more and more popular today and it presents the advantage
of allowing fully custom designs. For instance, a fixed-point FPGA implementation can use
custom word-length numbers and therefore beat floating-point arithmetic in terms of chip
area, energy consumption, memory bandwidth consumption, and latency.

Towards more standards and more versatile tools. More than tools, fixed-point pro-
gramming lacks standards. Basic notions such as fixed-point formats, rounding errors, and
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units in the last place are referred to differently among computer arithmeticians and sig-
nal processing researchers. Code generation itself is not standardized and is tedious due to
the heterogeneity of the DSP architectures. For instance, a tool like CGPE would be consid-
ered attractive only as long as its underlying arithmetic model suits the target architecture.
Therefore, as a long time objective, future work should be carried out to homogenize the
notions coming from the two research communities. Also, future work on how to describe
DSP architectures and modelize their arithmetic operations would provide more versatile
tools. And the widespread use of these tools will lead to more reproducible research.
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EXPERIMENTS

For the sake of reproducibility, this appendix gives the software versions used for the ex-
periments throughout this work.

Libaffa

• Version 0.9.6: available at http://sv.gnu.org/download/libaffa/libaffa-0.
9.6.tar.gz.

MPFR

• Version 3.1.0: available at http://www.mpfr.org/mpfr-3.1.0/mpfr-3.1.0.tar.
gz.

MPFI

• Version 1.5.1: available at https://gforge.inria.fr/frs/download.php/file/
30130/mpfi-1.5.1.tar.gz.

159

http://sv.gnu.org/download/libaffa/libaffa-0.9.6.tar.gz
http://sv.gnu.org/download/libaffa/libaffa-0.9.6.tar.gz
http://www.mpfr.org/mpfr-3.1.0/mpfr-3.1.0.tar.gz
http://www.mpfr.org/mpfr-3.1.0/mpfr-3.1.0.tar.gz
https://gforge.inria.fr/frs/download.php/file/30130/mpfi-1.5.1.tar.gz
https://gforge.inria.fr/frs/download.php/file/30130/mpfi-1.5.1.tar.gz


160 APPENDIX A. SOFTWARE VERSIONS TO REPRODUCE THE EXPERIMENTS

GAPPA

• Version 0.17.1: available at https://gforge.inria.fr/frs/download.php/

file/32292/gappa-0.17.1.tar.gz.

GNU Octave

• Version 3.6.2: available at ftp://ftp.octave.org/pub/gnu/octave/octave-3.
6.2.tar.gz.

Matlab

• Version 7.11.0.584 (R2010b): See http://www.mathworks.com.

Sollya

• Version 4.0: available at https://gforge.inria.fr/frs/download.php/file/

32549/sollya-4.0.tar.gz.

CGPE

Chapters 3, 5, and 6

• Revision 560: retrievable from CGPE’s repository
svn checkout svn://scm.gforge.inria.fr/svnroot/cgpe/trunk@560.

Chapter 4

• Revision 516: retrievable from CGPE’s repository
svn checkout svn://scm.gforge.inria.fr/svnroot/cgpe/trunk@516.

FPLA

Chapter 4

• Revision 79: retrievable from FPLA’s repository
svn checkout https://gforge-lirmm.lirmm.fr/svn/fpp@79.

Chapters 5 and 6

• Revision 107: retrievable from FPLA’s repository
svn checkout https://gforge-lirmm.lirmm.fr/svn/fpp@107.

https://gforge.inria.fr/frs/download.php/file/32292/gappa-0.17.1.tar.gz
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Abstract

To be cost effective, embedded systems are shipped with low-end micro-processors. These
processors are dedicated to one or few tasks that are highly demanding on computational
resources. Examples of widely deployed tasks include the fast Fourier transform, convolu-
tions, and digital filters. For these tasks to run efficiently, embedded systems programmers
favor fixed-point arithmetic over the standardized and costly floating-point arithmetic.
However, they are faced with two difficulties: First, writing fixed-point codes is tedious
and requires that the programmer must be in charge of every arithmetical detail. Sec-
ond, because of the low dynamic range of fixed-point numbers compared to floating-point
numbers, there is a persistent belief that fixed-point computations are inherently inaccu-
rate. The first part of this thesis addresses these two limitations as follows: It shows how
to design and implement tools to automatically synthesize fixed-point programs. Next, to
strengthen the user’s confidence in the synthesized codes, analytic methods are suggested
to generate certificates. These certificates can be checked using a formal verification tool,
and assert that the rounding errors of the generated codes are indeed below a given thresh-
old. The second part of the thesis is a study of the trade-offs involved when generating
fixed-point code for linear algebra basic blocks. It gives experimental data on fixed-point
synthesis for matrix multiplication and matrix inversion through Cholesky decomposition.

Keywords: Fixed-point arithmetic, automated code synthesis, certified numerical accuracy

Résumé

Pour réduire les coûts des systèmes embarqués, ces derniers sont livrés avec des micro-
processeurs peu puissants. Ces processeurs sont dédiés à l’exécution de tâches calcu-
latoires dont certaines, comme la transformée de Fourier rapide, peuvent s’avérer ex-
igeantes en termes de ressources de calcul. Afin que les implantations de ces algorithmes
soient efficaces, les programmeurs utilisent l’arithmétique à virgule fixe qui est plus adap-
tée aux processeurs dépourvus d’unité flottante. Cependant, ils se retrouvent confrontés
à deux difficultés: D’abord, coder en virgule fixe est fastidieux et exige que le program-
meur gère tous les détails arithmétiques. Ensuite, et en raison de la faible dynamique des
nombres à virgule fixe par rapport aux nombres flottants, les calculs en fixe sont souvent
perçus comme intrinsèquement peu précis. La première partie de cette thèse propose une
méthodologie pour dépasser ces deux limitations. Elle montre comment concevoir et met-
tre en œuvre des outils pour générer automatiquement des programmes en virgule fixe.
Ensuite, afin de rassurer l’utilisateur quant à la qualité numérique des codes synthétisés,
des certificats sont générés qui fournissent des bornes sur les erreurs d’arrondi. La deux-
ième partie de cette thèse est dédiée à l’étude des compromis lors de la génération de pro-
grammes en virgule fixe pour les briques d’algèbre linéaire. Des données expérimentales y
sont fournies sur la synthèse de code pour la multiplication et l’inversion matricielles.

Mots clefs : Arithmétique à virgule fixe, génération automatique de code, qualité numérique
certifiée
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