E. Hylek, K. Phillips, Y. Chang, L. Henault, J. Selby et al., Prevalence of diagnosed atrial fibrillation in adults: national implications for rhythm management and stroke prevention: the AnTicoagulation and Risk Factors in Atrial Fibrillation (ATRIA) Study, Europace. JAMA, vol.12285, issue.1018, pp.1360-14202370, 2001.

I. Savelieva and J. Camm, Update on Atrial Fibrillation: Part I, Clinical Cardiology, vol.150, issue.2, pp.55-62, 2008.
DOI : 10.1002/clc.20138

E. Benjamin, P. Wolf, D. Agostino, R. Silbershatz, H. Kannel et al., Impact of Atrial Fibrillation on the Risk of Death : The Framingham Heart Study, Circulation, vol.98, issue.10, pp.946-952, 1998.
DOI : 10.1161/01.CIR.98.10.946

M. Haissaguerre, P. Jais, D. Shah, A. Takahashi, M. Hocini et al., Spontaneous Initiation of Atrial Fibrillation by Ectopic Beats Originating in the Pulmonary Veins, New England Journal of Medicine, vol.339, issue.10, pp.659-666, 1998.
DOI : 10.1056/NEJM199809033391003

R. Cappato, H. Calkins, S. Chen, W. Davies, Y. Iesaka et al., Updated Worldwide Survey on the Methods, Efficacy, and Safety of Catheter Ablation for Human Atrial Fibrillation, Circulation: Arrhythmia and Electrophysiology, vol.3, issue.1
DOI : 10.1161/CIRCEP.109.859116

W. Garrey, Auricular fibrillation, Physiol Rev, vol.1924, issue.4, pp.215-250

U. Schotten, S. Verheule, P. Kirchhof, and A. Goette, Pathophysiological Mechanisms of Atrial Fibrillation: A Translational Appraisal, Physiological Reviews, vol.91, issue.1, pp.265-325, 2010.
DOI : 10.1152/physrev.00031.2009

K. Nishida, G. Michael, D. Dobrev, and S. Nattel, Animal models for atrial fibrillation: clinical insights and scientific opportunities, Europace, vol.12, issue.2, pp.160-172, 2010.
DOI : 10.1093/europace/eup328

C. Morillo, G. Klein, D. Jones, and C. Guiraudon, Chronic Rapid Atrial Pacing : Structural, Functional, and Electrophysiological Characteristics of a New Model of Sustained Atrial Fibrillation, Circulation, vol.91, issue.5, pp.1588-1595, 1995.
DOI : 10.1161/01.CIR.91.5.1588

M. Wijffels, C. Kirchhof, R. Dorland, and M. Allessie, Atrial Fibrillation Begets Atrial Fibrillation : A Study in Awake Chronically Instrumented Goats, Circulation, vol.92, issue.7, pp.1954-1968, 1995.
DOI : 10.1161/01.CIR.92.7.1954

M. Mansour, R. Mandapati, O. Berenfeld, J. Chen, F. Samie et al., Left-to-Right Gradient of Atrial Frequencies During Acute Atrial Fibrillation in the Isolated Sheep Heart, Circulation, vol.103, issue.21, pp.2631-2636, 2001.
DOI : 10.1161/01.CIR.103.21.2631

A. Winfree, Spiral Waves of Chemical Activity, Science, vol.175, issue.4022, pp.634-636, 1972.
DOI : 10.1126/science.175.4022.634

O. Berenfeld and A. Pertsov, Dynamics of Intramural Scroll Waves in Three-dimensional Continuous Myocardium with Rotational Anisotropy, Journal of Theoretical Biology, vol.199, issue.4, pp.383-394, 1999.
DOI : 10.1006/jtbi.1999.0965

M. Yamazaki, S. Mironov, C. Taravant, J. Brec, L. Vaquero et al., Heterogeneous atrial wall thickness and stretch promote scroll waves anchoring during atrial fibrillation, Cardiovascular Research, vol.94, issue.1, pp.48-57, 2012.
DOI : 10.1093/cvr/cvr357

M. Vaquero, D. Calvo, and J. Jalife, Cardiac fibrillation: From ion channels to rotors in the human heart, Heart Rhythm, vol.5, issue.6, pp.872-879, 2008.
DOI : 10.1016/j.hrthm.2008.02.034

V. Fast and A. Kleber, Role of wavefront curvature in propagation of cardiac impulse, Cardiovascular Research, vol.33, issue.2
DOI : 10.1016/S0008-6363(96)00216-7

S. Pandit, O. Berenfeld, J. Anumonwo, R. Zaritski, J. Kneller et al., Ionic Determinants of Functional Reentry in a 2-D Model of Human Atrial Cells During Simulated Chronic Atrial Fibrillation, Biophysical Journal, vol.88, issue.6, pp.3806-3821, 2005.
DOI : 10.1529/biophysj.105.060459

S. Pandit and J. Jalife, Rotors and the Dynamics of Cardiac Fibrillation, Circulation Research, vol.112, issue.5, pp.849-862, 2013.
DOI : 10.1161/CIRCRESAHA.111.300158

C. Cabo, A. Pertsov, J. Davidenko, W. Baxter, R. Gray et al., Vortex shedding as a precursor of turbulent electrical activity in cardiac muscle, Biophysical Journal, vol.70, issue.3, pp.1105-1111, 1996.
DOI : 10.1016/S0006-3495(96)79691-1

S. Noujaim, O. Berenfeld, J. Kalifa, M. Cerrone, K. Nanthakumar et al., Universal scaling law of electrical turbulence in the mammalian heart, Proceedings of the National Academy of Sciences, vol.104, issue.52, pp.20985-20989, 2007.
DOI : 10.1073/pnas.0709758104

K. Tanaka, S. Zlochiver, K. Vikstrom, M. Yamazaki, J. Moreno et al., Spatial Distribution of Fibrosis Governs Fibrillation Wave Dynamics in the Posterior Left Atrium During Heart Failure, Circulation Research, vol.101, issue.8, pp.839-847, 2007.
DOI : 10.1161/CIRCRESAHA.107.153858

O. Berenfeld, A. Zaitsev, S. Mironov, A. Pertsov, and J. Jalife, Frequency-Dependent Breakdown of Wave Propagation Into Fibrillatory Conduction Across the Pectinate Muscle Network in the Isolated Sheep Right Atrium, Circulation Research, vol.90, issue.11, pp.1173-1180, 2002.
DOI : 10.1161/01.RES.0000022854.95998.5C

S. Narayan, Conventional ablation for atrial fibrillation with or without focal impulse and rotor modulation (the CONFIRM trial) Abstract, Heart Rhythm Society Scientific Sessions. 2011. 41. Nathan H, Eliakim M. The junction between the left atrium and the pulmonary veins. An anatomic study of human hearts, Circulation, vol.34, issue.3, pp.412-422, 1966.

R. Hassink, H. Aretz, J. Ruskin, and D. Keane, Morphology of atrial myocardium in human pulmonary veins, Journal of the American College of Cardiology, vol.42, issue.6, pp.1108-1114, 2003.
DOI : 10.1016/S0735-1097(03)00918-5

S. Ho, D. Sanchez-quintana, J. Cabrera, and R. Anderson, Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation, J Cardiovasc Electrophysiol, vol.10, issue.11, pp.1525-1533, 1999.

N. Roux, E. Havet, and P. Mertl, The myocardial sleeves of the pulmonary veins: potential implications for atrial fibrillation, Surgical and Radiologic Anatomy, vol.26, issue.4, pp.285-289, 2004.
DOI : 10.1007/s00276-003-0219-6

I. Steiner, P. Hajkova, J. Kvasnicka, and I. Kholova, Myocardial sleeves of pulmonary veins and atrial fibrillation: a postmortem histopathological study of 100 subjects, Virchows Archiv, vol.39, issue.Suppl. C, pp.88-95, 2006.
DOI : 10.1007/s00428-006-0197-2

E. Hertervig, O. Kongstad, E. Ljungstrom, B. Olsson, and S. Yuan, Pulmonary vein potentials in patients with and without atrial fibrillation, Europace, vol.10, issue.6, pp.692-697, 2008.
DOI : 10.1093/europace/eun092

S. Verheule, E. Wilson, R. Arora, S. Engle, L. Scott et al., Tissue structure and connexin expression of canine pulmonary veins, Cardiovascular Research, vol.55, issue.4, pp.727-738, 2002.
DOI : 10.1016/S0008-6363(02)00490-X

J. Ehrlich, T. Cha, L. Zhang, D. Chartier, P. Melnyk et al., Cellular electrophysiology of canine pulmonary vein cardiomyocytes: action potential and ionic current properties, The Journal of Physiology, vol.551, issue.3, pp.801-813, 2003.
DOI : 10.1113/jphysiol.2003.046417

Y. Chen, S. Chen, Y. Chen, H. Yeh, P. Chan et al., Effects of Rapid Atrial Pacing on the Arrhythmogenic Activity of Single Cardiomyocytes From Pulmonary Veins: Implication in Initiation of Atrial Fibrillation, Circulation, vol.104, issue.23, pp.2849-2854, 2001.
DOI : 10.1161/hc4801.099736

E. Dupont, Y. Ko, S. Rothery, S. Coppen, M. Baghai et al., The gapjunctional protein connexin40 is elevated in patients susceptible to postoperative atrial fibrillation Basic and clinical electrophysiology of pulmonary vein ectopy, Circulation. Cardiovasc Res, vol.10354, issue.512, pp.842-849287, 2001.

S. Po, Y. Li, D. Tang, H. Liu, N. Geng et al., Rapid and Stable Re-Entry Within the Pulmonary Vein as a Mechanism Initiating Paroxysmal Atrial Fibrillation, Journal of the American College of Cardiology, vol.45, issue.11, pp.1871-1877, 2005.
DOI : 10.1016/j.jacc.2005.02.070

T. Saito, K. Waki, and A. Becker, Left Atrial Myocardial Extension onto Pulmonary Veins in Humans:., Journal of Cardiovascular Electrophysiology, vol.94, issue.8, pp.888-894, 2000.
DOI : 10.1002/jemt.1070300607

J. Kalifa, J. Jalife, A. Zaitsev, S. Bagwe, M. Warren et al., Intra-Atrial Pressure Increases Rate and Organization of Waves Emanating From the Superior Pulmonary Veins During Atrial Fibrillation, Circulation, vol.108, issue.6, pp.668-671, 2003.
DOI : 10.1161/01.CIR.0000086979.39843.7B

W. Lin, C. Tai, M. Hsieh, C. Tsai, Y. Lin et al., Catheter Ablation of Paroxysmal Atrial Fibrillation Initiated by Non-Pulmonary Vein Ectopy, Circulation, vol.107, issue.25, pp.3176-3183, 2003.
DOI : 10.1161/01.CIR.0000074206.52056.2D

H. Calkins, K. Kuck, R. Cappato, J. Brugada, A. Camm et al., Ganglionated plexus ablation vs linear ablation in patients undergoing pulmonary vein isolation for persistent/long-standing persistent atrial fibrillation: a randomized comparison, HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of 65, pp.1280-1286, 2012.

E. Pokushalov, A. Romanov, P. Shugayev, S. Artyomenko, N. Shirokova et al., Selective ganglionated plexi ablation for paroxysmal atrial fibrillation, Heart Rhythm, vol.6, issue.9, pp.1257-1264, 2009.
DOI : 10.1016/j.hrthm.2009.05.018

Q. Zhou, Y. Hou, and S. Yang, A Meta-Analysis of the Comparative Efficacy of Ablation for Atrial Fibrillation with and without Ablation of the Ganglionated Plexi, Pacing and Clinical Electrophysiology, vol.209, issue.12, pp.1687-1694, 2011.
DOI : 10.1111/j.1540-8159.2011.03220.x

J. Wu, H. Estner, A. Luik, E. Ucer, T. Reents et al., Automatic 3D Mapping of Complex Fractionated Atrial Electrograms (CFAE) in Patients with Paroxysmal and Persistent Atrial Fibrillation, Journal of Cardiovascular Electrophysiology, vol.17, issue.Suppl 3, pp.897-903, 2008.
DOI : 10.1111/j.1540-8167.2008.01145.x

X. Qi, Y. Yeh, L. Xiao, B. Burstein, A. Maguy et al., Cellular Signaling Underlying Atrial Tachycardia Remodeling of L-type Calcium Current, Circulation Research, vol.103, issue.8, pp.845-854, 2008.
DOI : 10.1161/CIRCRESAHA.108.175463

Y. Lu, Y. Zhang, N. Wang, Z. Pan, X. Gao et al., MicroRNA-328 Contributes to Adverse Electrical Remodeling in Atrial Fibrillation, Circulation, vol.122, issue.23, pp.2378-2387, 2010.
DOI : 10.1161/CIRCULATIONAHA.110.958967

R. Bosch, X. Zeng, J. Grammer, K. Popovic, C. Mewis et al., Ionic mechanisms of electrical remodeling in human atrial fibrillation, Cardiovascular Research, vol.44, issue.1, pp.121-131, 1999.
DOI : 10.1016/S0008-6363(99)00178-9

Z. Wang, Y. Lu, and Y. B. , MicroRNAs and atrial fibrillation: new fundamentals, Cardiovascular Research, vol.89, issue.4
DOI : 10.1093/cvr/cvq350

URL : http://cardiovascres.oxfordjournals.org/cgi/content/short/89/4/710

N. Voigt, A. Trausch, M. Knaut, K. Matschke, A. Varro et al., Left-to-Right Atrial Inward Rectifier Potassium Current Gradients in Patients With Paroxysmal Versus Chronic Atrial Fibrillation, Circulation: Arrhythmia and Electrophysiology, vol.3, issue.5, pp.472-480, 2010.
DOI : 10.1161/CIRCEP.110.954636

N. Voigt, A. Maguy, Y. Yeh, X. Qi, U. Ravens et al., Changes in IK,ACh single-channel activity with atrial tachycardia remodelling in canine atrial cardiomyocytes, Cardiovascular Research, vol.77, issue.1, pp.35-43, 2008.
DOI : 10.1093/cvr/cvm051

S. Makary, N. Voigt, A. Maguy, R. Wakili, K. Nishida et al., Differential Protein Kinase C Isoform Regulation and Increased Constitutive Activity of Acetylcholine-Regulated Potassium Channels in Atrial Remodeling, Circulation Research, vol.109, issue.9, pp.1031-1043, 2011.
DOI : 10.1161/CIRCRESAHA.111.253120

F. Sarmast, A. Kolli, A. Zaitsev, K. Parisian, A. Dhamoon et al., Cholinergic atrial fibrillation: IK,ACh gradients determine unequal left/right atrial frequencies and rotor dynamics, Cardiovascular Research, vol.59, issue.4, pp.863-873, 2003.
DOI : 10.1016/S0008-6363(03)00540-6

M. Swartz, G. Fink, C. Lutz, S. Taffet, O. Berenfeld et al., Left versus right atrial difference in dominant frequency, K+ channel transcripts, and fibrosis in patients developing atrial fibrillation after cardiac surgery, Heart Rhythm, vol.6, issue.10, pp.1415-1422, 2009.
DOI : 10.1016/j.hrthm.2009.06.018

D. Li, L. Zhang, J. Kneller, and S. Nattel, Potential Ionic Mechanism for Repolarization Differences Between Canine Right and Left Atrium, Circulation Research, vol.88, issue.11, pp.1168-1175, 2001.
DOI : 10.1161/hh1101.091266

R. Gaspo, R. Bosch, M. Talajic, and S. Nattel, Functional Mechanisms Underlying Tachycardia-Induced Sustained Atrial Fibrillation in a Chronic Dog Model, Circulation, vol.96, issue.11, pp.4027-4035, 1997.
DOI : 10.1161/01.CIR.96.11.4027

T. Yagi, J. Pu, P. Chandra, M. Hara, P. Danilo et al., Density and function of inward currents in right atrial cells from chronically fibrillating canine atria, Cardiovascular Research, vol.54, issue.2, pp.405-415, 2002.
DOI : 10.1016/S0008-6363(02)00279-1

S. Sossalla, B. Kallmeyer, S. Wagner, M. Mazur, U. Maurer et al., Altered Na+Currents in Atrial Fibrillation, Journal of the American College of Cardiology, vol.55, issue.21, pp.2330-2342, 2010.
DOI : 10.1016/j.jacc.2009.12.055

A. Workman, K. Kane, and A. Rankin, The contribution of ionic currents to changes in refractoriness of human atrial myocytes associated with chronic atrial fibrillation, Cardiovascular Research, vol.52, issue.2, pp.226-235, 2001.
DOI : 10.1016/S0008-6363(01)00380-7

T. Cha, J. Ehrlich, L. Zhang, and S. Nattel, Atrial Ionic Remodeling Induced by Atrial Tachycardia in the Presence of Congestive Heart Failure, Circulation, vol.110, issue.12, pp.1520-1526, 2004.
DOI : 10.1161/01.CIR.0000142052.03565.87

T. Cha, J. Ehrlich, L. Zhang, D. Chartier, T. Leung et al., Atrial Tachycardia Remodeling of Pulmonary Vein Cardiomyocytes: Comparison With Left Atrium and Potential Relation to Arrhythmogenesis, Circulation, vol.111, issue.6, pp.728-735, 2005.
DOI : 10.1161/01.CIR.0000155240.05251.D0

D. Li, P. Melnyk, J. Feng, Z. Wang, K. Petrecca et al., Effects of Experimental Heart Failure on Atrial Cellular and Ionic Electrophysiology, Circulation, vol.101, issue.22, pp.2631-2638, 2000.
DOI : 10.1161/01.CIR.101.22.2631

J. Ausma, M. Wijffels, F. Thone, L. Wouters, M. Allessie et al., Structural Changes of Atrial Myocardium due to Sustained Atrial Fibrillation in the Goat, Circulation, vol.96, issue.9, pp.3157-3163, 1997.
DOI : 10.1161/01.CIR.96.9.3157

A. Frustaci, C. Chimenti, F. Bellocci, E. Morgante, M. Russo et al., Histological Substrate of Atrial Biopsies in Patients With Lone Atrial Fibrillation, Circulation, vol.96, issue.4, pp.1180-1184, 1997.
DOI : 10.1161/01.CIR.96.4.1180

C. Vasquez, N. Benamer, and G. Morley, The Cardiac Fibroblast: Functional and Electrophysiological Considerations in Healthy and Diseased Hearts, Journal of Cardiovascular Pharmacology, vol.57, issue.4, pp.380-388, 2011.
DOI : 10.1097/FJC.0b013e31820cda19

C. Souders, S. Bowers, and T. Baudino, Cardiac Fibroblast: The Renaissance Cell, Circulation Research, vol.105, issue.12, pp.1164-1176, 2009.
DOI : 10.1161/CIRCRESAHA.109.209809

R. Wakili, N. Voigt, S. Kaab, D. Dobrev, and S. Nattel, Recent advances in the molecular pathophysiology of atrial fibrillation, Journal of Clinical Investigation, vol.121, issue.8, pp.2955-2968, 2011.
DOI : 10.1172/JCI46315

C. Tsai, C. Tseng, J. Hwang, C. Wu, C. Yu et al., Tachycardia of atrial myocytes induces collagen expression in atrial fibroblasts through transforming growth factor ??1, Cardiovascular Research, vol.89, issue.4, pp.805-815, 2011.
DOI : 10.1093/cvr/cvq322

B. Burstein, E. Libby, A. Calderone, and S. Nattel, Differential Behaviors of Atrial Versus Ventricular Fibroblasts: A Potential Role for Platelet-Derived Growth Factor in Atrial-Ventricular Remodeling Differences, Circulation, vol.117, issue.13, pp.1630-1641, 2008.
DOI : 10.1161/CIRCULATIONAHA.107.748053

R. Duisters, A. Tijsen, B. Schroen, J. Leenders, V. Lentink et al., miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling Electrotonic coupling between human atrial myocytes and fibroblasts alters myocyte excitability and repolarization, Circ Res. Biophys J, vol.10497, issue.28, pp.170-1782179, 2009.

Y. Xie, A. Garfinkel, P. Camelliti, P. Kohl, J. Weiss et al., Effects of fibroblast-myocyte coupling on cardiac conduction and vulnerability to reentry: A computational study, Heart Rhythm, vol.6, issue.11, pp.1641-1649, 2009.
DOI : 10.1016/j.hrthm.2009.08.003

J. Ausma, H. Van-der-velden, M. Lenders, E. Van-ankeren, H. Jongsma et al., Reverse Structural and Gap-Junctional Remodeling After Prolonged Atrial Fibrillation in the Goat, Circulation, vol.107, issue.15, pp.2051-2058, 2003.
DOI : 10.1161/01.CIR.0000062689.04037.3F

N. Gaborit, M. Steenman, G. Lamirault, L. Meur, N. et al., Human atrial ion channel and transporter subunit gene-expression remodeling associated with valvular heart disease and atrial fibrillation Atrial fibrillation-induced gap junctional remodeling, Circulation. J Am Coll Cardiol, vol.11239, issue.9910, pp.471-4811709, 2002.

M. Gollob, D. Jones, A. Krahn, L. Danis, X. Gong et al., ) in Atrial Fibrillation, New England Journal of Medicine, vol.354, issue.25, pp.2677-2688, 2006.
DOI : 10.1056/NEJMoa052800

T. Igarashi, J. Finet, A. Takeuchi, Y. Fujino, M. Strom et al., Connexin Gene Transfer Preserves Conduction Velocity and Prevents Atrial Fibrillation, Circulation, vol.125, issue.2, pp.216-225, 2012.
DOI : 10.1161/CIRCULATIONAHA.111.053272

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260348

A. Tan, H. Li, S. Wachsmann-hogiu, L. Chen, P. Chen et al., Autonomic Innervation and Segmental Muscular Disconnections at the Human Pulmonary Vein-Atrial Junction, Journal of the American College of Cardiology, vol.48, issue.1, pp.132-143, 2006.
DOI : 10.1016/j.jacc.2006.02.054

M. Shen, E. Choi, A. Tan, S. Lin, M. Fishbein et al., Neural mechanisms of atrial arrhythmias, Nature Reviews Cardiology, vol.123, issue.1, pp.30-39, 2011.
DOI : 10.1038/nrcardio.2011.139

J. Kneller, R. Zou, E. Vigmond, Z. Wang, L. Leon et al., Cholinergic Atrial Fibrillation in a Computer Model of a Two-Dimensional Sheet of Canine Atrial Cells With Realistic Ionic Properties, Circulation Research, vol.90, issue.9, pp.73-87, 2002.
DOI : 10.1161/01.RES.0000019783.88094.BA

P. Gould, M. Yii, C. Mclean, S. Finch, T. Marshall et al., Evidence for Increased Atrial Sympathetic Innervation in Persistent Human Atrial Fibrillation, Pacing and Clinical Electrophysiology, vol.23, issue.3
DOI : 10.1016/0735-1097(96)00120-9

T. Machida, N. Hashimoto, I. Kuwahara, Y. Ogino, J. Matsuura et al., Effects of a Highly Selective Acetylcholine-Activated K+ Channel Blocker on Experimental Atrial Fibrillation, Circulation: Arrhythmia and Electrophysiology, vol.4, issue.1, pp.94-102, 2011.
DOI : 10.1161/CIRCEP.110.951608

Z. Lu, B. Scherlag, J. Lin, G. Niu, K. Fung et al., Atrial Fibrillation Begets Atrial Fibrillation: Autonomic Mechanism for Atrial Electrical Remodeling Induced by Short-Term Rapid Atrial Pacing, Circulation: Arrhythmia and Electrophysiology, vol.1, issue.3, pp.184-192, 2008.
DOI : 10.1161/CIRCEP.108.784272

X. Sheng, B. Scherlag, L. Yu, S. Li, R. Ali et al., Prevention and Reversal of Atrial Fibrillation Inducibility and Autonomic Remodeling by Low-Level Vagosympathetic Nerve Stimulation, Journal of the American College of Cardiology, vol.57, issue.5, pp.563-571, 2011.
DOI : 10.1016/j.jacc.2010.09.034

D. Katritsis, Autonomic denervation for the treatment of atrial fibrillation, Indian Pacing Electrophysiol J, vol.11, issue.6, pp.161-166, 2011.

L. Calo, M. Rebecchi, L. Sciarra, D. Luca, L. Fagagnini et al., Catheter Ablation of Right Atrial Ganglionated Plexi in Patients With Vagal Paroxysmal Atrial Fibrillation, Circulation: Arrhythmia and Electrophysiology, vol.5, issue.1, pp.22-31, 2012.
DOI : 10.1161/CIRCEP.111.964262

S. Mahida, S. Lubitz, M. Rienstra, D. Milan, and P. Ellinor, Monogenic atrial fibrillation as pathophysiological paradigms, Cardiovascular Research, vol.89, issue.4, pp.692-700, 2011.
DOI : 10.1093/cvr/cvq381

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3039248

M. Mommersteeg, V. Christoffels, R. Anderson, and A. Moorman, Atrial fibrillation: A developmental point of view, Heart Rhythm, vol.6, issue.12, pp.1818-1824, 2009.
DOI : 10.1016/j.hrthm.2009.07.011

C. Fox, H. Parise, D. Agostino, R. Sr, D. Lloyd-jones et al., Parental Atrial Fibrillation as a Risk Factor for Atrial Fibrillation in Offspring, JAMA, vol.291, issue.23, pp.2851-2855, 2004.
DOI : 10.1001/jama.291.23.2851

L. Boldt, M. Posch, A. Perrot, M. Polotzki, R. S. Parwani et al., Mutational analysis of the PITX2 and NKX2-5 genes in patients with idiopathic atrial fibrillation, International Journal of Cardiology, vol.145, issue.2, pp.316-317, 2010.
DOI : 10.1016/j.ijcard.2009.11.023

Y. Chen, S. Xu, S. Bendahhou, X. Wang, Y. Wang et al., KCNQ1 Gain-of-Function Mutation in Familial Atrial Fibrillation, Science, vol.299, issue.5604, pp.251-254, 2003.
DOI : 10.1126/science.1077771

URL : https://hal.archives-ouvertes.fr/hal-00091098

S. Das, S. Makino, Y. Melman, M. Shea, S. Goyal et al., Mutation in the S3 segment of KCNQ1 results in familial lone atrial fibrillation, Heart Rhythm, vol.6, issue.8, pp.1146-1153, 2009.
DOI : 10.1016/j.hrthm.2009.04.015

K. Hong, D. Piper, A. Diaz-valdecantos, J. Brugada, A. Oliva et al., De novo KCNQ1 mutation responsible for atrial fibrillation and short QT syndrome in utero, Cardiovascular Research, vol.68, issue.3, pp.433-440, 2005.
DOI : 10.1016/j.cardiores.2005.06.023

Y. Yang, M. Xia, J. Q. Bendahhou, S. Shi, J. Chen et al., Identification of a KCNE2 Gain-of-Function Mutation in Patients with Familial Atrial Fibrillation, The American Journal of Human Genetics, vol.75, issue.5, pp.899-905, 2004.
DOI : 10.1086/425342

URL : https://hal.archives-ouvertes.fr/hal-00094481

L. Ravn, Y. Aizawa, G. Pollevick, J. Hofman-bang, J. Cordeiro et al., Gain of function in IKs secondary to a mutation in KCNE5 associated with atrial fibrillation, Heart Rhythm, vol.5, issue.3, pp.427-435, 2008.
DOI : 10.1016/j.hrthm.2007.12.019

M. Xia, J. Q. Bendahhou, S. He, Y. Larroque, M. Chen et al., A Kir2.1 gain-of-function mutation underlies familial atrial fibrillation, Biochemical and Biophysical Research Communications, vol.332, issue.4, pp.1012-1019, 2005.
DOI : 10.1016/j.bbrc.2005.05.054

URL : https://hal.archives-ouvertes.fr/hal-00094521

J. Jalife, M. Delmar, J. Anumonwo, O. Berenfeld, and J. Kalifa, Basic cardiac electrophysiology for the clinician, 2009.
DOI : 10.1002/9781444316940

K. Hong, P. Bjerregaard, I. Gussak, and R. Brugada, Short QT Syndrome and Atrial Fibrillation Caused by Mutation in KCNH2, Journal of Cardiovascular Electrophysiology, vol.105, issue.4, pp.394-396, 2005.
DOI : 10.1046/j.1540-8167.2005.40621.x

T. Olson, A. Alekseev, X. Liu, S. Park, L. Zingman et al., Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation, Human Molecular Genetics, vol.15, issue.14, pp.2185-2191, 2006.
DOI : 10.1093/hmg/ddl143

Y. Yang, J. Li, X. Lin, K. Hong, L. Wang et al., Novel KCNA5 loss-of-function mutations responsible for atrial fibrillation, Journal of Human Genetics, vol.4, issue.5, pp.277-283, 2009.
DOI : 10.1038/jhg.2009.26

P. Ellinor, V. Petrov-kondratov, E. Zakharova, E. Nam, and C. Macrae, Potassium channel gene mutations rarely cause atrial fibrillation, BMC Medical Genetics, vol.67, issue.1, p.70, 2006.
DOI : 10.1159/000089410

URL : http://doi.org/10.1186/1471-2350-7-70

T. Olson, V. Michels, J. Ballew, S. Reyna, M. Karst et al., Sodium Channel Mutations and Susceptibility to Heart Failure and Atrial Fibrillation, JAMA, vol.293, issue.4, pp.447-454, 2005.
DOI : 10.1001/jama.293.4.447

T. Makiyama, M. Akao, S. Shizuta, T. Doi, K. Nishiyama et al., A Novel SCN5A Gain-of-Function Mutation M1875T Associated With Familial Atrial Fibrillation, Journal of the American College of Cardiology, vol.52, issue.16, pp.1326-1334, 2008.
DOI : 10.1016/j.jacc.2008.07.013

H. Watanabe, D. Darbar, D. Kaiser, K. Jiramongkolchai, S. Chopra et al., Mutations in Sodium Channel ??1- and ??2-Subunits Associated With Atrial Fibrillation, Circulation: Arrhythmia and Electrophysiology, vol.2, issue.3, pp.268-275, 2009.
DOI : 10.1161/CIRCEP.108.779181

X. Zhang, H. Yang, M. Corydon, S. Pedersen, J. Korenberg et al., Localization of a Human Nucleoporin 155 Gene (NUP155) to the 5p13 Region and Cloning of Its cDNA, Genomics, vol.57, issue.1, pp.144-151, 1999.
DOI : 10.1006/geno.1999.5741

D. Hodgson-zingman, M. Karst, L. Zingman, D. Heublein, D. Darbar et al., Atrial Natriuretic Peptide Frameshift Mutation in Familial Atrial Fibrillation, New England Journal of Medicine, vol.359, issue.2, pp.158-165, 2008.
DOI : 10.1056/NEJMoa0706300

J. Magnani, M. Rienstra, H. Lin, M. Sinner, S. Lubitz et al., Atrial Fibrillation: Current Knowledge and Future Directions in Epidemiology and Genomics, Circulation, vol.124, issue.18, pp.1982-1993
DOI : 10.1161/CIRCULATIONAHA.111.039677

D. Filgueiras-rama, R. Martins, S. Ennis, S. Mironov, J. Jiang et al., High-Resolution Endocardial and Epicardial Optical Mapping in a Sheep Model of Stretch-Induced Atrial Fibrillation, Journal of Visualized Experiments, issue.53, 2011.
DOI : 10.3791/3103

R. Mandapati, A. Skanes, J. Chen, O. Berenfeld, and J. Jalife, Stable Microreentrant Sources as a Mechanism of Atrial Fibrillation in the Isolated Sheep Heart, Circulation, vol.101, issue.2, pp.194-199, 2000.
DOI : 10.1161/01.CIR.101.2.194

F. Atienza, J. Almendral, J. Moreno, R. Vaidyanathan, A. Talkachou et al., Activation of Inward Rectifier Potassium Channels Accelerates Atrial Fibrillation in Humans: Evidence for a Reentrant Mechanism, Circulation, vol.114, issue.23, pp.2434-2442, 2006.
DOI : 10.1161/CIRCULATIONAHA.106.633735

S. Lazar, S. Dixit, F. Marchlinski, D. Callans, and E. Gerstenfeld, Presence of Left-to-Right Atrial Frequency Gradient in Paroxysmal but Not Persistent Atrial Fibrillation in Humans, Circulation, vol.110, issue.20, pp.3181-3186, 2004.
DOI : 10.1161/01.CIR.0000147279.91094.5E

P. Sanders, O. Berenfeld, M. Hocini, P. Jais, R. Vaidyanathan et al., Spectral Analysis Identifies Sites of High-Frequency Activity Maintaining Atrial Fibrillation in Humans, Circulation, vol.112, issue.6, pp.789-797, 2005.
DOI : 10.1161/CIRCULATIONAHA.104.517011

Y. Lin, C. Tai, T. Kao, H. Tso, S. Higa et al., Frequency Analysis in Different Types of Paroxysmal Atrial Fibrillation, Journal of the American College of Cardiology, vol.47, issue.7, pp.1401-1407, 2006.
DOI : 10.1016/j.jacc.2005.10.071

A. Elvan, A. Linnenbank, M. Van-bemmel, A. Misier, P. Delnoy et al., Dominant Frequency of Atrial Fibrillation Correlates Poorly With Atrial Fibrillation Cycle Length, Circulation: Arrhythmia and Electrophysiology, vol.2, issue.6, pp.634-644, 2009.
DOI : 10.1161/CIRCEP.108.843284

O. Berenfeld, S. Ennis, E. Hwang, B. Hooven, K. Grzeda et al., Time- and frequency-domain analyses of atrial fibrillation activation rate: The optical mapping reference, Heart Rhythm, vol.8, issue.11, pp.1758-1765, 2012.
DOI : 10.1016/j.hrthm.2011.05.007

W. Anne, R. Willems, P. Holemans, F. Beckers, T. Roskams et al., Self-terminating AF depends on electrical remodeling while persistent AF depends on additional structural changes in a rapid atrially paced sheep model, Journal of Molecular and Cellular Cardiology, vol.43, issue.2, pp.148-158, 2007.
DOI : 10.1016/j.yjmcc.2007.05.010

A. Roka, E. Toth, S. Szilagyi, and B. Merkely, Electrical atrial fibrillation induction affects the characteristics of induced arrhythmia, Journal of Electrocardiology, vol.41, issue.2, pp.131-137, 2008.
DOI : 10.1016/j.jelectrocard.2007.05.015

L. Yue, J. Feng, R. Gaspo, G. Li, Z. Wang et al., Ionic Remodeling Underlying Action Potential Changes in a Canine Model of Atrial Fibrillation, Circulation Research, vol.81, issue.4, pp.512-525, 1997.
DOI : 10.1161/01.RES.81.4.512

D. Filgueiras-rama, N. Price, R. Martins, M. Yamazaki, U. Avula et al., Long-Term Frequency Gradients During Persistent Atrial Fibrillation in Sheep Are Associated With Stable Sources in the Left Atrium, Circulation: Arrhythmia and Electrophysiology, vol.5, issue.6, pp.1160-1167, 2012.
DOI : 10.1161/CIRCEP.111.969519

F. Atienza, J. Almendral, J. Jalife, S. Zlochiver, R. Ploutz-snyder et al., Real-time dominant frequency mapping and ablation of dominant frequency sites in atrial fibrillation with left-to-right frequency gradients predicts long-term maintenance of sinus rhythm, Heart Rhythm, vol.6, issue.1, pp.33-40, 2009.
DOI : 10.1016/j.hrthm.2008.10.024

M. Hocini, I. Nault, M. Wright, G. Veenhuyzen, S. Narayan et al., Disparate Evolution of Right and Left Atrial Rate During Ablation of Long-Lasting Persistent Atrial Fibrillation, Journal of the American College of Cardiology, vol.55, issue.10, pp.1007-1016, 2010.
DOI : 10.1016/j.jacc.2009.09.060

C. Israel, G. Gronefeld, J. Ehrlich, Y. Li, and S. Hohnloser, Long-term risk of recurrent atrial fibrillation as documented by an implantable monitoring device. Implications for optimal patient care, ACC Current Journal Review, vol.13, issue.4, pp.47-52, 2004.
DOI : 10.1016/j.accreview.2004.03.016

M. Nabauer, A. Gerth, T. Limbourg, S. Schneider, M. Oeff et al., The Registry of the German Competence NETwork on Atrial Fibrillation: patient characteristics and initial management, Europace, vol.11, issue.4, pp.423-434, 2009.
DOI : 10.1093/europace/eun369

R. Nieuwlaat, M. Prins, L. Heuzey, J. Vardas, P. Aliot et al., Prognosis, disease progression, and treatment of atrial fibrillation patients during 1 year: follow-up of the Euro Heart Survey on Atrial Fibrillation, European Heart Journal, vol.29, issue.9, pp.1181-1189, 2008.
DOI : 10.1093/eurheartj/ehn139

T. Barrett, W. Self, B. Wasserman, C. Mcnaughton, and D. Darbar, Evaluating the HATCH score for predicting progression to sustained atrial fibrillation in ED patients with new atrial fibrillation, The American Journal of Emergency Medicine, vol.31, issue.5, pp.792-797, 2013.
DOI : 10.1016/j.ajem.2013.01.020

D. Vos, C. Breithardt, G. Camm, A. Dorian, P. Kowey et al., Progression of atrial fibrillation in the REgistry on Cardiac rhythm disORDers assessing the control of Atrial Fibrillation cohort: Clinical correlates and the effect of rhythm-control therapy, American Heart Journal, vol.163, issue.5, pp.887-893, 2012.
DOI : 10.1016/j.ahj.2012.02.015

C. De-vos, R. Pisters, R. Nieuwlaat, M. Prins, R. Tieleman et al., Progression From Paroxysmal to Persistent Atrial Fibrillation, Journal of the American College of Cardiology, vol.55, issue.8, pp.725-731, 2010.
DOI : 10.1016/j.jacc.2009.11.040

A. Jahangir, V. Lee, P. Friedman, J. Trusty, D. Hodge et al., Long-Term Progression and Outcomes With Aging in Patients With Lone Atrial Fibrillation: A 30-Year Follow-Up Study, Circulation, vol.115, issue.24, pp.3050-3056, 2007.
DOI : 10.1161/CIRCULATIONAHA.106.644484

C. Kerr, K. Humphries, M. Talajic, G. Klein, S. Connolly et al., Progression to chronic atrial fibrillation after the initial diagnosis of paroxysmal atrial fibrillation: Results from the Canadian Registry of Atrial Fibrillation, American Heart Journal, vol.149, issue.3, pp.489-496, 2005.
DOI : 10.1016/j.ahj.2004.09.053

Y. Koide, M. Yotsukura, H. Ando, S. Aoki, T. Suzuki et al., Usefulness of P-Wave Dispersion in Standard Twelve-Lead Electrocardiography to Predict Transition from Paroxysmal to Persistent Atrial Fibrillation, The American Journal of Cardiology, vol.102, issue.5, pp.573-577, 2008.
DOI : 10.1016/j.amjcard.2008.04.065

Y. Koide, M. Yotsukura, K. Sakata, H. Yoshino, and K. Ishikawa, Investigation of the predictors of transition to persistent atrial fibrillation in patients with paroxysmal atrial fibrillation, Clinical Cardiology, vol.6, issue.2, pp.69-75, 2002.
DOI : 10.1002/clc.4950250206

T. Potpara, G. Stankovic, B. Beleslin, M. Polovina, J. Marinkovic et al., A 12-Year Follow-up Study of Patients With Newly Diagnosed Lone Atrial Fibrillation, Chest, vol.141, issue.2, pp.339-347, 2012.
DOI : 10.1378/chest.11-0340

S. Saksena, D. Hettrick, J. Koehler, A. Grammatico, and L. Padeletti, Progression of paroxysmal atrial fibrillation to persistent atrial fibrillation in patients with bradyarrhythmias, American Heart Journal, vol.154, issue.5, pp.884-892, 2007.
DOI : 10.1016/j.ahj.2007.06.045

Y. Zhang, C. Qiu, P. Davis, M. Jhaveri, E. Prystowsky et al., Predictors of Progression of Recently Diagnosed Atrial Fibrillation in REgistry on Cardiac Rhythm DisORDers Assessing the Control of Atrial Fibrillation (RecordAF)???United States Cohort, The American Journal of Cardiology, vol.112, issue.1, pp.79-84, 2013.
DOI : 10.1016/j.amjcard.2013.02.056

A. Ruigomez, S. Johansson, M. Wallander, G. Rodriguez, and L. , Predictors and prognosis of paroxysmal atrial fibrillation in general practice in the UK, BMC Cardiovascular Disorders, vol.68, issue.18, p.20, 2005.
DOI : 10.1253/circj.68.568

T. Kato, T. Yamashita, K. Sagara, H. Iinuma, and L. Fu, PROGRESSIVE NATURE OF PAROXYSMAL ATRIAL FIBRILLATION - OBSERVATIONS FROM A 14-YEAR FOLLOW-UP STUDY -, Advances in Electrocardiology 2004, pp.568-572, 2004.
DOI : 10.1142/9789812702234_0006

X. Liu, X. Xu, Y. Tian, R. Tang, R. Yu et al., Morphologies of the Atria and Pulmonary Veins in Relation to Lone Atrial Fibrillation Progression: A Dual-Source Computed Tomography Scan Study, Journal of Cardiovascular Electrophysiology, vol.53, issue.1, pp.29-35, 2012.
DOI : 10.1111/j.1540-8167.2012.02434.x

K. Jongnarangsin, A. Suwanagool, A. Chugh, T. Crawford, E. Good et al., Effect of Catheter Ablation on Progression of Paroxysmal Atrial Fibrillation, Journal of Cardiovascular Electrophysiology, vol.103, issue.1, pp.9-14, 2012.
DOI : 10.1111/j.1540-8167.2011.02137.x

R. Weerasooriya, P. Khairy, J. Litalien, L. Macle, M. Hocini et al., Catheter Ablation for Atrial Fibrillation, Journal of the American College of Cardiology, vol.57, issue.2, pp.160-166, 2011.
DOI : 10.1016/j.jacc.2010.05.061

I. Van-gelder, V. Hagens, H. Bosker, J. Kingma, O. Kamp et al., A Comparison of Rate Control and Rhythm Control in Patients with Recurrent Persistent Atrial Fibrillation, New England Journal of Medicine, vol.347, issue.23, pp.1834-1840, 2002.
DOI : 10.1056/NEJMoa021375

C. Pappone, A. Radinovic, F. Manguso, G. Vicedomini, G. Ciconte et al., Atrial fibrillation progression and management: A 5-year prospective follow-up study, Heart Rhythm, vol.5, issue.11, pp.1501-1507, 2008.
DOI : 10.1016/j.hrthm.2008.08.011

E. Grandi, S. Pandit, N. Voigt, A. Workman, D. Dobrev et al., Human Atrial Action Potential and Ca2+ Model: Sinus Rhythm and Chronic Atrial Fibrillation, Circulation Research, vol.109, issue.9
DOI : 10.1161/CIRCRESAHA.111.253955

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3208665

R. Bosch, C. Scherer, N. Rub, S. Wohrl, K. Steinmeyer et al., Molecular mechanisms of early electrical remodeling: transcriptional downregulation of ion channel subunits reduces ICa,Land Itoin rapid atrial pacing in rabbits, Journal of the American College of Cardiology, vol.41, issue.5, pp.858-869, 2003.
DOI : 10.1016/S0735-1097(02)02922-4

D. Dobrev, E. Graf, E. Wettwer, H. Himmel, O. Hala et al., Molecular basis of downregulation of G-protein-coupled inward rectifying K(+) current (I(K,ACh) in chronic human atrial fibrillation: decrease in GIRK4

D. Dobrev, A. Friedrich, N. Voigt, N. Jost, E. Wettwer et al., The G Protein-Gated Potassium Current IK,ACh Is Constitutively Active in Patients With Chronic Atrial Fibrillation, Circulation, vol.112, issue.24, pp.3697-3706, 2005.
DOI : 10.1161/CIRCULATIONAHA.105.575332

L. Roten, N. Derval, P. Pascale, D. Scherr, Y. Komatsu et al., Current Hot Potatoes in Atrial Fibrillation Ablation, Current Cardiology Reviews, vol.8, issue.4, pp.327-346, 2012.
DOI : 10.2174/157340312803760802

P. Alboni, G. Botto, N. Baldi, M. Luzi, V. Russo et al., Outpatient Treatment of Recent-Onset Atrial Fibrillation with the ???Pill-in-the-Pocket??? Approach, New England Journal of Medicine, vol.351, issue.23, pp.2384-2391, 2004.
DOI : 10.1056/NEJMoa041233

J. Reisinger, E. Gatterer, G. Heinze, K. Wiesinger, E. Zeindlhofer et al., Prospective Comparison of Flecainide Versus Sotalol for Immediate Cardioversion of Atrial Fibrillation, The American Journal of Cardiology, vol.81, issue.12, pp.1450-1454, 1998.
DOI : 10.1016/S0002-9149(98)00223-9

D. Wyse, A. Waldo, J. Dimarco, M. Domanski, Y. Rosenberg et al., A comparison of rate control and rhythm control in patients with atrial fibrillation, N Engl J Med, vol.347, issue.23, pp.1825-1833, 2002.

P. Jais, B. Cauchemez, L. Macle, E. Daoud, P. Khairy et al., Catheter Ablation Versus Antiarrhythmic Drugs for Atrial Fibrillation: The A4 Study, Circulation, vol.118, issue.24, pp.2498-2505, 2008.
DOI : 10.1161/CIRCULATIONAHA.108.772582

C. Pappone, G. Augello, S. Sala, F. Gugliotta, G. Vicedomini et al., A Randomized Trial of Circumferential Pulmonary Vein Ablation Versus Antiarrhythmic Drug Therapy in Paroxysmal Atrial Fibrillation, Journal of the American College of Cardiology, vol.48, issue.11, pp.2340-2347, 2006.
DOI : 10.1016/j.jacc.2006.08.037

G. Stabile, E. Bertaglia, G. Senatore, D. Simone, A. Zoppo et al., Catheter ablation treatment in patients with drug-refractory atrial fibrillation: a prospective, multi-centre, randomized, controlled study (Catheter Ablation For The Cure Of Atrial Fibrillation Study), European Heart Journal, vol.27, issue.2, pp.216-221, 2006.
DOI : 10.1093/eurheartj/ehi583

D. Wilber, C. Pappone, P. Neuzil, D. Paola, A. Marchlinski et al., Comparison of Antiarrhythmic Drug Therapy and Radiofrequency Catheter Ablation in Patients With Paroxysmal Atrial Fibrillation, JAMA, vol.303, issue.4, pp.333-340, 2010.
DOI : 10.1001/jama.2009.2029

I. Savelieva and J. Camm, Anti-arrhythmic drug therapy for atrial fibrillation: current anti-arrhythmic drugs, investigational agents, and innovative approaches, Europace, vol.10, issue.6, pp.647-665, 2008.
DOI : 10.1093/europace/eun130

URL : http://europace.oxfordjournals.org/cgi/content/short/10/6/647

C. Lafuente-lafuente, S. Mouly, M. Longas-tejero, I. Mahe, and J. Bergmann, Antiarrhythmic Drugs for Maintaining Sinus Rhythm After Cardioversion of Atrial Fibrillation, Archives of Internal Medicine, vol.166, issue.7, pp.719-728, 2006.
DOI : 10.1001/archinte.166.7.719

D. Dobrev, L. Carlsson, and S. Nattel, Novel molecular targets for atrial fibrillation therapy, Nature Reviews Drug Discovery, vol.57, issue.4, pp.275-291, 2012.
DOI : 10.1038/nrd3682

S. Noujaim, S. Pandit, O. Berenfeld, K. Vikstrom, M. Cerrone et al., ) in the mouse heart accelerates and stabilizes rotors, The Journal of Physiology, vol.66, issue.1, pp.315-326, 2007.
DOI : 10.1113/jphysiol.2006.121475

M. Wellner, O. Berenfeld, J. Jalife, and A. Pertsov, Minimal principle for rotor filaments, Proceedings of the National Academy of Sciences, vol.99, issue.12, pp.8015-8018, 2002.
DOI : 10.1073/pnas.112026199

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC123012

J. Sanchez-chapula, E. Salinas-stefanon, J. Torres-jacome, D. Benavides-haro, and R. Navarro-polanco, Blockade of currents by the antimalarial drug chloroquine in feline ventricular myocytes, J Pharmacol Exp Ther, vol.297, issue.1, pp.437-445, 2001.

R. Sato, S. Koumi, D. Singer, I. Hisatome, H. Jia et al., Amiodarone blocks the inward rectifier potassium channel in isolated guinea pig ventricular cells, J Pharmacol Exp Ther, vol.269, issue.3, pp.1213-1219, 1994.

C. Patel, G. Yan, and P. Kowey, Dronedarone, Circulation, vol.120, issue.7, pp.636-644, 2009.
DOI : 10.1161/CIRCULATIONAHA.109.858027

D. Fedida, Vernakalant (RSD1235): a novel, atrial-selective antifibrillatory agent, Expert Opinion on Investigational Drugs, vol.8, issue.4, pp.519-532, 2007.
DOI : 10.1152/physrev.00002.2005

R. Caballero, P. Dolz-gaiton, R. Gomez, I. Amoros, A. Barana et al., Flecainide increases Kir2.1 currents by interacting with cysteine 311, decreasing the polyamine-induced rectification, Proceedings of the National Academy of Sciences, vol.107, issue.35, pp.15631-15636, 2010.
DOI : 10.1073/pnas.1004021107

M. Frisk-holmberg, Y. Bergqvist, and U. Englund, Chloroquine intoxication [letter], British Journal of Clinical Pharmacology, vol.158, issue.4, pp.502-503, 1983.
DOI : 10.1111/j.1365-2125.1983.tb01540.x

D. Roden and R. Woosley, Flecainide, New England Journal of Medicine, vol.315, issue.1, pp.36-41, 1986.
DOI : 10.1056/NEJM198607033150106

K. Donovan, B. Power, B. Hockings, G. Dobb, and K. Lee, Intravenous flecainide versus Amiedarone fof recent-onset atrial fibrillation, The American Journal of Cardiology, vol.75, issue.10, pp.693-697, 1995.
DOI : 10.1016/S0002-9149(99)80655-9

M. Haburcak, P. Nepali, G. Bassil, P. Zhang, B. Wang et al., Chloroquine Reduces IKACh via Both Direct Channel Blockade and Decreased Surface Expression of Kir3, Heart Rhythm, vol.110, issue.411, p.1748, 2013.

A. Bollmann, K. Binias, I. Toepffer, J. Molling, C. Geller et al., Importance of left atrial diameter and atrial fibrillatory frequency for conversion of persistent atrial fibrillation with oral flecainide, The American Journal of Cardiology, vol.90, issue.9, pp.1011-1014, 2002.
DOI : 10.1016/S0002-9149(02)02690-5

T. Opthof, IK1 blockade is unlikely to be a useful antiarrhythmic mechanism, Cardiovascular Research, vol.28, issue.3, p.420, 1994.
DOI : 10.1093/cvr/28.3.420

Z. Burrell, J. Martinez, and A. , Chloroquine and Hydroxychloroquine in the Treatment of Cardiac Arrhythmias, New England Journal of Medicine, vol.258, issue.16, pp.798-800, 1958.
DOI : 10.1056/NEJM195804172581608

G. Schram, M. Pourrier, P. Melnyk, and S. Nattel, Differential Distribution of Cardiac Ion Channel Expression as a Basis for Regional Specialization in Electrical Function, Circulation Research, vol.90, issue.9, pp.939-950, 2002.
DOI : 10.1161/01.RES.0000018627.89528.6F

M. Tristani-firouzi, J. Jensen, M. Donaldson, V. Sansone, G. Meola et al., Functional and clinical characterization of KCNJ2 mutations associated with LQT7 (Andersen syndrome), Journal of Clinical Investigation, vol.110, issue.3, pp.381-388, 2002.
DOI : 10.1172/JCI15183

URL : https://hal.archives-ouvertes.fr/hal-00091062

B. Chaitman, C. Pepine, J. Parker, J. Skopal, G. Chumakova et al., Effects of ranolazine with atenolol, amlodipine or diltiazem on exercise tolerance and angina frequency in patients with severe chronic angina: a randomized, controlled trial, ACC Current Journal Review, vol.13, issue.4, pp.309-316, 2004.
DOI : 10.1016/j.accreview.2004.03.066

P. Stone, N. Gratsiansky, A. Blokhin, I. Huang, and L. Meng, Antianginal Efficacy of Ranolazine When Added to Treatment With Amlodipine, Journal of the American College of Cardiology, vol.48, issue.3, pp.566-575, 2006.
DOI : 10.1016/j.jacc.2006.05.044

C. Antzelevitch, A. Burashnikov, S. Sicouri, and L. Belardinelli, Electrophysiologic basis for the antiarrhythmic actions of ranolazine, Heart Rhythm, vol.8, issue.8, pp.1281-1290, 2011.
DOI : 10.1016/j.hrthm.2011.03.045

A. Burashnikov, L. Belardinelli, and C. Antzelevitch, Atrial-Selective Sodium Channel Block Strategy to Suppress Atrial Fibrillation: Ranolazine versus Propafenone, Journal of Pharmacology and Experimental Therapeutics, vol.340, issue.1, pp.161-168, 2012.
DOI : 10.1124/jpet.111.186395

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3251016

K. Kumar, B. Nearing, M. Carvas, B. Nascimento, M. Acar et al., Ranolazine Exerts Potent Effects on Atrial Electrical Properties and Abbreviates Atrial Fibrillation Duration in the Intact Porcine Heart, Journal of Cardiovascular Electrophysiology, vol.4, issue.7, pp.796-802, 2009.
DOI : 10.1111/j.1540-8167.2009.01437.x

P. Milberg, G. Frommeyer, S. Ghezelbash, S. Rajamani, N. Osada et al., Sodium channel block by ranolazine in an experimental model of stretch-related atrial fibrillation: prolongation of interatrial conduction time and increase in post-repolarization refractoriness, Europace, vol.15, issue.5, pp.761-769, 2013.
DOI : 10.1093/europace/eus399

S. Nattel, G. Bourne, and M. Talajic, Insights into Mechanisms of Antiarrhythmic Drug Action From Experimental Models of Atrial Fibrillation, Journal of Cardiovascular Electrophysiology, vol.102, issue.4, pp.469-480, 1997.
DOI : 10.1016/0002-9149(89)90253-1

Z. Wang, P. Page, and S. Nattel, Mechanism of flecainide's antiarrhythmic action in experimental atrial fibrillation, Circulation Research, vol.71, issue.2, pp.271-287, 1992.
DOI : 10.1161/01.RES.71.2.271

M. Wijffels, R. Dorland, and M. Allessie, Pharmacologic Cardioversion of Chronic Atrial Fibrillation in the Goat by Class IA, IC, and III Drugs., Journal of Cardiovascular Electrophysiology, vol.321, issue.2, pp.178-193, 1999.
DOI : 10.1016/0002-9149(87)90199-8

M. Wijffels, R. Dorland, F. Mast, and M. Allessie, Widening of the Excitable Gap During Pharmacological Cardioversion of Atrial Fibrillation in the Goat : Effects of Cibenzoline, Hydroquinidine, Flecainide, and d-Sotalol, Circulation, vol.102, issue.2, pp.260-267, 2000.
DOI : 10.1161/01.CIR.102.2.260

A. Beyder, P. Strege, S. Reyes, C. Bernard, A. Terzic et al., Ranolazine Decreases Mechanosensitivity of the Voltage-Gated Sodium Ion Channel NaV1.5: A Novel Mechanism of Drug Action, Circulation, vol.125, issue.22, pp.2698-2706, 2012.
DOI : 10.1161/CIRCULATIONAHA.112.094714

J. Burkhardt, D. Biase, L. Natale, and A. , Long-Standing Persistent Atrial Fibrillation, Journal of the American College of Cardiology, vol.60, issue.19, pp.1930-1932, 2012.
DOI : 10.1016/j.jacc.2012.05.058

URL : http://doi.org/10.1016/j.jacc.2012.05.058

M. Haissaguerre, M. Hocini, A. Shah, N. Derval, F. Sacher et al., Noninvasive Panoramic Mapping of Human Atrial Fibrillation Mechanisms: A Feasibility Report, Journal of Cardiovascular Electrophysiology, vol.112, issue.Suppl 8, pp.711-717, 2013.
DOI : 10.1111/jce.12075

S. Narayan, D. Krummen, K. Shivkumar, P. Clopton, W. Rappel et al., Treatment of Atrial Fibrillation by the Ablation of Localized Sources, Journal of the American College of Cardiology, vol.60, issue.7, pp.628-636, 2012.
DOI : 10.1016/j.jacc.2012.05.022

S. Narayan, D. Krummen, P. Clopton, K. Shivkumar, and J. Miller, Direct or Coincidental Elimination of Stable Rotors or Focal Sources May Explain Successful Atrial Fibrillation Ablation, Journal of the American College of Cardiology, vol.62, issue.2, pp.138-147, 2013.
DOI : 10.1016/j.jacc.2013.03.021

S. Narayan, J. Patel, S. Mulpuru, and D. Krummen, Focal impulse and rotor modulation ablation of sustaining rotors abruptly terminates persistent atrial fibrillation to sinus rhythm with elimination on follow-up: A video case study, Heart Rhythm, vol.9, issue.9, pp.1436-1439, 2012.
DOI : 10.1016/j.hrthm.2012.03.055

S. Bordignon, K. Chun, M. Gunawardene, A. Fuernkranz, V. Urban et al., Comparison of Balloon Catheter Ablation Technologies for Pulmonary Vein Isolation: The Laser Versus Cryo Study, Journal of Cardiovascular Electrophysiology, vol.9, issue.9, pp.987-994, 2013.
DOI : 10.1111/jce.12192

B. Schmidt, A. Metzner, K. Chun, D. Leftheriotis, Y. Yoshiga et al., Feasibility of Circumferential Pulmonary Vein Isolation Using a Novel Endoscopic Ablation System, Circulation: Arrhythmia and Electrophysiology, vol.3, issue.5, pp.481-488, 2010.
DOI : 10.1161/CIRCEP.110.954149

A. Metzner, K. Chun, K. Neven, A. Fuernkranz, F. Ouyang et al., Long-term clinical outcome following pulmonary vein isolation with high-intensity focused ultrasound balloon catheters in patients with paroxysmal atrial fibrillation, Europace, vol.12, issue.2, pp.188-193, 2010.
DOI : 10.1093/europace/eup416

K. Chun, B. Schmidt, A. Metzner, R. Tilz, T. Zerm et al., The 'single big cryoballoon' technique for acute pulmonary vein isolation in patients with paroxysmal atrial fibrillation: a prospective observational single centre study, European Heart Journal, vol.30, issue.6, pp.699-709, 2009.
DOI : 10.1093/eurheartj/ehn570

P. Khairy, P. Chauvet, J. Lehmann, J. Lambert, L. Macle et al., Lower Incidence of Thrombus Formation With Cryoenergy Versus Radiofrequency Catheter Ablation, Circulation, vol.107, issue.15, pp.2045-2050, 2003.
DOI : 10.1161/01.CIR.0000058706.82623.A1

R. Weerasooriya, P. Jais, M. Hocini, F. Sacher, and M. Haissaguerre, Balloon cryoablation for paroxysmal atrial fibrillation, Europace, vol.10, issue.11, pp.1251-1252, 2008.
DOI : 10.1093/europace/eun284

URL : http://europace.oxfordjournals.org/cgi/content/short/10/11/1251

D. Packer, R. Kowal, K. Wheelan, J. Irwin, J. Champagne et al., Cryoballoon Ablation of Pulmonary Veins for Paroxysmal Atrial Fibrillation, Journal of the American College of Cardiology, vol.61, issue.16, pp.611713-1723, 2013.
DOI : 10.1016/j.jacc.2012.11.064

Y. Van-belle, P. Janse, D. Theuns, T. Szili-torok, and L. Jordaens, One year follow-up after cryoballoon isolation of the pulmonary veins in patients with paroxysmal atrial fibrillation, Europace, vol.10, issue.11, pp.1271-1276, 2008.
DOI : 10.1093/europace/eun218

J. Vogt, J. Heintze, K. Gutleben, B. Muntean, D. Horstkotte et al., Long-Term Outcomes After Cryoballoon Pulmonary Vein Isolation, Journal of the American College of Cardiology, vol.61, issue.16, pp.1707-1712, 2013.
DOI : 10.1016/j.jacc.2012.09.033

URL : http://doi.org/10.1016/j.jacc.2012.09.033

C. Liu, Pulmonary vein reconnection after cryoballoon ablation: Back to the drawing board, Heart Rhythm, vol.7, issue.2, pp.191-192, 2010.
DOI : 10.1016/j.hrthm.2009.11.021

M. Kubala, J. Hermida, G. Nadji, S. Quenum, S. Traulle et al., Normal Pulmonary Veins Anatomy is Associated with Better AF-Free Survival after Cryoablation as Compared to Atypical Anatomy with Common Left Pulmonary Vein, Pacing and Clinical Electrophysiology, vol.28, issue.7, pp.837-843, 2011.
DOI : 10.1111/j.1540-8159.2011.03070.x

A. Sorgente, G. Chierchia, C. De-asmundis, A. Sarkozy, M. Namdar et al., Pulmonary vein ostium shape and orientation as possible predictors of occlusion in patients with drug-refractory paroxysmal atrial fibrillation undergoing cryoballoon ablation, Europace, vol.13, issue.2, pp.205-212, 2011.
DOI : 10.1093/europace/euq388

S. Bordignon, A. Furnkranz, B. Schmidt, and K. Chun, Remaining Ice Cap on Second-Generation Cryoballoon After Deflation, Circulation: Arrhythmia and Electrophysiology, vol.5, issue.5, pp.98-99, 2012.
DOI : 10.1161/CIRCEP.112.975516

R. Casado-arroyo, G. Chierchia, G. Conte, M. Levinstein, J. Sieira et al., Phrenic nerve paralysis during cryoballoon ablation for atrial fibrillation: A comparison between the first- and second-generation balloon, Heart Rhythm, vol.10, issue.9, pp.1318-1324, 2013.
DOI : 10.1016/j.hrthm.2013.07.005

A. Furnkranz, S. Bordignon, B. Schmidt, M. Gunawardene, B. Schulte-hahn et al., Improved Procedural Efficacy of Pulmonary Vein Isolation Using the Novel Second-Generation Cryoballoon, Journal of Cardiovascular Electrophysiology, vol.21, issue.5, pp.492-497, 2013.
DOI : 10.1111/jce.12082

R. Horton, D. Biase, L. Reddy, V. Neuzil, P. Mohanty et al., Locating the right phrenic nerve by imaging the right pericardiophrenic artery with computerized tomographic angiography: Implications for balloon-based procedures, Heart Rhythm, vol.7, issue.7, pp.937-941, 2010.
DOI : 10.1016/j.hrthm.2010.03.027

J. Nieto-tolosa, D. Rodriguez-sanchez, J. Hurtado-martinez, E. Pinar-bermudez, P. Penafiel-verdu et al., Phrenic Nerve Identification With Cardiac Multidetector Computed Tomography, Revista Espa??ola de Cardiolog??a (English Edition), vol.64, issue.10, pp.942-944, 2011.
DOI : 10.1016/j.rec.2011.02.026

M. Kuhne, S. Knecht, D. Altmann, N. Kawel, P. Ammann et al., Phrenic nerve palsy during ablation of atrial fibrillation using a 28-mm cryoballoon catheter: predictors and prevention, Journal of Interventional Cardiac Electrophysiology, vol.8, issue.1, pp.47-54, 2013.
DOI : 10.1007/s10840-012-9740-z

K. Chun, A. Furnkranz, A. Metzner, B. Schmidt, R. Tilz et al., Cryoballoon Pulmonary Vein Isolation with Real-Time Recordings from the Pulmonary Veins, Journal of Cardiovascular Electrophysiology, vol.14, issue.11 Pt 2, pp.1203-1210, 2009.
DOI : 10.1111/j.1540-8167.2009.01549.x

U. Dorwarth, M. Schmidt, M. Wankerl, J. Krieg, F. Straube et al., Pulmonary vein electrophysiology during cryoballoon ablation as a predictor for procedural success, Journal of Interventional Cardiac Electrophysiology, vol.21, issue.3, pp.205-211, 2011.
DOI : 10.1007/s10840-011-9585-x

A. Gillis, A. Krahn, A. Skanes, and S. Nattel, Management of Atrial Fibrillation in the Year 2033: New??Concepts, Tools, and Applications Leading to Personalized Medicine, Canadian Journal of Cardiology, vol.29, issue.10
DOI : 10.1016/j.cjca.2013.07.006

D. Mcmanus, J. Lee, O. Maitas, N. Esa, R. Pidikiti et al., A novel application for the detection of an irregular pulse using an iPhone 4S in patients with atrial fibrillation, Heart Rhythm, vol.10, issue.3, pp.315-319, 2013.
DOI : 10.1016/j.hrthm.2012.12.001