
HAL Id: tel-01153942
https://theses.hal.science/tel-01153942

Submitted on 20 May 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Qualitative analysis of synchronizing probabilistic
systems

Mahsa Shirmohammadi

To cite this version:
Mahsa Shirmohammadi. Qualitative analysis of synchronizing probabilistic systems. Numerical Anal-
ysis [cs.NA]. École normale supérieure de Cachan - ENS Cachan; Université libre de Bruxelles (1970-..),
2014. English. �NNT : 2014DENS0054�. �tel-01153942�

https://theses.hal.science/tel-01153942
https://hal.archives-ouvertes.fr

UNIVERSITÉ LIBRE DE BRUXELLES
Service des méthodes formelles
et vérification

ÉCOLE NORMALE SUPÉRIEURE
DE CACHAN

Laboratoire spécification et vérification

Qualitative Analysis of

Probabilistic Synchronizing Systems

Mahsa Shirmohammadi

Dissertation submitted for the joint degree of
Doctor of Philosophy in computer science

from
Université Libre de Bruxelles, Belgium

and
Ecole Normale Supérieure de Cachan, France

Committee in charge:
Laurent Doyen: Supervisor
Thierry Massart: Supervisor
Stefan Kiefer: Reviewer
Jeremy Sproston: Reviewer
Joost-Pieter Katoen: Examiner
Jean François Raskin: Examiner
Béatrice Bérard: Examiner
Emmanuel Filiot: Examiner

Defense date: 10th December 2014

To Maryam, my mother.

Acknowledgment

I gratefully acknowledge all who supported me to accomplish my wish. Being so lucky
to have supports from several countries and in several languages; I try to mention all,
however I am surely bound to forget a few.

Laurent, I admire the way you turn science into art. Your seriousness, patience, insights,
enthusiasm and not to forget your expectations motivated me to work hard, to be thirsty
to learn how to carry out deep research, write clear proofs and give good talks. I am
so grateful that you made me rewrite proofs several times, for some more than there are
fingers in a hand, to reformulate and simplify my ideas and to turn a problem up and
down, and look from one angle to another. Wishing that I had filled my backpack with
more of your knowledge and advices, I am at the same time grateful for the freedom I had
while writing my thesis; I found my academic personality those days, thanks Laurent.

Thierry, we have heard “doubt your beliefs and believe in your doubts” more than once
from Laurent; however the one who taught it to me is you. I will always remain amazed
by your capability of finding mistakes in proofs and counter examples for conjectures. You
taught me to question and challenge myself, to not be easily convinced, thanks for all of
those, and much more for the social support you never forgot to offer me. Thanks for
welcoming me at first in Brussels, for helping me integrate in my new life, for simply being
’there’ when the sensitivity of a girl overlapped with her professionalism. Thanks Thierry.

I am so pleased that Stefan Kiefer, Jeremy Sproston, Jean François Raskin, Joost-Pieter
Katoen, Béatrice Bérard and Emmanuel Filiot accepted to be the other jury members of
my thesis. A further thank for all asked questions during my private defense, some of
which spark new directions of research.

I am grateful to the Belgian national fund for scientific research (F.N.R.S.) and Inter-
national relation office of ENS de Cachan which provided me with two scholarships during
my study: one allowed me to fully concentrate on my thesis, and the other one facilitated
my dual life between France and Belgium over three years.

I should not forget any member of LSV (ENS de Cachan) and the Verification group at
ULB, with a special mention to Benedikt, Frédéric, Gilles, Dietmar, Luc, Cristina, Thida,
Thomas and Julien who smiled at me and made refreshing small talks every time I met them
during coffee breaks. I also appreciate all the helps I received from the secretaries of both
labs: Pascaline, Maryka, Véronique and Virgine several times took care of administrative
papers instead of the lost-in-French Mahsa.

I wish to say thanks to Nicolas Markey (a big thanks), Stéphanie Delaune and Alain
Finkel for constructive advice; to Kim Larsen and Line for welcoming me in Aalborg
university while collaborating; to Alexander for teaching me how to teach; to Sylvain for
saving my introduction; to Nathann for knocking the door of my office in a gloomy winter
day; to all adorable girls who surrounded both me and my surviving feminine trait: Sinem
jan janam, dear Aina, delicate Marie, small mommy Sandie, strong Raffaella, happiest ever
Barbara, lively Aiswarya, organized Laure, fun Juliette and the other fun Juliette, kind Eli,

i

sportive Line, creative Carla, hard-working Atefeh, backgammon-champion Öykü, eastern-
soul Xiajou, sweet Agathe, the only-musician-friend Nona and far-away Eleni (girls, I lived
moments with you, your weddings, your 25th, 30th birthdays, your pregnancy worried
days, your graduations, your love or hate days, simply normal days, thank you, thank
you for all); to Gabriel and Tristan to be my first and so good friends in Europe; to
Guillermo, Romain and the other Romain for being such unique charming office-mates,
and for enjoying summer BBQs where I have to mention Ocan and Mathieu, the delicious-
sauce maker; to Chris, Hernan, Vince and César for never rejecting to try what I cook and
even complimenting it, and more than that for the friendship and respect between us; to
Ali and Hani my best ever friends that keep our relation fresh and deep from such a long
distance; to my soul-mates Mina, Mona and Somayeh for not letting me disconnect from
the other world of mine by long and late phone conversations; to Mani for lifting spirit
words; and to dear Hossein for encouraging me to pursue my post-graduate study and be
more independent and more honest.

Vincent and Christoph, I am indebted to you guys. Ask me why, and I need to think
minutes before taking out one of the hundreds cards from the deck of friendly supports,
scientific advices, stressful critical times, relaxed laughs and smiles, sunny and rainy but
all memorable days. Vince, you have been so generous to me, so more than what others
can guess, so perfectly careful with the fragile glass of my soul, thanks. Chris, you make
me look into myself and hunt clues of peace and braveness whose existences were lost over
years, thanks. Special thanks to Vince for going through all my thesis, and to Chris for
commenting my introduction and my post-doctorate application to Oxford. Thanks Vince,
thanks Chris.

Madaram Maryam, my mother Maryam, one tip of a finger from your kindness and
devotion was sufficient to make me who I am, though you lived your life in each of ours,
your children. My eyes have always felt shy to look up at the height of the shadow of
your support and to say thanks ; I can only write it down as down as my short mount of
achievements. Thanks Maryam, Madaram.

Mahsa so thankful,
after her first Thanksgiving dinner at Tony’s place

Paris, FMSH library
December 2014.

ii

Abstract

Markov decision processes (MDPs) are finite-state probabilistic systems with both
strategic and random choices, hence well-established to model the interactions between
a controller and its randomly responding environment. An MDP can be mathematically
viewed as a 11

2
-player stochastic game played in rounds when the controller chooses an ac-

tion, and the environment chooses a successor according to a fixed probability distribution.
There are two incomparable views on the behavior of an MDP, when the strategic

choices are fixed. In the traditional view, an MDP is a generator of sequence of states,
called the state-outcome; the winning condition of the player is thus expressed as a set
of desired sequences of states that are visited during the game, e.g. Borel condition such
as reachability. The computational complexity of related decision problems and memory
requirement of winning strategies for the state-outcome conditions are well-studied.

Recently, MDPs have been viewed as generators of sequences of probability distributions
over states, called the distribution-outcome. We introduce synchronizing conditions defined
on distribution-outcomes, which intuitively requires that the probability mass accumulates
in some (group of) state(s), possibly in limit. A probability distribution is p-synchronizing
if the probability mass is at least p in some state, and a sequence of probability distributions
is always, eventually, weakly, or strongly p-synchronizing if respectively all, some, infinitely
many, or all but finitely many distributions in the sequence are p-synchronizing. For each
synchronizing mode, an MDP can be (i) sure winning if there is a strategy that produces
a 1-synchronizing sequence; (ii) almost-sure winning if there is a strategy that produces a
sequence that is, for all ϵ > 0, a (1-ϵ)-synchronizing sequence; (iii) limit-sure winning if
for all ϵ > 0, there is a strategy that produces a (1-ϵ)-synchronizing sequence. We consider
the problem of deciding whether an MDP is winning, for each synchronizing and winning
mode: we establish matching upper and lower complexity bounds of the problems, as well
as the memory requirement for optimal winning strategies.

As a further contribution, we study synchronization in probabilistic automata (PAs),
that are kind of MDPs where controllers are restricted to use only word-strategies; i.e. no
ability to observe the history of the system execution, but the number of choices made
so far. The synchronizing languages of a PA is then the set of all synchronizing word-
strategies: we establish the computational complexity of the emptiness problems for all
synchronizing languages in all winning modes.

We carry over results for synchronizing problems from MDPs and PAs to two-player
turn-based games and non-deterministic finite state automata. Along with the main re-
sults, we establish new complexity results for alternating finite automata over a one-letter
alphabet. In addition, we study different variants of synchronization for timed and weighted
automata, as two instances of infinite-state systems.

iii

iv

Résumé

Les Markov Decision Process (MDP) sont des systèmes finis probabilistes avec à la fois des
choix aléatoires et des stratégiques, et sont ainsi reconnus comme de puissants outils pour
modéliser les interactions entre un contrôleur et les réponses aléatoires de l’environment.
Mathématiquement, un MDP peut être vu comme un jeu stochastique à un joueur et demi
où le contrôleur choisit à chaque tour une action et l’environment répond en choisissant un
successeur selon une distribution de probabilités fixée.

Il existe deux représentations incomparables du comportement d’un MDP une fois la
stratégie fixée. Dans la représentation classique, un MDP est un générateur de séquences
d’états, appelées state-outcome ; les conditions gagnantes du joueur sont ainsi exprimées
comme des ensembles de séquences désirables d’états qui sont visités pendant le jeu, e.g.
les conditions de Borel. La complexité des problèmes de décision et de mémoire requise des
stratégies gagnantes pour les conditions dites state-outcome ont été langement étudiées.

Depuis peu, les MDPs sont aussi considérés comme des générateurs de séquences de
distributions de probabilités sur les états, appelées distribution-outcome. Nous introdui-
sons des conditions de synchronisation sur les distributions-outcome, qui intuitivement
demandent à ce que la masse de probabilité s’accumule dans un (ensemble d’) état, po-
tentiellement de façon asymptotique. Une distribution de probabilités est p-synchrone si
la masse de probabilité est d’au moins p dans un état ; et la séquence de distributions de
probabilités est toujours, éventuellement, faiblement, ou fortement p-synchrone si, respec-
tivement toutes, au moins une, une infinité ou toutes sauf un nombre fini de distributions
dans la séquence sont p-synchrones. Pour chaque type de synchronisation, un MDP peut
être (i) sûrement gagnant si il existe une stratégie qui génère une séquence 1-synchrone ;
(ii) presque-sûrement gagnant si il existe une stratégie qui génère une séquence (1 − ϵ)-
synchrone et cela pour tout ϵ > 0 ; (iii) asymptotiquement gagnant si pour tout ϵ > 0, il
existe une stratégie produisant une séquence (1 − ϵ)-synchrone. Nous considérons le pro-
blème consistant à décider si un MDP est gagnant, pour chaque type de synchronisation
et chaque mode gagnant : nous établissons les bornes supérieures et inférieures de la com-
plexité de ces problèmes et de la mémoire requise pour une stratégie gagnante optimale.

En outre, nous étudions les problèmes de synchronisation pour les automates proba-
bilistes (PAs) qui sont en fait des instances de MDP où les contrôleurs sont restreints à
utiliser uniquement des stratégies-mots ; c.à.d. qu’ils ne peuvent pas observer l’historique
de l’exécution du système et ne peuvent connaître que le nombre de choix effectués. Les
langages synchrones d’un PA sont donc l’ensemble des stratégies-mots synchrones : nous
établissons la complexité des problèmes des langages synchrones vides pour chaque mode
gagnant. Nous répercutons nos résultats de synchronisation obtenus sur les MDPs et PAs
aux jeux à tours à deux joueurs ainsi qu’aux automates finis non-déterministes. Nous éta-
blissons de nouveaux résultats de complexité sur les automates finis alternants avec des
alphabets à une lettre. Enfin, nous étudions plusieurs variations de synchronisation sur
deux instances de systèmes infinis que sont les automates temporisés et pondérés.

v

vi

Contents

1 Introduction 1
1.1 Formal verification of reactive systems . 4
1.2 Probabilistic systems . 5

1.2.1 State-outcome and distribution-outcome views 6
1.2.2 Analysis of state-outcomes in Markov chains 7
1.2.3 Analysis of distribution-outcomes in Markov chains 8
1.2.4 Analysis of state-outcomes in MDPs 8
1.2.5 Analysis of distribution-outcomes in MDPs 9

1.3 Synchronizing problems in MDPs . 9
1.3.1 Relations to games and to alternating finite automata 12

1.4 Synchronizing problems in probabilistic automata 12
1.5 Synchronizing problems in timed and weighted automata 14
1.6 Structure of this manuscript . 14

2 Preliminaries 17
2.1 Finite automata and words . 18
2.2 Markov decision processes and strategies 20

2.2.1 Markov decision processes . 21
2.2.2 Markov chains . 22
2.2.3 Strategies . 23

2.3 Probabilistic Automata and randomized word 25
2.4 Winning and acceptance conditions . 26

2.4.1 Languages of NFAs . 27
2.4.2 Path-outcomes of MDPs . 28
2.4.3 Languages of PAs . 29

2.5 Decision Problems . 29
2.5.1 Problems for NFAs . 29
2.5.2 Problems for MDPs . 30
2.5.3 Problems for PAs . 34

3 Synchronizing Problems 37
3.1 Synchronization in NFAs . 38

3.1.1 Finite synchronization in NFAs . 38
3.1.2 Infinite synchronization in NFAs . 42

vii

3.2 Synchronization in MDPs . 45
3.3 Synchronization in PAs . 51
3.4 Relation to one-letter alternating finite automata 52

3.4.1 Problems for 1L-AFA . 54
3.4.2 Connection with MDPs. 56

3.5 Relation to two-player turn-based games. 58
3.6 Discussions . 59

4 Always and Eventually Synchronizing Condition 63
4.1 Always synchronizing condition in MDPs and PAs 64
4.2 Eventually synchronizing condition in MDPs 66

4.2.1 Sure eventually synchronization . 67
4.2.2 Almost-sure eventually synchronization 69
4.2.3 Limit-sure eventually synchronization 73

4.3 Eventually synchronization in PAs . 80
4.3.1 Sure eventually synchronization . 81
4.3.2 Almost-sure eventually synchronization 83
4.3.3 Limit-sure eventually synchronization 85

4.4 Discussion . 85

5 Weakly Synchronizing Condition 89
5.1 Weak synchronization in MDPs . 90

5.1.1 Sure weak synchronization . 90
5.1.2 Almost-sure weak synchronization 93
5.1.3 Limit-sure weak synchronization . 96

5.2 Weak synchronization in PAs . 103
5.2.1 Sure weak synchronization . 103
5.2.2 Almost-sure weak synchronization 105
5.2.3 Limit-sure weak synchronization . 105

5.3 Discussion . 106

6 Strongly Synchronizing Condition 115
6.1 Strong synchronization in MDPs . 116

6.1.1 Strong synchronization with function max 116
6.1.2 Strong synchronization with function sum 122

6.2 Strong synchronization in PAs . 124
6.2.1 Sure strong synchronization with function max 124
6.2.2 Almost-sure strong synchronization with function max 126
6.2.3 Sure strong synchronization with function sum 130
6.2.4 Almost-sure strong synchronization with function sum 131
6.2.5 Limit-sure strong synchronization 134

6.3 Discussion . 138

viii

7 Synchronization in Timed Automata 141
7.1 Preliminaries . 142

7.1.1 Timed automata and timed words 142
7.1.2 Problems in TAs . 144

7.2 Synchronization in TA . 145
7.3 Synchronization in deterministic TAs . 146
7.4 Synchronization in non-deterministic TAs 153

8 Synchronization in Weighted Automata 157
8.1 Preliminaries . 158

8.1.1 Weighted automata . 158
8.1.2 Minsky machine and vector addition systems with states 159

8.2 Synchronization in WA . 160
8.3 Location-synchronization in deterministic WAs 162

8.3.1 Location-synchronization under lower-bounded safety condition . . 162
8.3.2 Location-synchronization under general safety condition 169

9 Conclusion 181

Bibliography 185

ix

x

1Introduction

“We are like dice thrown on the plains of destiny.”

- Rita Mae Brown

The last slice of a pizza is usually too tempting for a child to think of sharing with a
sibling, this more delicious than all other slices. The parents’ solution to avoid possible
arguments could be as easy as tossing a coin and letting fate decide. The two siblings learn
what is the chance of winning that last slice: one half. If not this exact story, a familiar
story is a player in the backgammon game 1 wishing for a double when getting mars; no
matter how much faith he has, he knows within himself that there is only one-sixth of a
chance for that wish to come true. Why is that belief vividly carved in each of our minds?
Simply, we know that there are thirty six possible pairs of faces for two dice, the desired
event of a double is a set of only six pairs, and finally we assume that dice are fair, meaning
that when rolling a dice, there is an equally likely chance for each face to come up. In
other words, if one repeats the experiment of rolling a dice for a sufficiently large number
of rounds, each face will statistically show up in one-sixth of the rounds.

Gambling casino chips on a random combination of outcomes in a game is an enter-
taining activity for players and a business for the house. The simplest popular gaming

1. One of the oldest board game; excavations in Shahr-e Sukhteh ("The Burnt City") in Iran have
shown that the game existed there around 3000 BC. The game is played on a board with black and white
checkers for two players. In each round, players in turn throw two dice and move the checkers on the
board as many cells as the numbers shown on the dice. A player wins after taking out all her checkers
from board. When the loser has no checkers out, he is mars and misses two points. A double is when both
dice have the same face up. A player who rolls doubles plays the numbers on the faces twice.

1

a. General rules of transitions

⟨i, j⟩

for j < 3
⟨i+ 1, 0⟩

⟨i+ 1, j + 1⟩

pi

1− pi

⟨i, 3⟩

⟨i+ 1, 0⟩

⟨i+ 1, 1⟩

pi

1− pi

b. The Markov chain with few missing transitions

⟨0, 0⟩

⟨0, 1⟩

⟨0, 2⟩

⟨0, 3⟩

⟨1, 0⟩

⟨1, 1⟩

⟨1, 2⟩

⟨1, 3⟩

⟨2, 0⟩

⟨2, 1⟩

⟨2, 2⟩

⟨2, 3⟩

p0

1− p0p0

1− p0

p1

1− p1p1

1− p1

· · ·

· · ·

· · ·

· · ·

p2

p2

1− p2

· · ·

· · ·

· · ·

· · ·

Figure 1.1: A Markov chain that models a simplified Futurity slot machine where a
state ⟨i, j⟩ indicates the internal mode with the i-component: the modes 0 and 2 are
mapped to tight and mode 1 is mapped to loose. From a state with mode i, the chain
moves to a state with mode i+1 (mod 3). The j-component of states indicates the number
of consecutive losses. The probability pi is the probability for the player to win in mode i.

machines are slot machines that take coins and randomly bring up on their reels three
symbols out of a set of symbols, and if the outcome consists of three identical symbols,
the player wins the bet. The slot machines are usually designed to be slightly favorable
to the casino while still letting players trust the fairness of the game. The Futurity slot
machine designed by the Mills Novelty Company of Chicago in 1936 [EL10], for instance,
has a special feature that is returning back all coins bet if the player loses consecutively
for a certain number of times; this feature gives the player the impression of having more
chances to win. However, there is another feature invisible to the player: the machine
has a cyclic sequence of internal modes consisting of some loose and some tight modes.
The machine is programmed to have an expected payoff in favor of the player in the loose
mode, and in favor of the casino in the tight mode. The sequence of invisible internal
modes for the machine has more tight modes, and so is to the advantage of the casino. To
delicately hide this trick and at the same time ensure the profit of the casino in the long
run, casino owners wish to analyze the functionality of slot machines before investment.
To this aim, a slot machine can be modeled by a (discrete-time) Markov chain, that is a
mathematical object to model systems following a sequence of linked events. In the model
of a slot machine, the linked events are the consecutive rounds of plays with no win.

A simplified version of a Futurity slot machine is graphically described in Figure 1.1.
The Markov chain models a machine with the cyclic sequence of internal modes “tight,
loose, tight” and the misleading feature of returning all coins after three consecutive losses.
The states of the machine are drawn as boxes and labeled with two components ⟨i, j⟩,

2

see Figure 1.1.b. The i-component encodes the “internal mode” (i.e., the index of internal
modes in the cyclic sequence) and j-component stores “the number of consecutive losses”.
Transitions, drawn as arrows between states, encode the feeding of the machine with a
coin and the resulting win or loss that changes the internal mode and may also change the
number of consecutive losses. Thus, transitions move the chain from one state to another
one. Figure 1.1.a depicts the general rules of transitions. Transitions are augmented with
probabilities that indicate how likely the player is to win or lose at states of the chain. A
transition starting in some state ⟨i, j⟩ is augmented with probability pi if it encodes a win;
it is thus redirected to ⟨i+1, 0⟩ where the number of consecutive losses is reset. Otherwise,
such transition is augmented with probability 1 − pi and is redirected to ⟨i + 1, j + 1⟩ to
store one more loss. The machine must meet a set of requirements and conditions called
a specification. For instance, abiding the law, slot machines must be programmed to pay
out as winnings at least 75% of the money wagered by players, a safety condition.

Most gamblers find gambling in a casino entertaining as long as the loss is roughly
comparable to the gain. Stock brokers though might not feel entertained when losing even
a small amount of money in the equity markets. Since markets are usually unstable and
subject to dramatic and sudden changes, optimal decisions must be made instantaneously
in order to exchange, buy and sell, securities that increase their profits. To predict the sud-
den changes or predict the effect of a placed exchange in the market, traders must carefully
monitor and analyze the history of all trades and fluctuations, as statistical experiments.
Extracting information from such big amounts of data in a short time is error-prone and
tiring for humans. On the other hand, enthusiastic human traders commonly rely for their
decisions unconsciously on their instincts, in particular after getting exhausted. Automated
traders or trading robots are pieces of software designed to perform various calculations and
analyze large amounts of data quickly in order to make optimal decisions almost instantly
and more precisely than human traders. To design a trading robot, the market is usually
modeled as a mathematical object such as a Markov decision process, which is a generaliza-
tion of Markov chains. In addition to the stochastic aspects of systems that Markov chains
can model, Markov decision processes model a kind of non-determinism to show the variety
of the robot’s choices. A Markov decision process consists of several states and transitions.
States encode the financial status of the market such as the price of companies’ shares on
the stock market. Transitions encode placing orders that may cause changes in the market,
thus the current state of the market will be changed to another state. Transitions are aug-
mented with labels 2 and probabilities: labels vary between different possible orders, and
the probabilities are computed by statistical analysis. The probability of a transition from
one state to a successor state is showing how likely the placed order changes the prices
in the market into what is indicated in the successor. A robot trader is programmed to
place electronic orders in each state of the model. The robot must meet some specification,
e.g., the dealings of a robot of a trading company must never cause dropping the value of

2. It is the main difference between Markov chains and Markov decision processes: transitions in Markov
chains are only augmented with probabilities, though they are augmented with both labels and probabilities
in Markov decision process.

3

the shares of the company in the market (safety condition). Otherwise, the wealth of the
company is automatically decreased and not to forget the bad reputation.

The shareholders of a trading company would not gamble in replacing the human
element with automatic traders without guarantees that the trading robots perform as well
as advertised. Such guarantees ought to promise that the robots make optimal decisions
to fulfill the specification. A way to ensure the correctness of the designed robot is testing,
which is broadly used in commerce and industry. Testing usually consists of running the
robot on artificial markets (or simulations of the market) and observing the outcomes of
the robot’s decisions. Having a set of correct behaviors, testing thus checks whether the
outcome of a simulation contains those correct behaviors. The drawback of the testing
approach is its non-completeness, which may cause missing some unexpected situations
where the decisions of the robot breach a safety condition and could cause the shareholders
to lose some money. Another approach is formal verification, a technique that promises
the absolute guarantee for the correctness of a system by providing a mathematical proof
(if such a proof exists 3).

System verification also comes to prominence outside the financial sphere. It becomes
even more crucial when any failure even a small deviation from the required behavior for
the system is life threatening. In December 2013, it was reported that the first implanted
artificial heart stopped beating. This misfortune caused the death of a seventy-six years
old man who had received the heart, and the disappointment of French surgeons as well
as many patients in need of a heart transplant. The artificial heart was designed to beat
for at least five years, though an unexpected circuit shortcut happened after 74 days and
caused the dysfunction. A mathematical proof to verify the correctness of the artificial
heart would have ideally prevented the previous failure, and hopefully all dysfunctions of
the second implanted heart.

1.1 Formal verification of reactive systems

Reactive systems, such as artificial organs and stock markets, are non-terminating sys-
tems that maintain an ongoing interaction with the environment rather than returning
some value upon termination. In the field of formal methods and verification of reactive
systems, we abstract reactive systems with mathematical models such as transition systems,
finite state automata, Markov chains, Markov decision processes, etc., in order to take out
some complexities in the system while retaining enough information to verify the correct-
ness of the design. The behavior of a system is usually viewed as a sequence of interactions
between the system and the environment; roughly speaking, the set of all behaviors is the
language of the model. Computer-aided verification develops systematic approaches that
verify whether all behaviors of the model correctly meet some required specification, that
are expressed by mathematical objects such as some formula in some logic (e.g. a temporal
logic such as LTL, CTL) or some regular (or ω-regular) language or automata. The cor-

3. The verification problem for some cases is undecidable.

4

rectness relation is usually chosen based on the model of the system and the mathematical
object expressing the specification. For the case where both the system and the specifica-
tion are modeled by automata, language inclusion ensures that all sequences of reactions
in the system are desired behaviors in the specification language. Considering language
inclusion as the correctness relation, the system behaviors are distinctly partitioned into
“correct” and “incorrect“ ones, and the verification seeks to guarantee that all behaviors
are correct without any nuance. This Boolean and qualitative view on the correctness is
classical and is well-suited for modelling systems where no fault can be tolerated, such as
artificial organs.

The system model and the specification can be augmented with some quantitative as-
pects to be suitable for real-life applications. Real-time systems as an example are effec-
tively modeled by timed automata where the model is enriched with some clocks and the
transitions are fired with respect to time constraints. Specifications, thus, in this setting
may express time operational deadlines or constrain the longest response time [AD94]. The
battery consumption of mobile systems is described by weighted automata where transi-
tions carry weights to reflect the amount of power recharged or discharged on taking each
transition, and the evolution of system is subject to constraints on the accumulated weight
(that is the power level). Specifications may then describe the power-life resistance in dif-
ferent scenarios [FJLS11]. As we have seen in systems such as stock markets, probabilities
are assigned to possible responses or reactions in an abstracted model of the system in order
to statistically predict the behavior of such complex systems; probabilistic automata and
Markov models are well-established syntaxes for describing such systems [dA97, BK08].
Despite quantitative aspects in the system models and specifications, the correctness may
follow the Boolean view, and impose a yes/no answer to the verification problem; the
quantitative verification though seeks a graduated correctness for systems.

1.2 Probabilistic systems

Markov chains and Markov decision processes (MDPs) are widely used in the quantita-
tive and qualitative verification of probabilistic systems [Var85, CY95, FV97, dA97, BK08].
Discrete-time Markov chains (or simply Markov chains) are arguably most popular model
for verifying the evolution of a self-sufficient random process that has no interaction with
its environment. As an extension, MDPs are a well-established syntax for open systems
in which interactions between a controller and its stochastic environment happen. In
MDPs, both non-deterministic and probabilistic choices thus coexist. We have seen how
these Markov models can be used to model casino machines and stock markets. There
are also applications in planning, randomized algorithms, communication protocols and
biology [AH90, FP06, BBS06, KNP08].

The model-checking problem seeks the verification of a given property which can be
expressed by qualitative or quantitative properties. The controller synthesis problem asks
for computing a control strategy that ensures a specification, and thus is relevant only for
MDPs (and not for Markov chains).

5

1.2.1 State-outcome and distribution-outcome views

There are two incomparable views on Markov models: state-based and distribution-based
views.

Markov chains. In the state-based view, Markov chains are treated as transition systems
with states to which a fixed probability distribution, that determines the successor states,
is assigned. The transition thus happens from one state to another, and a Markov chain
is then a generator of sequence of states, called the behavior or the state-outcome of the
Markov chain.

In the distribution-based view, Markov chains are treated as transformers of proba-
bilistic distributions over the nodes of the chains. A Markov chain can thus be encoded
in a deterministic transition system whose states are probability distributions from which
there is a unique outgoing transition to the successor state, i.e., the successor probability
distribution. The transition thus happens from one probability distribution to another,
and a Markov chain is then a generator of probability distributions, called the distribution-
outcome or symbolic-outcome of the Markov chain. The distribution-outcome is an infi-
nite sequence of probability distributions obtained by iteratively applying the probabilistic
transition matrix of the chain to the unique initial distribution (over nodes of the chain).

MDPs. The controller in an MDP can be instructed by a strategy (sometimes called
scheduler [BK08]). When a strategy is fixed in an MDP, the system induced under the
strategy is a Markov chain, and as expected the two views can carry over. The MDP under
a fixed strategy thus can be viewed as a state-outcome or distribution-outcome generator.

Comparison of state-outcomes and distribution-outcomes. The state-outcome
of stochastic systems is classical and well-studied, for example see [Var85, CY95, FV97,
BK98a, BK98b, dAH00, KNP05, BKHW05, BCH+07, BK08, EKVY08, CD11, BHK+12,
BGB12, CJS12, CHJS13]. Typical state-based properties for Markov models are safety,
reachability, Büchi, and coBüchi, which require the system to visit a target state always,
once, infinitely often, and ultimately always, respectively. The quantitative and qualitative
analysis of such state-based properties and model checking of probabilistic temporal logics
such as PCTL, PCTL∗ has been well-studied for Markov models.

The distribution-outcomes of stochastic systems has recently been used in several works
on design and verification of reactive systems [KVAK10, CKV+11, AAGT12]. This seman-
tics is adequate in many applications, such as systems biology, sensor networks, robot
planning, etc. [BBMR08, DMS14a, HMW09]. Such system consist of several copies of the
same process (molecules, sensors, robots, etc.), and the relevant information along the ex-
ecution of the system is the number of processes in each state, or the relative frequency
(i.e., the probability) of each state.

The logics defined on the two semantics, state-outcome and distribution-outcome, are
incomparable, i.e., there are properties that are expressible in one but not the other. In
particular, the approaches to decide model-checking problem in one cannot be reduced to

6

the other [KVAK10]. In one hand, intuitively, logics like PCTL and PCTL∗ do not allow
for reasoning about the probability of being at different (groups of) states at the same
time, whereas we will see an example of such properties expressed on the distribution-
outcome. On the other hand, properties expressible with the distribution-based semantics
do not take into account the branching structure of the system. In addition, for proba-
bilistic systems a natural bisimulation relation on the distribution-outcome has recently
been introduced [HKK14], and has been proved to be incomparable with the standard
bisimulation relation (defined on the state-outcome).

1.2.2 Analysis of state-outcomes in Markov chains

In the state-based view, a Markov chain is viewed as a generator of sequences of states.
A σ-algebra can be defined on the probability space produced by the sequence of states,
and the probability of events that are sets of sequences of states, can be measured. Prob-
abilistic linear time properties and probabilistic temporal logics such as PCTL, PCTL∗

assert quantitative or qualitative properties as the specification.
Verifying a qualitative property that usually asks whether a certain event will happen

almost-surely (i.e., with probability 1) or with non-zero probability, is called the qualitative
analysis of Markov chains. An instance of a qualitative property is the PCTL formula

Pr=1(!♦⟨0, 3⟩) ∧ Pr=1(!♦⟨1, 3⟩) ∧ Pr=1(!♦⟨2, 3⟩)

where Pr=1 requires that the events !♦⟨i, 3⟩ happens with probability 1, !♦⟨i, 3⟩ requires
that the state ⟨i, 3⟩ is infinitely often visited along the system execution. This formula
asserts the following almost-surely property for the model of Futurity slot machine drawn
in Figure 1.1 on page 2:

“all states encoding the three consecutive losses in the game, are almost-surely visited
infinitely often.”

Quantitative analysis of Markov chains is similar to model-checking problem of qualita-
tive properties, but constrain the probability or expectation of certain events with regards
to any value, not only the extreme bounds 4. An instance of a quantitative property is

Pr<0.05

!

(⟨0, 3⟩ ∨ ⟨1, 3⟩ ∨ ⟨2, 3⟩) → ⃝⃝⃝(⟨0, 3⟩ ∨ ⟨1, 3⟩ ∨ ⟨2, 3⟩)
"

where ⃝ is the temporal operator to assert a property on the next state visited along
the system execution. This formula asserts the following quantitative property for the
model of Futurity slot machine drawn in Figure 1.1 on page 2:

“the scenario where a player loses three times consecutively and gets all his coins
returned, must only happen two times in a row with the probability less than 0.05.”

4. In qualitative analysis, the only allowed probability bounds are the extreme bounds, one and zero:
Pr=1 (almost-surely) and Pr>0 (non-zero).

7

In order to model-check qualitative state-based properties, graph-based techniques are
employed [BK08]. However, the quantitative analysis usually is reduced to solving a system
of linear equations.

1.2.3 Analysis of distribution-outcomes in Markov chains

In the distribution-based view, a Markov chain is viewed as a generator of sequence
of probability distributions. The specification can thus assert properties on the current
probability of a set of nodes that is not expressible in the state-based logics.

An instance of such a property is

∃t such that Xt(q) ≥ 1

where X is, roughly speaking, the chance for the Markov chain to be in q at time t. The
above formula asserts that

“there is a time t when the Markov chain is almost surely in the state q.”

Qualitative and quantitative analysis differ in the distribution-based view like they do in
the state-based semantics. Model checking of qualitative limit distribution-based properties
in Markov chains usually relies on the computation of stationary distributions and period-
icity of the chains, which has been well-studied, e.g. see [KS83, Nor98, Ser13]. In recent
works, the verification of quantitative properties of the distribution-based semantics was
shown undecidable [KVAK10]. Decidability is obtained for special subclasses [CKV+11], or
through approximations in which distributions are discretized using intervals [AAGT12].

1.2.4 Analysis of state-outcomes in MDPs

In the state-based semantics, when resolving non-determinism by strategies, there can
be different probability spaces in an MDP, and thus the probability of a certain event
might be measured unequally [Var85]. The quantitative analysis of an MDP against a
specification, expressed for example by PCTL∗ or ω-regular properties, amounts to calcu-
lating the minimal and maximal probabilities that can be guaranteed when ranging over
all strategies. The qualitative analysis simply asks whether there exists a strategy en-
suring that the specification holds almost-surely (with probability 1) or limit-surely (with
probability arbitrary close to 1); and the synthesis problem seeks the computation of such
winning strategies. The calculation of minimal and maximal probabilities is well-studied
and is usually achieved by graph algorithms operating on the graph underlying the MDP
accompanied with some linear constraints. The obtained linear programs can be solved
by means of an iterative approximation algorithm (called value iteration) [BK08]. For tra-
ditional ω-regular properties, in particular safety and reachability conditions, memoryless
strategies are sufficient as optimal strategies [CH12]. To solve the synthesis problem, such
optimal strategies can be constructed by some complementary analysis while computing
the probability bounds for model checking.

8

1.2.5 Analysis of distribution-outcomes in MDPs

Compared to the state-outcome in MDPs, there has been little work on the analysis of
the distribution-outcome view. Since the Skolem problem, which has been open for over
eighty years, can be reduced 5 to the quantitative analysis, studying the qualitative analysis
of the distribution-based semantics is more promising.

There is only one logic defined on the distribution-outcomes in MDPs. The logic is
defined by propositions using linear inequalities over probability distributions, and using
modal operators to reason about temporal behavior [KVAK10]. The verification of the
defined logic is in general undecidable even for a restricted class of strategies that determine
their choice of actions based on the current state of the system and the number of choices
made so far, called counting strategies (or Markovian schedulers). The decidability results
are only obtained by imposing some restrictions either on the class of counting strategies,
or on the propositions (where the inequality in the proposition is non-zero).

As we will see, the main results of this thesis lie in the direction of the qualitative analy-
sis of the distribution-outcomes in MDPs. We introduce different variants of synchronizing
properties on distribution-outcomes of MDPs. In contrast with previous work, we consider
the qualitative analysis with the extreme bound 1, and we prove that synchronizing prop-
erties are decidable for a general class of strategies that select actions depending on the
full history of the system execution, called perfect-information strategies.

1.3 Synchronizing problems in MDPs

The main contribution of this thesis is a novel approach to the qualitative analysis and
the synthesis problem of the distribution-outcomes in MDPs. We introduce synchronizing
properties defined on the distribution-outcomes, which require that the winning strategy
brings the MDP in some (group of) state(s) with a large probability, possibly in limit.
In other words, the probability mass (say at least probability p > 0) in the distribution,
that indicates the likelihood of the system to be in different states at specific states, is
accumulated in some target state. We define variants of p-synchronizing conditions on the
symbolic-outcomes of an MDP, and study the qualitative analysis of such properties where
p = 1 or p tends to 1.

We consider the symbolic-outcome of the behaviors of MDPs as sequences X0X1X2 · · ·
of probability distributions Xi : Q → [0, 1] over the finite state space Q of the system,
where Xi(q) is the probability that the MDP is in state q ∈ Q after i steps. For 0 ≤
p ≤ 1, a distribution is p-synchronized if the probability mass accumulated in a single
state (or a group of states) is at least p. An MDP is always (resp., eventually, weakly or
strongly) p-synchronizing if the probability p is always (resp., ultimately once, infinitely
often, or ultimately at every step) synchronized along the execution. More precisely, a
sequence X0X1 · · · of probability distributions is

5. The results also holds for Markov chains, where the quantitative verification of the distribution-
outcome semantics is in general already undecidable.

9

(a) always p-synchronizing if Xi is p-synchronized for all i;

(b) eventually p-synchronizing if Xi is p-synchronized for some i;

(c) weakly p-synchronizing if Xi is p-synchronized for infinitely many i’s;

(d) strongly p-synchronizing if Xi is p-synchronized for all but finitely many i’s.

An MDP is thus eventually, always, weakly or strongly p-synchronizing if there ex-
ists some strategy whose symbolic-outcome is accordingly eventually, always, weakly or
strongly p-synchronizing. It is easy to see that always p-synchronizing implies strongly
p-synchronizing, which implies weakly p-synchronizing. Moreover, weakly p-synchronizing
implies eventually p-synchronizing. We show that, in general, this hierarchy is strict. We
study the qualitative analysis of synchronizing conditions in such quantitative models.
The qualitative synchronizing properties, corresponding to the case where either p = 1
or p tends to 1 are analogous to the traditional safety, reachability, Büchi, and coBüchi
conditions (in the state-based semantics). We consider the following qualitative (winning)
modes:

(i) sure winning, if there is a strategy that generates an {always, eventually, weakly,
strongly} 1-synchronizing sequence;

(ii) almost-sure winning, if there is a strategy that generates a sequence that is, for all
ϵ > 0, {always, eventually, weakly, strongly} (1− ϵ)-synchronizing;

(iii) limit-sure winning, if for all ϵ > 0, there is a strategy that generates a {always,
eventually, weakly, strongly} (1− ϵ)-synchronizing sequence.

The definitions are summarized in Table 3.1 on page 47. These three winning modes
are classically considered in stochastic games; MDPs can be viewed as 1 1

2
-player stochastic

games. Some games in casinos can be analyzed with such 1 1
2
-player stochastic games. Until

recently, slot machines were not elaborate enough to have any human interaction other
than feeding the machine with the betting coins. However, with microprocessors nowadays
ubiquitous, a more interactive gambling game has become widely popular, that is video slot
machines. This game can in fact be viewed as a computer game where players interact only
via a touch screen and where there is no mechanical constraints. It allows the designers
to display more virtual reels and also add some interaction with the player through bonus
features. For instance, when the player hits some specific combination on the reels, he may
choose to either obtain free spins or hold some reels while the others are re-spun, or bet
for another prize, etc. Due to this human interaction in the bonus features, a video slot
machine cannot be modeled anymore by a Markov chain but requires an MDP where the
random responses of the environment is predicted by a statistical study on human-player
psychology. The aim is to synthesize a controller microprocessor for slot machines such
that the specifications are met. Thus, the machine is modeled by an MDP, the choices of
the microprocessor are the strategic choices and the human choices are resolved randomly
based on the probability distributions obtained by statistical experiments.

Moreover, having a distributed network of connected slot machines, designers may offer
a new exciting large prize, usually called “jackpot”. For instance, in a group of connected
machines, the jackpot can be triggered when all connected slot machines bring the same

10

combination of symbols on their reels at the same time. The exciting news is that when
jackpot happens, every player wins the total amount bet by all players. When analyzing
the MDP of the distributed machines, the global state represent the internal states of
all distributed machines, and the jackpot is a kind of synchronization when the MDP
is synchronized into the set of states representing identical symbols on the reels of all
machines. The aim of the designer is usually to synthesize an optimal strategy that allows
for such jackpots infinitely often, and only when the amount of the total bet is smaller
than a threshold.

In this thesis, we study the introduced synchronizing conditions in MDPs. We estab-
lish the computational complexity of deciding whether a given MDP is always, eventu-
ally, weakly or strongly synchronizing by providing matching upper and lower complexity
bounds: for each winning mode we show that the problems are in PTIME for the always
synchronizing condition, PSPACE-complete for eventually and weak synchronization, and
PTIME-complete for strong synchronization. Moreover, we prove that the three winning
modes coincide for the always synchronizing condition, though those modes form a strict
hierarchy for eventually synchronizing. In particular, there are limit-sure winning MDPs
that are not almost-sure winning; this result is unlike the analogue reachability condition
in the state-based semantics where the two almost-sure and limit-sure winning modes coin-
cide [dAHK07]. One of the difficult result in this thesis is to show that for weak and strong
synchronization the almost-sure and limit-sure modes coincide. It implies that the strong
and weak synchronizing conditions are more robust than the eventually synchronizing, and
provide conservative approximations of the eventually synchronizing.

We complete the picture by providing optimal memory bounds for winning strategies.
We will see that all solutions, for the problems of deciding whether an MDP is synchroniz-
ing, are constructive, and provide the construction of the winning strategies that answer
the synthesis problems. In always synchronizing MDPs, we show that memoryless strate-
gies are sufficient for all three winning modes. In eventually synchronizing MDPs, for
sure winning strategies, exponential memory is sufficient and may be necessary, and that
in general infinite memory is necessary for almost-sure winning, and unbounded memory
is necessary for limit-sure winning. Moreover, exponential memory is sufficient and may
be necessary for sure winning in weak synchronization, infinite memory is necessary for
almost-sure winning in weak synchronization, and linear memory is sufficient for strong
synchronization in all winning modes.

Regarding the symbolic-outcomes in MDPs, the p-synchronizing conditions defined on
the outcome sequence are using a sum function, i.e., the sum of probabilities assigned to
target states is at least p. We present a variant of synchronization for which the used
function is taking the maximum probability assigned to the set of target states. We also
establish some reductions for eventually and weakly synchronization such that the tight
complexity bounds for sum functions are carried over to the max variant. For strong
synchronization, we see that deciding whether the MDP is winning is again PTIME-complete
though memoryless strategies are sufficient.

11

The obtained results on synchronization in MDPs are summarized in Tables 4.1, 5.1
and 6.1 on pages 67, 90 and 116, respectively.

1.3.1 Relations to games and to alternating finite automata

Some results in this thesis rely on insights related to games and alternating automata
that are of independent interest. First, the sure-winning problem for eventually synchroniz-
ing in MDPS is equivalent to a two-player game with a synchronized reachability condition,
where the goal for the first player is to ensure that a target state is reached after a number
of steps that is independent of the strategy of the opponent (and thus this number can
be fixed in advance by the first player). This condition is stronger than plain reachabil-
ity, and while the winner in two-player reachability games can be decided in polynomial
time, deciding the winner for synchronized reachability is PSPACE-complete. This result is
obtained by turning the synchronized reachability game into a one-letter alternating au-
tomaton for which the emptiness problem (i.e., deciding if there exists a word accepted by
the automaton) is PSPACE-complete [Hol95, JS07]. Second, the PSPACE lower bound for
the limit-sure winning problem in eventually synchronizing uses a PSPACE-completeness
result that we establish for the universal finiteness problem, which is to decide, given a
one-letter alternating automata, whether from every state the accepted language is finite.

1.4 Synchronizing problems in probabilistic automata

Synchronizing problems were first considered for finite state automata where a synchro-
nizing word is a finite sequence of control actions that can be executed from any unknown
or unobservable state of an automaton and brings the automaton to a known specific state
(see [Vol08] for a survey of results and applications). The notion of synchronizing automata
is motivated by the following natural problem: how can we regain control over a device if
we do not know its current state? Since losing the control over a device may happen due
to missing the observation on the outputs produced by the system, blind strategies, which
are finite sequences (or words) of input letters, are considered while synchronizing systems.
As an example think of remote systems connected to a wireless controller that emits the
command via wireless waves but expects the observations via physical connectors (it might
be excessively expensive to mount wireless senders on the remote systems), and consider
that the physical connection to controller is lost due to technical failure. The wireless
controller can therefore not observe the current states of the distributed subsystems. In
this setting, emitting a synchronizing word as the command leaves the remote system (as a
whole) in one particular state no matter in which state each distributed subsystem started;
and thus the controller can again regain control.

Synchronizing automata are well-studied in the setting of complete deterministic finite-
state automata [Čer64, Pin78, Epp90, IS95, IS99, San04, Vol08, Mar10, AGV10, OU10,
Mar12]. While the existence of a synchronizing word is NLOGSPACE-complete for complete
deterministic finite state automata, extensive research efforts have been devoted to estab-

12

lishing tight bounds on the length of the shortest synchronizing word, which is conjectured
to be (n−1)2 for automata with n states [Čer64, Pin78, Vol08]. Various extensions of the no-
tion of synchronizing word have been proposed for not-complete or non-deterministic finite
state automata and were proved to be PSPACE-complete [IS95, IS99, Mar10, Mar12]. We
introduce infinite synchronizing words for non-deterministic finite state automata, where
the always, eventually, weakly and strongly synchronization require that the automaton is
always, once, infinitely often and ultimately always synchronized (into a given target set).

Probabilistic automata (PAs) are a generalization of non-deterministic finite state au-
tomata where the non-deterministic choice of successors is resolved with a probabilistic
distribution; at the same time, a PA can also be interpreted as an MDP with a blind con-
troller. In this context, an input word for the PA corresponds to the special case of a blind
strategy (sometimes called word-strategy) that chooses the control actions in advance. In
the example of remote systems, a blind strategy cannot depend on the current states of the
distributed subsystems, but only depend on the sequence of wireless commands emitted so
far. The set of all winning word-strategies for an always, eventually, weakly and strongly
synchronizing PA is respectively the always, eventually, weakly and strongly synchroniz-
ing language of the PA. Similar to the MDPs, we study three qualitative modes, sure,
almost-sure and limit-sure for synchronizing languages in PAs.

A different definition of synchronizing words for probabilistic automata was proposed by
Kfoury, but the associated decision problem is undecidable [Kfo70]. In contrast, we show
that the emptiness problem of almost-sure strongly synchronizing languages is PSPACE-
complete, while the emptiness problem of almost-sure eventually and weakly synchroniz-
ing languages are undecidable. Moreover, we show that the emptiness problem of sure
languages, for all three eventually, weakly and strongly synchronizations, are PSPACE-
complete, though the emptiness problem of limit-sure languages are undecidable. There
are easy arguments to establish the complexity bounds for the always synchronizing lan-
guages. The obtained results are summarized in Tables 4.2, 5.2 and 6.2 on pages 81, 103
and 124, respectively.

We also shortly discuss the universality problems for the synchronizing languages in
PAs: we show that the universality problems of sure and almost-sure 6 always synchro-
nizing languages are in PTIME. The universality problems of sure eventually, weakly and
strongly synchronizing languages are in PSPACE, while for almost-sure eventually, weakly
and strongly synchronizing languages, the universality problems are PSPACE-complete. In
addition, we show that the results from synchronizing in PAs can carry over to the non-
deterministic finite state automata.

6. The universality problem of synchronizing languages in PAs cannot be considered for limit-sure
winning mode.

13

1.5 Synchronizing problems in timed and weighted au-

tomata

A further contribution of this thesis is introducing synchronization in systems whose
behaviors depend on quantitative constraints. We study two classes of such systems, timed
automata and weighted automata. We introduce the synchronization problem for timed
and weighted automata in several variants to include the quantitative aspects of those
models as well as some safety condition while synchronizing. The main challenge is that
we are facing automata with infinite state-spaces and infinite branching (e.g. delays in a
timed automaton).

For timed automata the synchronization problems are shown to be PSPACE-complete in
the deterministic case, and undecidable in the non-deterministic case. The obtained results
are summarized in Table 7.1 on 142. In the deterministic case, synchronizing the classical
region abstraction is not sound. We propose an algorithm which reduces the (uncountably)
infinite set of configurations into a finite set (with at most the number of locations in the
automaton), and then pairwise synchronizes the obtained finite set of states.

For weighted automata, states are composed of locations and quantitative values as
weights. As weights are merely accumulated in this setting, it is impossible to synchronize
to a single state. Instead we search for a location-synchronizing word, that is a word
after which all states will agree on the location. In addition, we add a safety condition
insisting that during synchronization the accumulated weight (energy) is safe, e.g. a non-
negative safety condition (or energy constraints) that requires a system to never run out
of power while synchronizing. Considering the safety condition is what distinguishes our
setting from the one presented in [FV13]; moreover, in that work weighted automata are
restricted to only have non-negative weights on transitions. For deterministic weighted
automata, we provide PSPACE-completeness of the synchronization problem under energy
constraints, and the membership in 3-EXPSPACE under general safety constraints. The
obtained results are summarized in Table 8.1 on 158.

1.6 Structure of this manuscript

This thesis is organized as follows.

Chapter 2 Preliminaries. We introduce definitions needed throughout the thesis such
as MDPs and PAs. We also recall some classical problems and results on such models.

The results of the following four chapters on synchronization in MDPs and PAs are mostly
disseminated in these publications [DMS11a, DMS11b, DMS12, DMS14a, DMS14b]:

14

Chapter 3 Synchronizing Problems. We recall the definition of finite synchronizing words
for finite state automata, and survey decision problems and conjectures about such words.
We provide definitions of infinite synchronizing words for non-deterministic finite state
automata. We introduce variants of synchronizations in MDPs and PAs by considering
synchronizing strategies and synchronizing words. The relations to two-player games and
to one-letter alternating finite automata are also discussed.

Chapter 4, Chapter 5 and Chapter 6 Always and Eventually Synchronizing Con-
dition, Weakly Synchronizing Condition and Strongly Synchronizing Condition. We show
tight complexity bounds of the membership problem for always, eventually, weakly and
strongly synchronizing conditions in MDPs, and provide the memory requirement of win-
ning strategies. Moreover, we establish tight complexity bounds for the emptiness problem
of all synchronizing languages for PAs while the universality problem is also shortly dis-
cussed.

The results of the following two chapters on synchronization in timed and weighted au-
tomata has been published in [DJL+14]:

Chapter 7 Synchronization in Timed Automata. We introduce synchronizing and
location-synchronizing words for timed automata. We focus on deciding the existence of a
synchronizing and location-synchronizing word for timed automata, proving tight complex-
ity bounds of the problems for deterministic timed automata, and proving undecidability
for non-deterministic timed automata.

Chapter 8 Synchronization in Weighted Automata. We introduce synchronizing and
location-synchronizing words for weighted automata. We define safe synchronization for
weighted automata where the aim is to synchronize the set of safe states while forbidding
the automaton to visit states outside the safety-set during synchronization. We establish
complexity results for deciding the existence of synchronizing and location-synchronizing
words for weighted automata under different kind of safety conditions.

Chapter 9 Conclusion.

Selected publications by the author Most of the contributions in this manuscript
have been already published in international conferences. The following publications par-
tially contain the results of this thesis:

[DJL+14] Laurent Doyen, Line Juhl, Kim G. Larsen, Nicolas Markey, and Mahsa Shir-
mohammadi. Synchronizing words for weighted and timed automata. In Proceed-
ings of the 34th Conference on Foundations of Software Technology and Theoretical
Computer Science, FSTTCS 2014, Leibniz International Proceedings in Informatics.
Leibniz-Zentrum für Informatik, 2014. To appear.

15

[DMS14b] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Robust synchro-
nization in Markov decision processes. In CONCUR 2014 - Concurrency Theory - 25th
International Conference, CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceed-
ings, volume 8704 of Lecture Notes in Computer Science, pages 234–248. Springer,
2014.

[DMS14a] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Limit synchro-
nization in Markov decision processes. In Foundations of Software Science and Com-
putation Structures - 17th International Conference, FOSSACS 2014, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2014,
Grenoble, France, April 5-13, 2014, Proceedings, volume 8412 of Lecture Notes in
Computer Science, pages 58–72. Springer, 2014.

[DMS12] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Infinite synchro-
nizing words for probabilistic automata (erratum). CoRR, abs/1206.0995, 2012.

[DMS11a] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Infinite synchro-
nizing words for probabilistic automata. In Mathematical Foundations of Computer
Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland, August
22-26, 2011. Proceedings, volume 6907 of Lecture Notes in Computer Science, pages
278–289. Springer, 2011.

[DMS11b] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Synchronizing
objectives for Markov decision processes. In Proceedings International Workshop on
Interactions, Games and Protocols, iWIGP 2011, Saarbrücken, Germany, 27th March
2011., volume 50 of EPTCS, pages 61–75, 2011.

16

2Preliminaries

First sight. In this chapter we introduce definitions and recall results needed through-
out the thesis.

We first introduce finite automata, Markov decision processes and probabilistic
automata. We then mention classical acceptance and winning conditions to define
languages and winning regions. We conclude the chapter with the last section devoted
to the classical problems and results for each model.

Contents

2.1 Finite automata and words . 18

2.2 Markov decision processes and strategies 20

2.2.1 Markov decision processes . 21

2.2.2 Markov chains . 22

2.2.3 Strategies . 23

2.3 Probabilistic Automata and randomized word 25

2.4 Winning and acceptance conditions 26

2.4.1 Languages of NFAs . 27

2.4.2 Path-outcomes of MDPs . 28

2.4.3 Languages of PAs . 29

2.5 Decision Problems . 29

2.5.1 Problems for NFAs . 29

2.5.2 Problems for MDPs . 30

2.5.3 Problems for PAs . 34

17

We denote by Z the set of integer numbers and by N
def
≡ {n ≥ 0 | n ∈ Z} the set of

natural numbers. We denote by R the set of real numbers and by R≥0

def
≡ {x ≥ 0 | x ∈ R}

the set of non-negative real numbers. We assume that the reader is familiar with the basic
concepts of sets, relations, graphs theories and automata theory [Ros93, Die12, Sip97].

2.1 Finite automata and words

Finite automata are defined over finite alphabets to accept input words which are
sequences of concatenated letters of the alphabet. Such words could be finite, such as
w1 = a · b · a · b · b, or could be infinite such as w2 = a · b · b · b · · · where a and b are some
input letters. Given an alphabet A, we denote by A∗ the set of all finite words over this
alphabet, and by Aω the set of all infinite words. The length of a finite word w ∈ A∗ is
denoted by |w|; for example |w3| = 3 for the prefix w3 = a · b · b of w2. The empty word ϵ
is of length zero, and A+ is the set of all non-empty finite words.

Regular and ω-regular languages. A language of finite words over the alphabet A is
a subset of A∗ and a language of infinite words is a subset of Aω. A language (of finite
words) is regular if there is a regular expression to express it. Given a finite alphabet A,
the following constants are defined as regular expressions:

– ∅ denotes the empty language,
– ϵ denotes the language {ϵ} which contains only the empty word ϵ of length zero,
– a ∈ A denotes the language {a} containing only the word a of length 1.

Given two regular expressions r1 and r2, the expressions r1 + r2, r1 · r2 and r∗1 are regular
expressions where

– (union operator) r1 + r2 denotes the language that is obtained by the union of lan-
guages expressed by r1 and r2,

– (concatenation operator) r1 · r2 denotes the language of all words made by concate-
nation of a word from the language expressed by r1 followed by a word from r2,

– (Kleene star operator) r∗1 denotes the smallest language that includes ϵ and r1, and
that is closed under concatenation operator.

A language (of infinite words) is ω-regular if there is an ω-regular expression to express
it. Given a regular expression r expressing a regular language not containing the empty
word ϵ, the expression rω that denotes a language of infinite words made by concatenating
consecutively the words of r infinitely many times, is ω-regular. Given a regular expression
r1 and two ω-regular expressions r2 and r3, the following expressions are ω-regular:

– (concatenation operator) r1 · r2 denotes the language of all infinite words made by
concatenation of a finite word from the language expressed by r1 followed by an
infinite word from r2.

– (union operator) r2 + r3 denotes the language that is obtained by the union of lan-
guages expressed by r2 and r3.

18

q0 q1

q2q3

a

a

a

a, b

b b

b

Figure 2.1: The NFA described in Example 2.2 with initial state q0.

Example 2.1. The regular expression a · b∗ ·a is expressing the language {a · bn ·a | n ∈ N}
where bn is the word consists of n consecutive b. The ω-regular expression a · b∗ · aω is
expressing the language {a · bn · a · a · a · · · | n ∈ N}.

▹

Finite automata. A finite automaton recognizes a regular or an ω-regular language:

Definition 2.1 (Finite automata). A non-deterministic finite automaton (NFA) N =
⟨Q,A,∆⟩ consists of a finite set Q of states, a finite alphabet A of input letters and a
transition function ∆ : Q× A → 2Q.

Given a set of initial states Q0 and an input word w = a0 · a1 · · · , the behavior of an
NFA is as follows. One of the initial states q0 ∈ Q is chosen non-deterministically. The
automaton starts in that initial state q0 and reads the first letter a0 of the input word w.
Inputting the letter a at the time the automaton is in q (that is letter a0 when it initially
is in q0), two cases happen: (1) either ∆(q, a) ̸= ∅ when the automaton moves to the next
state q′, that is chosen non-deterministically among the states of ∆(q, a); (2) or ∆(q, a) = ∅
when the automaton “fails” to move and becomes blocked. As long as the automaton is
not blocked, in each move the next letter of w = a0a1 · · · , from left to right, is read.

Example 2.2. An NFA is depicted in Figure 2.1, which is a running example used through-
out the thesis. The automaton has four states q0, q1, q2 and q3, and two letters a and b.
The transition function ∆ is defined as follows. For all states, the a-transitions shift once
the automaton in the loop q0q1q2q3; formally,

∆(qi, a) = {qj} where j ≡ i+ 1 (mod 4) for all 0 ≤ i ≤ 3.

The b-transitions in the states q0, q1, q2 are self-loops, ∆(qi, b) = {qi} for all 0 ≤ i < 3; the
next successor on b-transition in q3, however, is q0.

▹

In Example 2.2, the transition function maps each pair of state q and letter a only to
sets of size at most 1, that implies this automaton is in fact deterministic. A deterministic

19

finite automaton (DFA) is a finite automaton 1 where each state q and input letter a have
at most one successor state: |∆(q, a)| ≤ 1. On the other hand, all states and letters of
the automaton of Example 2.2 have at least one successor that means this automaton is
complete too. A complete finite automaton is an automaton where the function ∆(q, a) is
non-empty for each state q and input letter a. A state q is absorbing if ∆(q, a) = {q} for
all letters a ∈ A (all transitions are self-loops on q).

We denote by q
a
−→ q′ an a-transition that goes from q to q′: q′ ∈ ∆(q, a). Let the relation

→⊆ Q×Q be such that q → q′ if there exists a letter a where q
a
−→ q′. We thus define the

transitive closure →+ of this relation, that is ∪1≤i →
i where →i is the i-th power of → by

the composition operation in relations. The notation q →+ q′ thus means that there exists
a finite word w = a0 · · · an−1 such that after inputting w, the automaton initiating in q
ends to move in q′. The word w, actually, induces a finite run over the automaton; a finite
run is a sequence of states q0q1 · · · qn where q0 = q, qn = q′ and qi

ai−→ qi+1 for all 0 ≤ i < n.
An input word w may induce several runs over a (non-deterministic) automaton; it induces
however only one run over a DFA. We denote by q

w
−→ q′ such cases when w induces some

run from q to q′. This notation can also be generalized for sets of states S, S ′ ⊆ Q: S w
−→ S ′

that is S ′ = {q′ ∈ Q | there exists q ∈ S such that q w
−→ q′}. In Example 2.2, one can

verify that q0
b·a·b
−−→ q1, where the run is q0q0q1q1, and {q0, q3}

b·a
−→ {q1}.

The relation → when defined as a subset of Q×Q relates q to a successor state; however,
when the relation → is a subset of 2Q × 2Q it relates {q} to the set of all its successors:

q
a
−→ q′ if q′ ∈ ∆(q, a) and {q}

a
−→ S if S = ∆(q, a)

A finite automaton can also input infinite words where the words induce infinite runs
over the automaton; an infinite run for an infinite word w = a0a1 · · · is a sequence of states
q0q1 · · · where q0 ∈ Q0 and qi

ai−→ qi+1 for all i ∈ N.

We refer the reader to [Sip97] and [BK08] for more details.

2.2 Markov decision processes and strategies

Probability distribution. A probability distribution over a finite set S is a function
d : S → [0, 1] such that

#

s∈S d(s) = 1. The support of d is the set Supp(d) = {s ∈
S | d(s) > 0}. For example, given the alphabet A = {a, b}, the function d(a) = 1

4
and

d(b) = 3
4

is a probability distribution over A; we usually denote probability distributions
over an alphabet with d. Another example is the function X(q1) = 1

3
, X(q2) = 2

3
and

X(q3) = 0 that is a probability distribution X over set S = {q1, q2, q3} of states, where
Supp(X) = {q1, q2}. In this thesis, we usually denote probability distributions over states
with X. We denote by D(S) the set of all probability distributions over S. Given a set
T ⊆ S and a probability distribution X over S, let X(T) =

#

s∈T X(s).
For T ̸= ∅, the uniform distribution on T assigns probability 1

|T |
to every state in T . For

example, the distribution X(q1) = X(q2) =
1
2

is a uniform distribution on the set {q1, q2}.

1. A DFA is equipped with only one initial state q0.

20

q0 q1 q2 q3
a : 1

2

a : 1
2
, b

b a, b

a a, b

Figure 2.2: The MDP described in Example 2.3 with the initial Dirac distribution q0.

Given s ∈ S, the Dirac distribution on s assigns probability 1 to s, and by a slight abuse
of notation, we denote it simply by s.

2.2.1 Markov decision processes

Markov decision processes are a kind of stochastic games:

Definition 2.2 (Markov decision processes). A Markov decision process (MDP) M =
⟨Q,A, δ⟩ consists of a finite set Q of states, a finite set A of actions and a probabilistic
transition function δ : Q× A → D(Q).

Given an initial distribution X0 ∈ D(Q), the behavior of an MDP is described as a one-
player stochastic game played in rounds. The game starts in the state q with probability
X0(q). In all rounds, the player chooses an action a ∈ A, and if the game is in state q, the
next round starts in the successor state q′ with probability δ(q, a)(q′).

Example 2.3. An MDP is depicted in Figure 2.2 where the states are Q = {q0, q1, q2, q3}
and the alphabet is A = {a, b}. The probabilistic transition function δ is defined as follows.
Both a-transitions and b-transitions in q1, q2, q3 are deterministic, that is δ(qi, a) and δ(qi, b)
are Dirac distributions: for 0 < i ≤ 3,

δ(q1, a) = q1, δ(q1, b) = q2 and δ(q2, c) = δ(q3, c) = q3 for c ∈ {a, b}.

The only probabilistic transition is the a-transition in q0 where δ(q0, a) is a uniform distri-
bution on the set {q0, q1}. The b-transition in q0 is a deterministic self-loop: δ(q0, b) = q0.

▹

In Example 2.3, we say that the state q3 is absorbing since δ(q3, c) is the Dirac distri-
bution on q3 for all actions c ∈ A. Given q ∈ Q and a ∈ A, denote by post(q, a) the set
Supp(δ(q, a)) which contains all states that can be chosen with a positive probability as the
next successor of the a-transition in q. In Example 2.3, post(q0, a) = {q0, q1}. Let S ⊆ Q
and A′ ⊆ A. We denote by post(S, a) the set of successors ∪q∈Spost(q, a) of all states q in
S and the action a; and similarly by post(S,A′) the set of all successors ∪a∈A′post(S, a) of
states in S and actions in A′.

Given T ⊆ Q, let Pre(T) = {q ∈ Q | ∃a ∈ A : post(q, a) ⊆ T} be the set of states
from which the player has an action to ensure that the successor state is in T . For k > 0,
let Prek(T) = Pre(Prek−1(T)) with Pre0(T) = T . In Example 2.3, for T = {q0, q3} one

21

q0

q1

q2 q3

1
3

1
3

1
3

1

1

1

Figure 2.3: The Markov chain of Example 2.4 with the initial Dirac distribution q0.

can verify that Pre(T) = {q0, q2, q3} and Pre2(T) = {q0, q1, q2, q3}. Moreover, Prek(T) =
Pre2(T) for all k ≥ 2 showing that the sequence of predecessors is ultimately periodic for T .
Since the set of states Q is finite, the sequence of predecessors Pre0(T),Pre1(T),Pre2(T), · · ·
is, indeed, ultimately periodic for all sets T ⊆ Q.

A play (or simply a path) in an MDP M is an infinite sequence π = q0q1q2 . . . such
that for all i ≥ 0 there exists an action a such that qi+1 ∈ post(qi, a). A finite prefix
ρ = q0q1 . . . qn of a path has length |ρ| = n and last state Last(ρ) = qn. In Example 2.3, the
play π = q0q1q2(q3)

ω has the prefix ρ = q0q1q2 where |ρ| = 2 and Last(ρ) = q2. We denote
by Plays(M) and Pref(M) the set of all plays and finite paths in M, respectively.

2.2.2 Markov chains

A finite-state Markov chain is a special kind of MDPs where the player’s choice has no
role.

Definition 2.3 (Markov chains). A finite-state Markov chain M = ⟨Q, δ⟩ consists of
a finite set Q of states and a probabilistic transition function δ : Q → D(Q).

We see that the probability δ(q)(q′) of moving from one state q to the successor q′ is
fixed independently of the actions and the states that the Markov chain went through.
The Markov chains defined in Definition 2.3 are sometimes referred as homogeneous (dis-
crete time) Markov chains [KS83, Nor98, Ser13]. In this manuscript, we only consider the
homogeneous Markov chains and thus omit the word homogeneous as a qualifier.

Example 2.4. A Markov chains is depicted in Figure 2.3 where the states are Q =
{q0, q1, q2, q3} and the probabilistic transition function δ is defined as follows. The next
successor in q0 is either q0, q1 or q2, each with probability 1

3
. The state q1 is an absorbing

state: δ(q1)(q1) = 1. The transitions in q2 and q3 are deterministic: δ(q2)(q3) = 1 and
δ(q3)(q2) = 1.

▹

Since Markov chains are a subset of MDPs, we analogously define paths and finite
prefixes here.

22

The states of finite Markov chains can be classified in recurrent and transient states;
for that, we define a bidirectional reachability relation ∼ on their state space Q: given the
Markov chain M, we say that q and q′ are related, denoted by q ∼ q′, if there are two
finite paths in M, one from q to q′ and another from q′ to q. In Example 2.4, we see
that q0 ∼ q0, q2 ∼ q3 and q1 ̸∼ q2. The relation ∼ is an equivalence relation since it is
reflexive, symmetric and transitive. We denote by [Q]∼ the partition (equivalence classes)
induced by the relation ∼. For the Markov chain described in Example 2.4, the equivalence
classes are {q0}, {q1} and {q2, q3}. Intuitively, each of these classes is a strongly connected
component (SCC) in the digraph induced by the Markov chain. A state q is recurrent if
from q there is no path to a state outside the class containing q; formally, a state q ∈ c
where c ∈ [Q]∼ is recurrent if there is no finite path to a state q ′ where q′ ̸∈ c. Otherwise
the state q is transient. The definition results in the states of a class being all recurrent or
all transient. The Markov chain of Example 2.4 has two recurrent classes {q1} and {q2, q3}
and one transient class {q0}. In the graph view, a recurrent class is a bottom SCC in the
digraph induced by the Markov chain.

Roughly speaking, from a recurrent state q there is no possibility of going to a state
q′ from which there can be no return to q. Therefore, if a Markov chain ever enters in
the state q of a recurrent class c, it always stays in c and eventually returns to q with
probability 1, and thus keeps returning in q infinitely often. To formalize this observation,
let M be a Markov chain and X0 be an initial distribution; for technical reason, we assume
that for all recurrent states q, there is a path from some initial state q0 ∈ Supp(X0) to q
(otherwise we omit the recurrent state q). For all n ∈ N, let the probability distribution Mn

over the states of the Markov chain M give the probability of being in various states
at step n. Thus, M0 = X0 and Mn+1(q) =

#

q′∈Q Mn(q
′) · δ(q′)(q) for all n ∈ N.

Considering the sequence M0M1M2 · · · in a Markov chain M, a distribution X ∈ D(Q)
is stationary if there is an infinite sequence n1n2n3 · · · such that limk→∞ Mnk

exists and
is equal to X. It is known that all finite homogeneous (discrete time) Markov chains
always have a non-empty set of stationary distributions [Nor98]. Given a Markov chain
with m stationary distributions X1, · · · , Xm, let Si = Supp(Xi) be the support of the
stationary distribution Xi where 1 ≤ i ≤ m. For all recurrent states q, there exists at least
one support Si such that q ∈ Si; and moreover, none of the supports Si contains some
transient state. We refer to the sets S1, · · · , Sm as periodic supports of recurrent states.
For instance, the periodic supports of recurrent states for the Markov chain of Example 2.4
are S1 = {q1, q2} and S2 = {q1, q3}. As a result, the probability Mn(q) in all transient
states q vanishes when n → ∞, and all recurrent states are visited infinitely often with
probability 1.

2.2.3 Strategies

For an MDP, a strategy is a recipe (a program) that determines the player’s choice of
action in all different situations of the game played on the MDP. The strategy observes the
finite sequence of states visited so far in the game and suggests the player a probability
distribution over a designated set of good actions.

23

Definition 2.4 (Strategies). A randomized strategy for an MDP M (or simply a strat-
egy) is a function α : Pref(M) → D(A) that, given a finite path ρ, returns a probability
distribution α(ρ) over the action set, used to select a successor state q ′ of ρ with prob-
ability

#

a∈A α(ρ)(a) · δ(q, a)(q
′) where q = Last(ρ).

A strategy α is pure if for all ρ ∈ Pref(M), there exists an action a ∈ A such that
α(ρ)(a) = 1; and memoryless if α(ρ) = α(ρ′) for all ρ, ρ′ such that Last(ρ) = Last(ρ′). We
view pure strategies as functions α : Pref(M) → A, and memoryless strategies as functions
α : Q → D(A).

Example 2.5. Let M be the MDP described in Example 2.3. The strategy α is a random-
ized strategy for M, that is, given a prefix ρ = p0p1 · · · pn in Pref(M), defined by

α(ρ) =

⎧

⎨

⎩

the Dirac distribution on a if n < 4 and pn ∈ {q0, q1}
the uniform distribution on {a, b} if n < 4 and pn ∈ {q2, q3}
the Dirac distribution on b otherwise,

The strategy α purely plays a for the first four rounds, if the MDP is in q0 or q1; otherwise
in those rounds, it plays either a or b, each with probability 1

2
. For all next rounds, α purely

plays b. The strategy β, defined for a given prefix ρ ∈ Pref(M) by

β(ρ) =

'

a if n < 4,
b otherwise,

is a pure strategy for M; and γ is a memoryless strategy where γ(q0) = a and γ(qi) = b
for all 0 < i ≤ 3.

▹

A strategy α uses finite memory if it can be represented by a finite-state transducer
T = ⟨Memory,m0,αu,αn⟩ where Memory is a finite set of modes (the memory of the
strategy), m0 ∈ Memory is the initial mode, αu : Memory × Q → Memory is an update
function, that given the current memory and last state updates the memory, and αn :
Memory × Q → D(A) is a next-move function that selects the probability distribution
αn(m, q) over actions when the current mode is m and the current state of M is q. For
pure strategies, we assume that αn : Memory × Q → A. Formally, the strategy α defined
by T is such that α(ρ · q) = αn(α̂u(m0, ρ), q) for all ρ ∈ Pref(M) and q ∈ Q, where α̂u

extends αu to finite paths in the usual way. The memory size of the strategy is the number
|Memory| of modes.

For an MDP M and a finite-memory strategy α represented by the finite-state trans-
ducer T = ⟨Memory,m0,αu,αn⟩, we denote by M(α) = ⟨Q′, δ′⟩ the Markov chain obtained
as the product of M with the transducer defining α where Q′ = Memory ×Q and a tran-
sition from the state ⟨m, q⟩ to a successor ⟨m′, q′⟩ with m′ = αu(m, q) has probability
#

a∈A αn(m, q)(a) · δ(q, a)(q′).

24

For instance, we see that the strategy α described in Example 2.5 is actually a finite-
memory strategy that can be represented by the transducer ⟨Memory,m0,αu,αn⟩ where
Memory = {m0,m1, · · · ,m4}. The update function is αu(m4, q) = m4 and αu(mi, q) = mi+1

for all 0 ≤ i < 4 and states q ∈ Q. The next-move function αn is defined as follows.

αn(mi, q) =

⎧

⎨

⎩

the Dirac distribution on a if 0 ≤ i < 4 and q ∈ {q0, q1}
the uniform distribution on {a, b} if 0 ≤ i < 4 and q ∈ {q2, q3}
the Dirac distribution on b otherwise.

For the finite-memory strategy α, the obtained Markov chain is M(α) = ⟨Q′, δ′⟩ where
Q′ = {m0, · · · ,m4} × {q0, · · · , q3} and the transition function is defined as follows. The
transitions in ⟨mi, q0⟩ is a uniform distribution on {⟨mi+1, q0⟩, ⟨mi+1, q1⟩} for all 0 ≤ i < 4
and the transition in ⟨m4, q0⟩ is a self-loop. The transitions in ⟨mi, q1⟩ are deterministic and
go to ⟨mi+1, q1⟩ for all 0 ≤ i < 4 while the transition in ⟨m4, q1⟩ is the Dirac distribution
on ⟨m4, q2⟩. Finally, for all modes mi, the transitions in two states ⟨mi, q2⟩ and ⟨mi, q3⟩
are directed to the same state: to ⟨mi+1, q3⟩ if 0 ≤ i < 4, and to ⟨m4, q3⟩ otherwise.

2.3 Probabilistic Automata and randomized word

A natural extension for non-deterministic automata are probabilistic automata where
the non-deterministic choice of successors for a pair of states and actions is resolved by ran-
domness.

Reactive systems, by nature, respond to environmental actions. Finite-state automata
and probabilistic automata are used to model a kind of reactive systems where the reactions
to the environment are fixed by a controller before the system execution. An automaton
inputs an infinite word where the letters are, one-by-one, read as the controller’s choice
among possible reactions. Observing the system execution by controllers is a way to en-
hance modeling reactive systems; in this case, the controller provides a strategy that is
able to choose an action (or a letter) according to the sequence of states visited along the
system execution. Considering the power that controller gains by observing the execution,
MDPs can be viewed as a generalization of probabilistic automata. An infinite word can be
viewed as a pure blind strategy α : N → A that chooses actions (or letters) independently
of any observation on the system execution but only depending on the number of previous
actions that it has chosen so far. We sometimes consider randomized words that are se-
quences d0d1d2 · · · of probability distributions di ∈ D(A) over the letters, i.e., randomized
blind strategies α : N → D(A).

Definition 2.5 (Probabilistic automata). A probabilistic automaton (PA) P =
⟨Q,A, δ⟩ consists of a finite set Q of states, a finite alphabet A of input letters and
a probabilistic transition function δ : Q× A → D(Q).

As we may compare the definitions 2.2 and 2.5, the syntax of PAs and MDPs are
the same, but the semantics (the behaviors) are different. Given an initial distribution

25

X0 ∈ D(Q), the behavior of a PA is as follows. The automaton starts in the state q with
probability X0(q) and reads the first letter of the input pure word w (or if the input word
w = d0d1d2 · · · is randomized, it reads the letter a that is chosen among a ∈ Supp(d0)
with probability d0(a)). The automaton moves to the next state q′ that is chosen with
probability δ(q, a)(q′) if the automaton is in the state q and the inputted letter is a. Then,
automaton reads the next letter (or the next probability distribution) of w.

Since PAs are an extension of NFAs, and since input infinite words for PAs are indeed
blind strategies for MDPs, all definitions such as runs and prefixes are analogously defined
for PAs.

Example 2.6. Consider the automaton depicted in Figure 2.2 on page 21 as an instance
of a PA. This automaton is described in Example 2.3 as an MDP. Let w = (a · b)ω be
an input pure word that can be described as the pure blind strategy α as follows. For all
prefixes ρ with length n,

α(ρ) =

'

a if n ≡ 0 (mod 2),
b if n ≡ 1 (mod 2).

The word w results in the following set of infinite runs over the PA: qω0 +q0(q0q0)
∗q1q2(q3)

ω.

▹

2.4 Winning and acceptance conditions

A Borel set 2 ϕ ⊆ Qω is a set of infinite sequences of states (an infinite run or a play)
in the Cantor topology on Qω. For an infinite sequence of states π = q0q1q2 · · · , define
Inf(π) = {q ∈ Q | for all i ≥ 0 there exists j ≥ i such that qj = q} which is the set of
states visited infinitely often along π. An important subclass of the Borel sets are the ω-
regular ones, that are ω-regular languages over Q. We mention reachability, safety, Büchi
and coBüchi condition from this subclass:

Reachability and safety conditions. A reachability set T ⊆ Q for a system re-
quires that some target state in T be visited along the system execution. The set
♦T = {q0q1q2 · · · ∈ Qω | there exists i ≥ 0 such that qi ∈ T} is, thus, a set of winning plays
or accepting infinite runs for the system with the reachability condition on the target set T .
In the same way, a safety set T ⊆ Q for a system requires that only safe states in T be visited
along the system execution. The set !T = {q0q1q2 · · · ∈ Qω | for all i ≥ 0 we have qi ∈ T}
is, thus, a set of winning plays or accepting infinite runs for the system with the safety
condition on T .

2. Generally speaking, a Borel set is any set in a topological space that is built on open sets (or
equivalently on closed sets) by countable unions, countable intersections and relative complement. We
refer the reader to [Mar90, Mar98] for more details.

26

Büchi and coBüchi conditions. A Büchi set T ⊆ Q for a system requires that some
state in T be visited along the system execution infinitely often. The set !♦T = {π ∈
Qω | Inf(π) ∩ T ̸= ∅} is, thus, a set of winning plays or accepting infinite runs for the
system with the Büchi condition on the target set T . In the same way, a coBüchi set
T ⊆ Q for a system requires that only states in T be visited infinitely often along the
system execution; all states outside T can only be visited finitely many times. The set
♦!T = {π ∈ Qω | Inf(π) ⊆ T} is, thus, a set of winning plays or accepting infinite runs
for the system with the coBüchi condition on T .

Note that the set of winning plays of safety and reachability conditions are dual, that
is ♦T = Qω \!(Q \ T); the same holds for the set of winning plays of Büchi and coBüchi
conditions: !♦T = Qω \ ♦!(Q \ T).

Example 2.7. Consider the target set T1 = {q2} and T2 = {q1, q2} for the MDP M
in Example 2.3 on page 21. The set of winning plays (or accepting runs if M behaves
as a PA) is ♦T1 = Q∗ · q2 · Q

ω and is !T1 = qω2 for reachability and safety condition
on T1, respectively. As a result, the set of infinite plays in M that achieves the reachability
condition ♦T1 is q∗0q

∗
1q2(q3)

ω. This set is an empty set for the safety, Büchi and coBüchi
conditions. Similarly, the set of plays in M that win ♦T2 is q∗0(q1)

ω + q∗0q
∗
1q2(q3)

ω and it is
empty for the safety condition. The sets of plays in M that achieves Büchi condition !♦T2

and coBüchi condition ♦!T2 is the same set: q∗0(q1)
ω.

▹

2.4.1 Languages of NFAs

A regular language (a subset of L ∈ A∗) is recognizable by a finite automaton N defined
over the alphabet A and augmented with an initial set Q0 of states and a finite acceptance
condition F ⊆ Q, if for all finite words w of the language, there is an accepting run over N .
A finite run q0q1 · · · qn is accepting for the automaton N if it starts in some state q0 ∈ Q0

of the initial set and if the last state of the run visits the acceptance conditions qn ∈ F ;
the regular language of the automaton is, thus,

L(N) = {w ∈ A∗ | there exists q0, q such that q0
w
−→ q where q0 ∈ Q0 and q ∈ F}.

An ω-regular language (a subset of L ∈ Aω) is recognizable by a finite automaton N
defined over the alphabet A and augmented with an initial set Q0 of states and an ω-
regular acceptance condition with the set Ω of accepting runs (acceptance conditions such
as reachability with Ω = ♦T and Büchi condition with Ω = !♦T) if for all infinite words w
of the language, there is an accepting infinite run in N . Thus,

LΩ(N) = {w ∈ Aω | w induces an infinite run q0q1 · · · such that q0 ∈ Q0 and q0q1 · · · ∈ Ω}.

27

Example 2.8. Let q0 be the unique initial state of the automaton described in Example 2.2
on page 19. For the finite acceptance condition F = {q0}, we have

L(N) = b∗ · (a · b∗ · a · b∗ · a · (a+ b) · b∗)∗

that we name L1. Let T = {q0} be the target set as well, then L!T (N) = bω that we
name L2. The language for the coBüchi condition of T is L♦!T (N) = L1 · L2.

▹

A Finite automaton with a Büchi or coBüchi acceptance condition is said to be a Büchi
or coBüchi automata, respectively.

2.4.2 Path-outcomes of MDPs

Given an initial distribution X0 ∈ D(Q) and a strategy α in an MDP M, a path-
outcome is an infinite path π = q0q1 . . . in M such that q0 ∈ Supp(X0) and for all i ≥ 0,
the state qi+1 ∈ post(qi, a) for some action a ∈ Supp(α(q0 . . . qi)). The probability of a
finite prefix ρ = q0q1 . . . qn of the play π is

X0(q0) ·
n−1
(

j=0

)

a∈A

α(q0 . . . qj)(a) · δ(qj, a)(qj+1).

We denote by Outcomes(X0,α) the set of all path-outcomes from X0 under strategy α.
As an example, let X0 be the Dirac distribution on q0 for the MDP M in Example 2.3.
Consider the pure memoryless strategy γ that plays a in q0, and that plays b in all states q ̸=
q0 (presented in Example 2.5). Thus, Outcomes(q0, γ) = (q0)

ω + q∗0q0q1q2(q3)
ω, and the

probability of the finite prefix q0q0 is 1
4

and the probability of q0q0q0q1q2 is 1
8
.

The winning sets Ω of plays for the ω-regular conditions (the set Ω is also called an
event in this context) are measurable sets of paths, and thus given an initial distribution X0

and a strategy α, the probabilities Prα(Ω) of events Ω are uniquely defined [Var85]. Hence,
Prα(♦T) is the probability to reach T under strategy α. For the MDP M of Exam-
ple 2.3, the Dirac initial distribution q0 and the strategy γ: the probability of reaching q2
is Prγ(♦{q2}) = 1 whereas the probability of the safety condition Prγ(!{q0}) = 0.

Definition 2.6 (Winning modes for the ω-regular conditions). Given an initial distri-
bution X0 and an event Ω, we say that an MDP M is:

– sure winning if there exists a strategy α such that all path-outcomes are winning:
Outcomes(X0,α) ⊆ Ω;

– almost-sure winning if there exists a strategy α such that Prα(Ω) = 1;
– limit-sure winning if supα Pr

α(Ω) = 1.

For the MDP M of Example 2.3, even though Prγ(♦{q2}) = 1 (from q0) implies that
M is almost-sure winning for the reachability condition ♦{q2}, the infinite play (q0)

ω is

28

a counterexample witness proving that M is not sure-winning for this condition. The
definitions result in M being limit-sure winning for the reachability condition ♦{q2} since
M is almost-sure winning for that condition. Actually, almost-sure and limit-sure winning
modes coincide for reachability in MDPs [dAHK07].

2.4.3 Languages of PAs

The classical languages of PAs are defined on pure words: since pure words for prob-
abilistic automata can be viewed as pure blind strategies for MDPs, the set of runs of a
finite word in a PA define a measurable event. Given an initial distribution X0 for a PA P ,
the probability that a finite run ρ = q0q1 · · · qn of a finite pure word w = a0 · a1 · · · an−1

in P happens, is

Prw(ρ) = X0(q0) ·
n−1
(

j=0

δ(qj, aj)(qj+1).

For the finite acceptance condition F , the probability Pr(w) of the word w to be accepted
is thus

#

ρ∈Runs(w,F) Pr
w(ρ) where Runs(w,F) is the set of accepting runs over the finite

word w in P ; recall that a run ρ = q0q1 · · · qn is accepting if qn ∈ F . Given a threshold
0 ≤ λ ≤ 1, the language of a PA P over the finite words is

L(P) = {w ∈ A∗ | Pr(w) ≥ λ}.

For infinite words, we follow all definitions presented for the MDPs. Given an initial
distribution X0 ∈ D(Q) and the infinite word w in the PA P , the set of infinite runs over w
in P is Outcomes(X0, w) in the MDP M where the behavior of P is interpreted as an
MDP. This way, the probabilities Prw(Ω) of ω-regular acceptance conditions with the set Ω
of accepting runs are uniquely defined [Var85]. The ω-language

LΩ(P) = {w ∈ Aω | Prw(Ω) > 0}.

is recognizable by a PA P augmented with the initial distribution X0 and the ω-regular
acceptance condition with the set Ω of accepting runs.

2.5 Decision Problems

2.5.1 Problems for NFAs

We recall two classical decision problems for NFAs.

Decision problem(s). The emptiness problem asks, given an NFA N with an ac-
ceptance condition, whether the accepted language of N is empty; and universality
problem asks whether the accepted language is A∗ for regular languages or is Aω for
ω-regular languages.

29

Finite acceptance condition. The emptiness problem for NFAs with finite acceptance
conditions F is reducible to s− t connectivity problem in digraphs, that can be determined
in NLOGSPACE in the size of the graph (and thus the automaton) [SVW87, Sip97]. To
decide the emptiness problem, while performing a depth-first search algorithm that visits
all accessible states for which there is a directed path from some initial states, one can
check whether one of those accessible states is in F .

The universality problem for an NFA N is PSPACE-complete [IRS76]. The proof of the
PSPACE-hardness is by a reduction from the space-bounded tiling problem that is known
to be PSPACE-complete; and since co-PSPACE is equal to PSPACE, the (N)PSPACE upper
bound follows from a non-deterministic algorithm that decides co-universal problem: guess
one-by-one letters of a finite word w (with |w| ≤ 2n where n is the number of states in N),
and check whether w is not accepted by the automaton. The algorithm uses polynomial
space to keep track of visited states along the runs induced by inputting w to see if the
last state of some of those runs do not visit F .

ω-regular acceptance condition. The emptiness problem for an NFA N with a reach-
ability condition ♦T reduces to the same problem with the Büchi condition !♦T where the
states q ∈ T are transformed to absorbing states. On the other hand, safety and coBüchi
conditions are accordingly duals of reachability and Büchi conditions, thus we only mention
the complexity of classical decision problems for NFA with a Büchi acceptance condition.

The emptiness problem for NFA with a Büchi condition !♦T is solved by means of
graph algorithms. Such algorithms first run a SCC decomposition, and then see if there
is a directed path from an initial state to some SCC that contains at least one cycle
and that contains at least one state q ∈ T . It is proved that the emptiness problem for
Büchi automata is NLOGSPACE-complete. The universality problem for Büchi automata
is though PSPACE-complete [SVW87].

2.5.2 Problems for MDPs

We recall following decision problems for MDPs.

Decision problem(s). The membership problem of {sure, almost-sure, limit-sure}
modes for ω-regular winning condition Ω asks, given an MDP M and given an initial
distribution X0, whether M is {sure, almost-sure, limits-sure} winning for Ω from X0,
respectively.

For the MDP M and the winning condition Ω, the set of all initial distributions from
which M is winning, is the winning region. It is known that for reachability, safety, Büchi
and coBüchi winning conditions, and for all three winning modes, the membership problems
are decidable in PTIME [dAH00, dAHK07, CH12]. For all these winning conditions, it is
shown that the randomization is not necessary. Moreover, for all distributions X0 in the
winning region of all these conditions, all Dirac distributions on all the states q ∈ Supp(X0)

30

are winning too. We say that such states are winning states. Moreover for reachability and
safety conditions, it is known that memoryless strategies are sufficient for all three winning
modes.

The membership problems of almost-sure and limit-sure modes for the winning condi-
tions in MDPs, are mostly studied as qualitative analysis of MDPs [BK98b, BK08, CDH10,
CHJS13]. In the sequel, we give some hints on how to decide the membership problem for
the different winning modes of all reachability, safety, Büchi and coBüchi winning condi-
tions.

Reachability condition. Let M be an MDP with state space Q and let T ⊆ Q. The
membership problem of sure winning for reachability condition ♦T is reducible to reacha-
bility in a turn-based two-player game, where the probabilistic choice of the environment
is simulated by an adversary called Player-2 (since the exact values of transitions do not
matter). Initially, Player-2 chooses a state q ∈ Supp(X0) where the game starts in. For
each round, Player-1 chooses an action a; and then the adversary chooses a successor state
among the states in post(q, a). The problem of deciding whether Player-1 has a strategy
to ensure reaching a target set T , is known to be PTIME-complete [CH12]. The following
fix-point computation is a naive algorithm to compute the set of winning states for sure
reachability. For all n ≥ 1, compute winn = Pre(winn−1) ∪ winn−1 where win0 = T . We see
that win0 ⊆ win1 ⊆ win2 ⊆ · · · and since Q is finite (and all wini ⊆ Q) then this sequence
will stabilize (in at most |Q| iterations) into a set win that is the set of winning states.

The membership problem for almost-sure winning is more tricky than what it is for sure
winning mode, see [dAH00, dAHK07, CH12]. We give few hints on how the set of winning
states is computed for almost-sure reachability condition ♦T in an MDP M = ⟨Q,A, δ⟩.
The computation of winning states for almost-sure reachability condition has the solution
of positive reachability in the main core: positive reachability problem asks whether the
probability Pr(♦T) is (strictly) positive. The positive reachability problem can be solved
by a simple fix-point computation. To use this problem for reachability though we define a
variant of positive reachability that is reaching a target set with some positive probability
while keeping the remaining part of probability mass in the winning region (for positive
probability condition). Given X, Y ⊆ Q, let APre(X, Y) : {q ∈ Q | ∃a ∈ A : (post(q, a) ∩
X ̸= ∅ and post(q, a) ⊆ Y)} be the set of states from which the player has some action a
to ensure reaching X with some positive probability, and moreover the set Y is not left
with probability 1. A nested fix-point computation gives us the set of winning states win.
Let win0 = Q, and for all m ≥ 0, iterate the following two steps:

(1) for all n ≥ 1 compute Xn = APre(Xn−1,winm) ∪ Xn−1 where X0 = T , until the
computation stabilizes into X (i.e., Xn = Xn+1 = X for some n), and then as the next
step let

(2) winm+1 = X.
Since Q is finite and winm+1 ⊆ winm then this sequence will stabilize (in at most |Q|
iterations) into a set win that is the set of winning states from which there is a positive
probability to reach T in at most |Q| rounds, and since win is never left, the probability of

31

eventually reaching T is 1. Thus, win is the set of winning states for almost-sure reachability
condition ♦T .

We study another approach, which might be more intuitive, to compute the winning
set for almost-sure reachability. Given S ⊆ Q, let Presome(S) = {q ∈ Q | ∃a ∈ A :
post(q, a) ∩ S ̸= ∅} be the set of states from which the player has some action to ensure
reaching S with some (strictly) positive probability; note that Presome(S) = APre(S,Q).
Let Preall(S) = {q ∈ Q | ∀a ∈ A : post(q, a) ∩ S ̸= ∅} be the set of states from which the
player has no choice unless going to S with some positive probability.

An algorithm to compute the set of winning states for positive reachability condition ♦T
is the following fix-point computation. For all n ≥ 1, compute winn = Presome(winn−1) ∪
winn−1 where win0 = T . We see that win0 ⊆ win1 ⊆ win2 ⊆ · · · and since Q is finite (and all
wini ⊆ Q) then this sequence will stabilize (in at most |Q| iterations) into a set winsome(♦T)
that is the set of winning states for positive reachability ♦T ; in other words, the set of states
from which the player has some strategy to ensure positive reachability ♦T . In a similar
way, the following fix-point computation, winn = Preall(winn−1)∪winn−1 for all n ≥ 1 where
win0 = T , gives the set of states winall(♦T) where all strategies of the player are winning
for the positive reachability ♦T .

We are now equipped to solve almost-sure reachability ♦T : let M0 = M be the MDP
and Q0 = Q be the state space. For all i ≥ 0, compute the set

Qi+1 = Qi \ winall(♦(Qi \ winsome(♦T)));

where winsome and winall are computed on the MDP Mi. For all i ≥ 1, the MDP Mi is
obtained from Mi−1 where the state space is Qi ∪ {sink} and the transition function δi is
defined as follows. For all states q and actions a such that post(q, a) ⊆ Qi, let δi(q, a) =
δi−1(q, a). Otherwise, δi(q, a) is the Dirac distribution on sink. The state sink is an absorbing
state.

Intuitively, the algorithm first computes all states winsome(♦T) from which Mi has
a strategy to reach T with some positive probability. Thus, the set Qi \ winsome(♦T)
contains all states from which there is no chance to reach T , even with a very small
probability. Another important point is, as soon as Mi enters in some state of the set
Qi \ winsome(♦T) , regardless of the player strategy, it always remains in that set with
some positive probability. Thus, all states from which player has no choice unless going
to Qi \ winsome(♦T) with some positive probability, must be avoided. We remove such
states, that are states in winall(♦(Qi \ winsome(♦T)), from Mi (and all in-going or out-
going transitions) to obtain Mi+1. We repeat this computation until there is no such state
to be removed from the MDP, and as a result the set of winning states for almost-sure
reachability ♦T is computed. All the computations can be done in PTIME. We refer the
reader to [BK08] for more details and the correctness of both algorithms.

The set of limit-sure winning states for reachability condition coincide with the set of
almost-sure winning states [dA97]. The PTIME-hardness results of the membership prob-
lems for reachability condition, is by a reduction from monotone Boolean circuit problem,
that is known to be PTIME-complete [GR88].

32

Safety condition. Let M be an MDP with state space Q and let T ⊆ Q. In analogy to
reachability, the membership problem of sure winning for safety condition !T is reducible
to safety in a turn based two-player game. A naive algorithm to compute the set of winning
states for sure safety condition !T in the MDP M is the following fix-point computation.
For all n ≥ 1, compute winn = Pre(winn−1)∩winn−1 where win0 = T and Pre(S) = {q ∈ Q |
∃a ∈ A : post(q, a) ⊆ S}. We see that winn ⊆ winn−1, therefore this sequence will stabilize
(in at most |T | iterations) into a safe set win that is the set of winning states. It is known
for safety conditions !T in MDPs that the three winning modes coincide [CH12].

Büchi and coBüchi conditions. Let M be an MDP with state space Q and let
T ⊆ Q. Analogous to reachability, the membership problem of sure winning for Büchi
condition !♦T and coBüchi condition ♦!T are reducible to Büchi and coBüchi in a turn
based two-player game. A well-known iterative algorithm to compute the set of winning
states for Büchi condition !♦T in a turn-based two player games, has the following logic.
For all i = 1, 2, · · · , |Q|, the algorithm performs two steps:

(1) computes the set wini of states where the Player-1 has a strategy to ensure a visit
to T . Next,

(2) it computes the set losei of states where the adversary has a strategy to ensure a
visit to Q \ wini. The set losei is removed from the game.

The states that are remaining in the game after the computation are all sure winning
for Büchi condition !♦T . We refer the reader to [CHP08] for the detailed algorithm.

For an MDP M, a set C ⊆ Q is closed if for every state q ∈ C, there exists a ∈ A

such that post(q, a) ⊆ C. For each q ∈ C, let DC(q) = {a ∈ A | post(q, a) ⊆ C}. The
digraph induced by C is M # C = (C,E) where E is the set of edges ⟨q, q′⟩ ∈ C × C
such that q′ ∈ post(q, a) for some a ∈ DC(q). An end component is a closed set U such
that the digraph M # U is strongly connected. An end component U ⊆ Q is terminal if
post(U,A) ⊆ U . Let endComp(M) be the set of all end components. For the MDP M of
Example 2.3, the set of all end components is endComp(M) = {{q0}, {q1}, {q3}}.

The following remarks are folklore results about end components:

Remark 1. Given an MDP M, for all end components U ∈ endComp(M) and all initial
distributions X0 where Supp(X0) ⊆ U , there exists a (finite-memory) strategy such that
Prα(!U) = 1 and Prα(!♦{q}) = 1 for all q ∈ U .

Roughly speaking, this remark says that for all end components U there is a (finite-
memory) strategy that almost surely ensures that M stays forever in the end component U
and ensures that all states of the end component U are visited, infinitely often. The second
folk remark is:

Remark 2. For an MDP M, let Ω = {π ∈ Plays(M) | Inf(π) = U for some U ∈
endComp(M)}. Then Prα(Ω) = 1 under all strategies α and from all initial distribu-
tions X0.

Proof (sketch). Consider an initial distribution X0 and a strategy α for the MDP M. For
all infinite paths π = q0q1q2 · · · of the MDP M such that q0 ∈ Supp(X0), and all q ∈ Inf(π),

33

there is some action a that is played by α, infinitely often, for the prefixes ρ of the play
with Last(ρ) = q (prefixes that ends in q). Given the condition that the a-transition in q
is taken infinitely often along the play π, for all q ′ ∈ post(q, a), the conditional probability
that M moves from q to q′ for only finitely many times is zero. Therefore, given that
the a-transition in q is taken infinitely often along the play π, all successors post(q, a)
of the a-transition in q are almost-surely visited infinitely often along π. Hence, for all
states q ∈ Inf(π) there is an action a such that post(q, a) ∈ Inf(π) meaning that Inf(π)
almost-surely is (strongly connected and) included in an end component.

!

These two remarks enable us to reduce the membership problem of almost-sure
mode for Büchi and coBüchi conditions, to the membership problem of almost-sure for
reachability. For the Büchi condition !♦T , let Ugood be the union of all end compo-
nents U ∈ endComp(M) such that U ∩ T ̸= ∅; the membership problem of almost-sure
for Büchi condition !♦T is reducible to the membership problem of almost-sure mode for
reachability condition ♦Ugood. The reduction is correct since as soon as the MDP M enters
the end component U where U ∩ T ̸= ∅, there is a strategy that ensures, infinitely often,
the visits to T .

The following modifications are necessary when reducing the membership problem of
almost-sure coBüchi condition ♦!T to the membership problem of almost-sure reachability
condition. The reason for the following modifications is because an end component U ∈
endComp(M) of an MDPM where T ⊆ U , may include some bad state q ̸∈ T where there
is no strategy to avoid visiting that bad state whereas it may have such a state but there
is some strategy which visits only the states of U ∩ T , infinitely often. Let M′ be a copy
of M where all states q′ ̸∈ T are replaced with an absorbing state sink, and for all states
q ∈ T and all actions a ∈ A, if the successor set of the a-transition in q is not included
in T , i.e., post(q, a) ̸⊆ T , then the a-transition is redirected to sink. Let Ugood be the union
of all end components U ′ ∈ endComp(M′) of the M′ such that U ′ ⊆ T . The membership
problem of almost-sure for coBüchi condition ♦!T is reducible to the membership problem
of almost-sure mode for reachability condition ♦Ugood in the same MDP M.

As the almost-sure and limit-sure winning states for reachability condition coincide in
MDPs, the sets of winning states of almost-sure and limit-sure are the same for Büchi
condition too. The same result holds for coBüchi condition.

2.5.3 Problems for PAs

Similar to NFAs, the emptiness problems is a classical decision problem for PAs. We
recall that the classical languages of PAs are defined on pure words.

Decision problem(s). The emptiness problem asks, given a PA P with an acceptance
condition, whether the accepted language of P is empty.

34

The language of finite words for a PA P is defined for a given threshold 0 ≤ λ ≤ 1; recall
that Lλ(P) = {w ∈ A∗ | Pr(w) ≥ λ}. The emptiness problem asks, thus, the existence of
a finite word w ∈ A∗ such that Pr(w) ≥ λ. The strict emptiness problem is to decide the
existence of a finite word w ∈ A∗ such that Pr(w) > λ. For the extreme value λ = 0, the
answer to the emptiness problem is always yes; and the strict emptiness problem reduces to
emptiness problem for NFAs. For the extreme value λ = 1, emptiness problem is reducible
to the universality problem for NFAs; and the answer to the strict emptiness problem is
always no. For 0 < λ < 1, both emptiness problem and strict emptiness problem are
undecidable [GO10].

It is known [BBG08, CT12] that the emptiness problem for PAs with positive Büchi
acceptance conditions is undecidable, whereas it is PSPACE-complete for almost-sure Büchi
acceptance conditions. The emptiness problem for PAs with almost-sure safety and reach-
ability conditions are PSPACE-complete, too.

An interesting problem for PAs with a finite acceptance condition is the value 1 problem,
which is used to establish several complexity results throughout this thesis. The value of
a PA P augmented with the finite acceptance condition F , is val(P) = supw∈A∗ Pr(w).

Decision problem(s). The value 1 problem asks, given a PA P and a finite acceptance
condition, whether val(P) = 1.

Intuitively, it asks whether some words exist with the acceptance probability arbitrarily
close to 1. The value 1 problem for PAs is proved undecidable in [GO10]. Subsection 6.2.5
on page 134 provides some details about this problem.

35

36

3Synchronizing Problems

First sight. In this chapter we define the synchronizing problems we are mainly
concerned about in this thesis. We recall the definition of finite synchronizing words
for NFAs, and we survey decision problems and conjectures about finite synchronizing
words.

We then provide definitions of infinite synchronizing words for NFAs. We introduce
variants of synchronizations in MDPs and PAs by considering synchronizing strategies
and (finite and infinite) synchronizing words. We study the relation between one-letter
finite alternating automata and MDPs. We also briefly discuss the synchronization in
two-player turn-based games.

Contents

3.1 Synchronization in NFAs . 38

3.1.1 Finite synchronization in NFAs 38

3.1.2 Infinite synchronization in NFAs 42

3.2 Synchronization in MDPs . 45

3.3 Synchronization in PAs . 51

3.4 Relation to one-letter alternating finite automata 52

3.4.1 Problems for 1L-AFA . 54

3.4.2 Connection with MDPs. 56

3.5 Relation to two-player turn-based games. 58

3.6 Discussions . 59

37

3.1 Synchronization in NFAs

The finite synchronizing words are well-studied for finite automata, for example see
[Čer64, Pin78, Epp90, IS95, IS99, San04, Vol08, Mar10, AGV10, OU10, Mar12]; such a
word drives the automaton from an unknown or unobservable state to a known specific
state. As an example think of remote systems connected to a wireless controller that
emits the command via wireless waves but expects the observations via physical connectors
(it might be excessively expensive to mount wireless senders on the remote systems), and
consider that the physical connection to controller is lost due to some technical failure.
The wireless controller can therefore not observe the current states of the distributed
subsystems. In this setting, emitting a synchronizing word as the command leaves the
remote system (as a whole) in one particular state no matter in which state each distributed
subsystem started; and thus the controller again regain control.

For synchronizing words, called directable or reset words as well, applications in plan-
ning, control of discrete event systems, bio-computing, and robotics [BAPE+03, Vol08,
DMS11a].

3.1.1 Finite synchronization in NFAs

A finite automaton is synchronizing if there exists an input word, called synchronizing
word, that brings the automaton from every state to the same state.

Definition 3.1 (Finite synchronizing words). For a complete NFA N = ⟨Q,A,∆⟩, a
finite synchronizing word is a word w ∈ A∗ for which there exists a state q ∈ Q such
that Q

w
−→ {q}.

The natural decision problem for finite synchronization in NFAs is as follows.

Decision problem(s). The finite synchronizing problem asks, given an NFA, whether
a finite synchronizing word exists.

A straightforward approach to decide finite synchronizing problem is a reduction to
the emptiness problem in the subset construction of the NFA. For a complete NFA N =
⟨Q,A,∆⟩, the subset construction which is usually defined to determinize the automaton,
consists in ⟨Q′,A,∆′⟩ where the state space Q′ = 2Q \{∅} is the set of all cells, i.e., subsets
of states in N , and the transition function ∆′ : Q′ × A → Q′ defined as ∆′(c, a) = c′

where c
a
−→ c′ and a ∈ A. The finite synchronizing problem for N can be encoded as

the emptiness problem for the deterministic subset construction of N equipped with the
initial cell c0 = Q and the set F = {{q} | q ∈ Q} of accepting cells. By this reduction,
one can prove that the language of finite synchronizing words for an NFA N , that is
Lsynch = {w ∈ A∗ | w is a finite synchronizing word for N}, is a regular language.

38

q0

q1q2

a
b

a, b

b

a, b

ab

Figure 3.1: The NFA described in Exam-
ple 3.1 with synchronizing word a · a · b.

{q0, q1, q2}

{q0, q1} {q0}

a

b

a

b

a b

Figure 3.2: The subset construction of
the NFA in Example 3.1 (restricted to
the part showing the run over a · a · b).

Example 3.1. The NFA N depicted in Figure 3.1 has three states q0, q1, q2 and has two
letters a and b. The a-transitions in q0 is non-deterministic and bring N into q0 or q1:
{q0}

a
−→ {q0, q1}; the a-transitions in q1 and q2 however deterministically go to q1. The

b-transition in q2 spreads the current state of the automaton into the state space: {q2}
b
−→

{q0, q1, q2} whereas the b-transitions in q0 and q1 are deterministic and moves the automaton

into q0. The word a · a · b is synchronizing since {q0, q1, q2}
a·a·b
−−→ {q0}; it can be verified by

Figure 3.2 that illustrates some part of the subset construction to show the run from the
initial cell {q0, q1, q2} to the accepting cell {q0} over the word a ·a · b. We see that all words
b∗ · a · a∗ · b · a∗ are synchronizing too.

▹

The reduction to emptiness problem for subset construction provides the PSPACE mem-
bership of the finite synchronizing problem for NFAs. A reduction from the finite automata
intersection that is PSPACE-complete [Koz77, GJ79, San04], has established the matching
lower bound to prove that finite synchronizing problem is indeed that costly, even if only
one transition in the NFA is non-deterministic [IS99, Mar10, Mar12]. The same complexity
results hold for the finite synchronizing problem of not-complete DFAs, called partial finite
automata (PFAs), even if the transition function is undefined only for one state-action
pair [Mar10, Mar12]. When the DFA is complete, the finite synchronizing problem lies
in NLOGSPACE. Below, we see that the reason of the lower complexity for DFAs is the
pair-wise synchronizing technique whose idea comes from a Lemma proved by Černý in
the early 1960’s [Čer64].

Finite synchronizing word for DFAs. For a given complete deterministic finite au-
tomaton N = ⟨Q,A,∆⟩, there exists a finite synchronizing word if, and only if, for all pairs
of states q1, q2 ∈ Q, there exists a state q and a word w such that {q1, q2}

w
−→ {q}. This

result is by a Lemma from Černý [Čer64, Epp90, Vol08]; one direction of the statement is
trivial, by monotonicity for all states q, if Q w

−→ {q} implying that w is a synchronizing word
for N then {q1, q2}

w
−→ {q} for all pairs of states q1 and q2. The reverse direction is provable

by an easy observation about DFAs: when runs (over any arbitrarily word) starting in two
states q1 and q2 cross each other in some state q, those runs stay merged/synchronized for-
ever. In other words, all words w ·v ∈ A∗ are synchronizing when w is a finite synchronizing

39

the automaton of Example 2.2

q0 q1

q2q3

{q0, q1} {q1, q2} {q2, q3}

{q1, q3} {q0, q2} {q0, q3}

a

a

a

a, b

b
b

b

a a

b
aa

b
b

a

a

b b

b

Figure 3.3: The subset construction of the NFA in Example 2.2 on page 19 (where the
state space is restricted only to cells of size at most 2).

word followed by v ∈ A∗. This observation does not hold in a non-deterministic setting.
As a result in DFAs, the state space can be synchronized by consecutive synchronizations
of pairs of states. The NLOGSPACE upper bound for DFAs follows from an algorithm
repeating pair-wise synchronization as follows:

(1) choose a pair of states q1 and q2 from the set S of must-be-synchronized states,
where S is initially set to the state space Q.

(2) find a word w for which there exists q such that {q1, q2}
w
−→ {q}; if such a word does

not exists, return “no synchronizing word exists”. Otherwise, update the set of must-be-
synchronized states: compute the successor set S ′ after inputting the word w: S w

−→ S ′ and
let S = S ′.

(3) if S is a singleton, return “the automaton is synchronizing”.
The termination of this algorithm is guaranteed by Černý’s Lemma. In fact by each

iteration, the set S shrinks to a strictly smaller set and the algorithm terminates in at
most |Q| iterations. The algorithm is thus in NLOGSPACE that comes from the second step
which is finding a word w that merges runs from two states q1 and q2; this can be reduced
to the membership problem in the subset construction of the automaton where the state
space (of the subset construction) is restricted only to cells of size at most 2 (equivalently
to the reachability problem in the product of two copies of the DFA). Figure 3.3 shows
such subset construction, i.e., restricted to cells of size at most 2, for the deterministic
automaton described in Example 2.2 on page 19. We see that for all pairs of states, there
is a run to the accepting cell {q0}. A finite synchronizing word for this automaton is
b · a3 · b · a3 · b. This algorithm constructs a synchronizing word for the input DFA, if any,
that is not always the shortest one.

The famous Černý conjecture claims that the length of shortest synchronizing word for
a DFA with n > 1 states is at most (n − 1)2. Despite all attempts in last decades, this
conjecture has not been proved or disproved. Černý provided a family of the automaton
(over the alphabet {a, b}) where the shortest synchronizing word is exactly the extreme
value (n − 1)2. An n-states automaton in this family has following structure: there is a
loop going through q0q1 · · · qn−1 and closing in q0. For all states, the a-transitions shift

40

once the automaton in this loop q0q1 · · · qn−1q0. For all states q ̸= qn−1, the b-transition is
a self-loop on q; the b-transition in qn−1 takes the automaton to q0. See Example 2.2 for
a formal description for the transition function of the 4-state automaton instance of this
family. The shortest synchronizing word for the automaton in Example 2.2 is b · a3 · b ·
a3 · b and for the n-state automaton in this family is (b · an−1)n−2 · b. This family is the
only known family satisfying the extreme bound on the length of shortest synchronizing
word [Vol08, AGV10]. The best known upper bound for the shortest synchronizing words
of an n-state automaton is 1

6
(n3−n−6), proved by Pin [Pin78, Vol08]. Trahtman recently

tried to provide a better upper bound 1
48
(7n3+6n2−16n) where the proof was unfortunately

erroneous [Tra11, Tra14]. The related decision problem which asks, given a DFA and the
bound k, whether the DFA has a synchronizing word with length less than k, is complete
for the class DP [OU10], the closure of NP∪coNP under finite intersections.

Synchronization from a subset in NFAs. A variant of finite synchronization in NFAs
is synchronization from a subset S of states.

Decision problem(s). Given an NFA N = ⟨Q,A,∆⟩ and a subset S ⊆ Q, the finite
synchronizing problem from a subset S asks whether there exists a finite word w ∈ A∗

and some state q such that S w
−→ {q}.

The finite synchronizing problem from a subset is PSPACE-complete, even if the automa-
ton is complete and deterministic [San04]. In DFAs, the pair-wise synchronizing technique
provides a NLOGSPACE algorithm for the synchronizing finite problem. This technique fails
when synchronizing from a subset is asked because a pair of states q1, q2 ∈ S are not guar-
anteed to be merged in a state q from which (and the states of the must-be-synchronized
set) there is a synchronizing word. Thus, the order in which the pairs of state are chosen
for pair-wise synchronization matters. Note that, an NFA might not have a synchronizing
word but synchronizing words from S exist for several subsets S of the states.

The PSPACE upper bound for the synchronization from a subset comes trivially from
the membership problem of the subset construction. To find a synchronizing word from S,
we equip the subset construction with the initial cell c0 = S and the set F = {{q} |
q ∈ Q} of accepting cells. The PSPACE-hardness is by a reduction from finite automata
intersection [Koz77, GJ79, San04]; the finite automata intersection asks, given n DFAs
equipped with initial states and accepting sets, is there a common finite word that is
accepting by all DFAs. For n automaton N1,N2, · · · ,Nn over the common alphabet A, let
q1, q2, · · · , qn be the initial states and F1,F2, · · · ,Fn be the accepting sets. Let N be the
automaton that has one copy of each automaton Ni (1 ≤ i ≤ n) and two new absorbing
states synch and sink. For a new letter #, let #-transitions in all accepting states q ∈ F1∪
· · ·∪Fn of all automata go to the state synch whereas all #-transitions in all non-accepting
states q ̸∈ F1 ∪ · · · ∪ Fn go to the state sink. From the subset S = {q1, q2, · · · , qn, synch},
a synchronizing word cannot escape synch because synch is an absorbing state. Let w be
the shortest synchronizing word from S. As a result w must end with #: w = v ·# where

41

v ∈ A∗; it holds since the only way that runs starting in the initial states q1, q2, · · · , qn
arrives in synch is inputting # at the right time when those runs are in some accepting
states. One can verify that v is an accepting word for all Ni (1 ≤ i ≤ n).

3.1.2 Infinite synchronization in NFAs

We provide four definitions of infinite synchronizing words for NFAs to define languages
of infinite synchronizing words, in analogy to safety, reachability, Büchi and coBüchi ac-
ceptance conditions. For an infinite word w = a0 · a1 · a2 · · · , let w0 = ϵ be the empty word
and for all i ≥ 1, let wi denote the prefix a0 · · · ai−1 of w consisting in the first i letters.

Definition 3.2 (Infinite synchronizing words). For a complete NFA N = ⟨Q,A,∆⟩,
an infinite word w ∈ Aω is

• always synchronizing if for all i ∈ N there exists some state q such that Q
wi−→ {q},

• eventually (or event) synchronizing if there exists i ∈ N and some state q such

that Q
wi−→ {q},

• weakly synchronizing if for all n ∈ N there exists i ≥ n and some state q such
that Q

wi−→ {q},

• strongly synchronizing if there exists n ∈ N such that for all i ≥ n there exists some
state q where Q

wi−→ {q}

where w0 = ϵ and for i ≥ 1, the word wi is the prefix of w consisting in the first i
letters.

Intuitively, the always and eventually synchronization condition require that the NFA
is always synchronized or at least once; though the weakly requires infinitely often syn-
chronization, and strongly requires always synchronization except for finitely many times.
We say that an NFA N is {always, event, strongly, weakly} synchronizing if there exists
a(n) {always, event, strongly, weakly} synchronizing infinite word for N .

For an NFA N , let the language Lalways , Levent , Lstrongly and Lweakly be the set of all
always, eventually, strongly and weakly synchronizing words, respectively. As an immediate
result of definitions:

Remark 3. For an NFA N , we have Lalways ⊆ Lstrongly ⊆ Lweakly ⊆ Levent .

These inclusions, in general, are strict; see Example 3.2. Note that the language Lalways

is an empty set for all NFAs that have at least two states. In the sequel, we present
variations of these definitions where the always synchronization is possible. For a DFA
defined over an alphabet A, we have Lstrongly = Lweakly = Levent where Levent is the set of
all words w.v constructed by a finite synchronizing word w concatenated with an infinite
word v ∈ Aω.

42

q0

q1

q2 q3

b a, b

a

a

a, b

b

a

b

Figure 3.4: The NFA N1 of Example 3.2
with the strongly and eventually syn-
chronizing words b · aω and b · a · bω.

q0

q1

q2

b

b

a

b
b

a

a

Figure 3.5: The NFA N2 of Example 3.2
with weakly synchronizing word (a · b)ω

and strongly synchronizing word aω.

Example 3.2. The NFA N1 in Figure 3.4 has four states q0, q1, q2, q3 and two letters a
and b. The a-transition in q0 is non-deterministic {q0}

a
−→ {q0, q1}; but it is deterministic

in other states: q2
a
−→ q3, q3

a
−→ q2 and it is a self-loop on q1. The b-transitions in q0 and

q1 take the automaton to q2, and it is a self-loop on q2 itself. The b-transition in q3 is

non-deterministic: {q3}
b
−→ {q2, q3}. The word w = b · a is a finite synchronizing word

for N1, thus any infinite word initiated with w is an eventually synchronizing word, such
as b · a · bω. The word b · a · bω is a witness to show that Lweakly ⊂ Levent for N1. A strongly
and weakly synchronizing word, here, is b · aω.

The NFA N2 depicted in Figure 3.5 is an example to show that there are NFAs for which
the inclusion Lstrongly ⊂ Lweakly is strict. The a-transitions in this automaton synchronizes
N in q0: qi

a
−→ q0 for all 0 ≤ i ≤ 2. The b-transitions in q1 and q2 are self-loops; and

{q0}
b
−→ {q1, q2}. The languages of strongly and weakly synchronizing words are

Lstrongly = (a+ b)∗aω and Lweakly = Lstrongly + (a+ b)∗(b · b∗ · a · a∗)ω.

▹

Decision problem(s). For all λ ∈ {always, event, strongly, weakly}, the emptiness
problem for Lλ asks, given an NFA N , whether no infinite λ-synchronizing words exist
for N meaning that Lλ = ∅.

Similar to finite synchronization, we can define λ-synchronization from an initial sub-
set Q0 of states. For example, a strongly synchronizing word from Q0 is a word w ∈ Aω

for which there exists n ∈ N such that for all i ≥ n there exists some state q ∈ Q such
that Q0

wi−→ {q}. Note that if Q0 is a singleton, all infinite words are trivially eventually
synchronizing. In this case, we are mostly interested in nontrivial synchronization (when
synchronization after at least one input is of interest). For the automaton N2 described
in Example 3.2, since there is a weakly synchronizing word from Q, there are weakly
synchronizing words from all subsets Q0 of Q.

For an NFA N with an initial set Q0, the set of all infinite runs over an infinite word w =
a0 ·a1 ·a2 · · · can be visualized as an acyclic graph for which there is |Q0| roots: all states q0,j

43

c4 = {q2, q3}

q0,0 q1,2 q2,3

q3,2

q3,3

q4,2

q4,3

q5,2

q5,3

· · ·

· · ·

Figure 3.6: The acyclic graph of runs induced by the word b · a · bω over the automaton N1

described in Example 3.2.

where qj ∈ Q0. The set of vertices is

V = {q0,j | qj ∈ Q0} ∪
*

i∈N

{qi+1,j | qj ∈ S where Q0
wi−→ S}

where wi = a0 · · · ai is the prefix of w consisting in the first i+ 1 letters. There is an edge
from qi,j towards qi+1,k, denoted by qi,j → qi+1,k, if qj

ai−→ qk, qj, qk ∈ Q. For all i ∈ N,
define ci = {qj | qi,j ∈ V }, that is the set of states where the automaton may arrive in
after inputting the first i letters. Thus, c0 = Q0 and c1 = ∆(Q0, a0). In fact, the sequence
c0c1c2 · · · is nothing else than the sequence of sets where c0 = Q0 and Q0

wi−→ ci+1. Each
infinite path starting in a root, on this acyclic graph is indeed an infinite run induced
by the word w. As an example, consider the infinite word b · a · bω over the NFA N1 in
Example 3.2. The acyclic graph of runs starting from Q0 = {q0} is drawn in Figure 3.6.

Now, we can re-formalize the definitions of infinite synchronizing words for the NFAs.
Let N be an NFA and Q0 be an initial set. For example, a strongly synchronizing word
from Q0 is a word w ∈ Aω for which there exists n ∈ N such that for all i ≥ n we have
|ci| = 1; a weakly synchronizing word from Q0 is a word w ∈ Aω such that for all n ∈ N

there exists i ≥ n where |ci| = 1. For the NFA N1 in Example 3.2 the word w = b · a · bω

is neither strongly nor weakly synchronizing from Q0 = {q0}: because |ci| ≥ 2 for all
i ≥ 3 (the acyclic graph induced by w is drawn in Figure 3.6). This word w is however a
(nontrivial) eventually synchronizing word: |c1| = 1.

We introduce two other variants of infinite synchronization for an NFA. In these vari-
ants, the states where the automaton arrives in at synchronization’s time is under ques-
tion. For a target set T , we define the Boolean functions subT : 2Q → {true, false} and
memT : 2Q → {true, false} where for all c ⊆ Q, we have subT (c) = true if ∅ ̸= c ⊆ T and
memT (c) = true if |c| = 1 and c ⊆ T . Intuitively, the function subT only decides if the
input set is a non-empty subset of T (subset inclusion of c) though the function memT

decides if c is a singleton such as c = {q}, and if q ∈ T (membership of q).

Definition 3.3 (Infinite synchronizing words into target sets). For a complete
NFA N = ⟨Q,A,∆⟩ with an initial set Q0, a target set T and f ∈ {subT ,memT},
an infinite word w ∈ Aω from Q0 according to f is

44

• always synchronizing if f(ci) for all i ∈ N,

• eventually (or event) synchronizing if f(ci) for some i ∈ N,

• weakly synchronizing if for all n ∈ N there exists i ≥ n such that f(ci),

• strongly synchronizing if there exists n ∈ N such that for all i ≥ n we have f(ci).

As an instance, consider the automaton N1 described in Example 3.2 and the unique
initial state q0. The word b ·a ·bω where the induced graph of runs is drawn in Figure 3.6, is
not strongly synchronizing from q0 according to the function mem{q1,q2,q3} but it is strongly
synchronizing according to sub{q1,q2,q3}.

Given an NFA N with the initial set Q0 of states and the target set T , define the
λ-synchronizing ω-language for N according to f to be

Lλ(f) = {the set of all infinite λ-synchronizing words for N from Q0 according to f}

where λ ∈ {always, event, strongly, weakly} and f ∈ {subT ,memT}.

Decision problem(s). The emptiness problem of the λ-synchronizing ω-language
according to f asks, given an NFA N and an initial set of states Q0, whether Lλ(f) = ∅.

For the automaton N2 of Example 3.2 with all possible initial set Q0 ⊆ Q and for all
λ ∈ {event, strongly, weakly}, we have Lλ(mem{q1,q2}) = ∅ whereas Lλ(sub{q1,q2}) ̸= ∅. For
the emptiness problem of λ-synchronizing ω-languages according to a function f , without
loss of generality we can assume that the initial set is a singleton set: given an NFA N
and an initial set Q0, we construct a copy of N with a new initial state qinit from which
the successor set on all actions is Q0 (for eventually synchronizing, we need to consider
nontrivial synchronization and for always synchronizing, we need to consider the target set
T = T ∪{qinit}). We, thus, always equip the automaton with an initial state qinit and study
synchronization from that unique initial state.

For all singleton target sets T , we have subT = memT , thus we have Lλ(subT) =
Lλ(memT). For the sake of simplicity we usually denote by Lλ(q) those sets when T = {q}.

3.2 Synchronization in MDPs

For probabilistic systems, a natural extension of words is the notion of strategy that
reacts and chooses actions according to the sequence of states visited along the system exe-
cution. In this context, we define synchronizing problems in MDPs regarding to strategies
(and not words). To this aim, we consider a symbolic-outcome of MDPs viewed as gen-
erators of sequences of probability distributions over states [KVAK10]. In contrast to the

45

traditional path-outcomes presented in subsection 2.4.2, the symbolic-outcome of MDPs
recently has received attention [KVAK10, CKV+11, AAGT12, HKK14].

Let us first define two variants of the reachability condition for MDPs: given a set
T ⊆ Q of target states and k ∈ N, the event of reaching T after exactly k steps is
♦k T = {q0q1q2 · · · ∈ Plays(M) | qk ∈ T}, and the event of reaching T within k steps is
♦≤k T =

+

j≤k ♦
j T . In the same way of reachability condition, these events are measurable

provided the strategy α and the initial distribution X0; thus, the probabilities Prα(♦k T)
and Prα(♦≤k T) of the events are uniquely defined. As an example, consider the MDP M
described in Example 2.3 on page 21 and the memoryless strategy γ where γ(q0) = a and
γ(q) = b for all states q ̸= q0 (defined in Example 2.5 on page 24). Let X0 be the Dirac
distribution on q0, then from X0

– Prγ(♦k {q1}) =
1
2k

for all k ≥ 1: it holds since ♦k {q1} = (q0)
k−1q1Q

ω and since on
the action a, the probability that M stays in q0 or leaves q0 to move into q1 is 1

2
p if

M is in q0 with probability p.
– Prγ(♦≤k {q3}) = 1 − 1

2k−2 for all k ≥ 3. Since q3 is absorbing, when M arrives in q3
it can never leave out q3. Hence, Prγ(♦≤k {q3}) = Prγ(♦k {q3}).

Symbolic-outcome of MDPs. Let M be an MDP and X0 ∈ D(Q) be an initial distri-
bution. Under a strategy α, the symbolic-outcome of M from X0 is the infinite sequence
Mα

0M
α
1M

α
2 · · · of probability distributions defined by Mα

k (q) = Prα(♦k {q}) for all k ≥ 0
and q ∈ Q. Hence, Mα

k is the probability distribution over states after k steps under
strategy α. Note that Mα

0 = X0. As an example, the infinite sequence

q0

q1

q2

q3

⎛

⎜

⎜

⎜

⎜

⎝

1

0

0

0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
2

1
2

0

0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
4

1
4

1
2

0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
8

1
8

1
4

1
2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
16

1
16

1
8

3
4

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
32

1
32

1
16

7
8

⎞

⎟

⎟

⎟

⎟

⎠

· · ·

is the symbolic-outcome for the MDP M described in Example 2.3 under the memoryless
strategy γ where γ(q0) = a and γ(q) = b for all states q ̸= q0 (mentioned in Example 2.5).

Synchronization. Informally, synchronizing conditions require that the probabil-
ity of some target state (or some group of target states) tends to 1 in the se-
quence Mα

0M
α
1M

α
2 · · · , either always, once, infinitely often, or always after some point.

Given a target set T ⊆ Q, we define the functions sumT : D(Q) → [0, 1] and maxT :
D(Q) → [0, 1] that compute sumT (X) =

#

q∈T X(q) and maxT (X) = maxq∈T X(q). The
function max T (X) is the quantitative version of the function mem(Supp(X)), and sumT (X)
is the quantitative version of subT (Supp(X)).

46

Always Eventually

Sure ∃α ∀n Mα
n(T) = 1 ∃α ∃n Mα

n(T) = 1

Almost-sure ∃α infn Mα
n(T) = 1 ∃α supn Mα

n(T) = 1

Limit-sure supα infn Mα
n(T) = 1 supα supn Mα

n(T) = 1

Weakly Strongly

Sure ∃α ∀N ∃n ≥ N Mα
n(T) = 1 ∃α ∃N ∀n ≥ N Mα

n(T) = 1

Almost-sure ∃α lim supn→∞ Mα
n(T) = 1 ∃α lim infn→∞ Mα

n(T) = 1

Limit-sure supα lim supn→∞ Mα
n(T) = 1 supα lim infn→∞ Mα

n(T) = 1

Table 3.1: Winning modes and synchronizing conditions (where Mα
n(T) denotes the prob-

ability that under strategy α, after n steps the MDP M is in a state of T).

Definition 3.4 (Synchronized probability distributions). For the function f ∈
{sumT ,maxT} and p ∈ [0, 1], we say that a probability distribution X is p-synchronized
according to f if f(X) ≥ p.

We say that a sequence X̄ = X0X1 . . . of probability distributions is:
(a) always p-synchronizing if Xi is p-synchronized for all i ≥ 0;
(b) event (or eventually) p-synchronizing if Xi is p-synchronized for some i ≥ 0;
(c) weakly p-synchronizing if Xi is p-synchronized for infinitely many i’s;
(d) strongly p-synchronizing if Xi is p-synchronized for all but finitely many i’s.

For p = 1, these definitions are analogous to the traditional safety, reachability, Büchi,
and coBüchi conditions [dAH00].

Similar to traditional semantics, the following winning modes can be considered:

Definition 3.5 (Synchronizing MDPs). Let M = ⟨Q,A, δ⟩ be an MDP with the ini-
tial distribution X0 and let f ∈ {sumT ,maxT}. For the {always, eventually, weakly,
strongly} synchronizing condition, M is:

• sure winning if there exists a strategy α such that the symbolic-outcome of α from X0

is {always, eventually, weakly, strongly} 1-synchronizing according to f ;

• almost-sure winning if there exists a strategy α such that for all ϵ > 0 the symbolic-
outcome of α from X0 is {always, eventually, weakly, strongly} (1−ϵ)-synchronizing
according to f ;

• limit-sure winning if for all ϵ > 0, there exists a strategy α such that the symbolic-
outcome of α from X0 is {always, eventually, weakly, strongly} (1−ϵ)-synchronizing
according to f .

47

We often use X(T) instead of sumT (X), as in Tables 3.1 where the definitions of the
various winning modes and synchronizing conditions for f = sumT are summarized, and
we use ∥X∥T instead of max T (X).

For f ∈ {sumT ,maxT} and λ ∈ {always, event(ually), weakly, strongly}, the winning
region ⟨⟨1⟩⟩λsure(f) is the set of initial distributions such that M is sure winning for λ-
synchronization (we assume that M is clear from the context). We define analogously the
winning regions ⟨⟨1⟩⟩λalmost(f) and ⟨⟨1⟩⟩λlimit(f). For a singleton T = {q}, we have sumT =
maxT , and we simply write ⟨⟨1⟩⟩λµ(q) where µ ∈ {sure, almost, limit}.

Example 3.3. Consider the MDP M described in Example 2.3 on page 21 and the memo-
ryless strategy γ where γ(q0) = a and γ(q) = b for all states q ̸= q0 (defined in Example 2.5
on page 24). The outcome from the initial Dirac distribution q0 is as follows

q0

q1

q2

q3

⎛

⎜

⎜

⎜

⎜

⎝

1

0

0

0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
2

1
2

0

0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
4

1
4

1
2

0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
8

1
8

1
4

1
2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
16

1
16

1
8

3
4

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

1
32

1
32

1
16

7
8

⎞

⎟

⎟

⎟

⎟

⎠

· · ·

⎛

⎜

⎜

⎜

⎜

⎝

1
2k

1
2k

1
2k−1

1− 1
2k−2

⎞

⎟

⎟

⎟

⎟

⎠

· · ·

where k ≥ 3 is the number of steps. We have supk∈N M
γ
k(q3) = supk∈N(1 − 1

2k−2) = 1
showing that q0 ∈ ⟨⟨1⟩⟩eventalmost(q3).

Consider the pure memoryless strategy β that always plays b in all states: β(q) = b
for all states q ∈ Q. The outcome is such that for all k ∈ N, the probability Mβ

k(q0) = 1
from q0 which trivially gives q0 ∈ ⟨⟨1⟩⟩alwayssure (q0). The MDP M is sure winning for always
synchronizing condition since in all steps k, there is a deterministic transition ensuring the
existence of a unique successor, and thus ensuring that the probability distribution Mβ

k+1

over states remains a Dirac distribution. By definition, if q0 is sure winning for always
synchronizing condition in {q0}, it is sure winning for eventually synchronizing condition
too. Thus, ⟨⟨1⟩⟩eventsure (maxT) ̸= ∅ for the target set T = {q0, q1}.

Now, let us modify the MDP M as follows. The b-transition in q0 is not deterministic
anymore: δ(q0, b)(q0) = δ(q0, b)(q1) =

1
2

(shown in Figure 3.7). We can easily verify that
q0 ̸∈ ⟨⟨1⟩⟩alwayssure (q0) and q0 ̸∈ ⟨⟨1⟩⟩alwayssure (q1) neither. This two results are sufficient to prove
that q0 ̸∈ ⟨⟨1⟩⟩alwayssure (maxT) for the target set T = {q0, q1}. However, a pure memoryless
strategy that always plays a for all states q ∈ Q, is a witness to prove q0 ∈ ⟨⟨1⟩⟩alwayssure (sumT).

▹

The definitions of synchronization result in following hierarchies:

Remark 4. Given an MDP M, for all functions f ∈ {sumT ,maxT}, for all λ ∈ {always,
event, weakly, strongly}, and µ ∈ {sure, almost, limit}, we have:

– ⟨⟨1⟩⟩λsure(f) ⊆ ⟨⟨1⟩⟩λalmost(f) ⊆ ⟨⟨1⟩⟩λlimit(f),

– ⟨⟨1⟩⟩alwaysµ (f) ⊆ ⟨⟨1⟩⟩stronglyµ (f) ⊆ ⟨⟨1⟩⟩weaklyµ (f) ⊆ ⟨⟨1⟩⟩eventµ (f)

48

q0 q1 q2 q3
a, b : 1

2

a, b : 1
2

b

a

a, b

a, b

Figure 3.7: An MDP M such that ⟨⟨1⟩⟩eventalmost(q2) ̸= ⟨⟨1⟩⟩eventlimit (q2) and ⟨⟨1⟩⟩λsure(q1) ̸=
⟨⟨1⟩⟩λalmost(q1) for all λ ∈ {event, weakly, strongly}.

For the always synchronizing condition we will provide robustness result saying that the
three winning modes coincide: ⟨⟨1⟩⟩alwayssure (f) = ⟨⟨1⟩⟩alwaysalmost(f) = ⟨⟨1⟩⟩alwayslimit (f) (See Lemma 4.1
on page 64). For the eventually synchronizing condition as the least robust synchroniza-
tion, we will prove that the inclusions ⟨⟨1⟩⟩eventsure (f) ⊂ ⟨⟨1⟩⟩eventalmost(f) ⊂ ⟨⟨1⟩⟩eventlimit (f) are in
general strict (See Lemma 3.1 on page 49). The strong and weak synchronization are
more robust than eventually synchronization, but less than always synchronization: we
see that ⟨⟨1⟩⟩λsure(f) ⊂ ⟨⟨1⟩⟩λalmost(f) where λ ∈ {strongly,weakly}; and we will prove that
the almost-sure and limit-sure winning modes coincide (See Lemma 3.1 , Theorem 5.3 and
Corollaries 6.1 and 6.2 on pages 49, 100, 119 and 123, respectively.).

Lemma 3.1. For all λ ∈ {event, weakly, strongly}, there exists an MDP M and two
states q1, q2 such that:

(i) ⟨⟨1⟩⟩λsure(q1) ! ⟨⟨1⟩⟩λalmost(q1) and,

(ii) ⟨⟨1⟩⟩eventalmost(q2) ! ⟨⟨1⟩⟩eventlimit (q2).

Proof. Consider the MDP M with states q0, q1, q2, q3 and actions a, b as shown in Figure 3.7.
All transitions are deterministic except from q0 where on all actions, the successor is q0 or
q1 with probability 1

2
. The deterministic a and b-transitions in q1, q2, q3 are as follows,

δ(q1, a) = q1, δ(q1, b) = q2 and δ(q2, c) = δ(q3, c) = q3 for c ∈ {a, b}.

Let the initial distribution X0 be the Dirac distribution on q0.
To establish (i), since ⟨⟨1⟩⟩stronglyµ (q1) ⊆ ⟨⟨1⟩⟩weaklyµ (q1) ⊆ ⟨⟨1⟩⟩eventµ (q1) for all µ ∈ {sure,

almost}, it is sufficient to prove that X0 ∈ ⟨⟨1⟩⟩stronglyalmost (q1) and X0 ̸∈ ⟨⟨1⟩⟩eventsure (q1), as it
implies that X0 ∈ ⟨⟨1⟩⟩λalmost(q1) and X0 ̸∈ ⟨⟨1⟩⟩λsure(q1) for all λ ∈ {event, weakly, strongly}.
To prove that X0 ∈ ⟨⟨1⟩⟩stronglyalmost (q1), consider the pure strategy that always plays a. The
outcome is such that the probability to be in q1 after k steps is 1− 1

2k
, showing that M is

almost-sure winning for the strongly synchronizing condition in the target set {q1} (from
X0). On the other hand, X0 ̸∈ ⟨⟨1⟩⟩eventsure (q1) because for all strategies α, the probability in
q0 remains always positive, and thus in q1 we have Mα

n(q1) < 1 for all n ≥ 0, showing that
M is not sure winning for the eventually synchronizing condition in q1 (from X0).

To establish (ii), for all k ≥ 0 consider a strategy that plays a for k steps, and then
plays b. Then the probability to be in q2 after k+1 steps is 1− 1

2k
, showing that this strategy

is eventually (1− 1
2k
)-synchronizing in the target set {q2}. Hence, M is limit-sure winning

for the eventually synchronizing condition in q2 (from X0). Second, for all strategies, since

49

ℓ

p

q

a : 1
5

a : 4
5

a

a

⇒

ℓ1

ℓ2

p1

p2

q

1
10

1
10

4
5

1
10

1
10

4
5

1
2

1
2

1
2

1
2

1
2

1
2

Figure 3.8: State duplication ensures that the probability mass can never be accumulated
in a single state except in q (we omit action a for readability).

the probability in q0 remains always positive, the probability in q2 is always smaller than 1.
Moreover, if the probability p in q2 is positive after n steps (p > 0), then after any number
m > n of steps, the probability in q2 is bounded by 1 − p. It follows that the probability
in {q2} is never equal to 1 and cannot tend to 1 for m → ∞, showing that M is not
almost-sure winning for the eventually synchronizing condition in {q2} (from X0).

!

Decision problem(s). For λ ∈ {always, event, strongly,weakly} and µ ∈ {sure,
almost, limit}, the membership problem of λ-synchronization is to decide, given an
MDP M and an initial probability distribution X0, whether X0 ∈ ⟨⟨1⟩⟩λµ(f).

Remark 5. For λ ∈ {eventually, weakly} synchronizing condition and each winning mode,
we show that the membership problem with function max T is polynomial-time equivalent
to the membership problem with function sumT ′ with a singleton T ′. First, for µ ∈
{sure, almost, limit}, we have ⟨⟨1⟩⟩λµ(maxT) =

+

q∈T ⟨⟨1⟩⟩
λ
µ(q), showing that the membership

problems for max are polynomial-time reducible to the corresponding membership problem
for sumT ′ with singleton T ′. The reverse reduction is as follows. Given an MDP M′, a
singleton T ′ = {q} and an initial distribution X ′

0, we can construct an MDP M and initial
distribution X0 such that X ′

0 ∈ ⟨⟨1⟩⟩λµ(q) if and only if X0 ∈ ⟨⟨1⟩⟩λµ(maxT) where T = Q is
the state space of M. The idea is to construct M and X0 as a copy of M′ and X ′

0 where
all states except q are duplicated, and the initial and transition probabilities are evenly
distributed between the copies (see Figure 3.8). Therefore if the probability tends to 1 in
some state, it has to be in the state q.

Remark 6. For λ ∈ {always, event, strongly, weakly}, for the membership problem of λ-
synchronization it is sufficient to consider Dirac initial distributions (i.e., assuming that

50

MDPs have a single initial state) because the answer to the general membership problem
for an MDP M with initial distribution X0 can be obtained by solving the membership
problem for a copy of M with a new initial state qinit from which the successor distribution
on all actions is X0. We, thus, always equip the MDP with an initial Dirac distribution qinit
and study synchronization from qinit. Note that in the case of always synchronizing MDPs,
the target set is replaced with T ∪{qinit}, and in the case of eventually synchronizing MDPs
the non-trivial synchronization is of interest.

3.3 Synchronization in PAs

Since words for probabilistic automata can be viewed as blind strategies for MDPs, we
define symbolic-runs of PAs as the symbolic outcomes of MDPs with blind strategies. In
the context of synchronization, we consider randomized words for PAs.

For an infinite randomized word w = d0d1d2 · · · where di ∈ D(A) for all i ∈ N, the
symbolic-run Pw

0 P
w
1 P

w
2 · · · of the PA P from the initial distribution X0 is defined by

Pw
0 = X0, and for all n ∈ N and q ∈ Q, by

Pw
n+1(q) =

)

a∈A

)

q′∈Q

Pw
n (q

′) · dn(a) · δ(q
′, a)(q).

By replacing the path-outcomes with run-outcomes and strategies with randomized
words, PAs inherit all definitions of synchronizations (such as sure weakly synchroniz-
ing condition) from MDPs. For all λ ∈ {always, eventually, strongly, weakly} and
f ∈ {maxT , sumT}, we thus define {sure, almost} λ-synchronizing languages according
to f for PAs P , as Lλ

sure(f) and Lλ
almost(f), that are the set of all randomized words (blind

strategies) that P is sure and almost-sure winning for the λ-synchronizing condition. We
also define the limit-sure Lλ

limit(f) λ-synchronizing languages, denoted by Lλ
limit(f), that is

the set of all families of limit-sure words such that in each family, for all ϵ there is a word w
over which P is (1− ϵ)-synchronizing for λ-synchronizing condition.

Decision problem(s). For λ ∈ {always, event, weakly, strongly} and f ∈
{sumT ,maxT}, the emptiness problem for {sure, almost, limit} λ-synchronizing lan-
guages according to f asks, given a PA P and an initial distribution X0, whether the
language is empty.

By Remark 6, without loss of generality we assume that X0 is a Dirac distribution on
the state qinit.

Example 3.4. Consider the MDP drawn in Figure 3.9 with the initial state qinit. All transi-
tions are deterministic except in qinit where on all actions, the successors are q1 and q2 each
with probability 1

2
. In q1 and q2, the b-transitions are self-loops whereas the a-transitions

leave the states to q2 and q3, respectively. The state q3 is an absorbing state.

51

qinit

q1

q2 q3

a, b : 1
2

a, b : 1
2

a

a

b

b

a, b

Figure 3.9: An MDP such that qinit ∈ ⟨⟨1⟩⟩eventsure (q2) implying that the MDP is sure even-
tually synchronizing in {q2} by some strategy. However, there is no blind strategy under
which the MDP is sure eventually synchronizing in {q2}, and thus Levent

sure (q2) = ∅ from qinit
when interpreting the model as a PA.

We prove that qinit ∈ ⟨⟨1⟩⟩eventsure (q2) implying that there is some strategy for M to win sure
eventually synchronizing condition in {q2}, and we prove that there is no blind strategy to
win this condition. This implies that Levent

sure (q2) = ∅ from qinit when interpreting the model
as a PA.

Consider the pure memoryless strategy α that plays a in all states except q2 where it
plays b: α(q2) = b and α(q) = a for all states q ̸= q2. The symbolic-outcome of M under α
is

qinit

q1

q2

q3

⎛

⎜

⎜

⎜

⎜

⎝

1

0

0

0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

0

1
2

1
2

0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

0

0

1

0

⎞

⎟

⎟

⎟

⎟

⎠

· · ·

meaning that qinit ∈ ⟨⟨1⟩⟩eventsure (q2) in the MDP M.
Considering the model as the PA P, the first input letter brings the automaton in q1

or q2 with equal probability 1
2
. From now on, if P always inputs b, the probability 1

2
in q1

never leaks down to q2, and P can never be in q2 with probability 1. On the other hand,
as soon as P inputs once a, the automaton moves from q2 to q3 with probability 1

2
. Since

q3 is absorbing, the automaton never comes back from q3 to q2; thus, the probability in q2
is never more than 1

2
and Levent

sure (q2) = ∅ from qinit.

▹

3.4 Relation to one-letter alternating finite automata

Let B+(Q) be the set of positive Boolean formulas over Q, i.e., Boolean formulas built
from elements in Q using ∧ and ∨. A set S ⊆ Q satisfies a formula ϕ ∈ B+(Q) (denoted
S |= ϕ) if ϕ is satisfied when replacing in ϕ the elements in S by true, and the elements in
Q \ S by false.

52

q0
δA(q0) = q0 ∨ (q1 ∧ q2)

q1
δA(q1) = q2 ∧ q3

q2
δA(q2) = q2

q3
δA(q3) = q1 ∧ q2

Figure 3.10: An example of 1L-AFA where the language L(Aq0) is not finite.

Definition 3.6 (One-letter alternating finite automaton). A one-letter alternating fi-
nite automaton (1L-AFA) is a tuple A = ⟨Q, δA,F⟩ where Q is a finite set of states,
δA : Q → B+(Q) is the transition function, and F ⊆ Q is the set of accepting states.

We assume that the formulas in transition function are in disjunctive normal form. Note
that the alphabet of the automaton is omitted, as it has a single letter. In the language of a
1L-AFA, only the length of words is relevant. For all n ≥ 0, define the set AccA(n,F) ⊆ Q
of states from which the word of length n is accepted by A as follows:

– AccA(0,F) = F ;
– AccA(n,F) = {q ∈ Q | AccA(n− 1,F) |= δ(q)} for all n > 0.

The set L(Aq) = {n ∈ N | q ∈ AccA(n,F)} is the language accepted by A from initial
state q.

Example 3.5. Consider the 1L-AFA depicted in Figure 3.10 which has four states q0, q1, q2
and q3. The transition function is defined as follows. In q0, there is a self-loop and another
transition going to q1 and q2: δA(q0) = q0∨ (q1∧q2). The state q2 has a self-loop. In q1 and
q3, there are only ∧-transitions: δA(q1) = q2 ∧ q3 and δA(q3) = q1 ∧ q2. Let F = {q2, q3} be
the set of accepting states. By definition, we have AccA(0, {q2, q3}) = {q2, q3} and

AccA(1,F) = {q1, q2} and AccA(2,F) = {q0, q2, q3}.

Since q0 has a self-loop, then q0 ∈ AccA(n,F) for all next iterations n ≥ 2. It implies that
the language L(Aq0) of A starting in q0 is not finite.

▹

For fixed n, we view AccA(n, ·) as an operator on 2Q that, given a set F ⊆ Q computes
the set AccA(n,F). Note that AccA(n,F) = AccA(1, AccA(n − 1,F)) for all n ≥ 1.
Denote by PreA(·) the operator AccA(1, ·). Then for all n ≥ 0 the operator AccA(n, ·)

53

coincides with PrenA(·), the n-th iterate of PreA(·). For the 1L-AFA of Example 3.5, we
have Pre3A({q2, q3}) = {q0, q1, q2} and Pre4A({q2, q3}) = {q0, q2, q3}. For the next iterations,
we see that for all n ≥ 1

Pre2n+1
A ({q2, q3}) = Pre3A({q2, q3}) and Pre2n+2

A ({q2, q3}) = Pre2A({q2, q3}).

Thus, the infinite sequence Pre0A(F)Pre1A(F)Pre2A(F) · · · is ultimately periodic. This se-
quence is ultimately periodic for all 1L-AFAs: there exists n, k ∈ N such that Pren+k

A (F) =
PrenA(F).

3.4.1 Problems for 1L-AFA

We present classical decision problems for alternating automata, namely the emptiness
and finiteness problems, and we introduce a variant of the finiteness problem that will be
useful to give the complexity of synchronizing problems for (two player games and) MDPs.

Decision problem(s). Given a 1L-AFA A and an initial state q, the emptiness
problem for 1L-AFAs is to decide whether L(Aq) = ∅, and the finiteness problem is to
decide whether L(Aq) is finite. The universal finiteness problem is to decide, given a
1L-AFA A, whether L(Aq) is finite for all states q.

In sequel, we discuss all of these three decision problems.

Emptiness problem. Given a 1L-AFA A, the sequence PrenA(F) is ultimately periodic:
for all n > 2|Q| there exists k ≤ 2|Q| such that PrekA(F) = PrenA(F). Therefore, a simple
PSPACE algorithm to decide the emptiness problem is to compute on the fly the sets
PrenA(F) for n ≤ 2|Q|, and check membership of q. The emptiness problem can be solved
by checking whether q ∈ PrenA(F) for some n ≥ 0. It is known that the emptiness problem
is PSPACE-complete, even for transition functions in disjunctive normal form [Hol95, JS07].

Finiteness problem. This problem can be solved in (N)PSPACE by guessing n, k ≤ 2|Q|

such that Pren+k
A (F) = PrenA(F) and q ∈ PrenA(F). The finiteness problem is PSPACE-

complete by a simple reduction from the emptiness problem: from an instance (A, q) of
the emptiness problem, construct (A′, q′) where q′ = q and A′ = ⟨Q, δ′,F⟩ is a copy of
A = ⟨Q, δ,F⟩ with a self-loop on q (formally, δ′(q) = q ∨ δ(q) and δ′(r) = δ(r) for all
r ∈ Q \ {q}). It is easy to see that L(Aq) = ∅ if and only if L(A′

q′) is finite.

Universal finiteness problem. This problem can be solved in PSPACE by checking
whether PrenA(F) = ∅ for some n ≤ 2|Q|. Note that if PrenA(F) = ∅, then PremA(F) = ∅ for
all m ≥ n. Given the PSPACE-hardness proofs of the emptiness and finiteness problems, it
is not easy to see that the universal finiteness problem is PSPACE-hard.

Lemma 3.2. The universal finiteness problem for 1L-AFA is PSPACE-hard.

54

1L-AFA B

x

C2
. . . Cn

A′

from Figure 3.12

C1 c10

c11

c12

Figure 3.11: Sketch of reduction to show PSPACE-hardness of the universal finiteness prob-
lem for 1L-AFA.

Proof. The proof is by a reduction from the emptiness problem for 1L-AFA, which is
PSPACE-complete [Hol95, JS07]. The language of a 1L-AFA A = ⟨Q, δ,F⟩ is non-empty
if q0 ∈ PreiA(F) for some i ≥ 0. Since the sequence PreiA(F) is ultimately periodic, it is
sufficient to compute PreiA(F) for all i ≤ 2|Q|.

From A, we construct a 1L-AFA B = ⟨Q′, δ′,F ′⟩ with set F ′ of accepting states such
that the sequence PreiB(F

′) in B mimics the sequence PreiA(F) in A for 2|Q| steps. The
automaton B contains the state space of A, i.e., Q ⊆ Q′. The goal is to have PreiB(F

′)∩Q =
PreiA(F) for all i ≤ 2|Q|, as long as q0 ̸∈ PreiA(F). Moreover, if q0 ∈ PreiA(F) for some
i ≥ 0, then Pre

j
B(F

′) will contain q0 for all j ≥ i (the state q0 has a self-loop in B), and if
q0 ̸∈ PreiA(F) for all i ≥ 0, then B is constructed such that Pre

j
B(F

′) = ∅ for sufficiently
large j (roughly for j > 2|Q|). Hence, the language of A is non-empty if and only if the
sequence PrejB(F

′) is not ultimately empty, that is if and only if the language of B is infinite
from some state (namely q0).

The key is to let B simulate A for exponentially many steps, and to ensure that the
simulation stops if and only if q0 is not reached within 2|Q| steps. We achieve this by
defining B as the gadget in Figure 3.11 connected to a modified copy A′ of A with the
same state space. The transitions in A′ are defined as follows, where x is the entry state
of the gadget (see Figure 3.12): for all q ∈ Q let (i) δB(q) = x ∧ δA(q) if q ̸= q0, and (ii)
δB(q0) = q0 ∨ (x ∧ δA(q0)).

Thus, q0 has a self-loop, and given a set S ⊆ Q in the automaton A, if q0 ̸∈ S, then
PreA(S) = PreB(S ∪ {x}) that is PreB mimics PreA when x is in the argument (and q0 has
not been reached yet). Note that if x ̸∈ S (and q0 ̸∈ S), then PreB(S) = ∅, that is unless
q0 has been reached, the simulation of A by B stops. Since we need that B mimics A for
2|Q| steps, we define the gadget and the set F ′ to ensure that x ∈ F ′ and if x ∈ PreiB(F

′),
then x ∈ Prei+1

B (F ′) for all i ≤ 2|Q|.
In the gadget, the state x has non-deterministic transitions δB(x) = c10∨c20∨ · · ·∨cn0 to n

55

1L-AFA A

q0
δA(q0) = q1

q1
δA(q1) = q2 ∧ q3

q2 q3

⇒

1L-AFA A′

1L-AFA A

q0
δB(q0) = q0 ∨ (x ∧ δA(q0))

q1
δB(q1) = x ∧ δA(q1)

q2 q3

x

Figure 3.12: Detail of the copy A′ obtained from A in the reduction of Figure 3.11.

components with state space Ci = {ci0, . . . , c
i
pi−1} where pi is the (i+ 1)-th prime number,

and the transitions 1 δB(c
i
j) = x ∧ cij+1 form a loop in each component (i = 1, . . . , n). We

choose n such that p#n =
2n

i=1 pi > 2|Q| (take n = |Q|). Note that the number of states in
the gadget is 1+

#n

i=1 pi ∈ O(n2 log n) [BS96] and hence the construction is polynomial in
the size of A.

By construction, for all sets S, we have x ∈ PreB(S) whenever the first state ci0 of some
component Ci is in S, and if x ∈ S, then cij ∈ S implies cij−1 ∈ PreB(S). Thus, if x ∈ S,
the operator PreB(S) ‘shifts’ backward the states in each component; and, x is in the next
iteration (i.e., x ∈ PreB(S)) as long as ci0 ∈ S for some component Ci.

Now, define the set of accepting states F ′ in B in such a way that all states ci0 disappear
simultaneously only after p#n iterations. Let F ′ = F ∪ {x} ∪

+

1≤i≤n(Ci \ {cipi−1}), thus
F ′ contains all states of the gadget except the last state of each component. It is easy to
check that, irrespective of the transition relation in A, we have x ∈ PreiB(F

′) if and only if
0 ≤ i < p#n . Therefore, if q0 ∈ PreiA(F) for some i, then q0 ∈ Pre

j
B(F

′) for all j ≥ i by the
self-loop on q0. On the other hand, if q0 ̸∈ PreiA(F) for all i ≥ 0, then since x ̸∈ PreiB(F

′)
for all i > p#n , we have PreiB(F

′) = ∅ for all i > p#n . This shows that the language of A
is non-empty if and only if the language of B is infinite from some state (namely q0), and
establishes the correctness of the reduction.

!

3.4.2 Connection with MDPs.

The underlying structure of a Markov decision process M = ⟨Q,A, δ⟩ is an alternat-
ing graph, where the successor q′ of a state q is obtained by an existential choice of an
action a and a universal choice of a state q′ ∈ Supp(δ(q, a)). Therefore, it is natural that
some questions related to MDPs have a corresponding formulation in terms of alternat-
ing automata. We show that such connections exist between synchronizing problems for

1. In expression cij , we assume that j is interpreted modulo pi.

56

q0
δA(q0) = q0 ∨ (q1 ∧ q2)

q1
δA(q1) = q0 ∨ (q2 ∧ q3)

q2
δA(q2) = q2 ∨ q3

q3
δA(q3) = q3 ∨ (q1 ∧ q2)a.

q0

q1 q2

q3

b.

a

a

a

a b : 1
2

b : 1
2

b : 1
2

b : 1
2

b
b : 1

2

b : 1
2

Figure 3.13: An example of 1L-AFA A with the connected MDP MA.

MDPs and language-theoretic questions for alternating automata, such as emptiness and
universal finiteness. Given a 1L-AFA A = ⟨Q, δA,F⟩, assume without loss of generality
that the transition function δA is such that δA(q) = c1 ∨ · · · ∨ cm has the same number
m of conjunctive clauses for all q ∈ Q. From A, construct the MDP MA = ⟨Q,A, δM⟩
where A = {a1, . . . , am} and δM(q, ak) is the uniform distribution over the states occurring
in the k-th clause ck in δA(q), for all q ∈ Q and ak ∈ A. Then for all n ≥ 0, we have
AccA(n,F) = Pren(F) in the MDP MA. Similarly, from an MDP M and a set T of
states, we can construct a 1L-AFA A = ⟨Q, δA,F⟩ with F = T such that for all n ≥ 0 we
have AccA(n,F) = Pren(T) in the MDP M (let δA(q) =

3

a∈A

4

q′∈post(q,a) q
′ for all q ∈ Q).

Example 3.6. Consider the 1L-AFA A depicted in Figure 3.13.a which has four states q0,
q1, q2 and q3. The transition function is defined as follows. In all states, the transitions
have 2 conjunctive clauses. In q0, there is a self-loop and another transition going to q1
and q2: δA(q0) = q0 ∨ (q1 ∧ q2). In q1, the transition function is δA(q1) = q0 ∨ (q2 ∧ q3).
The states q2 and q3, both, have a self-loop and a second transition: δA(q2) = q2 ∨ q3 and
δA(q3) = q3 ∨ (q1 ∧ q2). From A, we construct the MDP MA with two letters a, b and the
same four states (see Figure 3.13.b). The a-transitions in q0, q2, q3 are all self-loops (the
Dirac distribution on itself); and a-transition in q1 is the Dirac distribution on q0. The
b-transition in q2 deterministically goes to q3. The b-transitions in q0, q1, q3 are respectively
uniform distributions over the successors sets {q1, q2}, {q2, q3} and {q1, q2}.

▹

Several decision problems for 1L-AFA can be solved by computing the sequence of
sets AccA(n,F) of states from which the word of length n is accepted, and we show that
some synchronizing problems for MDPs require the computation of the sequence Pren(F)
in the MDP M. Therefore, the above relation between 1L-AFA and MDPs establishes
bridges that we use in Chapter 4 to transfer complexity results from 1L-AFA to MDPs.

57

3.5 Relation to two-player turn-based games.

Remark 7 follows from the characterizations and reductions presented in Chapters 4,
5 and 6 to establish the upper bound of computational complexity for the synchronizing
problems in MDPs .

Remark 7. For all three winning modes and all membership problems of {always, event,
weakly, strongly} synchronization in MDPs, only the support of the probability distribu-
tions in the transition function of the system is relevant (i.e., the exact value of the positive
probabilities does not matter).

As a result, we can encode an MDP as an A-labelled transition system (Q,R) with
R ⊆ Q× A×Q such that (q, a, q′) ∈ R is a transition if q′ ∈ post(q, a).

The A-labeled transition system (Q,R) of an MDP can be interpreted as a game arena.
A turn-based two player game G, with Player-1 and adversary Player-2, can be played in
rounds. The game starts in an initial state qinit ∈ Q. For each round, Player-1 chooses
an action a to play in the current state q of the game. Next, Player-2 chooses a successor
state among the states q′ where (q, a, q′) ∈ R, and the game moves to q′.

The definitions of paths and prefixes follow from the definitions in MDPs. A
path q0q1 · · · is an infinite sequence of states where q0 = qinit and for all i ∈ N, there
exists an action a such that (qi, a, qi+1) ∈ R; the finite prefix of a path is a prefix or simply
a finite path. Let Pref(G) be the set of all finite paths in the game. A strategy for Player-1
is a function α : Pref(G) → A that, given a finite path ρ, returns an action. A strategy
for adversary Player-2 is a function β : Pref(G) × A → Q that, given a finite path ρ and
an action a, returns the successor state. Given the strategy α for Player-1, we say that
a finite path q0q1 · · · qn is feasible if there exists some strategy β for the adversary such
that q0 = qinit and (qi, a, qi+1) ∈ R where a = α(q0q1 · · · qi) and qi+1 = β(q0q1 · · · qi, a) for
all i ∈ N.

Given a strategy α for Player-1, the sequence c0c1 · · · of feasible current sets is defined
as follows. For all i ∈ N, let

ci = {Last(ρ) | ρ = q0q1 · · · qi ∈ Pref(G) is a feasible path of length i for α}

where Last(ρ) = qi is the last state qi visited along the path ρ = q0q1 · · · qi. Then, c0 = {qinit}
and c1 = post(qinit, a) where a = α(qinit). Now, we can define synchronizing winning
conditions of Player-1 in games G.

Definition 3.7 (Synchronizing games). Let G be a two-player turn-based game played
on ⟨Q,R⟩, qinit be the initial state, T a target set and f ∈ {subT ,memT}. The game G
from qinit according to f is

• always synchronizing if f(ci) for all i ∈ N,

• eventually (or event) synchronizing if f(ci) for some i ∈ N,

• weakly synchronizing if for all n ∈ N there exists i ≥ n such that f(ci),

58

• strongly synchronizing if there exists n ∈ N such that for all i ≥ n we have f(ci)

where c0c1c2 · · · is the sequence of feasible current sets for some strategy α of the good
player.

The following decision problems are of interest.

Decision problem(s). For all λ ∈{always, event, weakly, strongly} and the target
set T , the λ-synchronizing problem with function f ∈ {max T , sumT} in games asks,
given a game G and an initial state qinit, whether G is λ-synchronizing from qinit according
to f .

As a result of Remark 7, we have Corollary 3.1.

Corollary 3.1. For λ ∈ {always, event, weakly, strongly}, the λ-synchronizing problem in
turn-based two player games is polynomial-time equivalent with the membership problem of
sure λ-synchronization in MDPs.

We thus focus on establishing the computation complexities of synchronizing problems
only in MDPs, and carry up the results to turn-based two player games.

3.6 Discussions

Unlike for Remark 7 stating that the exact value of transitions does not matter while
synchronizing in an MDP, this result in general does not hold for emptiness problem of
synchronizing languages in PAs. For instance in Chapter 4, we will establish undecidability
result of the emptiness problem for almost-sure eventually synchronizing languages in PAs
by a reduction from value 1 problem in PAs: the undecidability of value 1 is obtained by
providing a PA (see Example 6.2 on page 135) where the PA has value 1 if and only if
the probability of some transition is strictly greater than 1

2
. However, Remark 8 follows

from the characterizations and reductions presented in Chapters 4, 5 and 6 to establish
the upper bound of computational complexity of emptiness problem for sure eventually
synchronizing languages in PAs.

Remark 8. For the emptiness problems of sure {always, event, weakly, strongly} synchro-
nizing languages in PAs, only the support of the probability distributions in the transition
function of the system is relevant (i.e., the exact value of the positive probabilities does
not matter).

Since PAs are a generalization of NFAs where non-deterministic choices of successor
are resolved with probabilistic distributions and by Remark 8, Corollary 3.2 follows.

Corollary 3.2. For λ ∈ {always, event, weakly, strongly}, the emptiness problem for λ-
synchronizing languages in NFAs is polynomial-time equivalent with the emptiness problem
of sure λ-synchronizing languages in PAs.

59

qinitq1 q2
a b

a, b a, b

Figure 3.14: Randomization is necessary to decide the universality problems of synchro-
nizing languages according to max in PAs.

We thus focus on establishing only the computation complexities of emptiness problems
for synchronizing languages in PAs, and carry up the results to NFAs.

A further observation that can be deduced from the constructions and reductions pre-
sented in Chapters 4, 5 and 6 is that in order to decide emptiness problems of synchronizing
languages in PAs it is sufficient to consider only pure words, and the computational com-
plexities would not be more costly than considering randomized words.

The second classical decision problem for languages that one can study is the univer-
sality problem.

Decision problem(s). For λ ∈ {always, event, weakly, strongly} and f ∈
{sumT ,maxT}, the universality problem for {sure, almost} λ-synchronizing languages
according to f asks, given a PA P and an initial distribution X0, whether the language
is universal, e.g. whether Lλ

sure(f) = D(A)ω.

This problem cannot be considered for limit-sure winning mode in PAs. The universality
problems of synchronizing languages in PAs are mostly obtained by easy arguments, we
will discuss these problems shortly, in Sections 4.4, 5.3 and 6.3, and give the main ideas
and intuitions.

Unlike for the emptiness problem, in general, it is not sufficient to consider only pure
words to decide universality of synchronizing languages. For the max function, Lemma 3.3
provides a PA and target sets where all pure words are {always, eventually, weakly,
strongly} synchronizing whereas there is a randomized word that is not {always, even-
tually, weakly, strongly} synchronizing. An infinite randomized word is the uniformly
randomized word over the alphabet A denoted by wu = d0d1d2 · · · where di is the uniform
distribution over A for all i ∈ N.

Lemma 3.3. For all λ ∈ {event, weakly, strongly} and µ ∈ {sure, almost}, there exists a
PA P with an initial state qinit and two target sets T = {qinit, q1, q2} and T ′ = {q1, q2} such
that:

(i) Aω ⊆ Lalways
µ (maxT) but wu ̸∈ Lalways

µ (maxT) and,

(ii) Aω ⊆ Lλ
µ(maxT ′) but wu ̸∈ Lλ

µ(maxT ′).

60

qinit

q1q2q3

ab

a, b

a, b

a, b

Figure 3.15: Randomization is necessary to decide the universality problems of {event,
weakly} synchronizing languages according to sum in PAs.

Proof. Consider the PA P with states qinit, q1 and q2 and actions a, b as shown in Fig-
ure 3.14. All transitions are deterministic; two states q1 and q2 are absorbing and each is
reached deterministically from qinit by playing one of the actions: post(qinit, a) = {q1} and
post(qinit, b) = {q2}.

To establish (i), since sure always synchronizing implies almost-sure always synchro-
nizing, it is sufficient to show that all pure words are sure always synchronizing whereas
the uniformly randomized word is not almost-sure always synchronizing. After reading the
first letter of an input pure word w, since post(qinit, a) = {q1} and post(qinit, b) = {q2}, if
w ∈ a·{a, b}ω then P is in q1 with probability 1; and P is in q2 with probability 1 otherwise.
Since the initial distribution is Dirac and since both states q1 and q2 are absorbing, we see
that all pure words are sure always synchronizing according to max T with T = {qinit, q1, q2}.
On the other hand, by inputting the uniformly randomized word wu both states q1 and q2
would be reached with probability 1

2
showing that ∥Pwu

n ∥ = 1
2

for all n > 1. It proves that
wu ̸∈ Lalways

almost(maxT).

To establish (ii), since Lstrongly
sure (maxT ′) ⊆ Lweakly

sure (maxT ′) ⊆ Leventually
sure (maxT ′) and since

sure λ-synchronization implies almost-sure λ-synchronization, it is sufficient to show that
Aω ⊆ Lstrongly

sure (maxT ′) and wu ̸∈ Levent
almost(maxT ′), as it implies that Aω ⊆ Lλ

µ(maxT ′) but
wu ̸∈ Lλ

µ(maxT ′) for all λ ∈ {event, weakly, strongly} and all µ ∈ {sure, almost}. To prove
Aω ⊆ Lstrongly

sure (maxT ′), the same argument used to proved Aω ⊆ Lalways
sure (maxT) is valid:

we only need to relax the condition on the initial distribution. To complete the proof, we
see that the uniformly randomized word wu is not almost-sure eventually synchronizing
according to max T ′ again due to the fact that both absorbing states q1 and q2 are reached
with probability 1

2
after first input letter. The proof is complete.

!

For the sum function, a similar result holds for eventually and weakly synchronization.
Lemma 3.4 provides a PA and some target state where all pure words are {eventually,
weakly} synchronizing whereas there is a randomized word that is not {eventually, weakly}
synchronizing.

Lemma 3.4. For all λ ∈ {event, weakly} and µ ∈ {sure, almost}, there exists a PA P
with an initial state qinit such that:

61

(i) Aω ⊆ Lλ
µ(q3), but

(ii) wu ̸∈ Lλ
µ(q3).

Proof. Consider the PA P depicted in Figure 3.15 with states qinit, q1, q2 and q3 and actions
a, b. All transitions are deterministic; in the state qinit the a-transition goes to q1 and the
b-transition goes to q2, both deterministically. All transitions in q1 are redirected to q2.
Two states q2 and q3 make a deterministic loop: post(q2, c) = {q3} and post(q3, c) = {q2}
for all actions c ∈ {a, b}.

To establish (i), since all sure weakly synchronizing words are sure eventually syn-
chronizing, and since sure λ-synchronization implies almost-sure λ-synchronization, it is
sufficient to show that all pure words are sure weakly synchronizing in {q3}. Since all
transitions are deterministic, by inputting a pure word the probability mass would stay in
a single state in all steps. For all words w ∈ a · {a, b}ω, the PA P is 1-synchronized in {q3}
in all even steps; and similarly, it is 1-synchronized in {q3} in all odd steps for all words
w ∈ b · {a, b}ω. Thus, all pure words are sure weakly synchronizing in {q3}.

To establish (ii), it is sufficient to show that the uniformly randomized word wu is not
almost-sure eventually synchronizing in {q3}. The symbolic-outcome of P over wu is

qinit

q1

q2

q3

⎛

⎜

⎜

⎜

⎜

⎝

1

0

0

0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

0

1
2

1
2

0

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

0

0

1
2

1
2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

0

0

1
2

1
2

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎜

⎜

⎜

⎜

⎝

0

0

1
2

1
2

⎞

⎟

⎟

⎟

⎟

⎠

· · ·

One can verify that Pwu
n (q3) ≤ 1

2
for all n ∈ N, and thus wu is neither almost-sure (and

thus sure) eventually nor almost-sure (and thus sure) weakly synchronizing in {q3}.

!

This result, in general, does not hold for the universality of always and strongly syn-
chronizing languages according to sum. Discussions of Chapters 4, 5 and 6 are devoted to
the universality problems of synchronizing languages, where we will show that the univer-
sality problem of sure and almost-sure always synchronizing languages, are in PTIME. The
universality problems of sure eventually, weakly and strongly synchronizing languages are
in PSPACE, while for almost-sure eventually, weakly and strongly synchronizing languages,
the universality problems are PSPACE-complete.

62

4Always and Eventually

Synchronizing Condition

First sight. In this chapter we study the always and eventually synchronizing condi-
tions in MDPs and PAs. We provide tight complexity bounds of membership problems
for each winning modes {sure, almost-sure and limit-sure} in MDPs, and the memory
requirement of winning strategies. We also establish the tight complexity bounds for the
emptiness problems of always synchronizing languages for PAs, and for the emptiness
problems of sure eventually synchronizing language. We prove undecidability results
for the emptiness problem of {almost-sure, limit-sure} synchronizing languages in PAs.
Table 4.1 and Table 4.2 on pages 67 and 81 summarize the results presented in this
chapter.

Contents

4.1 Always synchronizing condition in MDPs and PAs 64

4.2 Eventually synchronizing condition in MDPs 66

4.2.1 Sure eventually synchronization 67

4.2.2 Almost-sure eventually synchronization 69

4.2.3 Limit-sure eventually synchronization 73

4.3 Eventually synchronization in PAs . 80

4.3.1 Sure eventually synchronization 81

4.3.2 Almost-sure eventually synchronization 83

4.3.3 Limit-sure eventually synchronization 85

4.4 Discussion . 85

63

4.1 Always synchronizing condition in MDPs and PAs

We first provide a lemma stating that for always synchronizing condition, the winning
regions of the three winning modes {sure, almost-sure, limit-sure} coincide in MDPs. The
result also holds in PAs meaning that from an initial state and a target set T , the sure
always-synchronizing language is empty if, and only if, the almost-sure (and limit-sure)
always-synchronizing language is empty. We also observe that for always synchronization
in probabilistic settings, it only matters whether the value of a transition is non-zero (for
the sum function) or whether a transition is deterministic (for the max function); deter-
ministic here means there exists a unique successor with probability 1 for the transition.
By this observation and provided Lemma 4.1 and Corollary 4.1, the solutions for MDPs
and PAs carry up to their counterpart non-probabilistic settings, i.e. two player games and
NFAs. Results presented in this section are listed in Tables 4.1 and 4.2.

Lemma 4.1. Let T be a set of states for an MDP M. For all functions f ∈ {max T , sumT},
we have ⟨⟨1⟩⟩alwayssure (f) = ⟨⟨1⟩⟩alwaysalmost(f) = ⟨⟨1⟩⟩alwayslimit (f).

Proof. It follows from the definition of winning modes that ⟨⟨1⟩⟩alwayssure (f) ⊆ ⟨⟨1⟩⟩alwaysalmost(f) ⊆

⟨⟨1⟩⟩alwayslimit (f). Hence it suffices to show that ⟨⟨1⟩⟩alwayslimit (f) ⊆ ⟨⟨1⟩⟩alwayssure (f), that is for all
initial distributions X0, if M is limit-sure always synchronizing from X0 (i.e. X0 ∈
⟨⟨1⟩⟩alwayslimit (f)), then M is sure always synchronizing from X0 (i.e. X0 ∈ ⟨⟨1⟩⟩alwayssure (f)).
For f = maxT , consider ϵ smaller than the smallest positive probability in the initial
distribution X0 and in the transitions of the MDP M. Then, given an always (1 − ϵ)-
synchronizing strategy α (consider a blind strategy for the PA), it is easy to show by
induction on k that the distributions Mα

k are Dirac for all k ≥ 0. Thus, α is an always
1-synchronizing strategy that proves the statement.

A similar argument for f = sumT shows that for sufficiently small ϵ, an always (1− ϵ)-
synchronizing strategy β must produce a sequence Mβ

0M
β
1 · · · of distributions with support

contained in T , meaning that Sk ⊆ T where Sk = Supp(Mβ
k) for all k ≥ 0, until some

support repeats in the sequence. Such supports exist because Q is finite, and so there
must be two numbers m > n such that Sn = Sm. This naturally induces an always
1-synchronizing strategy proving the statement.

!

The proof of Lemma 4.1 is valid even if we restrict the controller in the MDPs to use
only blind strategies.

Corollary 4.1. Let T be a set of states for a PA P. For all functions f ∈ {max T , sumT}
and all initial state qinit, the following three propositions are equivalent:

(i) Lalways
sure (f) = ∅,

(ii) Lalways

almost(f) = ∅,

(iii) Lalways

limit (f) = ∅.

64

qinit

q1

q2

q3

a, b : 1
2

a, b : 1
2

a, b

b

a

ab

Figure 4.1: The MDP described in Example 4.1 where for the target set T = {qinit, q1, q2},
we have qinit ∈ ⟨⟨1⟩⟩alwayssure (sumT) but qinit ̸∈ ⟨⟨1⟩⟩alwayssure (maxT).

Example 4.1. Consider the MDP depicted in Figure 4.1 that has four states qinit, q1, q2, q3
and two actions a, b. From the initial state qinit, both a-transitions and b-transitions have
two successors q1 and q2 each with probability 1

2
. The state q3 is an absorbing state and it

is deterministically reachable from q1 by the action a and from q2 by b. The b-transition
from q1 goes to q2, and the a-transition moves the MDP back from q2 to q1. Let T =
{qinit, q1, q2}. Consider the memoryless strategy α that always plays b in q1 and a in q2; this
strategy is a witness to prove that qinit ∈ ⟨⟨1⟩⟩alwayssure (sumT). On the other hand, we see that
∥Mα

i ∥T ≤ 1
2

for all steps i ≥ 1 and under all strategies α. Thus, qinit ̸∈ ⟨⟨1⟩⟩alwayssure (maxT).
For the likewise structured PA, after inputting the first letter both states q1 and q2 are

assigned with probability 1
2
. However, by the second letter, no matter if it is a or b, the

PA will be 1
2
-synchronized in {q3}. This observation and the fact that q3 is absorbing imply

that both the languages Lalways
sure (sumT) and Lalways

sure (maxT) are empty from qinit.

▹

Always synchronizing condition in MDPs. Consider an MDP M = ⟨Q,A, δ⟩ and the
set T of target states. Let α be an always 1-synchronizing strategy according to max T and
Mα

0M
α
1 · · · be the outcome. For all k ≥ 0, let qk ∈ T be such that Mα

k (qk) = 1. For all k,
since Mα

k and Mα
k+1 are both Dirac distributions, then there is a deterministic transition

from qk to qk+1 (there exists an action a such that the unique successor of qk and a is qk+1;
formally post(qk, a) = {qk+1}). In particular X0 is Dirac, and let qinit ∈ T be such that
X0(qinit) = 1. It follows that there is an infinite path from qinit in the digraph ⟨T,E⟩ where
(q, q′) ∈ E if there exists an action a ∈ A such that post(q, a) = {q′}. The existence of
this path entails that there is a loop reachable from qinit in the digraph ⟨T,E⟩, and this
naturally defines a sure-winning always synchronizing strategy in M. Thus, to decide the
membership problem for always synchronizing according to max T (for all winning modes),
it is sufficient to check the existence of an infinite path staying in T in the digraph ⟨T,E⟩,
which can be decided in PTIME. Note that for the functions max T , pure memoryless
strategies are sufficient.

It follows from the proof of Lemma 4.1 that the winning region for always synchro-
nizing according to sumT coincides with the set of winning initial distributions for the
safety condition !T in the traditional semantics in MDPs, which can also be computed in
PTIME [CH12]. Thus, for the functions sumT , pure memoryless strategies are sufficient.

65

Theorem 4.1. For always synchronizing condition in MDPs and for all functions
f ∈ {maxT , sumT}:

1. (Complexity). The membership problem is in PTIME.

2. (Memory). Pure memoryless strategies are sufficient.

Always synchronizing condition in PAs. We have just seen that in MDPs, to decide
always synchronizing condition according to max T , it is sufficient to find an infinite path
q0q1q2 · · · such that there is a deterministic transition from qk to qk+1 for all k ≥ 0 and
q0 is the state where the initial distribution is the Dirac distribution on q0 (qinit = q0).
Such transitions give an action ak such that post(qk, ak) = {qk+1} for all k ≥ 0. A blind
strategy α that plays ak for all k ∈ N is thus always synchronizing according to max T .
It means that pure blind strategies are sufficient to decide the membership problem of
always synchronizing condition according to max T . It follows that the always synchronizing
language according to max T from an initial state qinit for the PA P is not empty if and only
if qinit is winning for the always synchronizing condition in the likewise structured MDP M.
As a result, the emptiness problem of always synchronizing language in PAs according to
maxT can be decided in PTIME.

By a similar argument to the case for MDPs, the always synchronizing language accord-
ing to sumT in PAs is equal to the ω-language with safety condition !T in the traditional
semantics in PAs, where the emptiness problem is PSPACE-complete [CT12].

Theorem 4.2. For always synchronizing language in PAs:

1. The emptiness problem for f = max T is in PTIME.

2. The emptiness problem for f = sumT is PSPACE-complete.

4.2 Eventually synchronizing condition in MDPs

In this section, we show the PSPACE-completeness of the membership problem for even-
tually synchronizing conditions in the three winning modes. By Remarks 5 and 6 (on
page 50), we consider the membership problem with function sum and Dirac initial dis-
tributions (i.e., single initial state). The presented algorithms to solve the membership
problem for ⟨⟨1⟩⟩eventµ (sumT) for arbitrary T and µ ∈ {sure, almost, limit}, can be used for
the special case of singleton T , which solves the membership problem for ⟨⟨1⟩⟩eventµ (maxT).
Furthermore, we establish PSPACE-completeness of the problems, even in the special case
when T is a singleton, which implies PSPACE-completeness of the membership problems
for ⟨⟨1⟩⟩eventµ (maxT) too. Results presented in this section are listed in Table 4.1.

66

Always Eventually

Complexity Required memory Complexity Required memory

Sure PSPACE-complete exponential

Almost-sure PTIME memoryless PSPACE-complete infinite

Limit-sure PSPACE-complete unbounded

Table 4.1: Computational complexity of the membership problem of always and eventually
synchronization in MDPs, and memory requirement for the winning strategies (for always
synchronizing, the three modes coincide).

4.2.1 Sure eventually synchronization

Given a target set T in an MDP, the membership problem for sure-winning eventually
synchronizing condition in T 1 can be solved by computing the sequence Pren(T) of iterated
predecessors. A state qinit is sure-winning for eventually synchronizing in T if and only if
qinit ∈ Pren(T) for some n ≥ 0.

Lemma 4.2. Let M be an MDP and T be a target set. For all states qinit, we have
qinit ∈ ⟨⟨1⟩⟩eventsure (sumT) if and only if there exists n ≥ 0 such that qinit ∈ PrenM(T).

Proof. We prove the following equivalence by induction (on the length i): for all initial
states qinit, there exists a strategy α sure-winning in i steps from qinit (i.e., such that
Mα

i (T) = 1) if and only if qinit ∈ Prei(T). The case i = 0 trivially holds since for all
strategies α, we have Mα

0 (T) = 1 if and only if qinit ∈ T .
Assume that the equivalence holds for all i < n. For the induction step, show that M

is sure eventually synchronizing from qinit (in n steps) if and only if there exists an action a
such that M is sure eventually synchronizing (in n−1 steps) from all states q ′ ∈ post(qinit, a)
(equivalently, post(qinit, a) ⊆ Pren−1(T) by the induction hypothesis, that is qinit ∈ Pren(T)).
First, if all successors q′ of qinit under some action a are sure eventually synchronizing, then
so is qinit by playing a followed by a winning strategy from each successor q ′. For the
other direction, assume towards contradiction that M is sure eventually synchronizing
from qinit (in n steps), but for each action a, there is a state q′ ∈ post(qinit, a) that is not
sure eventually synchronizing. Then, from q ′ there is a positive probability to reach a state
not in T after n−1 steps, no matter the strategy played. Hence from qinit, for all strategies,
the probability mass in T cannot be 1 after n steps, in contradiction with the fact that
M is sure eventually synchronizing from qinit in n steps. It follows that the induction step
holds, and the proof is complete.

!

1. We sometimes refer to synchronizing condition according to sumT by synchronizing condition in T .

67

qinit

q2

q1

q3

a, b : 1
2

a, b : 1
2

a : 1
2
, b

a, ba : 1
2

a, b

Figure 4.2: The MDP described in Example 4.2 where for the target set T = {q1, q3}, we
have qinit ∈ ⟨⟨1⟩⟩eventsure (sumT) but qinit ̸∈ ⟨⟨1⟩⟩eventsure (q2).

Example 4.2. Consider the MDP M shown in Figure 4.2 that has four states qinit, q1, q2, q3
and two actions a, b. From the initial state qinit, both a-transitions and b-transitions have
two successors q1 and q2 each with probability 1

2
. The b-transition on the state q1 is a self-

loop, and the a-transition is a uniform distribution on {q1, q3}. The a and b-transitions
in q2 are both the Dirac distribution on q3; and q3 is an absorbing state. For the target
set {q2}, the predecessor is Pren({q2}) = ∅ for all n ≥ 1. The MDP M is not sure
eventually synchronizing in {q2} from qinit. For the target set T = {q1, q3}, the predecessor
sequence is

{q1, q3}{q1, q2, q3}({qinit, q1, q2, q3})
ω.

We see that qinit ∈ Pre2(T) which gives qinit ∈ ⟨⟨1⟩⟩eventsure (sumT).

▹

By Lemma 4.2, the membership problem for sure eventually synchronizing is equivalent
to the emptiness problem of 1L-AFA, and thus PSPACE-complete. Moreover if qinit ∈
PrenM(T), a finite-memory strategy with n modes that at mode i in a state q plays an
action a such that post(q, a) ⊆ Prei−1(T) is sure winning for eventually synchronizing.

There exists a family of MDPs Mn (n ∈ N) over alphabet {a, b} that are sure winning
for eventually synchronization, and where the sure winning strategies require exponential
memory. The MDP M2 is shown in Figure 4.3. The structure of Mn consists of an initial
state qinit, n components H1, . . . , Hn and two states qT and q⊥. The goal of construction
is to be sure eventually synchronizing in the target set {qT}. Each component Hi is a
cycle of length pi, the i-th prime number. We name the states of Hi with qi1q

i
2 · · · q

i
pi

where the initial state in this cycle is qi1 and the last state is qipi . On all actions in qinit, the
probabilistic transition is a uniform distribution on the initial states q i1 of the n components
H1, . . . , Hn. On action a, the next state in the cycle Hn is reached: post(qij, a) = {qij+1} for
all 1 ≤ j < pi and post(qipi , a) = {qi1}. On action b the target state qT is reached but only
from the last state qipi in the cycles. From other states, the action b leads to q⊥ (transitions
not depicted). A sure winning strategy for eventually synchronization in {qT} is to play a
in the first p#n =

2n

i=1 pi steps, and then play b. This requires memory of size p#n > 2n while
the size of Mn is in O(n2 log n) [BS96]. It can be proved by standard pumping arguments
that no strategy of size smaller than p#n is sure winning.

The following theorem summarizes the results for sure eventually synchronizing in
MDPs.

68

qinit

q11 q12

q21

q22

q23

qT q⊥

H1

H2

a, b : 1
2

a, b : 1
2

a

a

a

a

a

b

b

a, b

a, b

Figure 4.3: The MDP M2. All not-drawn transitions are directed to q⊥, for example
b-transitions in q11 and q21.

Theorem 4.3. For sure eventually synchronizing condition in MDPs and for all func-
tions f ∈ {max T , sumT}:

1. (Complexity). The membership problem is PSPACE-complete.

2. (Memory). Exponential memory is necessary and sufficient for both pure and ran-
domized strategies, and pure strategies are sufficient.

4.2.2 Almost-sure eventually synchronization

This subsection starts with an example of almost-sure eventually synchronizing MDPs
where infinite memory is necessary to win the almost-sure eventually synchronizing con-
dition. Example 4.3 describes this MDP and provide a winning strategy that uses infinite
memory to win almost-sure eventually synchronizing condition; next in Lemma 4.3, we
prove that no finite-memory strategy wins this condition.

Example 4.3. Consider the MDP in Figure 4.4 with three states qinit, q1, q2 and two ac-
tions a, b. The only probabilistic transitions are in the initial state q init where on both
actions a and b, the next successor is itself or q1 each with probability 1

2
. The a-transition

in q1 is a self-loop and the b-transition goes to q2 where all transitions are determinis-
tically directed to qinit. We are interested to study whether qinit ∈ ⟨⟨1⟩⟩eventalmost(q2). To this
aim, we construct a strategy that is almost-sure eventually synchronizing in {q2}, showing
that qinit ∈ ⟨⟨1⟩⟩eventalmost(q2) and suggesting that winning strategies for almost-sure eventually
synchronization may require infinite memory. First, observe that for all ϵ > 0 we can have

69

qinit q1 q2
a, b : 1

2

a, b : 1
2

b

a

a, b

Figure 4.4: An MDP where infinite memory is necessary for almost-sure eventually syn-
chronizing strategies.

probability at least 1− ϵ in q2 after finitely many steps: playing n times a and then b leads
to probability 1 − 1

2n
in q2. Thus the MDP is limit-sure eventually synchronizing in the

target set {q2}. Moreover the remaining probability mass is in qinit and q1; which we recall
with the MDP being limit-sure eventually synchronizing in {q2} with support {qinit, q1, q2}.
It turns out that from any (initial) distribution with support {qinit, q1, q2}, the MDP is again
limit-sure eventually synchronizing in the target set {q2}, and with support in {qinit, q1, q2}
(by strategies with the same logic: playing finitely many consecutive a and then b). There-
fore we can take a smaller value of ϵ and play a strategy to have probability at least 1 − ϵ
in q2, and repeat this for ϵ → 0. This strategy ensures almost-sure eventually synchronizing
in the target set {q2}.

▹

The next Lemma shows that infinite memory is indeed necessary for almost-sure even-
tually synchronizing strategies for the MDP of Example 4.3.

Lemma 4.3. There exists an almost-sure eventually synchronizing MDP for which all
almost-sure eventually synchronizing strategies require infinite memory.

Proof. Consider the MDP M of Example 4.3 which is shown in Figure 4.4. We argued in
Example 4.3 that qinit ∈ ⟨⟨1⟩⟩eventalmost(q2) and we now show that infinite memory is necessary
for almost-sure eventually synchronization in {q2} from qinit.

Assume towards contradiction that there exists a finite-memory strategy α that is
almost-sure eventually synchronizing in the target set {q2}. Consider the Markov chain
M(α) obtained by the product of the MDP M with the finite-state transducer defining α
as explained in Section 2.2.3. To simply the notation, by X0 X1 X2 · · · we denote the
sequence of probability distributions generated by M(α). We know that the probability
Xk((m, q)) in transient states (m, q) vanishes for k → ∞ [FV97, Nor98, Ser13]. A state
(m, q) in M(α) is called a q-state. Since α is almost-sure eventually synchronizing (but is
not sure eventually synchronizing) in q2, there is a q2-state in the set of recurrent states
of M(α). Since on all actions qinit is a successor of q2, and qinit is a successor of itself,
it follows that there is a recurrent qinit-state in M(α), and that all periodic supports of
recurrent states in M(α) contain a qinit-state. Hence, in each stationary distribution there

70

is a qinit-state with a (strictly) positive probability, and therefore the probability mass in
qinit is bounded away from zero. It follows that the probability mass in q2 is bounded away
from 1 thus α is not almost-sure eventually synchronizing in q2, a contradiction.

!

It turns out that in general, almost-sure eventually synchronizing strategies can be con-
structed from a family of limit-sure eventually synchronizing strategies if we can also ensure
that the probability mass remains in the winning region (as in the MDP of Example 4.3).

We present a characterization of the winning region for almost-sure winning based on
an extension of the limit-sure eventually synchronizing condition with exact support. This
condition requires to ensure probability arbitrarily close to 1 in the target set T , and
moreover that after the same number of steps the support of the probability distribution is
contained in a given set U . Formally, given an MDP M, let ⟨⟨1⟩⟩eventlimit (sumT , U) for T ⊆ U
be the set of all initial distributions such that for all ϵ > 0 there exist a strategy α and
n ∈ N such that Mα

n(T) ≥ 1 − ϵ and Mα
n(U) = 1 (i.e. the support of Mα

n is contained
in U). We say that α is limit-sure eventually synchronizing in T with support in U .

We will present an algorithmic solution to limit-sure eventually synchronizing condition
with exact support in Section 4.2.3. Our characterization of the winning region for almost-
sure winning is as follows.

Lemma 4.4. Let M be an MDP and T be a target set. For all states qinit, we have
qinit ∈ ⟨⟨1⟩⟩eventalmost(sumT) if and only if there exists a set U such that:

– qinit ∈ ⟨⟨1⟩⟩eventsure (sumU), and

– XU ∈ ⟨⟨1⟩⟩eventlimit (sumT , U) where XU is the uniform distribution over U .

Proof. First, if qinit ∈ ⟨⟨1⟩⟩eventalmost(sumT), then there is a strategy α such that
supn∈N M

α
n(T) = 1. Then either Mα

n(T) = 1 for some n ≥ 0, or lim supn→∞ Mα
n(T) = 1.

If Mα
n(T) = 1, then qinit is sure winning for eventually synchronizing in T , thus

qinit ∈ ⟨⟨1⟩⟩eventsure (sumT) and we can take U = T . Otherwise, for all i > 0 there exists
ni ∈ N such that Mα

ni
(T) ≥ 1 − 2−i, and moreover ni+1 > ni for all i > 0. Let

si = Supp(Mα
ni
) be the support of Mα

ni
. Since the state space is finite, there is a set U that

occurs infinitely often in the sequence s0s1 . . . , thus for all k > 0 there exists mk ∈ N such
that Mα

mk
(T) ≥ 1 − 2−k and Mα

mk
(U) = 1. It follows that α is sure eventually synchro-

nizing in U from qinit, hence qinit ∈ ⟨⟨1⟩⟩eventsure (sumU). Moreover M with initial distribution
X1 = Mα

m1
is limit-sure eventually synchronizing in T with exact support in U . Since

Supp(X1) = U = Supp(XU), it follows by Corollary 4.3 that XU ∈ ⟨⟨1⟩⟩eventlimit (sumT , U).
To establish the converse, note that since XU ∈ ⟨⟨1⟩⟩eventlimit (sumT , U), it follows from

Corollary 4.3 that from all initial distributions with support in U , for all ϵ > 0 there
exists a strategy αϵ and a position nϵ such that Mαϵ

nϵ
(T) ≥ 1 − ϵ and Mαϵ

nϵ
(U) = 1.

We construct an almost-sure limit eventually synchronizing strategy α as follows. Since
qinit ∈ ⟨⟨1⟩⟩eventsure (sumU), play according to a sure eventually synchronizing strategy from
qinit until all the probability mass is in U . Then for i = 1, 2, . . . and ϵi = 2−i, repeat the

71

MDP M

q̂q ⇒

MDP N

MDP M

q̂q

sink qTA′

#

A′

Figure 4.5: Sketch of the reduction to show PSPACE-hardness of the membership problem
for almost-sure eventually synchronizing in MDPs.

following procedure: given the current probability distribution, select the corresponding
strategy αϵi and play according to αϵi for nϵi steps, ensuring probability mass at least
1 − 2−i in T , and since after that the support of the probability mass is again in U , play
according to αϵi+1

for nϵi+1
steps, etc. This strategy α ensures that supn∈N M

α
n(T) = 1

from qinit, hence qinit ∈ ⟨⟨1⟩⟩eventalmost(sumT).

!

Note that from Lemma 4.4, it follows that counting strategies are sufficient to win
almost-sure eventually synchronizing condition (a strategy is counting if α(ρ) = α(ρ′) for
all prefixes ρ, ρ′ with the same length and Last(ρ) = Last(ρ′)).

As we show in Section 4.2.3 that the membership problem for limit-sure eventually syn-
chronizing with exact support can be solved in PSPACE, it follows from the characterization
in Lemma 4.4 that the membership problem for almost-sure eventually synchronizing is
in PSPACE, using the following (N)PSPACE algorithm: guess the set U , and check that
qinit ∈ ⟨⟨1⟩⟩eventsure (sumU), and that XU ∈ ⟨⟨1⟩⟩eventlimit (sumT , U) where XU is the uniform distri-
bution over U (this can be done in PSPACE by Theorem 4.3 and Theorem 4.5). We present
a matching lower bound.

Lemma 4.5. For MDPs, the membership problem for ⟨⟨1⟩⟩eventalmost(sumT) is PSPACE-hard
even if T is a singleton.

Proof. The proof is by a reduction from the membership problem for sure eventually syn-
chronization, which is PSPACE-complete by Theorem 4.3. Given an MDP M = ⟨Q,A, δ⟩,
an initial state qinit ∈ Q, and a state q̂ ∈ Q, we construct an MDP N = ⟨Q′,A′, δ′⟩ and a
state qT ∈ Q′ such that qinit ∈ ⟨⟨1⟩⟩eventsure (q̂) in M if and only if qinit ∈ ⟨⟨1⟩⟩eventalmost(qT) in N . The
MDP N is a copy of M with two new states qT and sink reachable only by a new action #
(see Figure 4.5). Formally, Q′ = Q∪ {qT , sink} and A′ = A∪ {#}, and the transition func-
tion δ′ is defined as follows, for all q ∈ Q: δ′(q, a) = δ(q, a) for all a ∈ A, δ′(q,#)(sink) = 1 if
q ̸= q̂, and δ′(q̂,#)(qT) = 1; finally, for all a ∈ A′, let δ′(qT , a)(sink) = δ′(sink, a)(sink) = 1.

The goal is that N simulates M until the action # is played in q̂ to move the probability
mass from q̂ to qT , ensuring that if M is sure-winning for eventually synchronizing in {q̂},

72

then N is also sure-winning (and thus almost-sure winning) for eventually synchronizing
in {qT}. Moreover, the only way to be almost-sure eventually synchronizing in {qT} is to
have probability 1 in qT at some point, because the state qT is transient under all strategies,
thus the probability mass cannot accumulate and tend to 1 in qT in the long run. It follows
that (from all initial states qinit) M is sure-winning for eventually synchronizing in {q̂}
if and only if N is almost-sure winning for eventually synchronizing in {qT}. It follows
from this reduction that the membership problem for almost-sure eventually synchronizing
condition is PSPACE-hard.

!

The results of this section are summarized as follows.

Theorem 4.4. For almost-sure eventually synchronizing condition in MDPs and for
all functions f ∈ {max T , sumT}:

1. (Complexity). The membership problem is PSPACE-complete.

2. (Memory). Infinite memory is necessary in general for both pure and randomized
strategies, and pure strategies are sufficient.

4.2.3 Limit-sure eventually synchronization

In this subsection, we present the algorithmic solution for limit-sure eventually syn-
chronizing with exact support in MDPs. Note that the limit-sure eventually synchronizing
condition is a special case where the support is the state space of the MDP.

Example 4.4. Consider the MDP in Figure 3.7 which is limit-sure eventually synchroniz-
ing in {q2}, as shown in Lemma 3.1. For i = 0, 1, . . . , the sequence Prei(T) of predecessors
of T = {q2} is ultimately periodic: Pre0(T) = {q2}, and Prei(T) = {q1} for all i ≥ 1.
Given ϵ > 0, a strategy to get probability 1 − ϵ in q2 first accumulates probability mass
in the periodic subsequence of predecessors (here {q1}), and when the probability mass is
greater than 1−ϵ in q1, the strategy injects the probability mass in q2 (through the aperiodic
prefix of the sequence of predecessors).

▹

In general, the typical shape of a limit-sure eventually synchronizing strategy is as
explained in Example 4.4. To have probability arbitrarily close to 1 in a target set T ,
a limit-sure eventually synchronizing strategy accumulates the probability mass in the
periodic subsequence of predecessors until the probability mass is as large as demanded;
and then the strategy synchronously moves the probability mass into the target set T via
the prefix subsequence of predecessors. Note that in this scenario, the MDP is also limit-
sure eventually synchronizing in every set Prei(T) of the sequence of predecessors. A special

73

case is when it is possible to get probability 1 in the sequence of predecessors after finitely
many steps. In this case, the probability mass injected in T is 1 and the MDP is even sure-
winning. The algorithm for deciding limit-sure eventually synchronization relies on the
above characterization, generalized in Lemma 4.6 to limit-sure eventually synchronizing
with exact support, saying that limit-sure eventually synchronization in T with support
in U is equivalent to either limit-sure eventually synchronization in Prek(T) with support in
Prek(U) (for arbitrary k), or sure eventually synchronizing in T (and therefore also in U).

Lemma 4.6. Given an MDP M, for all T ⊆ U and all k ≥ 0, we have
⟨⟨1⟩⟩eventlimit (sumT , U) = ⟨⟨1⟩⟩eventsure (sumT) ∪ ⟨⟨1⟩⟩eventlimit (sumR, Z) where R = Prek(T) and
Z = Prek(U).

Proof. The proof is in two parts. First we show that ⟨⟨1⟩⟩eventsure (sumT)∪⟨⟨1⟩⟩
event
limit (sumR, Z) ⊆

⟨⟨1⟩⟩eventlimit (sumT , U): since T ⊆ U , it follows from the definitions that ⟨⟨1⟩⟩eventsure (sumT) ⊆
⟨⟨1⟩⟩eventlimit (sumT , U); to show that ⟨⟨1⟩⟩eventlimit (sumR, Z) ⊆ ⟨⟨1⟩⟩eventlimit (sumT , U) in an MDP M,
let ϵ > 0 and consider an initial distribution X0 and a strategy α such that for some
i ≥ 0 we have Mα

i (R) ≥ 1 − ϵ and Mα
i (Z) = 1. We construct a strategy β that plays

like α for the first i steps, and then since R = Prek(T) and Z = Prek(U) plays from
states in R according to a sure eventually synchronizing strategy with target T , and from
states in Z \R according to a sure eventually synchronizing strategy with the target set U
(such strategies exist by the proof of Lemma 4.2). The strategy β ensures from X0 that
Mβ

i+k(T) ≥ 1−ϵ and Mβ
i+k(U) = 1, showing that M is limit-sure eventually synchronizing

in T with support in U .

Second we show the converse inclusion, namely that ⟨⟨1⟩⟩eventlimit (sumT , U) ⊆
⟨⟨1⟩⟩eventsure (sumT) ∪ ⟨⟨1⟩⟩eventlimit (sumR, Z). Consider an initial distribution X0 ∈
⟨⟨1⟩⟩eventlimit (sumT , U) in the MDP M and for ϵi = 1

i
(i ∈ N) let αi be a strategy and

ni ∈ N such that Mαi
ni
(T) ≥ 1 − ϵi and Mαi

ni
(U) = 1. We consider two cases. (a) If the

set {ni | i ≥ 0} is bounded, then there exists a number n that occurs infinitely often
in the sequence (ni)i∈N, and such that for all i ≥ 0, there exists a strategy βi such that
Mβi

n (T) ≥ 1 − ϵi and Mβi
n (U) = 1. Since n is fixed, we can assume w.l.o.g. that the

strategies βi are pure, and since there is a finite number of pure strategies over paths
of length at most n, it follows that there is a strategy β that occurs infinitely often
among the strategies βi and such that for all ϵ > 0 we have Mβ

n(T) ≥ 1 − ϵ, hence
Mβ

n(T) = 1, showing that M is sure winning for eventually synchronization in T , that
is X0 ∈ ⟨⟨1⟩⟩eventsure (sumT). (b) otherwise, the set {ni | i ≥ 0} is unbounded and we can
assume w.l.o.g. that ni ≥ k for all i ≥ 0. We claim that the family of strategies αi ensures
limit-sure synchronization in R = Prek(T) with support in Z = Prek(U). Essentially
this is because if the probability in T is close to 1 after ni steps, then k steps before
the probability in Prek(T) must be close to 1 as well. Formally, we show that αi is such
that Mαi

ni−k(R) ≥ 1 − ϵ
ηk

and Mαi

ni−k(Z) = 1 where η is the smallest positive probability
in the transitions of M. Towards contradiction, assume that Mαi

ni−k(R) < 1 − ϵ
ηk

, then
Mαi

ni−k(Q\R) > ϵ
ηk

and from every state q ∈ Q\R, no matter which sequence of actions is

74

played by αi for the next k steps, there is a path from q to a state outside of T , thus with
probability at least ηk. Hence the probability in Q \T after ni steps is greater than ϵ

ηk
· ηk,

and it follows that Mαi
ni
(T) < 1− ϵ, in contradiction with the definition of αi. This shows

that Mαi

ni−k(R) ≥ 1 − ϵ
ηk

, and an argument analogous to the proof of Lemma 4.2 shows
that Mαi

ni−k(Z) = 1. It follows that X0 ∈ ⟨⟨1⟩⟩eventlimit (sumR, Z) and the proof is complete.

!

Thanks to Lemma 4.6, since membership problem of sure eventually synchronization
is already solved in Section 4.2.1, it suffices to solve the membership problem of limit-sure
eventually synchronization in the target set R = Prek(T) and support Z = Prek(U) with
arbitrary k, instead of T and U . We can choose k such that both Prek(T) and Prek(U)
lie in the periodic part of the sequence of pairs of predecessors (Prei(T),Prei(U)). We
can assume that k ≤ 3|Q| since Prei(T) ⊆ Prei(U) ⊆ Q for all i ≥ 0. For such value
of k the limit-sure problem is conceptually simpler: once some probability is injected in
R = Prek(T), it can loop through the sequence of predecessors and visit R infinitely often
(every r steps, where r ≤ 3|Q| is the period of the sequence of pairs of predecessors). It
follows that if a strategy ensures with probability 1 that the set R can be reached by finite
paths whose lengths are congruent modulo r, then the whole probability mass can indeed
synchronously accumulate in R in the limit.

Therefore, limit-sure eventually synchronization in R reduces to standard limit-sure
reachability condition ♦R and the additional requirement that the numbers of steps at
which the target set is reached be congruent modulo r. In the case of limit-sure eventually
synchronization with support in Z, we also need to ensure that no mass of probability
leaves the sequence Prei(Z). In a state q ∈ Prei(Z), we say that an action a ∈ A is Z-safe
at position i if 2 post(q, a) ⊆ Prei−1(Z). In states q ̸∈ Prei(Z) there is no Z-safe action at
position i.

To encode the above requirements, we construct an MDP MZ × [r] that allows only
Z-safe actions to be played (and then mimics the original MDP), and tracks the position
(modulo r) in the sequence of predecessors, thus simply decrementing the position on each
transition since all successors of a state q ∈ Prei(Z) on a Z-safe action are in Prei−1(Z).

Formally, if M = ⟨Q,A, δ⟩ then MZ × [r] = ⟨Q′,A, δ′⟩ where
– Q′ = Q × {r − 1, . . . , 1, 0} ∪ {sink}; intuitively, we expect that q ∈ Prei(Z) in the

reachable states ⟨q, i⟩ consisting of a state q of M and a position i in the predecessor
sequence;

– δ′ is defined as follows (assuming an arithmetic modulo r on positions) for all ⟨q, i⟩ ∈
Q′ and a ∈ A: if a is a Z-safe action in q at position i, then δ′(⟨q, i⟩, a)(⟨q′, i− 1⟩) =
δ(q, a)(q′), otherwise δ′(⟨q, i⟩, a)(sink) = 1 (and sink is absorbing).

Note that the size of the MDP MZ × [r] is exponential in the size of M (since r is at
most 3|Q|).

2. Since Pre
r(Z) = Z and Pre

r(R) = R, we assume a modular arithmetic for exponents of Pre, that is
Pre

x(·) is defined as Pre
x mod r(·). For example Pre

−1(Z) is Pre
r−1(Z).

75

Lemma 4.7. Let M be an MDP and R ⊆ Z be two sets of states such that Prer(R) = R
and Prer(Z) = Z where r > 0. Then a state qinit is limit-sure eventually synchronizing in
R with support in Z (qinit ∈ ⟨⟨1⟩⟩eventlimit (sumR, Z)) if and only if there exists 0 ≤ t < r such
that ⟨qinit, t⟩ is limit-sure winning for the reachability condition ♦(R × {0}) in the MDP
MZ × [r].

Proof. For the first direction of the lemma, assume that qinit is limit-sure eventually syn-
chronizing in R with support in Z, and for ϵ > 0 let β be a strategy such that Mβ

k(Z) = 1

and Mβ
k(R) ≥ 1 − ϵ for some number k of steps. Let 0 ≤ t ≤ r such that t = k

mod r and let R0 = R × {0}. We show that from initial state (qinit, t) the strategy α in
MZ × [r] that mimics (copies) the strategy β is limit-sure winning for the reachability
condition ♦R0: it follows from Lemma 4.2 that α plays only Z-safe actions, and since
Prα(♦R0) ≥ Prα(♦kR0) = Mβ

k(R) ≥ 1− ϵ, the result follows.

For the converse direction, let R0 = R × {0} and assuming that there exists 0 ≤ t < r
such that ⟨qinit, t⟩ is limit-sure winning for the reachability condition ♦R0 in MZ × [r],
show that qinit is limit-sure synchronizing in target set R with exact support in Z. Since
the winning region of limit-sure and almost-sure reachability coincide for MDPs [dAHK07],
there exists a (pure) strategy α in MZ× [r] with initial state ⟨q, t⟩ such that Prα(♦R0) = 1.

Given ϵ > 0, we construct from α a pure strategy β in M that is (1− ϵ)-synchronizing
in R with support in Z. Given a finite path ρ = q0a0q1a1 . . . qn in M (with q0 = qinit), there
is a corresponding path ρ′ = ⟨q0, k0⟩a0⟨q1, k1⟩a1 . . . ⟨qn, kn⟩ in MZ × [r] where k0 = t and
ki+1 = ki − 1 for all i ≥ 0. Since the sequence k0, k1, . . . is uniquely determined from ρ,
there is a clear bijection between the paths in M and the paths in MZ × [r] that we often
omit to apply and mention. Define the strategy β as follows: if qn ∈ Prekn(R), then there
exists an action a such that post(qn, a) ⊆ Prekn−1(R) and we define β(ρ) = a, otherwise
let β(ρ) = α(ρ′). Thus β mimics α (thus playing only Z-safe actions) unless a state q is
reached at step n such that q ∈ Pret−n(R), and then β switches to always playing actions
that are R-safe (and thus also Z-safe since R ⊆ Z). We now prove that β is limit-sure
eventually synchronizing in target set R with support in Z. First since β plays only Z-safe
actions, it follows for all k such that t−k = 0 (modulo r), all states reached from qinit with
positive probability after k steps are in Z. Hence Mβ

k(Z) = 1 for all such k.
Second, we show that given ϵ > 0 there exists k such that t−k = 0 and Mβ

k(R) ≥ 1−ϵ,
thus also Mβ

k(Z) = 1 and β is limit-sure eventually synchronizing in target set R with
support in Z. To show this, recall that Prα(♦R0) = 1, and therefore Prα(♦≤kR0) ≥ 1− ϵ
for all sufficiently large k. Without loss of generality, consider such a k satisfying t−k = 0
(modulo r). For i = 1, . . . , r−1, let Ri = Prei(R)×{i}. Then trivially Prα(♦≤k

+r

i=0 Ri) ≥
1 − ϵ and since β agrees with α on all finite paths that do not (yet) visit

+r

i=0 Ri, given
a path ρ that visits

+r

i=0 Ri (for the first time), only R-safe actions will be played by β
and thus all continuations of ρ in the outcome of β will visit R after k steps (in total). It
follows that Prβ(♦=kR0) ≥ 1 − ϵ, that is Mβ

k(R) ≥ 1 − ϵ. Note that we used the same
strategy β for all ϵ > 0 and thus β is also almost-sure eventually synchronizing in R.

!

76

The proof of Lemma 4.7 immediately gives the following corollary:

Corollary 4.2. Let M be an MDP and R be a set of states such that Prer(R) = R for
some r > 0. Then, ⟨⟨1⟩⟩eventalmost(sumR) = ⟨⟨1⟩⟩eventlimit (sumR).

Since deciding limit-sure reachability is PTIME-complete, it follows from Lemma 4.7
that limit-sure synchronization (with exact support) can be decided in EXPTIME. We
show that the problem can be solved in PSPACE by exploiting the special structure of the
exponential MDP in Lemma 4.7. We conclude this subsection by showing that limit-sure
synchronization with exact support is PSPACE-complete (even in the special case of a trivial
support).

Lemma 4.8. For MDPs, the membership problem for limit-sure eventually synchronization
with exact support is in PSPACE.

Proof. We present a (non-deterministic) PSPACE algorithm to decide, given an MDP M =
⟨Q,A, δ⟩, an initial state qinit, and two sets T ⊆ U ⊆ Q, whether qinit is limit-sure eventually
synchronizing in T with support in U .

First, the algorithm computes numbers k ≥ 0 and r > 0 such that for R = Prek(T) and
Z = Prek(U) we have Prer(R) = R and Prer(Z) = Z. As discussed before, this can be done
by guessing k, r ≤ 3|Q|. By Lemma 4.6, we have ⟨⟨1⟩⟩eventlimit (sumT , U) = ⟨⟨1⟩⟩eventlimit (sumR, Z)∪
⟨⟨1⟩⟩eventsure (sumT), and since sure eventually synchronization in T can be decided in PSPACE
(by Theorem 4.3), it suffices to decide limit-sure eventually synchronizing in R with support
in Z in PSPACE. According to Lemma 4.7, it is therefore sufficient to show that deciding
limit-sure winning for the (standard) reachability condition ♦(R×{0}) in the MDP MZ×[r]
can be done in polynomial space. As we cannot afford to construct the exponential-size
MDP MZ × [r], the algorithm relies on the following characterization of the limit-sure
winning set for reachability conditions in MDPs. It is known that the winning region for
limit-sure and almost-sure reachability coincide [dAHK07], and pure memoryless strategies
are sufficient. Therefore, we can see that the almost-sure winning set W for the reachability
condition ♦(R × {0}) satisfies the following property: there exists a memoryless strategy
α : W → A such that (1) W is closed, that is post(q,α(q)) ⊆ W for all q ∈ W , and (2) in
the graph of the Markov chain M(α), for every state q ∈ W , there is a path (of length at
most |W |) from q to R× {0}.

This property ensures that from every state in W , the target set R × {0} is reached
within |W | steps with positive (and bounded) probability, and since W is closed it ensures
that R× {0} is reached with probability 1 in the long run. Thus any set W satisfying the
above property is almost-sure winning.

Our algorithm will guess and explore on the fly a set W to ensure that it satisfies this
property, and contains the state ⟨qinit, t⟩ for some t < r. As we cannot afford to explicitly
guess W (remember that W could be of exponential size), we decompose W into slices
W0,W1, . . . such that Wi ⊆ Q and Wi×{−i mod r} = W ∩ (Q×{−i mod r}). We start
by guessing W0, and we use the property that in MZ × [r], from a state (q, j) under all

77

Z-safe actions, all successors are of the form (·, j − 1). It follows that the successors of the
states in Wi × {−i} should lie in the slice Wi+1 × {−i − 1}, and we can guess on the fly
the next slice Wi+1 ⊆ Q by guessing for each state q in a slice Wi an action aq such that
+

q∈Wi
post(q, aq) ⊆ Wi+1. Moreover, we need to check the existence of a path from every

state in W to R × {0}. As W is closed, it is sufficient to check that there is a path from
every state in W0 × {0} to R× {0}. To do this we guess along with the slices W0,W1, . . .
a sequence of sets P0, P1, . . . where Pi ⊆ Wi contains the states of slice Wi that belong
to the guessed paths. Formally, P0 = W0, and for all i ≥ 0, the set Pi+1 is such that
post(q, aq) ∩ Pi+1 ̸= ∅ for all q ∈ P ′

i (where P ′
i = Pi \ R if i is a multiple of r, and P ′

i = Pi

otherwise), that is Pi+1 contains a successor of every state in Pi that is not already in the
target R (at position 0 modulo r).

We need polynomial space to store the first slice W0, the current slice Wi and the set
Pi, and the value of i (in binary). As MZ × [r] has |Q| · r states, the algorithm runs for
|Q| · r iterations and then checks that (1) W|Q|·r ⊆ W0 to ensure that W =

+

i≤|Q|·r Wi ×{i

mod r} is closed, (2) P|Q|·r = ∅ showing that from every state in W0 × {0} there is a path
to R×{0} (and thus also from all states in W), and (3) the state qinit occurs in some slice
Wi. The correctness of the algorithm follows from the characterization of the almost-sure
winning set for reachability in MDPs: if some state ⟨qinit, t⟩ is limit-sure winning, then the
algorithm accepts by guessing (slice by slice) the almost-sure winning set W and the paths
from W0 × {0} to R × {0} (at position 0 modulo r), and otherwise any set (and paths)
correctly guessed by the algorithm would not contain qinit in any slice.

!

It follows from the proof of Lemma 4.7 that all winning modes for eventually synchro-
nizing are independent of the numerical value of the positive transition probabilities.

Corollary 4.3. Let M be an MDP and T ⊆ U be two sets of states. For all winning
modes µ ∈ {sure, almost, limit}, and for all two pairs of distributions d, d′ with Supp(d) =
Supp(d′), we have d ∈ ⟨⟨1⟩⟩eventµ (sumT , U) if and only if d′ ∈ ⟨⟨1⟩⟩eventµ (sumT , U).

To establish the PSPACE-hardness for limit-sure eventually synchronizing in MDPs, we
use a reduction from the universal finiteness problem for 1L-AFAs.

Lemma 4.9. For MDPs, the membership problem for ⟨⟨1⟩⟩eventlimit (sumT) is PSPACE-hard
even if T is a singleton.

Proof. The proof is by a reduction from the universal finiteness problem for one-letter
alternating automata (1L-AFA), which is PSPACE-complete (by Lemma 3.2). It is easy to
see that this problem remains PSPACE-complete even if the set T of accepting states of
the 1L-AFA is a singleton, and given the tight relation between 1L-AFA and MDP (see
Subsection 3.4.2), it follows from the definition of the universal finiteness problem that

78

MDP M T ⊆ Q

q2. . .q1 ⇒

MDP N

MDP M T ⊆ Q

q2. . .q1

qinit

A

#
· · ·

#
##

Figure 4.6: Sketch of reduction to show PSPACE-hardness of the membership problem for
limit-sure eventually synchronizing.

deciding, in an MDP M, whether the sequence PrenM(T) ̸= ∅ for all n ≥ 0 is PSPACE-
complete.

The reduction is as follows (see also Figure 4.6). Given an MDP M = ⟨Q,A, δ⟩ and a
singleton T ⊆ Q, we construct an MDP N = ⟨Q′,A′, δ′⟩ with state space Q′ = Q 9 {qinit}
such that PrenM(T) ̸= ∅ for all n ≥ 0 if and only if qinit is limit-sure eventually synchronizing
in T . The MDP N is essentially a copy of M with alphabet A 9 {#} and the transition
function on action # is the uniform distribution on Q from qinit, and the Dirac distribution
on qinit from the other states q ∈ Q. There are self-loops on qinit for all other actions a ∈ A.
Formally, the transition function δ ′ is defined as follows, for all q ∈ Q:

– δ′(q, a) = δ(q, a) for all a ∈ A (copy of M), and δ′(q,#)(qinit) = 1;
– δ′(qinit, a)(qinit) = 1 for all a ∈ A, and δ′(qinit,#)(q) = 1

|Q|
.

We establish the correctness of the reduction as follows. For the first direction, as-
sume that PrenM(T) ̸= ∅ for all n ≥ 0. Then since N embeds a copy of M it fol-
lows that PrenN (T) ̸= ∅ for all n ≥ 0 and there exist numbers k0, r ≤ 2|Q| such that
Prek0+r

N (T) = Prek0N (T) ̸= ∅. Using Lemma 4.6 with k = k0 and R = Prek0N (T) (and
U = Z = Q′ is the trivial support), it is sufficient to prove that qinit ∈ ⟨⟨1⟩⟩eventlimit (R) to get
qinit ∈ ⟨⟨1⟩⟩eventlimit (T) (in N). We show the stronger statement that qinit is actually almost-sure
eventually synchronizing in R with the pure strategy α defined as follows, for all play prefix
ρ (let m = |ρ| mod r):

– if Last(ρ) = qinit, then α(ρ) = #;
– if Last(ρ) = q ∈ Q, then

– if q ∈ Prer−m
N (R), then α(ρ) plays a R-safe action at position r −m;

– otherwise, α(ρ) = #.
The strategy α ensures that the probability mass that is not (yet) in the sequence of

predecessors PrenN (R) goes to qinit, where by playing # at least a fraction 1
|Q|

of it would
reach the sequence of predecessors (at a synchronized position). It follows that after 2i
steps, the probability mass in qinit is (1− 1

|Q|
)i and the probability mass in the sequence of

79

predecessors is 1 − (1 − 1
|Q|

)i. For i → ∞, the probability in the sequence of predecessors
tends to 1 and since PrenN (R) = R for all positions n that are a multiple of r, we get
supn M

α
n(R) = 1 and qinit ∈ ⟨⟨1⟩⟩eventalmost(R).

For the converse direction, assume that qinit ∈ ⟨⟨1⟩⟩eventlimit (T) is limit-sure eventually syn-
chronizing in T . By Lemma 4.6, either (1) qinit is limit-sure eventually synchronizing in
PrenN (T) for all n ≥ 0, and then it follows that PrenN (T) ̸= ∅ for all n ≥ 0, or (2) qinit is
sure eventually synchronizing in T , and then since only the action # leaves the state qinit
(and post(qinit,#) = Q), the characterization of Lemma 4.2 shows that Q ⊆ PrekN (T) for
some k ≥ 0, and since Q ⊆ PreN (Q) and PreN (·) is a monotone operator, it follows that
Q ⊆ PrenN (T) for all n ≥ k and thus PrenN (T) ̸= ∅ for all n ≥ 0. We conclude the proof by
noting that PrenM(T) = PrenN (T) ∩Q and therefore PrenM(T) ̸= ∅ for all n ≥ 0.

!

The example in the proof of Lemma 4.3 can be used to show that the memory needed
by a family of strategies to win limit-sure eventually synchronizing condition (in the target
set T = {q2}) is unbounded.

The following theorem summarizes the results for limit-sure eventually synchronization
in MDPs.

Theorem 4.5. For limit-sure eventually synchronizing condition (with or without exact
support) in MDPs and for all functions f ∈ {max T , sumT}:

1. (Complexity). The membership problem is PSPACE-complete.

2. (Memory). Unbounded memory is required for both pure and randomized strategies,
and pure strategies are sufficient.

4.3 Eventually synchronization in PAs

As discussed in the beginning of Section 4.2, to show the complexity results of the
membership problem for eventually synchronizing conditions in PAs, we only consider the
emptiness problem of the eventually synchronizing languages according to function sum

and from Dirac initial distributions too. Results presented in this section are listed in
Table 4.2.

80

Always Eventually

sum max

Sure PSPACE-complete

Almost-sure PSPACE-complete PTIME undecidable

Limit-sure undecidable

Table 4.2: Computational complexity of the emptiness problem of always and eventually
synchronizing languages in PAs.

4.3.1 Sure eventually synchronization

Given a target set T in a PA, the emptiness problem for sure eventually synchronizing
language in T can be solved by means of subset construction, as it is solved for NFAs. For
a PA P = ⟨Q,A, δ⟩, the subset construction consists in NP = ⟨Q′,A,∆⟩ where the state
space Q′ = 2Q \ {∅} is the set of all cells, i.e. subsets of states in P , and the transition
function ∆ : Q′ × A → Q′ defined as ∆′(c, a) = c′ where post(c, a) = c′ and a ∈ A. We
equip the subset construction of P with the set F = {S ∈ Q′ | S ⊆ T} of accepting cells.
A state qinit is sure-winning for eventually synchronizing in T if and only if the subset
construction NP , equipped with initial cell {qinit} and F , accepts a word.

Lemma 4.10. Let P be a PA and T be a target set. From all states qinit, we have
Levent

sure (sumT) ̸= ∅ if and only if the language of the subset construction NP , equipped
with the initial cell {qinit} and set F = {S ∈ Q′ | S ⊆ T} of accepting cells, is non-empty.

Proof. We prove the following equivalence by induction (on the length i of accepting words):
for all initial distributions X0, there exists a word w such that Pw

i (T) = 1 (we say that the
word w is sure-winning in i steps from X0) if and only if there exists an accepting word v
with length |v| = i for the subset construction NP equipped with the initial cell Supp(X0)
and set F = {S ∈ Q′ | S ⊆ T} of accepting cells. The case i = 0 trivially holds since
for all words w, we have Pw

0 (T) = 1 if and only if X0(T) = 1 implying that the initial
cell Supp(X0) is an accepting cell in the subset construction.

Assume that the equivalence holds for all i < n. For the induction step, show that
P is sure eventually synchronizing from X0 (in n steps) if and only if there exists some
letter a such that P is sure eventually synchronizing from the distribution d where d(q) =
#

q′∈Q X0(q
′) · δ(q′, a)(q), meaning that there exists an accepting word v with length n− 1

for P equipped with the initial cell Supp(d), and thus the word a · v with length n is
accepting for P starting in Supp(X0). First, if P is sure eventually synchronizing from
the distribution d by some synchronizing word w′, then so is by the input word a · w′

from X0. For the other direction, assume towards contradiction that P is sure eventually
synchronizing from X0 (in n steps), but for all letters a, the distribution d is not sure
eventually synchronizing. Thus, no matter the input words, there is no way that the
probability mass in T is 1 after n steps from X0, in contradiction with the fact that P is

81

DFA N1

DFA N2

qF1q1

qF2q2

⇒

PA P N1

N2

qF1q1

qF2q2

qinit sink qTA′ A′

#

#

#

#

A′ : 1
2

A′ : 1
2

Figure 4.7: Sketch of reduction to show PSPACE-hardness of the emptiness problem for
sure eventually synchronizing language in PAs.

sure eventually synchronizing from X0 in n steps. It follows that the induction step holds,
and thus the statement of lemma holds for all initial distributions.

!

By Proof of Lemma 4.10, a PA P is sure eventually synchronizing in the target set T by
a pure word w if and only if there exists a finite word v such that w ∈ v ·Aω where the subset
construction NP equipped with the initial cell {qinit} and set F = {S ∈ Q′ | S ⊆ T} of
accepting cells, accepts the finite word v. It implies that the set of all pure sure eventually
synchronizing words in a PA is ω-regular. Moreover, the PSPACE upper bounds follows for
the emptiness problem of sure eventually synchronizing languages in PAs. The PSPACE-
hardness is by a reduction from finite automata intersection based on an idea close to the
reduction provided to show PSPACE-hardness for finite synchronization from a subset in
NFAs (in Subsection 3.1.1).

Lemma 4.11. For PAs, the emptiness problem for Levent
sure (sumT) is PSPACE-hard even if

T is a singleton.

Proof. The proof is by a reduction from the finite automata intersection for DFAs, which
is known to be PSPACE-complete [Koz77, GJ79, San04]. The finite automata intersec-
tion asks, given n DFAs equipped with initial states and accepting sets, whether there
exists an accepting finite word for all DFAs. The reduction is as follows: Given n
DFAs N1,N2, · · · ,Nn over the common alphabet A where Ni = ⟨Qi,A,∆i⟩ for all 1 ≤ i ≤ n,
and where each Ni is equipped with the initial state qi and the set Fi of accepting states,
we construct the PA P = ⟨Q,A′, δ⟩ as sketched in Figure 4.7 for the case n = 2. We
augment the alphabet with a new letter: A′ = A ∪ {#}. We add a new initial state qinit,
one copy of the state space of each DFA Ni, and two new absorbing states qT and sink:
Q = Q1 ∪ · · ·∪Qn ∪ {qinit, qT , sink}. For the new letter #, let #-transitions in all accepting
states q ∈ F1 ∪ · · · ∪ Fn of all automata go to the state qT whereas all #-transitions in
all non-accepting states q ̸∈ F1 ∪ · · · ∪ Fn go to the state sink. On all letters in initial
state qinit, the next successor is randomly chosen from the n initial state q1, q2, · · · , qn,

82

each with probability 1
n
. For all 1 ≤ i ≤ n and all states q ∈ Qi and actions a ∈ A, let

δ(q, a) = ∆i(q, a). Let qT be the target state.
We establish the correctness of the reduction as follows. First direction of proof is

straightforward. By construction, for all finite words w accepted by all DFAs, the PA P is
sure eventually synchronizing in {qT} from qinit, by the infinite word # · w ·#ω.

Second, assume that Levent
sure (qT) ̸= ∅ from qinit, then there exists w that is a sure even-

tually synchronizing word from qinit in {qT}. After the first input, regardless the choice of
letter, we have probability 1

n
in each of the states q1, q2, · · · , qn. Since qT is only reachable

via #-transitions, then w has at least one #. Let w = a · v · # · v′ where a ∈ A ∪ {#},
v is the subword after the first letter and up to the first following occurrence of # and
v′ ∈ (A+#)ω. We show that v is an accepting word for all DFAs. Towards contradiction,
assume that v is not accepted by at least one of the automaton, say N1. Thus, the run
over v from q1 is not ending in an accepting state and the probability to be in sink would
be 1

n
by inputting the letter # right after v. It means that the probability in qT will always

be bounded by 1 − 1
n

contradicting with w being a sure eventually synchronizing word
from qinit in {qT}.

!

The following theorem summarizes the results for sure eventually synchronizing in PAs.

Theorem 4.6. For sure eventually synchronizing languages in PAs:

1. (Complexity). For all functions f ∈ {max T , sumT}, the emptiness problem is
PSPACE-complete.

2. (Regularity). For the function sumT , the set of all pure sure eventually synchro-
nizing words is ω-regular.

4.3.2 Almost-sure eventually synchronization

In this subsection, we provide undecidability result for the emptiness problem of almost-
sure eventually synchronizing languages in PAs.

Theorem 4.7. For all functions f ∈ {max T , sumT}, the emptiness problem of almost-
sure eventually synchronizing language in PAs is undecidable.

Proof. The proof is by a reduction from the value 1 problem for PAs, which is known to
be undecidable (See Subsection 2.5.3). From a PA A = ⟨Q,A, δ⟩ equipped with an initial
state qinit and a set F of accepting states, we construct another PA P = ⟨Q′,A′, δ′⟩ and a

83

PA A

PA P

A

⇒qinit

qF

qinit

qF
qT

qn

#

##

A ∪ {#}

A ∪ {#}

Figure 4.8: Sketch of reduction to show undecidability of the emptiness problem for almost-
sure eventually synchronizing languages in PAs.

target state qT such that the PA A has value 1 if and only if Levent
almost(qT) ̸= ∅ from qinit in

the PA P .
The PA P is a copy of A with two new states qn and qT that are reachable only by a

new action #. Formally, Q′ = Q∪{qT , qn} and A′ = A∪{#}. The construction is depicted
in Figure 4.8. The transition function δ ′ is defined as follows: δ′(q, a) = δ(q, a) for all
states q ∈ Q and a ∈ A. The #-transition in all accepting states q ∈ F goes to the target
state qT : δ′(q,#)(qT) = 1 where q ∈ F . The #-transition in all not-accepting states q ̸∈ F
goes to qn: δ′(q,#)(qn) = 1 where q ̸∈ F . All transitions, in the two new states qT and qn,
reset the PA P into the initial state qinit meaning that δ′(qn, a)(qinit) = δ′(qT , a)(qinit) = 1
for all actions a ∈ A ∪ {#}.

We establish the correctness of the reduction as follows. First, assume that the PA A
has value 1. Since the definition of value in PAs is val(A) = supw∈A∗ Pr(w), if val(A) = 1
then for all ϵ > 0 there exists a finite word wϵ such that Pr(wϵ) ≥ 1 − ϵ. Consider the
decreasing sequence { 1

n
}n≥2 and the finite words {w 1

n
}n≥2; and construct the infinite word

v = w 1

2

·#·#·w 1

3

·#·# · · ·w 1

n
·#·#·· · · represented as v = {w 1

n
·#·#}n≥2. We show that v

is an almost-sure eventually synchronizing word in {qT} from qinit. We repeat the following
argument for all n = 2, 3, · · · : the initial (current) distribution is the Dirac distribution
on qinit, next we input the word w 1

n
where Pr(w 1

n
) ≥ 1− 1

n
. We thus have probability 1− 1

n

in the set F , and inputting the following # leads the mass of probability 1− 1
n

to the target
set {qT} while the remaining mass of probability is in {qn}. Now, the second #-transitions
reset the PA P , and the current distribution will be the initial Dirac distribution qinit. This
argument proves that Levent

almost(qT) ̸= ∅ from qinit.
For the reverse direction, assume that Levent

almost(qT) ̸= ∅ from qinit in the PA P . Consider
an infinite word w such that supnP

w
n (qT) = 1. Let ϵ > 0 and let n be such that Pw

n (qT) ≥
1 − ϵ. Since qT is only reachable via #-transitions then the n-th letter of w must be #.
We pick the subword v of w as follows,

– if there is no occurrence of # before the (n− 1)-th letter, let v be the subword from
the beginning up to (n− 1)-th letter.

84

– otherwise, if the last occurrence of # before the (n−1)-th letter happens as the m-th
letter, check whether post(qinit, wm) = {qinit}:

1. if yes, let v be the subword after the m-th letter up to (n− 1)-th letter

2. otherwise, let v be the subword after the (m + 1)-th letter up to the (n − 1)-th
letter

where wm = a0 · a1 · · · am is the prefix of w consisting in the first m+ 1 letters.
So, the finite word v does not contain # and it is thus a valid word for A. We show

that Pr(v) ≥ 1− ϵ in the PA A (equipped with the set F of accepting states). The prefix
subword of w before v (the first m or m+1 letters, if there is any #) resets the automaton
into qinit; note that if post(qinit, wm) ̸= {qinit}, then we surely have post(qinit, wm) = {qn, qT}
and thus post(qinit, wm+1) = {qinit}. Next, inputting the word v followed by # results in
having probability 1 − ϵ in the target state qT . Since qT is only reachable from accepting
states q ∈ F , so the probability in F must have been 1− ϵ after reading v and right before
the last #. This argument proves that for all ϵ ≥ 0, we are able to find a subword v of w
that is valid for A and for which Pr(v) ≥ 1− ϵ. This completes the proof.

!

4.3.3 Limit-sure eventually synchronization

The emptiness problem for limit-sure eventually synchronizing language in PAs is
polynomial-time equivalent with value 1 problem in PAs. If a PA P = ⟨Q,A, δ⟩, equipped
with the initial state qinit and the set F ⊆ Q of accepting states, has value 1, then there
exists a family of finite words wi for which the acceptance probability is arbitrarily close
to 1. By concatenating any infinite word v ∈ Aω at the end of each finite word wi in this
family, a family of limit-sure eventually synchronizing words in the target set F from qinit
is constructed. In the same way, from a family of limit-sure eventually synchronizing in-
finite words in the target set F from initial state qinit we can construct a family of finite
words with acceptance probability arbitrarily close to 1. It happens since the probability
in the target set F will be 1 − ϵ after finitely many steps for the limit-sure eventually
synchronizing condition.

The following theorem follows from the above observation.

Theorem 4.8. For all functions f ∈ {max T , sumT}, the emptiness problem of limit-
sure eventually synchronizing language in PAs is undecidable.

4.4 Discussion

In this section, we shortly discuss the universality problems for sure and almost-sure
{always, eventually} synchronizing languages in PA.

85

Universality problems of always synchronizing languages. For the function max T ,
by Proof of Lemma 4.1, we have established that the symbolic-run of a PA over a sure and
almost-sure always synchronizing word w is an always 1-synchronizing sequence. Thus, the
states where the probability mass ∥Pw

i ∥ is accumulated form an infinite sequence q0q1q2 · · ·
where there is a deterministic transition from qi to qi+1 for all i ∈ N. For a PA P with
universal sure (and thus almost-sure) always synchronizing language, we claim that there is
a unique sequence q0q1q2 · · · of states where the probability mass is accumulated along the
symbolic runs of P over all words. Toward contradiction, assume that for all deterministic
sequences q0q1q2 · · · in P , there exists a word w and some n where ∥Pw

n ∥ < 1. The number
of deterministic sequences in P are finite, thus we can enumerate all pair of such words
and steps with ⟨w1, n1⟩, · · · ⟨wn, nk⟩ where k is the number of deterministic sequences in P .
Thus, the symbolic run of the automaton over the randomized word v = 1

n
w1 + · · ·+ 1

n
wn

cannot be 1-synchronized at steps n1, · · · , nk implying that v is not sure (and almost-sure)
always synchronizing, a contradiction with the fact that the sure (and almost-sure) always
synchronizing languages are universal. Thus, to decide the universality problems of always
synchronizing languages according to max T , it is sufficient to check for all states q reachable
from qinit, whether q ∈ T and |post(q,A)| = 1. It implies that the graph underling the PA
must be lasso-shaped, which can be checked in PTIME.

A similar argument for the function sumT shows that to decide the universality problem
of sure (and almost-sure) always synchronizing language, it is sufficient to check whether
q ∈ T for all states q reachable from qinit, which can be checked in PTIME.

Universality problem of sure eventually synchronizing language. Consider a
PA P such that the sure eventually synchronizing language according to max T is universal.
By definition, for all words w the symbolic run Pw

0 P
w
1 P

w
2 · · · is eventually 1-synchronized in

a singleton {q} where q ∈ T , i.e. there exists n such that Pw
n (q) = 1, and by Lemma 4.10,

we know that n ≤ 2|Q|. We claim that there exists some step n ≤ 2|Q| such that for all
words w, we have ∥Pw

n ∥T = 1. Toward contradiction, assume that for all steps n ≤ 2|Q|,
there exists a word wn such that ∥Pwn

n ∥T ̸= 1. Then the symbolic run of the automaton
over the randomized word v = 1

k
w1+ · · ·+ 1

k
wk where k = 2|Q| is never 1-synchronized, im-

plying that v is not sure eventually synchronizing according to max T , a contradiction with
the fact that P has a universal sure eventually synchronizing language according to max T .
A similar argument proves that the state q where the probability mass is accumulated at
step n is unique for all words too. Thus, to decide the universality problem of sure eventu-
ally synchronizing language according to max T , one can compute the sequence s0s1s2 · · ·
where s0 = {qinit} and si = post(si−1,A) for all i ∈ N, and check whether there exists
some n such that sn = {q} is a singleton and q ∈ T . The sequence s0s1s2 · · · is ultimately
periodic meaning that there are k, n ≤ 2|Q| such that sn = sn+k; as a result universality
problem of sure eventually synchronizing language according to max T can be decided in
PSPACE.

A similar argument for the function sumT shows that to decide the universality problem
of sure eventually synchronizing language, the sequence s0s1s2 · · · where s0 = {qinit} and

86

si = post(si−1,A) for all i ∈ N, can be computed and then one can check whether there
exists some n such that sn ⊆ T , which can be done in PSPACE.

We do not provide a matching lower bound for the universality problem of sure eventu-
ally synchronizing languages. However, there is a reduction from tautology problem proving
that deciding whether all pure words are sure eventually synchronizing according to the
function sumT , is co-NP-hard.

Universality problem of almost-sure eventually synchronizing language. We
recall that if x = supn xn for an infinite sequence x0x1x2 · · · of bounded values, then x
is equal or greater than all xi and either there exists a certain xn such that x = xn or
x = lim supn→∞ xn,

For the function max T , consider a PA P that the almost-sure eventually synchronizing
language is universal. By definition, supn∈N∥P

w
n ∥T = 1 for all words w. There are three

cases:
– either for all words w, there exists n such that ∥Pw

n ∥T = 1 meaning that the uni-
versality problem of almost-sure eventually synchronizing language reduces to the
universality problem of sure eventually synchronizing language.

– or lim supn→∞∥Pw
n ∥T = 1 for all words w, meaning that the universality problem of

almost-sure eventually synchronizing language reduces to the universality problem of
almost-sure weakly synchronizing language, which is discussed in Section 5.3.

– or there must be two words w and w′ such that there exists n such that ∥Pw
n ∥T = 1 but

lim supn→∞∥Pw
n ∥T < 1, and ∥Pw′

i ∥T ̸= 1 for all i ∈ N but lim supn→∞∥Pw′

n ∥T = 1.
We see that for the randomized word v = 1

2
w + 1

2
w′, there exists no n such that

∥Pv
n∥T = 1 and also lim supn→∞∥Pv

n∥T < 1, a contradiction with the fact that P has
a universal almost-sure eventually synchronizing language. It proves that the third
case never happens.

A similar argument for the function sumT shows that to decide the universality prob-
lem for almost-sure eventually synchronizing language, it is sufficient to check if the sure
eventually synchronizing language of the PA, or if the almost-sure weakly synchronizing
language is universal.

Since for both function sumT and maxT , the universality problem of almost-sure weakly
synchronizing languages is in PSPACE, by Lemma 5.11 on page 111, the PSPACE member-
ship follows for the universality problem of almost-sure eventually synchronizing languages
in PAs. Lemma 4.12 provides a matching lower bound.

Lemma 4.12. The universality problem of almost-sure eventually synchronizing language
according to sumT in PAs is PSPACE-hard, even if T is a singleton.

Proof. We present a proof using a reduction from a PSPACE-complete problem so called
initial state problem. Given an NFA N = ⟨L,A,∆⟩ and a set of states F , the initial state
problem is to decide whether there exists an initial state ℓ0 ∈ L and an infinite word w ∈ Aω

such that all runs ρ = r0r1r2 · · · of N starting in ℓ0, over w avoid F , i.e. ri ̸∈ F for all
i ∈ N. From the results of [CSV08, TBG09], it follows that the initial state problem is

87

PSPACE-complete. We present a polynomial-time reduction from the initial state problem
to the universality problem, establishing the PSPACE-hardness result.

Let N = ⟨L,A,∆⟩ be an NFA with the set F ̸= ∅ of states. We assume, without loss of
generality, that N is complete and all states in N are all reachable (from some state ℓ0).
From N , we construct a PA P = ⟨Q,A, δ⟩ where the set of states is augmented with a new
absorbing state synch, formally Q = L ∪ {synch}. The transition function δ is defined as
follows, for all q ∈ L and a ∈ A,

– if q ̸∈ F , then δ(q, a) is the uniform distribution over ∆(q, a),
– and if q ∈ F , δ(q, a)(q′) = 1

2|∆(q,a)|
for all q′ ∈ ∆(q, a) and δ(q, a)(synch) = 1

2
.

Let qinit = ℓ0 be the state from which all states are reachable. We show that the answer to
the initial state problem for N is Yes if and only if the almost-sure eventually synchronizing
language of P in {synch} is not universal.

First, assume that the answer to the initial state problem for N is Yes. Thus, there
exists some state q̂ and a word w ∈ Aω satisfying the initial state problem. We construct a
word that is not almost-sure eventually synchronizing for P . First, consider the |Q|-times
repetition of the uniform distribution du over A. Then, with positive probability the state
synch is reached, and also with positive probability the state q̂ is reached, say after k steps.
Let w′ ∈ Aω be such that w = v · w′ and |v| = |Q| − k. Note that from state q̂ the
finite word v is played with positive probability by the repetition of uniform distribution
du. Therefore, on the word (du)

|Q| · w′, with some positive probability the state synch is
never reached, and thus P is not almost-sure eventually synchronizing in {synch}, and the
almost-sure eventually synchronizing language of P is not universal.

Second, assume that the almost-sure eventually synchronizing language of P is not
universal. Since synch is an absorbing state the eventually and weakly synchronization
coincide, then by the construction in Lemma 5.10 on page 108, there exists a pure word
w ∈ Aω such that from the initial state, all runs over w avoid the terminal end compo-
nent {synch}, and therefore also avoid F . Hence, the answer to the initial state problem
for N is Yes.

!

From the above arguments and Lemma 4.12, it appears that for all functions f ∈
{maxT , sumT}, the universality problem of almost-sure eventually synchronizing language
in PAs is PSPACE-complete.

88

5Weakly Synchronizing Condition

First sight. In this chapter, we establish the complexity and memory requirement for
weakly synchronizing conditions. We show that the membership problem for MDPs
is PSPACE-complete for sure and almost-sure winning, that exponential memory is
necessary and sufficient for sure winning while infinite memory is necessary for almost-
sure winning, and we show that limit-sure and almost-sure winning coincide.

Moreover, we show that while the emptiness problem for sure weakly synchronizing
languages in PAs is PSPACE-complete, the emptiness decision problems for almost-sure
and limit-sure languages are undecidable. The results presented in this chapter are
summarized in Table 5.1 and Table 5.2 on pages 90 and 103, respectively.

Contents

5.1 Weak synchronization in MDPs . 90

5.1.1 Sure weak synchronization . 90

5.1.2 Almost-sure weak synchronization 93

5.1.3 Limit-sure weak synchronization 96

5.2 Weak synchronization in PAs . 103

5.2.1 Sure weak synchronization . 103

5.2.2 Almost-sure weak synchronization 105

5.2.3 Limit-sure weak synchronization 105

5.3 Discussion . 106

89

Weakly

Complexity Memory requirement

Sure PSPACE-complete exponential

Almost-sure PSPACE-complete infinite

Limit-sure PSPACE-complete infinite

Table 5.1: Computational complexity of the membership problem of weak synchronization
in MDPs, and memory requirement for the winning strategies.

5.1 Weak synchronization in MDPs

By Remarks 5 and 6 (on pages 50 and 50), we consider the membership problem
according to function sum and from Dirac initial distributions (i.e., single initial state qinit).
The results presented in this section are summarized in Table 5.1.

5.1.1 Sure weak synchronization

In this subsection, we study the membership problem for sure weakly synchronizing con-
dition and show that it is PSPACE-complete . The PSPACE upper bound of the membership
problem for sure weak synchronization is obtained by the following characterization.

Lemma 5.1. Let M be an MDP and T be a target set. For all states qinit, we have
qinit ∈ ⟨⟨1⟩⟩weaklysure (sumT) if and only if there exists a set S ⊆ T such that qinit ∈ Prem(S) for
some m ≥ 0 and S ⊆ Pren(S) for some n ≥ 1.

Proof. We recall that for all initial distribution X0 with support S, we have X0 ∈
⟨⟨1⟩⟩eventsure (sumT) if and only if there exists k ≥ 0 such that S ⊆ PrekM(T) (See Lemma 4.2).

First, if qinit ∈ ⟨⟨1⟩⟩weaklysure (sumT), then let α be a sure winning weakly synchronizing
strategy. Then there are infinitely many positions n such that Mα

n(T) = 1, and since the
state space is finite, there is a set S of states such that for infinitely many positions n
we have Supp(Mα

n) = S and Mα
n(T) = 1, and thus S ⊆ T . By Lemma 4.2, it follows

that qinit ∈ Prem(S) for some m ≥ 0, and by considering two positions n1 < n2 where
Supp(Mα

n1
) = Supp(Mα

n2
) = S, it follows that S ⊆ Pren(S) for n = n2 − n1 ≥ 1.

The reverse direction is straightforward by considering a strategy α ensuring that
Mα

m(S) = 1 for some m ≥ 0, and then ensuring that the probability mass from all states
in S remains in S after every multiple of n steps where n > 0 is such that S ⊆ Pren(S),
showing that α is a sure winning weakly synchronizing strategy in S (and thus in T) from
qinit, thus qinit ∈ ⟨⟨1⟩⟩weaklysure (sumT).

!

The PSPACE upper bound follows from the characterization in Lemma 5.1. A
(N)PSPACE algorithm is to guess the set S ⊆ T , and the numbers m,n (with m,n ≤

90

MDP M

qinit q̂q ⇒

MDP N

MDP M

qinit q̂q

sink

p̂

A′

♯ ♯
♯

A

♯

Figure 5.1: The reduction sketch to show PSPACE-hardness of the membership problem for
sure weak synchronization in MDPs.

2|Q| since the sequence Pren(S) of predecessors is ultimately periodic), and check that
qinit ∈ Prem(S) and S ⊆ Pren(S). The PSPACE lower bound follows from the PSPACE-
completeness of the membership problem for sure eventually synchronization. Lemma 5.2
gives the PSPACE lower bound.

Lemma 5.2. The membership problem for ⟨⟨1⟩⟩weaklysure (sumT) is PSPACE-hard even if T is
a singleton.

Proof. The proof is by a reduction from the membership problem for ⟨⟨1⟩⟩eventsure (sumT) with
a singleton T , which is PSPACE-complete (See Theorem 4.3). From an MDP M = ⟨Q,A, δ⟩
with initial state qinit and target state q̂, we construct another MDP N = ⟨Q′,A′, δ′⟩ and a
target state p̂ such that qinit ∈ ⟨⟨1⟩⟩eventsure (q̂) in M if and only if qinit ∈ ⟨⟨1⟩⟩weaklysure (p̂) in N .

The MDP N is a copy of M with two new states p̂ and sink that are reachable only
by a new action ♯ (see Figure 5.1). Formally, Q′ = Q ∪ {p̂, sink} and A′ = A ∪ {♯}. The
transition function δ′ is defined as follows: δ′(q, a) = δ(q, a) for all states q ∈ Q and a ∈ A,
δ(q, ♯)(sink) = 1 for all q ∈ Q′ \ {q̂} and δ(q̂, ♯)(p̂) = 1. The state sink is absorbing and
from state p̂ all other transitions lead to the initial state, i.e., δ(sink, a)(sink) = 1 and
δ(p̂, a)(qinit) = 1 for all a ∈ A.

We establish the correctness of the reduction as follows. First, if qinit ∈ ⟨⟨1⟩⟩eventsure (q̂)
in M, then let α be a sure winning strategy in M for eventually synchronization in {q̂}.
A sure winning strategy in N for weak synchronization in {p̂} is to play according to α
until the whole probability mass is in q̂, then play ♯ followed by some a ∈ A to visit p̂
and get back to the initial state qinit, and then repeat the same strategy from qinit. Hence
qinit ∈ ⟨⟨1⟩⟩weaklysure (p̂) in N .

Second, if qinit ∈ ⟨⟨1⟩⟩weaklysure (p̂) in N , then consider a strategy α such that N α
n (p̂) = 1 for

some n ≥ 0. By construction of N , it follows that N α
n−1(q̂) = 1, that is all path-outcomes

of α of length n−1 reach q̂, and α plays ♯ in the next step. If α never plays ♯ before position
n− 1, then α is a valid strategy in M up to step n− 1 and it shows that qinit ∈ ⟨⟨1⟩⟩eventsure (q̂)
is sure winning in M for eventually synchronization in {q̂}. Otherwise let m be the largest
number such that there is a finite path-outcome ρ of α of length m < n − 1 such that

91

qinit

q11 q12

q21

q22

q23

qT

H1

H2

a, b : 1
2

a, b : 1
2

a

a

a

a

a

b

b

a, b

Figure 5.2: The MDP M2.

♯ ∈ Supp(α(ρ)). Note that the action ♯ can be played by α only in the state q̂, and thus
the initial state is reached again after one more step. It follows that in some path-outcome
ρ′ of α of length m+2, we have Last(ρ′) = qinit, and by the choice of m, the action ♯ is not
played by α until position n− 1 where all the probability mass is in q̂. Hence the strategy
that plays like α from ρ′ in N is a valid strategy from qinit in M, and is a witness that
qinit ∈ ⟨⟨1⟩⟩eventsure (q̂).

!

The proof of Lemma 5.1 suggests an exponential-memory strategy for sure weakly
synchronization that in q ∈ Pren(S) plays an action a such that post(q, a) ⊆ Pren−1(S),
which can be realized with exponential memory since n ≤ 2|Q|. It can be shown that
exponential memory is necessary in general. The argument is very similar to the proof of
exponential memory lower bound for sure eventually synchronization (See Section 4.2). For
the sake of completeness, we present a family of MDPs Mn (n ∈ N) over alphabet {a, b}
that are sure winning for weak synchronization, and where the sure winning strategies
require exponential memory. The MDP M2 is shown in Figure 5.2. The structure of
Mn is an initial uniform probabilistic transition to n components H1, . . . , Hn where Hi

is a cycle of length pi the i-th prime number. On action a, the next state in the cycle
is reached, and on action b the target state qT is reached, only from the last state in the
cycles. From other states, the action b leads to an absorbing sink state (transitions not
depicted). A sure winning strategy from qinit for weak synchronization in {qT} is to play
a in the first p#n =

2n

i=1 pi steps, and then play bb to reach qinit again, through qT . This
requires memory of size p#n > 2n while the size of Mn is in O(n2 log n) [BS96]. It can
be proved that all winning strategies for weak synchronization need to be, from qinit, sure

92

eventually synchronizing in {qT} (consider the last occurrence of qinit along a play before
all the probability mass is in qT) and this requires memory of size at least p#n by standard
pumping arguments as in the sure eventually case.

Theorem 5.1. For sure weak synchronization in MDPs and for all functions f ∈
{sumT ,maxT}:

1. (Complexity). The membership problem is PSPACE-complete.

2. (Memory). Exponential memory is necessary and sufficient for both pure and ran-
domized strategies, and pure strategies are sufficient.

5.1.2 Almost-sure weak synchronization

Let x = supn∈N xn for a bounded sequence (xn)n∈N; then x is equal or greater than
all xi and either there exists a certain n such that xn = x or x = lim supn→∞ xn. Since all
entries in a probability distribution are bounded by 1, we can see that for an MDP M and
a target set T ,

– ⟨⟨1⟩⟩eventalmost(f) = ⟨⟨1⟩⟩eventsure (f) ∪ ⟨⟨1⟩⟩weakalmost(f)
where f ∈ {maxT , sumT}. Despite this mathematical connection, in the sequel, we give
the intuitive characterization to decide the membership problem of almost-sure weak syn-
chronization.

We present a characterization of almost-sure weak synchronization that gives a PSPACE
upper bound for the membership problem. Our characterization uses the limit-sure even-
tually synchronizing conditions with exact support. Recall that this condition requires that
the probability mass tends to 1 in a target set T , and moreover that after the same number
of steps the support of the probability distribution is contained in a given set U . Formally,
given an MDP M, let ⟨⟨1⟩⟩eventlimit (sumT , U) for T ⊆ U be the set of all initial distributions
such that for all ϵ > 0 there exists a strategy α and n ∈ N such that Mα

n(T) ≥ 1− ϵ and
Mα

n(U) = 1.
We show that an MDP is almost-sure weakly synchronizing in target T if (and only

if), for some set U , there is a sure eventually synchronizing strategy in target U , and
from the probability distributions with support U there is a limit-sure winning strategy
for eventually synchronizing in Pre(T) with support in Pre(U). This ensures that from the
initial state we can have the whole probability mass in U , and from U have probability
1 − ϵ in Pre(T) (and in T in the next step), while the whole probability mass is back in
Pre(U) (and in U in the next step), allowing to repeat the strategy for ϵ → 0, thus ensuring
infinitely often probability at least 1− ϵ in T (for all ϵ > 0).

Lemma 5.3. Let M be an MDP and T be a target set. For all states qinit, we have
qinit ∈ ⟨⟨1⟩⟩weaklyalmost(sumT) if and only if there exists a set U such that

– qinit ∈ ⟨⟨1⟩⟩eventsure (sumU), and

93

– XU ∈ ⟨⟨1⟩⟩eventlimit (sumPre(T),Pre(U)) where XU is the uniform distribution over U .

Proof. First, if qinit ∈ ⟨⟨1⟩⟩weaklyalmost(sumT), then there exists a strategy α such that for all
i ≥ 0 there exists ni ∈ N such that Mα

ni
(T) ≥ 1 − 2−i, and moreover ni+1 > ni for all

i ≥ 0. Let si = Supp(Mα
ni
) be the support of Mα

ni
. Since the state space is finite, there is

a set U that occurs infinitely often in the sequence s0s1 . . . , thus for all k > 0 there exists
mk ∈ N such that Mα

mk
(T) ≥ 1−2−k and Mα

mk
(U) = 1. It follows that α is sure eventually

synchronizing in U from qinit, i.e., qinit ∈ ⟨⟨1⟩⟩eventsure (sumU). Moreover, we can assume that
mk+1 > mk for all k > 0 and thus M is also limit-sure eventually synchronizing in Pre(T)
with exact support in Pre(U) from the initial distribution X1 = Mα

m1
. By Corollary 4.3,

since Supp(X1) = U = Supp(XU) and since only the support of the initial probability
distributions is relevant for the limit-sure eventually synchronizing condition, it follows
that XU ∈ ⟨⟨1⟩⟩eventlimit (sumPre(T),Pre(U)).

To establish the converse, note that since XU ∈ ⟨⟨1⟩⟩eventlimit (sumPre(T),Pre(U)), it follows
from Corollary 4.3 that from all initial distributions with support in U , for all ϵ > 0
there exists a strategy αϵ and a position nϵ such that Mαϵ

nϵ
(T) ≥ 1 − ϵ and Mαϵ

nϵ
(U) = 1.

We construct an almost-sure weakly synchronizing strategy α as follows. Since qinit ∈
⟨⟨1⟩⟩eventsure (sumU), play according to a sure eventually synchronizing strategy from qinit until
all the probability mass is in U . Then for i = 1, 2, . . . and ϵi = 2−i, repeat the following
procedure: given the current probability distribution, select the corresponding strategy
αϵi and play according to αϵi for nϵi steps, ensuring probability mass at least 1 − 2−i in
Pre(T) and support of the probability mass in Pre(U). Then from states in Pre(T), play
an action to ensure reaching T in the next step, and from states in Pre(U) ensure reaching
U . Continue playing according to αϵi+1

for nϵi+1
steps, etc. Since nϵi + 1 > 0 for all i ≥ 0,

this strategy ensures that lim supn→∞ Mα
n(T) = 1 from qinit, hence qinit ∈ ⟨⟨1⟩⟩weakalmost(sumT).

!

Note that from Lemma 5.3, it follows that counting strategies are sufficient to win
almost-sure weakly synchronizing condition (a strategy is counting if α(ρ) = α(ρ′) for all
prefixes ρ, ρ′ with the same length and Last(ρ) = Last(ρ′)).

Since the membership problems for sure eventually synchronizing and for limit-sure
eventually synchronizing with exact support are PSPACE-complete (See Theorem 4.4 and
Theorem 4.5), the membership problem for almost-sure weak synchronization is in PSPACE
by guessing the set U , and checking that qinit ∈ ⟨⟨1⟩⟩eventsure (sumU), and checking that XU ∈
⟨⟨1⟩⟩eventlimit (sumPre(T),Pre(U)). We establish a matching PSPACE lower bound.

Lemma 5.4. The membership problem for ⟨⟨1⟩⟩weaklyalmost(sumT) is PSPACE-hard even if T is
a singleton.

Proof. The proof is by the same reduction from the universal finiteness problem as pre-
sented in Lemma 4.9 where from an MDP M and a singleton T , we constructed N and
qinit, and showed that PrenM(T) ̸= ∅ for all n ≥ 0 if and only if qinit is limit-sure eventually
synchronizing in T (with support trivially in the state space Q′ of N). We show that

94

PrenM(T) ̸= ∅ for all n ≥ 0 if and only if qinit is almost-sure weakly synchronizing in T ,
proving that the membership problem for almost-sure weakly synchronization is PSPACE-
hard.

First, if qinit is almost-sure weakly synchronizing in T , then qinit is also limit-sure even-
tually synchronizing in T , and therefore PrenM(T) ̸= ∅ for all n ≥ 0 by the arguments in
the proof of Lemma 4.9.

Second, if PrenM(T) ̸= ∅ for all n ≥ 0, then qinit is limit-sure eventually synchronizing
in T (with support in the state space Q′ = Q ∪ {qinit} of N), and since the state qinit is
reached from all states in Q by playing the action ♯ and from qinit by playing any action in A,
it follows that the uniform distribution over Q′ is also limit-sure eventually synchronizing
in T (with support in Q′) by first going to qinit and then playing a limit-sure eventually
synchronizing strategy. By the characterization of Lemma 5.3 and since qinit is trivially
sure eventually synchronizing in Q′, it follows that qinit ∈ ⟨⟨1⟩⟩weaklyalmost(sumT).

!

We provide an example of an MDP such that all strategies to win almost-sure weakly
synchronizing conditions require infinite memory. The example and argument are analo-
gous to the proof that infinite memory is necessary for almost-sure eventually synchroniz-
ing, see Lemma 4.3.

Lemma 5.5. There exists an almost-sure weakly synchronizing MDP for which all almost-
sure weakly synchronizing strategies require infinite memory.

Proof. Consider the MDP M shown in Figure 4.4 with three states qinit, q1, q2 and two
actions a, b. The only probabilistic transition is in qinit on action a that has successors
qinit and q1 with probability 1

2
. The other transitions are deterministic. Let qinit be the

initial state. We construct a strategy that is almost-sure weakly synchronizing in {q2},
showing that qinit ∈ ⟨⟨1⟩⟩weaklyalmost(q2). First, observe that for all ϵ > 0 we can have probability
at least 1− ϵ in q2 after finitely many steps from qinit: playing n times a and then b leads
to probability 1 − 1

2n
in q2. Note that after that, the current probability distribution has

support {qinit, q2} and that from such a distribution, we can as well ensure probability at
least 1− ϵ in q2. Thus for a fixed ϵ, the MDP is (1− ϵ)-synchronizing in {q2} (after finitely
many steps), and by taking a smaller value of ϵ, we can continue to play a strategy to have
probability at least 1 − ϵ in q2, and repeat this for ϵ → 0. This strategy ensures almost-
sure weak synchronization in {q2}. Below, we show that infinite memory is necessary for
almost-sure winning in this MDP.

Assume towards contradiction that there exists a finite-memory strategy α that is
almost-sure weakly synchronizing in {q2}. Consider the Markov chain M(α) (the product
of the MDP M with the finite-state transducer defining α). A state (q,m) in M(α) is
called a q-state. Since α is almost-sure weakly synchronizing in {q2}, there is a q2-state
in the recurrent states of M(α). Since on all actions qinit is a successor of q2, and qinit
is a successor of itself, it follows that there is a recurrent qinit-state in M(α), and that
all periodic supports of recurrent states in M(α) contain a qinit-state. Hence, in each

95

stationary distribution there is a qinit-state with a positive probability, and therefore the
probability mass in qinit is bounded away from zero. It follows that the probability mass
in q2 is bounded away from 1 thus α is not almost-sure weakly synchronizing in {q2}, a
contradiction.

!

From previous lemmas, we obtain Theorem 5.2 stating that the membership problem
for almost-sure weakly synchronizing, is PSPACE-complete.

Theorem 5.2. For almost-sure weak synchronization in MDPs and all functions f ∈
{maxT , sumT}:

1. (Complexity). The membership problem is PSPACE-complete.

2. (Memory). Infinite memory is necessary in general for both pure and randomized
strategies, and pure strategies are sufficient.

5.1.3 Limit-sure weak synchronization

We show that the winning regions for almost-sure and limit-sure weak synchronization
coincide. The result is not intuitively obvious (recall that it does not hold for eventually
synchronizing) and requires a careful analysis of the structure of limit-sure winning strate-
gies to show that they always induce the existence of an almost-sure winning strategy.
The construction of an almost-sure winning strategy from a family of limit-sure winning
strategies is illustrated in the following example.

Example 5.1. Consider the MDP M in Figure 5.3 with initial state qinit and target set
T = {q4}. Note that there is a relevant strategic choice only in q3, and that qinit is limit-
sure winning for eventually synchronization in {q4} since we can inject a probability mass
arbitrarily close to 1 in q3 (by always playing a in q3), and then switching to playing b
in q3 gets probability 1 − ϵ in T (for arbitrarily small ϵ). Moreover, the same holds from
state q4. These two facts are sufficient to show that qinit is limit-sure winning for weak
synchronization in {q4}: given ϵ > 0, play from qinit a strategy to ensure probability at
least p1 = 1 − ϵ

2
in q4 (in finitely many steps), and then play according to a strategy that

ensures from q4 probability p2 = p1 −
ϵ
4

in q4 (in finitely many, and at least one step), and
repeat this process using strategies that ensure, if the probability mass in q4 is at least pi,
that the probability in q4 is at least pi+1 = pi −

ϵ
2i+1 (in at least one step). It follows that

pi = 1− ϵ
2
− ϵ

4
− · · ·− ϵ

2i
> 1− ϵ for all i ≥ 1, and thus lim supi→∞ pi ≥ 1− ϵ showing that

qinit is limit-sure weakly synchronizing in target {q4}.
It follows from the result that we establish in this section (Theorem 5.3) that q init is

actually almost-sure weakly synchronizing in target {q4}. To see this, consider the sequence
Prei(T) for i ≥ 0: {q4}, {q3}, {q2}, {q3}, . . . is ultimately periodic with period r = 2 and

96

qinit

q1

q2 q3 q4 q5

q6

a, b : 1
2

a, b : 1
2

a, b

a, b

a

b a, b

a, b : 1
2

a, b : 1
2

a, b

Figure 5.3: An example to show qinit ∈ ⟨⟨1⟩⟩weaklylimit (q4) implies qinit ∈ ⟨⟨1⟩⟩weaklyalmost(q4).

R = {q3} = Pre(T) is such that R = Pre2(R). The period corresponds to the loop q2q3 in
the MDP. It turns out that limit-sure eventually synchronizing in T implies almost-sure
eventually synchronizing in R, see Corollary 4.2, thus from qinit a single strategy ensures
that the probability mass in R is 1, either in the limit or after finitely many steps. Note
that in both cases since R = Prer(R) this even implies almost-sure weakly synchronizing in
R. The same holds from state q4.

Moreover, note that all distributions produced by an almost-sure weakly synchronizing
strategy are themselves almost-sure weakly synchronizing. An almost-sure winning strategy
for weak synchronization in {q4} consists in playing from qinit an almost-sure eventually
synchronizing strategy in target R = {q3}, and considering a decreasing sequence ϵi such
that limi→∞ ϵi = 0, when the probability mass in R is at least 1− ϵi, inject it in T = {q4}.
Then the remaining probability mass defines a distribution (with support {q1, q2} in the
example) that is still almost-sure eventually synchronizing in R, as well as the states in
T . Note that in the example, (almost all) the probability mass in T = {q4} can move
to q3 in an even number of steps, while from {q1, q2} an odd number of steps is required,
resulting in a shift of the probability mass. However, by repeating the strategy two times
from q4 (injecting large probability mass in q3, moving to q4, and injecting in q3 again),
we can make up for the shift and reach q3 from q4 in an even number of steps, thus in
synchronization with the probability mass from {q1, q2}.

▹

This idea behind Example 5.1, which is constructing an almost-sure winning strategy
from a family of limit-sure winning strategies by annihilating the shifts at proper times, is
formalized in the rest of this subsection, and we prove that we can always make up for the
shifts, which requires a carefully analysis of the allowed amounts of shifting.

The result is easier to prove when the target T is a singleton, as in Example 5.1. For
an arbitrary target set T , we need to get rid of the states in T that do not contribute
a significant (i.e., bounded away from 0) probability mass in the limit, that we call the
vanishing states. We show that they can be removed from T without changing the winning
region for limit-sure winning. When the target set has no vanishing state, we can construct
an almost-sure winning strategy as in the case of a singleton target set.

97

qinit q1

q2 q3

a : 1
2

a, b : 1
2

b : 1
2

a

ba, b a, b

Figure 5.4: The state q2 is a vanishing state for the target set T = {q2, q3} and the family
of stagiest (α)i∈N described in Example 5.2.

Definition 5.1. Given an MDP M with initial state qinit ∈ ⟨⟨1⟩⟩weaklylimit (sumT) that is
limit-sure winning for the weakly synchronizing condition in target set T , let (αi)i∈N be
a family of limit-sure winning strategies such that lim supn→∞ Mαi

n (T) ≥ 1 − ϵi where
limi→∞ ϵi = 0. Hence by definition of lim sup, for all i ≥ 0 there exists a strictly
increasing sequence ki,0 < ki,1 < · · · of positions such that Mαi

ki,j
(T) ≥ 1 − 2ϵi for all

j ≥ 0. A state q ∈ T is vanishing if lim inf i→∞ lim infj→∞ Mαi

ki,j
(q) = 0 for some family

of limit-sure weakly synchronizing strategies (αi)i∈N.

Intuitively, the contribution of a vanishing state q to the probability in T tends to 0
and therefore M is also limit-sure winning for the weakly synchronizing condition in target
set T \ {q}.

Example 5.2. Consider the MDP in Figure 5.4 with four states and two actions a, b.
All transitions are deterministic except in qinit: the a-transitions have two successors qinit
and q1 each with probability 1

2
, as well as the b-transitions with two successors qinit and q2.

The a-transition in q1 is a self-loop whereas the b-transition deterministically goes to q3.
All transitions in q2 are directed to qinit, and all in q3 are directed to q1. Let T = {q2, q3}
be the target set and for all i ∈ N, let αi be the strategy that repeats the following template
forever: playing i times a and then playing two times b. The family of strategies (αi)i∈N is
a witness to show that qinit ∈ ⟨⟨1⟩⟩weaklylimit (sumT) where the state q2 is a vanishing state. We
see that the contribution of q2 in accumulating the probability mass in {q2, q3} tends to 0
when i → ∞. Thus, qinit ∈ ⟨⟨1⟩⟩weaklylimit (q3) too.

▹

Lemma 5.6. If an MDP M is limit-sure weakly synchronizing in target set T , then there
exists a set T ′ ⊆ T such that M is limit-sure weakly synchronizing in T ′ without vanishing
states.

Proof. If there is no vanishing state for (αi)i∈N, then take T ′ = T and the proof is
complete. Otherwise, let (αi)i∈N be a family of limit-sure winning strategies such that

98

lim supn→∞ Mαi
n (T) ≥ 1− ϵi where limi→∞ ϵi = 0 and let q be a vanishing state for (αi)i∈N.

We show that (αi)i∈N is limit-sure weakly synchronizing in T \ {q}. For every i ≥ 0 let
ki,0 < ki,1 < · · · be a strictly increasing sequence such that (a) Mαi

ki,j
(T) ≥ 1 − 2ϵi for all

i, j ≥ 0, and (b) lim inf i→∞ lim infj→∞ Mαi

ki,j
(q) = 0.

It follows from (b) that for all ϵ > 0 and all x > 0 there exists i > x such that for
all y > 0 there exists j > y such that Mαi

ki,j
(q) < ϵ, and thus

Mαi

ki,j
(T \ {q}) ≥ 1− 2ϵi − ϵ

by (a). Since this holds for infinitely many i’s, we can choose i such that ϵi < ϵ and we
have

lim sup
j→∞

Mαi

ki,j
(T \ {q}) ≥ 1− 3ϵ

and thus
lim sup
n→∞

Mαi
n (T \ {q}) ≥ 1− 3ϵ

since the sequence (ki,j)j∈N is strictly increasing. This shows that (αi)i∈N is limit-sure
weakly synchronizing in T \ {q}.

By repeating this argument as long as there is a vanishing state (thus at most |T |− 1
times), we can construct the desired set T ′ ⊆ T without vanishing state.

!

For a limit-sure weakly synchronizing MDP in target set T (without vanishing states),
we show that from a probability distribution with support T , a probability mass arbitrarily
close to 1 can be injected synchronously back in T (in at least one step), that is XT ∈
⟨⟨1⟩⟩eventlimit (sumPre(T)). The same holds from the initial state qinit of the MDP. This property
is the key to construct an almost-sure weakly synchronizing strategy.

Lemma 5.7. If an MDP M with initial state qinit is limit-sure weakly synchronizing
in a target set T without vanishing states, then qinit ∈ ⟨⟨1⟩⟩eventlimit (sumPre(T)) and XT ∈
⟨⟨1⟩⟩eventlimit (sumPre(T)) where XT is the uniform distribution over T .

Proof. Since qinit ∈ ⟨⟨1⟩⟩weaklylimit (sumT) and ⟨⟨1⟩⟩weaklylimit (sumT) ⊆ ⟨⟨1⟩⟩eventlimit (sumT), we have
qinit ∈ ⟨⟨1⟩⟩eventlimit (sumT) and thus it suffices to prove that XT ∈ ⟨⟨1⟩⟩eventlimit (sumPre(T)). This is
because then from qinit, probability arbitrarily close to 1 can be injected in Pre(T) through
a distribution with support in T (since by Corollary 4.3 only the support of the initial
probability distribution is important for limit-sure eventually synchronizing).

Let (αi)i∈N be a family of limit-sure winning strategies such that lim supn→∞ Mαi
n (T) ≥

1 − ϵi where limi→∞ ϵi = 0, and such that there is no vanishing state. For every i ≥ 0
let ki,0 < ki,1 < · · · be a strictly increasing sequence such that Mαi

ki,j
(T) ≥ 1 − 2ϵi for

all i, j ≥ 0, and let B = minq∈T lim infi→∞ lim infj→∞ Mαi

ki,j
(q). Note that B > 0 since

there is no vanishing state. It follows that there exists x > 0 such that for all i > x there
exists yi > 0 such that for all j > yi and all q ∈ T we have Mαi

ki,j
(q) ≥ B

2
.

99

Given ν > 0, let i > x such that ϵi < νB
4

, and for j > yi, consider the positions n1 = ki,j
and n2 = ki,j+1. We have n1 < n2 and Mαi

n1
(T) ≥ 1 − 2ϵi and Mαi

n2
(T) ≥ 1 − 2ϵi, and

Mαi
n1
(q) ≥ B

2
for all q ∈ T . Consider the strategy β that plays like αi plays from position

n1 and thus transforms the distribution Mαi
n1

into Mαi
n2

. For all states q ∈ T , from the
Dirac distribution on q under strategy β, the probability to reach Q \ T in n2 − n1 steps is
thus at most

Mαi
n2
(Q \ T)

Mαi
n1(q)

≤
2ϵi
B/2

< ν.

Therefore, from an arbitrary probability distribution with support T (over set T) we
have Mβ

n2−n1
(T) > 1− ν, showing that XT is limit-sure eventually synchronizing in T and

thus in Pre(T) since n2 − n1 > 0 (it is easy to show that if the mass of probability in T
is at least 1 − ν, then the mass of probability in Pre(T) one step before is at least 1 − ν

η

where η is the smallest positive probability in M).

!

To show that limit-sure and almost-sure winning coincide for weakly synchronizing
conditions, from a family of limit-sure winning strategies we construct an almost-sure
winning strategy that uses the eventually synchronizing strategies of Lemma 5.7. The
construction consists in using successively strategies that ensure probability mass 1− ϵi in
the target T , for a decreasing sequence ϵi → 0. Such strategies exist by Lemma 5.7, both
from the initial state and from the set T . However, the mass of probability that can be
guaranteed to be synchronized in T by the successive strategies is always smaller than 1,
and therefore we need to argue that the remaining masses of probability (of size ϵi) can also
get synchronized in T , and despite their possible shift with the main mass of probability.

Two main key arguments are needed to establish the correctness of the construction:
(1) eventually synchronizing implies that a finite number of steps is sufficient to obtain a
probability mass of 1−ϵi in T , and thus the construction of the strategy is well defined, and
(2) by the finiteness of the period r (such that R = Prer(R) where R = Prek(T) for some
k) we can ensure to eventually make up for the shifts, and every piece of the probability
mass can contribute (synchronously) to the target infinitely often.

Theorem 5.3. ⟨⟨1⟩⟩weaklylimit (sumT) = ⟨⟨1⟩⟩weaklyalmost(sumT) for all MDPs and target sets T .

Proof. Since ⟨⟨1⟩⟩weaklyalmost(sumT) ⊆ ⟨⟨1⟩⟩weaklylimit (sumT) holds by the definition, it is sufficient to
prove that ⟨⟨1⟩⟩weaklylimit (sumT) ⊆ ⟨⟨1⟩⟩weaklyalmost(sumT) and by Lemma 5.6 it is sufficient to prove
that if qinit ∈ ⟨⟨1⟩⟩weaklylimit (sumT) is limit-sure weakly synchronizing in T without vanishing
state, then qinit is almost-sure weakly synchronizing in T . If T has vanishing states, then
consider T ′ ⊆ T as in Lemma 5.6 and it will follows that qinit is almost-sure weakly syn-
chronizing in T ′ and thus also in T . We proceed with the proof that qinit ∈ ⟨⟨1⟩⟩weaklylimit (sumT)

implies qinit ∈ ⟨⟨1⟩⟩weaklyalmost(sumT).

100

For i = 1, 2, . . . consider the sequence of predecessors Prei(T), which is ultimately
periodic: let 1 ≤ k, r ≤ 2|Q| such that Prek(T) = Prek+r(T), and let R = Prek(T). Thus
R = Prek+r(T) = Prer(R).

Claim 1. We have qinit ∈ ⟨⟨1⟩⟩eventalmost(sumR) and XT ∈ ⟨⟨1⟩⟩eventalmost(sumR).

Proof of Claim 1. By Lemma 5.7, since there is no vanishing state in T we have qinit ∈
⟨⟨1⟩⟩eventlimit (sumPre(T)) and XT ∈ ⟨⟨1⟩⟩eventlimit (sumPre(T)), and it follows from the characterization
of Lemma 4.6 and Corollary 4.2 that:

either (1) qinit ∈ ⟨⟨1⟩⟩eventsure (sumPre(T)) or (2) qinit ∈ ⟨⟨1⟩⟩eventalmost(sumR), and
either (a) XT ∈ ⟨⟨1⟩⟩eventsure (sumPre(T)) or (b) XT ∈ ⟨⟨1⟩⟩eventalmost(sumR).

Note that (a) implies (b) (and thus (b) holds) since (a) implies T ⊆ Prei(T) for some
i ≥ 1 (by Lemma 4.2) and thus T ⊆ Pren·i(T) for all n ≥ 0 by monotonicity of Prei(·),
which entails for n · i ≥ k that T ⊆ Prem(R) where m = (n · i− k) mod r and thus XT is
sure (and almost-sure) winning for the eventually synchronizing condition in target R.

Note also that (1) implies (2) since by (1) we can play a sure-winning strategy from qinit
to ensure in finitely many steps probability 1 in Pre(T) and in the next step probability 1
in T , and by (b) play an almost-sure winning strategy for eventually synchronizing in R.
Hence qinit ∈ ⟨⟨1⟩⟩eventalmost(sumR) and thus (2b) holds, which concludes the proof of Claim 1.

We now show that there exists an almost-sure winning strategy for the weakly synchro-
nizing condition in target T .

Recall that Prer(R) = R and thus once some probability mass p is in R, it is possible
to ensure that the probability mass in R after r steps is at least p, and thus that (with
period r) the probability in R does not decrease. By the result of Lemma 4.7, almost-sure
winning for eventually synchronizing in R implies that there exists a strategy α such that
the probability in R tends to 1 at periodic positions: for some 0 ≤ h < r the strategy α is
almost-sure eventually synchronizing in R with shift h, that is ∀ϵ > 0 ·∃N ·∀n ≥ N : n ≡ h
mod r =⇒ Mα

n(R) ≥ 1 − ϵ. We also say that the initial distribution X0 = Mα
0 is

almost-sure eventually synchronizing in R with shift h.

Claim 2.
(⋆) If Mα

0 is almost-sure eventually synchronizing in R with some shift h, then Mα
i is

almost-sure eventually synchronizing in R with shift h− i mod r.
(⋆⋆) Let t such that XT is almost-sure eventually synchronizing in R with shift t. If a

distribution is almost-sure eventually synchronizing in R with some shift h, then it
is also almost-sure eventually synchronizing in R with shift h+ k + t mod r (where
we chose k such that R = Prek(T)).

101

Proof of Claim 2. The result (⋆) immediately follows from the definition of shift, and
we prove (⋆⋆) as follows. We show that almost-sure eventually synchronizing in R with
shift h implies almost-sure eventually synchronizing in R with shift h + k + t mod r.
Intuitively, the probability mass that is in R with shift h can be injected in T in k steps,
and then from T we can play an almost-sure eventually synchronizing strategy in target
R with shift t, thus a total shift of h + k + t mod r. Precisely, an almost-sure winning
strategy α is constructed as follows: given a finite prefix of play ρ, if there is no state q ∈ R
that occurs in ρ at a position n ≡ h mod r, then play in ρ according to the almost-sure
winning strategy αh for eventually synchronizing in R with shift h. Otherwise, if there is
no q ∈ T that occurs in ρ at a position n ≡ h+ k mod r, then we play according to a sure
winning strategy αsure for eventually synchronizing in T , and otherwise we play according
to an almost-sure winning strategy αt from T for eventually synchronizing in R with shift
t. To show that α is almost-sure eventually synchronizing in R with shift h + k + t, note
that αh ensures with probability 1 that R is reached at positions n ≡ h mod r, and thus
T is reached at positions h + k mod r by αsure, and from the states in T the strategy αt

ensures with probability 1 that R is reached at positions h+ k+ t mod r. This concludes
the proof of Claim 2.

Construction of an almost-sure winning strategy. We construct strategies αϵ for
ϵ > 0 that ensure, from a distribution that is almost-sure eventually synchronizing in R
(with some shift h), that after finitely many steps, a distribution d′ is reached such that
d′(T) ≥ 1 − ϵ and d′ is almost-sure eventually synchronizing in R (with some shift h′).
Since qinit is almost-sure eventually synchronizing in R (with some shift h), it follows that
the strategy αas that plays successively the strategies (each for finitely many steps) α 1

2

, α 1

4

,
α 1

8

, . . . is almost-sure winning from qinit for the weakly synchronizing condition in target T .
We define the strategies αϵ as follows. Given an initial distribution that is almost-sure

eventually synchronizing in R with a shift h and given ϵ > 0, let αϵ be the strategy that
plays according to the almost-sure winning strategy αh for eventually synchronizing in R
with shift h for a number of steps n ≡ h mod r until a distribution d is reached such
that d(R) ≥ 1 − ϵ, and then from d it plays according to a sure winning strategy αsure

for eventually synchronizing in T from the states in R (for k steps), and keeps playing
according to αh from the states in Q \ R (for k steps). The distribution d′ reached from
d after k steps is such that d′(T) ≥ 1 − ϵ and we claim that it is almost-sure eventually
synchronizing in R with shift t. This holds by definition from the states in Supp(d′) ∩ T ,
and by (⋆) the states in Supp(d′) \ T are almost-sure eventually synchronizing in R with
shift h− (h+ k) mod r, and by (⋆⋆) with shift h− (h+ k) + k + t = t.

It follows that the strategy αas is well-defined and ensures, for all ϵ > 0, that the prob-
ability mass in T is infinitely often at least 1− ϵ, thus is almost-sure weakly synchronizing
in T . This concludes the proof of Theorem 5.3.

!

From previous lemmas and Theorem 5.3, we obtain the following result.

102

Weakly

Sure PSPACE-complete

Almost-sure undecidable

Limit-sure undecidable

Table 5.2: Computational complexity of the emptiness problem of weakly synchronizing
languages in PAs.

Theorem 5.4. For limit-sure weak synchronization in MDPs and all functions f ∈
{maxT , sumT}:

1. (Complexity). The membership problem is PSPACE-complete.

2. (Memory). Infinite memory is necessary in general for both pure and randomized
strategies, and pure strategies are sufficient.

5.2 Weak synchronization in PAs

Again by Remarks 5 and 6 (on pages 50 and 50), we consider the emptiness problem
for weakly synchronizing languages in PAs only according to function sum and initialized
from Dirac distributions. The results presented in this section are summarized in Table 5.2.

5.2.1 Sure weak synchronization

We show that the emptiness problem for sure weakly synchronizing languages in PAs,
is PSPACE-complete. The PSPACE upper bound is an immediate result from the following
intuitive Lemma.

Lemma 5.8. Let P be a PA and T be a target set. For all initial state qinit, we have
Lweakly

sure (sumT) ̸= ∅ if and only if there are two words w, v ∈ Aω and a set S ⊆ T such that
– w is sure eventually synchronizing in S from q0,
– v is non-trivially sure eventually synchronizing in S from an arbitrary distribution

with support S.

Proof. First, if Lweakly
sure (sumT) ̸= ∅ from qinit, then let w be a sure weakly synchronizing

word. Then, there are infinitely many positions n such that Pw
n (T) = 1, and since the

state space is finite, there is a set S of states such that for infinitely many positions n
we have Supp(Pw

n) = S and Pw
n (T) = 1, and thus S ⊆ T . It thus follows that w is sure

eventually synchronizing in S from q0 too. Moreover by considering two positions n1 < n2

where Supp(Pw
n1
) = Supp(Pw

n2
) = S, it follows that there is a non-empty word v′ such

103

that all words v ∈ v′ · Aω are non-trivially sure eventually synchronizing in S from the
distribution Pw

n1
with support S.

The reverse direction is straightforward. Let wn = a0 · · · an−1 be the prefix of w, which
consists of the first n-th letters, where n is such that Pw

n (S) = 1 from q0. Let vm =
b0 · · · bm−1 be the non-empty prefix of v, which consists of the first m-th letters, where m is
such that Pv

m(S) = 1 from an arbitrary distribution with support S. By characterization
presented in Lemma 4.10, we know that only the support of an initial distribution matters
for sure eventually synchronizing languages in PAs, then wn ·(vm)

ω ∈ Lweak
sure (sumT) from q0.

!

The PSPACE upper bound follows from the characterization in Lemma 5.8 and the fact
that emptiness problem for sure eventually synchronizing languages in PAs, is PSPACE-
complete (See Theorem 4.6). The PSPACE-hardness is by a reduction from finite automata
intersection that is the same reduction to obtain hardness result for the emptiness problem
of sure eventually synchronizing languages in PAs (See Lemma 4.11).

Lemma 5.9. The emptiness problem for Lweakly
sure (sumT) in PAs, is PSPACE-hard even if T

is a singleton.

Proof. The proof is by the same reduction from finite automata intersection problem that
is presented in Lemma 4.11 where from n DFAs N1,N2, · · · ,Nn we constructed a PA P ,
an initial state qinit and a target state qT and showed that all n DFAs accept a common
word if, and only if, Levent

sure (qT) ̸= ∅ from qinit.
Now we show that, in the constructed PA P , we have Levent

sure (qT) = Lweakly
sure (qT) from qinit,

proving that the emptiness problem for sure weakly synchronizing languages is PSPACE-
hard.

First direction is straightforward since by definition, Lweakly
sure (qT) ⊆ Levent

sure (qT) from all
initial states.

Second, if w ∈ Levent
sure (qT), then there is i ∈ N such that Pw

i (qT) = 1. Let wi =
a0a1 · · · ai−1 be the prefix of w that consists of the first i-th letter. Since all transitions
in qT are self-loops, then all ω-words wi · (A

′)ω are sure weakly synchronizing from qinit (See
Lemma 5.8) As a result, w ∈ Lweakly

sure (qT) from qinit that completes the proof.

!

From the previous lemmas, we obtain the following Theorem.

Theorem 5.5. For all functions f ∈ {sumT ,maxT} the emptiness problem for sure
weakly synchronizing languages in PAs is PSPACE-complete.

104

5.2.2 Almost-sure weak synchronization

In this subsection, we provide undecidability result for the emptiness problem of almost-
sure weakly synchronizing languages in PAs.

Theorem 5.6. For all functions f ∈ {max T , sumT}, the emptiness problem of almost-
sure weakly synchronizing language in PAs is undecidable.

Proof. The proof is by the same reduction from value 1 problem in PAs that is presented
in Theorem 4.7 where from a PA A equipped with an initial state qinit and a set F of
accepting states, we constructed another PA P and a target state qT ; and we showed that
the PA A has value 1 if and only if Levent

almost(qT) ̸= ∅ from qinit in the PA P .
Now we prove that the PA A has value 1 if and only if Lweak

almost(qT) ̸= ∅ from qinit in
the PA P too. First, assume that A has value 1. In the proof of Theorem 4.7, we have
argued that the infinite word v = w 1

2

·# ·# · w 1

3

·# ·# · · ·w 1

n
·# ·# · · · · is almost-sure

eventually synchronizing in {qT} from qinit. The same argument showing that for all n ≥ 2,
the mass of probability 1 − 1

n
is accumulated in qT after reading the prefix of v (from

beginning) up to the subword w 1

n
· ♯, is valid here and implies that v is also almost-sure

weakly synchronizing in qT .
The reverse direction is straightforward since we know Lweak

almost(qT) ⊆ Levent
almost(qT) from

all initial states, and since we have proven that if Levent
almost(qT) ̸= ∅ from qinit, then A has

value 1.

!

5.2.3 Limit-sure weak synchronization

In this subsection, we provide undecidability result for the emptiness problem of limit-
sure weakly synchronizing languages in PAs.

Theorem 5.7. For all functions f ∈ {max T , sumT}, the emptiness problem of limit-
sure weakly synchronizing language in PAs is undecidable.

Proof. The proof is by the same reduction from value 1 problem in PAs that is presented
in Theorem 4.7 and Theorem 5.6 where from a PA A equipped with an initial state qinit
and a set F of accepting states, we constructed another PA P and a target state qT ; and
we showed that the PA A has value 1 if and only if Levent

almost(qT) ̸= ∅ from qinit if and only if
Lweak

almost(qT) ̸= ∅ from qinit in the PA P .
Now we prove that the PA A has value 1 if and only if Lweak

limit (qT) ̸= ∅ from qinit in
the PA P too. First, assume that A has value 1. In the proof of Theorem 5.6, we
have shown that there exists some almost-sure weakly synchronizing word v ∈ Lweak

almost(qT)
from qinit. By definition, since v is almost-sure weakly synchronizing, so is limit-sure weakly
synchronizing. Thus, Lweak

limit (qT) ̸= ∅ from qinit.

105

Second, assume that Lweak
limit (qT) ̸= ∅ from qinit. Therefore, for all ϵ > 0 there exists an

infinite word w such that lim supn→∞ Pw
n (qT) ≥ 1 − ϵ. For ϵ > 0, let the word w and the

number n be such that Pw
n (qT) ≥ 1− 2ϵ. Since qT is only reachable via #-transitions then

the n-th letter of w must be #.
We pick the subword v of w as we have done in the proof of Theorem 4.7:
– if there is no occurrence of # before the (n− 1)-th letter, let v be the subword from

the beginning up to (n− 1)-th letter.
– otherwise, if the last occurrence of # before the (n−1)-th letter happens as the m-th

letter, check whether post(qinit, wm) = {qinit}:

1. if yes, let v be the subword after m-th letter up to (n− 1)-th letter

2. otherwise, let v be the subword after (m+ 1)-th letter up to (n− 1)-th letter

where wm = a0 · a1 · · · am is the prefix of w consisting in the first m+ 1 letters.
By a similar argument (as one in the proof of Theorem 4.7), we have Pr(v) ≥ 1 − 2ϵ

implying that there is a family of words whose accepting probability in A is arbitrarily
close to 1. This means A has value 1 and the proof is complete.

!

5.3 Discussion

In this section, we briefly discuss the universality problems for sure and almost-sure
weakly synchronizing languages in PAs.

Universality problems of sure weakly synchronizing language. Consider a PA P
with the universal sure weakly synchronizing language according to max T . By definition,
for all words w the symbolic run Pw

0 P
w
1 P

w
2 · · · is infinitely often 1-synchronized in a sin-

gleton {q} where q ∈ T . We claim that there exist n,m ≤ 2|Q| such that for all words w,
and all i ∈ N we have ∥Pw

k ∥ = 1 where k = n + i · m. Toward contradiction, assume
that for all n,m ≤ 2|Q| there exists some word wn,m such that for some i ∈ N, we have
∥Pw

k ∥ < 1 where k = n + i · m. Then, the symbolic run of the automaton over the ran-
domized word v = 1

k2
w1,1 + · · · + 1

k2
wk,k where k = 2|Q| is never weakly 1-synchronized

implying that v is not sure weakly synchronizing according to max T , a contradiction with
the fact that P has a universal sure weakly synchronizing language according to max T .
A similar argument proves that the state q where the probability mass is accumulated at
steps of the sequence n, n +m,n + 2m, · · · is unique for all words too. In order to decide
the universality problem of sure weakly synchronizing language according to max T , one
can compute the sequence s0s1s2 · · · where s0 = {qinit} and si = post(si−1,A) for all i ∈ N.
The sequence s0s1s2 · · · is ultimately periodic meaning that there are n,m ≤ 2|Q| such
that sn = sn+m; thus it is sufficient to check if there is some si in the periodic part of the

106

sequence s0s1s2 · · · such that si = {q} is a singleton with q ∈ T , which can be decided in
PSPACE.

A similar argument for the function sumT shows that to decide the universality problem
of sure weakly synchronizing language, the sequence s0s1s2 · · · where s0 = {qinit} and
si = post(si−1,A) for all i ∈ N, can be computed and then one can check whether there
exists some si in the periodic part of the sequence s0s1s2 · · · such that si ⊆ T , which can
be done in PSPACE.

We do not provide a matching lower bound for the universality problem of sure weakly
synchronizing languages. However, there is a reduction from tautology problem proving
that deciding whether all pure words are sure weakly synchronizing according to the func-
tion sumT , is co-NP-hard.

Universality problems of almost-sure weakly synchronizing language. Recall
that for a PA P , an end component U ⊆ Q is terminal if post(U,A) ⊆ U ; and an infinite
randomized word is the uniformly randomized word over the alphabet A denoted by wu =
d0d1d2 · · · if di is the uniform distribution over A for all i ∈ N.

For the function max T , a PA P with a universal almost-sure weakly synchronizing
language, must only have a unique terminal end component. Otherwise, the uniformly
randomized word wu would reach all terminal end components with some positive prob-
ability, and thus P would not be almost-sure weakly synchronizing by wu. Example 5.3
provides an instance of a PA to show that even though having only one terminal end com-
ponent is necessary for universality of almost-sure weakly synchronizing language, it is not
sufficient.

Example 5.3. The PA P depicted in Figure 5.5 has four states qinit, q1, q2 and q3 and two
actions a, b. All transitions in qinit have two successors q1 and q2, each with probability 1

2
.

Two states q1 and q2 are somewhat symmetric: both have one transition directed to another,
and one transition directed to the absorbing state q3; however, the a-transition of one acts
like the b-transition of the other.

The PA P has only one terminal end component {q3}, but the almost-sure weakly syn-
chronizing language is not universal. As a counterexample word, consider w = a · (a · b)ω

where P is weakly 1
2
-synchronizing in two sets {q1, q2} and {q3} (according to max). It im-

plies that having one terminal end component is not sufficient to have a universal almost-
sure weakly synchronizing language.

▹

In order to have a universal almost-sure weakly synchronizing language, a PA must
ensure that for all randomized words, the probability mass tends to accumulate in a unique
terminal end component; we express this property for a terminal end component as being
absorbing. A terminal end component U is absorbing if limn→∞ Pw

n (U) = 1 for all infinite
randomized words w ∈ D(A)ω. Example 5.4 shows an instance of a PA where the unique
terminal end component is absorbing and the almost-sure weakly synchronizing language
is universal.

107

qinit

q1 q2

q3

a, b : 1
2

a, b : 1
2

a

b

b a
a, b

Figure 5.5: Non-absorbing end compo-
nent.

qinit

q1 q2q3

q4

a, b : 1
2

a, b : 1
2

a b

a, b : 1
2

a, b : 1
2

b a

a, b

Figure 5.6: Absorbing end component.

Example 5.4. The PA P shown in Figure 5.6 has five states qinit, q1, q2, q3 and q4 and
two actions a, b. All transitions in qinit and q3 have two successors q1 and q2, each with
probability 1

2
. Two states q1 and q2 are somewhat symmetric: both have one transition

directed to q3, and one transition directed to the absorbing state q4; however, the a-transition
of one acts like the b-transition of the other.

The PA P has only one terminal end component {q4}, which is absorbing:
limn→∞ Pw

n (q4) = 1 for all infinite randomized words w. The end component {q4} is
absorbing because for the other end components {q1, q2, q3}, even though there are strate-
gies to ensure that once the PA enters in the end component, it stays there (the requirement
to be an end component), there is no blind strategy (word) to ensure this property with
non-zero probability. We see that after the first input, P arrives either in q1 or q2 each with
probability 1

2
. Next, after every two consecutive inputs some positive probability leaks down

to the absorbing end component {q4} while the remaining probability is in the end com-
ponents {q1, q2, q3}. Repeating this forever, the probability mass is gradually accumulated
in {q4} implying that the almost-sure weakly synchronizing language of P is universal.

▹

Decision problem(s). The absorbing decision problem asks, given a PA and an end
component, whether the end component is absorbing for the PA.

Lemma 5.10 provides the PSPACE membership of the absorbing problem.

Lemma 5.10. The absorbing problem for PAs is decidable in PSPACE.

Proof. Given a terminal end component U of a PA P , we construct an NFA N equipped
with an initial state and a coBüchi acceptance condition such that U is absorbing if and

108

only if the language of N is empty. The automaton N is exponential in the size of P , and
since the emptiness problem of NFAs with coBüchi conditions is NLOGSPACE-complete,
the PSPACE membership of absorbing problem follows.

Intuitively, the NFA N guesses a word such that the symbolic-outcome of P over that
word, from some point on, keeps assigning a (strictly) positive probability p > 0 to sets of
states which are disjoint with U . The alphabet of N is 2A where A is the alphabet of P . An
infinite word over 2A is a sequence of sets of letters which can be viewed as the sequence of
supports of a randomized word. The states of N are pairs (s, b) consisting of a set s ⊆ Q
of states of P and a Boolean flag b ∈ {0, 1}. A pair (s, b) is 0-flagged if b = 0; and it is
1-flagged otherwise. The flag b is set to 1 when N guesses that from now on, P is always
outside of U with some positive probability p. The NFA N begins in the pair ({qinit}, 0)
where qinit is the initial state of P . On an input A′ ⊆ A, N not-deterministically moves
from a 0-flagged state (s, 0) into

– either another 0-flagged state (s′, 0) where s′ = post(s,A′) is the set of successors of
s and the input,

– or a 1-flagged state (c, 1) where c is a non-empty subset of post(s,A′) \ U ; note that
c is disjoint with U , i.e., c ∩ U = ∅.

After reaching the first 1-flagged pair (c, 1), N only checks whether the successors of c
(where the probability p was assigned) always has an empty intersection with U . The
coBüchi acceptance condition requires that N visits only 1-flagged pairs, infinitely often.

From the PA P = ⟨Q,A, δ⟩ with the initial state qinit and the end component U , we
construct N = ⟨L, 2A \ {∅},∆⟩ where L = 2Q × {0, 1} is the set of pairs and 2A \ {∅}
is the alphabet. The transition function ∆ : L × 2Σ → 2L is defined as follows. For all
subsets s ⊆ Q and A′ ⊆ A, let s′ = post(s,A′), and

– define ∆((s, 0),A′) = {(s′, 0)} ∪ {(c, 1) | c ̸= ∅ and c ⊆ s′ \ U},
– define ∆((s, 1),A′) = {(s′, 1)} if s′ ∩ U = ∅, and ∆((s, 1)) = ∅ otherwise.

We equip N with the initial pair ({qinit}, 0) and the coBüchi condition ♦!F where F =
2Q × {1}.

To establish the correctness of the reduction, we show that the coBüchi language of N
is empty if and only if the terminal end component U is absorbing. First, assume that the
terminal end component U is absorbing for the PA P . Toward contradiction, assume that
the coBüchi language of N is not empty. Therefore, there exists some infinite word v and
n ∈ N such that for the run ρ = r0r1 . . . of N over v and for all i > n, we have ri ∈ F . From
the accepting word v = A0A1 . . . for coBüchi condition ♦!F , we construct a randomized
word w and claim that the symbolic-run of P over w tends to accumulate some positive
probability outside U . Define w = d0d1 . . . such that di is the uniform distribution over Ai,
thus Supp(di) = Ai. Let Pw

0 P
w
1 · · · be the symbolic-run of P over w. Since F = 2Q × {1}

and by the construction of N , we know that for all i > n, the pair rn = (si, 1) is 1-flagged
and si+1 = post(si,Ai). By construction of w, we see that sn ⊆ Supp(Pw

n); therefore,
each si is a subset of the support Supp(Pw

i) of the symbolic-outcome at step i. Since
∅ ̸= sn ⊆ Supp(Pw

n), we have Pw
n (sn) = p > 0. Since si+1 = post(si,Ai) for all i > n, the

probability Pw
i (si) is always at least p. On the other hand, we have si ⊆ Q\U which gives

109

Pw
i (Q \ U) ≥ p > 0. Therefore limi→∞ Pw

i (U) < 1 − p < 1, a contradiction with the fact
that U is an absorbing end component.

Second, assume that the coBüchi language of N is empty. We prove that U is absorbing
by showing that limn→∞ Pw

n (U) = 1 for all randomized words w. We claim that for all ran-
domized words w = d0d1 · · · , for all n ∈ N and for all states q ∈ Supp(Pw

n) where Pw
0 P

w
1 · · ·

is the symbolic-run of P over w, there exists a w-path from q to U with length k ≤ 2|Q|;
a w-path from q ∈ Supp(Pw

n) to U is a path ℓ0ℓ1 · · · ℓk such that ℓ0 = q, ℓk ∈ U and for
all 0 ≤ i < k, there exists a ∈ Supp(dn+i) such that ℓi+1 ∈ post(ℓi, a). Towards contra-
diction, assume that there exists w and m ∈ N, and some state qm ∈ Supp(Pw

m) such that
all w-paths starting in qm and with length less than 2|Q| do not end in U . From the ran-
domized word w = d0d1 · · · , we construct an ultimately periodic run r of the automaton
N which is accepting. For the first m− 1 transitions, this run ρ visits the 0-flagged states
(si, 0) where si = Supp(Pw

i) for all i < m. At step m, the NFA N guesses that the positive
probability assigned to qm will never contribute to the accumulated probability in U , thus
the accepting run visits the 1-flagged state ({qm}, 1). Within the next transitions, this run
deterministically visits 1-flagged states (cm+1, 1)(cm+2, 1) . . . (cm+k, 1) where k = 2|Q| and
cm+i = post(cm+i−1, Supp(dm+i−1)) for all i ≤ k. Since from qm there is no w-path to U
with length less than k, all sets cm+i with i ≤ k are disjoint with U . Since the automaton N
has only k 1-flagged states, therefore based on pigeonhole principle, at least one state (c, 1)
has been visited twice. This means there is a cycle from (c, 1) to itself which includes only
accepting states. Next, the run ρ only visits the states of this cycle which implies that ρ is
an accepting run, a contradiction with the fact that the coBüchi language of N is empty.

Above, we have shown that for all randomized words w = d0d1 · · · , for all n ∈ N and
for all states q ∈ Supp(Pw

n) where Pw
0 P

w
1 · · · is the symbolic-run of P over w, there exists

a w-path from q to U with length k ≤ 2|Q|. Therefore, for all words w and i ∈ N, from all
states q ∈ Supp(Pw

i), the end component U is reached within k = 2|Q| steps:

Pr(♦≤kU) ≥ ηk from all states q ∈ Supp(Pw
i)

where η is the smallest probability of taking a transition in P . For all randomized words w,
thus,

Pw
k (Q \ U) ≤ 1 · (1− ηk),

because 1 is an upper bound of Pw
0 (Q\U) and (1−ηk) is an upper bound for the probability

mass which does not move to U within k steps. Similarly,

Pw
2·k(Q \ U) ≤ (1− ηk) · (1− ηk)

where (1 − ηk) is an upper bound of Pw
2·k(Q \ U) and (1 − ηk) is an upper bound for the

probability mass which does not move to U within k steps. After j repetitions, we have

Pw
j·k(Q \ U) ≤ (1− ηk)j.

Since 0 ≤ 1− ηk < 1, we have

lim
j→∞

Pw
j·k(Q \ U) = 0.

110

The above arguments immediately prove that limn→∞ Pw
n (U) = 1 for all words w, meaning

that U is an absorbing end component. The proof is complete.

!

Another necessary condition for a PA P to have a universal almost-sure weakly syn-
chronizing language is that P is almost-sure weakly synchronizing by the uniformly ran-
domized word. For instance, the automaton presented in Lemma 3.4 has the absorbing
end component {q2, q3}, but since the P is not almost-sure weakly synchronizing in {q3}
by the uniformly randomized word, the almost-sure weakly synchronizing language is not
universal.

Lemma 5.11. The universality problem of almost-sure weakly synchronizing languages
according to max T in PAs is in PSPACE.

Proof. Given a PA P = ⟨Q,A, δ⟩ with the initial state qinit and the function max T , the
almost-sure weakly synchronizing language is universal if and only if

(i) there is a (then necessarily unique) absorbing end component U , and

(ii) P is almost-sure weakly synchronizing by the uniformly randomized word wu.

One direction is straightforward. For the reverse direction, assume that both of the
conditions (i) and (ii) are fulfilled in the PA P . We show that the almost-sure weakly
synchronizing language (according to max T) of P is universal. Since P is almost-sure
weakly synchronizing according to max T by the uniformly randomized word wu, there exists
q̂ ∈ T ∩U such that for all ϵ > 0 and all m ∈ N, there exists n > m where Pwu

n (q̂) > 1− ϵ.
Let c0 = {q̂} and define the sequence of sets c1c2 · · · as follows; ci+1 = post(ci,A) for all
i ∈ N. Let n be the smallest number such that the absorbing end component U = ∪0≤i<nci
is covered with the first n subsets of the sequence c0c1 · · · . We claim that these sets
c0, c1, · · · , cn−1 are disjoint. There are two cases (1) cn = {q̂} or (2) cn ̸= {q̂}.

(1) Assume that cn = {q̂}. Suppose that there exists some state q and 0 ≤ i < j < n
such that q ∈ ci and q ∈ cj. Thus q̂ ∈ ci+n−j . Since n is the smallest number such that
U = ∪0≤i<nci, so c0 ⊂ ci+n−j . Since the set of all successors reached from ci+n−j in j − i
steps is cn = {q̂}, so is the set of successors from c0 ⊂ ci+n−j . Hence, cj−i = {q̂} which
contradicts with the fact that n is the smallest number.

(2) Assume that cn ̸= {q̂}. There are two cases: either q̂ ∈ cn or there exists some
0 < i < n such that q̂ ∈ ci. In both cases, there exists 0 < i ≤ n such that q̂ ∈ ci. Since
c0 ⊂ ci, then cj ⊆ ci+j for all j ∈ N. Hence, there exists some k ≥ i such that {q̂} ⊂ ck
and ck = ck+n. This argument also implies that there exists no k′ ≥ i where ck′ = {q̂}.
Thus, there exists another state q ̸= q̂ such that {q̂, q} ⊆ ck. Let ϵ < ηn

1+ηn
where η is the

smallest probability of taking a transition in P . Let n0 > 0 be such that Pwu
n0

(q̂) > 1−ϵ and
ck ⊆ Supp(Pwu

n0
). Thus, Pwu

n0+n(q) ≥ ηn(1− ϵ) and Pwu

n0+n(q̂) < 1− ηn(1− ϵ). We can repeat
the arguments for all j ∈ N and show that Pwu

n0+jn(q̂) < 1 − ηn(1 − ϵ) < 1 − ϵ which is a
contradiction with the fact that wu is almost-sure weakly synchronizing according to max T .

111

We have shown that the sets c0, c1, · · · , cn−1 are disjoints and cn = c0 = {q̂} where
q̂ ∈ T . Towards contradiction with the universality of the almost-sure weakly synchronizing
language of P , assume that there exists an infinite word w that is not almost-sure weakly
synchronizing according to max T . Let Pw

0 P
w
1 · · · be the symbolic-run of P over w; and

Pwu

0 Pwu

1 · · · be the symbolic-run over the uniformly randomized word wu. Since U is
absorbing and it consists of n disjoint sets c0, c1, · · · , cn−1 where c0 ⊆ T is a singleton,
there exists m ∈ N such that for all n > m there are two subsets c and c′ (from the sets
c0, c1, · · · , cn−1 covering U) where c ∪ c′ ⊆ Supp(Pw

n); otherwise w would be almost-sure
weakly synchronizing. By assumption, the uniformly randomized word wu is almost-sure
weakly synchronizing. All states reachable by w are also reachable by wu: Supp(Pw

n) ⊆
Supp(Pwu

n). Hence, for all n > m there are two subsets c and c′ (from the sets c0, c1, · · · , cn−1

covering U) such that c ∪ c′ ⊆ Supp(Pwu
n) too. Since the probabilities assigned to these

disjoint sets c and c′ always loop through the sequence c0c1 · · · cn, the probability mass could
never accumulate in the singleton c0 (or any of singletons c ⊆ T in the sequence c0c1 · · · cn),
a contradiction with condition (ii) stating that wu is almost-sure weakly synchronizing.

Condition (i) can be checked in PSPACE by Lemma 5.10, and condition (ii) can be
checked in PTIME by steady state analysis of the Markov chain induced by the PA under
the uniformly randomized word. The PSPACE bound follows.

!

We have proved that, given a PA P with the initial state qinit and the function max T , the
almost-sure weakly synchronizing language (according to max T) of P is universal if and only
if (i) there is an absorbing end component U , and (ii) P is almost-sure weakly synchronizing
by the uniformly randomized word wu. As we have shown in the proof of Lemma 5.11,
these two conditions enforce a special shape to the absorbing end component U ; the end
component U is partitioned into n disjoints sets c0, c1 · · · , cn where one of them is singleton,
and for the symbolic-run of the PA over the uniformly randomized word, all supports can
only contain one of these disjoint sets ci (0 ≤ i < n). One can observe that these disjoint
sets are indeed the periodic supports of recurrent states in the Markov chain induced by
the PA under the uniformly randomized word.

For the function sumT , a similar argument shows that the universality of almost-sure
weakly synchronizing language (according to sumT) of P is decidable in PSPACE. The re-
quirement of having an absorbing end component is not necessary for the function sumT ;
in fact, states in all end components U can contribute in accumulating the probability
mass in the target set T . Each end component U can be treated as an absorbing end
component by removing all outgoing transitions, and the periodic supports of recurrent
states c0, c1, · · · , cn can be computed in PSPACE. From those supports, a randomized
word w can be constructed such that it is a linear combinations from all pure words
where the PA stays in U with some positive probability, once it has entered in U (by
those pure words); and check whether P is almost-sure weakly synchronizing by w. After
repeating these arguments for all end components U , the PA must be almost-sure weakly
synchronizing by the uniformly randomized word wu too.

112

The above arguments provided the PSPACE membership of the the universality prob-
lem of almost-sure weakly synchronizing languages for both function sumT and maxT , a
matching lower bound can be proved by the same reduction presented in Lemma 4.12
for eventually synchronizing languages. In the presented reduction, the constructed PA is
almost-sure eventually synchronizing in the singleton {synch} if and only if it is almost-sure
weakly synchronizing.

From the above arguments and Lemma 5.11, it turns out that for all functions f ∈
{maxT , sumT}, the universality problem of almost-sure weakly synchronizing language in
PAs is PSPACE-complete.

113

114

6Strongly Synchronizing Condition

First sight. In this chapter, we show that the membership problem for strongly
synchronizing conditions in MDPs is PTIME-complete, for all winning modes, and both
with function max T and function sumT . We show that linear-size memory is necessary
in general for max T , and memoryless strategies are sufficient for sumT . It follows
from our results that the limit-sure and almost-sure winning modes coincide for strong
synchronization.

Moreover, we study the emptiness problem for strongly synchronizing languages in
PAs. We prove that for sure and almost-sure languages according to both functions
maxT and sumT , the emptiness problem is PSPACE-complete whereas the problems
for limit-sure languages are undecidable. The results presented in this chapter are
summarized in Table 6.1 and Table 6.2 on pages 116 and 124, respectively.

Contents

6.1 Strong synchronization in MDPs . 116

6.1.1 Strong synchronization with function max 116

6.1.2 Strong synchronization with function sum 122

6.2 Strong synchronization in PAs . 124

6.2.1 Sure strong synchronization with function max 124

6.2.2 Almost-sure strong synchronization with function max 126

6.2.3 Sure strong synchronization with function sum 130

6.2.4 Almost-sure strong synchronization with function sum 131

6.2.5 Limit-sure strong synchronization 134

6.3 Discussion . 138

115

Strongly

max sum

Complexity Required memory Complexity Required memory

Sure PTIME-complete linear PTIME-complete memoryless

Almost-sure
PTIME-complete linear PTIME-complete memoryless

Limit-sure

Table 6.1: Computational complexity of the membership problem of strongly synchroniza-
tion in MDPs, and memory requirement for the winning strategies (Two winning modes
almost-sure and limit-sure coincide).

6.1 Strong synchronization in MDPs

For strong synchronization the membership problem with function max T reduces to
the membership problem with function maxQ where Q is the entire state space, by a
construction similar to the proof of Remark 5: states in Q \ T are duplicated, in such a
way that a state q ∈ Q \ T contains some probability p if and only if the duplication of
that state q contain the exact probability p too. This construction ensures that only states
in T are used to accumulate the probability mass tending to 1.

The results presented in this section are summarized in Table 6.1.

6.1.1 Strong synchronization with function max

In this subsection, to prove the PTIME-completeness for the membership problem of
strong synchronization with function max T , we solve the problem with function maxQ that
establishes the upper bound. We provide the matching lower bound by proving PTIME-
hardness for the membership problem of strong synchronization with function max T where
T is a singleton.

The strongly synchronizing condition with function max requires that from some point
on, almost all the probability mass is at every step in a single state. The sequence of
states that contain almost all the probability corresponds to a sequence of deterministic
transitions in the MDP, and thus eventually to a cycle of deterministic transitions.

The graph of deterministic transitions of an MDP M = ⟨Q,A, δ⟩ is the directed graph
G = ⟨Q,E⟩ where E = {⟨q1, q2⟩ | ∃a ∈ A : δ(q1, a)(q2) = 1}. For ℓ ≥ 1, a deterministic
cycle in M of length ℓ is a finite path q̂ℓq̂ℓ−1 · · · q̂0 in G (that is, ⟨q̂i, q̂i−1⟩ ∈ E for all
1 ≤ i ≤ ℓ) such that q̂0 = q̂ℓ. The cycle is simple if q̂i ̸= q̂j for all 1 ≤ i < j ≤ ℓ.

We show that sure (resp., almost-sure and limit-sure) strong synchronization is equiva-
lent to sure (resp., almost-sure and limit-sure) reachability to a state in such a cycle, with
the requirement that it can be reached in a synchronized way, that is by finite paths whose
lengths are congruent modulo the length ℓ of the cycle. To check this, we keep track of a
modulo-ℓ counter along the play.

116

Define the MDP M × [ℓ] = ⟨Q′,A, δ′⟩ where Q′ = Q × {0, 1, · · · , ℓ − 1} and
δ′(⟨q, i⟩, a)(⟨q′, i − 1⟩) = δ(q, a)(q′) (where i − 1 is ℓ − 1 for i = 0) for all states q, q′ ∈ Q,
actions a ∈ A, and 0 ≤ i ≤ ℓ− 1.

Lemma 6.1. Given an MDP M, let η be the smallest positive probability in the transitions
of M and let 1

1+η
< p ≤ 1. There exists a strategy α such that lim infn→∞∥Mα

n∥ ≥ p from
an initial state qinit if and only if there exists a simple deterministic cycle q̂ℓq̂ℓ−1 · · · q̂0 in
M and a strategy β in M× [ℓ] such that Prβ(♦{⟨q̂0, 0⟩}) ≥ p from ⟨qinit, 0⟩.

Proof. First, assume that there exists a simple deterministic cycle q̂ℓq̂ℓ−1 · · · q̂0 with length ℓ
and a strategy β in M×[ℓ] that ensures the target set ♦{⟨q̂0, 0⟩} is reached with probability
at least p from the state ⟨qinit, 0⟩. Since randomization is not necessary for reachability
conditions, we can assume that β is a pure strategy. We show that there exists a strategy α
such that lim infn→∞∥Mα

n∥ ≥ p from qinit. From β, we construct a pure strategy α in M.
Given a finite path ρ = q0a0q1a1 . . . qn in M (with q0 = qinit), there is a corresponding path
ρ′ = ⟨q0, k0⟩a0⟨q1, k1⟩a1 . . . ⟨qn, kn⟩ in M × [ℓ] where ki = −i mod ℓ. Since the sequence
k0k1 . . . is uniquely determined from ρ, there is a clear bijection between the paths in M
and the paths in M× [ℓ] that we often omit to apply and mention. For ρ, we define α as
follows: if qn = q̂kn , then there exists an action a such that post(q̂kn , a) = {q̂kn+1

} = {q̂n+1}
and we define α(ρ) = a, otherwise let α(ρ) = β(ρ′). Thus α mimics β unless a state q is
reached at step n such that q = q̂k where k = −n mod ℓ, and then α switches to always
playing actions that keeps M in the simple deterministic cycle q̂ℓq̂ℓ−1 · · · q̂0. Below, we
prove that given ϵ > 0 there exists k such that for all n ≥ k, we have ∥Mα

n∥ ≥ p − ϵ. It
follows that lim infn→∞∥Mα

n∥ ≥ p from qinit. Since Prβ(♦{⟨q̂0, 0⟩}) ≥ p, there exists k such
that Prβ(♦≤k{⟨q̂0, 0⟩}) ≥ p−ϵ. We assume w.l.o.g. that k mod ℓ = 0. For i = 0, 1, . . . , ℓ−1,
let Ri = {⟨q̂i, i⟩}. Then trivially Prβ(♦≤k

+ℓ−1
i=0 Ri) ≥ p− ϵ and since α agrees with β on all

finite paths that do not (yet) visit
+ℓ−1

i=0 Ri, given a path ρ that visits
+ℓ−1

i=0 Ri (for the first
time), only actions that keep M in the simple cycle q̂ℓq̂ℓ−1 · · · q̂0 are played by α and thus
all continuations of ρ in the outcome of α will visit q̂0 after k steps (in total). It follows
that Prβ(♦k{⟨q̂0, 0⟩}) ≥ p − ϵ, that is Mα

k (q̂0) ≥ p − ϵ. Thus, ∥Mα
k∥ ≥ p − ϵ. Since next,

α will always play actions that keeps M looping through the cycle q̂ℓq̂ℓ−1 · · · q̂0, we have
∥Mα

n∥ ≥ p− ϵ for all n ≥ k.
Second, assume that there exists a strategy α such that lim infn→∞∥Mα

n∥ ≥ p from qinit.
Thus, for all ϵ > 0 there exists k ∈ N such that for all n ≥ k we have ∥Mα

n∥ ≥ p − ϵ.
Fix ϵ < p − 1

1+η
. Let k be such that for all n ≥ k, there exists a unique state p̂n such

that Mα
n(p̂n) ≥ p− ϵ. Below, we prove that for all n ≥ k, there exists some action a ∈ A

such that post(p̂n, a) = {p̂n+1}. Assume towards contradiction that there exists j > k
such that for all a there exists q ̸= p̂j+1 such that {q, p̂j+1} ⊆ post(p̂j, a). Therefore,
Mα

j+1(q) ≥ Mα
j (p̂j) · η ≥ (p− ϵ) · η. Hence,

Mα
j+1(p̂j+1) ≤ 1−Mα

j+1(q) ≤ 1− (p− ϵ) · η.

Thus, p−ϵ ≤ ∥Mα
j+1∥ ≤ 1−(p−ϵ)·η that gives ϵ ≥ p− 1

1+η
, a contradiction. This argument

proves that for all n ≥ k, there exists an action a ∈ A such that post(p̂n, a) = {p̂n+1}. The

117

finiteness of the state space Q entails that in the sequence p̂kp̂k+1 · · · , some state and thus
some simple deterministic cycle occur infinitely often. Let q̂ℓq̂ℓ−1 · · · q̂0 be a cycle that
occurs infinitely often in the sequence p̂kp̂k+1 · · · (in the right order). For all j, let ij be the
position of q̂0 in all occurrences of the cycle q̂ℓq̂ℓ−1 · · · q̂0 in the sequence p̂kp̂k+1 · · · ; and let
tj = ij mod ℓ. In the sequence t0t1 · · · , there exists 0 ≤ t < ℓ that appears infinitely often.
Let the cycle rℓrℓ−1 · · · r0 be such that r(i+t) mod ℓ = q̂i. Then, the cycle rℓrℓ−1 · · · r0 happens
infinitely often in the sequence p̂kp̂k+1 · · · such that the positions of r0 are infinitely often
0 (modulo ℓ). Therefore, the probability of M to be in r0 in positions (modulo ℓ) equals
to 0, is infinitely often equal or greater than p. Hence, for a strategy β in M × [ℓ] that
copies all the plays of the strategy α, we have Prβ(♦{⟨r0, 0⟩}) ≥ p from ⟨qinit, 0⟩.

!

It follows directly from Lemma 6.1 with p = 1 that almost-sure strong synchronization
is equivalent to almost-sure reachability to a deterministic cycle in M × [ℓ]. The same
equivalence holds for the sure and limit-sure winning modes.

Lemma 6.2. Given an MDP M, a state qinit is sure (resp., almost-sure or limit-sure)
winning for the strongly synchronizing condition (according to max Q) if and only if there
exists a simple deterministic cycle q̂ℓq̂ℓ−1 · · · q̂0 such that ⟨qinit, 0⟩ is sure (resp., almost-sure
or limit-sure) winning for the reachability condition ♦{⟨q̂0, 0⟩} in M× [ℓ].

Proof. The proof is organized in three sections:
(1) sure winning mode: First, assume that there exists a simple deterministic

cycle q̂ℓq̂ℓ−1 · · · q̂0 with length ℓ such that ⟨qinit, 0⟩ is sure winning for the reachabil-
ity condition ♦{⟨q̂0, 0⟩}. Thus, there exists a pure memoryless strategy β such that
Outcomes(⟨qinit, 0⟩, β) ⊆ ♦{⟨q̂0, 0⟩}. Since β is memoryless, there must be k ≤ |Q| × ℓ
such that Outcomes(⟨qinit, 0⟩, β) ⊆ ♦≤k{⟨q̂0, 0⟩} meaning that all infinite paths starting
in ⟨qinit, 0⟩ and following β reach ⟨q̂0, 0⟩ within k steps. From β, we construct a pure
finite-memory strategy α in M that is represented by T = ⟨Memory, i,αu,αn⟩ where
Memory = {0, · · · , ℓ − 1} is the set of modes. The idea is that α simulates what β
plays in the state ⟨q, i⟩, in the state q of M and mode i of T (there is only one ex-
ception). Thus, the initial mode is 0. The update function only decreases modes by 1
(αu(i, a, q) = (i − 1) mod ℓ for all states q and actions a) since by taking any transi-
tion the mode is decreased by 1. The next-move function αn(i, q) is defined as follows:
αn(i, q) = β(⟨q, i⟩) for all states q and modes 0 ≤ i < ℓ, except when q = q̂i, in this case let
αn(i, q) = a where post(q̂i, a) = {qi−1}. Thus β mimics α unless a state q is reached at step
n such that q = q̂−n mod ℓ, and then α switches to always playing actions that keeps M in
the simple deterministic cycle q̂ℓq̂ℓ−1 · · · q̂0. Now we prove that qinit is sure winning for the
strongly synchronizing condition according to maxQ. Let j ≥ k be such that j mod ℓ = 0.
Let R = {⟨q̂i, i⟩ | 0 ≤ i < ℓ}. Thus obviously Outcomes(⟨qinit, 0⟩, β) ⊆ ♦R. and since α
agrees with β on all finite paths that do not (yet) visit R, given a path ρ that visits R (for
the first time), only actions that keep M in the simple cycle q̂ℓq̂ℓ−1 · · · q̂0 are played by α
and thus all continuations of ρ in the outcome of α will visit q̂0 after j steps. It follows

118

that Prβ(♦j{⟨q̂0, 0⟩}) = 1, that is Mα
j (q0) = 1. Thus, ∥Mα

j ∥ = 1. Since next, α will always
play actions that keeps M looping through the cycle q̂ℓq̂ℓ−1 · · · q̂0, we have ∥Mα

n∥ = 1 for
all n ≥ j.

Second, assume that there exists a strategy α and k such that for all n ≥ k we have
∥Mα

n∥ = 1 from the initial state qinit. For all n ≥ k, let p̂n be a state such that Mα
n(p̂n) = 1.

The finiteness of the state space Q entails that in the sequence p̂kp̂k+1 · · · , some state and
thus some simple deterministic cycle occur infinitely often. Let q̂ℓq̂ℓ−1 · · · q̂0 be a cycle that
occurs infinitely often in the sequence p̂kp̂k+1 · · · (in the right order). For all j, let ij be the
position of q̂0 in all occurrences of the cycle q̂ℓq̂ℓ−1 · · · q̂0 in the sequence p̂kp̂k+1 · · · ; and let
tj = ij mod ℓ. In the sequence t0t1 · · · , there exists 0 ≤ t < ℓ that appears infinitely often.
Let the cycle rℓrℓ−1 · · · r0 be such that r(i+t) mod ℓ = q̂i. Then, the cycle rℓrℓ−1 · · · r0 happens
infinitely often in the sequence p̂kp̂k+1 · · · such that the positions of r0 are infinitely often
0 (modulo ℓ). Hence, for a strategy β in M× [ℓ] that copies all the plays of the strategy
α, we have Outcomes(⟨qinit, 0⟩, β) ⊆ ♦{⟨r0, 0⟩} from the initial state ⟨qinit, 0⟩.

(2) almost-sure winning mode: This case is an immediate result from Lemma 6.1,
by taking p = 1.

(3) limit-sure winning mode: First, assume that there exists a simple determinis-
tic cycle q̂ℓq̂ℓ−1 · · · q̂0 with length ℓ such that ⟨qinit, 0⟩ is limit-sure (and thus almost-sure)
winning for the reachability condition ♦{⟨q̂0, 0⟩}). Since ⟨q̂init, 0⟩ is almost-sure for reach-
ability condition, then qinit is almost-sure (and thus limit-sure) for strongly synchronizing
condition. Second, assume that qinit is limit-sure winning for the strongly synchronizing
condition (according to maxQ). It means that for all i there exists a strategy αi such that
lim infn→∞∥Mαi

n ∥ ≥ 1−2−i. Let k be such that 1−2−k ≥ 1
1+η

. By Lemma 6.1, for all i ≥ k
there exists a simple deterministic cycle ci = p̂ℓi p̂ℓi−1 · · · p̂0 with length ℓi and a strategy βi

in M× [ℓi] such that Prβi(♦{⟨q̂0, 0⟩}) ≥ 1− 2−i from ⟨qinit, 0⟩. Since the number of simple
deterministic cycle is finite, there exists some simple cycle c that occurs infinitely often in
the sequence ckck+1ck+2 · · · . We see that for the cycle c = q̂ℓq̂ℓ−1 · · · q̂0, the states ⟨q̂init, 0⟩
is limit-sure winning for the reachability condition ♦{⟨q̂0, 0⟩}).

!

Since the winning regions of almost-sure and limit-sure winning coincide for reachability
conditions in MDPs [dAHK07], the next corollary follows from Lemma 6.2.

Corollary 6.1. ⟨⟨1⟩⟩stronglylimit (maxT) = ⟨⟨1⟩⟩stronglyalmost (maxT) for all MDPs M and target sets T .

If there exists a cycle c satisfying the condition in Lemma 6.2, then all cycles reachable
from c in the graph G of deterministic transitions also satisfies the condition. Hence it is
sufficient to check the condition for an arbitrary simple cycle in each strongly connected
component (SCC) of G. It follows that strong synchronization can be decided in PTIME
(SCC decomposition can be computed in PTIME, as well as sure, limit-sure, and almost-
sure reachability in MDPs). The length of the cycle gives a linear bound on the memory
needed to win, and the bound is tight.

119

Lemma 6.3. For all sure, almost-sure and limit-sure winning modes, the membership
problem for strongly synchronizing condition according to max T in MDPs is in PTIME.

Proof. Given an MDP M = ⟨Q,A, δ⟩ and a state qinit, we say a simple deterministic
cycle c = q̂ℓq̂ℓ−1 · · · q̂0 is sure winning (resp., almost-sure and limit-sure) for strong syn-
chronization from qinit if ⟨qinit, 0⟩ is sure winning (resp., almost-sure and limit-sure) for the
reachability condition ♦{⟨q̂0, 0⟩} in M × [ℓ]. We show that if c is sure winning (resp.,
almost-sure and limit-sure) for strong synchronization from qinit, then so are all simple
cycles c′ = p̂ℓ′ p̂ℓ′−1 · · · p̂0 reachable from c in the deterministic digraph induced by M.

(1) sure winning: Since c is sure winning for strong synchronization from qinit, M
is 1-synchronized in q̂0. Since there is a path via deterministic transitions from q̂0 to p̂0,
M is 1-synchronized in p̂0 too. So the cycle c′ is sure winning for strong synchronization
from qinit, too.

(2) limit-sure winning: Assume that c is limit-sure winning for strong synchroniza-
tion from qinit. By definition, for all i ∈ N, there exists n such that for all j > n we have
M is 1 − 2−i−j in q̂0. It implies that for all i there exists n such that M is 1 − 2−2i-
synchronized in q̂0. Since there is a path via deterministic transitions from q̂0 to p̂0, then
M is 1 − 2−2i-synchronized in p̂0 for all i. So the cycle c′ is limit-sure winning for strong
synchronization from qinit, too.

(3) almost-sure winning: By corollary 6.1, since a cycle is almost-sure winning for
strong synchronization from qinit if and only if it is limit-sure winning, the results follows.

The above arguments prove that if a simple deterministic cycle c is sure winning (resp.,
almost-sure and limit-sure) for strongly synchronizing condition from qinit, then all simple
cycles reachable from c in the graph of deterministic transitions G induced by M, are sure
winning (resp., almost-sure and limit-sure). In particular, it holds for all simple cycles in
the bottoms SCCs reachable from c in G. Therefore, to decide membership problem for
strongly synchronizing condition, it suffices to only check whether one cycle in each bottom
SCC of G is sure winning (resp., almost-sure and limit-sure). Since the SCC decomposition
for a digraph is in PTIME, and since the number of bottom SCCs in a connected digraph is
at most the size of the digraph (the number of states |Q|), the PTIME upper bound follows.

!

Since memoryless strategies are sufficient for reachability conditions in MDPs, it follows
from the proof of Lemma 6.1 and Lemma 6.2 that the (memoryless) winning strategies
in M× [ℓ] can be transferred to winning strategies with memory {0, 1, · · · , ℓ − 1} in M.
Since ℓ ≤ |Q|, linear-size memory is sufficient to win strongly synchronizing conditions. We
present a family of MDPs Mn (n ∈ N) that are sure winning for strongly synchronization
(according to maxQ), and where the sure winning strategies require linear memory. The
MDP M2 is shown in Figure 6.1, and the MDP Mn is obtained by replacing the cycle q2q3
of deterministic transitions by a simple cycle of length n. Note that only in q1 there is a
real strategic choice. Since after the first action the two states q1 and q2 always contain
some probability, we need to wait in q1 (by playing b) until we play a when the probability

120

qinit

q1

q2 q3

target set T

a, b : 1
2

a, b : 1
2

b

a
a, b

a, b

Figure 6.1: An MDP that all strategies to win sure strongly synchronizing with function
max {q2,q3} require memory.

in q2 comes back in q2 through the cycle. We need to play n− 1 times b, and then a, thus
linear memory is sufficient and it is easy to show that it is necessary to ensure strongly
synchronization.

Lemma 6.4. For µ ∈ {sure, almost, limit}, the membership problem for ⟨⟨1⟩⟩stronglyµ (maxT)
in MDPs is PTIME-hard even for a singleton T .

Proof. For all µ ∈ {sure, almost, limit} the proof is by a reduction from monotone Boolean
circuit problem (MBC). Given an MBC with an underlying binary tree, the value of leaves
are either 0 or 1 (called 0 or 1-leaves), and the value of other vertices, labeled with ∧ or
∨, are computed inductively. It is known that deciding whether the value of the root is 1
for a given MBC, is PTIME-complete [GR88]. From an MBC, we construct an MDP M
where the states are the vertices of the tree with three new absorbing states synch, q1 and
q2, and two actions L,R. On both actions L and R, the next successor of the 1-leaves is
only synch, and the next successor of the 0-leaves is q1 or q2 with probability 1

2
. The next

successor of a ∧-state is each of their children with equal probability, on all actions. The
next successor of a ∨-state is its left (resp., right) child by action L (resp., action R). We
can see that M can be synchronized only in synch.

We call a subtree complete if (1) root is in the subtree, (2) at least one child of all
∨-vertices is in the subtree, (3) both children of all ∧-vertices are in the subtree. There is
a bijection between a complete subtree and a strategy in M. The value of root is 1 if and
only if there is a complete subtree such that it has no 0-leaves (all leaves are 1-leaves). For
such subtrees, all plays under the corresponding strategy reach some 1-leaf and thus are
synchronized in synch. It means that root ∈ ⟨⟨1⟩⟩stronglyµ (synch) if and only if the value of
root is 1. The proof is complete and the PTIME-hardness result is established.

!

From previous lemmas and arguments, Theorem 6.1 follows.

121

qinit q1 q2

a : 1
2

a : 1
2 a

a

Figure 6.2: An MDP such that qinit is sure-winning for coBüchi condition in T = {qinit, q2}
but not for sure strong synchronization according to sumT .

Theorem 6.1. For the three winning modes of strong synchronization according to
maxT in MDPs:

1. (Complexity). The membership problem is PTIME-complete.

2. (Memory). Linear memory is necessary and sufficient for both pure and randomized
strategies, and pure strategies are sufficient.

6.1.2 Strong synchronization with function sum

The strongly synchronizing condition with function sumT requires that eventually all
the probability mass remains in T . We show that this is equivalent to a traditional reach-
ability condition with target defined by the set of sure winning initial distributions for the
safety condition !T .

It follows that almost-sure (and limit-sure) winning for strong synchronization is equiv-
alent to almost-sure (or equivalently limit-sure) winning for the coBüchi condition ♦!T .
However, sure strong synchronization is not equivalent to sure winning for the coBüchi
condition. Example 6.1 provides an MDP and a target set T such that the MDP is sure
winning for coBüchi condition ♦!T , but not for sure strongly synchronizing with sumT .

Example 6.1. Consider the MDP M depicted in Figure 6.2 that has three states qinit, q1, q2
and one letter a. All a-transitions are deterministic except in qinit where the a-transition
has two successors qinit and q1 each with probability 1

2
. The MDP M is sure winning for the

coBüchi condition ♦!{qinit, q2} from qinit, but not sure winning for the reachability condition
♦S where S = {q2} is the winning region for the safety condition !{qinit, q2} and thus not
sure strongly synchronizing.

The MDP M in Example 6.1 is almost-sure strongly synchronizing in target T =
{qinit, q2} from qinit, and almost-sure winning for the coBüchi condition ♦!T , as well as
almost-sure winning for the reachability condition ♦S where S = {q2}.

Lemma 6.5. Given a target set T , an MDP M is sure (resp., almost-sure or limit-sure)
winning for the strongly synchronizing condition according to sumT if and only if M is
sure (resp., almost-sure or limit-sure) winning for the reachability condition ♦S where S
is the sure winning region for the safety condition !T .

122

Proof. First, assume that a state qinit of M is sure (resp., almost-sure or limit-sure) winning
for the strongly synchronizing condition according to sumT , and show that qinit is sure
(resp., almost-sure or limit-sure) winning for the reachability condition ♦S.

(i) Limit-sure winning. For all ϵ > 0, let ϵ′ = ϵ
|Q|

· η|Q| where η is the smallest positive
probability in the transitions of M. By the assumption, from qinit there exists a strategy α
and N ∈ N such that for all n ≥ N , we have Mα

n(T) ≥ 1− ϵ′. We claim that at step N , all
non-safe states have probability at most ϵ

|Q|
, that is Mα

N(q) ≤
ϵ
|Q|

for all q ∈ Q\S. Towards
contradiction, assume that Mα

N(q) >
ϵ
|Q|

for some non-safe state q ∈ Q \ S. Since q ̸∈ S is
not safe, there is a path of length ℓ ≤ |Q| from q to a state in Q \ T , thus with probability
at least η|Q|. It follows that after N + ℓ steps we have Mα

N+ℓ(Q \ T) > ϵ
|Q|

· η|Q| = ϵ′, in
contradiction with the fact Mα

n(T) ≥ 1 − ϵ′ for all n ≥ N . Now, since all non-safe states
have probability at most ϵ

|Q|
at step N , it follows that Mα

N(Q \ S) ≤ ϵ
|Q|

· |Q| = ϵ and thus
Prα(♦S) ≥ 1 − ϵ. Therefore M is limit-sure winning for the reachability condition ♦S
from qinit.

(ii) Almost-sure winning. Since almost-sure strongly synchronizing implies limit-sure
strongly synchronizing, it follows from (i) that M is limit-sure (and thus also almost-
sure) winning for the reachability condition ♦S, as limit-sure and almost-sure reachability
coincide for MDPs [dAHK07].

(iii) Sure winning. From qinit there exists a strategy α and N ∈ N such that for all
n ≥ N , we have Mα

n(T) = 1. Hence α is sure winning for the reachability condition
♦Supp(Mα

N), and from all states in Supp(Mα
N) the strategy α ensures that only states in

T are visited. It follows that Supp(Mα
N) ⊆ S is sure winning for the safety condition !T ,

and thus α is sure winning for the reachability condition ♦S from qinit.
For the converse direction of the lemma, assume that a state qinit is sure (resp., almost-

sure or limit-sure) winning for the reachability condition ♦S. We construct a winning
strategy for strong synchronization in T as follows: play according to a sure (resp., almost-
sure or limit-sure) winning strategy for the reachability condition ♦S, and whenever a
state of S is reached along the play, then switch to a winning strategy for the safety
condition !T . The constructed strategy is sure (resp., almost-sure or limit-sure) winning
for strong synchronization according to sumT because for sure winning, after finitely many
steps all paths from qinit end up in S ⊆ T and stay in S forever, and for almost-sure
(or equivalently limit-sure) winning, for all ϵ > 0, after sufficiently many steps, the set S
is reached with probability at least 1 − ϵ, showing that the outcome is strongly (1 − ϵ)-
synchronizing in S ⊆ T , thus the strategy is almost-sure (and also limit-sure) strongly
synchronizing.

!

Corollary 6.2. For an MDP M and all target sets T , we have ⟨⟨1⟩⟩stronglylimit (sumT) =

⟨⟨1⟩⟩stronglyalmost (sumT).

The following result follows from Lemma 6.5 and the fact that the winning region for
sure safety, sure reachability and almost-sure reachability can be computed in PTIME for
MDPs [dAHK07]. Moreover, memoryless strategies are sufficient for these conditions.

123

Strongly

max sum

Sure PSPACE-complete PSPACE-complete

Almost-sure PSPACE-complete PSPACE-complete

Limit-sure undecidable

Table 6.2: Computational complexity of the emptiness problem of strongly synchronizing
languages in PAs.

Theorem 6.2. For the three winning modes of strong synchronization according to
sumT in MDPs:

1. (Complexity). The membership problem is PTIME-complete.

2. (Memory). Pure memoryless strategies are sufficient.

6.2 Strong synchronization in PAs

The same reduction mentioned to reduce the membership problem of strong synchro-
nization with function max T to membership problem with function maxQ in MDPs (see
the beginning of Section 6.1), is valid for the emptiness problem of strongly synchronizing
languages according to max in PAs. In the sequel, we thus study the emptiness problem
of strongly synchronizing languages only according to maxQ. The results presented in this
section are summarized in Table 6.2.

6.2.1 Sure strong synchronization with function max

In this subsection, we prove that the emptiness problem of sure strongly synchronizing
languages with function maxQ is PSPACE-complete. The PSPACE upper bound of the
problem is obtained by the following intuitive characterization.

Lemma 6.6. For a PA P, we have Lstrongly
sure (maxQ) ̸= ∅ from an initial state qinit if and

only if there exists some state q such that
– Levent

sure (q) ̸= ∅ from qinit,
– and Lalways

sure (maxQ) ̸= ∅ from q.

Proof. First, we assume that the sure strongly synchronizing language Lstrongly
sure (maxQ) for

the PA P is not empty. By definition, there exists a word w and n0 ∈ N such that for
all n ≥ n0, the probability mass ∥Pw

n ∥ = 1 is 1 at every step n. For all steps n ≥ n0,
let q̂n be the state in which the probability mass is accumulated: Pw

n (q̂n) = 1. So we see

124

qinit

NFA N
a

a

⇒ qinit

PA P

sink

qT

A

A

a : 1
2

a : 1
2

#

#

#

Figure 6.3: The reduction sketch to show PSPACE-hardness of the emptiness problem for
sure strongly synchronizing languages in PAs.

that Levent
sure (qn0

) ̸= ∅ from qinit. On the other hand, let v = an0
an0+1 · · · be the subword

of w = a0a1 · · · obtained by cutting the first n0 letters. Starting in qn0
, we see that

for all i ∈ N there is always a unique state q̂n0+i such that Pv
i (q̂n0+i) = 1, and thus

Lalways
sure (maxQ) ̸= ∅ from qn0

.
Second, assume that there exists some state q such that Levent

sure (q) ̸= ∅ from qinit and
Lalways

sure (maxQ) ̸= ∅ from q. Let w be the word that is sure eventually synchronizing in {q}
from qinit, and n be such that Pw

n (q) = 1. Take the word v = a0a1 · · · an−1 that is the prefix
of w = a0a1 · · · consisting of the first n letters. Let v′ be the word that is sure always
synchronizing according to maxQ from q. By definition, for all i ∈ N there is always a
unique state q̂i ∈ Q such that Pv′

i (q̂i) = 1. Concatenating the infinite word v′ at the end
of v, we have Pv·v′

n+i(q̂i) = 1 for all i ≥ n meaning that Lstrongly
sure (maxQ) ̸= ∅ from the initial

state qinit.

!

As we show in Theorem 4.6, the emptiness problem for sure eventually synchronizing
languages in PAs is in PSPACE and as we show in Theorem 4.2, the emptiness problem for
sure always synchronizing languages with function max is in PTIME, it follows from the
characterization in Lemma 6.6 that the membership problem for sure strongly synchroniz-
ing language is in PSPACE, using the following (N)PSPACE algorithm: guess the state q,
and check that Levent

sure (q) ̸= ∅ from qinit and Lalways
sure (maxQ) ̸= ∅ from q. Lemma 6.7 presents

a matching lower bound by a reduction from the non-universality problem in NFAs. As
an alternative to the reduction from the non-universality problem in NFAs, we could use
the same reduction from the finite automata intersection problem established to prove
PSPACE-hardness of the emptiness problem of sure eventually synchronizing languages in
Lemma 4.11.

Lemma 6.7. The emptiness problem of Lstrongly
sure (maxT) in PAs is PSPACE-hard even if T

is a singleton.

125

Proof. We present a proof using a reduction from the universality problem for NFAs that
is known to be PSPACE-complete [IRS76]. Given a NFA N = ⟨Q,A,∆⟩ equipped with
an initial state qinit and a set F of accepting states, we construct a PA P and a singleton
target set T such that the language of N is universal if and only if Lstrongly

sure (maxT) = ∅
from qinit. The reduction is illustrated in Figure 6.3.

The non-deterministic transitions of N become probabilistic in P with a uniform dis-
tribution over successors. The target set is the absorbing state T = {qT}, a singleton.
Therefore, a sure strongly synchronizing word needs to inject all that probability into qT .
This can be done with the new letter # from the non-accepting states of the NFA. From
the accepting states, the #-transitions lead to a sink state sink from which there is no way
to synchronize into qT

The construction of the PA P = ⟨Q′,A′, δ⟩ is such that the state space Q′ = Q ∪
{qT , sink} has two new states which are only accessible with a new letter #, and A′ =
A∪ {#}. For all q ∈ Q and a ∈ A, the probabilistic transition function δ(q, a)(q ′) = 1

|∆(q,a)|

if q′ ∈ ∆(q, a), and δ(q, a)(q′) = 0 otherwise. For all a ∈ A ∪ {#}, the a-transition in
both states qT and sink are self-loops meaning that both these states are absorbing. The
#-transitions in all non-accepting states q ∈ Q \ F bring the PA deterministically into qT ,
while the #-transitions in all accepting states q ∈ F is redirected to sink.

To establish the correctness of the reduction, we first assume that the language of N is
not universal. Thus, there exists some finite word w such that all runs of N over w end in
a non-accepting state, and inputting w ·# to P the state qT is reached with probability 1.
Therefore, w · (#)ω is a sure strongly synchronizing word in {qT} for P from qinit.

Second, assume that there exists some infinite word v such that v ∈ Lstrongly
sure (qT)

from qinit in P . Let Pv
0P

v
1P

v
2 · · · be the symbolic run of P over v and let n0 be such

that Pv
n(qT) = 1 for all n > n0. The word v must contain #, as this is the only transition

to the target state qT . Let w ∈ A∗ be the prefix of v before the first occurrence of #. We
claim that w is not accepted by the NFA N . By contradiction, if there is an accepting run
ρ of N over w, then positive probability is injected in sink by the finite word w · # and
stays there forever, in contradiction with the fact that P v

n(qT) = 1 for all n > n0. Therefore
w is not accepted by the NFA N , and the language of the NFA is not universal.

!

From previous Lemmas and argument, Theorem 6.3 follows.

Theorem 6.3. The emptiness problem for sure strongly synchronizing languages with
function max T in PAs is PSPACE-complete.

6.2.2 Almost-sure strong synchronization with function max

We present a construction to reduce the emptiness problem for almost-sure strongly syn-
chronizing languages according to maxQ in PAs to the emptiness problem for ω-automata

126

with Büchi condition. The construction is exponential; however thanks to NLOGSPACE-
completeness of the emptiness problem for Büchi automata, PSPACE upper bound follows.
We also prove a matching lower bound.

Lemma 6.8. The emptiness problem of almost-sure strongly synchronization with func-
tion maxQ in PAs, is in PSPACE.

Proof. Given a PA P = ⟨Q,A, δ⟩ with an initial state qinit, we construct an automaton N
equipped with an initial state ℓ0 and a Büchi condition !♦F such that Lstrongly

almost (maxQ) = ∅
from qinit if and only if L!♦F(N) = ∅. The automaton N is exponential in the size of P ,
and thus the PSPACE bound follows from the NLOGSPACE-completeness of the emptiness
problem for Büchi automata.

The construction of N relies on the following intuition. The symbolic run of the PA P
under an almost-sure strongly synchronizing word w is the sequence Pw

0 P
w
1 P

w
2 · · · of proba-

bility distributions Pw
i (i ∈ N) in which the probability mass tends to accumulate in a single

state q̂i at step i. We prove that for all sufficiently large i, there exists a deterministic tran-
sition from q̂i to q̂i+1 meaning that there exists some a ∈ A such that post(q̂i, a) = {q̂i+1}
in the PA P . The Büchi automaton N will guess the witness sequence q̂iq̂i+1 . . . and check
that the probability mass is injected into this sequence. The automaton N keeps track
of the support si = Supp(Pw

i) of the symbolic run, and at some point guesses that the
witness sequence q̂iq̂i+1 . . . starts. Then, using an obligation set oi ⊆ si, it checks that
every state in si eventually injects some probability mass in the witness sequence. When
the obligation set gets empty, it is recharged with the current support si.

We construct the Büchi automaton N = ⟨L,A,∆⟩ as follows. The set L = 2Q ∪ (2Q ×
2Q × Q) is the set of states. A state s ⊆ Q is the support of the current probability
distribution. A state (s, o, q̂) ∈ 2Q × 2Q × Q consists of the support s, the obligation set
o ⊆ s, and a state q̂ ∈ s of the witness sequence. The alphabet A is in common with the
PA P . The transition function ∆ : L× Σ → 2L is defined as follows.

– For all s ∈ 2Q and a ∈ A, let s′ = post(s, a), and define

∆(s, a) = {s′} ∪ {(s′, s′, q̂) | q̂ ∈ s′}.

A transition in the state s which leads to a state (s′, s′, q̂), guesses q̂ as the initial
state of the witness sequence.

– For all (s, o, q̂) ∈ 2Q × 2Q × Q and a ∈ A, let s′ = post(s, a). If post(q̂, a) is not a
singleton, then ∆((s, o, q̂), a) = ∅, otherwise let {q̂′} = post(q̂, a), and:
– If o ̸= ∅, then

∆((s, o, q̂), a) = {(s′, o′ \ {q̂′}, q̂′) | ∀q ∈ o : o′ ∩ post(q, a) ̸= ∅}.

These transitions deterministically choose the next state q̂ ′ of the witness sequence,
and in addition, non-deterministically take care of paths from the obligation set o
to the witness sequence. For this sake, the constraint o′∩post(q, a) ̸= ∅ is required
for all q ∈ o.

127

– If o = ∅, then ∆((s, o, q̂), a) = {(s′, s′, q̂′)}. This transition is to recharge the
obligation set with the current support s′ when it gets empty.

The automaton N is equipped with the initial state ℓ0 = {qinit} and with the Büchi
condition !♦F where F = {(s, o, q̂) ∈ 2Q × 2Q × Q | o = ∅}. is the set of states with an
empty obligation set o.

To establish the correctness of the reduction, we first assume that L!♦F(N) ̸= ∅ and
show that Lstrongly

almost (maxQ) ̸= ∅ from qinit. Since the Büchi language of N is not empty,
there exists some infinite word w = a0a1a2 · · · inducing an ultimately periodic run ρ =
r0r1 . . . rn−1(rn . . . rm−1)

ω over N such that rn ∈ F . Let rm = rn and κ = m − n be the
size of the cycle from rn to itself. From the construction of Büchi automaton, we know
that all ri (where n ≤ i ≤ m) are states of the form (si, oi, q̂i) where si = Supp(Pw

i) is
the support of the symbolic run at step i (and also at steps i + (j · κ) for all j ∈ N). As
a result, Pw

i (q) > 0 for all states q ∈ si. Since q̂n ∈ sn, the state q̂n is reached at step n
with some positive probability p > 0. Since for all n ≤ i < m, the state q̂i+1 is the unique
successor of q̂i and ai, the sequence q̂nq̂n+1 . . . q̂m−1q̂m forms a deterministic cycle in P .
Hence, Pw

i+1(q̂i+1) ≥ Pw
i (q̂i) ≥ p, and we will prove that lim inf i→∞ Pw

i (q̂i) = 1.
Since rn ∈ F , this state is of the form (sn, ∅, q̂n) where the obligation set is empty.

Consequently rn+1 = (sn+1, sn+1, q̂n+1) where the obligation set on+1 = sn+1 is recharged.
Let o′i = oi ∪ {q̂i} for all n ≤ i ≤ m. By a backward induction, we show that there
are paths going through each state of oi and ending in q̂m. The base of induction holds
because o′m = {q̂m} and post(q, am−1) ∩ o′m ̸= ∅ for all q ∈ om−1. The induction holds for
all n ≤ i ≤ m too, thanks to the fact that post(q, ai−1)∩ o′i ̸= ∅ for all q ∈ oi−1. Therefore,
the state q̂m is reached from all states q ∈ sn+1 within m − n steps, with some positive
probability that is at least ηκ where κ = m− n and η is the smallest probability of taking
a transition in P 1. Recall that Pw

n (q̂n) = p and Pw
n (Q \ {q̂n}) ≤ 1− p. We thus have

Pw
m(Q \ {q̂m}) ≤ (1− p) · (1− ηκ).

Visiting the states in the periodic part of the run ρ for j times leads to

Pw
m+j·κ(Q \ {q̂m+j·κ}) ≤ (1− p)(1− ηκ)j.

The probability outside the witness sequence then tends to 0 when j → ∞, i.e.,
limj→∞ Pw

m+j·κ(Q \ {q̂m+j·κ}) = 0 implying that limi→∞∥Pw
i ∥ = 1.

Second, assume that w ∈ Lstrongly

almost (maxQ) from qinit. We assume that w = a0a1a2 . . . is
pure 2. Let Pw

0 P
w
1 . . . be the symbolic run of w over P . Since w is almost-sure strongly

synchronizing, then ∀ϵ > 0 there exists n0 ∈ N such that for all n ≥ n0 there exists some
state q̂ such that Pw

n (q̂) > 1 − ϵ. By assuming ϵ < 1
2
, the state q̂ is unique in each step

1. Formally, η = minq,q′∈Q,a∈A(δ(q, a)(q
′)).

2. To generalize the results to consider randomized words, the alphabet of the Büchi automaton N
could be defined 2A where A is the alphabet of P. An infinite word over 2A is a sequence of sets of letters
which can be viewed as the sequence of supports of a randomized word. For the sake of simplicity, we
prove the results for pure words.

128

n ≥ n0; we therefore denote this state by q̂n. Moreover, it is easy to see that the state q̂n
is independent of ϵ.

We prove that for all n ≥ n0, the state q̂n+1 is the unique successor of qn and an:
post(q̂n, an) = {q̂n+1}. Let ϵ < η

1+η
where η is the smallest probability in the transi-

tions of P . Towards contradiction, assume that there exists some n > n0 such that
post(q̂n, an) ̸= {q̂n+1}; in other words, there exists another state q ̸= q̂n+1 such that
{q, q̂n+1} ⊆ post(q̂n, an). By next transition, the probability in q then is

Pw
n+1(q) ≥ δ(q̂n, σn)(q) · P

w
n (q̂n) ≥ η · (1− ϵ).

The probability Pw
n+1(q̂n+1) in the witness state q̂n+1 is thus at most 1 − η · (1 − ϵ). The

computed upper bound for the probability in the witness state q̂n+1 and the lower bound
coming from the definition of almost-sure strongly synchronizing gives

1− ϵ ≤ ∥Pw
n+1∥ ≤ 1− η · (1− ϵ)

that results in ϵ ≥ η

1+η
, a contradiction. Therefore for all n ≥ n0, the state q̂n+1 is the

unique successor of q̂n and an.
For a given state q and word v ∈ A+, we define post(q, v) as the natural extension

of post(q, a) over words: post(q, v) = post(post(q, v′), a) where v = v′ · a and v′ ∈ A+.
To complete the proof, we construct an accepting run ρ of N over w. For the first n0

transitions, the run ρ visits si where si = Supp(Pw
i) and 0 ≤ i < n0. At step n0, the run ρ

visits (sn0
, sn0

, q̂n0
) where q̂n0

is the unique state in which the mass of probability ∥Pw
n0
∥

is accumulated at step n0. Below, we prove that for all n ≥ n0 and all states in q ∈ sn,
there exists some path p0p1 · · · pk with length k that is from q to the witness state q̂n+k

where p0 = q and pq = q̂n+k. Towards contradiction, assume that for some n ≥ n0, there
exists q ∈ sn from which there is no path to the witness sequence. Since q ∈ sn, this
state contains some strictly positive probability p at step n where p = Pw

n (q) > 0. Since
the probability mass accumulated in the witness sequence would be bounded by 1− p for
all next steps after n, a contradiction arises with the fact that w is almost-sure strongly
synchronizing. As a result of above argument, for all n ≥ n0 and all states in q ∈ sn, there
exists some path p0p1 · · · pk that is from q to the witness sequence; let k(q) = k denote the
length of this path and let p(q, i) = pi denote the i-th state visited along this path. Let
K = maxq∈sn k(q) be the length of the longest paths starting from some state q ∈ sn to the
witness sequence. The accepting run r after the state (sn0

, on0
, q̂n0

) visits the following K
states (sn0+1, on0+1, q̂n0+1) · · · (sn0+K , on0+K , q̂n0+K) consecutively, where for all 0 < i ≤ K,

– the set sn0+i = Supp(Pw
n0+i) is the support of the symbolic run at step i,

– the obligation set on0+i = O \ {q̂n0+i} with O =
+

q∈sn0
:k(q)≥i{p(q, i)}, and

– q̂n0+i is the witness state at step n0 + i.
By the choice of obligation sets, we see that on0+K = ∅ and rn0+K ∈ F . The automaton N ,
by next transition, deterministically, reset the obligation set with sn0+K+1. With a similar
construction, the run r visits the accepting states infinitely often and w is accepting.

!

129

Lemma 6.9. The emptiness problem of Lstrongly

almost (maxT) in PAs is PSPACE-hard even if T
is a singleton.

Proof. The proof is by the same reduction from the non-universality problem for NFAs
that is presented in Lemma 6.7 where from a NFA N = ⟨Q,A,∆⟩ equipped with an initial
state qinit and a set F of accepting states, we construct a PA P and a singleton target
state qT such that the language of N is universal if and only if Lstrongly

sure (qT) = ∅ from qinit.
We now argue that in the constructed PA P , the sure and almost-sure strongly synchro-

nizing languages with function max qT are equal: Lstrongly
sure (qT) = Lstrongly

almost (qT). By definition,
we know that all sure strongly synchronizing words are almost-sure strongly synchronizing
too. To complete the proof, we thus assume that w is an almost-sure strongly synchroniz-
ing word in {qT}, and prove that w ∈ Lstrongly

sure (qT) too. Let ϵ > 0. Since w is almost-sure
strongly synchronizing, there exists some n ∈ N such that Pw

n (qT) ≥ 1−ϵ. All #-transitions
in P are redirected to either sink or qT : post(Q′,#) = {sink, qT}. This and the fact that qT
is only reachable by #-transitions give that Supp(Pw

n) ⊆ {qT , sink}. Hence, the remaining
probability mass at step n is accumulated in either of those states qT , sink. On the other
hand since sink is a self-loop, if Pw

n (sink) > 0 then Pw
i (sink) > 0 for all next steps i > n. It

means that in the case sink contains some positive probability p at step n, the probability
in qT is bounded away from 1 for all next steps i > n: Pw

i (qT) < 1 − p, a contradiction
with the fact that w is almost-sure strongly synchronizing in qT . Hence, the probability
in qT at step n is 1, and we see that it remains 1 forever irrespective to the next inputs. It
proves that w is a sure strongly synchronizing word in qT too.

!

From the Lemma 6.8 and Lemma 6.9, we conclude Theorem 6.4.

Theorem 6.4. The emptiness problem for almost-sure strongly synchronizing lan-
guages with function max T in PAs is PSPACE-complete.

In subsection 6.2.5, we provide undecidability result for the emptiness problem of limit-
sure strong synchronization with both functions max and sum.

6.2.3 Sure strong synchronization with function sum

In the sequel, we prove that the emptiness problem of sure strongly synchronizing
languages with function sumT is PSPACE-complete. The PSPACE upper bound of the
problem is obtained by Lemma 6.10. Since the hardness result in Lemma 6.7 is proved for
singleton target set T , the result holds for both functions max T and sumT .

Lemma 6.10. Let P be a PA and T be a target set. We have Lstrongly
sure (sumT) ̸= ∅ from an

initial state qinit if and only if there exists some set S ⊆ T such that
– Levent

sure (sumS) ̸= ∅ from qinit,

130

– and Lalways
sure (sumT) ̸= ∅ from an arbitrary distribution over S.

Proof. First, we assume that the sure strongly synchronizing language Lstrongly
sure (sumT) for

the PA P is not empty. By definition, there exists a word w and n0 ∈ N such that for
all n ≥ n0, the probability mass Pw

n (T) is 1 at every step n. For all steps n ≥ n0, let
Sn ⊆ T be the set of states q ∈ T with strictly positive probability: Sn = Supp(Pw

n). Let
S = Sn0

. Then Pw
n0
(S) = 1 implying that Levent

sure (sumS) ̸= ∅ from qinit. On the other hand,
let v = an0

an0+1 · · · be the subword of w = a0a1 · · · obtained by cutting the first n0 letters.
Starting in the distribution d where d = Pw

n0
with support S, we see that for all i ∈ N there

is always a subset Sn0+i ⊆ T such that Pv
i (Sn0+i) = 1, and thus Lalways

sure (sumT) ̸= ∅ from d.
Second, assume that there exists some set S ⊆ T such that Levent

sure (sumS) ̸= ∅ from qinit
and Lalways

sure (sumT) ̸= ∅ from some distribution d over S. Let w be the word that is sure
eventually synchronizing in S from qinit, and n be such that Pw

n (S) = 1. Let d′ = Pw
n with

support S. By Remark 8, we know that d ∈ Lalways
sure (sumT) if and only if d′ ∈ Lalways

sure (sumT)
Take the word v = a0a1 · · · an−1 that is the prefix of w = a0a1 · · · consisting of the first n0

letters. Let v′ be the word that is sure always synchronizing in S from d′. By definition,
for all i ∈ N there is always a set Si ⊆ T such that Pv′

i (Si) = 1. Concatenating the infinite
word v′ at the end of v, we have Pv·v′

n+i(T) = 1 for all i ≥ n meaning that Lstrongly
sure (sumT) ̸= ∅

from the initial state qinit.

!

As we show in Theorem 4.6 and Theorem 4.2 that the emptiness problems for both
sure eventually synchronizing languages and sure always synchronizing languages with
function sum are in PSPACE, it follows from the characterization in Lemma 6.10 that the
membership problem for sure strongly synchronizing language is in PSPACE, using the
following (N)PSPACE algorithm: guess the subset S ⊆ T , and check that Levent

sure (sumS) ̸= ∅
from qinit and Lalways

sure (sumS) ̸= ∅ from the uniform distribution on S.
From previous Lemma and discussion, Theorem 6.5 follows.

Theorem 6.5. The emptiness problem for sure strongly synchronizing languages with
function sumT in PAs is PSPACE-complete.

6.2.4 Almost-sure strong synchronization with function sum

We present a reduction from the emptiness problem for almost-sure strongly synchro-
nizing languages with function sumT to the emptiness problem for Büchi automata. The
construction is similar to Proof of Lemma 6.8 and it is exponential in the size of the PA. The
(N)PSPACE membership thus follows from the NLOGSPACE-completeness of the emptiness
problem for Büchi automata.

Lemma 6.11. The emptiness problem of almost-sure strongly synchronization with func-
tion sumT in PAs, is in PSPACE.

131

Proof. Given a PA P = ⟨Q,A, δ⟩ with an initial state qinit, we construct an automaton N
equipped with an initial state ℓ0 and a Büchi condition !♦F such that Lstrongly

almost (sumT) = ∅
from qinit if and only if L!♦F(N) = ∅. The automaton N is exponential in the size of P ;
however thanks to the NLOGSPACE-completeness of the emptiness problem, the PSPACE
membership follows.

The construction of N relies on the following intuition (similarly to Proof of Lemma 6.8
where the Büchi automaton guesses the single state q̂ in which the mass of probability is
accumulated, here the automaton guesses the set c of target states which contribute in
accumulating the probability mass). The symbolic run of the PA P under an almost-sure
strongly synchronizing word w is the sequence Pw

0 P
w
1 P

w
2 · · · of probability distributions

Pw
i (i ∈ N) in which the probability mass tends to accumulate in some subset ci ⊆ T of the

target set T at step i. We prove that for all sufficiently large i, there exists some a-transition
from ci to ci+1 such that ci+1 = post(ci, a) in the PA P . The Büchi automaton N will
guess the witness sequence cici+1 . . . and check that the probability mass is injected into
this sequence. The automaton N keeps track of the support si = Supp(Pw

i) of the symbolic
run, and at some point guesses that the witness sequence cici+1 . . . starts. Then, using an
obligation set oi ⊆ si, it checks that every state in si eventually injects some probability
mass in the witness sequence. When the obligation set gets empty, it is recharged with the
current support si.

We construct the Büchi automaton N = ⟨L,A,∆⟩ as follows. The set L = 2Q ∪ (2Q ×
2Q × 2Q) is the set of states. A state s ⊆ Q is the support of the current probability
distribution. A state (s, o, c) ∈ 2Q × 2Q × 2Q consists of the support s, the obligation set
o ⊆ s, and the subset c ⊆ s ∩ T of the witness sequence. The alphabet A is in common
with the PA P . The transition function ∆ : L× Σ → 2L is defined as follows.

– For all s ∈ 2Q and a ∈ A, let s′ = post(s, a), and define

∆(s, a) = {s′} ∪ {(s′, s′, c) | c ⊆ T ∩ s′}.

A transition in the state s which leads to a state (s′, s′, c), guesses c as the initial
state of the witness sequence.

– For all (s, o, c) ∈ 2Q × 2Q × 2Q and a ∈ A, let s′ = post(s, a). If post(c, a) ̸⊆ T is not
included in T , then ∆((s, o, c), a) = ∅, otherwise let c′ = post(c, a), and:
– If o ̸= ∅, then

∆((s, o, c), a) = {(s′, o′ \ c′, c′) | ∀q ∈ o : o′ ∩ post(q, a) ̸= ∅}.

These transitions deterministically choose the next subset c′ of the witness se-
quence, and in addition, non-deterministically take care of paths from the obliga-
tion set o to the witness sequence. For this sake, the constraint o′ ∩ post(q, a) ̸= ∅
is required for all q ∈ o.

– If o = ∅, then ∆((s, o, c), a) = {(s′, s′, c′)}. This transition is to recharge the
obligation set with the current support s′ when it gets empty.

The automaton N is equipped with the initial state ℓ0 = {qinit} and with the Büchi
condition !♦F where F = {(s, o, c) ∈ 2Q × 2Q × 2Q | o = ∅} is the set of states with an
empty obligation set o.

132

To establish the correctness of the reduction, we first assume that L!♦F(N) ̸= ∅ and
show that Lstrongly

almost (sumT) ̸= ∅ from qinit. Since the Büchi language of N is not empty,
there exists some infinite word w = a0a1a2 · · · inducing an ultimately periodic run ρ =
r0r1 . . . rn−1(rn . . . rm−1)

ω over N such that rn ∈ F . Let rm = rn and κ = m − n be the
size of the cycle from rn to itself. From the construction of Büchi automaton, we know
that all ri (where n ≤ i ≤ m) are states of the form (si, oi, ci) where si = Supp(Pw

i) is
the support of the symbolic run at step i (and also at steps i + (j · κ) for all j ∈ N).
As a result, Pw

i (q) > 0 for all states q ∈ si. Since cn ⊆ sn, all the states q ∈ cn are
reached at step n with some positive probability p > 0. Since ci+1 = post(ci, ai) , we have
Pw

i+1(ci+1) ≥ Pw
i (ci) ≥ p, and we will prove that lim inf i→∞ Pw

i (ci) = 1.
Since rn ∈ F , this state is of the form (sn, ∅, cn) where the obligation set is empty.

Consequently rn+1 = (sn+1, sn+1, cn+1) where the obligation set on+1 = sn+1 is recharged.
Let o′i = oi ∪ ci for all n ≤ i ≤ m. By a backward induction, we show that there are paths
going through each state of oi and ending in some state q ∈ cm. The base of induction
holds because o′m = cm and post(q′, am−1) ∩ o′m ̸= ∅ for all q′ ∈ om−1. The induction holds
for all n ≤ i ≤ m too, thanks to the fact that post(q′, ai−1) ∩ o′i ̸= ∅ for all q′ ∈ oi−1.
Therefore, from all states q′ ∈ sn+1 some state q ∈ cm is reached within m − n steps,
with some positive probability that is at least ηκ where κ = m − n and η is the smallest
probability of taking a transition in P . Recall that Pw

n (cn) = p and Pw
n (Q \ cn) ≤ 1 − p.

We thus have
Pw

m(Q \ cm) ≤ (1− p) · (1− ηκ).

Visiting the states in the periodic part of the run ρ for j times leads to

Pw
m+j·κ(Q \ cm+j·κ) ≤ (1− p)(1− ηκ)j.

The probability outside the witness sequence then tends to 0 when j → ∞. That means
limj→∞ Pw

m+j·κ(Q \ cm+j·κ) = 0 implying that limi→∞ Pw
i (T) = 1.

Second, assume that the almost-sure strongly synchronizing language with func-
tion sumT of P is not empty. Let S be the set of initial states q such that Lalways

sure (sumT) ̸= ∅.
We know that the set S is equivalently the set of all initial states from which the ω-language
for the safety condition !T in P is non-empty. Let w ∈ Lstrongly

almost (sumT) from qinit. We as-
sume that w = a0a1a2 . . . is pure 3. Let Pw

0 P
w
1 . . . be the symbolic run of w over P .

Consider ϵ > 1
2

and let ϵ′ = ϵ
|Q|

· η|Q| where η is the smallest positive probability in the
transitions of P . By definition, there exists N ∈ N such that for all n ≥ N , we have
Pw

n (T) ≥ 1 − ϵ′. We claim that at step N , all non-safe states q ∈ Q \ S have probability
at most ϵ

|Q|
, that is Pw

N(q) ≤ ϵ
|Q|

for all q ∈ Q \ S. Towards contradiction, assume that
Pw

N(q) >
ϵ
|Q|

for some non-safe state q ∈ Q \ S. Since q ̸∈ S is not safe, there is a path of
length ℓ ≤ |Q| from q to a state in Q \ T , thus with probability at least η |Q|. It follows
that after N + ℓ steps we have Pw

N+ℓ(Q \ T) > ϵ
|Q|

· η|Q| = ϵ′, in contradiction with the fact

3. To generalize the results to consider randomized words, the alphabet of the Büchi automaton N
could be defined 2A where A is the alphabet of P. An infinite word over 2A is a sequence of sets of letters
which can be viewed as the sequence of supports of a randomized word. For the sake of simplicity, we
prove the results for pure words.

133

Pw
n (T) ≥ 1− ϵ′ for all n ≥ N . Now, since all non-safe states have probability at most ϵ

|Q|
at

step N , it follows that Pw
N(Q \ S) ≤ ϵ

|Q|
· |Q| = ϵ. Thus Pw

N(S) ≥ 1− ϵ, and Pw
n (S) ≥ 1− ϵ

for all n ≥ N .
For a given state q and word v ∈ A+, we define post(q, v) as the natural extension

of post(q, a) over words: post(q, v) = post(post(q, v′), a) where v = v′ · a and v′ ∈ A+.
To complete the proof, we construct an accepting run ρ of N over w. For the first N
transitions, the run ρ visits si where si = Supp(Pw

i) and 0 ≤ i < N . At step N , the
run ρ visits (sN , sN , S). Let cNcN+1cN+2 · · · be the witness sequence where cN = S and
cN+i = post(S, v) where v = aN · · · aN+i−1 is the subword of w = a0 · a1 · · · from the N -th
letter up to (N + i)-th letter. Below, we prove that for all n ≥ N and all states in q ∈ sn,
there exists some path p0p1 · · · pk with length k that is from q to the witness state cn+k

where ℓ0 = q and ℓq ∈ cn+k. Towards contradiction, assume that for some n ≥ n0, there
exists q ∈ sn from which there is no path to the witness sequence. Since q ∈ sn, this
state contains some strictly positive probability p at step n where p = Pw

n (q) > 0. Since
the probability mass accumulated in the witness sequence would be bounded by 1− p for
all next steps after n, a contradiction arises with the fact that w is almost-sure strongly
synchronizing. As a result of above argument, for all n ≥ n0 and all states in q ∈ sn, there
exists some path p0p1 · · · pk that is from q to the witness sequence; let k(q) = k denote the
length of this path and let p(q, i) = pi denote the i-th state visited along this path. Let
K = maxq∈sn k(q) be the length of the longest paths starting from some state q ∈ sn to the
witness sequence. The accepting run r after the state (sN , oN , cN) visits the following K
states (sN+1, oN+1, cN+1) · · · (sN+K , oN+K , cN+K) consecutively, where for all 0 < i ≤ K,

– the set sN+i = Supp(Pw
N+i) is the support of the symbolic run at step i,

– the obligation set on0+i = O \ {q̂N+i} with O =
+

q∈sN :k(q)≥i{p(q, i)}, and
– cN+i is the witness state at step N + i.

By the choice of obligation sets, we see that oN+K = ∅ and rN+K ∈ F . The automaton N ,
by next transition, deterministically, reset the obligation set with sN+K+1. With a similar
construction, the run r visits the accepting states infinitely often and w is accepting.

!

Lemma 6.11 gives the (N)PSPACE upper bound of the emptiness problem for almost-
sure strongly synchronizing languages with function sumT , the matching lower bound is
an immediate result of Lemma 6.9. Thus, Theorem 6.6 follows.

Theorem 6.6. The emptiness problem for almost-sure strongly synchronizing lan-
guages with function sumT in PAs is PSPACE-complete.

6.2.5 Limit-sure strong synchronization

We prove that the emptiness problems for limit-sure strongly synchronizing languages
according to both functions max T and sumT are undecidable, by a similar construction
used in [GO10] to establish the undecidability result for the value 1 problem in PAs.

134

qinit

q1

q2

q3q4

q5

q6

a, b : 1
2

a, b : 1
2 a, ba, b

aa

bb

a : 1− xa : x

a : xa : 1− x
b b

Figure 6.4: An automaton presented in [GO10], that has value 1 if and only if x > 1
2
.

Recall that, given a PA N and a threshold 0 < λ < 1, the strict emptiness problem
is undecidable: this problem asks whether the language Lλ(N) = {w ∈ A∗ | Pr(w) > λ}
is empty. To prove undecidability of value 1 problem, a PA P is presented where the
probability of some transitions are parametrized with x; and it is proved that P has value 1
if and only if x > 1

2
; see Example 6.2. The undecidability of value 1 problem follows from

combining P and another PA N such that x > 1
2

if and only if Lλ(N) = ∅ with λ = 1
2
. We

refer the reader to [GO10] for details.

Example 6.2. Let P = ⟨Q,A, δ⟩ be the PA depicted in Figure 6.4 where A = {a, b}
and Q = {qinit, q1, · · · , q6}. On all letters, the successors of qinit are q1 and q4 each with
probability 1

2
. Two states q1 and q4 are in some sense symmetric. The a-transitions have

two successors one with probability x and another with probability 1 − x: in q1, the next
successor is q1 with probability x and is q2 with probability 1 − x whereas in q4, the next
successor is itself with probability 1− x and is q5 with probability x. The b-transitions are
redirected to q3 and q6, respectively. Two states q2 and q5 are also somehow symmetric:
the a-transitions are self-loops while the b-transitions are deterministically redirected to q1
and q4, accordingly. Two states q3 and q6 are symmetrically absorbing states.

Starting in q1 the probability of the word an ·b to be accepted in {q3} is xn, and similarly
starting in q4 the probability of the word an · b to be accepted in {q6} is (1 − x)n. By
construction of the automaton, all accepting words are in the shape w = (a + b) · (a + b) ·
(a∗ · b)∗ · a∗. For a sequence n0n1n2 · · · and for all i ∈ N, let wi = an0 · b · an1 · b · · · ani be a
finite word. Starting in q1 the probability of the word wi to be accepted in {q3} is

(1−
(

0≤j<i

(1− xnj)).

Starting in q4 the probability of the word wi to be accepted in {q6} is

(1−
(

0≤j≤i

(1− (1− x)nj) <
)

0≤j≤i

(1− xnj).

135

Let F = {q3, q5} be the accepting states and qinit be the initial state. We see that after
the first input letter, two states q1 and q4 both contains probability 1

2
. Starting from qinit,

the probability of the words vi ∈ (a+ b) · wi to be accepted in F thus is

Pr(vi) =
1

2
(1−

(

0≤j<i

(1− xnj)) +
1

2
(
(

0≤j≤i

(1− (1− x)nj)).

There are two cases:

(i.) Let x ≤ 1
2
. By the above computation, considering the accepting set {q3}, after in-

putting a word the probability in q3 is less than the probability in q6. As a result, the
probability of accepting all words is less than 1

2
.

(ii.) Let x > 1
2
. It is proved that for all ϵ > 0 there exists some increasing sequence n0 <

n1 < n2 < · · · such that

(

0≤j<i

(1− xnj) → 0 and
)

0≤j≤i

(1− xnj) < ϵ

when i → ∞. It means that there is a careful way of choosing the sequence n1n2n3 · · ·
where after reading each subword a∗ · b of vi (for sufficiently large i) q3 contains larger
probability than what is lost in q6. Hence, the probability of the words vi to be accepted
in F is at least 1− ϵ.

It proves that P has value 1 if and only if x > 1
2
.

This example is presented in [GO10] to establish the undecidability result of the value 1
problem.

▹

We briefly recall the reduction from the strict emptiness problem to the value 1 prob-
lem [GO10].

Remark 9. The value 1 problem in PAs is undecidable.

Proof (sketch). Let P = ⟨Q,A, δ⟩ be the PA described in Example 6.2 and let N be a
PA whose alphabet A′ has no intersection with A. The automaton N is equipped with an
initial state and the set F of accepting states.

Let N1 = ⟨Q1,A
′, δ1⟩ and N4 = ⟨Q4,A

′, δ4⟩ be two copies of N . From N1, N4 and P we
construct another PA B = ⟨QB,AB, δB⟩ such that L

1

2 (N) = ∅ if and only if B has value 1.
The sketch of constriction is as follows.

– Let the alphabet of B be AB = A′ ∪ {b, ⋆}.
– Copy all states of P into B. Add all b-transitions in P to B.
– Copy all states of N1 and N4 into B such that the initial state of N1 is the (copy of)

state q1 of P and the initial state of N4 is the (copy of) state q4 of P . For all a ∈ A′,
add all a-transitions in N1 and N4 to B.

– For all a ∈ A′, add a self-loop a-transition in all states q ∈ {qinit, q2, q3, q5, q6} to B.

136

– From all copies of states q ∈ Q1 ∪ Q4 of N1 and N4 except initial states q1 and q4,
add a b-transition directed to the absorbing state q6.

– For all copies of states q ∈ Q1 of N1, the ⋆-transition goes to the (initial) state q1 if
q is an accepting state for N1, and goes to the state q2 otherwise.

– For all copies of states q ∈ Q4 of N4, the ⋆-transition goes to the state q5 if q is an
accepting state for N4, and goes to the (initial) state q4 otherwise.

To establish the correctness of reduction. Assume that there exists some word w for N
such that Pr(w) > 1

2
. To prove that B has value 1, let ϵ > 0 and let v = b·an0 ·b·an2 · · · ani ·b

be a word that is accepted by P with probability 1− ϵ, see Example 6.2. By construction
of B, one can verify that the word b · (w · ⋆)n0 · b · (w · ⋆)n2 · · · (w · ⋆)ni · b is accepted by B
with probability 1− ϵ. Thus, B has value 1.

Second, assume that B has value 1. Towards contradiction, assume that for all words w
the probability to be accepted by N is equal or less than one half: Pr(w) ≤ 1

2
. Let

w′ ∈ A′ ∪ {b, ⋆} be an arbitrarily finite accepting word for B. By construction of B, the
word w′ can be written as u0 ·v0 ·⋆ ·u1 ·v1 ·⋆ · · · where ui ∈ b∗ and vi ∈ A′∗. By construction
of B, the automaton B accepts w with the probability less than the acceptance probability
of w = u0 · a · u1 · a · · · by P where x ≤ 1

2
, that is less than 1

2
. It gives a contradiction with

the fact that B has value 1.

!

Theorem 6.7 provides the undecidability result of the emptiness problems for limit-sure
strongly synchronizing languages with both functions max T and sumT .

Theorem 6.7. For all functions f ∈ {max T , sumT}, the emptiness problem of limit-
sure strongly synchronizing language in PAs is undecidable.

Proof. The proof is by a similar construction used in [GO10] to establish the undecidability
result for the value 1 problem in PAs. Consider the PA P described in Example 6.2. From
the PA P = ⟨Q,A, δ⟩, we construct another PA P ′ and a target set qT such that P has
value 1 if and only if P ′ is limit-sure strongly synchronizing in {qT}.

The construction of P ′ = ⟨Q′,A′, δ′⟩ is as follows. The PA P ′ is a copy of P where two
new absorbing states qT and sink are added that are only accessible by a new letter #.
Formally, Q′ = Q ∪ {qT , sink} and A′ = A ∪ {#}. All transitions in P are copied to P ′,
so δ′(q, a) = δ(q, a) for all q ∈ Q and a ∈ A. The following transitions are added: all
#-transitions in accepting states q3 and q5 are directed to qT ; all #-transitions in non-
accepting states q ∈ Q \ {q3, q5} are directed to sink. Both new states qT and sink are
absorbing.

Below, we prove that P has value 1 if and only if P ′ is limit-sure strongly synchronizing
in {qT}. First, assume that P has value 1. By definition, for all ϵ > 0 there exists a
word w such that Pr(w) ≥ 1− ϵ. Taking the #-transition after such words w, we see that

137

v ∈ w · (#)ω is (1 − ϵ)-synchronized in qT . Thus, P ′ is limit-sure strongly synchronizing
in {qT}.

Now, assume that Lstrongly
sure (qT) ̸= ∅. Let ϵ > 0, and let w be such that w is (1 − ϵ)-

synchronized in qT . Since the only in-going transitions to qT are #-transitions, then w
must have some #. Let v be the prefix of w from the beginning up to the first occurrence
of #, so that v does not contain any # and is a valid word for P .

Since post(Q′,#) = {qT , sink}, after reading the prefix v · # of w the only states
assigned with some possibly positive probability are sink and qT . Since both of these states
are absorbing, then the assigned probabilities would never changed, no matter what is the
next input letters. Thus, if w is (1− ϵ)-synchronized in qT , then v is (1− ϵ)-synchronized
in {q3, q5} implying that Pr(v) ≥ 1− ϵ.

The above argument proves that P has value 1 if and only if P ′ is limit-sure strongly
synchronizing in {qT}. The same reduction, presented in Remark 9, from the strict empti-
ness problem to the value 1 problem is used to complete the proof.

!

6.3 Discussion

In this section, we briefly discuss the universality problems for sure and almost-sure
strongly synchronizing languages in PAs.

Universality problems of sure strongly synchronizing language. Consider a PA P
with the universal sure strongly synchronizing language according to max T . By definition,
for all words w the symbolic run Pw

0 P
w
1 P

w
2 · · · is ultimately always 1-synchronized in a

singleton {q} where q ∈ T , i.e., there exists some n0 ≤ 2|Q| (where Q is the state space
of P) such that for all n > n0 there exists some state q ∈ T where Pw

n (q) = 1. We claim
that for all n ≥ 2|Q| there exists a unique state q̂n such that for all words w we have
Pw

n (q̂n) = 1. Toward contradiction, assume that there exists n, two states q and q ′ and
two words w and w′ such that Pw

n (q) = 1 and Pw
n (q

′) = 1. Thus, the symbolic run of the
automaton over the randomized word v = 1

2
w + 1

2
w′ is not 1-synchronized in any state;

i.e., ∥Pv
n∥T ̸= 1 implying that v is not sure strongly synchronizing according to max T , a

contradiction with the fact that P has a universal sure strongly synchronizing language
according to max T . By above arguments, we see that to decide the universality problem of
sure strongly synchronizing language according to max T , one can check whether the graph
underlying the PA has a unique bottom SCC consisting of a simple cycle, and whether the
periodic supports of recurrent states in the Markov chain induced by the PA under the
uniformly randomized word, are all singletons sets. This can be done in PTIME.

A similar argument for the function sumT shows that to decide the universality problem
of sure strongly synchronizing language, the sequence s0s1s2 · · · where s0 = {qinit} and
si = post(si−1,A) for all i ∈ N, can be computed and then one can check whether si ⊆ T
for all n ≤ i ≤ n+m, which can be done in PSPACE.

138

We do not provide a matching lower bound for the universality problem of sure strongly
synchronizing languages according to the function sumT .

Universality problems of almost-sure strongly synchronizing language. Given
a PA P with the initial state qinit and the function max T , Lemma 6.12 proves that the
almost-sure strongly synchronizing language of P is universal if and only if (i) there is
an absorbing end component U , and (ii) P is almost-sure strongly synchronizing by the
uniformly randomized word wu, which provides the PSPACE membership of this problem.

Lemma 6.12. The universality problem of almost-sure strongly synchronizing languages
according to max T in PAs is in PSPACE.

Proof. Given a PA P = ⟨Q,A, δ⟩ with the initial state qinit and the function max T , the
almost-sure strongly synchronizing language is universal if and only if

(i) there is a (then necessarily unique) absorbing end component U , and

(ii) P is almost-sure strongly synchronizing by the uniformly randomized word wu.

One direction is straightforward. For the reverse direction, assume that both of the
conditions (i) and (ii) are fulfilled in the PA P . We show that the almost-sure strongly
synchronizing language (according to max T) of P is universal. Let U = {q0, q1, . . . , q|U |−1},
for convenience also let q|U | = q0. We claim that post(qi,A) = {qi+1} is singleton for all
0 ≤ i < |U |, which means U consists of a simple cycle. Let ϵ = η

(1+η)
where η is the smallest

probability of taking a transition in P . Since wu is almost-sure strongly synchronizing, there
exists n0 ∈ N such that for all n ≥ n0, there exists some state q where Pwu

n (q) > 1 − ϵ.
Let n1 ∈ N be such that for all n > n1, the total probability to be in states Q \ U is
smaller than ϵ: Pwu

n (Q \U) < ϵ. Then, for all k > max(n0, n1), there exists a unique state
q ∈ U such that Pwu

k (q) ≥ 1− ϵ. Assume towards contradiction that q has two successors
q1, q2 ∈ U with q1 ̸= q2, that is {q1, q2} ⊆ post(q,A). Then,

Pwu

k+1(q1) ≥ Pwu

k (q) · δ(q, a)(q1) > (1− ϵ) · η = ϵ

where q1 ∈ post(q, a). By a symmetric argument, we have Pwu

k+1(q2) > ϵ, showing that
∥Pwu

k+1∥ < 1 − ϵ, a contradiction. This arguments proves that the absorbing end compo-
nent U consists of a simple cycle.

We have shown that the absorbing end component U = {q0, q1, . . . , q|U |−1} consists
of a simple cycle. Towards contradiction with the universality of the almost-sure strongly
synchronizing language of P , assume that there exists an infinite word w that is not almost-
sure strongly synchronizing according to max T . Let Pw

0 P
w
1 · · · be the symbolic-run of P

over w; and Pwu

0 Pwu

1 · · · be the symbolic-run over the uniformly randomized word wu.
Since U is absorbing and consists of a simple cycle, there exists n ∈ N such that for
all i > n the support Supp(Pw

i) contains more than one state q̂ ∈ U , say two states q, q′;
otherwise w would be almost-sure strongly synchronizing. By assumption, the uniformly
randomized word wu is almost-sure strongly synchronizing. All states reachable by w are
also reachable by wu: Supp(Pw

i) ⊆ Supp(Pwu

i). Hence, for all i > n there are two states q

139

and q′ such that {q, q′} ⊆ Supp(Pwu

i) too. Since the probabilities assigned to these state q
and q′ always loop through the sequence q0q1 · · · q|U |, the probability mass could never
accumulate in a singleton anymore, a contradiction with condition (ii) stating that wu is
almost-sure strongly synchronizing.

Condition (i) can be checked in PSPACE by Lemma 5.10, and condition (ii) can be
checked in PTIME by steady state analysis of the Markov chain induced by the PA under
the uniformly randomized word. The PSPACE bound follows.

!

We have proved that, given a PA P with the initial state qinit and the function max T ,
the almost-sure strongly synchronizing language (according to max T) of P is universal if
and only if (i) there is an absorbing end component U , and (ii) P is almost-sure strongly
synchronizing by the uniformly randomized word wu. As we have shown in the proof of
Lemma 6.12, these two conditions enforce a special shape to the absorbing end compo-
nent U ; the end component U consists of a simple cycle, and for the symbolic-run of the
PA over the uniformly randomized word, all supports can only contain one of the states
of U . One can observe that these conditions indeed imply that the periodic supports of
recurrent states in the Markov chain induced by the PA under the uniformly randomized
word, are all singletons sets.

For the function sumT , a similar argument shows that the almost-sure strongly syn-
chronizing language (according to sumT) of P is decidable in PSPACE. The requirement of
having an absorbing end component is not necessary for the function sumT ; in fact, states
in all end components U can contribute in accumulating the probability mass in the target
set T . Each end component U can be treated as an absorbing end component by removing
all outgoing transitions, and the periodic supports of recurrent states c0, c1, · · · , cn can be
computed in PSPACE. From those supports, a randomized word w can be constructed such
that it is a linear combinations from all pure words where the PA stays in U with some
positive probability, once it has entered in U (by those pure words); and check whether
P is almost-sure strongly synchronizing by w. After repeating these arguments for all
end components U , the PA must be almost-sure strongly synchronizing by the uniformly
randomized word wu too.

The above arguments provided the PSPACE membership of the universality problem of
almost-sure strongly synchronizing languages for both function sumT and maxT , a match-
ing lower bound can be proved by the same reduction presented in Lemma 4.12 for eventu-
ally synchronizing languages. In the presented reduction, the constructed PA is almost-sure
eventually synchronizing in the singleton {synch} if and only if it is almost-sure strongly
synchronizing.

From the above arguments and Lemma 6.12, it turns out that for all functions f ∈
{maxT , sumT}, the universality problem of almost-sure strongly synchronizing language in
PAs is PSPACE-complete.

140

7Synchronization in Timed Automata

First sight. In this chapter, we introduce variants of synchronizing words for timed
automata. Timed automata are finite automata enriched with some clocks and the
transitions are fired with respect to some time constraints. The behavior of a timed
automaton thus depends on such quantitative constraints, and this is one of the chal-
lenges when considering synchronization. Moreover, the automaton must be brought
into the same state no matter what is the initial state as it does when synchronizing
a finite automaton, however the initial state here ranges among possibly infinite set of
states.

We focus on deciding the existence of different variants of synchronizing word for
timed automata, proving PSPACE-completeness of the problems for deterministic timed
automata, and proving undecidability for non-deterministic timed automata. The re-
sults presented in this chapter are summarized in Table 7.1.

Contents

7.1 Preliminaries . 142

7.1.1 Timed automata and timed words 142

7.1.2 Problems in TAs . 144

7.2 Synchronization in TA . 145

7.3 Synchronization in deterministic TAs 146

7.4 Synchronization in non-deterministic TAs 153

141

Synchronization Location-synchronization

Deterministic TAs PSPACE-complete PSPACE-complete
Non-deterministic TAs undecidable

Table 7.1: Computational complexity of the synchronizing and location-synchronizing
problem in TAs.

7.1 Preliminaries

We first introduce labeled transitions systems with possibly infinitely many states:

Definition 7.1 (Labeled transition systems). A labeled transition system over a (pos-
sibly infinite) alphabet Γ is a pair ⟨Q,R⟩ where Q is a set of states and R ⊆ Q×Γ×Q is
a transition relation. The state space Q = L×X consists of a finite set L of locations
and a possibly infinite set X of quantitative values.

Given a state q = (ℓ, x), let loc(q) = ℓ be the location of q, and for a ∈ Γ, let
post(q, a) = {q′ | (q, a, q′) ∈ R}. For P ⊆ Q, let loc(P) = {loc(q) | q ∈ P} and post(P, a) =
+

q∈P post(q, a). For nonempty words w,w′ ∈ Γ+ where w = a · w′, define inductively
post(q, w) = post(post(q, a), w′). A run (or path) in a labeled transition system ⟨Q,R⟩
over Γ is a finite sequence q0q1 · · · qn such that there exists a word a0a1 · · · an−1 ∈ Γ∗ for
which (qi, ai, qi+1) ∈ R for all 0 ≤ i < n.

In the sequel, we consider labeled transition systems induced by timed automata.

7.1.1 Timed automata and timed words

Let C = {x1, . . . , x|C|} be a finite set of clocks. A (clock) valuation is a mapping
v : C → R≥0 that assigns to each clock a non-negative real number. We denote by 0C (or 0
when the set of clocks is clear from the context) the valuation that assigns 0 to every clock.

Let I be the set of intervals with integer or infinite endpoints. A guard g = (I1, . . . , I|C|)
over C is a tuple of |C| intervals Ii ∈ I. A valuation v satisfies g, denoted v |= g, if
v(xi) ∈ Ii for all 1 ≤ i ≤ |C|. For t ∈ R≥0, we denote by v + t the valuation defined by
(v + t)(x) = v(x) + t for all x ∈ C, and for a set r ⊆ C of clocks, we denote by v[r] the
valuation such that v[r](x) = 0 for all x ∈ r, and v[r](x) = v(x) for all x ∈ C \ r.

Definition 7.2 (Timed automata). A timed automaton (TA) over a finite alphabet A
is a tuple ⟨L,C,E⟩ consisting of a finite set L of locations, a finite set C of clocks, and
a set E ⊆ L× I |C| × A× 2C × L of edges.

When E is clear from the context, we denote by ℓ
g,a,r
−−→ ℓ′ the edge (ℓ, g, a, r, ℓ′) ∈ E,

which represents a transition on the letter a from location ℓ to ℓ′ with the guard g and
set r of clocks to reset.

142

ℓ0 ℓ1 ℓ2 ℓ3x ≥ 1, a, x := 0

x < 1, a

x > 2, a, x := 0

x ≤ 2, a

x < 1 ∨ x > 2, a

1 ≤ x ≤ 2, a
a, x := 0

Figure 7.1: A 1-letter TA with synchronizing word d(3) · a3 · d(1) · a3 where d is a special
letter indicating quantitative delays.

The semantics of a TA A = ⟨L,C,E⟩ is the labeled transition system !A" = ⟨Q,R⟩
over the alphabet Γ = R≥0 ∪ A 1 where Q = L× (C → R≥0), and ((ℓ, v), γ, (ℓ′, v′)) ∈ R if

– either γ ∈ R≥0, and ℓ = ℓ′ and v′ = v + γ;
– or γ ∈ A, and there is an edge (ℓ, g, γ, r, ℓ′) ∈ E such that v |= g and v′ = v[r].

A timed word is a sequence w = a0a1 · · · an with ai ∈ A ∪ R≥0 for all 0 ≤ i ≤ n. For
a timed word, the length is the number of letters in A it contains, and the granularity is
infinite if the word involves non-rational delays, and it is the largest denominator if the
timed word only involves rational delays. As an example consider the timed word w =
d(3) · a3 · d(1) · a where d(t) with t ∈ R≥0 denotes the quantitative delays, and the length
of w is 4.

Example 7.1. The TA drawn in Figure 7.1 has four locations ℓ0, ℓ1, ℓ2, ℓ3, one letter a and
one clock x. In the location ℓ0, if the letter a is read when the clock valuation x < 1 is still
less than 1, the automaton moves to ℓ1; otherwise, the automaton stays in ℓ0 but resets the
clock x. In the location ℓ1, if the letter a is input when the clock valuation x ≤ 2 is less
than or equal to 2, the automaton moves to ℓ2; otherwise it goes to ℓ0 and resets the clock x
too. In the location ℓ2, reading the letter a leads the automaton to end up in ℓ3 or move

to ℓ1 depending on the guards: ℓ2
1≤x≤2,a
−−−−−→ ℓ3 and ℓ2

x<1∨x>2,a
−−−−−−→ ℓ1 where the disjunction in

the guard of a transition is obtained by several interval guarded transitions. The location ℓ3
is a sink state since no transitions leave it. Consider the timed word w = d(3) · a3 · d(1) · a
where d(t) with t ∈ R≥0 denotes the quantitative delays. A valid run of the automaton
from the state (ℓ0, 0) to the state (ℓ3, 1) over w is

(ℓ0, 0)
d(3)
−−→ (ℓ0, 3)

a
−→ (ℓ0, 0)

a
−→ (ℓ1, 0)

a
−→ (ℓ2, 0)

d(1)
−−→ (ℓ2, 1)

a
−→ (ℓ3, 1).

▹

The TA A is deterministic if for all states (ℓ, v) ∈ Q, for all edges (ℓ, g1, a, r1, ℓ1) and
(ℓ, g2, b, r2, ℓ2) in E, if a = b, and v |= g1 and v |= g2, then r1 = r2 and ℓ1 = ℓ2; it is
complete if for all (ℓ, v) ∈ Q and all a ∈ A, there exists an edge (ℓ, g, a, r, ℓ′) ∈ E such
that v |= g. For instance, consider the TA in Example 7.1. Since for all locations ℓ and all
valuations for the only clock x, there is only one a-transition the TA is deterministic.

1. We assume that A ∩ R≥0 = ∅.

143

7.1.2 Problems in TAs

The decidability of several classical problems in TAs are proved by the classical notion of
region equivalence, see [AD94]. The region equivalence partitions the set of clock valuations
into finitely many classes called regions where two states in the same location and same
region are time-abstract bisimilar.

For a TA ⟨L,C,E⟩ over the finite alphabet A, let M be the maximal constant that
appears in the guards in absolute value. The region equivalence ∼= on valuations is defined
as follows. For all pairs of clock valuations v and v′, we define v ∼= v′ if and only if the
three following conditions hold for all pairs of clocks x, y ∈ C:

1. the clock x in valuation v is greater than M if and only if it is in v ′

v(x) > M ⇔ v′(x) > M,

2. if the clock x in one of the valuations is less than M , then the integer part of the
clock x in both valuations is equal, and moreover the fractional part is zero only if it
is zero in both valuations v and v′

if v(x) ≤ M then (⌊v(x)⌋ = ⌊v′(x)⌋) and (frac(v(x)) = 0 ⇔ frac(v′(x)) = 0),

3. if both clocks x, y in one of the valuations are less than M , then the value of clock x
is more than clock y in v if and only if the same holds in the valuation v ′

if v(x), v(y) ≤ M then (frac(v(x)) > frac(v(y)) ⇔ frac(v′(x)) > frac(v′(y))),

where frac(v(x)) = v(x) − ⌊v(x)⌋ denotes the fractional part of the clock valuation. The
equivalence class of a valuation v for the relation ∼= is a region of A. By R we denote the
set of regions where its size |R| is O(2|C|×|C|!×(2M+1)|C|), i.e. exponential in the size of
the TA A. The region automaton is then a finite-state automaton obtained by quotienting
the original TA with the region equivalence (where delay transitions are abstracted by a
d-transition). We refer to [AD94] for more details on the region abstraction for TAs.

Example 7.2. The TA depicted in Figure 7.2 has two locations p, q, one letter and one
clock x. The a-transitions in the location p either stay there and reset the clock x; or if
the clock x is less than 1, the a-transition brings the automaton from p to q. The state q
is a self-loop that the only transition is always available. The region automaton of the TA
has eight states as it is shown in Figure 7.2. The d-transitions abstract away the exact
values of delays. For instance, from the state (p, 0 < x < 1) the d-transition is directed to
(p, x = 1) and from there, an a-transition is directed to (p, x = 0). However, we can see
that for each state (p, x) with 0 < x < 1 in the TA, the exact value of delay that allows the

transition p
x≥1,a,x:=0
−−−−−−→ p to be fired and moves the TA to the state (p, 0) is different from

delays for the other states (p, x′) with x ̸= x′.

▹

144

p

q

x ≥ 1, a, x := 0

a

x < 1, a

p, x = 0 p, 0 < x < 1 p, x = 1 p, 1 < x

q, x = 0 q, 0 < x < 1 q, x = 1 q, 1 < x

d d d

d d d

aa

d

d

aaaa

a

a

Figure 7.2: A TA and its region automaton (d is a special letter indicating delay tran-
sitions). The region automaton is synchronized by the word a · a · d · d · d, but the TA
cannot be synchronized (because there is no way to reset the clock x when starting in the
location q).

Decision problem(s). The reachability problem in TAs asks, given a TA and two
locations ℓi and ℓf , whether there exists a run from (ℓi,0) to some state (ℓf , v) (with
arbitrary valuation v).

The reachability problem is PSPACE-complete where the PSPACE membership follows
from reachability in the region automata which has exponentially many states in the size
of the input TA. The PSPACE-hardness is obtained by a reduction from halting problem
for linear bounded automata (Turing machines that use only a polynomial number of cells
on their tape).

Given a TA equipped with an initial location ℓi and a set F of accepting locations, the
timed language of the automaton is the set of timed words for which there exists some run
from the initial state (ℓi,0) reaching some accepting state (ℓf , v) where ℓf ∈ F and v is an
arbitrary clock valuation.

Decision problem(s). The universality problem in TAs asks, given a TA equipped
with an initial state and a set of accepting states, whether the timed language contains
all timed words.

The universality problem is known to be undecidable in (non-deterministic) TAs by
encoding the computation of a Minsky Machine [AD94].

7.2 Synchronization in TA

We generalize the finite synchronizing words in NFAs, presented in Definition 3.1 on
page 38, to TAs.

145

Definition 7.3 (Synchronizing and location-synchronizing words for TAs). Given a
complete TA A = ⟨L,C,E⟩ over the alphabet A and with the semantic (the labeled
transition system) !A" = ⟨Q,R⟩, a timed word w is synchronizing if post(Q,w) is a
singleton, and it is location-synchronizing if loc(post(Q,w)) is a singleton.

Thus a synchronizing word can be read from every state and bring the TA to a single
state, and a location-synchronizing word brings the TA to a (set of states where all agree on
a) single location with possibly different clock valuations. A TA is (location-)synchronizing
if there exists some (location-)synchronizing word for it.

Decision problem(s). The (location-)synchronizing problem asks, given a TA A,
whether it is (location-)synchronizing.

For instance, consider the TA described in Example 7.1. We have infinitely many
states to synchronize using the letter a and quantitative delays d(t) (t ∈ R≥0). One can
verify that the timed word d(3) · a3 · d(1) · a3 synchronizes the TA into the state (ℓ3, 0).
Note that a synchronizing word, in general, is location-synchronizing too. However, in this
example, since the a-transition in the location ℓ3 is always available and always resets the
clock x (ℓ3

a,x:=0
−−−→ ℓ3), concatenating one more a at the end of each location-synchronizing

word gives a synchronizing word, and thus synchronization and location-synchronization
coincide.

In following, Example 7.3 illustrates a TA where the region equivalence is not sound
to find a synchronizing word: the region automata is synchronizing while the TA has no
synchronizing word. This unsoundness is due to the fact that region equivalence abstracts
away the exact value of the clocks (as explained in Example 7.2), while synchronizing needs
to keep track of them.

Example 7.3. Consider the TA described in Example 7.2. Since the a-transition in the
location q never reset the clock x, so two runs starting from two states (q, v1) and (q, v2)
where v1(x) ̸= v2(x) are never able to end up in the same state. The automaton thus has no
synchronizing word whereas the region automata is synchronizing by the word a · a · d · d · d.

▹

There are simple examples showing that corner point abstraction, another known ab-
straction in TAs [BBL08], is not sound to find synchronizing words in TAs too.

7.3 Synchronization in deterministic TAs

In this section, we prove that deciding whether there exists a synchronizing word for
a given complete deterministic TA, is PSPACE-complete. To establish the membership in

146

PSPACE, we first prove the existence of a short witness (in the sequel, a timed word is
short when its length and granularity are in O(2|C| × |L| × |R|)). The built short witness
starts with a finitely-synchronizing word, a word that brings the infinite set of states of
the automaton to a finite set, and continues by synchronizing the states of this finite set
pairwise.

Example 7.4. Consider the TA described in Example 7.1 that is a complete automaton. To
find a synchronizing word for the TA, our proposed algorithm consists in two phases: first
reducing the (uncountably) infinite set of configurations into a finite set (with at most the
number of locations in the TA) by finding a finitely-synchronizing word, and then pairwise
synchronizing the obtained finite set of states. The word d(3)·a·a is a finitely synchronizing
word that synchronizes the infinite set of states into a finite set: whatever the initial state,
inputting the word d(3) · a · a the automaton ends up in one of the states (ℓ0, 0), (ℓ1, 0) or
(ℓ3, 0). On the other hand, since ℓ3 is an absorbing state (all transitions are self-loop on ℓ3),
all synchronizing words must synchronize the automaton in a state (ℓ3, x) with location ℓ3
and x ∈ R≥0. It then suffices to input a · d(1) · a · a · a to end up in (ℓ3, 0), whatever the
initial state. Our algorithm thus returns the synchronizing word d(3) · a3 · d(1) · a3 for the
TA, which always leads to the state (ℓ3, 0).

▹

We fix a complete deterministic TA A = ⟨L,C,E⟩ with the maximal constant M
appearing in the guards in absolute value. We begin with two folklore remarks on TAs.
For all locations ℓ, we denote by Lℓ = {(ℓ, v) | v(x) > M for all clocks x ∈ C} the set of
states with location ℓ and where all clocks are unbounded. Then the clock valuations in Lℓ

form a region (and Lℓ is one of the states in the region automata of A).

Remark 10. For all locations ℓ and for all timed words w, the set loc(post(Lℓ, w)) is a
singleton and post(Lℓ, w) is included in a single region.

Proof. The proof is by an induction on the length of the timed words w. We reinforce the
statement of the remark as follows. For all locations ℓ ∈ L, for all pairs of states q1, q2 ∈ Lℓ

and all timed words w, let us write post(q1, w) = {(ℓ1, u1)} and post(q2, w) = {(ℓ2, u2)}.
After inputting the timed word w from both states q1 and q2, the automaton

– ends up in the same location: ℓ1 = ℓ2, and
– for all clocks x ∈ C, either the clock in both valuations is unbounded

u1(x) > M ⇔ u2(x) > M,

or the clocks have the same value: u1(x) = u2(x).
The base of induction clearly holds: since after inputting the empty word ϵ we have u1(x) >
M and u2(x) > M for all clocks x ∈ C. Assuming that the statement holds for all timed
words w, one can easily see that it still holds after a delay transition. In case of a letter-
transition (such as a-transition where a ∈ A), the clock values are preserved, except for the
clocks x that are reset by taking the transition. Both those clocks then have value zero in
both valuations (both u1(x) and u2(x)).

147

!

Notice that Remark 10 is a special property of the state Lℓ, and in general: elapsing the
same delay from two region-equivalent valuations may lead to non-equivalent valuations.

Remark 11 is technical and provides the length and granularity of timed words that are
considered when solving reachability problem in TAs.

Remark 11. For all locations ℓ ∈ L, let r ∈ R where Lℓ = (ℓ, r) in the region automaton
of A. For all locations ℓ′ ∈ L and regions r′ ∈ R such that (ℓ′, r′) is reachable from the
state (ℓ, r) in the region automaton, there exists a short timed word w of length at most
|L| × |R| and two valuations v ∈ r and v′ ∈ r′ such that post((ℓ, v), w) = {(ℓ′, v′)}.

Proof. Let ρ = (ℓ0, r0)(ℓ1, r1) · · · (ℓ, n, rn) be a simple path in the region automaton
from (ℓ, r) to (ℓ′, r′) where (ℓ0, r0) = (ℓ, r) and (ℓn, rn) = (ℓ′, r′). Since the path ρ is
simple (there is no cycles), it has size less than the number of states in the region automa-
ton, namely n ≤ |L| × |R|. Let v ∈ r be a valuation in the region r, then (ℓ, v) ∈ Lℓ. We
denote the sequence of letters read along the run ρ with a0 · a1 · · · am where ai ∈ A for all
0 ≤ i ≤ m, and m ≤ n. Considering the timestamps ti (for all 0 ≤ i ≤ m) and letting
t−1 = 0, we define the timed word w = b0 · b1 · · · b2m+1 as follows: let b2i = (ti − ti−1) and
let b2i+1 = ai. The guards that have to be satisfied along the path ρ entail conditions of
the form tn− tm ∼ c, which defines a convex zone of possible timestamps. This zone has at
most |ρ| integer vertices (which may not belong to the zone itself, but only to its closure).
The center of these vertices belongs to the zone, and has the expected granularity, which
proves the result.

!

Lemma 7.1. All synchronizing deterministic TAs have a short finitely-synchronizing word.

Proof. Let A = ⟨L,C,E⟩ be a complete deterministic TA with the maximal constant M
appearing in the guards in absolute value. Assume that the TA A has a synchronizing
word, we build a short finitely-synchronizing word wf for A. The built word has a key
property: for all clocks x ∈ C, irrespective of the starting state, the run over wf takes some
transition resetting x. We first argue that for all clocks x ∈ C, from all states with the
clock valuations v(x) ̸= 0 not equal to zero, there exists a reachable x-resetting transition.
Towards contradiction, assume that there exist some state (ℓ, v) and clock x such that x will
never be reset along any run from (ℓ, v). Runs starting from states with the same location ℓ
but different clock valuations, say (ℓ, v′) with v′(x) ̸= v(x), over a synchronizing word w,
may either (1) reset x, and thus the final values of x on two runs from (ℓ, v) and (ℓ, v ′)
are different, or (2) not reset x, so that the difference between v(x) and v ′(x) is preserved
along the runs over w. Both cases give contradiction, and thus for all clocks x ∈ C, from
all states with v(x) ̸= 0, there exists a reachable x-resetting transition.

Let ℓ ∈ L be some location and x ∈ C be some clock. Let time word wℓ,x be a word built
by applying the argument presented above to an arbitrary state q of Lℓ and the clock x.

148

By Remark 10, inputting the same timed word from any state of Lℓ always leads to the
same transition resetting x. Moreover, all such runs end up in the same region. Note that
by Remark 11, wℓ,x can be chosen to have length and granularity at most |L| × |R|.

Below, we construct the short finitely synchronizing word wf for A where S is the
infinite set of states to be (finitely) synchronized (meaning that post(S,wf) must be a
finite set). Repeat the following procedure until S is synchronized to a finite set.

1. Choose a location ℓ ∈ loc(S) such that there is an infinite set Sℓ ⊆ S of states (ℓ, v)
with that location ℓ and some clock valuation v, included in S.

2. For all clocks x ∈ C, iteratively, input a word that consists of a (M + 1)-time-unit
delay followed by the word wℓ,x. The timed word of M + 1 delay brings the infinite
set Sℓ to the unbounded region Lℓ. Next, inputting the word wℓ,x makes the runs
starting from Sℓ end up in a single region where clock x has the same value for all
runs (since it has been reset). The word wℓ = (d(M + 1) · wℓ,x)x∈C synchronizes the
infinite set Sℓ to a single state by resetting all clocks, one-by-one, and it also shrinks S.

3. Apply the word wℓ to S and update this set by S = post(S,wℓ). Among all reached
locations, choose the next location ℓ′ ∈ loc(S) such that there is an infinite set Sℓ ⊆ S
of states (ℓ, v) with that location ℓ and some clock valuation v, included in S. Repeat
the second and third step until S is synchronized to a finite set.

Note that for all locations ℓ, the word wℓ has length at most |C| × |L| × (|R| + 1)
and granularity at most |L| × |R|. Thus the finitely-synchronizing word wf , obtained by
concatenating the successive words wℓ, has length bounded by |C| × |L|2 × (|R| + 1) and
granularity at most |L| × |R|, so that it is short. By construction, the word wf finitely-
synchronizes A, which concludes our proof.

!

From the proof of Lemma 7.1, we see that for all synchronizing TAs, there exists a
finitely-synchronizing word which, in a sense, synchronizes the clock valuations. Precisely:

Corollary 7.1. For all synchronizing deterministic TAs, there exists a short finitely-
synchronizing word wf such that for all locations ℓ, this word wf synchronizes the set
{ℓ} × (C → R≥0) into a single state.

Lemma 7.2 uses Corollary 7.1 to construct a short synchronizing word for a synchro-
nizing TA. Short synchronizing words consist of a finitely-synchronizing word followed by
a pairwise synchronizing word (i.e., a word that iteratively synchronizes pairs of states).

Lemma 7.2. All synchronizing deterministic TAs have a short synchronizing word.

Proof. Let A = ⟨L,C,E⟩ be a complete deterministic TA with the maximal constant M
appearing in the guards in absolute value. By Corollary 7.1, we know that for A there
exists a short finitely synchronizing word wf that synchronizes the clock valuations. Thus,
to synchronize A it is sufficient (and necessary) to synchronize the set S = post(L× (C →

149

R≥0), wf) obtained by shrinking the infinite state space L× (C → R≥0) after inputting wf .
We assume, w.l.o.g., that all clock valuations of states in S are in the unbounded region
(since otherwise we can concatenate the timed word of M + 1 delay at the end of wf).
Since S has finite cardinality at most n = |L|, we enumerate its elements and denote it by

Sn = {(ℓ1, v1), (ℓ2, v2), · · · , (ℓn, vn)}.

Consider the timed automaton A2 obtained as the product of two copies of A: this
automaton has 2 |C| clocks and |L|2 locations where we denote the clocks in A2 by
(xj)j∈{1,2},x∈C . To synchronize Sn to a single state, we repeat the following procedure
for all i = n, n − 1, · · · , 1. Take a pair of states in Si, say (ℓ1, v1) and (ℓ2, v2). Consider
the state (L, V) of A2 defined by these states where L = (ℓ1, ℓ2) and V (xj) = vj(x) for
j ∈ {1, 2} and x ∈ C. Since A has a synchronizing word, there is a run from (L, V) in A2

to a symmetric state of the form (L′, V ′) with L′ = (ℓ′, ℓ′) for some ℓ′ and V (x1) = V (x2)
for all x ∈ C. Write wi for the corresponding word, and let Si−1 = post(Si, wi). Re-
peat the same procedure for i − 1. We see that Si contains at most i states, thus the
word w = wn ·wn−1 · · ·w1 synchronizes Sn to a single state. For all i, the word wi is chosen
to have length at most 2 |C| × |L|2 × (|R2|+ 1) and granularity at most |L| × |R2|, where
|R2| ≤ (4M +1)2|C| × (2 |C|)! ≤ |R||C|+1, so that w has length and granularity polynomial
in |L| and M , and exponential in |C|. Thus, wf · w is a synchronizing word for A, and it
is short.

!

A naive algorithm for deciding the existence of a synchronizing word would consist in
non-deterministically picking a short timed word, and checking whether it is synchronizing.
However, the latter cannot be done easily, because we have infinitely many states to check,
and the region automaton is not sound for this.

Lemma 7.3. The synchronizing problem in deterministic TAs is in PSPACE.

Proof. To have a PSPACE algorithm to decide the synchronizing problem in TAs, we cannot
simply guess a short timed word and check whether it is synchronizing since we have
infinitely many states to check if the runs starting from those states end up in a single
state after reading the short witness.

Let A = ⟨L,C,E⟩ be a complete deterministic TA with the maximal constant M
appearing in the guards in absolute value. We thus first consider the set S0 = {(ℓ, 0) | ℓ ∈
L} and compute the set of successors reached from S0 after reading a finitely-synchronizing
word wf (built in the proof of Lemma 7.1); that is, we simply compute the set post(S0, wf).
This can be achieved using polynomial space, since S0 contains polynomially many states
and wf can be guessed on-the-fly. The important point here is that since wf begins with
a delay of M + 1 time unit, the set post(S0, wf) is equal to the set post(Q,wf) where
Q = L× RC

≥0 is the state space of the semantic !A" of the TA A.
The set post(S0, wf) contains at most |L| states, and this set post(S0, wf) can now be

synchronized pairwise. This pairwise-synchronization phase can be achieved by computing

150

TA A

ℓi

ℓ

ℓ′
ℓf ⇒

TA A′

TA A

ℓi

ℓ

ℓ′
ℓf

ℓ0

A ∪ {#}

A ∪ {#} #
#

Figure 7.3: The reduction sketch to show PSPACE-hardness of the (location-)synchronizing
problem in TAs.

the product automaton A2 and solving reachability problems in that automaton (similar
to the proof of Lemma 7.2). This algorithm runs in polynomial space, and successfully
terminates if, and only if, A has a synchronizing word.

!

Using similar arguments, we obtain the following result stating the PSPACE membership
of the location-synchronizing problem in TAs.

Lemma 7.4. The location-synchronizing problem in deterministic TAs is in PSPACE.

Proof. Let A = ⟨L,C,E⟩ be a complete deterministic TA with the maximal constant M
appearing in the guards in absolute value. To location-synchronize the TA A, we propose
the following.

– The location-synchronizing word w starts with (M + 1)-time-unit delay, in such a
way that after this delays all the clocks x ∈ C end up with values above the maximal
constant M .

– We see that for all locations ℓ, all timed words w and all pairs of region-equivalent
valuations v and v′, the states in post((ℓ, v), w) and post((ℓ, v′), w) still have the
same location and region-equivalent valuations. Hence location-synchronization can
be achieved by just considering the set {(ℓ, vM+1) | ℓ ∈ L}, where the valuation vM+1

maps all clocks to M + 1. These states can be location-synchronized pairwise.
There is one important point to take into account: two states q and q ′ that have been
location-synchronized might later de-synchronize, since they do not end up in the same
region. However, this problem is easily avoided by letting M + 1 time unit elapse after
location-synchronizing each pair of states. Using the same arguments as for synchroniz-
ing word the above procedure runs in polynomial space. The membership of location-
synchronizing problem in PSPACE follows.

!

151

Lemma 7.5. The (location-)synchronizing problem in deterministic TAs is PSPACE-hard.

Proof. The proof is by a reduction from the reachability problem in TA, which is known
to be PSPACE-complete [AD94].

Given a deterministic TA A = ⟨L,C,E⟩ (without loss of generality, we assume that A
is complete) defined over a finite alphabet A and equipped with two locations ℓi and ℓf , we
construct another TA A′ such that there is some clock valuation v such that there exists
a run in A starting from (ℓi,0) reaching the state (ℓf , v) if and only if the automaton A′

has a (location-)synchronizing word.
The TA A′ = ⟨L′, C, E ′⟩ is a copy of A with one new location ℓ0: L′ = L ∪ {ℓ0}. The

automaton A′ is defined on the alphabet A′ = A ∪ {#} where # ̸∈ A is a new letter. See
Figure 7.3. All transitions in A are copied to A′ except the transitions in the location ℓf .
The following transitions are added, that are always available and reset all the clocks,

– an a-transition in ℓf for all letters a ∈ A ∪ {#} which is a self-loop:

(ℓf , true, a, C, ℓf) for all a ∈ A.

– an a-transition from the new location ℓ0 to ℓi for all letters a ∈ A ∪ {#}:

(ℓ0, true, a, C, ℓi) for all a ∈ A.

– a #-transition in ℓi which is a self-loop: (ℓi, true,#, C, ℓi).
– from all locations ℓ ∈ L′ \ {ℓ0, ℓi, ℓf} except ℓ0, ℓi and ℓf , a #-transition to ℓ0:

(ℓ, true,#, C, ℓ0).

The resulting automaton A′ is deterministic and complete.
We establish the correctness of the reduction as follows. First assume that A′ has a

synchronizing word w. We prove that there exists some clock valuation v such that A has a
run from (ℓi,0) to (ℓf , v). On reading the synchronizing word w by the automaton A′, the
final location necessarily is (ℓf , v) where v is some clock valuation, as ℓf has no outgoing
transition. Thus, the run starting in (ℓi,0) over this word w also reaches (ℓf , v); however
this run might possibly take some #-transitions, which are not valid transitions in A.
Consider the shortest subrun going from (ℓi,0) to (ℓf , v). That run does not contain any
#-transition, since any such transition either corresponds to the self-loop on ℓf or ℓi, or
leads to ℓ0 and will be followed by another visit to (ℓi,0), both options contradicting the
fact that we have considered the shortest subrun from (ℓi,0) to (ℓf , v).

Second, assume that there exists a clock valuation v such that there is a run in A
from (ℓi,0) to (ℓf , v) over some timed word w. Then the word # · # · w · # necessarily
synchronizes the whole state space of the TA A′ into the state (ℓf ,0): indeed,

– since there are only self-loops in the location ℓf , we have post((ℓf , v
′), w) = (ℓf ,0)

for all clock valuations v′.
– moreover for all clock valuations v′, from (ℓi, v

′) reading two times # brings the
automaton into (ℓi,0), and then following the word w the state (ℓf , v) is reached.
The last # resets all the clocks and the automaton end up in (ℓf ,0).

152

– for all clock valuations v′, from (ℓ0, v
′) the automaton end up in (ℓi,0) by taking

the #-transitions. Next, inputting the word w · # synchronizes the automaton
into (ℓf ,0) as discussed in the former case.

– for all clock valuations v′, from (ℓ, v) where ℓ /∈ {ℓ0, ℓi, ℓf}, the first #-transition
leads to (ℓ0,0), and the second one goes to (ℓi,0). Inputting the word w ·# afterward
synchronizes the automaton into (ℓf ,0) as discussed in the former case.

The proof is complete and the PSPACE-hardness follows. Note that the same reduction
is correct to establish the result for the location-synchronizing problem: in fact since
all transitions in ℓf (the only possible location to synchronize) always reset all clocks.
Therefore, A′ is synchronizing if and only if it is location-synchronizing.

!

From previous Lemmas, the following Theorem 7.1 is obtained.

Theorem 7.1. The synchronizing and location-synchronizing problems in deterministic
TAs are PSPACE-complete.

7.4 Synchronization in non-deterministic TAs

We now show the undecidability of the synchronizing problem for non-
deterministic TAs. The proof is by a reduction from the non-universality problem of
timed language for non-deterministic TAs, which is known to be undecidable [AD94].

Theorem 7.2. The (location-)synchronizing problem in non-deterministic TAs is un-
decidable.

Proof. Let A = ⟨L,C,E⟩ be a non-deterministic TA over an alphabet A equipped with
an initial location ℓi and a set F of accepting locations (w.l.o.g. we assume that A is
complete). From A, we construct another TA A′ over A′ such that the language of A is
not universal if and only if A′ has a location-synchronizing word.

The construction of the TA A′ = ⟨L′, C, E ′⟩ defined over a new alphabet A′ is as follows
(See Figure 7.4). There are two new states s and d and the alphabet is augmented with
two new letters # and ⋆. Formally, L′ = L∪{d, s} (assuming d, s /∈ L) and A′ = A∪{#, ⋆}.
All transitions in A are copied to A′ and the following new transitions are added.

– Location s is a sink location, carrying a self-loop for all letters a ∈ A ∪ {#, ⋆}.
Location d is a departure location: it also carries a self-loop for all letters, except
for ⋆, which leads to ℓi. All those transitions reset all the clocks.

– From all locations ℓ ∈ L, there is a ⋆-transition to ℓi along which all the clocks are
reset. From the states not in F , there is a #-transition to s along which all clocks
are reset. From the states in F , the #-transition goes to d resetting all clocks.

153

TA A

ℓi

ℓ
ℓf

⇒

TA A′

TA A

ℓi

ℓ
ℓf

s

d

⋆

A ∪ {#}

A ∪ {#, ⋆}

⋆

⋆

⋆

##

#

Figure 7.4: The reduction sketch to show undecidability of the (location-)synchronizing
problem in TAs where in this example: {ℓi, ℓf} ⊆ F .

To establish the correctness of the reduction, we first assume that the timed language
of A is not universal. So there exists a word w that is not accepted by A. Then all runs
of A over w starting in (ℓi,0) end in copies of non-accepting states. Hence in A′, the
word ⋆ · w ·# reaches the state (s, 0), whatever the starting state. It shows that A′ has a
synchronizing word.

Second, assume that A′ has a synchronizing word. Let w be one of the shortest syn-
chronizing words (in terms of the number of transitions). As s has no outgoing transitions,
A′ can only be synchronized in s. Since entering s is only possible by reading the letter #,
it must be the case that w has at least one occurrence of #. Similarly, the states with the
location d are also able to synchronize into s, it must be the case that w contains at least
one occurrence of ⋆ which is followed by one occurrence of #. Let w1 be the subword of
w between the last ⋆ that is followed by an occurrence of #, up to the first subsequent
occurrence of #. So w1 contains neither # nor ⋆, and w can be written as w0 ·⋆ ·w1 ·# ·w2,
where w2 contains no ⋆ (otherwise w would not be one of the shortest synchronizing word).
We show that the word w1 is not accepting by A (and thus, the timed language of A is
not universal). Towards a contradiction, assume that w1 is accepted by A. It cannot be
the case that w0 is synchronizing, as w was chosen to be one of the shortest such words.
Hence there must be two states (ℓ, v) and (ℓ′, v′) where ℓ′ ̸= s, such that there is a run
from (ℓ, v) to (ℓ′, v′) over the word w0. Reading ⋆ from (ℓ′, v′) leads to (ℓi,0), from which
there is a run over the word w1 that goes to a state (ℓ′′, v′′) with ℓ′′ ∈ F . From (ℓ′′, v′′),
reading # leads to (d, 0). Since w2 contains no ⋆, there is no path from (d, 0) to location s
by w2. This means that we have found a state (ℓ, v) from which reading w does not lead
to s, contradicting the fact that w is synchronizing in A′. Hence w1 is not accepted by A
and A is thus not synchronizing.

The same reduction is used to show undecidability of the location-synchronizing prob-
lem; note that all transitions going to s (the only possible location to synchronize) always

154

reset all clocks. Therefore, the TA A′ is synchronizing if and only if it is location synchro-
nizing.

!

155

156

8Synchronization in Weighted Au-

tomata

First sight. In this chapter, we introduce variants of synchronizing words for weighted
automata. Weighted automata are finite automata where transitions are augmented
with some weights that are mostly considered as the resource (or energy) consumptions.
We define safe synchronization for weighted automata where the aim is to synchronize
the set of safe states while forbidding the automaton to visit states outside the safety-
set during synchronization. One of the challenges to synchronize weighted automata is
having a possibly infinite set of states to synchronize, as it is for timed automata.

We focus on deciding the existence of different variants of synchronizing words for
weighted automata (with safety conditions). For deterministic weighted automata, the
synchronizing problem is proven PSPACE-complete under energy constraints, and in
3-EXPSPACE under general safety constraints. The results presented in this chapter
are summarized in Table 8.1.

Contents

8.1 Preliminaries . 158

8.1.1 Weighted automata . 158

8.1.2 Minsky machine and vector addition systems with states . . . 159

8.2 Synchronization in WA . 160

8.3 Location-synchronization in deterministic WAs 162

8.3.1 Location-synchronization under lower-bounded safety condition 162

8.3.2 Location-synchronization under general safety condition . . . 169

157

Synchronization Location-synchronization

No cond. Safety cond. No cond. Safety cond.

3-EXPSPACE

Deterministic Trivial PSPACE-complete NLOGSPACE-complete energy condition:
(always false) PSPACE-complete

Non-deterministic Trivial PSPACE-complete PSPACE-complete ?

(always false)

Table 8.1: Computational complexity of the synchronizing and location-synchronizing
problem in WAs.

8.1 Preliminaries

In this section, we provide the definitions of weighted automata, Minsky machine and
vector addition systems with states.

8.1.1 Weighted automata

We present the definition of weighted automata as an instance of a labeled transition
system with possibly infinite states.

Let us first recall the definition of labeled transition systems, which we have provided in
Definition 7.1. A labeled transition system over an alphabet Γ is a pair ⟨Q,R⟩ where Q is a
set of states and R ⊆ Q×Γ×Q is a transition relation. The state space Q = L×X consists
of a finite set L of locations and a possibly infinite set X of quantitative values. Given a
state q = (ℓ, x), let loc(q) = ℓ be the location of q, and for a ∈ Γ, let post(q, a) = {q′ |
(q, a, q′) ∈ R}. For P ⊆ Q, let loc(P) = {loc(q) | q ∈ P} and post(P, a) =

+

q∈P post(q, a).
For nonempty words w ∈ Γ+, define inductively post(q, aw) = post(post(q, a), w). A run
(or path) in a labeled transition system ⟨Q,R⟩ over Γ is a finite sequence q0q1 · · · qn such
that there exists a word a0a1 · · · an−1 ∈ Γ∗ for which (qi, ai, qi+1) ∈ R for all 0 ≤ i < n.

In the sequel, we consider labeled transition systems induced by weighted automata.

Definition 8.1 (Weighted automata). A weighted automaton (WA) over a finite al-
phabet A is a tuple A = ⟨L,E⟩ consisting of a finite set L of locations, and a set
E ⊆ L× A× Z× L of edges.

When E is clear from the context, we denote by ℓ
a:z
−→ ℓ′ the edge (ℓ, a, z, ℓ′) ∈ E, which

represents a transition on letter a from location ℓ to ℓ′ with weight z. We view the weights
as the resource (or energy) consumption of the system.

The semantics of a WA A = ⟨L,E⟩ is the labeled transition system !A" = ⟨Q,R⟩ on
the alphabet A where Q ⊆ L × Z and ((ℓ, e), a, (ℓ′, e′)) ∈ R if (ℓ, a, e′ − e, ℓ′) ∈ E. In a
state (ℓ, e), we call e the energy level. The WA A is deterministic if for all edges (ℓ, a, z1, ℓ1),

158

ℓ0 ℓ1

ℓ2 ℓ3

a, b, c, d : 0 a, b : 0

c : −10, a, d : 0 a : 1, c, d : 0

d : −2

c : 0

b : 1

b : −10

Figure 8.1: A complete deterministic WA with the synchronizing word a10 · b · (c · b)2 · d
under the energy safety condition.

(ℓ, b, z2, ℓ2) ∈ E, if a = b, then z1 = z2 and ℓ1 = ℓ2; it is complete if for all ℓ ∈ L and all
a ∈ A, there exists an edge (ℓ, a, z, ℓ′) ∈ E.

Example 8.1. The WA drawn in Figure 8.1 has four locations ℓ0, ℓ1, ℓ2, ℓ3 and four let-
ters a, b, c, d. The state ℓ0 is an absorbing state where all transitions have weight 0. In the
state ℓ1, the d-transition brings the automaton to the absorbing state ℓ0 with weight −2,
while the c-transition is redirected to ℓ2. The a and b-transitions are self-loops in ℓ1. The

b-transition in ℓ2 goes to ℓ1: ℓ2
b:+1
−−→ ℓ1; other transitions in ℓ2 are however self-loops with

weight 0 except the self-loop of the c-transition that has weight −10. All transitions in ℓ3
are self-loops with weights 0 or 1; except the b-transition that leaves this state and goes
to ℓ1 by decreasing the energy level by −10.

One can verify that the WA in Figure 8.1 is complete and deterministic. Thus, for all
words w there is only one possible run of the automaton over w. Starting in the location ℓ3
with the energy level 1, the run of the WA over the word w = a10 · b · (c · b)2 · d is

(ℓ3, 1)
a:+1
−−→ (ℓ3, 2)

a:+1
−−→ · · ·

a:+1
−−→ (ℓ3, 11)

b:−10
−−−→ (ℓ1, 1)

c:0
−→ (ℓ2, 1)

b:+1
−−→ (ℓ1, 2)

c:0
−→ (ℓ2, 2)

b:+1
−−→ (ℓ1, 3)

d:−2
−−→ (ℓ0, 1).

▹

8.1.2 Minsky machine and vector addition systems with states

We recall the definitions of Minsky machine and vector addition systems, plus two
decision problems that are used in this chapter.

Minsky machine

A Minsky machine has two non-negative counters c0 and c1, and it consists of a sequence
of numbered instructions 1 : inst1; 2 : inst2; . . . n : instn; where instn = halt and other

159

instructions insti are an increment or a guarded decrement :

(increment) i : cj := cj + 1; goto k;

(guarded decrement) i : if cj = 0 goto k else (cj := cj − 1; goto k′);

where 0 < i < n, 0 < k, k′ ≤ n and j ∈ {0, 1}. A configuration is a tuple (i, v) where i
is the current instruction and v = (e0, e1) stores the values of the counters c0, c1 in e0, e1,
accordingly. Minsky machines start in configuration (1, (0, 0)) and halt in halt.

Decision problem(s). The halting problem asks, given a Minsky machine, whether
it halts.

It is well-known that the halting problem for (two-counter) Minsky machines is unde-
cidable [Min67].

Vector addition systems with states

A Vector addition system with states (VASS) is a finite-state machine VASS = ⟨Q, T ⟩
where the transitions carry vectors of integers of some fixed dimension d. A configuration
of a VASS is (s, v) where s ∈ Q is a state and v is a d-dimension vector of non-negative

integers. A transition t : s
v′

−→ s′ can be taken from the configuration (s, v) to (s′, v + v′) if
v + v′ is bigger than the 0-vector (the vector with 0 for all d dimensions).

Decision problem(s). The coverability problem asks, given a VASS with an
initial configuration (sinit, vinit) and final configuration (send, vend), whether starting
from (sinit, vinit), a configuration (s, v) with s = send and v ≥ vend is reachable.

If the answer to coverability problem is positive and in particular such configura-
tion (s, v) exists, we say that (send, vend) is covered by (sinit, vinit). It is known that the
coverability problem in VASSs is EXPSPACE-complete [Lip76, Rac78].

8.2 Synchronization in WA

We generalize the finite synchronizing words in NFAs, presented in Definition 3.1 on
page 38, to WAs.

Definition 8.2 (Synchronizing and location-synchronizing words for WAs). Given a
complete WA A = ⟨L,E⟩ over the alphabet A and with the semantic (the labeled tran-
sition system) !A" = ⟨Q,R⟩, a word w ∈ A+ is synchronizing in the labeled tran-
sition system ⟨Q,R⟩ if post(Q,w) is a singleton, and it is location-synchronizing if
loc(post(Q,w)) is a singleton.

160

A synchronizing word can be read from every state and bring the WA to a single state.
As weights are merely accumulated in WA, it is impossible to synchronize to a single state:
consider two states (ℓ, e1) and (ℓ, e2) involving the same location ℓ but different initial
energies e2 > e1. At least two of the runs starting from these two states go through the
states involving the same location and the energy levels preserving the difference e2 − e1
(for deterministic WAs there are only two runs, but for non-deterministic WAs there might
be more than two runs starting from those states). So two states (ℓ, e1) and (ℓ, e2) can
never be synchronized, and thus WAs trivially never have a synchronizing word. Instead
we define location-synchronizing words; inputting such words result in the WA reaching
states that agree only on the location.

A location-synchronizing word brings the WA to a (set of states where all have a) single
location with possibly different energy levels. In this setting, the location-synchronization
in WAs is equivalent to synchronization of finite-state automata (i.e., weights play no
role). Consequently, deciding whether, a given WA, has a location-synchronizing word
is NLOGSPACE-complete if WA is deterministic, and is PSPACE-complete if WA is non-
deterministic. A more realistic extension is to consider safe synchronization where we add
a safety condition insisting that during synchronization the accumulated weight (energy)
must be safe, e.g. a non-negative safety condition that requires the system to never run
out of power while synchronizing. Considering the safety condition is what distinguishes
our setting from the one presented in [FV13]; moreover, in that work WAs are restricted
to have only non-negative weights on transitions.

Given U ⊆ Q, a word w is synchronizing (resp., location-synchronizing) in ⟨Q,R⟩ with
safety condition U if

– post(U,w) is a singleton (resp., loc(post(U,w)) is a singleton), and
– post(U, v) ⊆ U for all prefixes v of w.

The safety condition U requires that the states in Q\U are never visited while reading the
synchronizing word. Let I be the set of intervals with integer or infinite endpoints. We
consider safety conditions of the form Safe : L → I, therefore the safe set is U = {(ℓ, x) ∈
Q | x ∈ Safe(ℓ)}. We denote an interval [y, z] by y ≤ e ≤ z, an interval [z,+∞) by e ≥ z,
etc. where e is an energy variable.

A WA A is (location-)synchronizing under the safety condition if there exists some
(location-)synchronizing word under the safety condition for it.

Decision problem(s). The (location-)synchronizing problem with a safety condition
asks, given a WA A and a safety condition Safe, whether A is (location-)synchronizing
under Safe.

Example 8.2. Consider the WA A described in Example 8.1, and let the safety condi-
tion Safe be non-negative e ≥ 0 for all four locations. We sometimes call such safety
conditions an energy condition.

161

In order to location-synchronize the automaton, we have to deal with infinitely many
states (ℓi, e) where e ∈ R≥0. The only way to location-synchronize some state (ℓ3, e) with
states (ℓ, e′) involving other locations ℓ ̸= ℓ3 is to input b. However, if b is provided initially,
this will drop the energy level by −10 violating the non-negative safety condition for (ℓ3, 0).
Fortunately, the letter a recharges the energy level at ℓ3 and has no negative effect at other
locations. After reading a10 · b, all states are location-synchronized in ℓ0 and ℓ1 with energy
at least 0. Next, a d-transition can location-synchronize states involving ℓ0 and ℓ1, but it
drops the energy level at ℓ1 by −2. Again, we try to find a word that recharges the energy
at ℓ1. Supplying c · b twice makes a d-transition safe to be taken to location-synchronize
safe states involving ℓ0 and ℓ1. So, the word a10 · b · (c · b)2 · d location-synchronizes the
automaton with non-negative safety condition.

▹

As mentioned, it is impossible to synchronize WAs in the absence of a safety condition.
In the presence of safety conditions, synchronization is also most-often impossible, for the
same reason: the only exception is when safety condition is punctual. A punctual safety
condition assigns at most one safe energy level to each location, thus there would not be
two safe states (ℓ, e1) and (ℓ, e2) with the same location ℓ but different energy levels e1 ̸= e2.
The synchronization with a punctual safety condition in WAs is equivalent to synchronizing
partial (not-complete) finite-state automata, which is PSPACE-complete [Mar10]. We thus
focus on location-synchronizing problem with safety conditions; we establish complexity
bounds for this problem for deterministic WAs. The location-synchronizing problem with
safety conditions for non-deterministic WAs is left open, however we provide an example
to explain why the used techniques for deterministic WA cannot be directly applied to the
non-deterministic WAs (See Example 8.4).

8.3 Location-synchronization in deterministic WAs

We first solve the location-synchronizing problem for deterministic WAs with lower-
bounded safety condition, which are safety conditions that assign conditions of the form e ≥
n with n ∈ Z, to all locations. We provide tight complexity bounds for the location-
synchronizing problem for deterministic WAs with lower-bounded safety condition. Next,
we study this problem with general safety condition (with no constraints on the condition).

8.3.1 Location-synchronization under lower-bounded safety con-

dition

In this subsection we assume that the safety condition is lower bounded where all the
locations have some condition of the form e ≥ n with n ∈ Z. This is equivalent to having
only safety conditions of the form e ≥ 0: it suffices to add −n to the weight of all incoming
transitions and to add +n to the weight of outgoing transitions. As an instance, consider
the WA A described in Example 8.1 and the transition ℓ3

b:−10
−−−→ ℓ1. Let the safety constraint

162

for ℓ1 be e ≥ 3, and for ℓ3 be e ≥ −7. We change the weight of the transition to −20 when
considering energy condition for both locations.

Below, we thus study the location-synchronizing problem with safety conditions of the
form e ≥ 0, which we call non-negative safety conditions or energy condition.

Lemma 8.1. The location-synchronizing problem under non-negative safety condition in
WAs, is in PSPACE.

Proof. Let A = ⟨L,E⟩ be a complete deterministic WA over the alphabet A where Z is
the maximum value appearing as weight in transitions, in absolute. Runs starting from
two states (ℓ, e1) and (ℓ, e2) with same location ℓ but two different energy levels e2 > e1,
always go through the states involving the same locations and the energy levels preserving
the difference e2 − e1. Therefore, to decide whether A is location-synchronizing under
non-negative safety condition, it suffices to check if there is a word that synchronizes all
locations with the initial energy 0, into a single location. We show that deciding whether
such word w exists is in PSPACE by providing an upper bound for the length of w.

Below, we assume that A has a location-synchronizing word. For all subsets S ⊆ L
with cardinality m > 2, there is a word that synchronizes S into some strictly smaller set.
To characterize the properties of such words, we consider the weighted digraph Gm where
m = |S|. The digraph Gm is induced by the product between m copies of A, where all
vertices with at least two identical locations, are replaced with a new vertex synch. All
ingoing transitions to some vertice (ℓ1, . . . , ℓm) with at least two identical locations are
redirected to synch. There is only a self-loop transition in synch. Formally, Gm = ⟨Vm, Em⟩
is a weighted digraph where the set of vertices

Vm = {(ℓ1, ℓ2, . . . , ℓm) ∈ Lm | ℓi ̸= ℓj ↔ i ̸= j} ∪ {synch}

includes all m-tuples of distinct locations and another vertex synch.
– For all pairs of vertices x, y ∈ Vm, there is an edge from x = (ℓ1, . . . , ℓm) to y =
(ℓ′1, . . . , ℓ

′
m) with weight ⟨z1, . . . , zm⟩ if there exists some letter a such that for all

0 < i ≤ m we have ℓi
a:zi−−→ ℓ′i in A.

– For all vertices x = (ℓ1, . . . , ℓm) ∈ Vm, there is an edge from x to synch with
weight ⟨z1, . . . , zm⟩ if there exists some location ℓ and letter a such that for all
0 < i ≤ m we have ℓi

a:zi−−→ ℓ.
An edge with weight ⟨z1, . . . , zm⟩ is non-negative (resp., zero-effect) if zi ≥ 0 for all

dimensions 1 ≤ i < m (resp., zi = 0); and it is negative otherwise. A non-negative edge
is positive if zi is positive for some dimension i. There is a one-to-one correspondence
between a path x0x1 · · · xn in Gm and a group of m runs ρ1 . . . ρm in A such that all runs ρi

are in shape of ρi = ℓi0 · · · ℓ
i
n where xj = (ℓ1j , . . . , ℓ

m
j) for all 0 ≤ j ≤ n. A path is safe if all

corresponding m runs ρi starting from ℓi0 with energy level 0, always keep a non-negative
energy level while going through all the locations ℓi1 · · · ℓ

i
n along the run.

The following claim is a key to compute an upper bound for the length of location-
synchronizing words. Roughly speaking, it states that for all subsets S of locations, either
there is a short word w that synchronizes S into a strictly smaller set, or there exists a

163

family of words w0 · (w1)
i (i ∈ N) such that inputting the word w0 · (w1)

i accumulates
energy i for the run starting in some location ℓ ∈ S, while having non-negative effects
along the runs starting from the other locations in S.

As an example consider the WA described in Examples 8.1 and 8.2. Since in the
digraph G2, there is no safe path from (ℓ0, ℓ2) to synch, there is a family of words (b · c)i

such that each iteration of b · c increase the energy level in ℓ2 by 1.

Claim 1. For all 1 < m ≤ |L|, for all vertices x of the digraph Gm, there is either a safe
simple path from x to synch, or a simple cycle where all edges are non-negative and at least
one is positive, which is reachable from x via a safe path.

Proof of Claim 1. Since A has a location-synchronizing word, then from all vertices of
the digraph Gm, there must be a safe path to synch. Take a vertex x ∈ Vm and assume that
all simple paths from x to synch are unsafe. Write G for the digraph obtained from Gm

by removing all negative edges. Thus, there is no path from x to synch in G. Consider
one of the bottom SCCs reached from x in G. Since there is no path from the bottom
SCC to synch in G, we see that one of the edges in this bottom SCC must be positive.
Otherwise, if all edges in this bottom SCC are zero-effect then for all vertices y of the
bottom SCC, there is no way to synchronize the m-locations of y with initial energy 0.
Thus the statement of claim holds, and the proof of Claim 1 is complete.

The next claim states that A has a location-synchronizing word if it has a short one,
of length at most Z|L| × |L|3+|L|2 .

Claim 2. For the synchronizing WA A, there exists a short location-synchronizing word.

Proof of Claim 2. The proof is by an induction: we prove that for all 2 ≤ k ≤ |L|

and all subsets S of locations with |S| = k, there is a word wS of length(k) ≤ Zk |L|3+k2

that location-synchronizes (under non-negative safety condition) the subset S into a single
location.

Base case. We prove that for all subsets S of locations with |S| = 2, the length of the
word wS is at most 4Z2 |L|6. Let S = {ℓ1, ℓ2} and consider the digraph G2. If there is
a safe simple path from (ℓ1, ℓ2) to synch, the base of induction trivially holds. Otherwise
by Claim 1, for one of the locations in S, say ℓ1, for all i > 0 there exists an i-recharging
word w0 · (w1)

i. Recall that an i-recharging word that recharges energy in ℓ1 is a word such
that inputting this word keeps the energy levels non-negative along the runs starting from
the states in S; however it accumulates energy i along the run starting from ℓ1. Let ℓ′1
and ℓ′2 be the locations reached from ℓ1 and ℓ2, accordingly, after inputting the i-recharging
word with i = Z(2 |L|2 + Z |L|4). A slightly different argument from the one used to prove
Claim 1 gives us another word w2 · (w3)

j that recharges energy in run starting in ℓ′2 at least

164

to to an arbitrary value j by not considering the negative effect it may cause on the other
run.

Let ℓ′′1 and ℓ′′2 be the locations reached from ℓ′1 and ℓ′2, accordingly, after inputting the
word w2 · (w3)

j with j = Z |L|2. Let w4 be a shortest synchronizing word for ℓ′′1 and ℓ′′2
in A by interpreting it as a DFA. We argue that the word w = w0 · (w1)

i · w2 · (w3)
j · w4

is a location-synchronizing word for the subset S. By reading the word w0 · (w1)
i, two

states (ℓ1, 0) and (ℓ2, 0) go to (ℓ′1, e1 + i) and (ℓ′2, e2) where e1, e2 ≥ 0. Since there is a high
energy at ℓ′1, it can tolerate the negative effect caused after reading the word w2 · (w3)

j.
Next, reading w2 · (w3)

j leads two states (ℓ′1, e1 + i) and (ℓ′2, e2) to the states (ℓ′′1, e3 + j)
and (ℓ′′2, e4 + j) where e3, e4 ≥ 0. Both states (ℓ′′1, e3 + j) and (ℓ′′2, e4 + j) can tolerate the
word w4, and get synchronized while maintaining the energy level positive meaning that
w is a location-synchronizing word for S. Hence, length(2) ≤ 4Z2 |L|6 and the base of the
induction holds.

Inductive step. We prove the inductive step for n. Assume that for all k < n and all
subsets S ′ of locations with cardinality k, the statement of the induction holds, meaning
that there is a word wS′ of size length(k) ≤ Zk |L|3+k2 that location-synchronizes the subset
S ′ into a single location. Let S = {ℓ1, ℓ2, · · · , ℓn} and consider the digraph G(n). If
there is a safe simple path from (ℓ1, ℓ2, · · · , ℓn) to synch, the step of the induction trivially
holds. Otherwise by Claim 1, for one of the locations in S, say ℓn, for all i > 0 there
exists an i-recharging word w0 · (w1)

i. A location-synchronizing word can start with a
[Z · length(n − 1)]-recharging word to accumulate at least Z · length(n − 1) energy in the
run starting from ℓn. For all 0 < i ≤ n, let ℓ′i be the location reached from ℓi after
reading the [Z · length(n− 1)]-recharging word. Then, the location-synchronizing word can
be followed with a word wS′ that location-synchronizing word S ′ = {ℓ′1, · · · , ℓ

′
n−1} because

it has already accumulated enough energy at ℓ′n to tolerate the negative effect caused while
synchronizing the other states, even if all taken transitions decrease the energy level of the
run starting in ℓ′n by the maximum negative weight Z. Let the subset S ′ get synchronized
in the location x, and y be the location reached from ℓ′n by reading wS′ . At last, the
location-synchronizing word must only synchronize x and y. Thus,

length(n) ≤ |L|n [2 + Z · length(n− 1)] + length(2).

So, length(n) ≤ Zn |L|3+n2

and the induction holds. Thus A has a location-synchronizing
word with length at most length(|L|). This concludes the proof of Claim 2.

Claim 2 proves that A has a location-synchronizing word if it has one of length at
most Z|L| × |L|3+|L|2 . Since this value can be stored in polynomial space, an (N)PSPACE
algorithm can decide whether the given WA A is location-synchronizing.

!

We use an intuitive reduction from synchronizing problem for partial finite automaton
to establish the matching lower bound.

165

Lemma 8.2. The location-synchronizing problem under non-negative safety condition in
WAs, is PSPACE-hard.

Proof. To show PSPACE-hardness, we use a reduction from synchronizing word problem for
deterministic finite automata with partially defined transition function that is PSPACE-
complete [Mar10].

From a partial finite state automaton N = ⟨Q,A,∆⟩, we construct a WA A over
the alphabet A such that N has a synchronizing word if and only if A has a location-
synchronizing word under an energy condition.

The construction of A = ⟨L,E⟩ is as follows.
– All defined transitions of N are augmented with the weight 0 in A: for all states q ∈ Q

and letters a ∈ A, let q a:0
−→ q′ if ∆(q, a) = q′ in the automaton N .

– To complete A, all non-defined transitions are added as self-loops with weight −1:
for all states q ∈ Q and letters a ∈ A, let q

a:−1
−−→ q if the a-transition in q is not

defined in N .
Since the safety condition is non-negative in all locations, none of the transitions with

weight −1 are allowed to be used along synchronization in A. So N has a synchronizing
word if and only if A has a location-synchronizing word.

!

From previous Lemmas and arguments, Theorem 8.1 follows.

Theorem 8.1. The location-synchronizing problem under lower-bounded safety condi-
tions in WAs, is PSPACE-complete.

We generalize the location-synchronizing problem to location-synchronization from a
subset, where the aim is to synchronize a given subset of locations. This variant is used to
decide location-synchronization under general safety condition. Given a subset S ⊆ L of
locations, we prove Lemma 8.3 and Lemma 8.4 using reductions to and from the coverability
problem in vector-addition systems.

Lemma 8.3. The location-synchronizing problem from a subset S of locations under non-
negative safety conditions in WAs, is decidable in 2-EXPSPACE.

Proof. We present a construction to reduce location-synchronizing problem from a subset S
of locations under non-negative safety conditions in WAs, to the coverability problem in
vector addition systems. The construction is exponential in the size of the WA, and by
the fact that the coverability problem is in EXPSPACE, the 2-EXPSPACE membership of
location-synchronizing problem from a subset S of locations under non-negative safety
conditions follows.

166

Given a WA A = ⟨L,E⟩ over an alphabet A, a subset S ⊆ L of locations
and a non-negative safety condition Safe, we construct a VASS with two configura-
tions (sinit, vinit) and (send, vend) such that the automaton A under Safe condition has a
location-synchronizing word from S if and only if the configuration (send, vend) is covered
from (sinit, vinit) in VASS.

The encoding is straightforward. Let the set S have cardinality |S| = m, we thus write
S = {p1, · · · , pm}. We construct the vector addition system VASS = ⟨Q, T ⟩ with vectors
of dimension m as follows.

– The state space Q = Lm ∪ {send} where Lm is all m-tuples of locations.
– From a state s = (ℓ1, · · · , ℓm) there is a transition to s′ = (ℓ′1, · · · , ℓ

′
m) carrying the

vector v = (z1, · · · , zm), if for some a ∈ A and all 0 < i ≤ m we have ℓi
a,zi−−→ ℓ′i.

– From all states s = (ℓ, · · · , ℓ) with the identical location ℓ in all components, there
is a transition to send with 0-vector.

Let sinit = (p1, · · · , pm) and both vectors vinit and vend be 0-vectors. There is a one-
to-one corresponding between a sequence of transitions t0t1 · · · tn in VASS with a word
w = a0a1 · · · an in A. Since the only way to reach send is via states (ℓ, · · · , ℓ) with the
identical components ℓ and positive energy level, we can easily see that the configuration
(send, vend) is covered from (sinit, vinit) if and only if there is a location-synchronizing word w
from S in A. This construction uses exponential space in size of A, then it proves that
location-synchronizing problem is decidable in 2-EXPSPACE.

!

Lemma 8.4. The location-synchronizing problem from a subset S of locations under lower-
bounded safety conditions in WAs, is EXPSPACE-hard.

Proof. The EXPSPACE-hardness proof is by a reduction from the coverability problem in
vector addition systems. From a given VASS = ⟨Q, T ⟩ equipped with two configura-
tions (sinit, vinit) and (send, vend), we construct a WA A, a lower-bounded safety condition
Safe and a set S of locations such that (send, vend) is covered from (sinit, vinit) if and only if
the automaton A under the Safe condition has a location-synchronizing word from S.

The intuition behind the reduction is that we add d copies of VASS to A such that
the weights in the i-th copy is taken from the i-th dimension of vectors in VASS. An
absorbing location called synch is added that is only reachable from the locations send of
each copy. The set S contains synch and the locations sinit of all copies, A thus can only
be location-synchronized in synch. Therefore, to location-synchronize S all d copies must
run in parallel and try to reach copies of send.

We assume that all states s of VASS have exactly the same number m of outgoing tran-
sitions (otherwise we add self-loops with 0-vectors). We consider m letters a1, a2, · · · , am
and label each outgoing transition t in s with a unique letter ai where 0 < i ≤ m (all pairs
of outgoing transitions have different labels). The construction of A = ⟨L,E⟩ over A is as
follows.

– The alphabet is A = {a1, · · · , am, ⋆,#}.

167

VASS

sinit send
⇒

WA A

copy 1

⟨sinit, 1⟩ ⟨send, 1⟩
· · ·

copy d

⟨sinit, d⟩ ⟨send, d⟩

sink synch

A : 0 a1, · · · , am : 0
⋆ : 1,# : −1

⋆ : 0 ⋆ : 0 ⋆ : 0 ⋆ : 0

: 0
: 0

: 0
: 0

Figure 8.2: (Schematic) reduction from the coverability problem in vector addition systems
with states to location-synchronizing problem from a subset S of locations under lower-
bounded safety conditions in WAs.

– The set of locations L = Q × {1, 2, · · · , d} ∪ {synch, sink} includes d copies of VASS
and two new locations synch and sink. A state ⟨s, i⟩ is in the i-th copy of VASS.

– For all letters a ∈ A, the a-transition in both locations synch and sink are self-loops
implying that those locations are absorbing. The weights of all those transitions are 0
except # and ⋆-transitions in synch:

synch
⋆:+1
−−→ synch and synch

#:−1
−−−→ synch.

– For all transitions s v
−→ s′ in VASS that is labeled by a and the vector v = ⟨z1, · · · , zd⟩,

there are d transitions in A such that for all 0 < i ≤ d:

⟨s, i⟩
a:zi−−→ ⟨s′, i⟩

– Let v = vend − vinit and write v = ⟨z1, z2, · · · , zd⟩. For all s ∈ Q and 0 < i ≤ d, the
#-transition is directed to sink:

⟨s, i⟩
#:0
−−→ sink

except in send where the #-transition goes to synch:

⟨send, i⟩
#:−zi+1
−−−−−→ synch.

– For all s ∈ Q and 0 < i ≤ d, the ⋆-transition in ⟨s, i⟩ is a self-loop with weight 0.

The construction is depicted in Figure 8.2. Let S = {⟨sinit, i⟩ | 0 < i ≤ d} ∪ {synch}
be such that the location-synchronizing from S is of interest. The safety condition is
non-negative for all locations except in synch where Safe(synch) = {e ≥ 1}.

168

First, assume that (send, vend) is covered from (sinit, vinit) in VASS. Thus, there is a
sequence of transitions t0t1 · · · tn that are taken from (sinit, vinit) to cover (send, vend). Let
w = a0 · a1 · · · an be the sequence of the labels of those transitions t0t1 · · · tn where ai is
the label of ti for all 0 ≤ i ≤ n. The word w · ⋆ · # reaches the location synch with
non-negative energy level, no matter its origin (in S) and the initial energy. So A has a
location-synchronizing word under the condition Safe.

Second, assume that A has a location-synchronizing word w. Since synch is absorbing,
and since synch ∈ S then A is location-synchronized in synch. Entering synch is only pos-
sible by reading #, so it must be the case that w contains some #. Moreover, reading #
in synch is only possible after at least one ⋆; otherwise the safety condition in the loca-
tion synch is violated (with energy level 1). Let w′ be the subword of w that is obtained
by omitting all letters ⋆ from the prefix of w until the first #. Thus, the word w ′ has
neither # nor ⋆. The first ⋆ increases the energy level at location synch by 1, and thus the
#-transition becomes affordable in synch (to location-synchronize other states in synch).
Since from all locations ⟨s, i⟩ where s ̸= send, the #-transitions lead to sink where there is
no way to synchronize, the first # of w must be read when all copies of VASS are in the
locations ⟨send, i⟩ where 0 < i ≤ d. Let v = vend−vinit and write v = ⟨z1, · · · , zd⟩. The loca-
tion ⟨send, i⟩ needs to have at least energy level zi to afford reading # (and not violate the
safety condition in synch). Therefore the sequence of transitions in VASS corresponding to
the word w′, starting from the configuration (sinit, vinit) must end up in a configuration that
covers (send, vend). The above argument shows the correctness of the presented reduction
to establish the EXPSPACE-hardness.

!

Lemma 8.3 and Lemma 8.4 provide reductions to and from the coverability problem in
vector addition systems to establish the following result.

Theorem 8.2. The location-synchronizing problem from a subset S of locations un-
der lower-bounded safety conditions in WAs, is decidable in 2-EXPSPACE, and it is
EXPSPACE-hard.

8.3.2 Location-synchronization under general safety condition

We now discuss location-synchronization under the general safety condition where the
energy constraint for each location can be a bounded interval, lower or upper-bounded,
or trivial (always true). We proceed in two steps: first, we prove that the PSPACE-
completeness results in case of non-negative safety condition is preserved in location-
synchronization under safety condition with only lower-bounded or trivial constraints.
Second, we extend our techniques to establish results for general safety conditions. To
obtain results for the general case, we use the variant location-synchronization from a
subset, that is discussed in all cases as well.

169

ℓ0 ℓ1

ℓ2

ℓ3
a, b : 0 a : 0

b : 0 b : 0

a : 0

a, b : 0

Figure 8.3: To location-synchronize the automaton with L ,→ = {ℓ0, ℓ2} and L↔ = {ℓ1, ℓ3},
taking the back-edge ℓ1

b:0
−→ ℓ2 is avoidable.

Location-synchronization under lower-bounded or trivial safety conditions.

Let the safety condition Safe assign to each location of L either an interval of the
form [n,+∞) or true. Accordingly, we partition the set L of locations into two classes L ,→

and L↔ such that L↔ is the set of all locations with true safety constraints, and L ,→ is the
set of all locations with a lower-bounded safety constraints. A back-edge is a transition ℓ →
ℓ′ that goes from some location ℓ ∈ L↔ with true safety constraints to some location ℓ′ ∈
L ,→ with lower-bounded safety constraints. An important observation is that while location-
synchronizing, all runs starting from some location ℓ ∈ L↔ with true safety constraints can
never pass through some location ℓ′ ∈ L ,→; otherwise, the runs starting in some state (ℓ, e)
where e < 0 is a sufficiently small integer, even after taking several transitions with positive
weights to increase the energy level, arrive in the location ℓ′ with negative energy level
violating the safety condition. Those back-edge transitions though might be fired along
the runs starting from locations with lower-bounded safety constraints. See Example 8.3.

Example 8.3. Consider the WA drawn in Figure 8.3 with four locations and two letters.
All transitions have weight 0, and the WA is deterministic. From the state ℓ0, all transitions
bring the WA into ℓ1. The a-transition in the state ℓ1 goes to ℓ3; and the b-transition goes
to ℓ2. The b-transition leaves ℓ2 and moves to ℓ3 while the a-transition stays there. The
state ℓ3 is absorbing. The safety condition is non-negative in ℓ0 and ℓ2, and is trivial in ℓ1

and ℓ3: L ,→ = {ℓ0, ℓ2} and L↔ = {ℓ1, ℓ3}. Thus, the transition ℓ1
b:0
−→ ℓ2 is a back-edge.

The word a · b · b is a location-synchronizing word that takes the back-edge ℓ1
b,0
−→ ℓ2

along the following runs starting in ℓ0:

(ℓ0, e)
a:0
−→ (ℓ1, e)

b:0
−→ (ℓ2, e)

b:0
−→ (ℓ3, e)

where e ≥ 0.

While synchronizing by any location-synchronizing word, the back-edge ℓ1
b:0
−→ ℓ2 cannot

be used for the runs starting in ℓ1; otherwise the run (ℓ1,−1)
b:0
−→ (ℓ2,−1) would violate the

non-negative safety condition at ℓ2. In this example, there exists an alternative word a ·a ·b
that takes no back-edges and still location-synchronizes the automaton.

▹

170

In Example 8.3, we see that even though a back-edge might be taken along runs
over some location-synchronizing words such as a · b · b, there are alternative location-
synchronizing words that does not fire a back-edge transition, for instance the word a ·a · b.
We prove, by Lemma 8.5, that such alternative words always exist implying that taking
back-edge transitions while synchronizing is avoidable in deterministic WAs.

Lemma 8.5. Let A be a deterministic WA and Safe be a safety condition with only lower-
bounded or trivial constraints. There is a location-synchronizing word in A if and only if
there is one in the automaton obtained from A by removing all back-edge transitions.

Proof. First direction is trivial. To prove the reverse, assume that A has a location-
synchronizing word w under Safe, such that there exists some state starting in which the
run over w takes a back-edge, say the back-edge ℓ1

b
−→ ℓ2 with ℓ1 ∈ L↔ and ℓ2 ∈ L ,→.

We denote by [n,+∞) the lower-bounded safety constraint in ℓ2. Let (ℓ0, e0) be some
state such that starting from (ℓ0, e0), the run over w takes the back-edge ℓ1

b
−→ ℓ2 earliest

(among all the runs starting from all safe states). We split the word w = w0 · b · w1 such
that b is the letter firing the back-edge ℓ1

b
−→ ℓ2 in the run starting from (ℓ0, e0) first.

We prove that ℓ0 ∈ L ,→ meaning that ℓ0 has lower-bounded safety condition. Towards
contradiction, assume that ℓ0 ∈ L↔. Since w location-synchronizes all safe states, then the
runs starting from all states (ℓ0, e) where e ∈ Z would never violate the safety condition.
Let e = n− Z · |w0|− 1 where Z is the maximum value appearing as weight in transitions
in absolute, and where n is the minimum allowed energy level at the location ℓ2. Inputting
the word w0 · b from the state (ℓ0, e) brings A to the state (ℓ2, n

′) with n′ < n, violating
the safety condition at ℓ2. It contradicts with the fact that w is a location-synchronizing
word under Safe. It proves then ℓ0 ∈ L ,→.

We denote by U the set of all safe states: U = {(ℓ, e) | e ∈ Safe(ℓ)}. Let S =
loc(post(U,w0)) be the set of all reached locations after inputting w0. Since the runs starting
from the location ℓ0 ∈ L ,→ are ending in ℓ1 ∈ L↔ by the word w0, and since w0 does not fire
any back-edge transition, then S ∩L ,→ ⊂ L,→ meaning that the number of locations with a
lower-bounded safety constraint is decreased after reading w0. Since the word w0 does not
violate the safety condition and keeps the automaton in the safe set post(U,w0) ⊆ U , then
w0 · w is also a location-synchronizing word. Therefore, w0 · w is a location-synchronizing
word such that there are less runs over it firing a back-edge, compared to the number of runs
over w. We can repeat the above argument for all back-edges (at most |L ,→| times) that
are taken while synchronizing A by w, and construct a location-synchronizing word w ′ ·w
such that no back-edge transition is fired while reading w′. Moreover, all reached locations
after reading w′ have trivial safety constraints loc(post(U,w′) ⊆ L↔. Hence, the word w′ ·w
is a location-synchronizing word that no runs starting from some safe state over it takes a
back-edge transition. It completes the proof.

!

Lemma 8.5 does not hold when synchronizing from a subset S of the locations. Indeed,
consider the one-letter automaton drawn in Figure 8.4. The automaton has three states,

171

ℓ0

ℓ1

ℓ2

a : 0

a : 0a : 0

Figure 8.4: To location-synchronize the automaton from S = {ℓ0, ℓ1} where L ,→ = {ℓ0, ℓ1}

and L↔ = {ℓ2}, taking the back-edge ℓ2
a:0
−→ ℓ1 is unavoidable.

but we are only interested to location-synchronize it from two locations S = {ℓ0, ℓ1}.
The safety condition for those two locations is non-negative L ,→ = S, however the safety
constraint at ℓ2 is trivial. Obviously, it is possible to location-synchronize from S, and this
would not be possible without taking the back-edge ℓ2

a:0
−→ ℓ1.

Lemma 8.5 also fails for non-deterministic WAs. We provides a non-deterministic WA
in Example 8.4 such that for all location-synchronizing word, a back-edge transition must
be fired.

Example 8.4. Consider the non-deterministic WA A depicted in Figure 8.5.a. The au-
tomaton A has four states and three letters. All transitions have weight 0, except two
transitions. In the state ℓ0, the a-transitions non-deterministically go to either ℓ0 or ℓ2.
The b-transition is a self-loop and the c-transition goes to ℓ3 that is an absorbing state. In

the location ℓ1, the a-transition is a self-loop whereas b and c-transitions go to ℓ0: ℓ1
b:0
−→ ℓ0

and ℓ1
c:−1
−−→ ℓ0. All transitions in ℓ2 leave the location: ℓ2

a,c:0
−−→ ℓ3 and ℓ2

b:+1
−−→ ℓ1

The safety condition Safe for locations in L ,→ = {ℓ0, ℓ1} is non-negative, and for loca-

tions in L↔ = {ℓ2, ℓ3} is trivial. Therefore, the transition ℓ2
b:+1
−−→ ℓ1 is a back-edge; we

prove that there is no way to location-synchronize A unless taking the back-edge ℓ2
b:+1
−−→ ℓ1.

Assume that w = a0 ·a1 · · · an is a location-synchronizing word. Since ℓ3 is an absorbing
state, so A is synchronized into ℓ3. The first letter a0 of w

– cannot be b because (ℓ2,−2)
b:+1
−−→ (ℓ1,−1) violating the non-negative safety condition

at the location ℓ1,

– cannot be c because (ℓ1, 0)
c:−1
−−→ (ℓ0,−1) violating the non-negative safety condition

at the location ℓ0.
Thus, w starts with the letter a (See Figure 8.5.b.). Inputting a shrinks the safe set

U = {(ℓi, e) | 0 ≤ i ≤ 1, e ∈ N} ∪ {(ℓi, e) | 2 ≤ i ≤ 3, e ∈ Z}

into the set
U1 = {(ℓi, e) | 0 ≤ i ≤ 2, e ∈ N} ∪ {(ℓ3, e) | e ∈ Z}.

172

ℓ0 ℓ1

ℓ2ℓ3

a, b : 0

a, b, c : 0

a : 0

c : 0
a : 0

a, c : 0

b : 1

b : 0, c : −1

a. b.

a

b

c

c

⟨ℓ0,N⟩ ⟨ℓ1,N⟩ ⟨ℓ2,Z⟩ ⟨ℓ3,Z⟩

⟨ℓ0,N⟩ ⟨ℓ1,N⟩ ⟨ℓ2,N⟩ ⟨ℓ3,Z⟩

⟨ℓ0,N⟩ ⟨ℓ1,N+ 1⟩ ⟨ℓ3,Z⟩

⟨ℓ0,N⟩ ⟨ℓ3,Z⟩

⟨ℓ3,Z⟩

Figure 8.5: Unavoidable back-edges to synchronize non-deterministic WAs.

Inputting another a is safe but it would not shrink the set U1, and in particular would
not help in synchronizing. The same reason as before, the second letter a1 of w cannot
be c. Inputting b shrinks the set U1 into

U2 = {(ℓ0, e) | e ∈ N} ∪ {(ℓ1, e) | e ≥ 1} ∪ {(ℓ3, e) | e ∈ Z}

and fires the back-edge ℓ2
b:+1
−−→ ℓ1. It remains to ensure that there is indeed a way of

location-synchronizing into the location ℓ3, which is inputting c twice.

▹

By Lemma 8.5, location-synchronizing a given WA A under a safety condition with
only lower-bounded or trivial constraints can be achieved in two steps:

– first location-synchronizing all the states with lower-bounded safety constraints into
the set of states with trivial constraints. It can be done in PSPACE by using Theo-
rem 8.1,

– second location-synchronizing the states with trivial safety constraints where the
weights play no role.

Lemma 8.6. The location-synchronizing problem in WAs under lower-bounded or trivial
safety condition is PSPACE-complete.

Proof. Let A = ⟨L,E⟩ be a complete deterministic WA over the alphabet A where Z is
the maximum value appearing as weight in transitions in absolute. Let Safe be the safety

173

condition with only lower-bounded or trivial constraints. By Lemma 8.5, we can assume
that A has no back-edge. We also assume that L↔ is not empty.

Since there is no back-edge in A, the automaton is synchronized in some location ℓ ∈ L↔

with trivial safety constraint. Thus, there exists some word w such that by reading this
word w, the set of states (ℓ, e) with some location ℓ ∈ L ,→ having a lower-bounded safety
constraint end up in the set L↔; formally, loc(post(S,w)) ⊆ L↔ where S = {(ℓ, e) |
ℓ ∈ L,→, e ∈ Safe(ℓ)}. After reading such words, weights play no role while location-
synchronizing the reached set post(S,w) of states. Thus, we propose following PSPACE
algorithm:

– We obtain the WA A′ from A by replacing all locations ℓ ∈ L↔ with some ab-
sorbing location synch. All ingoing-transition to some location ℓ ∈ L↔ is redirected
to synch. At the location synch, we define the safety constraint e ≥ m − Z where
m is the minimum allowed energy level for all locations with a lower-bounded safety
constraints:

m = min{e | there exists ℓ ∈ L ,→ such that e ∈ Safe(ℓ)}.

We choose m−Z as the minimum allowed energy level at synch since the least energy
level for locations in L ,→ is m, and the energy level cannot be decreased more than Z

by taking the transitions going to synch . We find a location-synchronizing word w
for A′ by using Lemma 8.1.

– We obtain the DFA N from A by removing all locations ℓ ∈ L ,→ and omitting the
weights of transitions. We find a synchronizing word v for the DFA N .

By above arguments, the word w · v is a location-synchronizing word for A. The proof
is complete.

!

The proof of Lemma 8.6 carries on for synchronizing from a subset of locations, except
using Lemma 8.3 instead of Theorem 8.1, and requiring that the automaton has no back-
edge.

Lemma 8.7. Given a WA A with no back-edges, the location-synchronizing problem from
a subset S of locations under lower-bounded or trivial safety condition is decidable in 2-
EXPSPACE, and it is EXPSPACE-hard.

Location-synchronization under general safety conditions.

Let us relax the restrictions on the safety condition Safe, and let some of the locations
have bounded intervals to indicate the safe range of energy. The set L of locations is
partitioned into L ,−!

, L ,→ and L↔ where locations in L ,−!
have safety conditions such as

e ∈ [n1, n2] where n1, n2 ∈ Z. In this setting, transitions from locations in L ,→ or L↔

to locations in L ,−!
are considered as back-edge too. Since taking back-edge transitions

while synchronizing from a subset S of locations is not avoidable, we can use bounded

174

safety conditions to establish a reduction from the halting problem in Minsky machines to
provide the following undecidability result.

Theorem 8.3. The location-synchronizing problem from a set S of locations in WAs
under a general safety condition is undecidable.

Proof. The proof is by a reduction from the halting problem in two-counter Minsky ma-
chine. Below, without loss of generality, we assume that the Minsky machine has at least
two guarded decrement instructions, one on each counter.

From a Minsky machine, we construct a deterministic WA A, a general safety condi-
tion Safe and a subset S such that Minsky machine halts if and only if A has a location-
synchronizing word from S under the condition Safe. The automaton A is constructed
from two disjoint automaton B0 and B1 (and some other locations such as synch) with the
same number of locations and transitions. A run over automaton Bj simulate the value
of counter cj along a sequence of configurations in the Minsky machine. The only way
to synchronize these two disjoint automata is arriving to their halt, simultaneously, and
then play a special letter # to reach the location synch. To let the counters to get freely
any non-negative value, the safety condition in all location of B0 and B1 are non-negative
except some particular locations that are reserved to check the correctness of a guarded
decrement. The guarded decrement instructions are simulated by taking a back-edge and
visiting locations with the safety condition of form e = 0. To synchronize all locations with
different kind of safety conditions, we add a gadget that forces all location-synchronizing
words for A to always begin with the letter ⋆.

The construction of A over the alphabet A is as follows. An instance of reduction is
depicted in Figure 8.6.

– The alphabet has four letters A = {a, b,#, ⋆}.
– For each increment instructions i : cj := cj + 1; goto k; we have two locations ij, kj

and the transitions ij
c,1
−→ kj in Bj and two locations i1−j, k1−j and the transitions

i1−j
c,0
−→ k1−j in B1−j where c ∈ {a, b}. See instructions 1 and 3 in Figure 8.6 and the

corresponding locations and transitions in Figure 8.7.
– For each guarded decrement instructions i : if cj = 0 goto k else (cj := cj − 1;
goto k′); we have four locations ij, kj , k

′
j , fi,j and the transitions

ij
b:0
−→ fi,j , fi,j

c:0
−→ kj , ij

a:−1
−−→ k′

j

in Bj and similarly, four locations ij, kj , k
′
j , fi,j and following transitions

i1−j
a:0
−→ k1−j , i1−j

b:0
−→ fi,1−j , fi,1−j

c:0
−→ k′

1−j

in B1−j where c ∈ {a, b}. See instruction 4 in Figure 8.6 and the corresponding
locations and transitions in Figure 8.7.

175

Minsky machine

1 : c1 := c1 + 1; goto 2;
· · ·

3 : c0 := c0 + 1; goto 4;
4 : if c1 = 0 goto 5

else
c1 := c1 − 1; goto 4;

· · ·
7 : halt;

⇒

WA A

B0 B1

sink synch

d s

70 7110 11

f4,0 f4,1

A A

a, b

⋆

⋆ : −1, a, b

#

#, ⋆

#, ⋆
⋆ ⋆

⋆
⋆

#

##

#

Figure 8.6: (Schematic) reduction from the halting problem in Minsky machines to
location-synchronizing problem from a subset S of locations under general safety condi-
tions in WAs. To simplify the figure, the weights of transitions with weight 0 are omitted.
See Figure 8.7 for the details of B0 and B1.

– We add two new absorbing locations synch and sink meaning that all transitions are
self-loops with weight 0.

– We have a gadget with two new locations “departure” d and “stay” s, and following
transitions:

d
c:−1
−−→ d , d

⋆:0
−→ s , s

⋆:−1
−−→ s , s

c:0
−→ s

where c = {a, b}.
– From the stay location s, n0 and n1 where the n-th instruction is halt, the #-transition

goes to synch with weight 0, but from all other locations the #-transition goes to the
location sink.

– From all locations in Bj, the ⋆-transition leads to synch except in locations fi,j if
the instruction i is a guarded decrement on counter cj. From these locations, the
⋆-transition goes to location 1j (where j ∈ {0, 1}).

The safety condition for synch and sink is trivial, and for all locations fi,j in Bj, it is of
the form e = 0 if the instruction i is a guarded decrement on the counter cj (for 0 < i < n
and j ∈ {0, 1}). For all other locations, the safety condition is non-negative. The subset
S includes all locations except the stay and sink locations s, sink.

To establish the correctness of the reduction, first assume that Minsky machine halts.
Thus, there is a sequence of m configurations starting from (1, (0, 0)) and reaching halt:

(inst1, v1)(inst2, v2) · · · (instm, vm) where inst1 = 1 and instm = halt.

176

B0 B1

10 20 30

40

f4,05070

11 21 31

41

f4,15171

a a : −1

a, b a, b : 1

a, b : 1 a, b

b b

⋆

a, b a, b

Figure 8.7: The details of B0 and B1 in Figure 8.6. To simplify the figure, the weights of
transitions with weight 0 are omitted.

Consider the word w = ⋆ · w1 · · ·wm · ♯ where
– wi = a if insti is an increment or a guarded decrement on cj when ej > 0 in the

valuation vi = (e0, e1),
– wi = b · b if instruction i is a guarded decrement on cj when ej = 0 in vi = (e0, e1).

We see that w is a location-synchronizing word for A.
Second, assume that A has a location-synchronizing word w. Since in the departure

location d the only letter that does not violate the safety condition is ⋆, w must start with
the letter ⋆. Reading ⋆ shrinks the set S into the locations 10, 11 with energy level 0, s
with all non-negative energy levels, and synch with all integer energy levels:

S1 = {(10, 0), (11, 0)} ∪ {(s, e) | e ∈ N} ∪ {(synch, e) | e ∈ Z}.

Since synch is absorbing, thus A is location-synchronized in synch; this location is only
reachable by # and ⋆. On the other hand, due to the safety condition at the stay location s,
inputting more ⋆’s is impossible. Thus, w must have some occurrence of # to location-
synchronize the set S1 into synch. Let w′ = a1 · a2 · · · an be the subword of w after the
first ⋆ and up to the first #, w′ thus has neither # nor ⋆. Below, we show that there is a
sequence of configurations such that the Minsky machine halts by operating this sequence.
Consider (1, (0, 0)) to be the first configuration of the Minsky machine. For all 1 < k ≤ n
where n is the length of w′:

1. let (ℓ, ej) = post((1j, 0), a1 · · · ak) in the automaton Bj for both j = {1, 2},

2. if ℓ is of the form fi,j skip the next step,

3. define the next configuration (ℓ, v) of the Minsky machine such that v = (e1, e2).

We know that after the subword w′, there is an immediate # in the location-
synchronizing word w. The #-transitions in all locations of B1 and B2 except halt lo-
cations n1 and n2, bring A to the location sink (where there is no way to be synchronized
with synch). Thus, after reading w′ both automaton must be in their halt; otherwise w
is not a location-synchronizing word. It implies that the constructed sequence of config-
urations for Minsky machine halts. Moreover, that is a valid configuration thanks to the

177

zero safety constraints at the locations simulating the guarded decrement instructions and
non-negative safety constraints in other locations of B0 and B1.

!

In the absence of back-edges, we can get rid of the bounded safety constraints by
explicitly encoding the energy values in the locations at the expense of an exponential
blowup. We thus assign non-negative safety constraints to the encoded location and reduce
to Lemma 8.6.

Lemma 8.8. Given a WA A with no back-edges, the location-synchronizing problem from
a subset S of locations under safety condition with bounded, lower-bounded or trivial con-
straints is decidable in 3-EXPSPACE, and it is EXPSPACE-hard.

Proof. Let the WA A = ⟨L,E⟩ and the safety condition Safe be such that the set of
locations are partitioned as follows L = L ,−!

∪L,→ ∪L↔. Without loss of generality, assume
that L↔ ⊆ S. We build another WA A′ in which the locations of L ,−!

are augmented with
the explicit value of the energy levels.

The construction of A′ = ⟨L′, E ′⟩ is as follows. The set of locations

L′ = {⟨ℓ, e⟩ | ℓ ∈ L,−!
, e ∈ Safe(ℓ)} ∪ L ,→ ∪ L↔

contains all locations in L ,→ ∪L↔ and a location ⟨ℓ, e⟩ for all pairs of locations ℓ ∈ L ,−!
and

possible safe energy level for that location ℓ. There are following transitions in A′:
– for all pairs ⟨ℓ, e⟩, ⟨ℓ′, e + z⟩ ∈ L′, there is a transition (⟨ℓ, e⟩, a, 0, ⟨ℓ′, e + z⟩) ∈ E ′

from ⟨ℓ, e⟩ to ⟨ℓ′, e+ z⟩ with weight 0 in A′ if (ℓ, a, z, ℓ′) ∈ E,
– for all ⟨ℓ, e⟩ ∈ L′ and ℓ′ ∈ L,→ ∪ L↔, there is a transition (⟨ℓ, e⟩, a, e + z, ℓ′) ∈ E ′

from ⟨ℓ, e⟩ to ℓ′ with weight e+ z in A′ if (ℓ, a, z, ℓ′) ∈ E,
– for all pairs of locations ℓ, ℓ′ ∈ L,→ ∪ L↔, there is a transition (ℓ, a, z, ℓ′) ∈ E ′ in A′

if (ℓ, a, z, ℓ′) ∈ E.
We then define the safety condition Safe′ over L′ by letting Safe′((ℓ, e)) = [0,+∞),

and Safe′(ℓ) = Safe(ℓ) for all ℓ ∈ L ,→ ∪ L↔. Finally, given a set of locations S ⊆ L
containing L↔, we let

S ′ = {⟨ℓ, e⟩ ∈ L′ | ℓ ∈ S ∩ L,−!
} ∪ [S ∩ (L ,→ ∪ L↔)].

Assuming that L ,→∪L↔ ̸= ∅, we prove that a location-synchronizing word in A′ from S ′

under safety condition Safe′ is also a location-synchronizing word in A from S under safety
condition Safe, and vice-versa.

First, assume that A′ has a location-synchronizing word w. Let ℓf ∈ L′ be the location
where A′ is synchronized in from S ′: ℓf = loc(post(S ′, w)). Consider a state (ℓ, e) of A
where ℓ ∈ S. There are two cases: (i) the location ℓ ∈ L ,→ ∪ L↔ has lower-bounded
or trivial safety constraint, then (ℓ, e) is a valid state in A′. Moreover, all states and
transitions visited along the run of w over A′ are valid states and transitions in A too.
Thus, inputting w from (ℓ, e) in A brings the automaton in the same location ℓf . (ii) the

178

location ℓ ∈ L ,−!
has bounded safety constraint. The run of A over the word w from the

state (ℓ, e) is mimicked by run of A′ but starting from (⟨ℓ, e⟩, 0). As a consequence, this
run ends in ℓf too.

The converse implication is similar. Assume that there is a location-synchronizing
word w in A that merges all runs starting from S into the same location ℓf . We show
that w is location-synchronizing in A′ too. For all locations in S ∩ (L ,→ ∪ L↔), as well as
for the states of the form ((ℓ, e), 0), it is easy to see that the run of A over w is mimicked
with the run of A′. Moreover, since there are only lower-bound or trivial constraints in Safe′

condition for A′, it is the case from states of the form ((ℓ, e), f) with f > 0 too.
We then apply the methods used in Lemma 8.7 to the WA A′. Since the construction

of A′ involves an exponential blowup in the number of locations, we end up with a 3-
EXPSPACE algorithm. The EXPSPACE lower bound proved in Lemma 8.4 still applies
here.

!

Now, we consider general safety conditions where the constraints can be bounded,
lower-bounded, upper-bounded or trivial constraints. The set L of locations is partitioned
into L ,−!

, L ,→, L←!
and L↔ where locations in L←!

have upper-bounded safety constraints
such as e ≤ n where n ∈ Z. In this setting, transitions between locations in L←!

and
locations in both of L ,→ and L↔ are taken as back-edge too.

Lemma 8.9. The location-synchronizing problem in WAs under a general safety condition
is decidable in 3-EXPSPACE.

Proof. Let A = ⟨L,E⟩ be a WA over the alphabet A, and let Safe be a general safety
condition. Considering the safety condition, we partition the set of locations into L =
L ,−!

∪ L,→ ∪ L←!
∪ L↔. Using similar arguments as presented in the proof of Lemma 8.5,

we remove all back-edges. Since all back-edges are removed, for all words w, starting from
some location ℓ ∈ L ,−!

the run over w either visit locations in L←!
or location in L ,→. We

thus can turn the upper-bound constraints to the lower-bound constraints by negating the
weights of transitions in all locations ℓ ∈ L←!

with such upper-bound constraints.
The following non-deterministic algorithm decides whether the WA A has a location-

synchronizing word w under Safe. It first non-deterministically partitions L ,−!
into two sets

L←!

,−!
and L ,→

,−!
such that the locations from which the run over w only visits location in L←!

are
guessed and are contained in L←!

,−!
, and the locations from which the run over w only visits

location in L ,→ are contained in L ,→
,−!

. The algorithm next builds another WA A′ = ⟨L′, E ′⟩
from A and Safe as follows. The set of locations is

L′ = (L ,−!
∪ L←!

)× {−1} ∪ (L ,−!
∪ L ,→ ∪ L↔)× {1}

and
– for all x ∈ {−1, 1}, the transition (⟨ℓ, x⟩, a, x × z, ⟨ℓ′, x⟩) ∈ E ′ is in A′ if and only if
(ℓ, a, z, ℓ′) ∈ E;

179

– for all locations ℓ ∈ L ,−!
∪ L←!

and ℓ′ ∈ L↔, the transition (⟨ℓ,−1⟩, a,−z, ⟨ℓ′, 1⟩) ∈ E ′

is in A′ if and only if (ℓ, a, z, ℓ′) is in E.
Now we change the safety conditions and define Safe′ such that e ∈ Safe′(⟨ℓ, y⟩) if and

only if ye ∈ Safe(ℓ). Notice that Safe′ then only has bounded, lower-bounded or trivial
safety constraints.

This construction has the following property: a word w is a location-synchronizing
word in A with safety constraint Safe if and only if it is also a location-synchronizing
word in A′ from the subset S = (L←!

,−!
∪ L←!

)× {−1} ∪ (L ,→
,−!
∪ L,→ ∪ L↔)× {1} with safety

constraint Safe′. Both implications are straightforwardly proven, and since A′ has no
back-edges the 3-EXPSPACE result follows.

!

From previous Lemmas and arguments, Theorem 8.4, stating the complexity bounds
of location-synchronizing word in WAs under a general safety condition, follows. Regard-
ing the PSPACE-hardness result, the reduction from partial transition function used in
Lemma 8.2 can be adapted to use lower-bounded and interval safety constraint, which
entails the result.

Theorem 8.4. The location-synchronizing problem in WAs under a general safety
condition is decidable in 3-EXPSPACE, and it is PSPACE-hard.

180

9Conclusion

Summary. The main contribution of this thesis is a novel approach to the qualitative
analysis and the synthesis problem of the distribution-outcomes in probabilistic systems.
We introduced synchronizing properties defined on the distribution-outcomes of Markov
decision processes (MDPs) and probabilistic automata (PAs), that require that the win-
ning strategy (or the input word) brings the system in some (group of) state(s) with a
large probability, possibly in limit. In other words, the probability mass in the distri-
bution, that indicates the likelihood of the system to be in different states at specific
states, is accumulated in some target state. We defined always, eventually, weakly and
strongly synchronizing properties that respectively are in analogy with safety, reachability,
Büchi and coBüchi conditions in state-semantics. We considered three qualitative win-
ning modes: sure, almost-sure and limit-sure modes, and we provided matching upper and
lower complexity bounds of the existence problem of a winning strategy for synchronizing
conditions, as well as the memory requirement for optimal winning strategies. In addi-
tion to the existence problem of a winning word-strategy in PAs that has been considered
as the emptiness problems of synchronizing languages, we also discussed the universality
problems. We carried over results for synchronizing problems from MDPs and PAs to
two-player turn-based games and non-deterministic finite state automata. Along with the
main results, we established new complexity results for alternating finite automata over a
one-letter alphabet.

As a further contribution, we introduced the synchronization for timed automata (TAs)
and weighted automata (WAs). We provided results for several variants and combinations
of these: including deterministic and non-deterministic timed and weighted automata,
synchronization to unique location with possibly different clock valuations or accumulated

181

weights, as well as synchronization with a safety condition forbidding the automaton to
visit states outside a safety-set during synchronization (e.g. energy constraints).

Future works. Partially-observable Markov decision processes (POMDPs) are a gen-
eralization of MDPs where the controller, which makes the strategic choices, is not able
to distinguish states, but groups of states through an observation [CDH10]. Thus, the
states of systems are grouped (or sometimes partitioned) in different observations, and
the controller choice only relies on partial information about the history of the system
execution, namely, on the past sequence of observations. As one direction for further in-
vestigation, synchronizing properties in POMDPs can be considered. In particular, since
PAs are a kind of POMDPs where the set of observations is a singleton, the undecidability
results for the emptiness problem of some synchronizing languages in PAs, immediately
give the undecidability for the existence problem of a winning observation-based strategy in
POMDPs. On the other hand, MDPs are a kind of POMDPs where the set of observations
is equal to the state space, and we have seen that all synchronizing problems are decidable
in MDPs. Going from decidability to undecidability of synchronizing problems in these
two extreme kinds of POMDPs, one can see which type of observations functions arise
a decidable class of synchronizing properties in POMDPs; particularly, studying the sets
of (practically meaningful) restrictions on the class of winning strategies with decidable
synchronizing problems is interesting.

MDPs can be viewed as 11
2
-player stochastic games, and thus a natural generalization

of them is 21
2
-player stochastic games where in addition to strategic choices of a controller

(Player-1) and random responses of its environment, strategic choices for an adversary
(Player-2) exist [CH12]. Along the results for the synchronizing properties in MDPs, we
have established results for turn based two player games, that is kind of 2 1

2
-player stochas-

tic games where the environment always responds deterministically. The links between
synchronizing properties in MDPs to turn based two player games are established by the
fact that the exact value of probabilities in transitions of MDPs do not matter while syn-
chronization. It would be very interesting to see whether this result holds in 2 1

2
-player

stochastic games, and to study the role of a de-synchronizing adversary and the memory
requirement for the strategies of the adversary.

It is known that an irreducible finite Markov chain has a set of stationary distribu-
tions [KS83, Nor98, Ser13]. For an MDP and a strategy, a distribution X can be defined
as a stationary distribution when in the distribution-outcome, there is an infinite subse-
quence of distributions converging to X. Given a set of target stationary distributions
and an MDP, one can study limit conditions in analogy to Büchi and coBüchi conditions:
does there exists a strategy for the MDP such that some or all stationary distributions
are from the target set? The weakly and strongly synchronizing conditions are kind of
limit conditions; for example, for the function max T the set of target distributions in limit
condition is the set of Dirac distributions on states of T . Another interesting point could
be observing the behavior of the maximal subsequence of the distribution-outcome con-

182

verging to a stationary distribution X. In particular, taking intervals probabilities and
assigning symbols to each interval distribution, the language obtained in the convergence
of a maximal subsequence to a stationary distribution X, is irregular for Markov chains
and if only one entry of X is of interest [AAGT12]. It is interesting to find the class of
strategies such that the MDP shows a regular behavior when converging to a stationary
distribution.

In this thesis, we have studied synchronizing and location-synchronizing problems for
TAs and WAs. We left an open question in the thesis: decidability of the location-
synchronizing problem in non-deterministic WAs. We showed that the technique used
to solve location-synchronizing problem in deterministic WAs fails when applying for non-
deterministic WAs, that is namely avoiding back-edges. Avoiding back-edges is not also
possible when location-synchronizing from a subset of locations in deterministic WAs;
though in that case we provided the undecidability result. It would be interesting to fill
this gap and complete the extensive study done on synchronization of WAs. Recently, the
study of synchronizing strategies under partial observation has been motivated in turn-
based games [LLS14]. In this direction, a further topic to explore is defining synchronizing
conditions in timed and weighted games, considering perfect-information and partial ob-
servation strategies for the players.

The concept of synchronization has been found useful in applications such as planning,
control of discrete event systems, bio-computing, and robotics [BAPE+03, Vol08, DMS11a].
The usage of synchronization also shows promises in the verification of cryptographic pro-
tocols. Cryptographic protocols are small programs that are specifically designed to ensure
the security of private communications on public networks such as wireless ad-hoc net-
works. Contrary to classical networks using routers and access-points, ad-hoc networks
consist of communicating members that broadcast a message one to another. Messages
sent by a source member of the network is typically forwarded by other members until
the message reaches its destination. Onion protocols have been specifically developed to
ensure the anonymity of the members sending messages, meaning that a malicious mem-
ber of the network should not be able to determine the identity of the sender from the
forwarded messages [CD13]. By design, before forwarding a message, a member adds an
encrypted layer of routing information to the message which increases the size of the mes-
sage. The malicious member thus can determine the length of the path the message has
gone through from the sender to himself. Using the concept of synchronization in the
topology of small examples of networks, one can see that a sender, from which all paths
to the malicious member have the same length, can be identified implying a breach on the
anonymity property supposedly guaranteed by onion protocols. A further work could be
to formally specify the synchronization requirements on the topology of ad-hoc networks
and combine them with classic verification techniques on cryptographic protocols [CD13]
to ensure the security of onion protocols.

183

184

Bibliography

[AAGT12] Manindra Agrawal, S. Akshay, Blaise Genest, and P. S. Thiagarajan. Approx-
imate verification of the symbolic dynamics of Markov chains. In Proceedings
of the 27th Annual IEEE Symposium on Logic in Computer Science, LICS
2012, Dubrovnik, Croatia, June 25-28, 2012, pages 55–64. IEEE, 2012.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical
Computer Science, 126(2):183–235, 1994.

[AGV10] Dimitry S. Ananichev, Vladimir V. Gusev, and Mikhail V. Volkov. Slowly
synchronizing automata and digraphs. In Mathematical Foundations of Com-
puter Science 2010, 35th International Symposium, MFCS 2010, Brno, Czech
Republic, August 23-27, 2010. Proceedings, volume 6281 of Lecture Notes in
Computer Science, pages 55–65. Springer, 2010.

[AH90] James Aspnes and Maurice Herlihy. Fast randomized consensus using shared
memory. Journal Algorithm, 11(3):441–461, 1990.

[BAPE+03] Yaakov Benenson, Rivka Adar, Tamar Paz-Elizur, Zvi Livneh, and Ehud
Shapiro. DNA molecule provides a computing machine with both data and
fuel. Proceedings of the National Academy of Sciences, USA, 100:2191–2196,
2003.

[BBG08] Christel Baier, Nathalie Bertrand, and Marcus Größer. On decision problems
for probabilistic Büchi automata. In Foundations of Software Science and
Computational Structures, 11th International Conference, FOSSACS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29 - April 6, 2008. Pro-
ceedings, volume 4962 of Lecture Notes in Computer Science, pages 287–301.
Springer, 2008.

[BBL08] Patricia Bouyer, Ed Brinksma, and Kim Guldstrand Larsen. Optimal infi-
nite scheduling for multi-priced timed automata. Formal Methods in System
Design, 32(1):3–23, 2008.

[BBMR08] Roberto Baldoni, François Bonnet, Alessia Milani, and Michel Raynal. On the
solvability of anonymous partial grids exploration by mobile robots. In Prin-
ciples of Distributed Systems, 12th International Conference, OPODIS 2008,
Luxor, Egypt, December 15-18, 2008. Proceedings, volume 5401 of Lecture
Notes in Computer Science, pages 428–445. Springer, 2008.

[BBS06] Christel Baier, Nathalie Bertrand, and Ph. Schnoebelen. On computing fix-
points in well-structured regular model checking, with applications to lossy

185

channel systems. In Logic for Programming, Artificial Intelligence, and Rea-
soning, 13th International Conference, LPAR 2006, Phnom Penh, Cambodia,
November 13-17, 2006, Proceedings, volume 4246 of Lecture Notes in Com-
puter Science, pages 347–361. Springer, 2006.

[BCH+07] Christel Baier, Lucia Cloth, Boudewijn R. Haverkort, Matthias Kuntz, and
Markus Siegle. Model checking Markov chains with actions and state labels.
IEEE Transaction Software Engineering, 33(4):209–224, 2007.

[BGB12] Christel Baier, Marcus Größer, and Nathalie Bertrand. Probabilistic ω-
automata. Journal ACM, 59(1):1, 2012.

[BHK+12] Tomás Brázdil, Holger Hermanns, Jan Krcál, Jan Kretínský, and Vojtech
Rehák. Verification of open interactive Markov chains. In IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer
Science, FSTTCS 2012, December 15-17, 2012, Hyderabad, India, volume 18
of LIPIcs, pages 474–485. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2012.

[BK98a] Christel Baier and Marta Z. Kwiatkowska. Model checking for a probabilistic
branching time logic with fairness. Distributed Computing, 11(3):125–155,
1998.

[BK98b] Christel Baier and Marta Z. Kwiatkowska. On the verification of qualitative
properties of probabilistic processes under fairness constraints. Inf. Process.
Lett., 66(2):71–79, 1998.

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT
Press, 2008.

[BKHW05] Christel Baier, Joost-Pieter Katoen, Holger Hermanns, and Verena Wolf.
Comparative branching-time semantics for Markov chains. Information and
Computation, 200(2):149–214, 2005.

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory, Vol. 1: Efficient
Algorithms. MIT Press, 1996.

[CD11] Krishnendu Chatterjee and Laurent Doyen. Games and Markov decision pro-
cesses with mean-payoff parity and energy parity objectives. In Mathematical
and Engineering Methods in Computer Science - 7th International Doctoral
Workshop, MEMICS 2011, Lednice, Czech Republic, October 14-16, 2011,
Revised Selected Papers, volume 7119 of Lecture Notes in Computer Science,
pages 37–46. Springer, 2011.

[CD13] Rémy Chrétien and Stéphanie Delaune. Formal analysis of privacy for routing
protocols in mobile ad hoc networks. In Principles of Security and Trust - Sec-
ond International Conference, POST 2013, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2013, Rome, Italy,
March 16-24, 2013. Proceedings, volume 7796 of Lecture Notes in Computer
Science, pages 1–20. Springer, 2013.

186

[CDH10] Krishnendu Chatterjee, Laurent Doyen, and Thomas A. Henzinger. Qualita-
tive analysis of partially-observable Markov decision processes. In Mathemat-
ical Foundations of Computer Science 2010, 35th International Symposium,
MFCS 2010, Brno, Czech Republic, August 23-27, 2010. Proceedings, volume
6281 of Lecture Notes in Computer Science, pages 258–269. Springer, 2010.

[Čer64] Ján Černý. Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis, 14(3):208–216, 1964.

[CH12] Krishnendu Chatterjee and Thomas A. Henzinger. A survey of stochastic
ω-regular games. Journal of Computer and System Sciences, 78(2):394–413,
2012.

[CHJS13] Krishnendu Chatterjee, Monika Henzinger, Manas Joglekar, and Nisarg Shah.
Symbolic algorithms for qualitative analysis of Markov decision processes with
Büchi objectives. Formal Methods in System Design, 42(3):301–327, 2013.

[CHP08] Krishnendu Chatterjee, Thomas A. Henzinger, and Nir Piterman. Algorithms
for Büchi games. CoRR, abs/0805.2620, 2008.

[CJS12] Krishnendu Chatterjee, Manas Joglekar, and Nisarg Shah. Average case anal-
ysis of the classical algorithm for Markov decision processes with Büchi objec-
tives. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2012, December 15-17, 2012,
Hyderabad, India, volume 18 of LIPIcs, pages 461–473. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik, 2012.

[CKV+11] Rohit Chadha, Vijay Anand Korthikanti, Mahesh Viswanathan, Gul Agha,
and YoungMin Kwon. Model checking MDPs with a unique compact invari-
ant set of distributions. In Eighth International Conference on Quantitative
Evaluation of Systems, QEST 2011, Aachen, Germany, 5-8 September, 2011,
pages 121–130. IEEE Computer Society, 2011.

[CSV08] Rohit Chadha, A. Prasad Sistla, and Mahesh Viswanathan. On the expressive-
ness and complexity of randomization in finite state monitors. In Proceedings
of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science,
LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 18–29. IEEE Com-
puter Society, 2008.

[CT12] Krishnendu Chatterjee and Mathieu Tracol. Decidable problems for proba-
bilistic automata on infinite words. In Proceedings of the 27th Annual IEEE
Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia,
June 25-28, 2012, pages 185–194. IEEE, 2012.

[CY95] Costas Courcoubetis and Mihalis Yannakakis. The complexity of probabilistic
verification. Journal of the ACM, 42(4):857–907, 1995.

[dA97] Luca de Alfaro. Formal Verification of Probabilistic Systems. PhD thesis,
Stanford University, 1997.

187

[dAH00] Luca de Alfaro and Thomas A. Henzinger. Concurrent omega-regular games.
In 15th Annual IEEE Symposium on Logic in Computer Science, Santa Bar-
bara, California, USA, June 26-29, 2000, pages 141–154. IEEE Computer
Society, 2000.

[dAHK07] Luca de Alfaro, Thomas A. Henzinger, and Orna Kupferman. Concurrent
reachability games. Theoretical Computer Science, 386(3):188–217, 2007.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts
in mathematics. Springer, 2012.

[DJL+14] Laurent Doyen, Line Juhl, Kim G. Larsen, Nicolas Markey, and Mahsa Shir-
mohammadi. Synchronizing words for weighted and timed automata. In Pro-
ceedings of the 34th Conference on Foundations of Software Technology and
Theoretical Computer Science, FSTTCS’14, Leibniz International Proceedings
in Informatics. Leibniz-Zentrum für Informatik, 2014. To appear.

[DMS11a] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Infinite syn-
chronizing words for probabilistic automata. In Mathematical Foundations of
Computer Science 2011 - 36th International Symposium, MFCS 2011, War-
saw, Poland, August 22-26, 2011. Proceedings, volume 6907 of Lecture Notes
in Computer Science, pages 278–289. Springer, 2011.

[DMS11b] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Synchroniz-
ing objectives for Markov decision processes. In Proceedings International
Workshop on Interactions, Games and Protocols, iWIGP 2011, Saarbrücken,
Germany, 27th March 2011., volume 50 of EPTCS, pages 61–75, 2011.

[DMS12] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Infinite syn-
chronizing words for probabilistic automata (erratum). CoRR, abs/1206.0995,
2012.

[DMS14a] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Limit syn-
chronization in Markov decision processes. In Foundations of Software Sci-
ence and Computation Structures - 17th International Conference, FOSSACS
2014, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014, Proceedings,
volume 8412 of Lecture Notes in Computer Science, pages 58–72. Springer,
2014.

[DMS14b] Laurent Doyen, Thierry Massart, and Mahsa Shirmohammadi. Robust syn-
chronization in Markov decision processes. In CONCUR 2014 - Concur-
rency Theory - 25th International Conference, CONCUR 2014, Rome, Italy,
September 2-5, 2014. Proceedings, volume 8704 of Lecture Notes in Computer
Science, pages 234–248. Springer, 2014.

[EKVY08] Kousha Etessami, Marta Z. Kwiatkowska, Moshe Y. Vardi, and Mihalis Yan-
nakakis. Multi-objective model checking of Markov decision processes. Logical
Methods in Computer Science, 4(4), 2008.

188

[EL10] Stewart Ethier and Jiyeon Lee. A Markovian slot machine and parrondo’s
paradox. Annals of Applied Probability, 20:1098–1125, 2010.

[Epp90] David Eppstein. Reset sequences for monotonic automata. SIAM J. Comput.,
19(3):500–510, 1990.

[FJLS11] Uli Fahrenberg, Line Juhl, Kim G. Larsen, and Jirí Srba. Energy games
in multiweighted automata. In Theoretical Aspects of Computing - ICTAC
2011 - 8th International Colloquium, Johannesburg, South Africa, August 31
- September 2, 2011. Proceedings, volume 6916 of Lecture Notes in Computer
Science, pages 95–115. Springer, 2011.

[FP06] Wan Fokkink and Jun Pang. Variations on Itai-Rodeh leader election for
anonymous rings and their analysis in PRISM. Journal of Universal Computer
Science, 12(8):981–1006, 2006.

[FV97] Jerzy Filar and Koos Vrieze. Competitive Markov Decision Processes. Springer,
1997.

[FV13] Fedor M. Fominykh and Mikhail V. Volkov. P(l)aying for synchronization. In-
ternational Journal of Foundations of Computer Science, 24(6):765–780, 2013.

[GJ79] M. R. Garey and David S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GO10] Hugo Gimbert and Youssouf Oualhadj. Probabilistic automata on finite words:
Decidable and undecidable problems. In Automata, Languages and Program-
ming, 37th International Colloquium, ICALP 2010, Bordeaux, France, July
6-10, 2010, Proceedings, Part II, LNCS 6199, pages 527–538. Springer, 2010.

[GR88] A. Gibbons and W. Rytter. Efficient parallel algorithms. Cambridge University
Press, 1988.

[HKK14] Holger Hermanns, Jan Krcál, and Jan Kretínský. Probabilistic bisimulation:
Naturally on distributions. In CONCUR 2014 - Concurrency Theory - 25th
International Conference, Rome, Italy, September 2-5, 2014. Proceedings, vol-
ume 8704 of Lecture Notes in Computer Science, pages 249–265. Springer,
2014.

[HMW09] Thomas A. Henzinger, Maria Mateescu, and Verena Wolf. Sliding window
abstraction for infinite Markov chains. In Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France, June 26 - July 2,
2009. Proceedings, volume 5643 of Lecture Notes in Computer Science, pages
337–352. Springer, 2009.

[Hol95] Markus Holzer. On emptiness and counting for alternating finite automata.
In Developments in Language Theory, pages 88–97, 1995.

[IRS76] Harry B. Hunt III, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the
equivalence, containment, and covering problems for the regular and context-
free languages. Journal of Computer and System Sciences, 12(2):222–268,
1976.

189

[IS95] Balázs Imreh and Magnus Steinby. Some remarks on directable automata.
Acta Cybern., 12(1):23–35, 1995.

[IS99] Balazs Imreh and Magnus Steinby. Directable nondeterministic automata.
Acta Cybernetica, 14(1):105–115, 1999.

[JS07] Petr Jancar and Zdenek Sawa. A note on emptiness for alternating fi-
nite automata with a one-letter alphabet. Information Processing Letters,
104(5):164–167, 2007.

[Kfo70] D.J. Kfoury. Synchronizing sequences for probabilistic automata. Studies in
Applied Mathematics, 29:101–103, 1970.

[KNP05] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Probabilistic
model checking in practice: case studies with PRISM. SIGMETRICS Perfor-
mance Evaluation Review, 32(4):16–21, 2005.

[KNP08] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. Using probabilistic
model checking in systems biology. SIGMETRICS Performance Evaluation
Review, 35(4):14–21, 2008.

[Koz77] Dexter Kozen. Lower bounds for natural proofs systems. In Proceedings of 18th
Symposium on the Foundations of Computer Science, pages 254–266, 1977.

[KS83] John G. Kemeny and James Laurie Snell. Finite Markov chains. Springer-
Verlag, New York, 1983.

[KVAK10] Vijay Anand Korthikanti, Mahesh Viswanathan, Gul Agha, and YoungMin
Kwon. Reasoning about MDPs as transformers of probability distributions. In
QEST 2010, Seventh International Conference on the Quantitative Evaluation
of Systems, Williamsburg, Virginia, USA, 15-18 September 2010, pages 199–
208. IEEE Computer Society, 2010.

[Lip76] Richard J. Lipton. The reachability problem requires exponential space. 62,
New Haven, Connecticut: Yale University, Department of Computer Science,
Research, 1976.

[LLS14] Kim Guldstrand Larsen, Simon Laursen, and Jirí Srba. Synchronizing strate-
gies under partial observability. In CONCUR 2014 - Concurrency Theory -
25th International Conference, CONCUR 2014, Rome, Italy, September 2-5,
2014. Proceedings, volume 8704 of Lecture Notes in Computer Science, pages
188–202. Springer, 2014.

[Mar90] Donald A. Martin. An extension of borel determinacy. Annals of Pure and
Applied Logic, 49(3):279–293, 1990.

[Mar98] Donald A. Martin. The determinacy of blackwell games. Journal of Symbolic
Logic, 63(4):1565–1581, 1998.

[Mar10] Pavel V. Martyugin. Complexity of problems concerning carefully synchro-
nizing words for PFA and directing words for NFA. In Computer Science -
Theory and Applications, 5th International Computer Science Symposium in

190

Russia, CSR 2010, Kazan, Russia, June 16-20, 2010. Proceedings, volume
6072 of Lecture Notes in Computer Science, pages 288–302. Springer, 2010.

[Mar12] Pavel V. Martyugin. Synchronization of automata with one undefined or am-
biguous transition. In Implementation and Application of Automata - 17th
International Conference, CIAA 2012, Porto, Portugal, July 17-20, 2012. Pro-
ceedings, volume 7381 of Lecture Notes in Computer Science, pages 278–288.
Springer, 2012.

[Min67] Marvin Lee Minsky. Computation: Finite and Infinite Machines. Prentice
Hall, Inc., 1967.

[Nor98] James R. Norris. Markov chains. Cambridge series in statistical and proba-
bilistic mathematics. Cambridge University Press, 1998.

[OU10] Jörg Olschewski and Michael Ummels. The complexity of finding reset words
in finite automata. In Mathematical Foundations of Computer Science 2010,
35th International Symposium, MFCS 2010, Brno, Czech Republic, August
23-27, 2010. Proceedings, volume 6281 of Lecture Notes in Computer Science,
pages 568–579. Springer, 2010.

[Pin78] Jean-Eric Pin. Sur les mots synthronisants dans un automate fini. Elektron-
ische Informationsverarbeitung und Kybernetik, 14(6):297–303, 1978.

[Rac78] Charles Rackoff. The covering and boundedness problems for vector addition
systems. Theoretical Computer Science, 6:223–231, 1978.

[Ros93] Kenneth H. Rosen. Elementary number theory and its applications (3. ed.).
Addison-Wesley, 1993.

[San04] Sven Sandberg. Homing and synchronizing sequences. In Model-Based Test-
ing of Reactive Systems, Advanced Lectures [The volume is the outcome of a
research seminar that was held in Schloss Dagstuhl in January 2004], volume
3472 of Lecture Notes in Computer Science, pages 5–33. Springer, 2004.

[Ser13] Bruno Sericola. Markov Chains: Theory and Applications. Wiley-ISTE, 2013.

[Sip97] Michael Sipser. Introduction to the theory of computation. PWS Publishing
Company, 1997.

[SVW87] A. Prasad Sistla, Moshe Y. Vardi, and Pierre Wolper. The complementation
problem for Büchi automata with appplications to temporal logic. Theoretical
Computer Science, 49:217–237, 1987.

[TBG09] Mathieu Tracol, Christel Baier, and Marcus Größer. Recurrence and tran-
sience for probabilistic automata. In IARCS Annual Conference on Foun-
dations of Software Technology and Theoretical Computer Science, FSTTCS
2009, December 15-17, 2009, IIT Kanpur, India, volume 4 of LIPIcs, pages
395–406. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009.

[Tra11] A. N. Trahtman. Modifying the upper bound on the length of minimal syn-
chronizing word. In Fundamentals of Computation Theory - 18th International

191

Symposium, FCT 2011, Oslo, Norway, August 22-25, 2011. Proceedings, vol-
ume 6914 of Lecture Notes in Computer Science, pages 173–180. Springer,
2011.

[Tra14] A. N. Trahtman. The length of a minimal synchronizing word and the černy
conjecture. CoRR, abs/1405.2435, 2014.

[Var85] Moshe Y. Vardi. Automatic verification of probabilistic concurrent finite-state
programs. In 26th Annual Symposium on Foundations of Computer Science,
Portland, Oregon, USA, 21-23 October 1985, pages 327–338. IEEE Computer
Society, 1985.

[Vol08] Mikhail V. Volkov. Synchronizing automata and the Cerny conjecture. In
Language and Automata Theory and Applications, Second International Con-
ference, LATA 2008, Tarragona, Spain, March 13-19, 2008. Revised Papers,
volume 5196 of Lecture Notes in Computer Science, pages 11–27. Springer,
2008.

192

