?. Amélioration-de-la-formation-de-la and S. , Le protocole de formation utilisé est en général la procédure CC/CV. Or, il est possible de former la SEI autrement en imposant une tension de 0.2 V pour favoriser la lithiation du graphite ou procéder par pulsations de courant

T. Abe, H. Fukuda, Y. Iriyama, and Z. Ogumi, Solvated Li-Ion Transfer at Interface Between Graphite and Electrolyte, Journal of The Electrochemical Society, vol.151, issue.8, pp.151-1120, 2004.
DOI : 10.1149/1.1763141

A. M. Andersson and K. Edström, Chemical Composition and Morphology of the Elevated Temperature SEI on Graphite, Journal of The Electrochemical Society, vol.148, issue.10, pp.1100-1109, 2001.
DOI : 10.1149/1.1397771

A. M. Andersson, A. Henningson, H. Siegbahn, U. Jansson, and K. Edström, Electrochemically lithiated graphite characterised by photoelectron spectroscopy, Journal of Power Sources, vol.119, issue.121, pp.119-121, 2003.
DOI : 10.1016/S0378-7753(03)00277-5

A. S. Andersson and J. O. Thomas, The source of first-cycle capacity loss in LiFePO4, Journal of Power Sources, vol.97, issue.98, pp.97-105, 2001.
DOI : 10.1016/S0378-7753(01)00633-4

M. Armand, The History of Polymer Electrolytes, Solid State Ionics, pp.309-319, 1994.

D. Aurbach and Y. Cohen, The Application of Atomic Force Microscopy for the Study of Li Deposition Processes, Journal of The Electrochemical Society, vol.143, issue.11, pp.3525-3532, 1996.
DOI : 10.1149/1.1837248

D. Aurbach, Y. Ein-eli, O. Chusidyoungman-), Y. Carmeli, M. Babai et al., The Correlation Between the Surface Chemistry and the Performance of Li-Carbon Intercalation Anodes for Rechargeable "Rocking -Chair" Type Batteries, Journal of The Electrochemical Society, pp.141-603, 1994.

D. Aurbach, K. Gamolsky, B. Markovsky, Y. Gofer, M. Schmidt et al., On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries, Electrochimica Acta, vol.47, issue.9, pp.47-1423, 2002.
DOI : 10.1016/S0013-4686(01)00858-1

D. Aurbach, Y. Gofer, M. Ben-zion, and P. Aped, The behaviour of lithium electrodes in propylene and ethylene carbonate: Te major factors that influence Li cycling efficiency, Journal of Electroanalytical Chemistry, vol.339, issue.1-2, pp.451-471, 1992.
DOI : 10.1016/0022-0728(92)80467-I

D. Aurbach, Y. Gofer, J. Langzam-aurbach, H. Teller, and E. Levi, The Correlation Between Surface Chemistry, Surface Morphology, and Cycling Efficiency of Lithium Electrodes, Reversible Electrochemical Lithium Insertion into Graphitic Materials, pp.149-1255, 2002.

D. Aurbach and A. Zaban, Impedance spectroscopy of lithium electrodes, Journal of Electroanalytical Chemistry, vol.348, issue.1-2, pp.155-179, 1993.
DOI : 10.1016/0022-0728(93)80129-6

D. Aurbach, E. Zinigrad, H. Teller, and P. Dan, Factors Which Limit the Cycle Life of Rechargeable Lithium (Metal) Batteries, Journal of The Electrochemical Society, vol.147, issue.4, pp.1274-1279, 2000.
DOI : 10.1149/1.1393349

P. B. Balbuena and Y. X. Wang, Lithium-Ion Batteries -Solid-Electrolyte Interphase, 2004.

D. Bar-tow, E. Peled, and L. Burstein, A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries, Journal of The Electrochemical Society, vol.146, issue.3, pp.824-832, 1999.
DOI : 10.1149/1.1391688

J. Barker and F. Gao, Carbonaceous electrode and compatible electrolyte solvent, jan, 1998.

E. Barsoukov, J. H. Kim, C. O. Yoon, and H. Lee, Kinetics of lithium intercalation into carbon anodes: in situ impedance investigation of thickness and potential dependence, Solid State Ionics, vol.116, issue.3-4, pp.249-261, 1999.
DOI : 10.1016/S0167-2738(98)00411-1

J. O. Besenhard, M. Winter, J. Yang, and W. Biberacher, Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes, Journal of Power Sources, vol.54, issue.2, pp.228-231, 1995.
DOI : 10.1016/0378-7753(94)02073-C

D. Billaud, F. X. Henry, M. Lelaurain, and P. Willmann, Revisited structures of dense and dilute stage II lithium-graphite intercalation compounds, Journal of Physics and Chemistry of Solids, vol.57, issue.6-8, pp.775-781, 1996.
DOI : 10.1016/0022-3697(95)00348-7

I. Bloom, J. Christophersen, and K. Gering, Differential voltage analyses of high-power lithium-ion cells, Journal of Power Sources, vol.139, issue.1-2, pp.304-313, 2005.
DOI : 10.1016/j.jpowsour.2004.07.022

I. Bloom, J. P. Christophersen, D. P. Abraham, and K. L. Gering, Differential voltage analyses of high-power lithium-ion cells, Journal of Power Sources, vol.157, issue.1, pp.537-542, 2006.
DOI : 10.1016/j.jpowsour.2005.07.054

I. Bloom, A. N. Jansen, D. P. Abraham, J. Knuth, S. A. Jones et al., Differential voltage analyses of high-power, lithium-ion cells 1. Technique and application, Journal of Power Sources, pp.139-295, 2005.

G. Brunetti, D. Robert, P. Bayle-guillemaud, J. L. Rouvière, E. F. Rauch et al., Precession Electron Diffraction, Chemistry of Materials, vol.23, issue.20, pp.4515-4524, 2011.
DOI : 10.1021/cm201783z

URL : https://hal.archives-ouvertes.fr/hal-00664175

H. Bryngelsson, M. Stjerndahl, T. Gustafsson, and K. Edström, How dynamic is the SEI?, Journal of Power Sources, vol.174, issue.2, pp.970-975, 2007.
DOI : 10.1016/j.jpowsour.2007.06.050

H. Buqa, D. Goers, M. Holzapfel, M. E. Spahr, and P. Novák, High Rate Capability of Graphite Negative Electrodes for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.152, issue.2, pp.474-481, 2005.
DOI : 10.1149/1.1851055

H. Buqa, A. Würsig, D. Goers, L. J. Hardwick, M. Holzapfel et al., Behaviour of highly crystalline graphites in lithium-ion cells with propylene carbonate containing electrolytes, Journal of Power Sources, vol.146, issue.1-2, pp.146-134, 2005.
DOI : 10.1016/j.jpowsour.2005.03.106

I. Camean, P. Lavela, J. L. Tirado, and A. B. Garcia, On the electrochemical performance of anthracite-based graphite materials as anodes in lithium-ion batteries, Fuel, vol.89, issue.5, pp.89-986, 2010.
DOI : 10.1016/j.fuel.2009.06.034

F. P. Campana, H. Buqa, P. Novák, R. Kötz, and H. Siegenthaler, In situ atomic force microscopy study of exfoliation phenomena on graphite basal planes, Electrochemistry Communications, vol.10, issue.10, pp.1590-1593, 2008.
DOI : 10.1016/j.elecom.2008.08.026

L. Castro, R. Dedryvere, J. B. Ledeuil, J. Breger, C. Tessier et al., Aging Mechanisms of LiFePO4 ?????? Graphite Cells Studied by XPS: Redox Reaction and Electrode???Electrolyte Interfaces, Journal of The Electrochemical Society, vol.159, issue.4, pp.159-357, 2012.
DOI : 10.1149/2.024204jes

J. C. Chang, Y. F. Tzeng, J. M. Chen, H. T. Chiu, and C. Y. Lee, Carbon nanobeads as an anode material on high rate capability lithium ion batteries, Electrochimica Acta, vol.54, issue.27, pp.7066-7070, 2009.
DOI : 10.1016/j.electacta.2009.07.020

Y. C. Chang and H. J. Sohn, Electrochemical Impedance Analysis for Lithium Ion Intercalation into Graphitized Carbons, Journal of The Electrochemical Society, vol.147, issue.1, pp.50-58, 2000.
DOI : 10.1149/1.1393156

Z. H. Chen and J. R. Dahn, Reducing Carbon in LiFePO[sub 4]/C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density, Journal of The Electrochemical Society, vol.149, issue.9, pp.1184-1189, 2002.
DOI : 10.1149/1.1498255

D. D. Chung, Review graphite, Journal of Materials Science, vol.37, issue.8, pp.1475-1489, 2002.
DOI : 10.1023/A:1014915307738

. Kim, Origin of graphite exfoliation -An investigation of the important role of solvent cointercalation, Journal of the Electrochemical Society, vol.147, pp.4391-4398, 2000.

F. M. Courtel, S. Niketic, D. Duguay, Y. Abu-lebdeh, and I. J. Davidson, Water-soluble binders for MCMB carbon anodes for lithium-ion batteries, Journal of Power Sources, vol.196, issue.4, pp.2128-2134, 2011.
DOI : 10.1016/j.jpowsour.2010.10.025

J. R. Dahn, R. Fong, and M. J. Spoon, Suppression of staging in lithium-intercalated carbon by disorder in the host, Physical Review B, vol.42, issue.10, pp.42-6424, 1990.
DOI : 10.1103/PhysRevB.42.6424

Y. Dai, Y. Wang, V. Eshkenazi, E. Peled, and S. G. Greenbaum, Lithium-7 Nuclear Magnetic Resonance Investigation of Lithium Insertion in Hard Carbon, Journal of The Electrochemical Society, vol.145, issue.4, pp.145-1179, 1998.
DOI : 10.1149/1.1838435

C. Delmas, M. Maccario, L. Croguennec, F. Le-cras, and F. Weill, Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model, Nature Materials, vol.129, issue.8, pp.665-671, 2008.
DOI : 10.1038/nmat2230

URL : https://hal.archives-ouvertes.fr/hal-00324979

J. P. Diard, B. L. Gorrec, and C. Montella, EIS study of electrochemical battery discharge on constant load, Journal of Power Sources, vol.70, issue.1, pp.78-84, 1998.
DOI : 10.1016/S0378-7753(97)02668-2

J. P. Diard, B. Le-gorrec, C. Montella, and P. Landaud, Constant load vs constant current EIS study of electrochemical battery discharge, Electrochimica Acta, vol.42, issue.23-24, pp.42-3417, 1997.
DOI : 10.1016/S0013-4686(97)00019-4

J. P. Diard, B. Le-gorrec, C. Montella, C. Poinsignon, and G. Vitter, Impedance measurements of polymer electrolyte membrane fuel cells running on constant load, Journal of Power Sources, vol.74, issue.2, pp.74-244, 1998.
DOI : 10.1016/S0378-7753(98)00056-1

F. B. Dias, L. Plomp, and J. B. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries, Journal of Power Sources, vol.88, issue.2, pp.169-191, 2000.
DOI : 10.1016/S0378-7753(99)00529-7

M. Dollé, Etude par spectroscopie d' impédance électrochimique, couplée à la microscopie electronique, d' interfaces de batteries au lithium et à ions lithium, Thèse doctorat, 2002.

M. Dollé, F. Orsini, A. S. Gozdz, and J. Tarascon, Development of Reliable Three-Electrode Impedance Measurements in Plastic Li-Ion Batteries, Journal of The Electrochemical Society, vol.148, issue.8, pp.851-857, 2001.
DOI : 10.1149/1.1381071

J. Drofenik, M. Gaberscek, R. Dominko, F. W. Poulsen, M. Mogensen et al., Cellulose as a binding material in graphitic anodes for Li ion batteries: a performance and degradation study, Electrochimica Acta, vol.48, issue.7, pp.48-883, 2003.
DOI : 10.1016/S0013-4686(02)00784-3

A. Du-pasquier, F. Disma, T. Bowmer, A. S. Gozdz, G. Amatucci et al., Differential Scanning Calorimetry Study of the Reactivity of Carbon Anodes in Plastic Li-Ion Batteries, Journal of The Electrochemical Society, vol.145, issue.2, pp.145-472, 1998.
DOI : 10.1149/1.1838287

K. Edström, M. Herstedt, and D. P. Abraham, A new look at the solid electrolyte interphase on graphite anodes in Li-ion batteries, Journal of Power Sources, vol.153, issue.2, pp.380-384, 2006.
DOI : 10.1016/j.jpowsour.2005.05.062

Y. Ein-eli, A New Perspective on the Formation and Structure of the Solid Electrolyte Interface at the Graphite Anode of Li-Ion Cells, Electrochemical and Solid-State Letters, vol.2, issue.5, pp.212-214, 1999.
DOI : 10.1149/1.1390787

L. Ouatani, R. Dedryvère, C. Siret, P. Biensan, S. Reynaud et al., The Effect of Vinylene Carbonate Additive on Surface Film Formation on Both Electrodes in Li-Ion Batteries, Journal of The Electrochemical Society, vol.156, issue.2, pp.156-103, 2009.
DOI : 10.1149/1.3029674

J. E. Fisher and A. Safran, Chemical physics of intercalation, 1987.

R. Fong, U. Von-sacken, and J. R. Dahn, Studies of Lithium Intercalation into Carbons Using Nonaqueous Electrochemical Cells, Journal of The Electrochemical Society, vol.137, issue.7, pp.137-2009, 1990.
DOI : 10.1149/1.2086855

A. Funabiki, M. Inaba, and Z. Ogumi, A.c. impedance analysis of electrochemical lithium intercalation into highly oriented pyrolytic graphite, Journal of Power Sources, vol.68, issue.2, pp.227-231, 1997.
DOI : 10.1016/S0378-7753(96)02556-6

URL : https://hal.archives-ouvertes.fr/hal-00021152

A. Funabiki, M. Inaba, Z. Ogumi, S. Yuasa, J. Otsuji et al., Impedance Study on the Electrochemical Lithium Intercalation into Natural Graphite Powder, Journal of The Electrochemical Society, vol.145, issue.1, pp.145-172, 1998.
DOI : 10.1149/1.1838231

G. Gachot, S. Grugeon, M. Armand, S. Pilard, P. Guenot et al., Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries, Journal of Power Sources, vol.178, issue.1, pp.178-409, 2008.
DOI : 10.1016/j.jpowsour.2007.11.110

L. Gaines and R. Cuenza, Costs of Lithium Ion Batteries for Vehicles, rap. tech, 2000.
DOI : 10.2172/761281

M. Galinski, A. Lewandowski, and I. Stepniak, Ionic liquids as electrolytes, Electrochimica Acta, vol.51, issue.26, pp.5567-5580, 2006.
DOI : 10.1016/j.electacta.2006.03.016

N. Gangulibabu, D. Kalaiselvi, C. H. Bhuvaneswari, and . Doh, On the synergistic effect of carbonate anion directed shape controlled morphology and super P carbon in preparing LiFePO4/C cathode with improved lithium intercalation behavior, International Journal of Electrochemical Science, vol.5, pp.1597-1604, 2010.

M. X. Gao, Y. Lin, Y. H. Yin, Y. F. Liu, and H. G. Pan, Structure optimization and the structural factors for the discharge rate performance of LiFePO4/C cathode materials, Electrochimica Acta, vol.55, issue.27, pp.55-8043, 2010.
DOI : 10.1016/j.electacta.2010.02.003

L. Gireaud, S. Grugeon, S. Laruelle, S. Pilard, and J. Tarascon, Identification of Li Battery Electrolyte Degradation Products Through Direct Synthesis and Characterization of Alkyl Carbonate Salts, Journal of The Electrochemical Society, vol.152, issue.5, pp.850-857, 2005.
DOI : 10.1149/1.1872673

J. S. Gnanaraj, Y. S. Cohen, M. D. Levi, and D. Aurbach, The effect of pressure on the electroanalytical response of graphite anodes and LiCoO2 cathodes for Li-ion batteries, Journal of Electroanalytical Chemistry, vol.516, issue.1-2, pp.516-89, 2001.
DOI : 10.1016/S0022-0728(01)00663-5

D. Goers, M. E. Spahr, A. Leone, W. Markle, and P. Novák, The influence of the local current density on the electrochemical exfoliation of graphite in lithium-ion battery negative electrodes, Electrochimica Acta, vol.56, issue.11, pp.56-3799, 2011.
DOI : 10.1016/j.electacta.2011.02.046

J. B. Gong, T. Tsumura, H. Nakamura, M. Yoshio, H. Yoshitake et al., Functional Electrolyte II : Additives for Suppression of the Electrolyte Decomposition, 2002.

D. Guerard and A. Herold, Intercalation of lithium into graphite and other carbons, Carbon, vol.13, issue.4, pp.13-337, 1975.
DOI : 10.1016/0008-6223(75)90040-8

P. Guo, H. H. Song, and X. H. Chen, Electrochemical performance of graphene nanosheets as anode material for lithium-ion batteries, Electrochemistry Communications, vol.11, issue.6, pp.1320-1324, 2009.
DOI : 10.1016/j.elecom.2009.04.036

A. M. Haregewoin, E. G. Leggesse, J. C. Jiang, F. M. Wang, B. J. Hwang et al., Comparative Study on the Solid Electrolyte Interface Références bibliographiques Formation by the Reduction of Alkyl Carbonates in Lithium ion Battery, Electrochimica Acta, pp.136-274, 2014.

J. E. Harlow, D. A. Stevens, J. C. Burns, J. N. Reimers, and J. R. Dahn, Ultra High Precision Study on High Capacity Cells for Large Scale Automotive Application, Journal of the Electrochemical Society, vol.160, issue.11, pp.160-2306, 2013.
DOI : 10.1149/2.096311jes

M. Herstedt, A. M. Andersson, H. Rensmo, H. Siegbahn, and K. Edström, Characterisation of the SEI formed on natural graphite in PC-based electrolytes, Electrochimica Acta, vol.49, issue.27, pp.49-4939, 2004.
DOI : 10.1016/j.electacta.2004.06.006

A. Hintennach and P. Novák, A novel combinative Raman and SEM mapping method for the detection of exfoliation of graphite in electrodes at very positive potentials, Journal of Raman Spectroscopy, vol.55, issue.121, pp.42-1754, 2011.
DOI : 10.1002/jrs.2930

M. Holzapfel, A. Martinent, F. Alloin, B. Le-gorrec, R. Yazami et al., First lithiation and charge/discharge cycles of graphite materials, investigated by electrochemical impedance spectroscopy, Journal of Electroanalytical Chemistry, vol.546, pp.546-587, 2003.
DOI : 10.1016/S0022-0728(03)00144-X

URL : https://hal.archives-ouvertes.fr/hal-00417982

Y. Hu, W. Kong, Z. Wang, H. Li, X. Huang et al., Effect of Morphology and Current Density on the Electrochemical Behavior of Graphite Electrodes in PC-Based Electrolyte Containing VEC Additive, Electrochemical and Solid-State Letters, vol.7, issue.11, pp.442-446, 2004.
DOI : 10.1149/1.1807532

Y. S. Hu, W. H. Kong, H. Li, X. J. Huang, and L. Q. Chen, Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries, Electrochemistry Communications, vol.6, issue.2, pp.126-131, 2004.
DOI : 10.1016/j.elecom.2003.10.024

M. Inaba, Y. Kawatate, A. Funabiki, S. Jeong, T. Abe et al., STM study on graphite/electrolyte interface in lithium-ion batteries: solid electrolyte interface formation in trifluoropropylene carbonate solution, Electrochimica Acta, vol.45, issue.1-2, pp.45-99, 1999.
DOI : 10.1016/S0013-4686(99)00196-6

M. Itagaki, N. Kobari, S. Yotsuda, K. Watanabe, S. Kinoshita et al., In situ electrochemical impedance spectroscopy to investigate negative electrode of lithium-ion rechargeable batteries, Journal of Power Sources, vol.135, issue.1-2, pp.255-261, 2004.
DOI : 10.1016/j.jpowsour.2004.04.004

R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, and J. J. Christensen, Thermodynamic and kinetic data for cation-macrocycle interaction, Chemical Reviews, vol.85, issue.4, pp.271-339, 1985.
DOI : 10.1021/cr00068a003

S. K. Jeong, M. Inaba, Y. Iriyama, T. Abe, and Z. Ogumi, Surface Film Formation on Graphite Negative Electrode in Lithium-Ion Batteries: AFM Study in an Ethylene Carbonate-Based Solution, Journal of The Electrochemical Society, vol.148, issue.9, pp.47-1975, 2002.
DOI : 10.1149/1.1387981

S. K. Jeong, M. Inaba, R. Mogi, Y. Iriyama, T. Abe et al., Surface Film Formation on a Graphite Negative Electrode in Lithium-Ion Batteries:?? Atomic Force Microscopy Study on the Effects of Film-Forming Additives in Propylene Carbonate Solutions, Langmuir, vol.17, issue.26, pp.17-8281, 2001.
DOI : 10.1021/la015553h

L. W. Ji, Y. F. Yao, O. Toprakci, Z. Lin, Y. Z. Liang et al., Fabrication of carbon nanofiber-driven electrodes from electrospun polyacrylonitrile/polypyrrole bicomponents for high-performance rechargeable lithium-ion batteries, Journal of Power Sources, vol.195, issue.7, pp.195-2050, 2010.
DOI : 10.1016/j.jpowsour.2009.10.021

J. Jiang and J. R. Dahn, Effects of solvents and salts on the thermal stability of LiC6, Electrochimica Acta, vol.49, issue.26, pp.4599-4604, 2004.
DOI : 10.1016/j.electacta.2004.05.014

F. Joho, B. Rykart, A. Blome, P. Novák, H. Wilhelm et al., Relation between surface properties, pore structure and first-cycle charge loss of graphite as negative electrode in lithium-ion batteries, Journal of Power Sources, vol.97, issue.98, pp.97-105, 2001.
DOI : 10.1016/S0378-7753(01)00595-X

N. Kambe, M. S. Dresselhaus, G. Dresselhaus, S. Basu, A. R. Mcghie et al., Intercalate Ordering in 1st Stage Graphite-Lithium, Materials Science and Engineering, pp.40-41, 1979.

K. Kanamura, S. Shiraishi, H. Tamura, and Z. Takehara, X-Ray Photoelectron Spectroscopic Analysis and Scanning Electron Microscopic Observation of the Lithium Surface Immersed in Nonaqueous Solvents, Journal of The Electrochemical Society, vol.141, issue.9, pp.141-2379, 1994.
DOI : 10.1149/1.2055129

K. Kanamura, H. Tamura, S. Shiraishi, and Z. Takehara, Morphology and chemical compositions of surface films of lithium deposited on a Ni substrate in nonaqueous electrolytes, Journal of Electroanalytical Chemistry, vol.394, issue.1-2, pp.49-62, 1995.
DOI : 10.1016/0022-0728(95)03972-J

C. Kasper, The Theory of the Potential and the Technical Practice of Electrodeposition : I . The General Problem and the Cases of Uniform Flow, Transactions of, pp.77-353, 1940.

T. Kawamura, S. Okada, and J. Yamaki, Decomposition reaction of LiPF6-based electrolytes for lithium ion cells, Journal of Power Sources, vol.156, issue.2, pp.547-554, 2006.
DOI : 10.1016/j.jpowsour.2005.05.084

A. Kominato, E. Yasukawa, N. Sato, T. Ijuuin, H. Asahina et al., Analysis of surface films on lithium in various organic electrolytes, Journal of Power Sources, vol.68, issue.2, pp.68-471, 1997.
DOI : 10.1016/S0378-7753(97)02592-5

F. , L. Mantia, J. Vetter, and P. Novák, Impedance spectroscopy on porous materials : A general model and application to graphite electrodes of lithiumion batteries, Electrochimica Acta, pp.53-4109, 2008.

L. Internationale-de-l-'energie, Key World Energy Statistics http ://www.iea.org/publications/freepublications/publication, 2013.

S. Leroy, F. Blanchard, R. Dedryvère, H. Martinez, B. Carre et al., Surface film formation on a graphite electrode in Li-ion batteries: AFM and XPS study, Surface and Interface Analysis, vol.90, issue.98, pp.37-773, 2005.
DOI : 10.1002/sia.2072

URL : https://hal.archives-ouvertes.fr/hal-01504000

S. Leroy, H. Martinez, R. Dedryvère, D. Lemordant, and D. Gonbeau, Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study, Applied Surface Science, vol.253, issue.11, pp.253-4895, 2007.
DOI : 10.1016/j.apsusc.2006.10.071

M. D. Levi and D. Aurbach, Diffusion Coefficients of Lithium Ions during Intercalation into Graphite Derived from the Simultaneous Measurements and Modeling of Electrochemical Impedance and Potentiostatic Intermittent Titration Characteristics of Thin Graphite Electrodes, The Journal of Physical Chemistry B, vol.101, issue.23, pp.4641-4647, 1997.
DOI : 10.1021/jp9701911

M. D. Levi, C. Wang, J. S. Gnanaraj, and D. Aurbach, Electrochemical behavior of graphite anode at elevated temperatures in organic carbonate solutions, Journal of Power Sources, vol.119, issue.121, pp.538-542, 2003.
DOI : 10.1016/S0378-7753(03)00279-9

A. Lewandowski and A. ?. Mocek, Ionic liquids as electrolytes for Li-ion batteries???An overview of electrochemical studies, Journal of Power Sources, vol.194, issue.2, pp.601-609, 2009.
DOI : 10.1016/j.jpowsour.2009.06.089

F. Q. Li, Y. Q. Lai, Z. Q. Zhang, H. Q. Gao, and J. Yang, Electrochemical behaviors of Et4NBF4+LiPF6/EC+PC+DMC electrolyte on graphite electrode, Wuli Huaxue Xuebao, Acta Physico -Chimica Sinica, pp.24-1302, 2008.

H. Li, X. J. Wang, H. S. Lee, X. Q. Yang, and X. J. Huang, The effects of substituting groups in cyclic carbonates for stable SEI formation on graphite anode of lithium batteries, Electrochemistry Communications, pp.12-386, 2010.

J. C. Li, X. C. Xiao, F. Q. Yang, M. W. Verbrugge, and Y. T. Cheng, Potentiostatic Intermittent Titration Technique for Electrodes Governed by Diffusion and Interfacial Reaction, The Journal of Physical Chemistry C, vol.116, issue.1, pp.116-1472, 2012.
DOI : 10.1021/jp207919q

L. X. Liao, X. Q. Cheng, Y. L. Ma, P. J. Zuo, W. Fang et al., Fluoroethylene carbonate as electrolyte additive to improve low temperature performance of LiFePO4 electrode, Electrochimica Acta, vol.87, pp.466-472, 2013.
DOI : 10.1016/j.electacta.2012.09.083

P. Liu, J. Wang, J. Hicks-garner, E. Sherman, S. Soukiazian et al., Aging Mechanisms of LiFePO4 Batteries Deduced by Electrochemical and Structural Analyses, Journal of The Electrochemical Society, pp.157-499, 2010.

W. Liu, M. Yang, H. Wu, S. M. Chiao, and N. Wu, Enhanced Cycle Life of Si Anode for Li-Ion Batteries by Using Modified Elastomeric Binder, Electrochemical and Solid-State Letters, vol.8, issue.2, p.100, 2005.
DOI : 10.1149/1.1847685

M. Lu, Y. Y. Tian, and Y. Yang, A comparison of electrochemical performance of natural graphite sulfurized by ball-milling and heat-treating as an anode for lithium ion batteries, Electrochimica Acta, vol.54, issue.27, pp.6792-6796, 2009.
DOI : 10.1016/j.electacta.2009.06.079

S. Malmgren, K. Ciosek, M. Hahlin, T. Gustafsson, M. Gorgoi et al., Comparing anode and cathode electrode/electrolyte interface composition and morphology using soft and hard X-ray photoelectron spectroscopy, Electrochimica Acta, vol.97, pp.97-120, 2013.
DOI : 10.1016/j.electacta.2013.03.010

W. Markle, C. Y. Lu, and P. Novak, Morphology of the Solid Electrolyte Interphase on Graphite in Dependency on the Formation Current, Journal of The Electrochemical Society, vol.158, issue.12, pp.158-1478, 2011.
DOI : 10.1149/2.077112jes

W. Märkle, N. Tran, D. Goers, M. E. Spahr, and P. Novák, The influence of electrolyte and graphite type on the intercalation behaviour at high potentials, Carbon, pp.47-2727, 2009.

B. Markovsky, M. D. Levi, and D. Aurbach, The basic electroanalytical behavior of practical graphite???lithium intercalation electrodes, Electrochimica Acta, vol.43, issue.16-17, pp.2287-2304, 1998.
DOI : 10.1016/S0013-4686(97)10172-4

A. Martinent, Etude physico-chimique des électrolytes d'hexafluorophosphate de lithium pour une application dans la batterie lithium-ion, Thèse doctorat, 2001.

Y. Matsumura, S. Wang, and J. Mondori, Interactions between Disordered Carbon and Lithium in Lithium Ion Rechargeable Batteries, Carbon, pp.33-1457, 1995.

O. Matsuoka, A. Hiwara, T. Omi, M. Toriida, T. Hayashi et al., Ultra-thin passivating film induced by vinylene carbonate on highly oriented pyrolytic graphite negative electrode in lithium-ion cell, Journal of Power Sources, vol.108, issue.1-2, pp.128-138, 2002.
DOI : 10.1016/S0378-7753(02)00012-5

G. Maurin, C. Bousquet, F. Henn, P. Bernier, R. Almairac et al., Electrochemical intercalation of lithium into multiwall carbon nanotubes, Chemical Physics Letters, vol.312, issue.1, pp.136-137, 2000.
DOI : 10.1016/S0009-2614(99)00886-6

R. Mcmillan, H. Slegr, Z. X. Shu, and W. D. Wang, Fluoroethylene carbonate electrolyte and its use in lithium ion batteries with graphite anodes, Journal of Power Sources, vol.81, issue.82, pp.81-101, 1999.
DOI : 10.1016/S0378-7753(98)00201-8

R. Mogi, M. Inaba, S. K. Jeong, Y. Iriyama, T. Abe et al., Effects of Some Organic Additives on Lithium Deposition in Propylene Carbonate, Journal of The Electrochemical Society, vol.149, issue.12, pp.1578-1583, 2002.
DOI : 10.1149/1.1516770

K. I. Morigaki and A. Ohta, Analysis of the surface of lithium in organic electrolyte by atomic force microscopy, Fourier transform infrared spectroscopy and scanning auger electron microscopy, Journal of Power Sources, vol.76, issue.2, pp.76-159, 1998.
DOI : 10.1016/S0378-7753(98)00151-7

M. Morita, M. Ishikawa, and Y. Matsuda, Lithium Ion Batteries : Fundamentals and Performance, 1999.

G. A. Nazri and G. Pistoia, Lithium Batteries : Science and Technology, 2009.
DOI : 10.1007/978-0-387-92675-9

S. H. Ng, C. Vix-guterl, P. Bernardo, N. Tran, J. Ufheil et al., Correlations between surface properties of graphite and the first cycle specific charge loss in lithium-ion batteries, Carbon, vol.47, issue.3, pp.47-705, 2009.
DOI : 10.1016/j.carbon.2008.11.008

. Lucht, Role of Solution Structure in Solid Electrolyte Interphase Formation on Graphite with LiPF 6 in Propylene Carbonate, The Journal of Physical Chemistry C, vol.117, pp.25381-25389, 2013.

P. Novák, F. Joho, M. Lanz, B. Rykart, J. C. Panitz et al., The complex electrochemistry of graphite electrodes in lithium-ion batteries, Journal of Power Sources, vol.97, issue.98, pp.97-98, 2001.
DOI : 10.1016/S0378-7753(01)00586-9

P. Novák, J. Ufheil, H. Buqa, F. Krumeich, M. E. Spahr et al., The importance of the active surface area of graphite materials in the first lithium intercalation, Journal of Power Sources, vol.174, issue.2, pp.174-1082, 2007.
DOI : 10.1016/j.jpowsour.2007.06.036

H. Nozaki, K. Nagaoka, K. Hoshi, N. Ohta, and M. Inagaki, Carbon-coated graphite for anode of lithium ion rechargeable batteries: Carbon coating conditions and precursors, Journal of Power Sources, vol.194, issue.1, pp.486-493, 2009.
DOI : 10.1016/j.jpowsour.2009.05.040

F. Orsini, M. Dollé, and J. Tarascon, Impedance study of the Li degrees/electrolyte interface upon cycling, Solid State Ionics, pp.213-221, 2000.

H. Ota, Y. Sakata, A. Inoue, and S. Yamaguchi, Analysis of Vinylene Carbonate Derived SEI Layers on Graphite Anode, Journal of The Electrochemical Society, vol.151, issue.10, pp.151-1659, 2004.
DOI : 10.1149/1.1785795

H. Ota, Y. Sakata, Y. Otake, K. Shima, M. Ue et al., Structural and Functional Analysis of Surface Film on Li Anode in Vinylene Carbonate-Containing Electrolyte, Journal of The Electrochemical Society, vol.151, issue.11, pp.151-1778, 2004.
DOI : 10.1149/1.1798411

H. Ota, T. Sato, H. Suzuki, T. Usami, and . Tpd-gc, TPD???GC/MS analysis of the solid electrolyte interface (SEI) on a graphite anode in the propylene carbonate/ethylene sulfite electrolyte system for lithium batteries, Journal of Power Sources, vol.97, issue.98, pp.97-98, 2001.
DOI : 10.1016/S0378-7753(01)00738-8

H. Ota, K. Shima, M. Ue, and J. Yamaki, Effect of vinylene carbonate as additive to electrolyte for lithium metal anode, Electrochimica Acta, vol.49, issue.4, pp.565-572, 2004.
DOI : 10.1016/j.electacta.2003.09.010

A. K. Padhi, K. S. Nanjundaswamy, and J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, vol.144, issue.4, pp.1188-1194, 1997.
DOI : 10.1149/1.1837571

A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, and J. B. Goodenough, Effect of Structure on the Fe[sup 3+]???Fe[sup 2+] Redox Couple in Iron Phosphates, Journal of The Electrochemical Society, vol.144, issue.5, pp.1609-1613, 1997.
DOI : 10.1149/1.1837649

M. Park, X. C. Zhang, M. D. Chung, G. B. Less, and A. M. Sastry, A review of conduction phenomena in Li-ion batteries, Journal of Power Sources, vol.195, issue.24, pp.195-7904, 2010.
DOI : 10.1016/j.jpowsour.2010.06.060

E. Peled, The Electrochemical Behavior of Alkali and Alkaline Earth Metals in Nonaqueous Battery Systems???The Solid Electrolyte Interphase Model, Journal of The Electrochemical Society, vol.126, issue.12, pp.2047-2051, 1979.
DOI : 10.1149/1.2128859

E. Peled, D. Bar, A. Tow, A. Merson, L. Gladkich et al., Composition, depth profiles and lateral distribution of materials in the SEI built on HOPG-TOF SIMS and XPS studies, Journal of Power Sources, vol.97, issue.98, pp.97-98, 2001.
DOI : 10.1016/S0378-7753(01)00505-5

E. Peled, D. Golodnitsky, and G. Ardel, Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes, Journal of The Electrochemical Society, vol.144, issue.8, pp.208-210, 1997.
DOI : 10.1149/1.1837858

E. Peled, D. Golodnitsky, and C. Menachem, Bar-Tow, An Advanced Tool for the Selection of Electrolyte Components for Rechargeable Lithium Batteries, Journal of The Electrochemical Society, pp.145-3482, 1998.

E. Peled, D. Golodnitsky, A. Ulus, and V. Yufit, Effect of carbon substrate on SEI composition and morphology, Electrochimica Acta, vol.50, issue.2-3, pp.391-395, 2004.
DOI : 10.1016/j.electacta.2004.01.130

E. Peled, C. Menachem, D. Bar-tow, and A. Melman, ChemInform Abstract: Improved Graphite Anode for Lithium-Ion Batteries. Chemically Bonded Solid Electrolyte Interface and Nanochannel Formation., ChemInform, vol.143, issue.18, pp.4-7, 1996.
DOI : 10.1002/chin.199618007

T. Piao, S. M. Park, C. H. Doh, and S. I. Moon, Intercalation of Lithium Ions into Graphite Electrodes Studied by AC Impedance Measurements, Journal of The Electrochemical Society, vol.146, issue.8, pp.2794-2798, 1999.
DOI : 10.1149/1.1392010

T. Placke, V. Siozios, R. Schmitz, S. F. Lux, P. Bieker et al., Influence of graphite surface modifications on the ratio of basal plane to ???non-basal plane??? surface area and on the anode performance in lithium ion batteries, Journal of Power Sources, vol.200, pp.200-83, 2012.
DOI : 10.1016/j.jpowsour.2011.10.085

I. A. Profatilova, S. S. Kim, and N. S. Choi, Enhanced thermal properties of the solid electrolyte interphase formed on graphite in an electrolyte with fluoroethylene carbonate, Electrochimica Acta, vol.54, issue.19, pp.4445-4450, 2009.
DOI : 10.1016/j.electacta.2009.03.032

Y. Qi and S. J. Harris, In Situ Observation of Strains during Lithiation of a Graphite Electrode, Journal of The Electrochemical Society, vol.157, issue.6, pp.741-747, 2010.
DOI : 10.1149/1.3377130

M. A. Ratner and D. F. Shriver, Ion transport in solvent-free polymers, Chemical Reviews, vol.88, issue.1, pp.109-124, 1988.
DOI : 10.1021/cr00083a006

B. Ravdel, K. M. Abraham, R. Gitzendanner, and C. Marsh, Temperature Dependence of the Conductivity of Lithium-Ion Battery Electrolytes, 200th Meeting of the ECS (Abstract #97), 2001.

Y. Reynier, Thermodynamique et cinétique d'électrodes pour batteries lithium-ion, 2005.

M. N. Richard and J. R. Dahn, Accelerating rate calorimetry studies of the effect of binder type on the thermal stability of a lithiated mesocarbon microbead material in electrolyte, Journal of Power Sources, vol.83, issue.1-2, pp.71-74, 1999.
DOI : 10.1016/S0378-7753(99)00260-8

R. D. Rogers and K. Seddon, Ionic Liquids, Accounts of Chemical Research, vol.40, issue.11, 2002.
DOI : 10.1021/ar700221n

URL : https://hal.archives-ouvertes.fr/hal-01306781

M. H. Ryou, G. B. Han, Y. M. Lee, J. N. Lee, D. J. Lee et al., Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells, Electrochimica Acta, vol.55, issue.6, pp.55-2073, 2010.
DOI : 10.1016/j.electacta.2009.11.036

D. Saito, Y. Ito, K. Hanai, T. Kobayashi, N. Imanishi et al., Carbon anode for dry-polymer electrolyte lithium batteries, Journal of Power Sources, vol.195, issue.18, pp.195-6172, 2010.
DOI : 10.1016/j.jpowsour.2009.11.076

M. Scarselli, P. Castrucci, and M. D. Crescenzi, Electronic and optoelectronic nano-devices based on carbon nanotubes, Journal of Physics: Condensed Matter, vol.24, issue.31, p.313202, 2012.
DOI : 10.1088/0953-8984/24/31/313202

G. Schroeder, B. Gierczyk, D. Waszak, and M. Walkowiak, Impact of ethyl tris-2-methoxyethoxy silane on the passivation of graphite electrode in Li-ion cells with PC-based electrolyte, Electrochemistry Communications, vol.8, issue.10, pp.1583-1587, 2006.
DOI : 10.1016/j.elecom.2006.07.030

V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, and R. Kostecki, Surface structural disordering in graphite upon lithium intercalation/deintercalation, Journal of Power Sources, vol.195, issue.11, pp.195-3655, 2010.
DOI : 10.1016/j.jpowsour.2009.12.034

E. G. Shim, T. H. Nam, J. G. Kim, H. S. Kim, and S. I. Moon, Effects of functional electrolyte additives for Li-ion batteries, Journal of Power Sources, vol.172, issue.2, pp.901-907, 2007.
DOI : 10.1016/j.jpowsour.2007.04.089

C. R. Sides, F. Croce, V. Y. Young, C. R. Martin, and B. Scrosati, A High-Rate, Nanocomposite LiFePO[sub 4]???Carbon Cathode, Electrochemical and Solid-State Letters, vol.8, issue.9, pp.484-487, 2005.
DOI : 10.1149/1.1999916

B. Simon and J. P. Boeuve, Rechargeable lithium electrochemical cell, 1997.

J. M. Skowronski and K. Knofczynski, Catalytically graphitized glass-like carbon examined as anode for lithium-ion cell performing at high charge/discharge rates, Journal of Power Sources, vol.194, issue.1, pp.81-87, 2009.
DOI : 10.1016/j.jpowsour.2009.04.048

M. C. Smart, B. V. Ratnakumar, S. Surampudi, Y. Wang, X. Zhang et al., Irreversible Capacities of Graphite in Low-Temperature Electrolytes for Lithium-Ion Batteries, Journal of The Electrochemical Society, vol.146, issue.11, pp.146-3963, 1999.
DOI : 10.1149/1.1392577

B. Son, M. Ryou, J. Choi, S. Kim, J. M. Ko et al., Effect of cathode/anode area ratio on electrochemical performance of lithiumion batteries, Journal of Power Sources, 2013.

H. S. Song, Z. Cao, X. Chen, H. Lu, M. Jia et al., Capacity fade of LiFePO4/graphite cell at elevated temperature, Journal of Solid State Electrochemistry, vol.110, issue.121, pp.17-599, 2013.
DOI : 10.1007/s10008-012-1893-2

J. Y. Song, Y. Y. Wang, and C. C. Wan, Review of gel-type polymer electrolytes for lithium-ion batteries, Journal of Power Sources, vol.77, issue.2, pp.77-183, 1999.
DOI : 10.1016/S0378-7753(98)00193-1

M. E. Spahr, H. Buqa, A. Würsig, D. Goers, L. Hardwick et al., Surface reactivity of graphite materials and their surface passivation during the first electrochemical lithium insertion, Journal of Power Sources, vol.153, issue.2, pp.153-300, 2006.
DOI : 10.1016/j.jpowsour.2005.05.032

M. E. Spahr, D. Cattaneo, and K. Streb, Method for producing graphite powder with an increased bulk density Brevet WO 01, 2001.

M. E. Spahr, D. Goers, W. Markle, J. Dentzer, A. Wursig et al., Overpotentials and solid electrolyte interphase formation at porous graphite electrodes in mixed ethylene carbonate???propylene carbonate electrolyte systems, Electrochimica Acta, vol.55, issue.28, pp.55-8928, 2010.
DOI : 10.1016/j.electacta.2010.08.025

X. G. Sun and S. Dai, Electrochemical investigations of ionic liquids with vinylene carbonate for applications in rechargeable lithium ion batteries, Electrochimica Acta, vol.55, issue.15, pp.4618-4626, 2010.
DOI : 10.1016/j.electacta.2010.03.019

P. Verma, P. Maire, and P. Novák, A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries, Electrochimica Acta, vol.55, issue.22, pp.55-6332, 2010.
DOI : 10.1016/j.electacta.2010.05.072

U. Von-sacken, E. Nodwell, A. Sundher, and J. R. Dahn, Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries, Journal of Power Sources, vol.54, issue.2, pp.240-245, 1995.
DOI : 10.1016/0378-7753(94)02076-F

U. , V. Sacken, E. Nodwell, A. Sundler, and J. R. Dahn, Comparative thermal stability of carbon intercalation anodes and lithium metal anodes for rechargeable lithium batteries, Solid State Ionics, pp.69-284, 1994.

M. R. Wagner, J. H. Albering, K. C. Moeller, J. O. Besenhard, and M. Winter, XRD evidence for the electrochemical formation of Li+(PC)yCn- in PC-based electrolytes, Electrochemistry Communications, vol.7, issue.9, pp.947-952, 2005.
DOI : 10.1016/j.elecom.2005.06.009

C. Wang, A. J. Appleby, and F. E. Little, Charge???discharge stability of graphite anodes for lithium-ion batteries, Journal of Electroanalytical Chemistry, vol.497, issue.1-2, pp.497-530, 2001.
DOI : 10.1016/S0022-0728(00)00447-2

C. S. Wang, A. J. Appleby, and F. E. Little, Electrochemical impedance study of initial lithium ion intercalation into graphite powders, Electrochimica Acta, vol.46, issue.12, pp.46-1793, 2001.
DOI : 10.1016/S0013-4686(00)00782-9

F. M. Wang, H. M. Cheng, H. C. Wu, S. Y. Chu, C. S. Cheng et al., Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries, Electrochimica Acta, vol.54, issue.12, pp.54-3344, 2009.
DOI : 10.1016/j.electacta.2008.12.032

F. M. Wang, H. Y. Wang, M. H. Yu, Y. J. Hsiao, and Y. Tsai, Differential pulse effects of solid electrolyte interface formation for improving performance on high-power lithium ion battery, Journal of Power Sources, vol.196, issue.23, pp.196-10395, 2011.
DOI : 10.1016/j.jpowsour.2011.08.045

Q. Wang, H. Li, L. Q. Chen, and X. J. Huang, Novel spherical microporous carbon as anode material for Li-ion batteries, Solid State Ionics, pp.152-153, 2002.

Y. X. Wang, S. Nakamura, K. Tasaki, and P. B. Balbuena, Theoretical Studies To Understand Surface Chemistry on Carbon Anodes for Lithium-Ion Batteries:?? How Does Vinylene Carbonate Play Its Role as an Electrolyte Additive?, Journal of the American Chemical Society, vol.124, issue.16, pp.124-4408, 2002.
DOI : 10.1021/ja017073i

M. Watanabe and J. Y. Sanchez, Solid State Ionics : Materials and Applications , Singapore, world scie éd, 1992.

T. Welton, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chemical Reviews, vol.99, issue.8, pp.2071-2083, 1999.
DOI : 10.1021/cr980032t

M. Winter, The Solid Electrolyte Interphase ??? The Most Important and the Least Understood Solid Electrolyte in Rechargeable Li Batteries, Zeitschrift f??r Physikalische Chemie, vol.223, issue.10-11, pp.1395-1406, 2009.
DOI : 10.1524/zpch.2009.6086

M. Winter, P. Novák, and A. Monnier, Graphites for Lithium-Ion Cells: The Correlation of the First-Cycle Charge Loss with the Brunauer-Emmett-Teller Surface Area, Journal of The Electrochemical Society, vol.145, issue.2, pp.145-428, 1998.
DOI : 10.1149/1.1838281

B. Wu, Y. Ren, D. Mu, X. J. Liu, J. C. Zhao et al., Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte, Journal of Solid State Electrochemistry, vol.28, issue.3, pp.17-811, 2012.
DOI : 10.1007/s10008-012-1927-9

B. R. Wu, Y. H. Ren, D. B. Mu, X. J. Liu, J. C. Zhao et al., Enhanced electrochemical performance of LiFePO4 cathode with the addition of fluoroethylene carbonate in electrolyte, Journal of Solid State Electrochemistry, vol.28, issue.3, pp.17-811, 2013.
DOI : 10.1007/s10008-012-1927-9

H. F. Xiang, C. H. Chen, J. Zhang, and K. Amine, Temperature effect on the graphite exfoliation in propylene carbonate based electrolytes, Journal of Power Sources, vol.195, issue.2, pp.195-604, 2010.
DOI : 10.1016/j.jpowsour.2009.07.036

K. Xu, Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries, Chemical Reviews, vol.104, issue.10, pp.4303-4418, 2004.
DOI : 10.1021/cr030203g

M. M. Xu and H. D. Dewald, Impedance studies of copper foil and graphite-coated copper foil electrodes in lithium-ion battery electrolyte, Electrochimica Acta, vol.50, issue.27, pp.5473-5478, 2005.
DOI : 10.1016/j.electacta.2005.03.051

R. Xue, H. Huang, G. Li, and L. Chen, Effect of cathodeanode mass ratio in lithium-ion secondary cells, Journal of Power Sources, vol.55, issue.1, pp.55-111, 1995.
DOI : 10.1016/0378-7753(94)02165-Y

A. Yamada, H. Koizumi, N. Sonoyama, and R. Kanno, Phase Change in Li[sub x]FePO[sub 4], Electrochemical and Solid-State Letters, vol.8, issue.8, pp.409-413, 2005.
DOI : 10.1149/1.1945373

O. Yamada, M. Ishikawa, and M. Morita, Charge/discharge cycling and impedance response of LiMn2O4 electrode in organic electrolyte solutions with different compositions, Electrochimica Acta, vol.45, issue.14, pp.45-2197, 2000.
DOI : 10.1016/S0013-4686(00)00315-7

Z. H. Yang, Y. H. Zhou, S. B. Sang, Y. Feng, and H. Q. Wu, Lithium insertion into multi-walled raw carbon nanotubes pre-doped with lithium, Materials Chemistry and Physics, vol.89, issue.2-3, pp.295-299, 2005.
DOI : 10.1016/j.matchemphys.2004.08.021

R. Yazami, A. Martinent, and Y. Reynier, Interfacial phenomena on the graphite-lithium electrode during the formation process and thermal aging, Ionics, vol.145, issue.98, pp.344-350, 2002.
DOI : 10.1007/BF02376047

URL : https://hal.archives-ouvertes.fr/hal-00418097

M. Yoo and C. W. Frank, Surface Chemistry and Morphology of Binders in Graphite Anodes of Lithium Ion Batteries, 2000.

S. H. Yoon, J. H. Ryu, S. M. Oh, and C. Lee, A preparation of carbon fibers using a block copolymer surfactant template and its application to anode of lithium ion batteries, Journal of Non-Crystalline Solids, vol.355, issue.14-15, pp.355-913, 2009.
DOI : 10.1016/j.jnoncrysol.2009.04.010

H. Yoshitake, K. Abe, T. Kitakura, J. B. Gong, Y. S. Lee et al., The Effect of Nano-sized SEI Film Formed by Vinyl Acetate Additive for Li-ion Batteries, Chemistry Letters, vol.32, issue.2, pp.32-134, 2003.
DOI : 10.1246/cl.2003.134

K. Zaghib, A. Mauger, F. Gendron, and C. M. Julien, Relationship between local structure and electrochemical performance of LiFePO(4) in Liion batteries, Ionics, pp.14-271, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00343678

H. L. Zhang, F. Li, C. Liu, J. Tan, and H. M. Cheng, New Insight into the Solid Electrolyte Interphase with Use of a Focused Ion Beam, The Journal of Physical Chemistry B, vol.109, issue.47, pp.22205-22211, 2005.
DOI : 10.1021/jp053311a

S. Zhang, N. Sun, X. He, X. Lu, and X. Zhang, Physical Properties of Ionic Liquids: Database and Evaluation, Journal of Physical and Chemical Reference Data, vol.35, issue.4, pp.1475-1517, 2006.
DOI : 10.1063/1.2204959

S. S. Zhang, M. S. Ding, K. Xu, J. Allen, and T. R. Jow, Understanding Solid Electrolyte Interface Film Formation on Graphite Electrodes, Electrochemical and Solid-State Letters, vol.4, issue.12, pp.206-208, 2001.
DOI : 10.1149/1.1414946

S. S. Zhang, K. Xu, and T. R. Jow, Effect of Li2CO3-coating on the performance of natural graphite in Li-ion battery, Electrochemical impedance study on the low temperature of Li-ion batteries Optimization of the forming conditions of the solid-state interface in the Li-ion batteries, pp.979-982, 2003.
DOI : 10.1016/j.elecom.2003.09.014

X. R. Zhang, R. Kostecki, T. J. Richardson, J. K. Pugh, and P. N. Ross, Electrochemical and Infrared Studies of the Reduction of Organic Carbonates, Journal of The Electrochemical Society, vol.148, issue.12, pp.1341-1345, 2001.
DOI : 10.1149/1.1415547

Z. Zhang, D. Fouchard, and J. R. Rea, Differential scanning calorimetry material studies: implications for the safety of lithium-ion cells, Journal of Power Sources, vol.70, issue.1, pp.16-20, 1998.
DOI : 10.1016/S0378-7753(97)02611-6

L. W. Zhao, I. Watanabe, T. Doi, S. Okada, and J. Yamaki, TG-MS analysis of solid electrolyte interphase (SEI) on graphite negative-electrode in lithium-ion batteries, Journal of Power Sources, vol.161, issue.2, pp.161-1275, 2006.
DOI : 10.1016/j.jpowsour.2006.05.045

T. Zheng, A. S. Gozdz, and G. G. Amatucci, Reactivity of the Solid Electrolyte Interface on Carbon Electrodes at Elevated Temperatures, Journal of The Electrochemical Society, vol.146, issue.11, pp.4014-4018, 1999.
DOI : 10.1149/1.1392585

G. R. Zhuang, Y. F. Chen, and P. N. Ross, The Reaction of Lithium with Dimethyl Carbonate and Diethyl Carbonate in Ultrahigh Vacuum Studied by X-ray Photoemission Spectroscopy, Langmuir, vol.15, issue.4, pp.15-1470, 1999.
DOI : 10.1021/la980454y

Q. C. Zhuang, L. L. Tian, G. Z. Wei, Q. F. Dong, and S. G. Sun, Two-and three-electrode impedance spectroscopic studies of graphite electrode in the first lithiation, Science Bulletin, vol.54, issue.15, pp.54-2627, 2009.
DOI : 10.1007/s11434-009-0356-3

Q. C. Zhuang, J. M. Xu, J. H. Tian, X. Y. Fan, Q. F. Dong et al., Studies on graphite anode during electrochemical scan cycles by EIS, Raman spectroscopy and XRD, Gaodeng Xuexiao Huaxue Xuebao, Chemical Journal of Chinese Universities, pp.29-973, 2008.