J. Lonien and J. Schwender, Analysis of Metabolic Flux Phenotypes for Two Arabidopsis Mutants with Severe Impairment in Seed Storage Lipid Synthesis, PLANT PHYSIOLOGY, vol.151, issue.3, pp.1617-1634, 2009.
DOI : 10.1104/pp.109.144121

K. Lorenc-kukula, R. Amarowicz, J. Oszmianski, P. Doermann, M. Starzyki et al., Pleiotropic Effect of Phenolic Compounds Content Increases in Transgenic Flax Plant, Journal of Agricultural and Food Chemistry, vol.53, issue.9, pp.3685-3692, 2005.
DOI : 10.1021/jf047987z

T. Lotan, M. Ohto, M. Yee, K. West, M. Lo et al., Arabidopsis LEAFY COTYLEDON1 Is Sufficient to Induce Embryo Development in Vegetative Cells, Cell, vol.93, issue.7, pp.1195-1205, 1998.
DOI : 10.1016/S0092-8674(00)81463-4

C. Lu, Z. Xin, Z. Ren, M. Miquel, and J. Browse, An enzyme regulating triacylglycerol composition is encoded by the ROD1 gene of Arabidopsis, Proceedings of the National Academy of Sciences, vol.106, issue.44, pp.18837-18842, 2009.
DOI : 10.1073/pnas.0908848106

D. Y. Lu, Y. Y. Tsao, Y. M. Leung, and K. P. Su, Docosahexaenoic Acid Suppresses Neuroinflammatory Responses and Induces Heme Oxygenase-1 Expression in BV-2 Microglia: Implications of Antidepressant Effects for Omega-3 Fatty Acids, Neuropsychopharmacology, vol.21, issue.11, pp.2238-2248, 2010.
DOI : 10.1038/npp.2010.98

E. B. Madsen, L. H. Madsen, S. Radutoiu, M. Olbryt, M. Rakwalska et al., A receptor kinase gene of the LysM type is involved in legumeperception of rhizobial signals, Nature, vol.425, issue.6958, pp.637-640, 2003.
DOI : 10.1038/nature02045

J. M. Marita, J. Ralph, R. D. Hatfield, D. Guo, F. Chen et al., Structural and compositional modifications in lignin of transgenic alfalfa down-regulated in caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase, Phytochemistry, vol.62, issue.1, pp.53-65, 2003.
DOI : 10.1016/S0031-9422(02)00434-X

M. Massaro, E. Scoditti, M. A. Carluccio, D. Caterina, and R. , Nutraceuticals and Prevention of Atherosclerosis: Focus on ??-3 Polyunsaturated Fatty Acids and Mediterranean Diet Polyphenols, Cardiovascular Therapeutics, vol.54, issue.Suppl, pp.13-19, 2010.
DOI : 10.1111/j.1755-5922.2010.00211.x

V. Mendu, J. S. Griffiths, S. Persson, S. Stork, B. Downie et al., Subfunctionalization of Cellulose Synthases in Seed Coat Epidermal Cells Mediates Secondary Radial Wall Synthesis and Mucilage Attachment, Plant Physiology, vol.157, issue.1, pp.441-445, 2011.
DOI : 10.1104/pp.111.179069

D. W. Meinke, L. H. Franzmann, T. C. Nickle, and E. C. Yeung, Leafy Cotyledon Mutants of Arabidopsis, THE PLANT CELL ONLINE, vol.6, issue.8, pp.1049-1064, 1994.
DOI : 10.1105/tpc.6.8.1049

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC160500

. Metalippro, Métabolisme lipidiqe chez les plantes et les levures, 2012.

N. Metropolis and S. Ulham, The Monte Carlo Method, Journal of the American Statistical Association, vol.44, issue.247, pp.44-335, 1949.
DOI : 10.1080/01621459.1949.10483310

A. Nanchen, T. Fuhrer, and U. Et-sauer, Metabolomics: Methods and protocols, 2007.

R. Naran, G. Chen, and N. C. Carpita, Novel Rhamnogalacturonan I and Arabinoxylan Polysaccharides of Flax Seed Mucilage, PLANT PHYSIOLOGY, vol.148, issue.1, pp.132-141, 2008.
DOI : 10.1104/pp.108.123513

N. Nesi, I. Debeaujon, C. Jond, G. Pelletier, M. Caboche et al., The TT8 Gene Encodes a Basic Helix-Loop-Helix Domain Protein Required for Expression of DFR and BAN Genes in Arabidopsis Siliques, The Plant Cell, vol.12, issue.10, pp.1863-1878, 2000.
DOI : 10.2307/3871198

P. D. Nesbitt, Y. Lam, and L. U. Thompson, Human metabolism of mammalian lignan precursors in raw and processed flaxseed, Am. J. Clin. Nutr, vol.69, pp.549-555, 1999.

Y. Ohashi, A. Oka, R. Rodrigues-pousada, M. Possenti, I. Ruberti et al., Modulation of Phospholipid Signaling by GLABRA2 in Root-Hair Pattern Formation, Science, vol.300, issue.5624, pp.1427-1430, 2003.
DOI : 10.1126/science.1083695

O. Grady, J. Schwender, J. Shachar-hill, Y. Morgan, and J. A. , Metabolic cartography: experimental quantification of metabolic fluxes from isotopic labeling studies, J. Exp, 2012.

J. Ohlrogge and J. Browse, Lipid Biosynthesis, THE PLANT CELL ONLINE, vol.7, issue.7, pp.957-970, 1995.
DOI : 10.1105/tpc.7.7.957

J. Ohlrogge and J. G. Jaworski, REGULATION OF FATTY ACID SYNTHESIS, Annual Review of Plant Physiology and Plant Molecular Biology, vol.48, issue.1, pp.109-136, 1997.
DOI : 10.1146/annurev.arplant.48.1.109

S. Omer, S. Kumar, and B. Khan, Over-expression of a subgroup 4 R2R3 type MYB transcription factor gene from Leucaena leucocephala reduces lignin content in transgenic tobacco, Plant Cell Reports, vol.40, issue.1, pp.161-171, 2013.
DOI : 10.1007/s00299-012-1350-9

/. Onidol and . Cetiom, L'avenir de la filière du lin oléagineux français, pp.1-6, 2010.

B. D. Oomah, E. O. Kenaschuk, W. Cui, and G. Mazza, Variation in the composition of water-soluble polysaccharides in flaxseed., Journal of Agricultural and Food Chemistry, vol.43, issue.6, pp.1484-1488, 1995.
DOI : 10.1021/jf00054a013

B. D. Oomah, G. Mazza, and E. O. Kenaschuk, Flavonoid content of flaxseed. Influence of cultivar and environment, Euphytica, vol.51, issue.2, pp.163-167, 1996.
DOI : 10.1007/BF00023854

B. D. Oomah and G. Mazza, Flaxseed proteins???a review, Food Chemistry, vol.48, issue.2, pp.109-114, 1993.
DOI : 10.1016/0308-8146(93)90043-F

B. D. Oomah, Processing of flaxseed fiber, oil protein, and lignan. Flaxseed in Human Nutrition, Second Edition, pp.20-363, 2003.

A. Overem, G. J. Buisman, J. T. Derksen, F. P. Cuperus, L. Molhoek et al., Seed oils rich in linolenic acid as renewable feedstock for environmentfriendly crosslinkers in powder coatings. Ind Crops Pod, pp.157-165, 1999.

G. K. Paschos, N. Yiannakouris, L. S. Rallidis, I. Davies, and B. A. Griffin, Apolipoprotein E Genotype in Dyslipidemic Patients and Response of Blood Lipids and Inflammatory Markers to Alpha-Linolenic Acid, Angiology, vol.56, issue.1, pp.49-60, 2005.
DOI : 10.1177/000331970505600107

G. K. Paschos, F. Magkos, D. B. Panagiotakos, V. Votteas, and A. Zampelas, Dietary supplementation with flaxseed oil lowers blood pressure in dyslipidaemic patients, European Journal of Clinical Nutrition, vol.175, issue.10, 2007.
DOI : 10.1038/sj.ejcn.1602631

C. T. Payne, F. Zhang, and A. M. Lloyd, GL3 encodes a bHLH protein that regulates trichome development in arabidopsis through interaction with GL1 and TTG1, Genetics, vol.156, pp.1349-1362, 2000.

J. Pelloux, C. Rusterucci, and E. J. Mellerowicz, New insights into pectin methylesterase structure and function, Trends in Plant Science, vol.12, issue.6, pp.267-277, 2007.
DOI : 10.1016/j.tplants.2007.04.001

W. C. Plaxton and F. E. Podestá, The Functional Organization and Control of Plant Respiration, Critical Reviews in Plant Sciences, vol.41, issue.2, pp.159-198, 2006.
DOI : 10.1080/07352680600563876

R. Pleite, M. J. Pike, R. Garces, E. Martinez-force, and S. Rawsthorne, The sources of carbon and reducing power for fatty acid synthesis in the heterotrophic plastids of developing sunflower (Helianthus annuus L.) embryos, Journal of Experimental Botany, vol.56, issue.415, pp.1297-1303, 2005.
DOI : 10.1093/jxb/eri130

I. E. Popova, C. Hall, and A. Kubátová, Determination of lignans in flaxseed using liquid chromatography with time-of-flight mass spectrometry, Journal of Chromatography A, vol.1216, issue.2, pp.217-229, 2009.
DOI : 10.1016/j.chroma.2008.11.063

B. Pouvreau, S. Baud, V. Vernoud, V. Morin, C. Py et al., Duplicate Maize Wrinkled1 Transcription Factors Activate Target Genes Involved in Seed Oil Biosynthesis, PLANT PHYSIOLOGY, vol.156, issue.2, pp.674-686, 2011.
DOI : 10.1104/pp.111.173641

URL : https://hal.archives-ouvertes.fr/hal-01000162

K. Prasad, Hydroxyl radical-scavenging property of secoisolariciresinol diglucoside (SDG) isolated from flax-seed, Molecular and Cellular Biochemistry, vol.168, issue.1-2, pp.117-123, 1997.
DOI : 10.1023/A:1006847310741

K. Prasad, Antioxidant activity of secoisolariciresinol diglucoside-derived metabolites, secoisolariciresinol, Enterodiol, and enterolactone, International Journal of Angiology, vol.9, issue.4, pp.220-225, 2000.
DOI : 10.1007/BF01623898

S. Raggaee, E. S. Abdel-aal, and M. Et-noaman, Antioxidant activity and nutrient composition of selected cereals for food use. Food Chemistry, pp.32-38, 2006.

S. Rajani and V. Sundaresan, The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence, Current Biology, vol.11, issue.24, pp.1914-1922, 2001.
DOI : 10.1016/S0960-9822(01)00593-0

J. Rajesha, K. Murthy, M. Kumar, B. Madhusudhan, and G. Ravishankar, Antioxidant Potentials of Flaxseed by in Vivo Model, Journal of Agricultural and Food Chemistry, vol.54, issue.11, pp.3794-3799, 2006.
DOI : 10.1021/jf053048a

K. Roesler, D. Shintani, L. Savage, S. Boddupalli, and J. Ohlrogge, Targeting of the Arabidopsis Homomeric Acetyl-Coenzyme A Carboxylase to Plastids of Rapeseeds, Plant Physiology, vol.113, issue.1, pp.75-81, 1997.
DOI : 10.1104/pp.113.1.75

H. Rolletschek, W. Wedchke, H. Weber, U. Wobus, and L. Borisjuk, Energy state and its control on seed development: starch accumulation is associated with high ATP and steep oxygen gradients within barley grains, Journal of Experimental Botany, vol.55, issue.401, pp.1351-1359, 2004.
DOI : 10.1093/jxb/erh130

A. Roscher, N. J. Kruger, and R. G. Ratcliffe, Strategies for metabolic flux analysis in plants using isotope labelling, Journal of Biotechnology, vol.77, issue.1, pp.81-102, 2000.
DOI : 10.1016/S0168-1656(99)00209-6

S. A. Ruuska, J. Schwender, and J. Ohlrogge, The Capacity of Green Oilseeds to Utilize Photosynthesis to Drive Biosynthetic Processes, PLANT PHYSIOLOGY, vol.136, issue.1, pp.2700-2709, 2004.
DOI : 10.1104/pp.104.047977

P. Ryden, K. Sugimoto-shirasu, A. C. Smith, K. Findlay, W. D. Reiter et al., Tensile Properties of Arabidopsis Cell Walls Depend on Both a Xyloglucan Cross-Linked Microfibrillar Network and Rhamnogalacturonan II-Borate Complexes, PLANT PHYSIOLOGY, vol.132, issue.2, pp.1033-1040, 2003.
DOI : 10.1104/pp.103.021873

A. I. Saeed, V. Sharov, J. White, J. Li, W. Liang et al., TM4: a free, opensource system for microarray data management and analysis, Biotechniques, vol.34, pp.374-378, 2003.

D. A. Samac, L. Litterer, G. Temple, H. G. Jung, and D. A. Somers, Expression of UDP???Glucose Dehydrogenase Reduces Cell-Wall Polysaccharide Concentration and Increases Xylose Content in Alfalfa Stems, Applied Biochemistry and Biotechnology, vol.116, issue.1-3, pp.1167-1182, 2004.
DOI : 10.1385/ABAB:116:1-3:1167

M. P. Sarmi and V. Et-cheymer, Les polyphénols en agroalimentaire, 2006.

W. R. Scheible and M. Et-pauly, Glycosyltransferases and cell wall biosynthesis: novel players and insights, Current Opinion in Plant Biology, vol.7, issue.3, pp.285-295, 2004.
DOI : 10.1016/j.pbi.2004.03.006

URL : http://hdl.handle.net/11858/00-001M-0000-0014-2C81-7

J. Schwender, Metabolic flux analysis as a tool in metabolic engineering of plants, Current Opinion in Biotechnology, vol.19, issue.2, pp.131-137, 2008.
DOI : 10.1016/j.copbio.2008.02.006

J. Schwender, Experimental flux measurements on a network scale, Frontiers in Plant Science, vol.2, pp.63-64, 2011.
DOI : 10.3389/fpls.2011.00063

J. Schwender, F. Goffman, J. Ohlrogge, and Y. Shaschar-hill, Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds, Nature, vol.25, issue.7018, pp.779-782, 2004.
DOI : 10.1016/S0167-7799(98)01290-6

J. Schwender, J. B. Ohlrogge, and Y. Shachar-hill, A flux model of glycolysis and the oxidative pentose phosphate pathway in developing Brassica napus embryos, J. Biol, 2003.

B. Shen, K. W. Sinkevicius, D. A. Selinger, and M. C. Tarczynski, The Homeobox Gene GLABRA2 Affects Seed Oil Content in Arabidopsis, Plant Molecular Biology, vol.9, issue.1, pp.377-387, 2006.
DOI : 10.1007/s11103-005-4110-1

B. Shen, W. B. Allen, P. Zheng, C. Li, K. Glassman et al., Expression of ZmLEC1 and ZmWRI1 Increases Seed Oil Production in Maize, PLANT PHYSIOLOGY, vol.153, issue.3, pp.980-987, 2010.
DOI : 10.1104/pp.110.157537

L. Shi, V. Katavic, Y. Yu, L. Kunst, and G. Haughn, Arabidopsis glabra2 mutant seeds deficient in mucilage biosynthesis produce more oil, The Plant Journal, vol.64, issue.1, pp.37-46, 2012.
DOI : 10.1111/j.1365-313X.2011.04768.x

R. M. Siloto, K. Findlay, A. Lopez-villalobos, E. C. Yeung, C. L. Nykiforuk et al., The Accumulation of Oleosins Determines the Size of Seed Oilbodies in Arabidopsis, THE PLANT CELL ONLINE, vol.18, issue.8, pp.1961-1974, 2006.
DOI : 10.1105/tpc.106.041269

R. A. Sidorov and V. D. Tsydendambaev, Biosynthesis of fatty oils in higher plants, Russian Journal of Plant Physiology, vol.61, issue.1, 2014.
DOI : 10.1134/S1021443714010130

R. G. Smith, D. A. Gauthier, D. T. Dennis, and D. H. Turpin, Malate- and Pyruvate-Dependent Fatty Acid Synthesis in Leucoplasts from Developing Castor Endosperm, PLANT PHYSIOLOGY, vol.98, issue.4, pp.1233-1238, 1992.
DOI : 10.1104/pp.98.4.1233

A. R. Snapp and C. Lu, Engineering industrial fatty acids in oilseeds, Frontiers in Biology, vol.6, issue.2, pp.323-332, 2013.
DOI : 10.1007/s11515-012-1228-9

X. Song, Q. Li, Y. Liu, F. Zhang, B. Ma et al., Soybean GmbZIP123 gene enhances lipid content in the seeds of transgenic Arabidopsis plants, Journal of Experimental Botany, vol.64, issue.14, pp.4329-4341, 2013.
DOI : 10.1093/jxb/ert238

G. Sriram, D. B. Fulton, V. V. Iyer, J. M. Peterson, R. L. Zhou et al., Quantification of Compartmented Metabolic Fluxes in Developing Soybean Embryos by Employing Biosynthetically Directed Fractional 13C Labeling, Two-Dimensional [13C, 1H] Nuclear Magnetic Resonance, and Comprehensive Isotopomer Balancing, PLANT PHYSIOLOGY, vol.136, issue.2, pp.3043-3057, 2004.
DOI : 10.1104/pp.104.050625

R. Stadler, C. Lauterbach, and N. Sauer, Cell-to-Cell Movement of Green Fluorescent Protein Reveals Post-Phloem Transport in the Outer Integument and Identifies Symplastic Domains in Arabidopsis Seeds and Embryos, PLANT PHYSIOLOGY, vol.139, issue.2, pp.701-712, 2005.
DOI : 10.1104/pp.105.065607

O. V. Stasevich, S. G. Mikhalenok, and V. P. Kurchenko, Isolation of secoisolariciresinol diglucoside from lignan-containing extract of Linum usitatissimum seeds, Chemistry of Natural Compounds, vol.972, issue.1, pp.21-23, 2009.
DOI : 10.1007/s10600-009-9217-1

S. L. Stone, L. W. Kwong, K. M. Yee, J. Pelletier, L. Lepiniec et al., LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development, Proceedings of the National Academy of Sciences, vol.98, issue.20, pp.11806-11811, 2001.
DOI : 10.1073/pnas.201413498

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC58812

J. Stork, D. Harris, J. Griffiths, B. Williams, F. Beisson et al., CELLULOSE SYNTHASE9 Serves a Nonredundant Role in Secondary Cell Wall Synthesis in Arabidopsis Epidermal Testa Cells, PLANT PHYSIOLOGY, vol.153, issue.2, pp.580-589, 2010.
DOI : 10.1104/pp.110.154062

D. Strack and H. P. Mock, Hydroxycinnamic acids and lignins, Methods in Plant Biochemistr, vol.9, pp.45-49, 1993.

R. Stracke, M. Werber, and B. Weisshaar, The R2R3-MYB gene family in Arabidopsis thaliana, Current Opinion in Plant Biology, vol.4, issue.5, pp.447-456, 2001.
DOI : 10.1016/S1369-5266(00)00199-0

K. Struijs, J. P. Vincken, R. Verhoef, W. H. Van-oostveen-van-casteren, A. G. Voragen et al., The flavonoid herbacetin diglucoside as a constituent of the lignan macromolecule from flaxseed hulls, Phytochemistry, vol.68, issue.8, pp.1227-1235, 2007.
DOI : 10.1016/j.phytochem.2006.10.022

A. Sturm, Invertases. Primary Structures, Functions, and Roles in Plant Development and Sucrose Partitioning, Plant Physiology, vol.121, issue.1, pp.1-8, 1999.
DOI : 10.1104/pp.121.1.1

T. Szyperski, Biosynthetically Directed Fractional 13C-labeling of Proteinogenic Amino Acids. An Efficient Analytical Tool to Investigate Intermediary Metabolism, European Journal of Biochemistry, vol.267, issue.2, pp.433-448, 1995.
DOI : 10.1016/0014-5793(89)80027-4

D. C. Taylor, V. Katavic, J. Zou, S. L. Mackenzie, W. A. Keller et al., Field-testing of transgenic rapeseed cv. Hero transformed with a yeast sn-2 acyltransferase results in increased oil content, erucic acid content and seed yield, Molecular Breeding, vol.8, issue.4, pp.317-322, 2001.
DOI : 10.1023/A:1015234401080

D. C. Taylor, Y. Zhang, A. Kumar, T. Francis, E. M. Giblin et al., to produce canola with increased seed oil content under field conditionsThis paper is one of a selection of papers published in a Special Issue from the National Research Council of Canada ??? Plant Biotechnology Institute., Botany, vol.87, issue.6, pp.533-543, 2009.
DOI : 10.1139/B08-101

P. D. Thomas, M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak et al., PANTHER: A Library of Protein Families and Subfamilies Indexed by Function, Genome Research, vol.13, issue.9, pp.2129-2141, 2003.
DOI : 10.1101/gr.772403

A. To, J. Joubès, G. Barthole, A. Lécureuil, A. Scagnelli et al., WRINKLED Transcription Factors Orchestrate Tissue-Specific Regulation of Fatty Acid Biosynthesis in Arabidopsis, The Plant Cell, vol.24, issue.12, pp.5007-5023, 2012.
DOI : 10.1105/tpc.112.106120

URL : https://hal.archives-ouvertes.fr/hal-01004104

A. To, C. Valon, G. Savino, J. Guilleminot, M. Devic et al., A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell, pp.1642-1651, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00164401

S. Troufflard, Etude du métabolimse carboné dans les embryons de lin oléagineux lors de l'accumulation des réserves lipidiques, Thèse de l, 2004.

H. Vigeolas, P. Waldeck, T. Zank, and P. Geigenberger, Increasing seed oil content in oil-seed rape (Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter, Plant Biotechnology Journal, vol.15, issue.3, pp.431-441, 2007.
DOI : 10.1105/tpc.9.6.909

P. Vrinten, Z. Hu, M. Munchinsky, G. Rowland, and X. Qiu, Two FAD3 Desaturase Genes Control the Level of Linolenic Acid in Flax Seed, PLANT PHYSIOLOGY, vol.139, issue.1, pp.79-87, 2005.
DOI : 10.1104/pp.105.064451

P. K. Wanasundara and . F. Shahidi, Removal of flaxseed mucilage by chemical and enzymatic treatments, Food Chemistry, vol.59, issue.1, pp.47-55, 1997.
DOI : 10.1016/S0308-8146(96)00093-3

H. W. Wang, B. Zhang, Y. J. Hao, J. Huang, A. G. Tian et al., The soybean Dof-type transcription factor genes, GmDof4 and GmDof11, enhance lipid content in the seeds of transgenic Arabidopsis plants, The Plant Journal, vol.39, issue.4, pp.716-729, 2007.
DOI : 10.1111/j.1365-313X.2007.03268.x

Z. Wang, N. Hobson, L. Galindo, S. Zhu, D. Shi et al., from short shotgun sequence reads, The Plant Journal, vol.7, issue.3, pp.461-473, 2012.
DOI : 10.1111/j.1365-313X.2012.05093.x

R. J. Weselake, D. C. Taylor, M. H. Rahman, S. Shah, A. Laroche et al., Increasing the flow of carbon into seed oil, Biotechnology Advances, vol.27, issue.6, pp.866-878, 2009.
DOI : 10.1016/j.biotechadv.2009.07.001

T. L. Western, D. S. Young, G. H. Dean, W. L. Tan, A. L. Samuels et al., MUCILAGE-MODIFIED4 Encodes a Putative Pectin Biosynthetic Enzyme Developmentally Regulated by APETALA2, TRANSPARENT TESTA GLABRA1, and GLABRA2 in the Arabidopsis Seed Coat, PLANT PHYSIOLOGY, vol.134, issue.1, pp.296-306, 2004.
DOI : 10.1104/pp.103.035519

W. Wiechert, 13C Metabolic Flux Analysis, Metabolic Engineering, vol.3, issue.3, pp.195-206, 2001.
DOI : 10.1006/mben.2001.0187

J. B. Windsor, V. V. Symonds, J. Mendenhall, and A. M. Lloyd, Arabidopsis seed coat development: morphological differentiation of the outer integument, The Plant Journal, vol.64, issue.6, pp.483-493, 2000.
DOI : 10.1046/j.1365-313X.1995.07050731.x

M. Wrobel-kwiatkowska, M. Czemplik, A. Kulma, M. Zuk, J. Kaczmar et al., New biocomposites based on bioplastic flax fibers and biodegradable polymers, Biotechnology Progress, vol.88, issue.5, pp.1336-1346, 2012.
DOI : 10.1002/btpr.1599

A. Yamamoto, Y. Kagaya, H. Usui, T. Hobo, S. Takeda et al., Diverse Roles and Mechanisms of Gene Regulation by the Arabidopsis Seed Maturation Master Regulator FUS3 Revealed by Microarray Analysis, Plant and Cell Physiology, vol.51, issue.12, pp.2031-2046, 2010.
DOI : 10.1093/pcp/pcq162

S. Yanagisawa, The Dof family of plant transcription factors, Trends in Plant Science, vol.7, issue.12, pp.555-560, 2002.
DOI : 10.1016/S1360-1385(02)02362-2

Y. Zeng, X. Tan, L. Zhang, N. Jiang, and H. Cao, Identification and Expression of, 2014.

F. Zhang, A. Gonzalez, M. Zhao, C. T. Payne, and A. Lloyd, A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis, Development, vol.130, issue.20, pp.4859-4869, 2003.
DOI : 10.1242/dev.00681

M. Zhang, J. Fan, D. C. Taylor, and J. B. Ohlrogge, DGAT1 and PDAT1 Acyltransferases Have Overlapping Functions in Arabidopsis Triacylglycerol Biosynthesis and Are Essential for Normal Pollen and Seed Development, The Plant Cell, vol.21, issue.12, pp.3885-3901, 2009.
DOI : 10.1105/tpc.109.071795

P. Zheng, W. B. Allen, K. Roesler, M. E. Williams, S. Zhang et al., A phenylalanine in DGAT is a key determinant of oil content and composition in maize, Nature Genetics, vol.318, issue.3, pp.367-437, 2008.
DOI : 10.1016/0003-2697(78)90046-5

R. Zhong, W. H. Iii, J. Negrel, and Z. H. Ye, Dual Methylation Pathways in Lignin Biosynthesis, THE PLANT CELL ONLINE, vol.10, issue.12, pp.2033-2046, 1998.
DOI : 10.1105/tpc.10.12.2033

R. Zhong, W. H. Morrison, D. S. Himmelsbach, F. L. Poole, and Z. H. Ye, -Methyltransferase in Lignin Biosynthesis in Woody Poplar Plants, Plant Physiology, vol.124, issue.2, pp.563-578, 2000.
DOI : 10.1104/pp.124.2.563

URL : https://hal.archives-ouvertes.fr/hal-00757458

M. Zuk, A. Kulma, M. Dymi?ska, K. Szo?tysek, A. Prescha et al., Flavonoid engineering of flax potentiate its biotechnological application, BMC Biotechnology, issue.10, pp.11-12, 2011.

M. Zuk, A. Prescha, M. Stryczewska, and J. Szopa, Engineering Flax Plants To Increase Their Antioxidant Capacity and Improve Oil Composition and Stability, Journal of Agricultural and Food Chemistry, vol.60, issue.19, pp.5003-5012, 2012.
DOI : 10.1021/jf300421m

I. Tableau and . Zuk, Teneurs des différents flavonoïdes dans les graines de lin d'après

T. Lepiniec, Arabidopsis thaliana d'après, p.58, 2006.

V. .. Tableau, Gradient d'élution utilisé pour séparer les acides aminés Temps (minute), p.85

V. Tableau, Gradient d'élution pour séparer les polyphénols, p.91

X. Tableau, Teneurs des composés phénoliques dans les téguments de graines de lin matures des lignées Astral et 238 exprimées en mg pour 100g téguments, p.138

X. Tableau, Nombre de gènes différentiellement exprimés entre les lignées Astral et 238

X. Tableau, Différence d'expression des gènes impliqués dans la biosynthèse de la paroi cellulaire dans les téguments de lin Astral et 238 à 24, p.144

X. Tableau, Différence d'expression des gènes impliqués dans la biosynthèse des proanthocyanidines dans les téguments de lin Astral et 238 à 24, p.149

X. Tableau, Différence d'expression des gènes impliqués dans le métabolisme carboné et des facteurs de transcription dans les téguments de lin Astral et 238 à 24, p.151

X. Tableau, Différence d'expression des gènes codant pour les facteurs de transcription LEC1, p.2

X. Tableau, Différence d'expression des gènes codant pour des facteurs de transcription dans les embryons de lin Astral et 238 à 24, p.170

X. Tableau, 120 et 168 heures d'incubation, p.183

X. Tableau, 120 et 168 heures d'incubation

X. Tableau, Evolution des enrichissements en 13C du M+H + de la lysine, de l'asparagine et de la valine durant 24

X. Tableau, Evolution des enrichissements en 13C du glucose provenant de l'hydrolyse de l'amidon durant 24, 72, 120 et 168 heures d'incubation

X. Tableau, Enrichissements isotopiques des sucres libres après culture d'embryons de lin (Astral) âgés de 16 JAF en présence de 20 % de [1-13C 1 ]-glucose

X. Tableau, Enrichissements isotopiques des acides organiques et du fragment de Mc lafferty de l'acide palmitique après culture d'embryons de lin (Astral)

X. Tableau, Enrichissements isotopiques des sucres libres après culture d'embryons de lin (Astral) âgés de 16 JAF en présence de 20 % de [U-13C 5 ]-glutamine, p.208

X. Tableau, Astral) âgés de 16 JAF en présence de 100 % de [U-13C 5 ]glutamine, p.209

X. Tableau, Flux extracellulaires mesurés (nmol.h. -1 embryon -1 ), p.212

X. Tableau, Origine des précurseurs et des cofacteurs métaboliques pour la synthèse des huiles dans les embryons d'oléagineux, d'après O'grady et al, p.218, 2012.

X. Tableau, Flux extracellulaires mesurés (nmol.h. -1 embryon -1 ), p.223

X. Tableau, Flux extracellulaires mesurés (nmol.h. -1 embryon -1 ), p.227