Quelques asymptotiques spectrales pour le Laplacien de Dirichlet : triangles, cônes et couches coniques

Abstract : This thesis deals with the spectrum of the Dirichlet Laplacian in various two or three dimensional domains. First, we consider asymptotically flat triangles and cones with small aperture. These problems admit a semi-classical formulation and we provide asymptotic expansions at any order for the first eigenvalues and the associated eigenfunctions. These type of results is already known for thin domains with smooth profiles. For triangles and cones, we show that the problem admits now two different scales. Second, we study a family of conical layers parametrized by their aperture. Again, we consider the semi-classical limit when the aperture tends to zero: We provide a two-term asymptotics of the first eigenvalues and we prove a localization result about the associated eigenfunctions. We also estimate, for each chosen aperture, the number of eigenvalues below the threshold of the essential spectrum.
Document type :
Theses
Complete list of metadatas

Cited literature [51 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-01153180
Contributor : Abes Star <>
Submitted on : Tuesday, May 19, 2015 - 11:47:05 AM
Last modification on : Thursday, November 15, 2018 - 11:56:36 AM
Long-term archiving on : Tuesday, September 15, 2015 - 6:09:31 AM

File

OURMIERES_Thomas.pdf
Version validated by the jury (STAR)

Identifiers

  • HAL Id : tel-01153180, version 1

Citation

Thomas Ourmières-Bonafos. Quelques asymptotiques spectrales pour le Laplacien de Dirichlet : triangles, cônes et couches coniques. Analyse numérique [math.NA]. Université Rennes 1, 2014. Français. ⟨NNT : 2014REN1S143⟩. ⟨tel-01153180⟩

Share

Metrics

Record views

459

Files downloads

336