I. Avantages, 12 1.1.5 Aspects thermiques du procédé : estimation de l'échauffement, 8 1.1.3 Les applications industrielles du soudage

F. Modélisation-du-procédé, 36 1.3.1 Modélisation mécanique, p.51

.. Modélisation-numérique-du-soudage-fsw-en-thermofluide, 111 3.2.2 Discrétisation spatiale et temporelle, p.130

A. Gharacheh, M. Kokabi, A. Daneshi, G. Shalchi, B. Sarrafi et al., The influence of the ratio of " rotational speed/traverse speed " (?/v) on mechanical properties of AZ31 friction stir welds, International Journal of Machine Tools and Manufacture, issue.15, pp.461983-1987, 2006.

N. Afrin, D. Chen, X. Cao, and M. Jahazi, Microstructure and tensile properties of friction stir welded AZ31B magnesium alloy, Materials Science and Engineering: A, vol.472, issue.1-2, pp.179-186, 2008.
DOI : 10.1016/j.msea.2007.03.018

I. Alfaro, L. Fratini, E. Cueto, C. , and F. , Numerical simulation of friction stir welding by natural element methods, International Journal of Material, pp.1-16, 2008.
URL : https://hal.archives-ouvertes.fr/hal-01008563

D. N. Arnold, F. Brezzi, and M. Fortin, A stable finite element for the stokes equations, Calcolo, vol.21, issue.4, pp.337-344, 1984.
DOI : 10.1007/BF02576171

A. Arora, T. Debroy, and H. Bhadeshia, Back-of-the-envelope calculations in friction stir welding ??? Velocities, peak temperature, torque, and hardness, Acta Materialia, vol.59, issue.5, pp.592020-2028, 2011.
DOI : 10.1016/j.actamat.2010.12.001

M. Attallah, C. Davis, and M. Strangwood, The influence of intermetallic particles on the formation of the 'onion rings' structure in aluminium-based alloys friction stir welds, Science and Technology of Welding, pp.1-12, 2007.

H. Aydin, A. Bayram, and S. Durgun, The effect of post-weld heat treatment on the mechanical properties of 2024-T4 friction stir-welded joints, Materials & Design (1980-2015), vol.31, issue.5, pp.312568-2577, 2010.
DOI : 10.1016/j.matdes.2009.11.030

H. Aydin, A. Bayram, A. U?uz, and K. S. Akay, Tensile properties of friction stir welded joints of 2024 aluminum alloys in different heat-treated-state, Materials & Design, vol.30, issue.6, pp.302211-2221, 2009.
DOI : 10.1016/j.matdes.2008.08.034

H. Bang, W. Chang, K. , and H. , Numerical determination of residual stress in friction stir weld using 3D-analytical model of stir zone, Journal of materials, pp.187-188224, 2007.

Z. Barsoum, M. Khurshid, and I. Barsoum, Fatigue strength evaluation of friction stir welded aluminium joints using the nominal and notch stress concepts, Materials & Design, vol.41, pp.231-238, 2012.
DOI : 10.1016/j.matdes.2012.05.018

G. Biallas, R. Braun, C. Donne, D. Staniek, G. Kaysser et al., Mechanical properties and corrosion behavior of friction stir welded 2024-t3, First international conference on friction stir welds, 1999.

C. Bitondo, U. Prisco, A. Squilace, P. Buonadonna, and G. Dionoro, Frictionstir welding of AA 2198 butt joints : mechanical characterization of the process and of the welds through DOE analysis, The International Journal of Advanced Manufacturing Technology, vol.53, pp.5-8505, 2010.

D. Booth, M. Starink, and I. Sinclair, Analysis of local microstructure and hardness of 13 mm gauge 2024-T351 AA friction stir welds, Materials Science and Technology, vol.12, issue.3, pp.1-22, 2007.
DOI : 10.1016/0956-716X(94)90176-7

A. Brooks and T. .. Hughes, Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier- Stokes equations. Computer methods in applied mechanics and, 1982.

R. Brown, W. Tang, R. , and A. , Multi-pass friction stir welding in alloy 7050-T7451: Effects on weld response variables and on weld properties, Materials Science and Engineering: A, vol.513, issue.514, pp.513-514115, 2009.
DOI : 10.1016/j.msea.2009.01.041

G. Buffa, L. Fratini, and S. Pasta, Residual stresses in friction stir welding : numerical simulation and experimental verification. Citeseer, pp.444-453, 2009.

R. Cazes, Soudage par friction-malaxage, pp.6-7, 2003.

Z. Chen and S. Cui, On the forming mechanism of banded structures in aluminium alloy friction stir welds, Scripta Materialia, vol.58, issue.5, pp.417-420, 2008.
DOI : 10.1016/j.scriptamat.2007.10.026

J. Cho, D. Boyce, D. , and P. , Modeling strain hardening and texture evolution in friction stir welding of stainless steel, Materials Science and Engineering: A, vol.398, issue.1-2, pp.146-163, 2005.
DOI : 10.1016/j.msea.2005.03.002

Y. D. Chung, H. Fujii, Y. Sun, and H. Tanigawa, Interface microstructure evolution of dissimilar friction stir butt welded F82H steel and SUS304, Materials Science and Engineering: A, vol.528, issue.18, pp.5285812-5821, 2011.
DOI : 10.1016/j.msea.2011.04.023

R. G. Citarella, P. Carlone, M. Lepore, and G. S. Palazzo, A FEM-DBEM Investigation of the Influence of Process Parameters on Crack Growth in Aluminum Friction Stir Welded Butt Joints, Key Engineering Materials, vol.554, issue.557, pp.554-557, 2013.
DOI : 10.4028/www.scientific.net/KEM.554-557.2118

P. A. Colegrove and H. R. Shercliff, 3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile, Journal of Materials Processing Technology, vol.169, issue.2, pp.320-327, 2005.
DOI : 10.1016/j.jmatprotec.2005.03.015

K. Colligan, Material flow behaviour during friction welding of aluminum, Weld J, vol.78, issue.7, pp.229-237, 1999.

G. Cui, Z. Ma, L. , and S. , Periodical plastic flow pattern in friction stir processed Al???Mg alloy, Scripta Materialia, vol.58, issue.12, pp.1082-1085, 2008.
DOI : 10.1016/j.scriptamat.2008.02.003

S. Di, X. Yang, D. Fang, and G. Luan, The influence of zigzag-curve defect on the fatigue properties of friction stir welds in 7075-T6 Al alloy, Materials Chemistry and Physics, vol.104, issue.2-3, pp.244-248, 2007.
DOI : 10.1016/j.matchemphys.2007.01.023

E. A. El-danaf and M. M. El-rayes, Microstructure and mechanical properties of friction stir welded 6082 AA in as welded and post weld heat treated conditions, Materials & Design, vol.46, 2013.
DOI : 10.1016/j.matdes.2012.10.047

B. Ericsson, M. Sandström, and R. , Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIG, International Journal of Fatigue, vol.25, issue.12, pp.1379-1387, 2003.
DOI : 10.1016/S0142-1123(03)00059-8

P. Ferro and F. Bonollo, A Semianalytical Thermal Model for Fiction Stir Welding, Metallurgical and Materials Transactions A, vol.17, issue.2, pp.440-449, 2009.
DOI : 10.1007/s11661-009-0104-y

E. Feulvarch, J. Roux, and J. Bergheau, A simple and robust moving mesh technique for the finite element simulation of Friction Stir Welding, Journal of Computational and Applied Mathematics, vol.246, pp.1-9, 2013.
DOI : 10.1016/j.cam.2012.07.013

L. Fratini, G. Buffa, and R. Shivpuri, Mechanical and metallurgical effects of in process cooling during friction stir welding of AA7075-T6 butt joints, Acta Materialia, vol.58, issue.6, pp.582056-2067, 2010.
DOI : 10.1016/j.actamat.2009.11.048

L. Fratini and B. Zuccarello, An analysis of through-thickness residual stresses in aluminium FSW butt joints, International Journal of Machine Tools and Manufacture, vol.46, issue.6, pp.611-619, 2006.
DOI : 10.1016/j.ijmachtools.2005.07.013

J. Freeman, G. Moore, B. Thomas, L. Kok, and . Applications, Advances in FSW for Commercial Aircraft, of the 6th International Symposium on, 2006.

C. B. Fuller, M. W. Mahoney, M. Calabrese, and L. Micona, Evolution of microstructure and mechanical properties in naturally aged 7050 and 7075 Al friction stir welds, Materials Science and Engineering: A, vol.527, issue.9, pp.2233-2240, 2010.
DOI : 10.1016/j.msea.2009.11.057

C. Gallais, A. Denquin, Y. Bréchet, and G. Lapasset, Precipitation microstructures in an AA6056 aluminium alloy after friction stir welding: Characterisation and modelling, Materials Science and Engineering: A, vol.496, issue.1-2, pp.77-89, 2008.
DOI : 10.1016/j.msea.2008.06.033

C. Genevois and A. Deschamps, Genèse des microstructures lors du soudage par friction malaxage d'alliages d'aluminium de la série 2000 & 5000 et comportement mécanique résultant, 2004.

C. Genevois, A. Deschamps, A. Denquin, and B. Doisneaucottignies, Quantitative investigation of precipitation and mechanical behaviour for AA2024 friction stir welds, Acta Materialia, vol.53, issue.8, pp.532447-2458, 2005.
DOI : 10.1016/j.actamat.2005.02.007

B. Gibson, D. Lammlein, T. Prater, W. Longhurst, C. Cox et al., Friction stir welding: Process, automation, and control, Journal of Manufacturing Processes, vol.16, issue.1, pp.56-73, 2014.
DOI : 10.1016/j.jmapro.2013.04.002

A. F. Golestaneh and A. Ali, Application of Numerical Method to Investigation of Fatigue Crack Behavior Through Friction Stir Welding, Journal of Failure Analysis and Prevention, vol.28, issue.16, pp.147-158, 2009.
DOI : 10.1007/s11668-009-9210-9

S. Gourdet and F. Montheillet, A model of continuous dynamic recrystallization, Acta Materialia, vol.51, issue.9, 2003.
DOI : 10.1016/S1359-6454(03)00078-8

F. Gratecap, M. Girard, S. Marya, R. , and G. , Exploring material flow in friction stir welding: Tool eccentricity and formation of banded structures, International Journal of Material Forming, vol.1, issue.2, pp.99-107, 2011.
DOI : 10.1007/s12289-010-1008-5

URL : https://hal.archives-ouvertes.fr/hal-01006857

F. Gratecap, G. Racineux, and A. Poitou, Contributions au procédé de soudage par frottement et malaxage, 2007.

S. Guerdoux, Simulation numérique du soudage par frottement malaxage, 2007.

S. Guerdoux and L. Fourment, Error Estimation And Accurate Mapping Based ALE Formulation For 3D Simulation Of Friction Stir Welding, AIP Conference Proceedings, pp.185-190, 2007.
DOI : 10.1063/1.2740809

URL : https://hal.archives-ouvertes.fr/hal-00510557

P. Heurtier, M. Jones, and C. Desrayaud, Mechanical and thermal modelling of Friction Stir Welding, Journal of Materials Processing Technology, vol.171, issue.3, pp.348-357, 2006.
DOI : 10.1016/j.jmatprotec.2005.07.014

URL : https://hal.archives-ouvertes.fr/hal-00292979

Z. Hu, S. Yuan, X. Wang, G. Liu, and Y. Huang, Effect of post-weld heat treatment on the microstructure and plastic deformation behavior of friction stir welded 2024, Materials & Design, vol.32, issue.10, pp.325055-5060, 2011.
DOI : 10.1016/j.matdes.2011.05.035

M. Iordachescu and J. R. Hervías, Residual stress analysis of friction stir processed AA6061. Welding in the, pp.753-757, 2008.

D. Jacquin, B. De-meester, A. Simar, D. Deloison, F. Montheillet et al., A simple Eulerian thermomechanical modeling of friction stir welding, Journal of Materials Processing Technology, vol.211, issue.1, pp.57-65, 2011.
DOI : 10.1016/j.jmatprotec.2010.08.016

URL : https://hal.archives-ouvertes.fr/hal-00857931

D. Jacquin and C. Desrayaud, Modélisation de l'histoire thermomécanique des zones soudées en Friction Stir Welding, 2009.

N. Jemal, Qualification du domaine de soudabilité en soudage par friction ma- laxage, 2011.

N. Jemal, F. Girot, L. Langlois, and J. Masse, Qualification du domaine de soudabilité en soudage par friction malaxage, 2011.

A. N. Jr, The evolution of friction stir welding theory at Marshall Space Flight Center, Proceedings of 9th Int'l Symp. FSWing, 2012.

N. Kamp, A. Sullivan, R. Tomasi, and J. And-robson, Modelling of heterogeneous precipitate distribution evolution during friction stir welding process, Acta Materialia, vol.54, issue.8, pp.542003-2014, 2006.
DOI : 10.1016/j.actamat.2005.12.024

K. Krishnan, On the formation of onion rings in friction stir welds. Materials science and engineering : A, pp.246-251, 2002.

K. Kumar and S. Kailas, The role of friction stir welding tool on material flow and weld formation, Materials Science and Engineering: A, vol.485, issue.1-2, pp.367-374, 2008.
DOI : 10.1016/j.msea.2007.08.013

K. Kuykendall, T. Nelson, and C. Sorensen, On the selection of constitutive laws used in modeling friction stir welding, International Journal of Machine Tools and Manufacture, vol.74, pp.74-85, 2013.
DOI : 10.1016/j.ijmachtools.2013.07.004

D. Lammlein, D. Delapp, P. M. Fleming, . Strauss, and G. Cook, The application of shoulderless conical tools in friction stir welding: An experimental and theoretical study, Materials & Design, vol.30, issue.10, pp.304012-4022, 2009.
DOI : 10.1016/j.matdes.2009.05.023

T. Li, W. Gan, and S. Khurana, Friction stir welding of L80 and X70 steels, Proceedings of the 6th International FSW Symposium, 2006.

W. Li, Z. Zhang, J. Li, and Y. Chao, Numerical Analysis of Joint Temperature Evolution During Friction Stir Welding Based on Sticking Contact, Journal of Materials Engineering and Performance, vol.42, issue.5, pp.1849-1856, 2012.
DOI : 10.1007/s11665-011-0092-0

L. , Y. Murr, L. E. Mcclure, and J. C. , Solid-state flow visualization in the friction-stir welding of 2024 Al to 6061 Al, Scripta materialia, issue.9, pp.401041-1046, 1999.

B. Liechty and B. Webb, The use of plasticine as an analog to explore material flow in friction stir welding, Journal of Materials Processing Technology, vol.184, issue.1-3, pp.1-3240, 2007.
DOI : 10.1016/j.jmatprotec.2006.10.049

S. Lim, S. Kim, C. Lee, S. J. Kim, and C. D. Yim, Tensile behavior of friction-stir-welded AZ31-H24 Mg alloy, Metallurgical and Materials Transactions A, vol.49, issue.6, pp.361609-1612, 2005.
DOI : 10.1007/s11661-005-0252-7

F. C. Liu and Z. Y. Ma, Influence of Tool Dimension and Welding Parameters on Microstructure and Mechanical Properties of Friction-Stir-Welded 6061-T651 Aluminum Alloy, Metallurgical and Materials Transactions A, vol.62, issue.453, 2008.
DOI : 10.1007/s11661-008-9586-2

H. Liu, H. Fujii, M. Maeda, and K. Nogi, Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy, Journal of Materials Processing Technology, vol.142, issue.3, pp.692-696, 2003.
DOI : 10.1016/S0924-0136(03)00806-9

S. Lomolino, R. Tovo, D. , and J. , On the fatigue behaviour and design curves of friction stir butt-welded Al alloys, International Journal of Fatigue, vol.27, issue.3, pp.305-316, 2005.
DOI : 10.1016/j.ijfatigue.2004.06.013

Y. E. Ma, Z. Xia, R. Jiang, L. , and W. , Effect of welding parameters on mechanical and fatigue properties of friction stir welded 2198 T8 aluminum???lithium alloy joints, Engineering Fracture Mechanics, vol.114, pp.1-11, 2013.
DOI : 10.1016/j.engfracmech.2013.10.010

B. Midling and O. T. , Material Flow Behavior and Microstructural Integrity of Friction Stir Butt Weldments, Proceedings of 4th international conference on Aluminum Alloys Atlanta GA, 1994.

P. Moreira and T. Santos, Mechanical and metallurgical characterization of friction stir welding joints of AA6061-T6 with AA6082-T6, Materials & Design, vol.30, issue.1, pp.180-187, 2009.
DOI : 10.1016/j.matdes.2008.04.042

M. Murayama, K. Hono, M. Saga, and M. Kikuchi, Atom probe studies on the early stages of precipitation in Al???Mg???Si alloys, Materials Science and Engineering: A, vol.250, issue.1, pp.127-132, 1998.
DOI : 10.1016/S0921-5093(98)00548-6

M. Okayasu, Z. Wang, C. , and D. , Effect of a hard artificial asperity on the crack closure behavior in an annealed SAE 1015 steel, Engineering Fracture Mechanics, vol.72, issue.13, pp.722106-2127, 2005.
DOI : 10.1016/j.engfracmech.2004.12.006

M. Peel, A. Steuwer, M. Preuss, and P. Withers, Microstructure, mechanical properties and residual stresses as a function of welding speed in aluminium AA5083 friction stir welds, Acta Materialia, vol.51, issue.16, pp.514791-4801, 2003.
DOI : 10.1016/S1359-6454(03)00319-7

E. Perchat, MINI-élément et factorisation incomplètes pour la parallelisation d'un solveur de Stokes 2D : application au forgeage, 2000.

P. Prangnell and C. Heason, Grain structure formation during friction stir welding observed by the ???stop action technique???, Acta Materialia, vol.53, issue.11, pp.533179-3192, 2005.
DOI : 10.1016/j.actamat.2005.03.044

P. Prevéy and M. W. Mahoney, Improved Fatigue Performance of Friction Stir Welds with Low Plasticity Burnishing: Residual Stress Design and Fatigue Performance Assessment, Materials Science Forum, vol.426, issue.432, pp.426-4322933, 2003.
DOI : 10.4028/www.scientific.net/MSF.426-432.2933

R. Rai, A. De, H. Bhadeshia, and T. Debroy, Review: friction stir welding tools, Science and Technology of Welding and Joining, vol.85, issue.1, pp.325-342, 2011.
DOI : 10.1179/174329306X107692

S. Bibliographie-rajakumar, C. Muralidharan, and V. Balasubramanian, Influence of friction stir welding process and tool parameters on strength properties of AA7075-T6 aluminium alloy joints, Materials & Design, vol.32, issue.2, pp.535-549, 2011.
DOI : 10.1016/j.matdes.2010.08.025

M. Rappaz, M. Bellet, and M. Deville, Modélisation numérique en science et génie des matériaux (TM ), 1998.

J. N. Reddy and D. Gartling, The Finite Element Method in Heat Transfer and Fluid Dynamics, 2010.

S. Ren, Z. Ma, C. , and L. , Effect of welding parameters on tensile properties and fracture behavior of friction stir welded Al???Mg???Si alloy, Scripta Materialia, vol.56, issue.1, pp.69-72, 2007.
DOI : 10.1016/j.scriptamat.2006.08.054

A. Reynolds, Flow visualization and simulation in FSW, Scripta Materialia, vol.58, issue.5, pp.338-342, 2008.
DOI : 10.1016/j.scriptamat.2007.10.048

A. P. Reynolds, Visualisation of material flow in autogenous friction stir welds, Science and Technology of Welding and Joining, vol.29, issue.2, p.5, 2000.
DOI : 10.1179/136217100101538119

A. Reynolds, P. Lockwood, W. , D. Seidel, T. et al., Processing-Property Correlation in Friction Stir Welds, Materials Science Forum, vol.331, issue.337, pp.331-3371719, 2000.
DOI : 10.4028/www.scientific.net/MSF.331-337.1719

D. Santiago, S. Urquiza, G. Lombera, L. D. Vedia, and B. Aires, 3D modeling of material flow and temperature in Friction Stir Welding, Soldagem & Inspe????o, vol.14, issue.3, pp.248-256, 2009.
DOI : 10.1590/S0104-92242009000300008

Y. Sato, Y. Kurihara, H. Kokawa, and . Toronto, Microstructural characteristics of dissimilar butt friction stir welds of AA7075 and AA2024, 6th International Symposium on FSW, 2006.

Y. S. Sato, S. H. Park, and H. Kokawa, Microstructural factors governing hardness in friction-stir welds of solid-solution-hardened Al alloys, Metallurgical and Materials Transactions A, vol.7, issue.12, pp.323033-3042, 2001.
DOI : 10.1007/s11661-001-0178-7

B. Sato, Y. S. Takauchi, H. Park, S. H. Kokawa, and H. , Characteristics of the kissing-bond in friction stir welded Al alloy 1050, Materials Science and Engineering: A, vol.405, issue.1-2, pp.333-338, 2005.
DOI : 10.1016/j.msea.2005.06.008

H. Schmidt and J. Hattel, A local model for the thermomechanical conditions in friction stir welding, and Simulation in Materials Science and, pp.77-93, 2005.
DOI : 10.1088/0965-0393/13/1/006

H. Schmidt and J. Hattel, CFD modelling of the shear layer around the tool probe in Friction Stir Welding, Access, issue.604, pp.225-232, 2005.

H. Schmidt and J. Hattel, Thermal modelling of friction stir welding, Scripta Materialia, vol.58, issue.5, pp.332-337, 2008.
DOI : 10.1016/j.scriptamat.2007.10.008

J. Schneider and A. N. Jr, Thermo-mechanical processing in friction stir welds, pp.43-51, 2002.

T. U. Seidel and A. P. Reynolds, Visualization of the material flow in AA2195 friction-stir welds using a marker insert technique, Metallurgical and Materials Transactions A, pp.322879-2884, 2001.
DOI : 10.1007/s11661-001-1038-1

T. U. Seidel and A. P. Reynolds, Two-dimensional friction stir welding process model based on fluid mechanics, Science and Technology of Welding and Joining, vol.125, issue.1, pp.175-183, 2003.
DOI : 10.1016/S1359-6454(98)00342-5

O. Siret, A. Tourabi, and C. Desrayaud, Cold weldability of aluminium: Contribution of the mechanical loadings to the formation of metallic bonds, Journal of Materials Processing Technology, vol.212, issue.11, pp.2122424-2432, 2012.
DOI : 10.1016/j.jmatprotec.2012.07.005

URL : https://hal.archives-ouvertes.fr/emse-00830546

M. Song and R. Kovacevic, Thermal modeling of friction stir welding in a moving coordinate system and its validation, International Journal of Machine Tools and Manufacture, vol.43, issue.6, pp.605-615, 2003.
DOI : 10.1016/S0890-6955(03)00022-1

T. Srivatsan, S. Vasudevan, and L. Park, The tensile deformation and fracture behavior of friction stir welded aluminum alloy 2024, Materials Science and Engineering: A, vol.466, issue.1-2, pp.235-245, 2007.
DOI : 10.1016/j.msea.2007.02.100

P. Staron, M. Koçak, W. , and S. , Residual stresses in friction stir welded Al sheets, Applied Physics A: Materials Science & Processing, vol.74, issue.0, pp.1161-1162, 2002.
DOI : 10.1007/s003390201830

M. Sutton, B. Yang, A. Reynolds, T. , and R. , Microstructural studies of friction stir welds in 2024-T3 aluminum, Materials Science and Engineering: A, vol.323, issue.1-2, pp.160-166, 2002.
DOI : 10.1016/S0921-5093(01)01358-2

M. A. Sutton, B. Yang, A. P. Reynolds, Y. , and J. , Banded microstructure in 2024-T351 and 2524-T351 aluminum friction stir welds, Materials Science and Engineering: A, vol.364, issue.1-2, pp.66-74, 2004.
DOI : 10.1016/S0921-5093(03)00533-1

E. Taban and E. Kaluc, Comparison between microstructure characteristics and joint performance of 5086-H32 aluminium alloy welded by MIG , TIG and friction stir welding processes, pp.9011-9025, 2007.

A. Tartakovsky, G. Grant, and X. Sun, Smooth particle hydrodynamics (SPH) model for friction stir welding (FSW) of dissimilar materials, 2006.

C. Taylor and P. Hood, A numerical solution of the Navier-Stokes equations using the finite element technique, Computers & Fluids, vol.1, issue.1, pp.73-100, 1973.
DOI : 10.1016/0045-7930(73)90027-3

P. L. Threadgill, A. J. Leonard, H. R. Shercliff, and P. J. Withers, Friction stir welding of aluminium alloys, International Materials Reviews, vol.58, issue.2, pp.49-93, 2009.
DOI : 10.1179/174327807X159916

A. Timesli and H. Zahrouni, Modélisation du procédé de soudage FSW à l'aide de la méthode SPH, 2011.

T. H. Tra, M. Okazaki, and K. Suzuki, Fatigue crack propagation behavior in friction stir welding of AA6063-T5: Roles of residual stress and microstructure, International Journal of Fatigue, vol.43, pp.4323-4352, 2012.
DOI : 10.1016/j.ijfatigue.2012.02.003

C. C. Tutum, Optimization of Thermo-mechanical Conditions in Friction Stir Welding, 2009.

Y. Uematsu, K. Tokaji, and H. Shibata, Fatigue behaviour of friction stir welds without neither welding flash nor flaw in several aluminium alloys, International Journal of Fatigue, vol.31, issue.10, pp.311443-1453, 2009.
DOI : 10.1016/j.ijfatigue.2009.06.015

P. Vilaça, L. Quintino, and J. Santos, Quality assessment of friction stir welding joints via an analytical thermal model, iSTIR, Materials Science and Engineering: A, vol.445, issue.446, pp.445-446501, 2007.
DOI : 10.1016/j.msea.2006.09.091

B. Xu, S. Deng, and X. , A study of texture patterns in friction stir welds, Acta Materialia, vol.56, issue.6, pp.1326-1341, 2008.
DOI : 10.1016/j.actamat.2007.11.016

B. Yang, J. Yan, M. Sutton, R. , and A. , Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds, Materials Science and Engineering: A, vol.364, issue.1-2, pp.66-74, 2004.
DOI : 10.1016/S0921-5093(03)00532-X

X. Yang, D. Fang, G. Luan, and B. Jian, Experimental investigation on fatigue properties, pp.1-10

Y. Yang and P. Kalya, Automatic gap detection in friction stir butt welding operations, International Journal of Machine Tools and Manufacture, vol.48, issue.10, pp.481161-1169, 2008.
DOI : 10.1016/j.ijmachtools.2008.01.007

C. Yu and J. C. Heinrich, Petrov-Galerkin methods for the time-dependent convective transport equation, International Journal for Numerical Methods in Engineering, vol.4, issue.5, pp.883-901, 1986.
DOI : 10.1002/nme.1620230510

R. Zettler, J. F. Santos, T. Donath, F. Beckmann, and D. Lohwasser, Material flow in friction stir butt welded aluminium alloys, Development, pp.1-10, 2006.

X. X. Zhang, B. L. Xiao, M. , and Z. Y. , A Transient Thermal Model for Friction Stir Weld. Part I: The Model, Metallurgical and Materials Transactions A, vol.180, issue.10, pp.423218-3228, 2011.
DOI : 10.1007/s11661-011-0729-5

Z. Zhang, B. Xiao, M. , and Z. , Effect of Segregation of Secondary Phase Particles and ???S??? Line on Tensile Fracture Behavior of Friction Stir-Welded 2024Al-T351 Joints, Metallurgical and Materials Transactions A, 2013.
DOI : 10.1007/s11661-013-1778-8

Z. Zhang and H. W. Zhang, Material behaviors and mechanical features in friction stir welding process, The International Journal of Advanced Manufacturing Technology, vol.7, issue.2, pp.86-100, 2007.
DOI : 10.1007/s00170-006-0707-z

J. Zhao, F. Jiang, H. Jian, K. Wen, L. Jiang et al., Comparative investigation of tungsten inert gas and friction stir welding characteristics of Al???Mg???Sc alloy plates, Materials & Design, vol.31, issue.1, pp.31306-311, 2010.
DOI : 10.1016/j.matdes.2009.06.012

Y. Zhao, S. Lin, L. Wu, and F. Qu, The influence of pin geometry on bonding and mechanical properties in friction stir weld 2014 Al alloy, Materials Letters, vol.59, issue.23, pp.592948-2952, 2005.
DOI : 10.1016/j.matlet.2005.04.048

C. Zhou, X. Yang, and G. Luan, Effect of oxide array on the fatigue property of friction stir welds, Scripta Materialia, vol.54, issue.8, pp.1515-1520, 2006.
DOI : 10.1016/j.scriptamat.2005.12.036

C. Zhou, X. Yang, and G. Luan, Effect of root flaws on the fatigue property of friction stir welds in 2024-T3 aluminum alloys, Materials Science and Engineering: A, vol.418, issue.1-2, pp.155-160, 2006.
DOI : 10.1016/j.msea.2005.11.042

X. Zhu and Y. Chao, Numerical simulation of transient temperature and residual stresses in friction stir welding of 304L stainless steel, Journal of Materials Processing Technology, vol.146, issue.2, pp.263-272, 2004.
DOI : 10.1016/j.jmatprotec.2003.10.025

S. Zimmer, R. Bigot, and L. Langlois, Contribution à l'industrialisation du soudage par friction malaxage, 2009.
URL : https://hal.archives-ouvertes.fr/pastel-00005619